Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

M16C/62A Group

Operation of A-D Converter (in single sweep mode)

1.0 Abstract

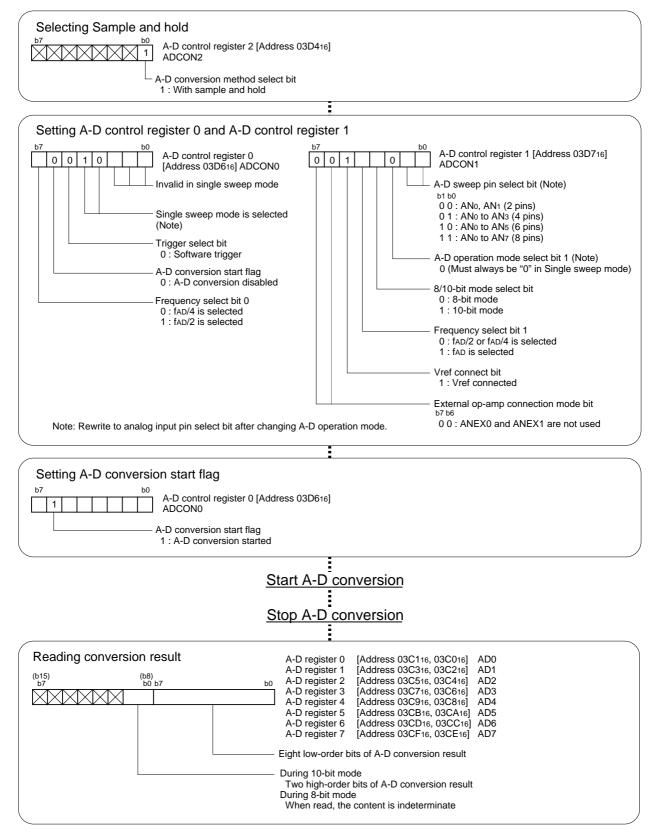
In single sweep mode, choose functions from those listed in Table 1. Operations of the circled items are described below.

Table 1. Choosed functions

Item	Set-up		Item	Set-up	
Operation clock AD	ο	Divided-by-4 fad / divided- by-2 fad / fad	Trigger for starting A- D conversion	0	Software trigger
					Trigger by ADTRG
Resolution	0	8-bit / 10-bit	Expanded analog	0	Not used
Analog input pin	0	ANo and AN1 (2 pins) / ANo to AN3 (4 pins) / ANo to AN5 (6 pins) / ANo to AN7 (8 pins)	input pin		External ope-amp connection mode
			Sample & Hold		Not activated
				0	Activated

2.0 Introduction

- Operation (1) Setting the A-D conversion start flag to "1" causes the A-D converter to start the conversion on voltage input to the AN₀ pin.
 - (2) After the A-D conversion of voltage input to the AN₀ pin is completed, the content of the successive comparison register (conversion result) is transmitted to A-D register 0. The A-D converter converts all analog input pins selected by the user. The conversion result is transmitted to A-D register i corresponding to each pin, every time conversion on one pin is completed.
 - (3) When the A-D conversion on all the analog input pins selected is completed, the A-D conversion interrupt request bit goes to "1". At this time, the A-D conversion start flag goes to "0". The A-D converter stops operating.


Figure 1 shows the operation timing

	(1) Start A-D conversion (2 8-bit resolution : 28 &AD cycles 10-bit resolution : 33 &AD cycles	2) After A-D conversion on AN ₀ pin A-D converter begins converting 8-bit resolution : 28 ₆ AD cycles 10-bit resolution : 33 ₆ AD cycles	is complete, all pins selected	3)A-D conversion is complete
φAD -	Set to "1" by software			
A-D conversion "1" start flag "0" -]
A-D register 0	X	Result		
A-D register 1			Result	
A-D register i				Result
A-D conversion "1" interrupt request "0" - bit				
		Cleared to "0" when	interrupt request is accepted, or	cleared by software
No	te: When AD frequency is less than 1 Conversion rate per analog input	1MHz, sample and hold function capin is 49 $_{\phi AD}$ cycles for 8-bit resolution	annot be selected. ution and 59 _{¢AD} cycles for 10-bit	resolution.

Figure 1. Operation timing of single sweep

3.0 Set-up procedure

4.0 Programming Code

```
;
  M16C/62A Program Collection
 FILE NAME : rjj05b0058_src.a30
:
 CPU : M16C/62A Group
 FUNCTION : Operation of A-D Converter
;
        (in single sweep mode)
;
  HISTORY : 2003.05.16 Ver 1.00
;
 Copyright(C)2003, Renesas Technology Corp.
;
 Copyright(C)2003, Renesas Solutions Corp.
;
 All rights reserved.
;
;
    Include
.LIST OFF ;Stops outputting lines to the assembler list file
    .INCLUDE sfr62a.inc ;Reads the file that defined SFR
    .LIST
         ON ;Starts outputting lines to the assembler list file
;
Symbol definition
;
RAM_TOP .EQU 00400H ;Start address of RAM
RAM_END .EQU 00FFFH ;End address of RAM
ROM_TOP .EQU 0F8000H ;Start address of ROM
FIXED_VECT_TOP .EQU OFFFDCH ;Start address of fixed vector
Allocation of work RAM area
.SECTION WORKRAM, DATA
          RAM TOP
    .ORG
WORKRAM_TOP:
v_AD_result:
                   ;A-D conversion result store area
v_AD0_result: .BLKW 1
v AD1 result: .BLKW 1
WORKRAM_END:
;
;
    Program area
Start up
;
.SECTION PROGRAM, CODE ;Declares section name and section type
    .ORG
          ROM_TOP
                   ;Declares start address
RESET:
    MOV.B #03H, prcr
                   ;Removes protect
                   ;Set processor mode registers 0 and 1
    MOV.B
         #0000000B, pm0 ; Single-chip mode
         #0000000B, pm1
    MOV.B
                   ; No expansion, No wait
                   ;Set system clock control registers 0 and 1
                   ; Xcin-Xcout High
    MOV.B
         #00001000B, cm0
    MOV.B #00100000B, cml ; Xin-Xout High, Main clock is No divison
    MOV.B
                   ;Protects all registers
         #00H, prcr
;
```

	MOV.W	<pre>#0, v_AD1_result ;</pre>	ear A-D result store area
;	A-D Con	verter (in single sweep	mode)
;=====			;Disabled A-D conversion interrupt and ;clear interrupt request bit to "0"
; ; ;	MOV.B		;Selecting Sample and hold ;A-D conversion method select bit (1:With sample and hold)
; ; ; ;	MOV.B	+++ ++ +	;Setting A-D control register 0 ;Invalid in single sweep mode ;Single sweep mode is selected ;Trigger select bit (0:Software trigger) ;A-D conversion start flag (0:A-D conversion disabled)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	MOV.B	#00101000B, adcon1 ++ + + +	<pre>;Frequency select bit 0 (1:fAD/2 is selected) ;Setting A-D control register 1;A-D sweep pin select bit (00:AN0,AN1(2pins));Must always be "0" in Single sweep mode;8/10-bit mode select bit (1:10-bit mode);Frequency select bit 1 (0:fAD/2 or fAD/4 is selected);Vref connect bit (1:Vref connected);External op-amp connection mode bit (00:ANEX0 and ANEX1 are not used)</pre>
,	BCLR	pd10_0	;Set the direction register of the relevant port to input ;(ANO:Analog input pin)
;	BCLR	pd10_1	;(AN1:Analog input pin)
;;		-D conversion	
START_			
	BSET	adst	;Setting A-D conversion start flag
; WAIT_A	D_CNV: BTST JNC BCLR	ir_adic WAIT_AD_CNV ir_adic	;Clear to "0" A-D conversion interrupt request
; COMDI E	TE CMU.		
COMPLE	TE_CNV: ; Readi	ng conversion result	
;	MOV.W MOV.W	ad0, v_AD0_result ad1, v_AD1_result	;Read conversion result
; STOPPEI	AND.W AND.W	#03FFH, v_AD0_result #03FFH, v_AD1_result	;Mask 10 bits result
;	JMP	STOPPED_AD	

RENESS Operation of A-D Converter (in single sweep mode)

;======================================						
;	Dummy interrupt processing program					
;======						
dummy:						
	REIT					
;						
;*****	*******	********	***************************************			
;	Setting c	of fixed v	vector			
;**************************************						
	.SECTION	F_VEC1	Γ, ROMDATA			
	.ORG	FIXED_	_VECT_TOP			
;						
	.LWORD	dummy	;Undefined instruction interrupt vector			
	.LWORD	dummy	;Overflow (INTO instruction) interrupt vector			
	.LWORD	dummy	;BRK instruction interrupt vector			
	.LWORD	dummy	;Address match interrupt vector			
	.LWORD	dummy	;Single-step interrupt vector			
	.LWORD	dummy	;Watchdog timer interrupt vector			
	.LWORD	dummy	;DBC interrupt vector			
	.LWORD	dummy	;NMI interrupt vector			
	.LWORD	RESET	;Sets reset vector			
;						
	TIME					

.END

5.0 Reference

Renesas Technology Corporation Semiconductor Home page

http://www.renesas.com/

Technical Support

E-mail: support_apl@renesas.com

Data Sheet

M16C/62A group Rev. C.1 (Use the latest version on the Home page: http://www.renesas.com/)

User's Manual

M16C/62A group Rev. 1.0 (Use the latest version on the Home page: http://www.renesas.com/)

-Keep safety first in your circuit designs!-

• Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party.
- Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors.

Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com).

- When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials.
- If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
- Please contact Renesas Technology Corporation for further details on these materials or the products contained therein.