To our customers,

Old Company Name in Catalogs and Other Documents

On April 1%, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESAS

10.

11

12.

Notice

All information included in this document is current as of the date this document isissued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful atention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

Y ou should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. Y ou are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any lossesincurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. Y ou should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the devel opment of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errorsin or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’ s quality grade, as
indicated below. Y ou must check the quality grade of each Renesas Electronics product before using it in aparticular
application. You may not use any Renesas Electronics product for any application categorized as “ Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not bein any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “ Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “ Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances, machine tools; personal electronic equipment; and industrial robots.
“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.
“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or heathcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose adirect threat to human life.
Y ou should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especialy with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physica injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as aresult of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sdes office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics’ as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

To all our customers

Regarding the change of names mentioned in the document, such as Hitachi
Electric and Hitachi XX, to Renesas Technology Corp.

The semiconductor operations of Mitsubishi Electric and Hitachi were transferred to Renesas
Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog
and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)
Accordingly, although Hitachi, Hitachi, Ltd., Hitachi Semiconductors, and other Hitachi brand
names are mentioned in the document, these names have in fact all been changed to Renesas
Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and
corporate statement, no changes whatsoever have been made to the contents of the document, and
these changes do not constitute any alteration to the contents of the document itself.

Renesas Technology Home Page: http://www.renesas.com

Renesas Technology Corp.
Customer Support Dept.
April 1,2003

RENESAS

RenesasTechnology Corp.

Cautions

Keep safety firstin your circuit designs!

1

Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but
thereis aways the possibility that trouble may occur with them. Trouble with semiconductors may lead to persona injury, fire
or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i)
placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or
mishap.

Notes regarding these materias

1

These materials are intended as areference to assist our customers in the selection of the Renesas Technology Corporation
product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any
other rights, belonging to Renesas Technology Corporation or athird party.

Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights,
originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in
these materids.

All information contained in these materials, including product data, diagrams, charts, programs and a gorithms represents
information on products at the time of publication of these materials, and are subject to change by Renesas Technology
Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact
Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product
information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors.

Renesas Technology Corporation assumes no responsibility for any damage, liability, or other lossrising from these
inaccuracies or errors.

Please a so pay attention to information published by Renesas Technology Corporation by various means, including the
Renesas Technology Corporation Semiconductor home page (http://www.renesas.com).

When using any or al of theinformation contained in these materids, including product data, diagrams, charts, programs, and
algorithms, please be sure to evauate al information as atotal system before making a final decision on the applicability of
theinformation and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other
loss resulting from the information contained herein.

Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used
under circumstances in which human lifeis potentialy at stake. Please contact Renesas Technology Corporation or an
authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for
any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea
repeater use.

The prior written approva of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these
materials.

If these products or technologies are subject to the Japanese export control restrictions, they must be exported under alicense
from the Japanese government and cannot be imported into a country other than the approved destination.

Any diversion or reexport contrary to the export control laws and regul ations of Japan and/or the country of destination is
prohibited.

Please contact Renesas Technology Corporation for further details on these materials or the products contained therein.

RENESANS

>
©
S
=
Q
=
o
-
Z
)
—+
@

Renesas Microcomputer

H8/300H Series
Application Notes for CPU

—
(@)

Renesas Electronics

www.renesas.com

Notice

When using this document, keep the following in mind:

1
2.

This document may, wholly or partially, be subject to change without notice.

All rights are reserved: No oneis permitted to reproduce or duplicate, in any form,
the whole or part of this document without Hitachi’s permission.

Hitachi will not be held responsible for any damage to the user that may result from
accidents or any other reasons during operation of the user’s unit according to this
document.

Circuitry and other examples described herein are meant merely to indicate the
characteristics and performance of Hitachi’s semiconductor products. Hitachi
assumes no responsibility for any intellectual property claims or other problems that
may result from applications based on the examples described herein.

No licenseis granted by implication or otherwise under any patents or other rights of
any third party or Hitachi, Ltd.

MEDICAL APPLICATIONS: Hitachi’ s products are not authorized for usein
MEDICAL APPLICATIONS without the written consent of the appropriate officer
of Hitachi’s sales company. Such use includes, but is not limited to, usein life
support systems. Buyers of Hitachi’s products are requested to notify the relevant
Hitachi sales offices when planning to use the productsin MEDICAL
APPLICATIONS.

Contents

Section 1 CPU ArChiteCtUre..........ooiiieiece e e 1
S0 1 o1 0o [Fox o o F OO SRR PRSP 1
O O == 1 =PSRN 1
1.1.2 Register CONfigUIation.......ccccoieeeieiiiesisesiesieseese e seeee e sre e e sre e s resaeseeseeneens 2
1.1.3 DataConfigUration..........ccceeeereeieeieesieseeseseesesaesteese e eeesseessesseesseseesresssessens 4
N N0 (0| £ o= o U 6
115 AddresSiNg MOGE.......cciiiiiirieiirieirieire e 7
116 INSITUCHIONS......citieiecieciecteecte ettt sttt et e e e et e earesbeeresaeesneeneesreennesrean 16
SECHION 2 INSLIUCLIONS ...ttt et 17
21 DataTransfer INSIIUCHIONS.cccierieieeeeeeriese sttt e sbe bbb b e b nbe e 17
225 5 R |V RS 17
212 PUSH, POPctiieiiietstet sttt s e st s te sttt sttt sbe et e etenesseneese 19
2.2 Arithmetic Operation INSITUCLIONS.........c..eoiiieiiieeriere e 21
221 ADD, SUB ...ttt bbb b 21
222 ADDX, SUBX ..ooctiiieiirieiirieierieisiees ettt e 22
223 INC, DEC..... ittt st st 23
224 ADDS, SUBS ...ttt 24
225 DAA, DAS ..ttt pe e 25
226 MULXU, DIVXU, MULXS, DIVXS... et see e ae e nnee 25
227 CMP bbbt 27
2.2.8 NEG ..ottt bbbttt pe e 28
229 EXTS, EXTU oottt st 28
2.3 LOgic Operation INSIIUCLIONS.ooeiieereeenieriese it sbe e be e e e sae e 30
231 AND, OR, XOR, NOTcctctriirtiriiirisisieesieesieeseesesessessssesas s e ssesessesssseseees 30
24 Shift INSITUCHIONSvi ittt et et s ee s reeaesbe e besbeenbeereenteens 32
241 SHAL, SHAR, SHLL, SHLR, ROTL, ROTR, ROTXL, ROTXR.......ccccccecvruenene 32
25 Bit Manipulation INSIUCLIONS.........ccccvciriieiise s se e e se et e s et sneae e 34
251 BSET,BCLR, BNOT, BTST, BLD, BILD, BST, BIST, BAND, BIAND, BOR,
BIOR, BXOR, BIXOR.......ciioiiiiiitiisiieisie st esieesieessesessesessesssassesessesessesessessssensssessesen 34
2.6 BranCh INSIIUCHIONSc.ccouiiieii ettt ettt e e e sreeeesbeetesbeenbesraenneens 36
22 T A = o o USSR 36
2.8.2 IMPe bbbt bbb 38
2.6.3 BSR, ISR ..ttt b ettt et 38
B2 T S = IS SRS 40
2.7 System Control INSIUCHIONSc.cooiiireririe ettt see b e e 41
5 R = I SRS 41
272 SLEEP ... e e ae et eereennee 41
2.7.3 LDC, STC. ittt bbb b 42
274 ANDC, ORC, XORCc.coitiriririiiriirisesteeste sttt st es 43

275 NOP-...ceeee e et r e re e 44

278 TRAPA .o b 44
2.8 BIlOCK Transfer INSIUCHIONS.......coieirieirieieseee et 45
2.8 1 EEPMOV ..ottt et bbbt 45
Section 3 Load Module Conversion Procedures...........covveereeeeseesiesieniennnn 47
Section 4 Examples of Software AppliCations...........ccccvevereeresieseeseseeseenen 49
41 Software AppliCations EXAMPIESc.cccveieiieii s se e esieseesaeste s e e re e sre e 49
4.2 UsiNg SOftWare EXaMPIES.......ccviiicece ettt e 50
4.21 Program Listing Page Format (FOrmat 4)ccocoveierireneneeeeeeeeesere e 51
G T =1 Lo o S I =1 = (TP 52
431 Description Of FUNCLIONS.......c.coiiriiiriiiriiieieseetese e 54
432 CAULIONSTON USE...ceiiiiiciirieeriee ettt bbbt 56
4.3.3 Description of DAlaMEMOIYcccvveieiereieseseeseesee et s es 56
4.3.4 EXAMPIES Of USE......eiiiiiieciicie ettt sttt st ne e s 57
4.35 PrinCiples Of OPEration..........cccociiiiriieniiniesie e 57
4.3.6 Program LiStiNg ...t 59
4.4 Block Transfer Using Block Transfer INSIrUCHiON.........cccoeeiiirinnennenee e 60
4.4.1 Description Of FUNCHONSc.coveecieieece st sne 63
442 CaUtiONSTOr USE...ciiiieeiiiieerieie ettt bbbt 64
4.4.3 Description Of DataMeMOIYcccccvecuiiieiiiee e seeee et 64
444 EXAMPIES OF USE ...ttt s bbb e 65
445 PrinCiples Of OPEralioN........ccccoiieririeririeriseseeie sttt 65
446 Program LiStNg.ot 66
45 Branching USING @ TaDIe.......ccccvirieiieieeeeereee sttt e sre st seeean 67
451 Description Of FUNCHONScoeiieiriceceecese sttt sne 69
4.5.2 CAULIONS TOr USE... .ottt ettt s sr e s e 70
4.5.3 Description Of DAaMEMOIYccccoieiiiiineriesienieie e 70
454 EXAMPIES OF USE. ..ottt 71
455 PrinCiples Of OPEratioN.......ccoccovieirieiereseeeserie sttt 72
4.5.6 Program LiStiNG......cccoeiieierieereeseeereee st se e sse e sre e nnen 74
4.6 Counting the Number of Logical 1Sin 8-Bit Data.........cccceveereeriereereeisieseeesese e sese e 75
4.6.1 Description Of FUNCLIONS.......ccccccieiieie e ccie ettt sae e sre e 76
4.6.2 CAULIONS FOF USE... .ottt et s bbb e 77
4.6.3 Description Of DAaMEMOIYccccoiiiieririiriniereee et 77
4.6.4 EXEMPIES OF USE. ..ot 77
N ST = 1 aToiT o1 1= @ o= = 4 o] o 1 78
4.6.6 Program LiStiNG......cccoeiieiiieierieseceseseee e st ae e se s e se e s snesnesresnesne 80
47 FINdthe First 1in 32-Bit Dala........cccooeieriririnierierie sttt st 81
4.7.1 DesCription Of FUNCHONScoiiiiiriienceiere st 83
N A O 1§ 11001 o U L TP 83
4.7.3 Description Of DAaMEMOIYccooiieririerineneee e e 83

4.8

4.9

4.10

411

412

4.13

474 EXEMPIES OF USEo ..ottt 84
4.75 PrinCiples Of OPEration...........cccoviirerieiereneseseeseeeeeesesesese e see e e s e e seeneenes 84
4.7.6 Program LiStiNG......cccccoeieieeiriesesesese st e st este e sa e e seenesae s st steseessen e sae e 86
64-Bit Binary AditioN.........ccooiiee e 87
4.8.1 Description Of FUNCHONS........cccooiiiiiiiniinie et s 90
I O 1§ 1o oS o U L S 90
4.8.3 Description Of DAataMEMOIYcccccoiieiiniiinienene e e 90
4.84 EXAMPIES Of USE....ccuiceeceiiice ettt sttt s nes 91
4.85 PrinCiples Of OPEration...........cccovieriiieiesesesesieseeseeieesesese s e e sresresresre e seesseneenes 92
4.8.6 Program LiStiNG.......cccceiieieiieiiieesieseesie s e stesee s ae s s et s e ese e e snesneesneennesrem 93
64-Bit BiNary SUDLIACLIONcccoiriiiiiiee et 94
4.9.1 DesCription Of FUNCLIONS.......cciveuirieiirieiirieiesieesie sttt er e ens 97
e B O 1F 11 To o3 o L S 97
4.9.3 Description of DataMEMOIYcccvieierererereeeeeeee s s seeeenes 97
4,94 EXAMPIES Of USE.....uecuiciiecie ettt sttt s n s 98
4.95 PrinCiples Of OPEratioNcccocveeiiiecee et 99
4.9.6 Program LiStiNg.......cocoereeieeireneeienie st sae e s bt e e 100
Unsigned 32-Bit Binary MUltipliCatiON.covreiriiiniineecsie e 101
4.10.1 Description Of fUNCHIONS.ccuciiieirieerieiesieee et 104
4.10.2 CaUtiONSTON USE...oeiuiiecieieeieriee ettt st et s bbb 104
4.10.3 Description of DaaMEMOIYcccceieierierererieseeeeseeseses e e sre s e e e sseneenes 104
4.10.4 EXAMPIES Of USE.....uiciiiieiciicieste ettt sttt et r e e ne e ane 105
4.10.5 PrinCiples Of OPEration...........ccooeiirirerierierienie et 106
4.10.6 Program LiStNG.......ccoeereereeerieerieiesieie et be s b seebe s seesesnesesnene e 109
Unsigned 32-Bit Binary DiVISION........cccirririeinieerieenieeriesese e 110
4.11.1 Description Of FUNCHONS........ccooiiiieii ettt s 113
4.11.2 CaUtiONSTOr USB...ciiuiieciiiieieriee ettt s ettt 113
4.11.3 Description Of Data MemMOIYc.cccveieeiieriieese s e st 113
4.11.4 EXAMPIES OF USE....cuiiiiiiiiieiieeterie sttt sttt e 114
4.11.5 PrinCipleS Of OPEraioN.......coccirieirieerieieniee sttt 115
4.11.6 Program LiStNG.......ccoeireereereereee et s ebe s s ees 117
Signed 16-Bit Binary MUItIPliCaLION.........ccccviiiere e 118
4.12.1 Description Of FUNCHONS........ccccviiiiii ettt st 120
4.12.2 CAULIONS TOF USE....cuiiuiiiiiiiiiisierie ettt s e 120
4.12.3 Description Of DA MEMOIYcccoreierienieiereeeeeeeeesiese e es 120
4124 EXAMPIES OF USE. ..ottt 121
4125 PrinCiples Of OPEraioN.......ccoeirieirieirieienieeeie et 121
4.12.6 Program LiStiNG......cccccoereereeirise s seseesee e seee e e sse s sae e s steseessensesseneem 122
Signed 32-Bit Binary MUItIPliCaLION..........cccoiiiiieieresesereeeeee e 123
4.13.1 DesCription Of FUNCLONS........cccieiiieerie e sttt eesre e snesee e 126
4.13.2 CAULIONS FOF USE....cuiiuiiiirieiieeterie ettt b et e 126
4.13.3 Description Of DAataMEMOIYccccoieiirieireneneneee e 126
4.13.4 EXAMPIES OF USB. ..ottt 127

4.14

4.15

4.16

4.17

418

4.19

4.13.5 PrinCiples Of OPErationccoeoerierienenenere e 128

4.13.6 Program LiStiNG......ccccecieiereeereeseeereee ettt se e e se e sse s snesresnesnens 132
Signed 32-Bit Binary Division (16-Bit DiVISOr)ccccccevvevereieneeieeesieseses e se e e e 133
4.14.1 DesCription Of FUNCLIONS.......ccccccviiieie i ccie et sre e 136
4.14.2 CaAUtIONS FOF USE... ettt ettt s bbb e 136
4.14.3 Description Of DAtaMEMOIYccccoieririeniniereee et 136
4.14.4 EXAMPIES OF USE. ..t 137
ST = T g Vol o 1= @ o= = 4 o] o 1 137
4.14.6 Program LiStiNG......cccoeiieieieieieeseceseseees et se e e ae e sse e snesressesnens 140
Signed 32-Bit Binary DiviSion (32-Bit DiVISOr)ccccieviereniesieeeese e e nee e 141
4.15.1 DesCription Of FUNCHONSoouiiieirirencetcre et 144
4.15.2 CaUtiONS FOF USE....coiieiiiiieeiieicriese sttt st e 144
4.15.3 Description Of DAataMEMOIYccoiieriieninienne et 144
4.15.4 EXAMPIES Of USE.....cueceeceieece sttt st 145
4.15.5 PrinCiples Of OPEration..........cccovierereiesesiesesieseseseeseeesses e e ssesse e sresseseessesseses 146
L ST = oo =0 1 £ 11 o 147
8-Digit DECIMal AQTItION.......ccuiiirie et 148
4.16.1 DesCription Of FUNCLIONS.........coueiiiieriiiniiieieseete et 151
4.16.2 CaUtiONS FOF USE.....ciieeeeieeeecere sttt 151
4.16.3 Description of DataMEMONYcccovveiirerierereseeseeseeeses et nes 151
4.16.4 EXAMPIES Of USE.....cuiceiceieececece ettt ettt st sne e e 152
4.16.5 PrinCiples Of OPEralion.........ccccveiuieieiieiiere e st ae s 152
4.16.6 Program LiStiNg......ccoeiieiieiieiesiiiseesesee e et se e ssesssessssessssessesm 154
8-Digit Decimal SUDLIECTIONc.coviiieiiriieeeee e 155
4.17.1 Description Of FUNCLIONSc.coiiriiiriiiniieieseetesee et 158
4.17.2 CAUtIONSTON USE...c.iiuiiiceiiieeriee ettt sttt 158
4.17.3 Description of DalaMEMOIYccccvveierireseseseeseeseees e e e sresre s s es 158
4.17.4 EXAMPIES Of USE......eiiiiiieciicie ettt sttt st sttt re e ene e ens 159
4.17.5 PrinCiples Of OPEIration.........ccccociiiiireienienesie et s 159
4.17.6 Program LiStiNg ..ot 161
S 0o oo o £ 162
4.18.1 Description Of FUNCHONScoveicieirecee et se e sne 165
4.18.2 CaUtiONS FOr USE......cuiiieiiiieiriee ettt sttt 165
4.18.3 Description Of Data MeMOIYccccveciiiiericee s seeseeee et e et 166
4.18.4 EXAMPIES OF USE... ittt et s bbb e 166
4.18.5 PrinCiples Of OPEralioN........cceovrveiriererierieeseeie sttt ettt 166
4.18.6 Program LiStiNg......ccoeereireiieirieisieesieeeie ettt 168
S0 1 1] o S 169
4.19.1 DesCription Of FUNCHONScociicirirececes ettt se s re e nne 171
4.19.2 Description Of Data MemMOIYc.cccveciiiieriiee s et ee s 171
4.19.3 EXAMPIES OF USE....cuiiiiiieeieeierene sttt s bbb e 172
4.19.4 PrinCipleS Of OPEraLioN........coeiiveririeririeseseneete sttt 173
4.19.5 Processing Method iN Programcocoeeeereeneeneeseeeseeeseeeseeesieessessese e 173

4.19.6 Program LiStiNG.......ccoeireereereereeereeesiee sttt s s ebe s b s ses 175

AppendiX A INSEIUCLION SEL........ccoieiceeseee e 177
A. 1 NUmber of EXECULION SEALES........cciiiirierie ettt sb e e b e se e see e 178
APPENdiX B ASSEMDIEN ... e 190
Bl LCPU oottt 190
B.2 .SECTION w..couiirierieaeesseesesseesseesssess st sessss st ss st esss st esss s sssesssssssssssnsssnes 191
B3 LEQU oottt 193
B4 LORG ..ottt 194
B.5 DATA oottt 195
BB LRES.. it 196
B.7 LEND oottt 197

Section1 CPU Architecture

1.1 [ntroduction

The H8/300H is a high-speed CPU with an internal 32-bit configuration and architecture that is
upward-compatible with the H8/300. The H8/300H CPU has sixteen 16-bit general registers, can
handle 16 Mbyte of linear address space, and is ideal for realtime control.

111 Features
The H8/300H has the following features:

» Upward compatibility with the H8/300: H8/300 object programs can be run without any
changes
 Sixteen 16-bit general registers (can also be used as a sixteen 8-hit registers or eight 32-hit
registers)
 Sixty two basic instructions: 8/16/32 bit operation instructions, multiplication/division
instructions, powerful bit-manipulation instructions
* Eight types of addressing modes:
— Register direct (Rn)
— Register indirect (@ERN)
— Register indirect with displacement (@(d:16, ERn)/@(d:24, ERn))
— Post-increment/pre-decrement register indirect (@ERn+/@-ERn),
— Absolute addressing (@aa:8/ @aa: 16/ @aa:24)
— Immediate (#xx:8/#xx:16/#xx:32)
— Program counter relative (d:8, d:16)
— Memory indirect (@@aa:8)
» 16 Mbyte address space
» High-speed operation:
— Almost al common instructions executed in 2, 4, or 6 states
— Maximum operating frequency: 16 MHz
— Addition/subtraction between 8/16/32-bit registers: 0.17 us
— Multiplication of two 8-bit registers: 1.2 pus
— Division of a 16-hit by an 8-bit register: 1.2 us
— Multiplication of two 16-bit registers: 1.8 ps
— Division of a32-hit by a 16-bit register: 1.8 us
» Two CPU operating modes. Normal mode/advanced mode
» Power-down mode: SLEEP instruction activates power-down mode

RENESAS

112 Register Configuration

Figure 1.1 shows the register configuration for the H8/300H. The H8/300H CPU is composed of
sixteen 8-bit general register (ROH/ROL-R7H/R7L), eight 16-bit extended registers (EO—E7), one
24-bit program counter (PC) and one 8-hit condition code register (CCR), which are used as
control registers.

Extension registers General registers
s 4 N
15 07 07 0
EO ROH ROL
El R1H R1L
E2 R2H R2L
E3 R3H R3L
E4 R4H R4L
E5 R5H R5L
E6 R6H R6L
Stack pointer E7 (SP) R7H R7L
23 0
Program counter | PC |
Control
Condition code register CCR|I|UH|UN[Z]VIC
Carry flag
— Overflow flag
Zero flag
Negative flag
User bit
Half-carry flag
User bit

Interrupt mask bit

Figurel.1 Composition of Registers
Extended Registers: There are two ways of using extended registers:

* When working with 32-bit data and addresses (24 bits), 16-bit general registers (R0-R7) are
combined as shown in table 1.1 and used as the upper 16 bits of 32-bit registers (ERn).

» They can aso be used as independent 16-bit registers (En).

Note: Thefunction of E7 as the upper 16 bits of the stack pointer (SP) is already alocated and is
used implicitly in exception processing and subroutine calls.

2 RENESAS

General Registers:

» Genera registers can be used as independent 8-bit registers (ROH/ROL—-R7H/R7L).

« 8-bit registers can be combined with each other as shown in figure 1.2 for use as 16-bit registers
(Rn).

» When working with 32-bit data and addresses (24 bits) and combining extended registers (EO—
E7) as shown in figure 1.3, general registers can be used as the lower 16 bits of 32-bits registers
(ERn).

Note: Thefunction of R7 asthe lower 16 bits of the stack pointer (SP) is already allocated and is
used implicitly in exception processing and subroutine calls.

RO ROH ROL EO
R1 R1H R1L El
R2 R2H R2L E2
R3 R3H R3L E3
R4 R4H RAL E4
R5 R5H R5L E5
R6 R6H R6L E6
R7 R7H R7L E7

Figurel.2 16-Bit Registers(Rn)

ERO EO RO
ER1 El R1
ER2 E2 R2
ER3 E3 R3
ER4 E4 R4
ER5 ES R5
ER6 E6 R6
ER7 E7 R7

Figure 1.3 32-Bit Registers(ERnN)

RENESAS 3

Program counter (PC): The PC isa 24-bit counter that indicates the address of the next
instruction to be executed by the CPU.

Condition Code Register (CCR): The CCR is an 8-hit register that indicates the internal status of
the CPU (table 1.1).

Table1.1 Condition Code Register

Bit Function Description

7 Interrupt mask bit (1) When this bit is 1, interrupts are masked. Note that a
nonmaskable interrupt is received regardless of the status of the |
bit. When exception processing begins, this bit is set to 1.

6 User bit (Ul) Can read/write using software (LDC, STC, ANDC, ORC, XORC
instructions). Can also be used as an interrupt mask bit. For more
information, see the hardware manual for the product in question.

5 Half carry flag (H) When executing the ADD.B, ADDX.B, SUB.B, SUBX.B, CMP.B,
or NEG.B instructions results in a borrow or carry at bit 3, or
when executing an ADD.W, SUB.W, CMP.W, or NEG.W
instruction results in a borrow or carry at bit 11, or when
executing an ADD.L, SUB.L, CMP.L, or NEG.L instruction results
in a borrow or carry at bit 27, the bit is set to 1; otherwise, it is set

to 0.

4 User bit (U) Can read/write using software (LDC, STC, ANDC, ORC, XORC
instructions).

3 Negative flag (N) The MSB of the data is considered a sign bit and its value is
saved.

2 Zero flag (2) When the data is zero this bit is set to 1; when the data is

nonzero, the bit is cleared to 0.

1 Overflow flag (V) When execution of an arithmetic operation instruction creates an
overflow, this bit is set to 1. In all other cases, it is set to 0.

0 Carry flag (C) When execution of an operation creates a carry, this bit is set to
1; otherwise, it is set to 0. There are three types of carries:

1. Carries caused by addition
2. Borrows caused by subtraction
3. Carries caused by shift/rotates

The carry flag has a bit accumulator function that can be used by
bit manipulation instructions.

1.1.3 DataConfiguration

The H8/300H can work with 1-bit, 4-bit BCD, 8-bit (byte), 16-bit (word), and 32-bit (longword)
data. 1-bit datais handled with bit manipulation instructions and accessed as the nth bit (n=0, 1,

4 RENESAS

2, ..., 7) of the operand data (byte). In the DAA and DAS decimal adjust instructions, byte datais
two columns of 4-bit BCD data.

Data Configuration of Registers: Table 1.2 shows the configuration of datain the registers.

Tablel.2 Register Data Configuration

Data Type Register No. Data Image

1 bit RnH 7 o _________
7l6/5/4[3[2[1[o] _ Don'tcare _|

RnL 7 o _________

|

7l6[5[4[3[2[1]o] _ Don'tcare]

Lower column
7 43 0

4-bitBCD RnH

Upper column

Lower column

RnL
__________ 7 43 0
i _ Don't care_
Upper column
Byte RnH 7 o
Dontcare |
rRn. 7 0
|__Dontcare [, ,,,,,]
Word Rn 15 0
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
En 15I T T T T T T T T T T T T T T 0
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Long Word ERn ‘|?)J-I T T T T T T T T T T T T T J;6|J-5I T T T T T T T T T T T T T CJ|
En Rn

Legend

ERnN: General register (long word size)
RnH: Top of general register

RnL: Bottom of general register

MSB: Most significant bit

LSB: Least significant bit

Data Configuration in Memory: Table 1.3 shows the configuration of datain memory. The

H8/300H CPU can access word and longword datain memory. The MOV.W and MOV .L
instructions are limited to data that starts from even addresses. When accessing word or long word

RENESAS 5

data that starts from odd addressees, the L SB of the addressis considered 0 and datais accessed
starting from the address one before. In such cases, no address errors are produced. The same
appliesto instruction code.

Table1.3 Memory Data Configuration

Data Type Memory Image

1 bit

7
nthaddress | 7 | 6 [5|4 |3 |2]1]0

Byte
nth address | MSB LSB
Word
Even address | MSB
Odd address LSB
Long word

Even address | MSB
Odd address
Even address
Odd address LSB

114 Address Space

There are two H8/300H operating modes: hormal mode and advanced mode. Table 1.4 describes
the operating modes and figure 1.4 shows the memory maps for these two modes. The mode pin of
the LSl is used to select the mode. See the hardware manual of the product in question for more
information.

Tablel.4 Address Spacefor Normal and Advanced Operating M odes

CPU Operating Mode Description

Normal Supports up to a maximum of 64 kbytes of address space. In this mode,
the top 8 bits of the address are ignored and memory is accessed on 16-
bit addresses.

Advanced Supports up to a maximum of 16 Mbytes of address space. Can access
continuous space by using the 24-bit PC and extended registers in
combination.

6 RENESAS

Normal mode Advanced mode

H'0000 H'000000
On-chip ROM On-chip ROM
On-chip RAM

H'EEFE I/O space

On-chip RAM

HFFFFFF|__ /O space

Figurel.4 Memory Map

1.15 Addressing Mode

The H8/300H supports the eight addressing modes shown in table 1.5. The usable addressing
modes vary for each instruction. Addressing modes are explained below using the various MOV
commands as the primary example.

RENESAS

Table1l5 Addressing Modes

Addressing Mode Use
Register direct Specify registers
Absolute addressing Specify address

Register indirect

Post-increment register indirect

Pre-decrement register indirect

Register indirect with displacement

Memory indirect

Program counter relative

Immediate Specify constants

Register Direct: Theregister name (ERO-ER7, RO-R7, EO-E7, ROH/ROL—R7H/R7L) is written
in the operand and the contents of that register become the subject of the instruction (figure 1.5).

Example: MOV.L ERO, ER1

Specify
register

————— »(ERD)| 01234567

Transfer

A 4
ER1 | 01234567

Figure 1.5 Register Direct

Absolute Addressing: Specifiesthe address directly. Addresses are usually specified as 24 bitsin
advanced mode and 16 bitsin normal mode, but can be accessed by specifying only the lowest 16
bits or 8 bits when the absolute address area is 16 bits (H'000000—H'007FFF, H'FF8000—
H'FFFFFF) or 8 bits (H'FFFFO0—H'FFFFFF) (figure 1.6).

8 RENESAS

MOV. L @H'1000:16, ER1

Value sign-extended to
24 bits becomes the

MOV. L @H'9000:16, ER1

Value sign-extended to
24 bits becomes the

| |
| |
| |
|
Specify ! Specify |
address | address. address | address.
! 001000 : FF9000
! Sign extension ! Sign extension
T7"000000] - ~f 1 Frsooo|
| : | :
| |
16-bit | 001000 (2)% 16-bit | ™ F9000 gé
absolute absolute
45 45
address 67 address 67
area area
Transfer Transfer
_3y___007FFF _y__FFFFFE
ER1| 01234567 ER1| 01234567
MOV. L @H'100000:24, ER1 MOV. B @H'30:8, R1H
|
i | The value with the upper
| .
Specify : Specify : Zgzrillssl becomes the
address i address : FEEF 30
. |
: |
S
'>C100000)__ 01 t | FFFFOO|
100001 [23 I -
100002 [45 8-bit * 45—
100003| 67 Transfer absolute :
address
area
ER1| 01234567 | Transfer
_y__FFFFFE
Y
R1H 45

Figure1.6 Absolute Addressing

Register Indirect: The addressis specified by the lowest 24 bits of the 32 bit register (figure 1.7).

RENESAS 9

Example: MOV. L @ERO, ER1

31 24 23 0
ERO | Don't care | 100000 |
N

Specify
address Address

Address specified by the lowest 24 bits of ERO

----- »T00000| 01

100001 23
100002 45
100003 67

Figurel.7 Register Indirect

Post-I ncrement Register Indirect: The address is specified by the lowest 24 hits of the 32 bit
register ERn. After instruction execution, the operand size value (B: 1, W: 2, L: 4) isadded to the
contents of the 32-bit register ERn (figure 1.8).

Example: MOV. L @ERO+, ER1

|
W
| 31 24 23 0)

ERO | Don't care | 100000 |
N J

After instruction Address

execution i

Specifiy
address

31 24 23
ERO | Don't care | 100004 |

After address is specified by the lowest 24 bits of ERO,
_ ERO is incremented by four. Y,

s L

100001 23
100002 45
100003 67

Figure 1.8 Post-Increment Register Indirect

10 RENESAS

Pre-Decrement Register Indirect: The addressis specified by the lowest 24 bits of the 32 bit

register ERn. Before instruction execution, the operand size value (B: 1, W: 2, L: 4) is subtracted

_ by the lowest 24 bits of ERO.

After ERO is decremented by four, the address is specified

v

from the contents of the 32-bit register ERn (figure 1.9).
Example: MOV. L @-ERO, ER1
iv
|
| 31 24 23 0 N
! ERO | Don't care | 100008 |
! N J
| Address
Specify | ERO is decremented
address ! by four.l
! 31 24 23 0
! ERO | Don't care | 100004 |
|
|
|
|
|
|
|
|
|

-

100005
100006
100007

01
23
45
67

Figure1.9 Pre-Decrement Register Indirect

Register Indirect with Displacement: The address is specified by the lowest 24 hits of the 32 bit

register ERn plus a signed displacement of 16 bits or 24 bits. The results of this addition are not

saved in the 32-bit register ERn (figure 1.10).

RENESAS

11

Example: MOV. L @(H'1000:16. ERO), ER1

Specify
address

Mnemonic:

@(displacement:16,
@(displacement:24,

v 31 24 23 0

\
| | ERO [Don't care | 100000 |
|
! +) (+1000) «— Displacement
| 101000 < Address
|
! The address is the lowest 24 bits of ERO
! plus the signed 16-bit displacement (+1000).
AN /
|
101001 23
101002 45
101003 67
Transfer
31 A 0
ER1 | 01234567

ERnN): signed displacement is 16 bits
ERn): signed displacement is 24 bits

12

Figure1.10 Register Indirect with Displacement

RENESAS

Example: MOV. L @(H'FO0000:24, ERO0), ER1

N

24 23

0

ERO | Don't care |

300000 |

Specify
address

+)

(~10000)

200000 <— Address

The address is the lowest 24 bits of ERO
plus the signed 24-bit displacement (-100000).

\

<— Displacement

- /)
-——= 00000 01
200001 23
200002 45
200003 67

Transfer
31 \/ 0
ER1 | 01234567 |

Figure1.10 Register Indirect with Displacement (cont)

RENESAS

13

Memory Indirect: Uses branch address specification with the ISR and IMP instructions. The
branch address is on the 8-bit memory indirect address area (advanced mode: H'000000—
H'0000FF, normal mode: H'0000-H'00FF). To specify the branch address, specify the lower 8 bits
of the address that stores the branch address. The addressis stored in 2-byte unitsin normal mode
and in 4-byte units for advanced mode (the first byte is ignored). Note that the top region of the 8-
bit memory indirect address area is shared with the exception processing vector area. For more
information, see the hardware manual for the LSI in question (figure 1.11).

Example: JISR @ @H'F8

(Advanced mode)
4 H000000

Exception
processing
vector
region
8-bit
memory | H'0000F3
indirect H'0000F4

address
area
H'0000F8| Don't care
10
00 Branch address
00
Y H'O000FF

Figure1.11 Memory Indirect

14 RENESAS

Example: JISR @@H'BA (subroutine branch to address 1000)

(Normal mode)

Y Uy
H0000 Exception
processing
vector
Hoo79| region
H'007A
8-hit
memory
indirect
address
area H'0O0BA 10
> Branch address
00
Y H'OOFF

Figure1.11 Memory Indirect (cont)

Program Counter Relative: Used to specify branch addresses using the Bec or BSR instructions.
It specifies the displacement of the branch address (signed 8-bit or signed 16-bit). Displacement is
added to the contents of the PC and the address at the branch destination is generated. The PC
contents become the start address of the next instruction, so the branchable area for the Bcc and
BSR instructions are —126 to +128 bytes or —32766 to +32678 bytes. Normally, the branch
destination symbol is specified rather than the displacement (figure 1.12).

BSR ABC

ABC: ADD. W RO, E1

Figure1.12 Program Counter Relative

RENESAS 15

Immediate: Directly specifies the data on the instruction (figure 1.13).

Example: MOV.L #H'01234567, ERO

31

Transfer

\ 4 0

ERO |

01234567 |

1.1.6 Instructions

Figure1.13 Immediate Addressing

H8/300H CPU instructions have the following features:

* Instructions use a general register architecture

A simplified and optimized 62-instruction basic set

* The common instruction length is 2 or 4 bytes
 High-speed executable multiplication and division instructions and powerful bit manipulation

instructions

Instruction Types: There are atotal of 62 H8/300H CPU instructions that are categorized
according to function (table 1.6).

8 types of addressing modes

Table1.6 Instruction Categories
Function Instruction Type
Data transfer instructions MOV, PUSH, POP 3
Arithmetic operations ADD, SUB, ADDX, SUBX, INC, DEC, ADDS, SUBS, 18
instructions DAA, DAS, MULXU, DIVXU, MULXS, DIVXS, CMP,
NEG, EXTS, EXTU
Logic operations instructions AND, OR, XOR, NOT
Shift instructions SHAL, SHAR, SHLL, SHLR, ROTL, ROTR, ROTXL,
ROTXR
Bit manipulation instructions BSET, BCLR, BNOT, BTST, BAND, BIAND, BOR, 14
BIOR, BXOR, BIXOR, BLD, BILD, BST, BIST
Branching instructions Bcc, JMP, BSR, JSR, RTS 5
System control instructions RTE, SLEEP, LDC, STC, ANDC, ORC, XORC, NOP, 9
TRAPA
Block transfer instructions EEPMOV 1
16 RENESAS

Section 2 Instructions

21 Data Transfer Instructions

211 MOV
MQV (Move): Transfers 8-bit, 16-bit or 32-bit data (figure 2.1).

B
oy {W} £3.3
—I_— Destination operand
—— Source operand
Operand size
Mnemonic

Figure2.1 MOV

RENESAS

17

Table21 MOV

Mnem- Op. Source Dest.
onic Sz. Operand Op. Description
MOV B RnHorRnL RnH or 7 0 7 0
RnL | > |
RnH or RnL RnH or RnL
W RnorEn Rn or 15 0 15 0
En | > |
L ERnN ERnN 31 0 31 0
[-] |
ERnN ERn
B @ERnN RnH or 7 0
@(d:16,ERn) RnL
@(d:24,ERn) RnH or RnL
@-ERn
w gaa:flges Rn or
aa:
En
@aa:24 Even address
15yRnor Eny 0O
L ERnN
Even
address

31y v ERn l v O

B RnHorRnL @ERN 7 0

@@16, [T
ERn) RnH or RnL

@(d:24,
W Rn or En ERn)

@ERN+
@aa:8 15 [RnorEn| O

@aa:l6
@aa:24

Even address

A 4

L ERnN

Even

» address
31 ERnN 0

18 RENESAS

Table21 MOV (cont)

Mnem- Op. Source Dest.
onic Siz Operand Op. Description
e
MOV B #xx:8 RnH 7 0
(cont) or #xx8—»____]
RNL RnH or RnL
w #xx:16 Rn or 15 0
En wxxc16—w]
Rn or En
L #xx:32 ERN 31
#xx:32 —»
ERn

212 PUSH, POP
PUSH (Push Data): Saves the contents of register to stack (figure 2.2).

POP (Pop Data): Recovers the contents of register from stack (figure 2.2).

PUSH. [VIY] [

—l_— Source operand
Operand size

Mnemonic
W
POP. [L] L1
—I: J Destination operand
Operand size
Mnemonic

Figure2.2 PUSH, POP

RENESAS

19

Table22 PUSH, POP

Destination
Operand
Mnem- Source (Source
onic Operand Operand) Description
PUSH W (Rn, En) After 2 is subtracted from the stack pointer, the contents of
16-bit registers Rn and En are saved to the stack.
Stack
<—SP3 5
15 0 «sp/
En or Rn
The instruction is the same as MOV.W Rn, @-SP or MOV.W
En, @-SP.
L (ERnN) After 4 is subtracted from the stack pointer, the contents of
32-bit register ERn are saved to the stack.
Stack
> <SP
— B
31 0 «—SP
[H'xx] xx] xx] xx |

ERNn

The instruction is the same as MOV.L ERn, @SP-.

POP w Rn, En The contents of 16-bit registers Rn and En saved to the stack

are recovered. After recovery 2 is added to the stack pointer.

Stack
H'xx l«-sp

)2

XX

15y 0 «Sp

En or Rn

The instruction is the same as MOV.W @SP+,Rn or MOV.W
@SO+, En.

L ERN The contents of 32-bit register ERn saved to the stack are
recovered. After recovery 4 is added to the stack pointer.

Stack
H'xx «-gsp
XX
XX +4

XX
|31v | v | v | £0| le—SpP
ERnN

The instruction is the same as MOV.> @SP+, ERn.

20 RENESAS

2.2 Arithmetic Operation Instructions

221 ADD, SUB

ADD (ADD binary): Summand (8 bit) + addend (8 bit) = sum (8 bit), or
Summand (16 bit) + addend (16 bit) = sum (16 hit), or
Summand (32 bit) + addend (32 bit) = sum (32 bit)

SUB (Subtract binary): Subtrahend (8 bit) — minuend (8 bit) = difference (8 bit), or
Subtrahend (16 bit) — minuend (16 bit) = difference (16 bit), or
Subtrahend (32 bit) — minuend (32 bit) = difference (32 hit)

Figure 2.3 shows examples of ADD and SUB.

ADD} {B }

sus|'|lw[Ed
Destination operand
Source operand
Operand size
Mnemonic

B

Figure2.3 ADD, SUB

RENESAS

21

Table2.3 ADD, SUB

Mnem- Operand Destination Source
onic Size Operand Operand Description
ADD B RmH or RmL #xx:8
SUB or RnH
or RnL H'xx
7v O #xx:8
RmH or RmL
L RnH or RnL
w Rm or Em #xx:16
or Rn or H XXX X
Rm or Em
L RnorEn
L ERm #xx:32 or
ERn H')X XXX XXX X
A 4 . _
[CHrooooooo] #9 oo =
ERmM
ERn
222 ADDX, SUBX

ADDX (ADD with Extend Carry): Adds with C flag (carry from bottom) included (figure 2.4).

SUBX (Subtract with Extend Carry): Subtracts with C flag (borrow from bottom) included (figure

2.4).

ADDX
SUBX

. B [,

]

L=

Destination operand
Source operand
Mnemonic

22

Figure2.4 ADDX, SUBX

RENESAS

Table24 ADDX, SUBX

Mnem- Operand Source Destination
onic Size Operand Operand Description
ADDX B #xx:8 or RmH or
SUBX RnH or RnL RmL H'xx
H'xx | % =
H'xx
RnH or RnL

223 INC,DEC

INC (Increment): Adds 1 to contents of 8-bit, registers RnH or RnL (figure 2.5). Adds 2 to the

contents of 16-bit registers Rn or En and 32-bit register ERn.

DEC (DECrement): Subtracts 1 from contents of 8-bit, registers RnH or RnL (figure 2.5).
Subtracts 2 from the contents of 16-bit registers Rn or En and 32-bit register ERn.

e}

DT'H !

Mnemonic

INC} B

Mnemonic

j - Destination operand

Operand size

DEC =
—I_— Destination operand
T Operand size

Figure2.5 INC, DEC

RENESAS

23

Table25 INC,DEC

Mnem- Operand Destination

onic Size Operand Description
INC B RnH or RnL 7 0
DEC £1=
RnH or RnL
W Rn or En

15 0 1
[Hoox]+ 151=

Rn or En

L ERnN

H'XX XXX XXX

ERnN

2wl]

224 ADDS, SUBS
ADDS (Add with Sign Extension): Adds 1, 2 or, 4 to the contents of the 32-bit register ERn
(figure 2.6).

SUBS (Subtract with Sign Extension): Subtracts 1, 2 or 4, from the contents of the 32-bit register
ERn (figure 2.6).

#1
#2 > ERn

#4
—I_— Destination operand

Source operand
Mnemonic

ADDS
suBs

Figure2.6 ADDS, SUBS
Table2.6 ADDS, SUBS

Mnem- Operand Source Destination

onic Size Operand Operand Description
ADDS — #lor#2 ERn v
SUBS or #4

/31 0\ 1
| H')x XX XXX XX |i 2=

ERN

24 RENESAS

225 DAA,DAS
DAA (Decimal Adjust Add): Adjusts the sum from binary addition of 2 columns of 4-bit BCD
datato 4-bit BCD data (figure 2.7).

DAS (Decima Adjust Subtract): Adjusts the difference from binary subtraction of 2 columns of 4-
bit BCD datato 4-bit BCD data (figure 2.7).

DAA
DAS } =
. Destination operand
Mnemonic

Figure2.7 DAA, DAS
Table27 DAA,DAS

Mnem- Destination
onic Operand Description

DAA RnH or RnL The results of binary addition or subtraction of 2 columns of 4-bit BCD data
is adjusted to 2 columns of 4-bit BCD data.

DAS
Upper Lower
column column

226 MULXU, DIVXU, MULXS, DIVXS

MULXU (Multiply Extended Unsigned): Multiplicand (8 bit) + multiplier (8 bit) = Product (16
bit), or Multiplicand (16 bit) + multiplier (16 bit) = Product (32 bit)

DIV XU (Divide Extended Unsigned): Dividend (16 bit) + divisor (8 bit) = Quotient (8 hit),
Remainder (8 bit), or Dividend (32 bit) + divisor (16 bit) = Quotient (16 bit), Remainder (16 bit)

MULXS (Multiply Extended Signed): Multiplicand (8 bit) + multiplier (8 bit) = Product (16 bit),
or Multiplicand (16 bit) + multiplier (16 bit) = Product (32 bit)

DIV XS (Divide Extended Signed): Dividend (16 bit) + divisor (8 bit) = Quotient (8 bit),
Remainder (8 bit), or Dividend (32 bit) + divisor (16 bit) = Quotient (16 bit), Remainder (16 bit)

Figure 2.8 shows examples of MULXU, DIVXU, MULXS, and DIVXS.

RENESAS 25

MULXU

MULXS B

DIVXU (- {w} o

DIVXS “T—— Destination operand

T Source operand
Operand size

Mnemonic

Figure2.8 MULXU, DIVXU, MULXS, DIVXS

Table2.8 MULXU, DIVXU, MULXS, DIVXS

Mnem- Op. Source Destination
onic Size Operand Operand Description
MULXU B RnH or Rm or Em P :j
MULXS RNL roduct
H'xxxx
¥

K_J%

15 87 0 7 0

[[H'xx] x [H'xx]=

RmorEm RnH or RnL

W RnorEn ERm PrO(':iuct
H'XX XXX XXX
¥

e A

31 16 15 0 15 0

| | Hxxxx |x[H'xxxx |=

ERm Rn or En
DIVXU B RnH or Rm or Em
DIVXS RnL Remainder Quotient
H'xx H'xx

|

——t— ——
15 87 07 O
| H'xxxx |+ H'xx]=

Rm or Em RnH or RnL

w RnorEn ERmM ,—i—\

Quotient Remainder

H'xxxx H'xxxx
v v
r N A}
31 16 15 0 15 0
| H'X XXX XXX X |+[H'xxxx |=
ERmM Rn or En

26 RENESAS

227 CMP

CMP (Compare): Compares pairs of 8-hit, 16-bit, or 32-bit data (figure 2.9).

—I_— Destination operand
Source operand

Operand size

Mnemonic

Figure29 CMP

Table29 CMP
Mnem- Op. Source Dest.
onic Size Op. Op. Description
CMP B #xX:8 RnH H'xx
RnHor or .
RnL RnL r__0 #xx:8
H' x x|— 7 0
RnH or RnL H'xx
RnH or RnL
W #xx:16 Rnor Hixxx
or Rn En
15 #xx:16
or En
H'xxxx
Rn or En IMI
Rn or En
L #XX32 ERN H')X XXX X XXX
orERn #xx:32

31

0

H'X XXX X XXX | -
31

ERnN |

H')x XXX XXXX

ERnN

RENESAS

27

228 NEG

NEG (Negate): Takes the two complement of 8-bit registers RnH and RnL, 16-bit registers Rn and
En, and 32-hit register ERn. (figure 2.10)

B
NEG. {W}]
L
—I_— Destination operand
Operand size
Mnemonic

Figure2.10 NEG

Table2.10 NEG

Mnem- Op. Destination
onic Size Operand Description
NEG B RnH or RnL 7 0
0 [THx |7
RnH or RnL
w Rn or En 15 0
0- -
Rn or En

H')X XXX XX XX =

ERnN

L ERN 31 { 0
0-] |

229 EXTS EXTU
EXTS (Extend as Signed): Sign-extends from 8 bit to 16 bit or from 16 bit to 32 bit (figure 2.11).

EXTU (Extend as Unsigned): Zero-extends from 8 bit to 16 bit or from 16 bit to 32 bit (figure
2.11).

EXTU) (W
EXTS}‘ { L } D—[
T Destination operand
Operand size

Mnemonic

Figure2.11 EXTS EXTU

28 RENESAS

Table2.11 EXTS EXTU

Destination
Operand

Mnem- Op.
onic Size

Description

EXTU W Rn or En

Zero extended

—
15 87 0

Rn or En

L ERnN

Zero extended

31 16 15 0
[HO0000 [Hxxxx]
ERn

EXTS W Rn or En

Sign extended

—
15 87 0
When positive

Rn or En

Sign extension
—

15 87 0
When negative

Rn or En

L ERnN

Sign extended
f_/%
31 16 15

When positive [H' 0000 |

H'xxxx

ERnN

Sign extension

31 16 15

When negative | H'FFFF |

H'xxxx

ERnN

RENESAS

29

2.3 Logic Operation Instructions

231 AND, OR, XOR, NOT
AND (And logical): Takesthe logical product of pairs of 8-bit, 16-bit, or 32-bit data (figure 2.12).

OR (Inclusive Or Logical): Takesthelogical sum pairs of 8-bit, 16-bit, or 32-bit data (figure 2.12).

XOR (Exclusive Or Logical): Takes the exclusive logical sum of pairs of 8-bit, 16-bit, or 32-bit
data (figure 2.12).

NOT (NOT = Logica Complement): Logically inverts pairs of 8-bit, 16-bit, or 32-bit data(figure
2.12).

AND B
W
XOR —l_— Destination operand

—‘7 T Source operand

Operand size
Mnemonic

B
NOT. {W}]
—[J Destination operand
Operand size

Mnemonic

Figure2.12 AND, OR, XOR, NOT

30 RENESAS

Table2.12 AND, OR, XOR, NOT

Mnem- Op. Dest. Source
onic ~ Size Op. Op. Description
AND B RmH #xx:8 .
OR or or RnH H'xx
XOR RmL or RnL 7 0 0 #xx:8 _
H'xx 7 0 =
RmH or RmL
RnH or RnL
W Rm #xx:16
orEm orRn H'xxxx
or En 15 0 #xx:16
H'xxxx 9 15 0or=
Rm or Em
Rn or En
L ERmM #xx:32
or ERn 31 0 H'x XXX XXXX
| H'xx X x XX %X | 0431 #xx:32 0r=
ERmM | H'X XXX XXX X |
ERnN
NOT B RmH —
or 7 0
RmL [Fix] =
RmH or RmL
W Rm —
or Em 15 0
=
Rm or Em
L ERm —

H')xx XXX XXX

ERm

RENESAS

31

24 Shift Instructions

241 SHAL,SHAR, SHLL, SHLR,ROTL, ROTR, ROTXL, ROTXR

The contents of 8-hit, 16-bit, and 32-bit registers can be shifted in the eight ways shown below
(figure 2.13).

SHAL (Shift Arithmetic Left): Does an arithmetic shift 1 bit left.

SHAR (Shift Arithmetic Right): Does an arithmetic shift 1 bit right.

SHLL (Shift Logical Left): Doesalogical shift 1 bit left.

SHLR (Shift Logical Right): Does alogical shift 1 bit right.

ROTL (Rotate Left): Rotates 1 bit left.

ROTR (Rotate Right): Rotates 1 bit right.

ROTXL (Rotate with eXtend carry Left): Rotates 1 bit left including the C flag.

ROTXR (Rotate with eXtend carry Right): Rotates 1 bit right including the C flag.

SHAL)

SHAR

SHLL

SHLR B

ROTL w ||

ROTR | - L

ROTXL L

ROTXR J T —Destmatlor_l operand
| Operand size

Mnemonic

Figure2.13 SHAL, SHAR, SHLL, SHLR, ROTL, ROTR, ROTXL, ROTXR

32 RENESAS

Table2.13 SHAL, SHAR, SHLL, SHLR, ROTL, ROTR, ROTXL, ROTXR

Mnem- Destination
onic Operand Description
SHAL RnH or Cflag MSB LSB
RNL, Rn or [<— < | 4+—0
En, ERn RnH or RnL, Rn or En, ERN
SHAR MSB LSB Cflag
Al >
RnH or RnL, Rn or En, ERN
SHLL Cflag MSB LSB
+—t 1= | +—0

RnH or RnL, Rn or En, ERN

SHLR MSB LSB Cflag
o— | > |

RnH or RnL, Rn or En, ERN
ROTL Cflag | MSB LSB

RnH or RnL, Rn or En, ERN
ROTR MSB LsB | Cflag

RnH or RnL, Rn or En, ERN

ROTXL Cflag MSB LSB

RnH or RnL, Rn or En, ERN
ROTXR

MSB LSB Cilag
— | [+— IJ

RnH or RnL, Rn or En, ERnN

RENESAS

33

2.5 Bit Manipulation Instructions

251 BSET,BCLR,BNOT,BTST,BLD, BILD, BST, BIST, BAND, BIAND, BOR, BIOR,
BXOR, BIXOR

Bit data can be accessed in the format of the nth bit (n=0, 1, 2, ..., 7) of the 8-bit datain the 8-hit
registers (ROH-R7H, ROL—R7L) or on memory. The bit numbers for such accesses are specified
as 3-bit immediate data or 8-bit register contents (lower 3 bits) (figure 2.14).

8-bit data

~ Memory
BSET 8-bit register (register indirect,
BCLR (ROH-R7H, ROL-R7L) 8-bit absolute address)
BNOT P 76543210 76543210
BIST #0 I I O e HEEEEE
BLD #1
BILD #2
BST \ g #3
BIST # (7
BAND #5
BIAND #6 Bit numbers (0-7)
BOR AT 8-hit register (lower 3 bits)
BIOR (ROH—R7H, ROL-R7L) _
BXOR or Immediate data
BIXOR — 11 1] HO—HT

- 000-111

Figure2.14 BSET,BCLR, BNOT, BTST, BLD, BILD, BST, BIST, BAND, BIAND, BOR,
BIOR, BXOR, BIXOR

34 RENESAS

Table2.14 BSET,BCLR, BNOT,BTST, BLD, BILD, BST, BIST, BAND, BIAND, BOR,
BIOR, BXOR, BIXOR

Mnem-
Cate- onic (Full
gory Name) Description
Bit set BSET (Bit Sets the specified bit to 1. Specified bit
set) 1 _>|:|
Bit clear BCLR (Bit Clears the specified bit to O. Specified bit
clear) 0 _,D
Bit BNOT (Bit Inverts the specified bit. Specified bit
inversion not) D _>|:|
Bit test BTST (Bit Transfers the specified bit to the zero Specified bit Z bit
test) flag. D _,I:,
Bit BLD (Bit Transfers the specified bit to the carry Specified bit C bit
transfer load) flag. D _>|:|
BILD (Bit Transfers the inversion of the Specified bit C bit
invert load) specified bit to the carry flag. D _>|:|
BST (Bit Transfers the carry flag to the C bit Specified bit
store) specified bit. |:| _>|:|
BIST (Bit Transfers the inversion of the carry C bit__Specified bit
Invert store) flag to the specified bit. D _>|:|
Bit AND BAND (Bit Takes the AND of the specified bit Specified bit C bit C bit
and) and the carry flag and transfers the D A D ,D

result to the carry flag.

BIAND (Bit Takes the AND of the inversion of the Specified bit C bit C bit

invert and) specified bit ad the carry flag and A >
transfers the result to the carry flag. D D D

RENESAS

Table2.14 BSET, BCLR, BNOT, BTST, BLD, BILD, BST, BIST, BAND, BIAND, BOR,
BIOR, BXOR, BIXOR (cont)

Mnem-
Cate- onic (Full
gory Name) Description
Bit OR BOR (Bit Takes the OR of the specified bit and Specified bit C bit C bit
inclusive or) the carry flag and transfers the result V. >
to the carry flag. D D D
BIOR (Bit Takes the OR of the inversion of the Specified bit C bit C bit
invert specified bit and the carry flag and V. >
inclusive or) transfers the result to the carry flag. D D D
Bit BXOR (Bit Takes the exclusive OR of the Specified bit C bit C bit
exclusive exclusive or) specified bit and the carry flag and D [D .,l:’
Or transfers the result to the carry flag.
BIXOR (Bit Takes the exclusive OR of the Specified bit C bit C bit
invert inversion of the specified bit and the D fas |:| ,D
exclusive or) carry flag and transfers the result to
the carry flag.
2.6 Branch Instructions
26.1 Bcc

Bcc (Branch Conditionally): Thisinstruction branches when a condition is met (figure 2.15).

Bcc _

"T— Operand

Mnemonic

36

Figure2.15 Bcc

RENESAS

Table2.15 Bcc

Mnem-
onic Operand Description
Bcc d:8 or d:16 When the condition is met, the displacement (signed 8 bit or 16 bit) to
the branch
23 0 J
| H'x XXX X X | + H'xx =
PC d:8
23 0 J
| H'xx xxx x | + H'xxxx =
PC d:16
Mnemonic Description Branch Condition
BRA (BT) Always (True) Always
BRN (BF) Never (False(never
BHI High Cvz=0
BLS Low or same Cvz=1
BCC(BHS) Carry clear (highorsame) C=0
BCS(BLO) Carry set (Low) c=1
BNE Not equal Z=0
BEQ Equal Z=1
BVC Overflow clear V=0
BVS Overflow set V=1
BPL Plus N=0
BMI Minus N=1
BGE Greater or equal NOV=0
BLT Less than NOV=0
BGT Greater than ZV(N OV) =0
BLE Less or equal ZV(N OV) =0

RENESAS

37

262 JMP
JMP (Jump): Jumps unconditionally to branch destination (figure 2.16).

JMP =

— Operand

Mnemonic

Figure2.16 JMP
Table2.16 JMP

Mnem-
onic Operand Description

JMP @ERN or Branch destination address transferred to PC
@aa:24

or 31 2423 0 N
. @ERn | | H' %X XX X X |
@@aa:8 ERn
@aa:24 H' xxxxxx 03
S
PC

. H'xx
@@aa:8 <X
XX

/

263 BSR,JSR

JSR (Jump to Subroutine, BSR (Branch to Subroutine): Instructions that jump to subroutines
(figure 2.17).

=
"T— Operand

Mnemonic

BSR
JSR

Figure2.17 BSR, JSR

38 RENESAS

Table2.17 BSR,JSR

Mnem-
onic Operand Description

BSR d:8 ord:16 The contents of the PC are saved to the stack and the displacement (signed
8 bit or signed 16 bit) tot he subroutine start destination is added to the PC

contents

(Advanced mode)

(Normal mode)

<SP,
-4 > <SP
j—z
23 0 <SP 15 0 <SP
[Hxx| xx | xx | | | Hxx | xx |
PC
23 v 0 J
[H' XXX XXX [+ H'xx =
PC d:8
23 v 0 J
[H > X XX X x [+ H'xxxx =
PC di6
JSR @ERnNn or The contents of the PC are saved to the stack
@aa:24 or
@@aa:8 (Advanced mode) (Normal mode)
Stack
<SP Stack
-4 > <—SP3
<+SP 15 0 [« SP
|H'xx| xx| xx| | |H'><x|><><|
PC PC
31 2423)
@ERN | [H'XX XXX X
ERnN
@aa:24 H')xxxxxx 23 0
—> |
PC
H'xx
@@aa:8 XX
XX
/
2.6.4 RTS

RTS (Return from Subroutine): Returns from a subroutine (figure 2.18).

RENESAS

39

RTS
J I Mnemonic

Figure2.18 RTS

Table2.18 RTS

Mnem- Op. Source Destination
onic Size Operand Operand Description
RTS — — — When jumping to a subroutine using BSR or JSR,

the contents of the PC saved in the stack are
transferred back to the PC. After the transfer, the
stack pointer is incremented (+2 for normal mode
and +4 for advanced mode

(Normal mode)
Stack

pc*SP)_'_Z

Y [: |+«SP

(Advanced mode)
Stack

<« SP
PC] >+4

Y A4 ; : <« SP

2.7 System Control Instructions

271 RTE
RTE (Return from Exception): Returns for exception processing program. (figure 2.19)

RTE
Jj B Mnemonic

Figure2.19 RTE

40 RENESAS

Table2.19 RTE

Mnem- Op. Source Dest.
onic Size Op. Op. Description

RTE — — — When a hardware interrupt or software interrupt (TRAPA
instruction) occurs, the CCR and PC automatically saved to the
stack by the hardware are returned from the stack

Stack

CCR [+SP

pC) *4

7v O 23y y ; 0 l«SP

272 SLEEP

SLEEP (Sleep): The SLEEP instruction places the CPU in power-down status (figure 2.20). In
power-down status, the internal state of the CPU is maintained and instruction execution halted to
wait for arequest for exception processing to occur. When a request for exception processing does
occur, the power-down state is cleared and the CPU begins exception processing. Any interrupt
requests other than NM1 will be masked on the CPU side at this time so the power-down status
will not be cleared.

SLEEP
Mnemonic

Figure2.20 SLEEP

273 LDC,STC
LDC (LodD to Control Register): Transfers 8-bit data to the CCR (figure 2.21).

STC (Store from Control Register): Transfers the contents of the CCR to register or memory
(figure 2.21).

RENESAS 41

LDC
STC

Hw)

(I Y

T Destination operand
Source operand

Operand size

Mnemonic

Table2.20 LDC, STC

Figure2.21 LDC, STC

Mnem- Op. Destination Source
onic Size Operand Operand Description
LDC B #xX:8 CCR The 8-bit immediate data or the contents of the
or RnH or RnH or RnL 8-bit registers are transferred to the
RnL CCR
H'xx
#xx:8 7 0
7 0
CCR
RnH or RnL
W @ERnN The contents of the even address are transferred
@(d:16,ERn) to the CCR
@(d:24,ERn)
7 0
@-ERn Even address | H'xx —»]
@aa:8 CCR
@aa:16
@aa:24
STC B CCR RnH or RnL The 8-bit immediate data or the contents of the
RnH or RnL 8-bit registers are transferred to the
CCR
7 o 7 0
]
CCR RnH or RnL
W @ERnN The contents of the even address are transferred
@(d:16,ERn) to the CCR
@(d:24,ERn) 0 7
@ERn+ [H'xx > Even address
@aa:8 CCR
@aa:16
@aa:24

274 ANDC, ORC, XORC

These instructions do logical operations with the contents of the CCR (figure 2.22).

42

RENESAS

ANDC (AND Control Register): Takesthelogical product.
ORC (Inclusive OR Control Register): Takes the logical sum.

XORC (Exclusive OR Control Register): Takes the exclusive logical sum.

ANDC

ORC } #xx:8, CCR

XORC Destination operand

Source operand
Mnemonic

Figure2.22 ANDC, ORC, XORC
Table2.21 ANDC, ORC, XORC

Mnem- Op. Destination Source

onic Size Operand Operand Description

ANDC B CCR #xx:8

ORC 7+ 0(0

XORC H'xx O? Hxx =
CCR 'O/ #xx:8

275 NOP

NOP (No Operation): Only increments the PC by 2. No effect on the internal status of the CPU
(figure 2.23).

NOP
J I Mnemonic

Figure2.23 NOP

276 TRAPA
TRAPA (Trap Always): Generates a software interrupt (figure 2.24).

RENESAS 43

#0
#1
#2
#3

TRAPA

Figure2.24 TRAPA
Table2.22 TRAPA

Mnem-
onic Operand Description

ANDC #0or#1or CCR and PC saved to stack
ORC #2 or #3

XORC > le—SpP
> -4
«—SP
| H'><><| | H'xxl X X | X X |
CCR PC
|
i
CCR
Vector Address
#XX Normal Mode Advanced Mode
0 H'0008-H'0009 H’000010-H000013
1 H'000A-H'000B H’000014-H000017
2 H'000C- H'000018-H00001B
H’000D
3 H'000E-H’000F H’00001C-HO0001F

2.8 Block Transfer Instructions

281 EEPMOV

EEPMOV (Move datato EEPROM): Transfer block data to any address. No interrupts will be
detected during the data transfer (figure 2.25).

44 RENESAS

B
EEPMOV - {w}
- Operand size

Figure2.25 EEPMOV
Table2.23 EEPMOV

Mnem- Op.
onic Size Description

EEP- B Transfers the block data that starts at the address in ER5 to the address in ERG6.
MOV The maximum block data length is 255 bytes.

Number of bytes to transfer H) XXX XX
R4L
Transfer source

address H'ODbyte

Transfer destination ERS

address

ERG6

H'AAAAAA

H' OO byte

W Transfers the block data that starts at the address in ER5 to the address in ERG6.
The maximum block data length is 65535 bytes.

Number of bytes to transfer| H' OO OO Hoo00x
RAL ,
Transfer source H'OO0OO byte
address
ERS5
Transfer destination .
address
ER6
H'AAAAAA
H' OO0 byte

RENESAS 45

Section 3 Load Module Conversion Procedures

Figures 3.1 through 3.4 show the load module conversion procedures for the H8/300H.

Editor
(e.g. MIFES)

Assembler source file
(xxx.SRC)

Create the assembler source program using any editor (such as MIFES).

Figure3.1 Load Module Conversion Procedures (Step 1)

Assembler
(ASM38.EXE)

Input file Output file

iy Lyl

Assembler source flle Relocatable object file
(xxx.SRC) (xxx.0OBJ), List file (xxx.LIS)

Convert the assembler source program to an object module using the assembler (ASM38.EXE).

Figure3.2 Load Module Conversion Procedures (Step 2)

46 RENESAS

Linkage editor
(LNK.EXE)

Input file Output file

Simulator
debugger

= In-circuit

emulator

Load module file

Relocatable object file
(xxx.0BJ) (xxx.ABS)

Convert the object module to a load module using the linkage editor (LNK.EXE).

Figure3.3 Load Module Conversion Procedures (Step 3)

Load module converter
(CNVS EXE) Output file

— % — PROM writer
Load module file LI S -type format Ioad
(xxx.ABS) module file (xxx. MOT)

Convert the load module to an S-type format load module using the load module compiler
(CNVS.EXE).

Input file

Figure3.4 Load Module Conversion Procedures (Step 4)

RENESAS

47

Section 4 Examples of Software Applications

41

Table 4.1 lists software application examples.

Softwar e Applications Examples

Table4.1 List of Software Application Examples

Software title Label Use Section

Block transfer MOVE MOV.L instruction, post-increment 4.3
register indirect

Block transfer using block transfer EEPMOV EEPMOV.W instruction 4.4

instruction

Branching using a table CCASE Register indirect with displacement 4.5

Count of nhumber of logical 1 bits in HCNT ROTL.B instruction, ADDX.B 4.6

8-bit data instruction

Find first 1 in 32-bit data FIND1 SHLL.L instruction 4.7

64-bit binary addition ADD ADD.L instruction 4.8

64-bit binary subtraction SUB SUB.L instruction 4.9

Unsigned 32-bit binary multiplication MUL MULXU.W instruction 4.10

Unsigned 32-bit binary division DIV SHLL.L instruction, ROTL.L 4.11
instruction

Signed 16-bit binary multiplication MULXS MULXS.W instruction 412

Signed 32-bit binary multiplication MULS MULXU.W instruction 4.13

Signed 32-bit binary division (16-bit DIVXS DIVXS.W instruction 4.14

divisor)

Signed 32-bit binary division (32-bit DIVS SHLL.L instruction, ROTL.L 4.15

divisor) instruction, NEG.L instruction

8-digit decimal addition ADDD DAA.B instruction 4.16

8-digit decimal subtraction SUBD DAS.B instruction 417

Product/sum operations SEKIWA MULXU.W instruction 4.18

Sorting SORT Post-increment register indirect, 4.19
pre-decrement register indirect

48 RENESAS

4.2 Using Software Examples

Sections 4.3 through 4.19 provide detailed information about the software applications listed in
table 4.1. The following information is consistent throughout sections 4.3 through 4.19.

* Internal registers:

— ERO-ER7: 32-bit general registersthat link EnandRnn=0,1, 2, ... 7.
— EO-E7: 16-bit extended registers

— RO-R7: 16-bit general registersthat link RnH and RnL n=0, 1, 2, ... 7.
— ROH-R7H and ROL-R7L: 8-bit general registers

 Condition code register (shown in figures labeled “ Changesin Internal Registers and Flag
Changes ..."):

— C: Carry flag

— V: Overflow flag
— Z: Zeroflag

— N: Negative flag
— U: User hit

— H: Half carry bit
— U: User hit

— |: Interrupt mask bit

» Programming Specifications: Describes the specifications of the software.

— Program memory bytes.: Indicates the amount of ROM used by the software.
— Datamemory bytes.: Indicates the amount of RAM used by the software.

— Stack bytes.: Indicates the amount of stack used by the software. This does not include the
stack used by subroutine callsin the user program. When executing software, the amount of
stack in bytesindicated for the stack areais required, so ensure that the stack requirements
are available in the data memory before execution.

— Number of states: Indicates the number of statesin which the software is executed. The
execution time of the software is calculated as follows:

Execution time (s) = No. of states x Cycle time (s),
where
Cycle time (s) = 1/system clock frequency @ (Hz),

and

RENESAS 49

System clock frequency ¢ (Hz) = External pulse generator frequency 2 divider circuit
version/2,

or
External pulse frequency 1:1 oscillation versions.

— Re-entrant: Indicates whether the structure can be used simultaneously from multiple
programs.

— Relocation: Indicates whether the software will run normally no matter where in the
memory spaceit is placed.

— Interrupts during execution: Indicates whether the software will run normally even after an
interrupt routine is executed when the software is running. If it won't, inhibit interrupts prior
to calling the software.

421 Program Listing Page Format (Format 4)

The following list explains the format of the programming list software.
1. List line numbers

2. Location counter values

3. Object code

4. Source line numbers

5. Source statements

6. Comments

7-10 Assembler control instructions

Table 4.2 lists the assembler control instructions used by this software. These instructions are
described further in Appendix B, Assembler Control Instruction Functions. For control
instructions not listed in table 4.2, see the H8/300H Series Cross-Assembler Users Manual.

50 RENESAS

Table4.2 Assembler Control Instructions List

Control Instruction

Function

.CPU

Specifies CPU

.SECTION Specifies section

.EQU Sets symbol value

.ORG Sets location counter values
.DATA Reserves integer data

.RES Reserves integer data space
.END End of source program

4.3 Block Transfer
M CU: H8/300H Series

Label Name: MOVE

Functions Used: MOV.L Instruction, Post-Increment Register Indirect

Function: Transfers block data (up to 65535 bytes) to any even address.

Table4.3 MOVE Arguments

Contents Storage Location Data Length (Bytes)
Input Start address of transfer source ERO 4

Start address of transfer destination ER1 4

Number of bytes transferred ER2 2

Output —

RENESAS

51

ERO

ER1

ER2

ER3

ER4

ER5

ER6

ER7(SP)

31 16 15 87

Start address of transfer source

Start address of transfer destination

Numtl)er of
bytes transferred

Work

Il |U|JH|JU|NJ|Z |V |C |
—|—]1]|—1]1]0]0 |1 ¢
0
1

: No change
: Changes

:Locked to O
:Lockedto 1

52

Figure4.1 Changesin Internal Registersand Flag Changesfor MOVE

RENESAS

Program memory (bytes)

38

Data memory (bytes)

0

Stack (bytes)

0

Number of states

491580

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Caution: The number of states given in the programming specifications is the value when
H'FFFF bytes are being transferred.

Figure4.2 Programming Specifications

431 Description of Functions
Arguments are as follows:
» ERO: Setsthe start address of the transfer source as the input argument

» ER1: Setsthe start address of the transfer destination as the input argument
* R2: Setsthe number of bytesto be transferred as the input argument

Figure 4.3 is an example of execution of the software MOV E. When the input arguments are set as
shown, the data at the transfer source is transferred as a block to the transfer destination (results).

RENESAS

53

Input arguments

Results

~

ERO
olo,

ER1
o]o

|Don't care| 2

|D0n't care| 1 : 0 | 0 :

R2

Address 100000 47

FF

1FFF bytes

C6

Address 200000 47

FF

1FFF bytes

C6

54

Figure4.3 Executing MOVE

RENESAS

432 Cautionsfor Use
* Since R2is2 bytes, set datain the region H'0001 < R2 < H'FFFF.

« Set the input arguments so that the block data of the transfer source (area (A) of figure 4.4) and

the block data of the transfer destination (area (B) of the figure) do not overlap.

» When the transfer source and transfer destination overlap as shown in figure 4.4, the data of the

transfer source that overlaps (area (C) in the figure) is destroyed.

Memory space

Start address of
transfer source

Start address of ®

transfer destination ﬁm }©

Figure4.4 Block Transfer with Overlapping Data

433 Description of Data Memory
No data memory is used by MOVE.

RENESAS

55

434 Examplesof Use

After setting the start address of the transfer source, the start address of the transfer destination and
the number of bytesto be transferred, do a subroutine call to MOVE.

Table4.4 Block Transfer Example (MOVE)

Label Instruction Action
WORK .RES.L1 Reserves the data memory area that sets the start
1 address of the transfer source in the user program.
WORK .RES.L1 Reserves the data memory area that sets the start
2 address of the transfer destination in the user program.
WORK .RES. W1 Reserves the data memory area that sets the number
3 of bytes to be transferred in the user program.
MOV. L @WORK1,ERO Sets the start address of the transfer source as set in
the user program as an input argument.
MOV. L @WORK2,ER1 Sets the start address of the transfer destination as set
in the user program as an input argument.
MOV. L @WORK3, R2 Sets the number of bytes to be transferred as set in the

user program as an input argument.
Subroutine call to MOVE.

|| 3sR @emove ||

435 Principlesof Operation

* When the data to be transferred is 4 bytes or more, the MOV .L instruction is used to do repeated
transfersin 4-byte units.

» When the data to be transferred is less than 4 bytes, the software switches to the MOV .B
instruction to do transfersin byte units.

56 RENESAS

Is number
of transfer bytes 4
or more?

| 4-byte transfers

No

| Number of transfer bytes + 4| @

| Number of transfer bytes — l|

Is the
number of transfer
bytes 0?

| 1-byte transfer

®

Figure4.5 MOVE Flowchart

RENESAS

57

436 Program Listing

58 RENESAS

4.4 Block Transfer Using Block Transfer Instruction
M CU: H8/300H Series

Label Name: EEPMOV
Functions Used: EEPMOV.W Instruction

Function: Transfers block data (up to 65535 bytes) to any even address using the block transfer
instruction (EEPMOV.W).

Table45 EEPMOV Arguments

Contents Storage Location Data Length (Bytes)
Input Start address of transfer source ER5 4

Start address of transfer destination ER6 4

Number of bytes transferred R4 2

Output — — —

RENESAS 59

ERO

ER1

ER2

ER3

ER4

ER5

ER6

ER7(SP)

31

16 15 87

Number

of bytes

transferred

Start address of transfer source

Start address of transfer destination

: No change
: Changes

:Locked to O
:Locked to 1

60

Figure4.6 Changesin Internal Registersand Flag Changesfor EEPM OV

RENESAS

Program memory (bytes)

4

Data memory (bytes)

0

Stack (bytes)

0

Number of states

262148

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Caution: The number of states given in the programming specifications is the value when
H'FFFF bytes are being transferred.

Figure4.7 Programming Specifications

RENESAS

61

441 Description of Functions

Arguments are as follows:
» ERS5: Setsthe start address (even address) of the transfer source.

» ERG6: Setsthe start address (even address) of the transfer destination.
* R4: Setsthe number of bytesto be transferred.

Figure 4.8 is an example of execution of the software EEPMOVE. When input arguments are set
as shown, the data at the transfer source is transferred as a block to the transfer destination (result).

e ER5
|Don'tcare| 1 : 0 | 0 : 0 | 0

o]

ER6
Input arguments |Don'tcare| 2 : 0 | 0 : 0 | 0

o]

R4

!

Address 200000 47

FF

1FFF bytes

C6

Result ﬁ

Address 100000

47
FF

1FFF bytes

C6

Figure4.8 Executing EEPMOVE

62 RENESAS

442 Cautionsfor Use

* Since R2is2 bytes, set datain the region H'0001 < R2 < H'FFFF.

* Interrupts cannot be detected while EEPMOVE is executing.

 Set the input arguments so that the block data of the transfer source (area (A) of figure 4.9) and
the block data of the transfer destination (area (B) of the figure) do not overlap. When the
transfer source and transfer destination overlap as shown in figure 4.9, the data of the transfer
source that overlaps (area (C) in the figure) is destroyed.

Memory space

Start address of
transfer source

»

Start address of ®

transfer destination ﬁ‘m }©

Figure4.9 Block Transfer with Overlapping Data

443 Description of Data Memory
No data memory is used by EEPMOVE.

RENESAS 63

444 Examplesof Use

After setting the start address of the transfer source, the start address of the transfer destination and
the number of bytesto be transferred, do a subroutine call to EEPMOVE.

Table4.6 Block Transfer Example (EEPM OVE).

Label Instruction Action
WORK RES.L1 Reserves the data memory area that sets the start
1 address of the transfer source in the user program.
WORK RES.L1 Reserves the data memory area that sets the start
2 address of the transfer destination in the user
program.
WORK RES. W1 Reserves the data memory area that sets the number
3 of bytes to be transferred in the user program.
MOV. L @WORK1,ER5 Sets the start address of the transfer source as set in
the user program as an input argument.
MOV. L @WORK2,ER6 Sets the start address of the transfer destination as set
in the user program as an input argument.
MOV. L @WORKS3, R4 Sets the number of bytes to be transferred as set in

the user program as an input argument.
Subroutine call to EEPMOVE.

| | ISR @Eepvmov | |

445 Principlesof Operation
Use the block transfer instruction (EEPMOV.W).

EEPMOV

Blocks are transferred
using the block transfer
instruction (EEPMOV.W)

Figure4.10 EEPMOV Flowchart

64 RENESAS

4.4.6

Program Listing

RENESAS

65

45 BranchingUsingaTable
M CU: H8/300H Series

Label Name: CCASE
Functions Used: Register Indirect with Displacement

Description: Searchesfor the start address of the processing routine for the input command. This
function is useful and convenient for decoding commands input from the keyboard and for
processing the input command.

Table4.7 CCASE Arguments

Contents Storage Location Data Length (Bytes)
Input Input command RO 2

Start address of data table ER1 4
Output Start address of processing routine ER1 4

Existence of a processing routine for the Z flag (CCR) 1

input command (yes =0, no = 1)

66 RENESAS

31 16 15 87 0
I
ERO Work Input colmmand
Start address of data table',
ER1 . .
start address of processing routine
ER2
ER3
ER4
ER5
ER6
ER7(SP)
U H U N 7 \V/ c |—: No change
| — t _ 1 1 0 1 t : Changes
0 :LockedtoO
1 :Lockedtol
Figure4.11 Changesin Internal Registersand Flag Changesfor CCASE

RENESAS

67

Program memory (bytes)

26

Data memory (bytes)

0

Stack (bytes)

0

Number of states

156

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Caution: The number of states given in the programming specifications is the value when the
last of 6 groups of data is detected.

Figure4.12 Programming Specifications

451 Description of Functions

Arguments are as follows:

* RO: Setsthe 16-bit command as an input argument.

» ER1: Setsthe start address of the data table as an input argument. Also set the start address of
the processing routine for the command as the output argument.

» Zflag (CCR): Indicates whether there are any errors after execution of CCASE.

— When Z flag = 0: Indicates that there is a command on the data table that corresponds to the
one set in RO.

— When Z flag = 1. Indicates that there is no command on the data table that corresponds to
the one set in RO.

Figure 4.13 is an example of execution of the software CCASE. When the input arguments are set
as shown, the datatable is checked and the start address of the processing routineis set in ERL.

68 RENESAS

ER1
|Don'tcare|F:O|O:O|0:0|

0,04, 2]

Input arguments

Start address
of data table ~ F00000 — (00
0A command
41
Don't care
Data group 1
10 Start address of
00 processing routine
L 00
(00
0B command
42
Don't care
Data group 2
20 Start address of
00 processing routine
L 00
(00
0C command
43
Don't care
Data group 3
30 Start address of
00 processing routine
L 00
L 00
Division data
00
Z flag ER1

Output arguments Izl |Don'tcare| 2 | 0 | 0 : 0 | 0 : 0 |

Figure4.13 Executing CCASE

452 Cautionsfor Use
Since H'0000 is used as the division data, do not use H'0000 as a command in the data table.

453 Description of Data Memory
No data memory is used by CCASE.

RENESAS

69

454

Examples of Use

After setting the command and the start address of the data table, do a subroutine call to CCASE.

Table4.8 Block Transfer Example (CCASE)
Label Instruction Action
WORK1 .RES.W1 Reserves the data memory area that sets the
command in the user program.
WORK2 .RES.L1 Reserves the data memory area that sets the start
address of the data table in the user program.
MOV. L @WORK2,ER1 Sets the start address of the data table as set in the
user program as an input argument.
MOV. W @WORK1,R0 Sets the command set in the user program as an
input argument.
Subroutine call of CCASE
| | 3sR @ccase | |
BEQ ERROR When there is no command in the data table that
corresponds to the command input, the routine
branches to an error program.
Program that branches to
the processing routine*
ERROR | | Error program | |
70 RENESAS

Table4.8 Block Transfer Example (CCASE) (cont)

Label Instruction Action
DTABLE .ORG H'FO00 Start address of data table
.DATA. H'0041 0A command
w
.DATA. H’F100 Start address of processing routine for OA command
w
.DATA. H'0042 0B command
w
.DATA. H’F200 Start address of processing routine for 0B command
w
.DATA. H’0000 Division data
w

Subroutine call of CCASE

| | 3sR @ccase | |

BEQ ERROR Branches to ERROR when the Z flag is set

) JMP @ER1 Jumps to processing routine
Bran-

ches to

pro-

cessing

routine

!

ERROR | | Error program | |

Note: Example of program that branches to a processing routine: CCASE only sets the start
address of the processing routine in ER. When actually branching to a processing routine,
create a program like that shown below.

455 Principlesof Operation

* ER1isused as apointer to the address storing the command on the data table.
e The command at the address indicated in ER1 of the datatable is set in EO and compared to the
input command.

» When the input command and the data table command match, the start address of the processing
routine located after the command is set, the Z flag is cleared and CCASE ends.

RENESAS 71

» When H'0000 is detected (indicating the end of the data table), the Z flag is set and CCASE
ends.

CCASE

The first command in the
data table is set in EO

® g

End of data
table?

No

Same command?

ER1 is incremented to the Yes
address where the next
command is stored

The next command is
setin ER1 Set the start address of the

processing routine in ER1

| Clearthezflag |

<
«

RTS

Figure4.14 CCASE Flowchart

72 RENESAS

456

Program Listing

RENESAS

73

4.6 Counting the Number of Logical 1sin 8-Bit Data

MCU: H8/300H Series

Label Name: HCNT

Functions Used: ROTL.B Instruction, ADDX.B Instruction

Function: Counts the number of logical 1sin 8-bit data.

Table49 HCNT Arguments

Contents Storage Location Data Length (Bytes)
Input 8-bit data ROL 1
Output Number of logical 1 bits ROH 1
31 16 15 87 0

ERO Ig;‘:g?irb?tfs 8-bit data

ER1 Work

ER2

ER3

ER4

ERS

ER6

ER7(SP)
N 7z | v | ¢ | — :Nochange
— ? t 3 B 1 : Changes

0 :Lockedto O
1 :Lockedtol

Figure4.15 Changesin Internal Registersand Flag Changesfor HCNT

74

RENESAS

Program memory (bytes)

16

Data memory (bytes)

0

Stack (bytes)

0

Number of states

126

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Caution: The number of states given in the programming specifications is the value when the 8-
bit data is H'FF.

Figure4.16 Programming Specifications
4.6.1 Description of Functions
Arguments are as follows:

* ROL: Setsthe 8-bit data.
* ROH: Setsthe number of hits of logical 1sin the 8-bit data.

Figure 4.17 is an exampl e of execution of the software HNCT. When the input arguments are set
as shown, the number of bits of logical 1sare set in ROH.

RENESAS 75

ROL
Inputarguments|0|1|1|1|0|1|1|0|
AN J

Five 1s

|

ROH
T

Output arguments 0 | 5

Figure4.17 Executing HCNT

46.2 Cautionsfor Use

When counting the number of logical 0 bits, first take the 1 complement of ROL and then execute
HCNT.

4.6.3 Description of Data Memory
No data memory is used by HNCT.

46.4 Examplesof Use
After setting the 8-hit data, do a subroutine call to HCNT.

Table4.10 Block Transfer Example (HCNT)

Label Instruction Action

WORK1 .RES.B1 Reserves the data memory area that sets the 8-bit
data in the user program.

WORK2 .RES.B1 Reserves the data memory area that sets the

number of bits of logical 1s in the 8-bit data in the
user program.

MOV. L @WORK1,R0OL Sets the 8-bit data as set in the user program as an
input argument.

Subroutine call to HCNT.

| | 3SR @Hent | |

MOV. B ROH,@WORK?2 Stores the number of bits of logical 1s set in the
output argument in the data memory area of the
user program.

76 RENESAS

465 Principlesof Operation

» Therotateinstruction (ROTL.B) is used and the 8-bit data (ROL) is set 1 bit at atimein the C
bit.

» When thelogica 1 counter (ROH) is added to 0 using the add instruction with carry (ADDX.B),
lisadded to thelogical 1 counter if the C bitis1 and O is added to thelogical 1 counter if the C
bitisO.

» Thetwo steps above are repeated until the rotate counter (R1L) becomes 0, which reveals the
number of logical 1sin the 8-bit data.

RENESAS 77

(HCNT)

The rotate counter
is set to 8 (R1L)

The logical 1 counter
(ROH) is cleared

<
<«

The MSB of the 8-bit data
(ROL) is set to the C bit

The logical 1 counter (ROH)
is added to the C bit

The rotate counter (R1L)
is decremented

Rotate counter = 0?

To return the 8-bit data to its input
state, it is shifted 1 bit to the left

RTS

78

Figure4.18 HCNT Flowchart

RENESAS

4.6.6

Program Listing

RENESAS

79

4.7 Find theFirst 1in 32-Bit Data
M CU: H8/300H Series

Label Name: FIND1
Functions Used: SHLL.L Instruction

Function: Identifies the bits of 32-bit datain order from bit 31 and finds the number of the first bit
thatisal.

Table4.11 FIND1 Arguments

Contents Storage Location Data Length (Bytes)
Input 32-bit data ERO 4
Output Bit number (bit 31-bit 0) R1L 1
31 16 15 87 0
I
ERO 32-bit data
ER1 Bit number
ER2
ER3
ER4
ER5
ER6
ER7(SP)
U H U N 7 \V/ C — :No Change
— =] =1l=10o0 1 0 0 t : Changes

0 :Lockedto O
1 :Lockedto1l

Figure4.19 Changesin Internal Registersand Flag Changesfor FIND1

80 RENESAS

Program memory (bytes)

14

Data memory (bytes)

0

Stack (bytes)

0

Number of states

398

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Caution: The number of states given in the programming specifications is the value when the
32-bit data is H'00000000.

Figure4.20 Programming Specifications

RENESAS

81

4.7.1 Description of Functions

Arguments are as follows:

» ERO: Setsthe 32-bit data.
e RIL: Setsthe number of the first bit found to have a 1 (bit 31 to bit 0).

Figure 4.21 s an example of execution of the software FIND1. When the input arguments are set
as shown, the number of the first bit witha 1 issetin R1L.

Input Bit31 Bit 27 Bit 0
arguments ERO[0o]JoJoo[1]ofoloJo[1]ofofo1fofa]1]a]a[1]o 1]1]ofo[a]1]1 0 1]1]0]
Bit number
Output | 5]
arguments R1L :

Figure4.21 Executing FIND1

4,72 Cautionsfor Use
When the 32-bit datais H'00000000, H'FF is set as the bit number (R1L).

473 Description of Data Memory
No datamemory isused by FIND1.

82 RENESAS

474 Examplesof Use

After setting the 32-bit data, do a subroutine call of FIND1.

Table4.12 Block Transfer Example (FIND1)

Label Instruction Action
WORK1 .RES.L1 Reserves the data memory area that sets the 32-bit
data in the user program.
WORK?2 .RES.B1 Reserves the data memory area that sets the
number of the bit that has the first 1.
MOV. L @WORK1,ERO0 Sets the 32-bit data set in the user program as an
input argument.
| | ISR @FIND1 | | Subroutine call of FIND1
MOV. B ROH,@WORK?2 Stores the number of the first bit set in the output
argument that has a 1 in the data memory area of
the user program.
475 Principlesof Operation

e The SHLL.L instruction stores the bits of 32-bit datain the C bit in order from bit 31 in order to

identify the bits.

» When the C bit becomes 1, the counter for finding the bit number (R1L) is decremented and

FIND1 ends.

RENESAS 83

FIND1

The counter (R1L)
is set to H'20

'\

The MSB of the 32-bit data
(ERO) is set to the C bit by
the SHLL.L instruction

No

Yes

The counter (R1L)
is decremented

Counter (R1L) = 0?

[Yes

€

Counter (R1L)
is decremented

RTS

Figure4.22 FIND1 Flowchart

84 RENESAS

4.7.6

Program Listing

RENESAS

85

4.8

64-Bit Binary Addition

MCU: H8/300H Series

L abel Name: ADD

Functions Used: ADD.L Instruction

Function: Does binary addition in the format: Summand (signed 64 bits) + addend (signed 64
bits) = sum (signed 64 bits).

Table4.13 ADD Arguments

Contents

Storage Location Data Length (Bytes)

Input Bottom 32 bits of summand (signed 64 ER1 4
bits)
Top 32 bits of addend (signed 64 bits) ER2
Bottom 32 bits of addend (signed 64 ER3
bits)
Output Top 32 bits of sum (signed 64 bits) ERO
Bottom 32 bits of sum (signed 64 bits) ER1
Existence of carrying (yes = 0, no = 1) C flag (CCR) 1
86 RENESAS

ERO

ER1

ER2

ER3

ER4

ERS5

ER6

ER7(SP)

31 16 15

87

I I
Top 32 bits of summand, top 32 bits of sum

Bottom 32 bits of summand, bottom 32 bits of sum

Top 32 bits of addend

Bottom 32 bits of addend

o<

: No change
: Changes

: Locked to O
:Locked to 1

Figure4.23 Changesin Internal Registersand Flag Changesfor ADD

RENESAS

87

Program memory (bytes)

18

Data memory (bytes)

0

Stack (bytes)

0

Number of states

26

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

88

Figure4.24 Programming Specifications

RENESAS

48.1 Description of Functions

Arguments are as follows:

» ERO: Setsthe top 32-bits of the summand (signed 64 bits) as an input argument. Sets the top 32
bits of the sum (signed 64 bits) as an output argument.

» ERLI: Setsthe bottom 32-bits of the summand (signed 64 hits) as an input argument. Sets the
bottom 32 bits of the sum (signed 64 bits) as an output argument.

» ER2: Setsthe top 32-bits of the addend (signed 64 bits) as an input argument.
» ER3: Setsthe bottom 32-bits of the addend (signed 64 bits) as an input argument.
» Cflag (CCR): Indicates whether a carry has occurred after execution of ADD.
— When C flag = 0: Indicates a carry has occurred.
— When C flag = 1. Indicates no carry has occurred.

Figure 4.25 is an example of execution of the software ADD. When the input arguments are set as
shown, the results of addition are set in ERO and ER1.

48.2 Cautionsfor Use

Since the results of addition are set in the register used to set the summand, the summand is
destroyed when ADD is executed. When you will still require the summand after executing ADD,
save the summand el sewhere in memory beforehand.

483 Description of Data Memory
No data memory isused by ADD.

Bit 63 ERO ER1 Bit 0
|A,3]6,7]5,c|B,B[1,F[3 Clo,0[A, B]

Input
arguments Bit 63 ER2 ER3 Bit 0
[2,0/p Efc 5][9,8[A,0]6 2]1 5[0 4]

)

Output ~ Cbit Bit63 _ERO__ . . _ER1 _Bit0
arguments lc ala'6]2 2|5 3|B F|lo E|1 5|A F|

Figure4.25 Executing ADD

RENESAS 89

484 Examplesof Use

After setting the summand and addend, does a subroutine call to ADD.

Table4.14 Block Transfer Example (ADD)

Label Instruction Action

WORK1 .RES.L1 Reserves the data memory area that sets the
top 32-bits of the summand (signed 64 bits) in
the user program.

WORK2 .RES.L1 Reserves the data memory area that sets the
bottom 32-bits of the summand (signed 64 bits)
in the user program.

WORK3 .RES.L1 Reserves the data memory area that sets the
top 32-bits of the addend (signed 64 bits) in the
user program.

WORK 4 .RES.L1 Reserves the data memory area that sets the
bottom 32-bits of the addend (signed 64 bits) in
the user program.

MOV. L @WORK1,ERO Set as the input argument the top 32-bits of the
summand set in the user program.
MOV. L @WORK2,ER1 Set as the input argument the bottom 32-bits of
the summand set in the user program.
MOV. L @WORK3,ER2 Set as the input argument the top 32-bits of the
addend set in the user program.
MOV. L @WORK4,ER3 Set as the input argument the bottom 32-bits of
the addend set in the user program.
Subroutine call to ADD.
| | ISR @ADpD |]
BCS OVER When carryi.ng occurs, the routipe branches to
. the processing routine for carrying.
OVER |Processing routine for carrying over

90 RENESAS

485 Principlesof Operation

» Bits0-31 are added using the ADD.L instruction.

» Bits 3263 are added in 1-byte units from the bottom using the addition instruction with
carrying (ADDX.B), which can handle carrying. Since bits 48-55 are on the extended register,
the addition instruction with carry istransferred into a usable general register and addition is

then performed.

ADD

Bits 0—31 added using
the ADD.L instruction

Bits 32—-39 added using
the ADDX.B instruction

Bits 40—-47 added using
the ADDX.B instruction

Top 16 bits of the summand
transferred to general register (R2)

Top 16 bits of the addend
transferred to general register (R3)

Bits 48-55 added using
the ADDX.B instruction

Bits 56—63 added using
the ADDX.B instruction

RTS

Figure4.26 ADD Flowchart

RENESAS

91

486 Program Listing

92 RENESAS

4.9 64-Bit Binary Subtraction
M CU: H8/300H Series

L abel Name: SUB
Functions Used: SUB.L Instruction

Function: Does binary subtraction in the format: minuend (signed 64 bits) — subtrahend (signed
64 bits) = difference (signed 64 bits).

Table4.15 SUB Arguments

Contents Storage Location Data Length (Bytes)
Input Top 32 bits of minuend (signed 64 bits) ERO 4

Bottom 32 bits of minuend (signed 64 ER1 4

bits)

Top 32 bhits of subtrahend (signed 64 ER2 4

bits)

Bottom 32 bits of subtrahend (signed 64 ER3 4

bits)

Output Top 32 bits of difference (signed 64 bits) ERO

Bottom 32 bits of difference (signed 64 ER1
bits)

Existence of carrying C flag (CCR) 1

RENESAS 03

ERO

ER1

ER2

ER3

ER4

ERS5

ER6

ER7(SP)

31 16 15 87 0

I I
Top 32 bits of minuend,ltop 32 bits of difference

Bottom 32 bit's of minuend',
bottom 32 bitls of differenC(Ia

I
Top 32 bits of subtrahend

Bottom 32 bits of subtrahend

U H U N Z Y, Cc | — : Nochange
0 1 t : Changes

0 :Lockedto O
1 :Lockedto 1

94

Figure4.27 Changesin Internal Registersand Flag Changesfor SUB

RENESAS

Program memory (bytes)

18

Data memory (bytes)

0

Stack (bytes)

0

Number of states

26

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Figure4.28 Programming Specifications

RENESAS

95

49.1 Description of Functions

Arguments are as follows:

ERO: Sets the top 32-bits of minuend (signed 64 hits) as an input argument. Sets the top 32 bits
of the difference (signed 64 bits) as an output argument.

ERL1: Setsthe bottom 32-bits of the minuend (signed 64 bhits) as an input argument. Sets the
bottom 32 bits of the difference (signed 64 bits) as an output argument.

ER2: Setsthe top 32-bits of the subtrahend (signed 64 bits) as an input argument.
ER3: Sets the bottom 32-bits of the subtrahend (signed 64 bits) as an input argument.
C flag (CCR): Indicates whether a borrow has occurred after execution of SUB.

— When Cflag = 1: Indicates a borrow has occurred.

— When C flag = 0: Indicates no borrow has occurred.

Figure 4.29 is an example of execution of the software SUB. When the input arguments are set
as shown, the results of subtraction are set in ERO and ER1.

Bit 63 ERO ER1 Bit 0
[F.elp.cle,alo 8|F F[F FIF FIF F|
Input
arguments Bit 63 ER2 ER3 Bit O
[E.ofc,B[a o8 7|F F|F F|F FIF F|
)

C bit Bit 63 ERO ER1 Bit O

Output T T T T T T T T
arguments [t,1]t 1)1 1)1 20 0fo 0fo o]0 0]

Figure4.29 Executing SUB

49.2 Cautionsfor Use

Since the results of subtraction are set in the register used to set the minuend, the minuend is
destroyed after SUB is executed. When you will still require the minuend after executing SUB,
save the minuend el sewhere in memory beforehand.

49.3 Description of Data Memory

No data memory is used by SUB.

96

RENESAS

494

Examples of Use

After setting the subtrahend and minuend, does a subroutine call to SUB.

Table4.16 Block Transfer Example (SUB)

Label Instruction Action

WORK1 .RES.L1 Reserves the data memory area that sets the top
32-bits of the minuend (signed 64 bits) in the user
program.

WORK2 .RES.L1 Reserves the data memory area that sets the
bottom 32-bits of the minuend (signed 64 bits) in
the user program.

WORK3 .RES.L1 Reserves the data memory area that sets the top
32-bits of the subtrahend (signed 64 bits) in the
user program.

WORK4 RES.L1 Reserves the data memory area that sets the
bottom 32-bits of the subtrahend (signed 64 bits)
in the user program.

MOV. L @WORK1,ERO Set as the input argument the top 32-bits of the
minuend set in the user program.

MOV. L @WORK2,ER1 Set as the input argument the bottom 32-bits of the
minuend set in the user program.

MOV. L @WORK3,ER2 Set as the input argument the top 32-bits of the
subtrahend set in the user program.

MOV. L @WORK4,ER3 Set as the input argument the bottom 32-bits of the
subtrahend set in the user program.
Subroutine call to SUB.

|| IR @suB | |
BCS OVER When borrowing occurs, the routine branches to
: the processing routine for borrowing.
OVER | Processing routine for borrowing

RENESAS

97

495

Principles of operation

 Bits0-31 are subtracted using the SUB.L instruction.
» Bits 3263 are subtracted in 1-byte units from the bottom using the subtraction instruction with

carrying (SUBX.B), which can handle borrowing. Since bits 48-55 are in the extended register
the subtraction instruction with borrow is transferred into the usable general register and

subtraction is then performed.

SUB

Bits 0—31 subtracted using
the SUB.L instruction

Bits 32—39 subtracted using
the SUBX.B instruction

Bits 40-47 subtracted using
the SUBX.B instruction

Top 16 bits of the minuend
transferred to the general register (R2)

Top 16 bits of the subtrahend
transferred to the general register (R3)

Bits 48-55 subtracted using
the SUBX.B instruction

Bits 56—63 subtracted using
the SUBX.B instruction

RTS

98

Figure4.30 SUB Flowchart

RENESAS

4.9.6

Program Listing

RENESAS

99

4.10 Unsigned 32-Bit Binary Multiplication
MCU: H8/300H Series

L abel Name: MUL
Functions Used: MULXU.W Instruction

Function: Does multiplication in the format: Multiplicand (unsigned 32 bits) x multiplier
(unsigned 32 bits) = product (unsigned 64 bits).

Table4.17 MUL Arguments

Contents Storage Location Data Length (Bytes)
Input Multiplicand (unsigned 32 bits) ERO 4

Multiplier (unsigned 32 bits) ER1 4
Output Top 32 hits of product (unsigned 64 bits) ERO 4

Bottom 32 bits of product (unsigned 64 ER1 4

bits)

100 RENESAS

ERO

ER1

ER2

ER3

ER4

ERS5

ER6

ER7(SP)

31 16 15 87 0
Multiplicand
Top 32 bits of product
Multfiplier
Bottom 32 bits of product
I

Work

Work
HIuUlINTZTV [cC : No change

— v — 3 0 0 : Changes

:Locked to O
:Lockedto 1

Figure4.31 Changesin Internal Registersand Flag Changesfor MUL

RENESAS

101

Program memory (bytes)

34

Data memory (bytes)

0

Stack (bytes)

0

Number of states

126

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Caution: The number of states in the programming specifications is the value when calculating
as H'FFFFFFFF x H'FFFFFFFF.

Figure4.32 Programming Specifications

102 RENESAS

4.10.1 Description of functions

Arguments are as follows:

* ERO: Setsthe multiplicand (unsigned 32 bits) as an input argument. Sets the top 32 bits of the
product (unsigned 64 bits) as an output argument.
» ERLI1: Setsthe multiplier (unsigned 32 bits) as an input argument. Sets the bottom 32 bits of the
product (unsigned 64 bits) as an output argument.
» Figure 4.33 is an example of execution of the software MUL. When the input arguments are set
as shown, the product is set in ERO and ERL.

Input
arguments

Output
arguments

ERO

| F

F|F

ER1

| F

F|F

%)

ERO

ER1

[F.FlF FIF FlF EJO,

ofo,

4.10.2 Cautionsfor Use

Figure4.33 Executing MUL

Since the product is set in the register used to set the multiplicand and multiplier, the multiplicand
and multiplier are destroyed after MUL is executed. When you will still require the multiplicand

and multiplier after executing MUL, save them elsewhere in memory beforehand.

4.10.3 Description of Data Memory

No data memory is used by MUL.

RENESAS

103

4104 Examplesof Use
After setting the multiplicand and multiplier, do a subroutine call to MUL.

Table4.18 Block Transfer Example (MUL)

Label Instruction Action
WORK1 .RES.L1 Reserves the data memory area that sets the
multiplicand (unsigned 32 bits) in the user program.
WORK2 .RES.L1 Reserves the data memory area that sets the
multiplier (unsigned 32 bits) in the user program.
MOV. L @WORK1,ERO0 Sets as the input argument the 32-bit binary
multiplicand set in the user program.
MOV. L @WORK2,ER1 Sets as the input argument the 32-bit binary

multiplier set in the user program.

| | JSR @MUL | | Subroutine call to MUL.

104 RENESAS

4.10.5 Principlesof Operation

» The partial products of two 16-bit binary numbers are found using the multiplication instruction
(MULXU.W) and the results of multiplication are then integrated to perform 32-bit binary

multiplication, as shown in figure 4.34.

EO RO
Top 16 bits Bottom 16 bits
of multiplicand of multiplicand
El R1
Top 16 bits Bottom 16 bits
of multiplier of multiplier

ER1

Bottom 16 bits of multiplicand x
bottom 16 bits of multiplier

ER3 bottom 16

Top 16 bits of multiplicand x

bits of multiplier

ER2

Bottom 16 bits of multiplicand x
top 16 bits of multiplier

Top 16 bits of multiplicand x
top 16 bits of multiplier

...Partial
product (4)

...Partial
product (2)

...Partial
product (3)

...Partial
product (1)

...Results of
multiplication

Figure4.34 Multiplication

RENESAS

105

MUL

Bottom 16 bits of multiplicand
x bottom 16 bits of multiplier:
Partial product 1
I
Top 16 bits of multiplicand
x bottom 16 bits of multiplier:
Partial product 2
I
Bottom 16 bits of multiplicand
x top 16 bits of multiplier:
Partial product 3
I
Top 16 bits of multiplicand
x top 16 bits of multiplier:

Partial product 4
I

Partial product 2 +
partial product 3

Is there a carry?

No Increment top 16 bits of
results of multiplication (EO)

A

®

106

Figure4.35 MUL Flowchart

RENESAS

©

Top 16 bits of partial product 1
+ bottom 16 bits of (partial
product 2 + partial product 3)

Is there a carry?

No Increment top 32 bits of
results of multiplication

<
<«

Bottom 16 bits of partial
product 4 + top 16 bits of (partial
product 2 + partial product 3)

Is there a carry?

No Increment top 16 bits of
results of multiplication

A

RTS

Figure4.35 MUL Flowchart (cont)

RENESAS

107

4.10.6 Program Listing

108 RENESAS

411 Unsigned 32-Bit Binary Division
MCU: H8/300H Series

Label Name: DIV
FunctionsUsed: SHLL.L Instruction, ROTXL.L Instruction

Function: Does division in the format: Dividend (unsigned 32 bits) / divisor (unsigned 32 bits) =
quotient (unsigned 32 hits) ... remainder (unsigned 32 hits). Dividing by 0 setsthe Z flag.

Table4.19 DIV Arguments

Contents Storage Location Data Length (Bytes)
Input Dividend (unsigned 32 bits) ERO 4

Divisor (unsigned 32 bits) ER1 4
Output Quotient (unsigned 32 hits) ERO 4

Remainder (unsigned 32 bits) ER2 4

Presence of error (division by 0) Z flag (CCR) 1

(Yes, Z2=0;No, Zz=1)

RENESAS 109

ERO

ER1

ER2

ER3

ER4

ERS5

ER6

ER7(SP)

31 16 15 87 0
Dividend
Quqtient
I
Divisor
Remainder
Work
UINTZ c | — : Nochange
— — 1 0 P ¢ : Changes
0 :Lockedto O
1 :Lockedto1l

110

Figure4.36 Changesin Internal Registersand Flag Changesfor DIV

RENESAS

Program memory (bytes)

30

Data memory (bytes)

0

Stack (bytes)

0

Number of states

762

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Caution: The number of states in the programming specifications is the value when calculating
as HFFFFFFFF [H'1.

Figure4.37 Programming Specifications

RENESAS 111

4111 Description of Functions

Arguments are as follows:

» ERO: Setsthe dividend (unsigned 32 bits) as an input argument. Sets the quotient (unsigned 32
bits) as an output argument.

« ERLI1: Setsthe divisor (unsigned 32 bits) as an input argument.

» ER2: Setsthe remainder (unsigned 32 hits) as an output argument.

» Z Flag (CCR): Indicates whether there are any errors (division by 0) after execution of DIV.
— When Z flag = 1: Indicates that there is an error in the division executed.
— When Z flag = 0: Indicates that there is no error in the division executed.

Figure 4.38 is an example of execution of the software DIV. When the input arguments are set as
shown, the quotient is set in ERO and the remainder is set in ER1.

With the software DIV, the first thing done is to determine if the divisor is 0 or nonzero; if itisO,
DIV ends.

Output arguments

‘z flag
IEI ERO ER2

[F.F|F F[F F|F Fl+[0,0]0 0]0 00, 0]

|EZD|CZB|AZ9|817|>IFZFIFZFIFZFIFZFI
ERL ERO

AN J

Input arguments

Figure4.38 Executing DIV

4.11.2 Cautionsfor Use

Since the quotient is set in ERO, the dividend is destroyed after DIV is executed. When you will
still require the dividend after executing DIV, save it elsewhere in memory beforehand.

4.11.3 Description of Data Memory
No datamemory isused by DIV.

112 RENESAS

4114 Examplesof Use

After setting the dividend and divisor, do a subroutine call to DIV.

Table4.20 Block Transfer Example (DIV)

Label Instruction

Action

WORK1 .RES.L1

Reserves the data memory area that sets the
dividend (unsigned 32 bits) in the user program.

WORK2 .RES.L1

Reserves the data memory area that sets the divisor
(unsigned 32 bits) in the user program.

MOV. L @WORK1,ERO0

Sets as the input argument the dividend (unsigned
32 hits) set in the user program.

MOV. L @WORK2,ER1

Sets as the input argument the divisor (unsigned 32
bits) set in the user program.

| | 3SR @DV

| | Subroutine call to DIV.

RENESAS 113

4115 Principlesof Operation

 Binary division finds the quotient and remainder by repeatedly subtracting. In figure 4.39,
H'0D isdivided by H'03 as an example of the division operation.

®®

100 « Quotient

Divisor — 11) 1101 - Dividend

0 11 @)
00 @
O 11 @
01 ®
+) 11
001
o 1
-10
+) 11

001 ~ Remainder

Figure4.39 Division

 Detailed description of the program:

i. Setsthe number of shiftsin the counter R3L (which indicates the number of shifts).

ii. Thedividend isshifted 1 bit to the left and the MSB loaded in the C bit is set in the LSB of
ER2 (which stores the remainder).

iii. Thedivisor issubtracted from ER2. When the result of subtraction is positive, the LSB of
EROisset (1to 2to 3in figure 4.39). When the results of subtraction is negative, the LSB
of ERO is cleared and the divisor is added to the results of subtraction, returning it to the
state prior to subtraction. ((4) to (5) to (6) in figure 4.39).

iv. The shift counter set in step (i) is decremented.

v. Steps (ii) through (iv) are repeated until the shift counter reaches —1.

114 RENESAS

Yes

Divisor = 0?

Set the number of shifts (32)
in the shift counter (R3L)
[
Clear the work area

‘I

|
Set the MSB of the dividend to
the LSB of the work area
[

Subtract the divisor from
the work area

Are the results
of subtraction = 0?

No

Add the divisor to the

| Set the LSB of the dividend | results of subtraction

<
<

| Decrement the shift counter |

No

Is the shift counter = 0?

| Clear the Z flag |

<
<

RTS

Figure4.40 DIV Flowchart

RENESAS

115

4.11.6 Program Listing

116 RENESAS

412 Signed 16-Bit Binary Multiplication
MCU: H8/300H Series

Label Name: MULXS
Functions Used: MULXS.W Instruction

Function: Does multiplication in the format: Multiplicand (signed 16 bits) x multiplier (signed 16
bits) = product (signed 32 hits).

Table4.21 MULXSArguments

Contents Storage Location Data Length (Bytes)
Input Multiplicand (signed 16 bits) RO 2
Multiplier (signed 16 bits) EO 2
Output Product (signed 32 bits) ERO 4
31 16 15 87 0
ERO Multiplier Multiplicand
Product
ER1
ER2
ER3
ER4
ER5
ER6
ER7(SP)
U H U N 7 Vv C —:No Change
I I 1 T | — | — ¢ : Changes

0 :Lockedto O
1 :Lockedto 1

Figure4.41 Changesin Internal Registersand Flag Changesfor MUL XS

RENESAS 117

Program memory (bytes)

4

Data memory (bytes)

0

Stack (bytes)

0

Number of states

24

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Figure4.42 Programming Specifications

118 RENESAS

4121 Description of Functions
Arguments are as follows:
* EO: Setsthe multiplicand (signed 16 bits) as an input argument.

* RO: Setsthe multiplier (signed 16 bits) as an input argument.
» ERO: Setsthe product (signed 32 bits) as an output argument.

Figure 4.43 is an example of execution of the software MULXS.B When the input arguments are
set as shown, the results of multiplication are set in ERO.

EO
Input
arguments RO
)
Output T T ERO T T
arguments |0.0|0.0|0.0|0.1|

Figure4.43 Executing MULXS

4.12.2 Cautionsfor Use

Since the results of multiplication are set in the register used to set the multiplicand and multiplier,
the multiplicand and multiplier are destroyed after MULXS is executed. When you will still
require the multiplicand and multiplier after executing MUL XS, save them el sewhere in memory
beforehand.

4.12.3 Description of Data Memory
No data memory is used by MULXS.

RENESAS 119

4124 Examplesof Use
After setting the multiplicand and multiplier, do a subroutine call to MULXS.

Table4.22 Block Transfer Example (MULXS)

Label Instruction Action
WORK1 RES.W1 Reserves the data memory area that sets the
multiplicand (signed 16 bits) in the user program.
WORK 2 RES.W1 Reserves the data memory area that sets the
multiplier (signed 16 bits) in the user program.
MOV. L @WORK1,R0 Sets as the input argument the 16-bit binary
multiplicand set in the user program.
MOV. L @WORK2,E0 Sets as the input argument the 16-bit binary

multiplier set in the user program.

| | JSR @MULXS | | Subroutine call to MULXS.

4125 Principlesof Operation
Use the signed 16-bit multiplication instruction MULXS.W.

MULXS

Multiplication by the signed 16-bit
multiplication instruction MULXS.W

RTS

Figure4.44 MULXS Flowchart

120 RENESAS

4126 Program Listing

RENESAS 121

413 Signed 32-Bit Binary Multiplication
MCU: H8/300H Series

Label Name: MULS
Functions Used: MULXU.W Instruction

Function: Does binary multiplication in the format: Multiplicand (signed 32 bits) x multiplier
(signed 32 bits) = product (signed 64 bits).

Table4.23 MULS Arguments

Contents Storage Location Data Length (Bytes)
Input Multiplicand (signed 32 bits) ERO 4

Multiplier (signed 32 bits) ER1 4
Output Top 32 bits of product (signed 64 bits) ER3 4

Bottom 32 bits of product (signed 64 ERO 4

bits)

122 RENESAS

ERO

ER1

ER2

ER3

ER4

ERS5

ER6

ER7(SP)

31 16 15 87 0
T
Multiplicand
Bottom 32 bits of product
Mult'iplier
Work
Top 32 bits of product
Work
H U N Z | v | C |—:Nochange
— t | — 1 ¢ ! ! ¢ : Changes
0 : Lockedto O
1 :Lockedtol

Figure4.45 Changesin Internal Registersand Flag Changesfor MULS

RENESAS

123

Program memory (bytes)

66

Data memory (bytes)

0

Stack (bytes)

0

Number of states

156

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Caution: The number of states in the programming specifications is the value when calculated
as H'80000000 x H'7FFFFFFF.

Figure4.46 Programming Specifications

124 RENESAS

4.13.1 Description of Functions

Arguments are as follows:

* ERO: Setsthe multiplicand (signed 32 hits) as an input argument. Sets the bottom 32 bits of the
product (signed 64 hits) as an output argument.

» ERLI1: Setsthe multiplier (signed 32 bits) as an input argument. Sets the bottom 32 bits of the
product (signed 64 hits) as an output argument.

» Setsthetop 32 bits of the product (signed 64 hits) as an output argument.

Figure 4.47 is an example of execution of the software MULS. When the input arguments are set
as shown, the product is set in ER3 and ERO.

ERO
L7 FlF FlF F]F F]
Input
arguments ER1
[8,0]0,0]0 0f0 0]
\ x)
Output . .ER3. . . .ERO. .
arguments |C.o|0.O|o.0|O.o|8.0|o.0|0.0|0.0|

Figure4.47 ExecutingMULS

4.13.2 Cautionsfor Use

Since the results of multiplication are set in the register used to set the multiplicand and multiplier,
the multiplicand and multiplier are destroyed after MULS is executed. When you will still require
the multiplicand and multiplier after executing MULS, save them elsewhere in memory
beforehand.

4.13.3 Description of Data Memory
No data memory isused by MULS.

RENESAS 125

4134 Examplesof Use
After setting the multiplicand and multiplier, do a subroutine call to MULS.

Table4.24 Block Transfer Example (MULYS)

Label Instruction Action
WORK1 .RES.L1 Reserves the data memory area that sets the
multiplicand (signed 32 bits) in the user program.
WORK2 .RES.L1 Reserves the data memory area that sets the
multiplier (signed 32 bits) in the user program.
MOV. L @WORK1,ERO0 Sets as the input argument the multiplicand

(signed 32 bits) set in the user program.

MOV. L @WORK2,ER1 Sets as the input argument the multiplier (signed
32 bits) set in the user program.

| | JSR @MULS | | Subroutine call to MULS.

126 RENESAS

4135 Principlesof Operation

* Negative multiplicands and multipliers are converted to positive.
» The product is found by taking the partial products ((1), (2), (3) and (4) in figure 4.48) and then
accumulating the results of multiplication (figure 4.48 (5)). The partial products are found by

using the signed multiplication instruction (MULXU.W) on two 16-bit binary numbers.
» The product is then converted to negative if the sign flag is 1, as shown in table 4.25.

EO RO
Top 16 bits Bottom 16 bits
of multiplicand of multiplicand
El R1
Top 16 bits Bottom 16 bits
X) of multiplier of multiplier
ERO Bottom 16 bits of multiplicand x | ...Partial
bottom 16 bits of multiplier product (1)
ER1 Top 16 bits of multiplicand x ...Partial
bottom 16 bits of multiplier product (2)
ER2 Bottom 16 bits of multiplicand x | ...Partial
top 16 bits of multiplier product (3)
ER3 Top 16 bits of multiplicand x ...Partial
top 16 bits of multiplier product (4)
ER3 ERO
| ...Results of
: multiplication (5)

Table4.25 Sign of Resultsof M

Figure4.48 Multiplication

ultiplication and Sign Flag

Multiplicand Multiplier Product Sign Flag
Positive Positive Positive

Negative Negative
Negative Positive Negative

Negative Positive

RENESAS

127

MULS

| Clear sign flag

Is multiplicand = 0?

Yes

Multiplicand converted
to positive

Sign flag inverted

Is multiplier = 0?

Yes

Multiplier converted
to positive

Sign flag inverted

Pl
<

Bottom 16 bits of mutiplicand
x bottom 16 bits of multiplier:

Partial product 1
I

Top 16 bits of mutiplicand
x bottom 16 bits of multiplier:
Partial product 2

Bottom 16 bits of mutiplicand
x top 16 bits of multiplier:
Partial product 3

Top 16 bits of mutiplicand
x top 16 bits of multiplier:

Partial product 4

®

128

Figure4.49 MULS Flowchart

RENESAS

&

Partial product 2 +
partial product 3

Is C flag = 1?

Increment register E3

No

<
<

Top 16 bits of partial product 1
+ bottom 16 bits of (partial
product 2 + partial product 3)

Is C flag=1?

Increment register ER3

No

<
<«

Bottom 16 bits of partial
product 4 + top 16 bits of (partial
product 2 + partial product 3)

Increment register E3

Figure4.49 MULS Flowchart (cont)

RENESAS

129

Yes

Is the sign flag = 0?

Invert bottom 32 bits of the

results of multiplication
I

Invert top 32 bits of the
results of multiplication

Increment bottom 32 bits of
the results of multiplication

Is Z flag = 1?

Increment register ER3

No

A

RTS

Figure4.49 MULS Flowchart (cont)

130 RENESAS

4.13.6 Program Listing

RENESAS 131

414 Signed 32-Bit Binary Division (16-Bit Divisor)
MCU: H8/300H Series

Label Name: DIVXS
Functions Used: DIVXS.W Instruction

Function: Does division in the format: Dividend (signed 32 bits) / divisor (signed 16 bits) =
quotient (signed 32 bits) ... remainder (signed 16 bits).

Table4.26 DIVXSArguments

Contents Storage Location Data Length (Bytes)
Input Dividend (signed 32 bits) ER1 4

Divisor (signed 16 bits) RO 2
Output Quotient (signed 32 bits) ER2 4

Remainder (signed 16 bits) El 2

Presence of error Z flag (CCR) 1

132 RENESAS

31 16 15 87 0
ERO Divisor
ER1 _ Dividend
Remainder
ER2 Quotient
ER3
ER4
ER5
ER6
ER7(SP)
U H u N Z vV C : No change
S N [1 0 0 | — : Changes
: Locked to O
: Locked to 1
Figure4.50 Changesin Internal Registersand Flag Changesfor DIVXS

RENESAS

133

Program memory (bytes)

26

Data memory (bytes)

0

Stack (bytes)

0

Number of states

76

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Caution: The number of states in the programming specifications is the value when calculated
as H'80000000 / H7FFF'.

Figure4.51 Programming Specifications

134 RENESAS

4.14.1 Description of Functions

Arguments are as follows

* RO: Setsthe divisor (signed 16 hits) as an input argument.

ER1: Setsthe dividend (signed 32 bits) as an input argument.

ER2: Setsthe quotient (signed 32 bits) as an output argument.

» E1: Setsthe remainder (signed 16 bits) as an output argument.

Z Flag (CCR): Indicates whether there are any errors (division by 0) after execution of DIV XS.
— When Z flag = 1: Indicates that there is an error in the division.

— When Z flag = 0: Indicates that there is no error in the division.

Figure 4.52 is an exampl e of execution of the software DIV XS. When the input arguments are set
as shown, the quotient is set in ER2 and the remainder is set in ERL.

Output arguments

z flag
ER2 E1l

[F.FlF F[F F]F Fl~[0 0]0 0]

see

|AZ9|817I>IFZFIFZFIFZFIFZFI

RO ER1
N y

Input arguments

Figure4.52 Executing DIVXS

» With the software DIV XS, the first thing done is to determine if the divisor is 0 or nonzero; if it
is0, DIVXSends.

4.14.2 Cautionsfor Use

Since the remainder is set in E1 and the bottom 16 bits of the quotient are set in R1, the dividend
is destroyed after DIVXSis executed. When you will still require the dividend after executing
DIVXS, save it elsewhere in memory beforehand.

4.14.3 Description of Data Memory
No data memory isused by DIV XS.

RENESAS 135

4144 Examplesof Use

After setting the dividend and divisor as input arguments, do a subroutine call to DIV XS.

Table4.27 Block Transfer Example (DIVXYS)

Label Instruction Action
WORK1 .RES.L1 Reserves the data memory area that sets the
dividend (signed 32 bits) in the user program.
WORK2 .RES.W1 Reserves the data memory area that sets the
divisor (signed 16 bits) in the user program.
MOV. L @WORK1,ER1 Sets as the input argument the dividend set in the
user program.
MOV. L @WORK2,R0 Sets as the input argument the divisor set in the
user program.
| | JSR @DIVXS | | Subroutine call to DIVXS.
BEQ ERROR When division by 0 is attempted, the program

branches to the processing routine for errors.

ERROR | Processing routine for errors |

4145 Principlesof Operation

* Firgt, the program searches for zero-division errors. If thereis such an error, the divisor is
transferred to the register in which it isitself stored so that the resulting Z bit can be used to
determine if the divisor is0. If theZ hitis 1 (divisor = 0), DIVXS ends.

* When 32 hitsis being divided by 16 bits using the signed division instruction (DIVXS.W), a
quotient of 16 bitsisfound. The quotient will thus overflow when division such as
H'FFFFF/H'1 is performed. For that reason, a quotient of 32 bitsis found using the following
procedure.

— Thetop 16 bits of the dividend are sent to R2 and sign-extended into 32 bits (figure 4.53
D).

— Thetop 16 bits of the dividend are divided to obtain the top 16 bits of the quotient (ii)
(figure 4.53 (2)).

— Theremainder of (ii) (remainder 1) is sent to R1 (figure 4.53 (3)).

— Division is performed on the bottom 16 bits of the dividend to find the bottom 16 bits of the
quotient and the remainder (remainder 2) (figure 4.53 (4)).

136 RENESAS

ER1

Dividend
(top 16 bits)

Dividend
(bottom 16 bits)

L e

ER2 v RO ER2
extselr?:ion (tcl?[;VIldGetrJ]i(tjs) / Divisor | = Remainder 1 (tc()gpui)gebri]:s)
- |
v ERL RO ER1
Remainder 1 (bot?;\rlmiqdlegiits) / Divisor | = | Remainder 2 (bot%rlr?tilzngits)

Figure4.53 Overflow Processing

RENESAS

137

DIVXS

Is divisor = 0? Yes
(Z bit=1)

Sign-extend the top 16 bits of
the dividend to 32 bits
I

Divide the top 16 bits of the
dividend that was extended to
32 bits (ER2) by the divisor (RO)
I
Divide the bottom 16 bits (ER1)
of the dividend, whose top 16
bits are the remainder (E2)
from the division of the top 16
bits of the dividend(ER2),
by the divisor (RO)

I
Set the top 16 bits of the
quotient (R2) as an output
argument (E2)

I
Set the bottom 16 bits of the
guotient (R1) as an output
argument (R2)

[
| Clear the Z flag |

<
<

RTS

138

Figure4.54 DIVXS Flowchart

RENESAS

4.14.6 Program Listing

RENESAS 139

415 Signed 32-Bit Binary Division (32-Bit Divisor)
MCU: H8/300H Series

L abel Name: DIVS
Functions Used: SHLL.L Instruction, ROTL.L Instruction, NEG.L Instruction

Function: Does division in the format: Dividend (signed 32 bits) / divisor (signed 32 bits) =
quotient (signed 32 bits) ... remainder (signed 32 bits).

Table4.28 DIVSArguments

Contents Storage Location Data Length (Bytes)
Input Dividend (signed 32 bits) ERO 4

Divisor (signed 32 bits) ER1 4
Output Quotient (signed 32 bits) ERO 4

Remainder (signed 32 bits) ER2 4

Presence of error Z flag (CCR) 1

140 RENESAS

ERO

ER1

ER2

ER3

ER4

ERS5

ER6

ER7(SP)

31 16 15 87 0
Divitliend
Quotient
I
Divisor
Remainder
Work Work
Ul NTZ Cc | — :Nochange
— — 1 0 P ¢ : Changes
0 :Lockedto O
1 :Lockedto1l

Figure4.55 Changesin Internal Registersand Flag Changesfor DIVS

RENESAS

141

Program memory (bytes)

66

Data memory (bytes)

0

Stack (bytes)

0

Number of states

770

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Caution: The number of states in the programming specifications is the value when calculated
as H'80000000 / H7FFFFFFF.

Figure4.56 Programming Specifications

142 RENESAS

4.15.1 Description of Functions

Arguments are as follows:

» ERO: Setsthe dividend (unsigned 32 bits) as an input argument. Sets the quotient (unsigned 32
bits) as an output argument.

» ERLI: Setsthedivisor (unsigned 32 bits) as an input argument.

» ER2: Setsthe remainder (unsigned 32 bits) as an output argument.

» Z Flag (CCR): Indicates whether there are any errors (division by 0) after execution of DIVS.
— When Z flag = 1: Indicates that thereis an error in the division.
— When Z flag = 0: Indicates that there is no error in the division.

» Figure 4.57 is an example of execution of the software DIV S. When the input arguments are set
as shown, the quotient is set in ERO and the remainder is set in ER2.

» When the divisor is 0, DIVS endsimmediately.

Output arguments

z flag
@ ERO

[F.FIF F[F FIF F

ER2
0,0fo,0]0,0f0 0]

vee

|010|010|010|011I>IFZFIFZFIFZFIFZFI

ER1 ERO
N y

Input arguments

Figure4.57 ExecutingDIVS

4.15.2 Cautionsfor Use

Since the quotient is set in ERO, the dividend is destroyed after DIV Sis executed. When you will
still require the dividend after executing DIVS, save it elsewhere in memory beforehand.

4.15.3 Description of Data Memory
No data memory is used by DIVS.

RENESAS 143

4154 Examplesof Use
After setting the dividend and divisor, do a subroutine call to DIVS.

Table4.29 Block Transfer Example (DIVYS)

Label Instruction Action
WORK1 .RES.L1 Reserves the data memory area that sets the
dividend (signed 32 bits) in the user program.
WORK2 .RES.L1 Reserves the data memory area that sets the divisor
(signed 32 bits) in the user program.
MOV. L @WORK1,ERO0 Sets as the input argument the dividend (signed 32
bits) set in the user program.
MOV. L @WORK2,ER1 Sets as the input argument the divisor (signed 32

bits) set in the user program.

| | JSR @DIVS | | Subroutine call to DIVS.

144 RENESAS

4155 Principlesof Operation

* Negative dividends and divisors are converted to positive.
« Division finds the quotient and remainder by repeatedly subtracting. In figure 4.58, H'OD is
divided by H'03 as an example of the division operation.

i. Setsthe number of shiftsin the counter R3L (which indicates the number of shifts).
ii. Thedividend isshifted 1 bit to the |eft and the MSB loaded in the C bit is set in the LSB of

ER2 (which stores the remainde).

iii. Thedivisor is subtracted from ER2. When the result of subtraction is positive, the LSB of
EROisset. ((1) to (2) to (3) infigure 4.58). When the results of subtraction is negative, the
LSB of ERO is cleared and the divisor is added to the results of subtraction, returning it to
the state prior to subtraction. ((4) to (5) to (6) in figure 4.58).

iv. The shift counter set in step (i) is decremented.

v. Steps(ii) through (iv) are repeated until the shift counter reaches -1.

» The quotient and/or remainder is then converted to negative if the sign flagis 1, as shown in

table 4.30.

®®

100 ~ Quotient

Divisor - 11) 1101 - Dividend

o) 11 e @
00 @)
O 11 e @
01 ®
+) 11
001
-) 11
-10
+) 11
001 ~ Remainder

Figure4.58 Division Example

Table4.30 Sign of Results of Division and the Sign Flag

Dividend Divisor Quotient Remainder Quotient Sign Flag Remainder Sign Flag
Positive Positive Positive Positive 0 0

Negative Negative Positive 1 0
Negative Positive Negative Negative 1 1

Negative Positive Positive 0 0

RENESAS

145

4.15.6 Program Listing

146 RENESAS

416 8-Digit Decimal Addition
M CU: H8/300H Series

Label Name: ADDD
Functions Used: DAA.B Instruction

Function: Does addition in the format: Summand (8-digit 4-bit BCD) x addend (8-digit 4-bit
BCD) = sum (8-digit 4-bit BCD).

Table4.31 ADDD Arguments

Contents Storage Location Data Length (Bytes)
Input Summand (8-digit 4-bit BCD) ERO 4

Summand (8-digit 4-bit BCD) ER1 4
Output Sum (8-digit 4-bit BCD) ERO 4

Presence of carry (Yes, C = 1; C flag 1

No, C =0)

RENESAS 147

ERO

ER1

ER2

ER3

ER4

ERS5

ER6

ER7(SP)

31 16 15 87 0
Summand (8-digit 4-bit BCD
Sum (8-digit 4-bit BCD)
I
Addend (8-digit 4-bit BCD)
HIUI NIz T v [c |—:Nochange
— N 1 0 0 P t : Changes
0 : Lockedto O
1 :Lockedtol

148

Figure4.59 Changesin Internal Registersand Flag Changesfor DIVS

RENESAS

Program memory (bytes)

28

Data memory (bytes)

0

Stack (bytes)

0

Number of states

36

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Figure4.60 Programming Specifications

RENESAS 149

4.16.1 Description of Functions

Arguments are as follows:

» ERO: Setsthe summand (8-digit 4-bit BCD) as an input argument. Sets the sum (8-digit 4-bit
BCD) as an output argument.

« ERLI1: Setsthe addend (8-digit 4-bit BCD) as an input argument.

» Cflag (CCR): Indicates whether there is carrying after ADDD is executed.
— Cflag=1: Indicatesthereisacarry.
— Cflag=0: Indicates thereis no carry.

Figure 4.61 is an example of execution of the software ADDD. When the input arguments are set
as shown, the sumis set in ERO.

e ERO
[1,8[0,0[0,0][0 0]
Input
arguments ER1
[1,2]0,0[0,0]0 0]
+)
~
Outout C flag . .ERO. .
argumens 0] [3.0]0 0[o o]0 0]

Figure4.61 Executing ADDD

4.16.2 Cautionsfor Use

Since the results of addition are set in the register used to set the summand, the summand is
destroyed after ADDD is executed. When you will still require the summand after executing
ADDD, saveit elsewhere in memory beforehand.

4.16.3 Description of Data Memory
No datamemory isused by ADDD

150 RENESAS

4.16.4 Examplesof Use

After setting the summand and addend, do a subroutine call to ADDD.

Table4.32 Block Transfer Example (ADDD)

Label Instruction Action

WORK1 .RES.L1 Reserves the data memory area that sets the
summand (8-digit 4-bit BCD) in the user
program.

WORK2 .RES.L1 Reserves the data memory area that sets the

addend (8-digit 4-bit BCD) in the user program.

MOV. L @WORKZ1,ERO

Sets as the input argument the summand set in
the user program.

MOV. L @WORK2,ER1

Sets as the input argument the addend set in
the user program.

| | ISR @ADDD | |

BCS OVER

OVER |Processing routine for carrying over|

Subroutine call to ADDD.

When the results of addition produce carrying,
the program branches to the processing
routine for carrying.

4.16.5 Principlesof Operation

 Binary addition occursin 2-digit increments from the bottom and the results of addition are
corrected into 2 digits of 4-bit BCD by the DAA.B instruction. This processis repeated four

times.

« Addition of everything after the initial bottom 2 digitsis performed by ADDX.B (addition with

carrying instruction), since carrying occurs.

* Inthe extended register in which the upper four digits of the summand and addend are stored,
the DAA.B and ADDX.B instructions cannot be used, so the upper 4 digits of the summand and
addend are added after transfer to the general registers.

RENESAS 151

ADDD

Binary addition of first
and second digits
I
Decimal correction of
results of addition
I
Binary addition with carry
of the third and fourth digits
I
Decimal correction of
results of addition
[

Transfer the top 4 digits
of the addend (E1) to R1
[

Transfer the lower 4 digits
of results of addition
(RO)to E1
[

Transfer the top 4 digits
of the summand (EO) to RO
[

Binary addition with carry
of the fifth and sixth digits
[

Decimal correction of
results of addition
I
Binary addition with carry
of the seventh and
eighth digits
[

Decimal correction of
results of addition

RTS

Figure4.62 ADDD Flowchart

152 RENESAS

4.16.6 Program Listing

RENESAS 153

4.17 8-Digit Decimal Subtraction
M CU: H8/300H Series

Label Name: SUBD
Functions Used: DAS.B Instruction

Function: Does subtraction in the format: Minuend (8-digit 4-bit BCD) — subtrahend (8-digit 4-bit
BCD) = difference (8-digit 4-bit BCD).

Table4.33 SUBD Arguments

Contents Storage Location Data Length (Bytes)
Input Minuend (8-digit 4-bit BCD) ERO 4

Subtrahend (8-digit 4-bit BCD) ER1 4
Output Difference (8-digit 4-bit BCD) ERO 4

Presence of borrow (Yes, C =1; No, C=0) C flag (CCR) 1

RENESAS 155

ERO

ER1

ER2

ER3

ER4

ER5

ER6

ER7(SP)

31 16 15 87

Minuend (8-digit 4-bit BCD
Difference (8-digit 4-bit BCD

I I
Subtrahend (8-digit 4-bit BCD

“

: No change
: Changes

:Locked to O
:Lockedto 1

156

Figure4.63 Changesin Internal Registersand Flag Changesfor SUBD

RENESAS

Program memory (bytes)

28

Data memory (bytes)

0

Stack (bytes)

0

Number of states

36

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Figure4.64 Programming Specifications

RENESAS 157

4.17.1 Description of Functions

Arguments are as follows:

* ERO: Setsthe minuend (8-digit 4-bit BCD) as an input argument. Sets the difference (8-digit,
4-bit BCD) as an output argument.

¢ ERLI1: Setsthe subtrahend (8-digit 4-bit BCD) as an input argument.

» Cflag (CCR): Indicates whether there is borrowing after SUBD is executed.
— Cflag = 1: Indicates there is a borrow.
— Cflag = 0: Indicates there is no borrow.

Figure 4.65 is an example of execution of the software SUBD. When the input arguments are set
as shown, the differenceis set in ERO.

- ERO
[1,8]0 0o ofo 0]
Input
arguments : |ER1| :
|1 2|0 0]0o o]0 o
\—)
Output C flag . .ERO. .
arguments |o|6|0|o|0|0|0|0|

Figure4.65 Executing SUBD

417.2 Cautionsfor Use

Since the results of subtraction are set in the register used to set the minuend, the minuend is
destroyed after SUBD is executed. When you will still require the minuend after executing
SUBD, saveit elsewhere in memory beforehand.

4.17.3 Description of Data Memory
No data memory is used by SUBD.

158 RENESAS

4174 Examplesof Use
After setting the minuend and subtrahend, do a subroutine call to SUBD.

Table4.34 Block Transfer Example (SUBD)

Label Instruction Action
WORK1 .RES.L1 Reserves the data memory area that sets the
minuend (8-digit 4-bit BCD) in the user program.
WORK2 .RES.L1 Reserves the data memory area that sets the
subtrahend (8-digit 4-bit BCD) in the user
program.
MOV. L @WORK1,ERO Sets as the input argument the minuend set in
the user program.
MOV. L @WORK2,ER1 Sets as the input argument the subtrahend set in

the user program.
Subroutine call to SUBD.

| | 3R @sueD | |

BCS OVER When the results of subtraction produce
: borrowing, the program branches to the
processing routine for borrowing.

OVER | Processing routine for borrowing |

4175 Principlesof Operation

 Binary subtraction occurs in 2-digit increments from the bottom and the results of subtraction
are corrected into 2 digits of 4-bit BCD by the DAS.B instruction. This processis repeated four
times.

» Subtraction of everything after the initial bottom 2 digitsis performed by SUBX.B (subtraction
with borrowing instruction), since borrowing occurs.

* Inthe extended register in which the upper four digits of the minuend and subtrahend are stored,
the DAS.B and SUBX.B instructions cannot be used, so the upper 4 digits of the minuend and
subtrahend are subtracted after transfer to the general registers.

RENESAS 159

SUBD

Binary subtraction of first
and second digits
I
Decimal correction of
results of subtraction
I
Binary subtraction with borrow
of the third and fourth digits
I
Decimal correction of
results of subtraction
[

Transfer the top 4 digits
of the subtrahend (E1) to R1
[

Transfer the lower 4 digits
of results of subtraction
(RO)to E1
[

Transfer the top 4 digits
of the minuend (EQ) to RO
[

Binary subtraction with borrow
of the fifth and sixth digits
[

Decimal correction of
results of subtraction
I
Binary subtraction with
borrow of the seventh and
eighth digits
[

Decimal correction of
results of subtraction

RTS

160

Figure4.66 SUBD Flowchart

RENESAS

4.17.6 Program Listing

RENESAS 161

418 Sum of Products
M CU: H8/300H Series

L abel Name: SEKIWA
Functions Used: MULXU.W Instruction

Function: Does the following sum of products on unsigned 16-bit dataan, bn(n=1, 2, ..., n)
from datatablesaand b. The maximum number of datanis 255.

n
Zanbn = albl + a2b2 + ... +abn

n=1

Table4.35 SEKIWA Arguments

Contents Storage Location Data Length (Bytes)
Input Start address of data table a ERO 4

Start address of data table b ER1 4

Number of data n R3H 1
Output Results of sum of products (top R3L 1

8 bits)

Results of sum of products ER2 4

(bottom 32 bits)

162 RENESAS

ERO

ER1

ER2

ER3

ER4

ERS5

ER6

ER7(SP)

31

16

15 87

Start address

I I
of data table a

Start address

of data table b

Results of sum of pro

ducts (bottom 32 bits)

Results of sum

Number of of products
data n (top 8 bits)
Work
HIUI[INTzT v [c |—:Nochange
— N 3 1 0 P ¢ : Changes
0 : Locked to 0
1 :Lockedto1l

Figure4.67 Changesin Internal Registersand Flag Changesfor SUBD

RENESAS

163

Program memory (bytes)

20

Data memory (bytes)

0

Stack (bytes)

0

Number of states

11234

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Caution: The number of states in the programming specifications is the value when the number
of data n is H'FF.

Figure4.68 Programming Specifications

164 RENESAS

4.18.1 Description of Functions

Arguments are as follows:

» ERO: Setsthe start address of datatable a (multiplicands) as an input argument.
» ER1: Setsthe start address of datatable b (multipliers) as an input argument.
* R3H: Sets the number as an input argument.

» R3L: Setsthetop 8 bits of the result of the sum of products operation as an output argument.

» ER2: Setsthe bottom 32 hits of the result of the sum of products operation as an output

argument.

Figure 4.69 is an example of execution of the software. When the start address of data table a, start

address of data table b, and number are set as shown, the top 8 bits of the result of the sum of

products operation are set in R3L and bottom 32 bits of the result of the sum of products operation

aresetin ER2.
Data table a

800000 FF
= }Dataal ~ . ERO . :
ég }Dataaz |D0nltcare| 8 I 0 | 0 | 0 | 0 . 0 |
C6 Input —ERL :
AA Data a3 argurments |Don'tcare| F . 0 | 0 . 0 | 0 . 0 |

R3H
.
Data table b

FO0000 FF
FE } Data bl
CD
FE } Data b2
L } Data b3
70 Output arguments

s N
3 R3L ER2
Zanbn=albl+azh2+a3b3= |0 1[8 5|7 D[C 8|6 1]
n = 1 1 1 1 1

4.18.2 Cautionsfor Use

Figure4.69 Executing SEKIWA

Since ROH is 1 byte, set datain therange H'01 < R3H < H'FF.

RENESAS

165

4.18.3 Description of Data Memory
No datamemory is used by SEKIWA.

4184 Examplesof Use

After setting the start address of datatable a, start address of datatable b and number, do a
subroutine call to SEKIWA.

Table4.36 Block Transfer Example (SEKIWA)

Label Instruction Action
WORK1 .RES.L1 Reserves the data memory area that sets the start
address of data table a in the user program.
WORK2 .RES.L1 Reserves the data memory area that sets the start
address of data table b in the user program.
WORK 3 .RES.B1 Reserves the data memory area that sets the
number in the user program.
MOV. L @WORKZ1,ERO Sets as the input argument the start address of data
table a set in the user program.
MOV. L @WORK2,ER1 Sets as the input argument the start address of data
table b set in the user program.
MOV. B @WORK3,R3H Sets as the input argument the number set in the

user program

Subroutine call to SEKIWA.

| | 3SR @sekwa | |

4185 Principlesof Operation

1. EROand ER1 are used as pointers to the addresses of the multiplicand (data table a) and
multiplier (datatable b) data. After the multiplicands and multipliers are set in E4 and R4
respectively, the program increments to the next data address by post-increment register
indirect.

2. E4and R4 are de-signed and multiplied.

3. Theresults of multiplication stored in ER4 are added to ER2, where the bottom 32 bits of the
results of the sum of products are stored.

4. Because of carrying, addition of R3L, where the top 8 bits of the result of the sum of products
is stored, uses addition with carrying.

5. R3H isdecremented and the processes of steps 1 through 4 repeat until R3H = —1.

166 RENESAS

(SEKIWA)

»
>

Data a, (@ERO) of data table a
is set in the multiplier register (E4)

Increment to the address of the
next data a, + of data table a

Data b, (@ER1) of data table b
is set in the multiplier register (R4)

Increment to the address of the
next data by, , ; of data table b

Multiply

Add the results of multiplication
(ER4) to the lower 32 bits of the
result of the sum of products (ER2)

Add the C bit to the top 8 bits
of the results of the sum of
products (R3L)

Decrement the item number (R3H)

No

Is the item
number (R3H) = -1?

Figure4.70 SEKIWA Flowchart

RENESAS

167

4.18.6 Program Listing

168 RENESAS

419 Sorting

MCU: H8/300H Series

Label Name: SORT

Functions Used: Post-Increment Register Indirect, Pre-Decrement Register Indirect

Function: Sorts data (unsigned 16 bits) of the data table from largest to smallest. The maximum
number of datais 65535.

Table4.37 SORT Arguments

Contents Storage Location Data Length (Bytes)
Input Number of sort data RO 2
Start address of data table ER2 4
Output — — —
31 16 15 87 0
I
ERO Work Number of sort data
ER1 Work Work
ER2 Start address of data table
ER3 Work
ER4
ER5
ER6
ER7(SP)
HIUuIlINTJz T v [c |—:Nochange
— ol — 1o 1 0 0 | ¢t :Changes
0 :Lockedto O
1 :Lockedto1l

Figure4.71 Changesin Internal Registersand Flag Changesfor SORT

RENESAS

169

Program memory (bytes)

32

Data memory (bytes)

0

Stack (bytes)

0

Number of states

404

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Caution: The number of states in the programming specifications is the value when 5 words of data
arranged smallest to largest is sorted into largest to smallest.

Figure4.72 Programming Specifications

170 RENESAS

4.19.1 Description of Functions

Arguments are as follows:

* RO: Sets the number of sort data.
* ERI1: Setsthe start address of the data table.

Figure 4.73 is an exampl e of execution of the SORT software. When the input arguments are set

as shown, the datatable datais sorted largest to smallest.

RO
(0,00, 5]
Input
arguments ER1
|Don'tcare|l:0|0:0|0:0|
P
100000 16FD 100000 FFO1
08A9 A06C
Results A06C _ 8657
FFO1 " 16FD
8657 Sorted largest 08A9
to smallest

Figure4.73 Executing SORT

4.19.2 Description of Data Memory
No data memory is used by SORT.

RENESAS

171

419.3 Examplesof Use

After setting the start address of the data table and the number of sort data, do a subroutine call to
SORT.

Table4.38 Block Transfer Example (SORT)

Label Instruction Action
WORK1 .RES.W1 Reserves the data memory area that sets the
number of sort data in the user program.
WORK2 .RES.L1 Reserves the data memory area that sets the start
address of the data table in the user program.
MOV. W @WORK1,R0 Sets as the input argument the number of sort data
set in the user program.
MOV. L @WORK2,ER1 Sets as the input argument the start address of the

data table set in the user program.

Subroutine call of SORT.

| | 3sR @sorT | |

172 RENESAS

4.19.4 Principlesof Operation

Figure 4.74 shows an example of sorting 3 items of data from largest to smallest.

Input data | 5 10 8 | Number of datan=3
AT T TA
Firsttime [° ><10 8 @
(number of comparison | 19 5 g ®
n-1=2) - -
~-10 5 8 ®
. AT T TA
Second time 10 5 8 @
(number of comparison ><
n-2=1) -10 8 5 ®
Note: 4~~~ " |ndicates a comparison
>< Indicates a switch

Figure4.74 Sorting Example

1. Selectsthelargest of the 3 input data and placesit at the far left ((1), (2) and (3) in figure
4.74).

2. Selectsthe largest data from second to left to the end and placesit at the second place from
left ((4) and (5) in figure 4.74).

4195 Processing Method in Program

1. Thenumber being compared (reference data) is set to E1 and the comparison number is set to
R1; the comparison isthen done. Since the data being compared is supposed to be the larger
of the two numbers, the data are switched whenever the comparison number is larger.

2. ERSisused as apointer to the address of the comparison number. Using the post-increment
register indirect method, the pointer isincremented to the address where the next comparison
number is stored.

3. EOisused asthe counter that counts the number of comparisons done between data to find
the largest item in the group of data. Each time a comparison is completed, EO is
decremented and the process repeats until EO becomes 0.

4. ER2isused asthe pointer that indicates the address of the memory that stores the next largest
value. Using the post-increment register indirect method, ER2 is incremented to the address
that stores the next maximum value.

5. ROisused asthe counter that counts the number of determinations of the maximum value.
Each time a maximum value is determined, RO is decremented and the process repeats until
RO becomes 0.

RENESAS 173

SORT

The number of sorts
(data no. — 1) is set in counter 1

>l

_1

Number of comparisons
is set in counter 2

Number being
compared is set in E1

Comparison number is set in R1

Is number being
compared < comparison
number?

Number being compared and
comparison number are exchanged

Decrement counter 2

|A
<

Counter 2 =07?

Decrement counter 1

No Counter 1 =07?

174

Figure4.75 SORT Flowchart

RENESAS

4.19.6 Program Listing

RENESAS 175

176 RENESAS

Appendix A Instruction Set

TableA.1 Operation Symbols

Symbol Description

PC Program counter

SP Stack pointer (ER7)

CCR Condition code register

z Zero flag of condition code register

C Carry flag of condition code register

Rs, Rd, Rn General registers <data> (8 bits: ROH/ROL-R7H/R7L and 16 bits: RO—R7, EO—
E7)

ERs, ERd General registers <address> (24 bits: ERO-ER7), <data> (32 bits: ERO—ER?7)

d:8, d:16, d:24 Displacement: 8 bits/16 bits/24 bits

#xx:2/3/8/16/32

Immediate data: 2 bits/3 bits/8 bits/16 bits/32 bits

—

Left end operand transferred to right end operand

+

Add operands of both sides

Subtract right end operand from left end operand

Multiply both operands

Divide left end operand by right end operand

AND of both operands

OR of both operands

Oo|go|dg

Exclusive OR of both end operands

Logical complement (complement of 1)

()<>

Description of execution address of operand

TableA.2 Condition Code Symbols

Symbol Description

0 Changes with the results of operation
* Undetermined. Value not guaranteed.
0 Always cleared to O.

No effect on operation.

RENESAS 177

Notes: 1. (The number of execution states is the value when the operation code and operand
data is in the 2-cycle area that is word accessible, such as on-chip RAM.)

2. For a word-size operation: When there is a carry or borrow to or from bit 11, this bit is
set to 1; otherwise, it is cleared to 0.

3. For a longword size operation: When there is a carry or borrow to or from bit 27, this bit
is set to 1; otherwise, it is cleared to 0.

4. When the operation result is 0, the value prior to the operation is held; otherwise, it is
cleared to 0.

5. Setto 1 when the results of correction causes a carry; otherwise, the value prior to the
operation is held.

6. The number of execution states is 4n+8 when the value set for R4L (for EEPMOV.B) or
R4 (for EEPMOV.W) is n.

7. Do not use the E clock synchronous transfer instruction with the H8/3003.

Al Number of Execution States

The number of execution states for the instruction set is the value when the operation code and
operand datais in the 2-cycle areathat isword accessible, such as on-chip RAM. Operation code
resides in external memory, but its attributes (byte/word access, 2/3 state access, wait/not wait,
number of waits) can be set with the bus controller and wait state controller. The attributes of the
on-chip peripheral modules are fixed and come in two types: 3-state word access modules and 3-
state byte access modules. These combinations increase the number of execution states by the
number of states indicated in the following table.

Table A.3 Increasein Number of Execution States by Operand Data

Increase in Number of

Access Conditions Data Type Execution States
External address (2-state byte access) Byte 0

Word 2
External address/on-chip RAM (2-state word access) Byte 0

Word 0
On-chip peripheral module (3-state byte access) Byte 1

Word 4
On-chip peripheral module (3-state word access) Byte 1

Word 1
External address (3-state byte access m cycle wait) Byte 1+m

Word 4+2m
External address (3-state word access m cycle wait) Byte 1+m

Word 1+m

178 RENESAS

TableA.4 Increasein Number of Execution States by Operand Code

Access Conditions Increase in Number of Execution States
Instructio
n Length
(Byte) 2 4 6 8 10
External address (2-state byte access) Nonbranch 2 4 6 8 10
Branch 4 6 - - -
External address/on-chip RAM (2- Nonbranch 0 0 0 0 0
state word access)
Branch 0 0 - - -
External address (3-state byte access Nonbranch 4+2m 8+4m 12+ 16 + 20 +
m cycle wait) 6m 8m 10m
Branch 8+4m 12 + - - -
6m

External address (3-state word access Nonbranch 1+ m 2+2m 3+3m 4+4m 5+5m
m cycle wait)

Branch 2+2m 3+3m - - -

RENESAS 179

TableA.5

Instruction List

Addressing Mode/
Instruction Length

Condition Code

+ c
z £
- 2
£ © o o
W < a hn}
c - é - 1] 8 —
o ¥ 5 oWog 5 S = g
Mnem- Op. $ c w2 is 20 2 s 8
enic Sz. Operation £ 20006006 9 E U H N Z V z0
Data MOV.B #xx:8, B #xx:8 -Rd8 2 — — 1 0 2
transfer Rd
instr. MovBRsRd B Rs8—Rd8 2 — — 1 1 0
MOV.B @ERs -Rd8 2 — -t t 0
@ERs,Rd
MOV.B B @(d:16,ERs) -~Rd8 4 —_ — t 0 6
@(d:16,ERs)Rd
MOV.B B @(d:24,ERs) - 8 — — 1t 1t 0 10
@(d:24,ERs),Rd Rd8
MOV.B B @ERs -Rd8, 2 — — ¢ t 0 6
@ERs+,Rd ERs+1-ERs
MOV.B B @aa:8 -Rd8 2 — — 1 0 4
@aa:8,Rd
MOV.B B @aa:16 -Rd8 4 — — 1 0 6
@aa:16,Rd
MOV.B B @aa:24 -Rd8 6 — — ¢ t 0 8
@aa:24,Rd
MOV.B B Rs8 - @ERd 2 —_ — 10 4
Rs,@ERd
MOV.B B Rs8 - 4 — — 1 10 6
Rs,@(d:16,ERd) @(d:16,ERd)
MOV.B B Rs8 - 8 —_ — 1 0 10
Rs,@(d:24,ERd) @(d:24,ERd)
MOV.B Rs, B ERd-1 -ERd, 2 —_ — 0 6
@-ERd Rs8 - @ERd
MOVBRs, B Rs8-@aa8 2 — — 1t 10 4
@aa:8
MOV.B Rs, B Rs8 - @aa:16 4 —_ — 10 6
@aa:16
MOV.B Rs, B Rs8 - @aa:24 6 — — 1t 1t 0 8
@aa:24
MOV.W#xx:16, W #xx:16 -Rd16 4 —_ — 10 4
Rd
MOV.WRs,Rd W Rsl16-Rd16 2 —_ — ?
MOV.W W @ERs-Rd16 2 —_ — !
@ERs,Rd
MOV.W W @(d:16,ERs) - 4 — — 1t 1 0 6
@(d:16,ERs),Rd Rd16
MOV.W W @(d:24,ERs) - 8 — — ¢t 1 0 10
@(d:24,ERs),Rd Rd16
MOV.W W @ERs-Rd16, 2 —_ — 10 6
@ERs+,Rd ERs+2ERs
MOV.W W @aa:l6 -Rd16 4 — — 1t 10 6
@aa:16,Rd
180 RENESAS

TableA.5

Instruction List (cont)

Addressing Mode/
Instruction Length

Condition Code

4 c
= g
~ 3
) 5 o
w < a]
c - é - ®© 8 — 0
. C 5 W8 5 S = o2
Mnem- Op. X c w2 1 s = ® g— s 8
onic Sz. Operation §x0©®0 00060 E, yyynzvecec 20
Data MOV.W W @aa:24 -Rd16 6 — — t 0 — 8
transfer @aa:24,Rd
instr. — pov.w W Rs16-@ERd 2 — — 1 1 0 — 4
(cont) Rs,@ERd
MOV.W W Rsl16- 4 —_ — t 0 — 6
Rs,@(d:16,ERd) @(d:16,ERd)
MOV.W W Rsl16- 8 — — t 0 — 10
Rs,@(d:24,ERd) @(d:24,ERd)
MOV.W W ERd-2-ERd, 2 —_ — t 0 — 6
Rs,@-ERd Rs16 -@ERd
MOV.W W Rsl6-@aa:l6 4 — — t 0 — 6
Rs,@aa:16
MOV.W W Rsl6-@aa:24 6 — — 1 t 0 — 8
Rs,@aa:24
MOV.L#xx:32, L #xx:32-ERd32 6 — — 1t 1 0 — 6
ERd
MOV.L L ERs32 -ERd32 2 — — t 0 — 2
ERs,ERd
MOV.L L @ERs -Erd32 4 —_ — t 0 — 8
@ERs,ERd
MOV.L @ L @(d:16,ERs) - 6 — — 1 t 0 — 10
(d:16,ERs),ERd ERd32
MOV.L @ L @(d:24,ERs)— 10 — — 1 1 0 — 14
(d:24,ERs),ERd ERd32
MOV.L L @ERs -ERd32, 4 —_ — 1 + 0 — 10
@ERs+,ERd ERs+4 ERs
MOV.L L @aa:16 -ERd32 6 — — 1t 1t 0 — 10
@aa:16,ERd
MOV.L L @aa:24 -ERd32 8 — — ¢ t 0 — 12
@aa:24,ERd
MOV.L L ERs32 - @ERd 4 —_ — 1 t 0 — 8
ERs,@ERd
MOV.L ERs, L ERs32 - 6 — — t 0 — 10
@(d:16,ERd) @(d:16,ERd)
MOV.L ERs, L ERs32 - 10 —_ — t 0 — 14
@(d:24,ERd) @(d:24,ERd)
MOV.L ERs, L ERd-4 -ERd, 4 — — 1 t+ 0 — 10
@-ERd ERs32 -@ERd
MOV.L L ERs32 - @aa:16 6 — — ¢ t 0 — 10
ERs,@aa:16
MOV.L L ERs32 - @aa:24 8 —_ — t 0 — 12
ERs,@aa:24
grith- ADD.B #xx:8RdB Rd8+#xx:8-Rd8 2 — 0t ot ot
Y
instrt ADD.BRs,Rd B Rd8+Rs8_Rd8 2 — 1t 1 1 1
RENESAS 181

TableA.5

Instruction List (cont)

Addressing Mode/
Instruction Length

Condition Code

. c
z £
- 3
r e O ¢
W < a)
c & . g3 5 3
5 w8 5 S = oL
Mnem- Op. X w2 7 s 2 © g— s 8
onic Sz. Operation f2©®09 0006 9 E Ul H z c 29
Arith. ADD.W W Rd16+#xx:16 - 4 — "1 ? 1 4
op. #xx:16,Rd Rd16
instr. — ADDWRs,Rd W Rd16+Rs16— 2 — " t 2
(cont) Rd16
ADD.L#xx:32, L ERd32+#xx:32—- 6 — *1 ! 1 6
ERd ERd32
ADD.L ERs,ERd L ERd32+ERs32 - 2 — "1 ? 2
ERd32
ADDX.B B Rd8+#xx:8+C - 2 — ¢ *2 12
#xx:8,Rd Rd8
ADDX.B Rs,Rd B Rd8+Rs8+C -Rd8 2 — 1 *2 2
ADDS #1,ERd L ERd32+1 -ERd32 2 —_ — — — 2
ADDS #2,ERd L ERd32+2 -ERd32 2 —_ — — — 2
ADDS #4,ERd L ERd32+4 -ERd32 2 —_ — —_ — 2
INC.B Rd B Rd8+1 -Rd8 2 —_ — t — 2
INC.W #1,Rd W Rd16+1-Rd16 2 —_ — 1 — 2
INC.W #2,Rd W Rd16+2-Rd16 2 —_ — ! — 2
INC.L#1,ERd L ERd32+1 -ERd32 2 —_ — 1 — 2
INC.L#2,ERd L ERd32+2 -ERd32 2 —_ — 1 — 2
DAA Rd B Rd8 decimal 2 —_ * ? *3 2
correction -Rd8
NEG.B Rd B 0-Rd8 -Rd8 2 — ¢ ? T 2
NEG.W Rd W 0-Rd16 -Rd16 2 — *1 ? !
NEG.L ERd L 0—ERd32 2 — *1 t t
-ERd32
SUB.BRs,Rd B Rd8-Rs8 -Rd8 2 — 1 ? ?
SUB.W RdA16—#xx:16 — 4 — *1 t t
#xx:16,Rd Rd16
SUBWRs,Rd W Rd16-Rsl6 2 — *1 H 2
-Rd16
SUB.L#xx:32, L ERd32—#xx:32- 6 — *1 1 1 6
ERd ERd32
SUB.L ERs,ERd L ERd32-ERs32 2 — *1) 12
-ERd32
SUBX.B B Rd8—#xx:8 2 — 1 *2 2
#xx:8,Rd —C —»Rd8
SUBX.BRs,Rd B Rd8-Rs8-C —~Rd8 2 — *2 2
SUBS#1,ERd L ERd32-1 -ERd32 2 —_ — — — 2
SUBS#2,ERd L ERd32-2 ERd32 2 —_ — — — 2
SUBS #4,ERd L ERd32—4 ERd32 2 —_ — — — 2
DEC.B Rd B Rd8-1 -Rd8 2 —_ — 1 — 2
DECW#1,Rd W Rd16-1-Rd16 2 _ - 3 — 2
DECW#2,Rd W Rd16-2-Rd16 2 —_ — ? — 2
182 RENESAS

TableA.5

Instruction List (cont)

Addressing Mode/
Instruction Length

Condition Code

+ c
Z 2
— 5 3
£ o O 2
w = o w
. £ - s g “— 0
L E L F g 88 5 8
Mnem- Op. ¥ cwZ 18 =0 g s 8
onic Sz. Operation £ 20000606 0 E U H N Z V z0
Avrith. DEC.L #1,ERd L ERd32-1 -ERd32 — — ! H H
op- DECL#2,ERd L ERd32-2 -ERd32 — — 1 1t 3
instr.
(cont) DAS Rd B Rd8 decimal — * 1 1 * 2
correction -Rd8
CMP.B #xx:8, B Rd8—#xx:8 2 — 1 1 1 1 2
Rd
CMP.BRs,Rd B Rd8-Rs8 2 — ? H H
CMP.W #xx:16, W Rd16—#xx:16 4 — 1 ¢ 1 ¢ 4
Rd
CMP.WRs,Rd W Rd16-Rs16 2 — *1 1 ? 1 2
CMP.L#xx:32, L ERd32—#xx:32 6 — 1 ¢ 1 ¢ 6
ERd
CMP.L ERs, L ERd32-ERs32 2 — *1 1 ? 1 2
ERd
MULXU.BRs, B Rd8xRs8 ~Rd16 2 _—_ —_ —_ = 14
Rd
MULXU.W W Rd16xRs16 - 2 —_ — = — — 22
Rs,ERd ERd32
DIVXU.B Rs,Rd B Rd16+Rs8 - Rd16 2 _— = - — 14
(H: remainder
L: quotient)
DIVXU.W W ERd32+Rs16 - 2 — — . — 22
Rs,ERd ERd16
(E: remainder,
R: quotient)
MULXS.BRs, B Rd8xRs8 - Rd16 2 — — t . — 16
Rd
MULXS.W W Rd16xRs16 - 2 —_ — ¢ . — 24
Rs,ERd ERd32
DIVXS.B Rs, B Rd16+Rs8 - Rd16 2 — — 1 . - 16
Rd (H: remainder,
L: quotient)
DIVXS.W W ERd32+Rs1l6 -ERd 4 — — 1 . — 24
Rs,ERd 16(E: remainder,
R: quotient)
EXTUWRd W RdL8 zero 2 — — 1t 1t 0 2
extension - Rd16
EXTU.L ERd L RdL16 zero 2 — — 1 0 2
extension - Rd32
EXTS.W Rd W RdL8 sign 2 — — 1 t 0 2
extension - Rd16
EXTSLERd L Rd16sign 2 — — 1 1 0 2
extension - ERd32
RENESAS 183

TableA.5

Instruction List (cont)

Addressing Mode/
Instruction Length

Condition Code

c
= g
-~ 3
E® O g
wu < a]
- o - < kel — 0
i~ x .. s 2 c
X = U3 o = -1
Mnem- Op. ¥ cwZ 3820 g s 8
onic Sz. Operation §x0©0 00060 E, yyNzyv zZo
Logical AND.B #xx:8,Rd B Rd8#xx:8 ~Rd8 2 — — ¢t 1t 0
op- AND.BRs,Rd B Rd8[Rs8-Rd8 2 — — 1 1 0
instr.
AND.W W Rd16[#xx:16 4 — — 1t 1 0 4
#xx:16,Rd -RD16
AND.WRs,Rd W Rd160Rs16 - 2 —_ — 10 2
Rd16
AND.L L ERd32[#xx:32 - 6 — — ¢t 1 0 6
#xx:32,ERd ERd32
AND.L ERs,ERd L ERd32[ERs32 - 4 — — 10 4
ERd32
OR.B #xx:8,Rd B Rd8#xx:8 -~ Rd8 2 —_ — 10 2
OR.B Rs,Rd B Rd8ORs8 - Rd8 2 — — 0
OR.W W Rd160[H#xx:16 - 4 — — 1 0 4
#xx:16,Rd Rd16
ORWRs,Rd W Rd16[Rs16- 2 — — 1t 1t 0 2
Rd16
OR.L #xx:32, L ERd32#xx:32- 6 —_ — 1 0 6
ERd ERd32
OR.LERs,ERd L ERd32CERsS32 - 4 — — 1 1 0 4
ERd32
XOR.B #xx:8, B Rd8#xx:8 - Rd8 2 — — ¢ 1 0 2
Rd
XOR.BRs,Rd B Rd80Rs8 - Rd8 2 —_ — 10
XOR.W W Rd160#xx:16 - 4 — — ¢ 1 0 4
#xx:16,Rd Rd16
XORWRs,Rd W Rd160Rs16-Rd16 2 —_ — 10
XOR.L L ERd320#xx:32 -~ 6 — — 1 0 6
#xx:32,ERd ERd32
XOR.L ERs, L ERd320CERs32 - 4 —_ — 10 4
ERd ERd32
NOT.B Rd B Rd8-Rd8 2 — — 1 1 0 2
NOT.W Rd W Rd16-Rd16 2 — — ¢ t 0 2
NOT.LERd L ERd32-ERd32 2 — — 1t 1 0 2
Shift SHAL.B Rd B Rd8 left arithmetic 2 —_ — t 't 2
instr. shift - Rd8
SHAL.W Rd W Rd16 left 2 — — 1 t H 2
arithmetic
shift - Rd16
SHAL.L ERd L ERd32 left 2 — — H t 2
arithmetic
shift - ERd32
SHAR.B Rd B Rd8 right 2 — — ¢ 0 2
arithmetic
shift - Rd8
184 RENESAS

TableA.5

Instruction List (cont)

Addressing Mode/
Instruction Length

Condition Code

+ c
Z 2
= ~ 3
F 9 B8 i
- = - =l — 0
é X} % < g g oo
Mnem- Op. X oow T C% % ® 2 S 8
onic Sz. Operation # x® 08 ® E U H N Z V 20
Shift SHAR.W Rd W Rd16 right — — t 1t 0 2
instr. arithmetic
(cont) shift - Rd16
SHAR.LERd L ERd32 right — — t 1t 0 2
arithmetic
shift . ERd32
SHLL.B Rd B Rd8 left logical — — t 1t 0 2
shift . Rd8
SHLL.W Rd W Rd16 left logical — — t 1 0 2
shift . Rd16
SHLL.L ERd L ERd32 left logical — — t 1t 0 2
shift - ERd32
SHLR.B Rd B Rd8 right logical — — 0 1+ O 2
shift . Rd8
SHLR.W Rd W Rd16 right logical — — 0 ¢ O 2
shift» RD16
SHLR.L ERd L ERd32 right logical — — 0 ¢ 0 2
shift - ERd32
ROTXL.BRd B Rd8C left — — t 1t 0 2
rotation -~ Rd8C
ROTXLWRd W Rd16C left — — ¢t 1t 0 2
rotation » Rd16C
ROTXL.LERd L ERd32C left — — t 0 2
rotation -~ ERd32C
ROTXR.BRd B Rd8C right — — t t 0 2
rotation -~ Rd8C
ROTXRWRd W Rd16C right — — ¢t 1t 0 2
rotation -~ Rd16C
ROTXR.LERd L ERd32C right — — t 0 2
rotation -~ ERd32C
ROTL.B Rd B Rd8 left rotation — — t 1t 0 2
- Rd8
ROTL.W Rd W Rd16 left rotation — — ¢t 1t 0 2
- Rd16
ROTL.L ERd L ERd32 left rotation — — t 1t 0 2
- ERd32
ROTR.B Rd B RdS8 right rotation — — t 1t 0 2
~Rd8
ROTR.W Rd W Rd16 right rotation — — ¢t 1 0 2
- Rd16
ROTR.LERd L ERd32 right — — t 1t 0 2
rotation - ERd32
RENESAS 185

TableA.5

Instruction List (cont)

Addressing Mode/
Instruction Length

Condition Code

+ [
2 2
= & :
) o]
[T a 5
c - é] 8 — 0
.. X 5 oo g 5 < = °9
Mnem- Op. X cow 2 7 ‘@5 6 ® g. s &
onic Sz. Operation # xx® 0 ©® ® £ UHNZ V Cc 29
Bit BSET #xx:3,Rd B (#xx:3 of Rd8) ~ 1 _ - - - = —
man. - BseT B (#xx3of 4 - — — — — — 8
instr. 4yx:3@ERd @ERd) —1
BSET B (#xx3of 4 - — — — — — 8
#xx:3@aa:8 @aa:8) ~1
BSETRn,Rd B (Rn8ofRd8) 1 . — — — — 2
BSET Rn,@ERdB (Rn8 of @ERd) ~ 1 4 _ - — — — — 8
BSET Rn,@aa:8B (Rn8 of @aa:8) ~ 1 4 —_ — — — — — 8
BCLR #xx:3, Rd B (#xx:3 of Rd8) 0 —_ - - - — — 2
BCLR B (#xx:3 of @ERd) 4 _ - — — — — 8
#xx:3,@ERd -0
BCLR B (#xx:3 of @aa:8) 4 _ - — — — — 8
#xx:3,@aa:8 <0
BCLR Rn,Rd B (Rn8 of Rd8) -0 - - - - - — 2
BCLR Rn,@ERdB (Rn8 of @ERd) - 0 4 — - - — — _ s
BCLR Rn,@aa:8B (Rn8 of @aa:8) -0 4 — - — — — — 8
BNOT #xx:3,Rd B (#xx:3 of Rd8) - - — — — — 2
~ (#xx:3 of Rd8)
BNOT #xx:3, B (#xx:3 of @ERd) 4 _ - — — — — 8
@ERD ~ (#xx:3 of @ERd)
BNOT #xx:3, B (#xx:3 of @aa:8) 4 —_ — = — — — 8
@aa:8 ~ (#xx:3 of @aa:8)
BNOTRn,Rd B (Rn8 of Rd8) - - - - — — 2
~ (Rn8 of Rd8)
BNOT Rn, B (Rn8 of @ERd) 4 _ - — — — — 8
@ERd ~(Rn8 of @ERd)
BNOT Rn, B (Rn8 of @aa:8) 4 —_ — — — — — 8
@aa:8 ~(Rn8 of @ aa:8)
BTST #xx:3,Rd B (#xx:3 of Rd8) ~Z _ — = = —
BTST #xx:3, B (#xx:3 of @ERd) 4 —_ - — 7 - —
@ERd -Z
BTST #xx:3, B (#xx:3 of 4 - — — 1 — — 6
@aa:8 @aa:8) ~Z
BTSTRn,Rd B (Rn8of Rd8) -Z — — — 1 - — 2
BTSTRn,@ERdB (Rn8 of @ERd) -Z 4 - — — 1 — — 6
BTST Rn,@aa:8 B (Rn8 of @aa:8) -Z 4 _ = -t — — 6
BLD #xx:3,Rd B (#xx:3 of Rd8) -C _ — - — — 1 2
BLD #xx:3, B (#xx:3of 4 - — — — — 1t 6
@ERd @ERd) -C
BLD #xx:3, B (#xx:3 of 4 - — — — — 1t 6
@aa:8 @aa:8) -C
BILD #xx:3,Rd B (#xx:3 of Rd8) -C _ - - — — 1 2
BILD #xx:3, B (#xx:3 of 4 — — — — — t 6
@ERd @ERd) -C
186 RENESAS

TableA.5

Instruction List (cont)

Addressing Mode/

Instruction Length Condition Code
+ c
z 2
-~ 2
g ® o o
w = a 35
c - é] 8 = 0
r 5 W g g S = cg
Mnem- Op. X o w 2 7 (% S ® g s 8
onic Sz. Operation # x® 009 ® £y U HNZVC 20
Bit man. BILD #xx:3, B (#xx:3 of @aa:8) 4 _ — - - - — 6
instr. @aa:8 -C
(con) BST#x:3Rd B C-(#xx:3 of Rd8) 2 - — — — — — —
BST #xx:3, C - (#xx:3 of 4 - — - = —
@ERd @ERd)
BST #xx:3, B C-(#xx3of 4 - - — — — — — 8
@aa:8 @aa:8)
BIST #xx:3,Rd C - (#xx:3 of Rd8) 2 - = - - - — — 2
BIST #xx:3, C - (#xx:3 of 4 U
@ERd @ERd)
BIST #xx:3, B C-(#xx:3of 4 - — = — — — — 8
@aa:8 @aa:8)
BAND #xx:3, B CO#xx:3 of Rd8) 2 _ - - = - — 2
Rd -~C
BAND #xx:3, B CO#xx:3 of 4 _—_ — = = — 6
@ERd @ERd)-C
BAND #xx:3, B CO#xx:3 of 4 _ = = = = — 6
@aa:8 @aa:8)-C
BIAND #xx:3, B CO(#xx:3 of 2 —_—_ — = = — 2
Rd Rd8)-C
BIAND #xx:3, B CO#xx:3 of 4 —_—_ = = = — 6
@ERd @ERd)-C
BIAND #xx:3, B CO(#xx:3 of 4 _ = = = = — 6
@aa:8 @aa:8)-C
BOR #xx:3,Rd B CO(#xx:3 of 2 —_—_ —_ = = — 2
Rd8)-C
BOR #xx:3, B CO(#xx:3 of 4 _—_ —_ = = — 6
@ERd @ERd)-C
BOR #xx:3, B CO#xx:3 of 4 - — — — — — 1t 6
@aa:8 @aa:8)-C
BIOR #xx:3,Rd B CO(#xx:3 of 2 - - - — — — 1 2
Rd8)-C
BIOR#xx:3, B CO#xx3of 4 - — — — — — 1 6
@ERd @ERd)-C
BIOR#xx:3, B CO#x3of 4 - — — — — — 1 &
@aa:8 @aa:8)-C
BXOR #xx:3, B CO (#xx:3 of 2 _ — - — — — 1 2
Rd Rd8) - C
BXOR #xx:3, B CO (#xx:3 of 4 - — — — — — 1t 6
@ERd @ERd)-C
BXOR #xx:3, B CO (#xx:3 of 4 - — — — — — 1t 6
@aa:8 @aa:8)-C
BIXOR #xx:3, B CO (#xx:3 of 2 - - — - — — ¢ 2
Rd Rd8)-C

RENESAS 187

Table A.5 Instruction List (cont)
Addressing Mode/
Instruction Length Condition Code
+ c
z 2
~ 3
g © %) o
wos & < il
E o Bagg &2 58
Mnem- Op. xcmv|(g©z©g s 8
onic Sz. Operation # x ® 0608 ® = UHN Z V C 29
Bit man. BIXOR B CO (#xx:3 of 4 —_ - — — — 1 6
instr. #xx:3,@ERd @ERd) -C
(cont) gxoR B CO (#xx3of 4 - . s
#xx:3,@aa:8 @aa:8)-C
Branch Bccd:8 — if condition is true, 2 - = — — — — 4
instr. then PC ~PC+d:8
else next
Bcc d:16 — If condition is true, 4 _ — — — — — &6
then
PC —PC+d:16 else
next
JMP @ERN — PC<~ERn 2 _ - — = —
JMP @aa:24 — PC-—aa24 4 _ — - = = =
IJMP @@aa: — PC-(@aa:8)16 2 _ - — — — — 8
8(normal)
JMP @@aa: — PC-(@aa:8)24 2 —_ — — — — — 10
8(advanced)
BSR d:8 — SP-2 -SP, 2 - - — — — — b
(normal) PC16 -@SP
PC ~PC+d:8
BSR d:8 — SP-4 -SP, 2 - - — — — —_ 8
(advanced) PC24 @SSP
PC ~PC+d:8
BSR d:16 — SP-2 -SP, 4 - - — — — — b
(normal) PC16 -@SP
PC —PC+d:16
BSR d:16 — SP-4 -SP, 4 - - — — — — 8
(advanced) PC24 -@SP
PC ~PC+d:16
JSR @ERN — SP-2 -SP,PC16 2 _ - — — — - 6
(normal) -@SP PC~ERn
JSR @ERN — SP-4 -SP, 2 _ — — — — — 8
(advanced) PC24 -@SP
PC —~ERn
JSR @aa:24 — SP-2-SP, 4 - - - - — _ 8
(normal) PC16 -@SP
PC ~aa:24
JSR @aa:24 — SP-4-SP, 4 - - — — — — 10
(advanced) PC24 ~@SP
PC ~aa:24
JSR @@aa:8 — SP-2-SP, 2 _— — — — — 8
(normal) PC16 -@SP
PC - (@aa:8)16
JSR @@aa:8 — SP-4.SP, 2 _ - - — — — 12
(advanced) PC24 ~@SP
PC - (@aa:8)24
RTS (normal) — PC—(@SP)16 SP 2 _— = — — — 8
+2.SP
188 RENESAS

Table A5 Instruction List
Addressing Mode/
Instruction Length Condition Code
+ c
z £
- 5 2
Ee 9 g
= i
. £ s 9 — 0
. BBy 82 5§
Mnem- Op. = @g % ® g s 8
onic Sz. Operation # x® 008 ® £ UHN ZzZ V Cc 29
System RTS (advanced) — PC24 —(@SP)24 2 - — — — — — 10
control SP + 4.,SP
instr.
RTE — CCR-(@SP)s, 2 t 1 0t ¢t 1 1t 10
PC24 —(@SP)24
SP+4.SP
TRAPA #xx:2 — SP-4.SP, 2 14
CCR—(@SP)8,
PC24 —(@SP)24,
vector - PC
SLEEP — Enters sleep mode —_ — = = = — 2
NOP — No operation 2 _ - - - — — 2
LDC #xx:8,CCR B #xx:8 ~CCR 2 R T T A
LDC Rs,CCR B Rs8 - CCR t H H H H t 2
LDC @ERs, W @ERs(even) - 4 t 0ttt ¢t 1t 6
CCR CCR
LDC @ W @(d:16,ERs) 6 t ot 0t ¢t ¢t 1 8
(d:16,ERs),CCR (even) - CCR
LDC @ W @(d:24,ERs) 10 1 1 1 1 t 1 12
(d:24,ERs),CCR (even)~ CCR
LDC @ERs+, W @ERs(even)- 4 r ot ot ot ot 1 8
CCR CCR,ERs+2 - ERs
LDC @aa:16, W @aa:16(even) - 6 t 0t 0t ¢ttt 8
CCR CCR
LDC @aa:24, W @aa:24(even)- 8 t t t t 1 t 10
CCR CCR
STCCCR,Rd B CCR-Rd8 _ - = - = — 2
STC CCR, CCR- @ERd 4 - = — — — — 6
@ERd (even)
STC CCR, W CCR- @(d:16, 6 - - — — — — 8
@(d:16,ERd) ERd)(even)
STC CCR, W CCR- @(d:24, 10 —_ - - — — — 12
@(d:24,ERd) ERd)(even)
STCCCR@ W ERd-2-ERd, 4 - - — — - — 8
-ERd CCR - @ERd
(even)
STC CCR, W CCR- @aa:16 6 - - — — — — 8
@aa:16 (even)
STC CCR, W CCR- @aa:24 8 _ = — — — — 10
@aa:24 (even)
ANDC #xx:8, B #xx:8[0CCR- CCR2 Tttt 1 2
CCR
ORC #xx:8,CCR B #xx:8[CCR- CCR 2 R S A
XORC #xx:8, B #xx:80CCR-CCR2 A T R
CCR
RENESAS 189

Appendix B Assembler
Control Instruction Functions

B.1 .CPU
Specifies the CPU.

Format:
Label Operation Operand
X .CPU CPU type

Note: CPU type: {300HA | 300HN | 300 | 300L}

Description: Specifies the CPU that the source program to be assembled isfor. The assembler
assemblesit for the specified CPU.

CPU types are asfollows:

300HA HB8/300H advanced mode

300HN H8/300H normal mode

300 H8/300

300L H8/300L
When this control instruction is omitted, 300HA is set.

This control instruction should be stated at the start of the source program. If there is nothing at
the start of the source program except the control instruction for the assembler list, an error will
result.

This control instruction isvalid only once. It is valid when there is no /CPU command line option
specified.

Example:
. CPU. 300HA

.SECTION A, CODE, ALIGN = 2
MOV. W RO, R1
MOV. W RO, R2

Assembles for H8/300H, advanced mode.

190 RENESAS

B.2 .SECTION

Declares the section.

Format:

Label Operation Operand

X .SECTION Section name [, section
attributes [, format type]] type

Note: Section attributes: {CODE | DATA | STACK | COMMON | DUMMY?}

Format type: { LOCATE = start address|ALIGN = boundary adjust number}
Description: Declares the start and restart of the section.
» Section start: Starts the section and sets the section name, section attributes and type of format.

— Section name: Specifies the section name. Section names are written the same as symbol
names. Case is not distinguished.

— Section attributes; Sets the section attributes. Section attributes are as follows:

CODE: Code section

DATA: Data section
STACK: Stack section
COMMON: Common section
DUMMY : Dummy section

When no attribute is specified, CODE is set.
— Format type: Setsthe format type:

LOCATE = start address Absolute addressing
ALIGN = boundary adjust number Relative addressing

When no format is specified, ALIGN = 2 is set.

With absolute addressing, the start address of the section is set. The start address is specified asa
rear-referenced absolute value. The maximum start address values are as follows:

HB8/300H advanced mode: H'00FFFFFF
H8/300H normal mode: H'0000FFFF
H8/300: H'0000FFFF

H8/300L : H'0000FFFF

RENESAS 191

Relative addressing sets the boundary adjust number of the section. With the linkage editor, the
start address of the relative address section when linked to an object moduleis corrected to a
multiple of the boundary adjust number. The boundary adjust number is specified as arear-
referenced absolute value. The boundary adjust number can be specified asa 2" value.

If no section is declared with this control instruction, the following is set as the default section.
. SECTI ON P, CODE, ALIGN=2

» Section restart: Restarts the section already existing in the source program. At section restart,
the section name of the existing section is specified. The previously declared section attributes
and formats are used.

Example:
.SECTION A, CODE, ALIG\=2 (1)
MOV. W RO, R1
.SECTION B, DATA, LOCATE=H 001000 (2)
DATA1
.DATA. W H 0001
.SECTION A (3)
MOV. W RO, R3

» Starts section A. The section nameis A, the section attribute is code section, the format typeis
relative address format, and the boundary adjust number is 2.

« Starts section B. The section nameis B, the section attribute is data section, the format type is
absolute address format, and the start address is H'001000.

* Restarts section A.

192 RENESAS

B.3 .EQU
Sets the symbol value.

Format:
Label Operation Operand
Symbol name .EQU Number

Description: Setsavalue for the symbol. The valueis set as arear-referenced absolute value or a

rear-referenced address value. The symbol value defined by this control instruction cannot be

changed.
Example:
SYML.EQU 1
SYM .EQU 2
.SECTION A, CODE, ALIGN = 2
MOV. B #SYML: 8, ROL...Sane as MOV.B
MOV. B #SYMR2: 8, RIL...Sane as MOV.B
Sets 1 for SYM1 and 2 for SYM2.

RENESAS

#1: 8, ROL
#2: 8, RIL

193

B4 .ORG

Sets the location counter value.

For mat:
Label Operation Operand
X .ORG Location counter value

Description: Changes the location counter value in the section to the specified value.

The location counter value is specified as a rear-referenced absolute value or as a rear-referenced
address value of the section itself. The maximum location counter values are as follows.

H8/300H advanced mode: H'00FFFFFF
H8/300H normal mode: H'0000FFFF
H8/300: H'0000FFFF

H8/300L : H'0000FFFF

When specified in the absolute address section, the location counter value specified must be a
value after the start address of the section. When this control instruction is specified in the
absolute address section, the set location counter value becomes an absolute address; when
specified in the relative address section, it becomes arelative address.

Example:

. SECTI ON A, DATA, ALIGN = 2
DATAL

.DATA. W H 0001

.DATA.W H 0002

. ORGH 000100 (1)

DATA2

.DATA.W H 0003

.DATA.W H 0004

(1) The location counter value is changed to the relative H'000100 address for A.

194 RENESAS

B.5 .DATA

Reserves integer data.

Format:
Label Operation Operand
X .DATA[. 5] Integer data [, integer data ...]

Note: s (size): {B|W|L}

Description: Reserves integer data according to the size specified.

The sizes are as follows.

* B: Byte (1 byte)
« W: Word (2 byte)
» L: Longword (4 bytes)

When not specified, B is set.

The following integer data values can be specified according to size.

» B:-128t0255
* W: 32,768 to 65,535
» L:-2,147,483,648 t0 4,294,967,295

Example:

.SECTI ON A, DATA, ALIGN = 2
.DATA. W H 0102, H 0304
. DATA. B H 05, H 06, HO07, HO08

Dataisreserved as follows:

\01 \02 \03 \04 \05 \06 \07

I

RENESAS

195

B.6 .RES

Reserves the integer data region.

Format:
Label Operation Operand
[Symbol name] .RES[. 5] Number of regions

Note: s (size): {B|W|L}

Description: Reservesinteger dataregions. A region of exactly the size specified for the integer
dataregion is ensured.

The sizes are as follows:

» B: Byte (1 byte)
« W: Word (2 byte)
e L: Longword (4 bytes)

When not specified, B is set.

The number of regionsis specified as a rear-referenced absolute value. Any number higher than 1
can be specified.

Example:

. SECTION A, DATA, ALIGN = 2
. RES. W 10
.RES. B 255

A 20 byte region and a 255 byte region are kept.

196 RENESAS

B.7 .END

End of source program.

Format:
Label Operation Operand
X .END [Execution start address]

Description: Indicates the end of the source program. When this control instruction appears, the
assembler quits assembling. The execution start address allows you to specify the address used
when the simulation is started on a simulation debugger. The code section addressis set for the
execution start address. The execution start address is specified as an absolute value or address
value.

Example:

. CPU 300HA
. QUTPUT DBG

.SECTION A, CODE, ALIGN = 2

START

MOV. L #0: 32, ERO
MOV. L #1:32, ER1
MOV. L #2:32, ER2
BRA START: 8

. END START

In the simulation debugger, the simulation starts from the START address.

RENESAS 197

	cover
	Contents
	Section 1 CPU Architecture
	1.1 Introduction

	Section 2 Instructions
	2.1 Data Transfer Instructions
	2.2 Arithmetic Operation Instructions
	2.3 Logic Operation Instructions
	2.4 Shift Instructions
	2.5 Bit Manipulation Instructions
	2.6 Branch Instructions
	2.7 System Control Instructions
	2.8 Block Transfer Instructions

	Section 3 Load Module Conversion Procedures
	Section 4 Examples of Software Applications
	4.1 Software Applications Examples
	4.2 Using Software Examples
	4.3 Block Transfer
	4.4 Block Transfer Using Block Transfer Instruction
	4.5 Branching Using a Table
	4.6 Counting the Number of Logical 1s in 8-Bit Data
	4.7 Find the First 1 in 32-Bit Data
	4.8 64-Bit Binary Addition
	4.9 64-Bit Binary Subtraction
	4.10 Unsigned 32-Bit Binary Multiplication
	4.11 Unsigned 32-Bit Binary Division
	4.12 Signed 16-Bit Binary Multiplication
	4.13 Signed 32-Bit Binary Multiplication
	4.14 Signed 32-Bit Binary Division (16-Bit Divisor)
	4.15 Signed 32-Bit Binary Division (32-Bit Divisor)
	4.16 8-Digit Decimal Addition
	4.17 8-Digit Decimal Subtraction
	4.18 Sum of Products
	4.19 Sorting

	Appendix A Instruction Set
	A1 Number of Execution States

	Appendix B Assembler Control Instruction Functions
	B.1 .CPU
	B.2 .SECTION
	B.3 .EQU
	B.4 .ORG
	B.5 .DATA
	B.6 .RES
	B.7 .END

