

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Regarding the change of names mentioned in the document, such as Hitachi
Electric and Hitachi XX, to Renesas Technology Corp.

The semiconductor operations of Mitsubishi Electric and Hitachi were transferred to Renesas

Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog

and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)

Accordingly, although Hitachi, Hitachi, Ltd., Hitachi Semiconductors, and other Hitachi brand

names are mentioned in the document, these names have in fact all been changed to Renesas

Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and

corporate statement, no changes whatsoever have been made to the contents of the document, and

these changes do not constitute any alteration to the contents of the document itself.

Renesas Technology Home Page: http://www.renesas.com

Renesas Technology Corp.

Customer Support Dept.

April 1, 2003

To all our customers

Cautions

Keep safety first in your circuit designs!

1. Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but

there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire

or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i)

placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or

mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation

product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any

other rights, belonging to Renesas Technology Corporation or a third party.

2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights,

originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in

these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents

information on products at the time of publication of these materials, and are subject to change by Renesas Technology

Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact

Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product

information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors.

Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these

inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corporation by various means, including the

Renesas Technology Corporation Semiconductor home page (http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and

algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of

the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other

loss resulting from the information contained herein.

5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used

under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an

authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for

any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea

repeater use.

6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these

materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license

from the Japanese government and cannot be imported into a country other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is

prohibited.

8. Please contact Renesas Technology Corporation for further details on these materials or the products contained therein.

Renesas Microcomputer
H8/300H Series
Application Notes for CPU

16

A
pplication N

ote

Notice

When using this document, keep the following in mind:

1. This document may, wholly or partially, be subject to change without notice.

2. All rights are reserved: No one is permitted to reproduce or duplicate, in any form,
the whole or part of this document without Hitachi’s permission.

3. Hitachi will not be held responsible for any damage to the user that may result from
accidents or any other reasons during operation of the user’s unit according to this
document.

4. Circuitry and other examples described herein are meant merely to indicate the
characteristics and performance of Hitachi’s semiconductor products. Hitachi
assumes no responsibility for any intellectual property claims or other problems that
may result from applications based on the examples described herein.

5. No license is granted by implication or otherwise under any patents or other rights of
any third party or Hitachi, Ltd.

6. MEDICAL APPLICATIONS: Hitachi’s products are not authorized for use in
MEDICAL APPLICATIONS without the written consent of the appropriate officer
of Hitachi’s sales company. Such use includes, but is not limited to, use in life
support systems. Buyers of Hitachi’s products are requested to notify the relevant
Hitachi sales offices when planning to use the products in MEDICAL
APPLICATIONS.

i

Contents

Section 1 CPU Architecture... 1
1.1 Introduction .. 1

1.1.1 Features ... 1
1.1.2 Register Configuration .. 2
1.1.3 Data Configuration.. 4
1.1.4 Address Space ... 6
1.1.5 Addressing Mode .. 7
1.1.6 Instructions.. 16

Section 2 Instructions .. 17
2.1 Data Transfer Instructions .. 17

2.1.1 MOV.. 17
2.1.2 PUSH, POP ... 19

2.2 Arithmetic Operation Instructions.. 21
2.2.1 ADD, SUB .. 21
2.2.2 ADDX, SUBX .. 22
2.2.3 INC, DEC.. 23
2.2.4 ADDS, SUBS.. 24
2.2.5 DAA, DAS .. 25
2.2.6 MULXU, DIVXU, MULXS, DIVXS ... 25
2.2.7 CMP .. 27
2.2.8 NEG .. 28
2.2.9 EXTS, EXTU .. 28

2.3 Logic Operation Instructions.. 30
2.3.1 AND, OR, XOR, NOT.. 30

2.4 Shift Instructions .. 32
2.4.1 SHAL, SHAR, SHLL, SHLR, ROTL, ROTR, ROTXL, ROTXR........................ 32

2.5 Bit Manipulation Instructions... 34
2.5.1 BSET, BCLR, BNOT, BTST, BLD, BILD, BST, BIST, BAND, BIAND, BOR,
BIOR, BXOR, BIXOR... 34

2.6 Branch Instructions .. 36
2.6.1 Bcc .. 36
2.6.2 JMP.. 38
2.6.3 BSR, JSR... 38
2.6.4 RTS.. 40

2.7 System Control Instructions ... 41
2.7.1 RTE ... 41
2.7.2 SLEEP ... 41
2.7.3 LDC, STC.. 42
2.7.4 ANDC, ORC, XORC .. 43

ii

2.7.5 NOP... 44
2.7.6 TRAPA.. 44

2.8 Block Transfer Instructions .. 45
2.8.1 EEPMOV .. 45

Section 3 Load Module Conversion Procedures ... 47

Section 4 Examples of Software Applications.. 49
4.1 Software Applications Examples ... 49
4.2 Using Software Examples .. 50

4.2.1 Program Listing Page Format (Format 4) ... 51
4.3 Block Transfer.. 52

4.3.1 Description of Functions ... 54
4.3.2 Cautions for Use.. 56
4.3.3 Description of Data Memory .. 56
4.3.4 Examples of Use.. 57
4.3.5 Principles of Operation.. 57
4.3.6 Program Listing... 59

4.4 Block Transfer Using Block Transfer Instruction.. 60
4.4.1 Description of Functions ... 63
4.4.2 Cautions for Use.. 64
4.4.3 Description of Data Memory .. 64
4.4.4 Examples of Use.. 65
4.4.5 Principles of Operation.. 65
4.4.6 Program Listing... 66

4.5 Branching Using a Table.. 67
4.5.1 Description of Functions ... 69
4.5.2 Cautions for Use.. 70
4.5.3 Description of Data Memory .. 70
4.5.4 Examples of Use.. 71
4.5.5 Principles of Operation.. 72
4.5.6 Program Listing... 74

4.6 Counting the Number of Logical 1s in 8-Bit Data ... 75
4.6.1 Description of Functions ... 76
4.6.2 Cautions for Use.. 77
4.6.3 Description of Data Memory .. 77
4.6.4 Examples of Use.. 77
4.6.5 Principles of Operation.. 78
4.6.6 Program Listing... 80

4.7 Find the First 1 in 32-Bit Data.. 81
4.7.1 Description of Functions ... 83
4.7.2 Cautions for Use.. 83
4.7.3 Description of Data Memory .. 83

iii

4.7.4 Examples of Use.. 84
4.7.5 Principles of Operation.. 84
4.7.6 Program Listing... 86

4.8 64-Bit Binary Addition... 87
4.8.1 Description of Functions ... 90
4.8.2 Cautions for Use.. 90
4.8.3 Description of Data Memory .. 90
4.8.4 Examples of Use.. 91
4.8.5 Principles of Operation.. 92
4.8.6 Program Listing... 93

4.9 64-Bit Binary Subtraction .. 94
4.9.1 Description of Functions ... 97
4.9.2 Cautions for Use.. 97
4.9.3 Description of Data Memory .. 97
4.9.4 Examples of Use.. 98
4.9.5 Principles of operation .. 99
4.9.6 Program Listing... 100

4.10 Unsigned 32-Bit Binary Multiplication.. 101
4.10.1 Description of functions.. 104
4.10.2 Cautions for Use.. 104
4.10.3 Description of Data Memory .. 104
4.10.4 Examples of Use.. 105
4.10.5 Principles of Operation.. 106
4.10.6 Program Listing... 109

4.11 Unsigned 32-Bit Binary Division... 110
4.11.1 Description of Functions ... 113
4.11.2 Cautions for Use.. 113
4.11.3 Description of Data Memory .. 113
4.11.4 Examples of Use.. 114
4.11.5 Principles of Operation.. 115
4.11.6 Program Listing... 117

4.12 Signed 16-Bit Binary Multiplication.. 118
4.12.1 Description of Functions ... 120
4.12.2 Cautions for Use.. 120
4.12.3 Description of Data Memory .. 120
4.12.4 Examples of Use.. 121
4.12.5 Principles of Operation.. 121
4.12.6 Program Listing... 122

4.13 Signed 32-Bit Binary Multiplication.. 123
4.13.1 Description of Functions ... 126
4.13.2 Cautions for Use.. 126
4.13.3 Description of Data Memory .. 126
4.13.4 Examples of Use.. 127

iv

4.13.5 Principles of Operation .. 128
4.13.6 Program Listing... 132

4.14 Signed 32-Bit Binary Division (16-Bit Divisor) .. 133
4.14.1 Description of Functions ... 136
4.14.2 Cautions for Use.. 136
4.14.3 Description of Data Memory .. 136
4.14.4 Examples of Use.. 137
4.14.5 Principles of Operation.. 137
4.14.6 Program Listing... 140

4.15 Signed 32-Bit Binary Division (32-Bit Divisor) .. 141
4.15.1 Description of Functions ... 144
4.15.2 Cautions for Use.. 144
4.15.3 Description of Data Memory .. 144
4.15.4 Examples of Use.. 145
4.15.5 Principles of Operation.. 146
4.15.6 Program Listing... 147

4.16 8-Digit Decimal Addition... 148
4.16.1 Description of Functions ... 151
4.16.2 Cautions for Use.. 151
4.16.3 Description of Data Memory .. 151
4.16.4 Examples of Use.. 152
4.16.5 Principles of Operation.. 152
4.16.6 Program Listing... 154

4.17 8-Digit Decimal Subtraction .. 155
4.17.1 Description of Functions ... 158
4.17.2 Cautions for Use.. 158
4.17.3 Description of Data Memory .. 158
4.17.4 Examples of Use.. 159
4.17.5 Principles of Operation.. 159
4.17.6 Program Listing... 161

4.18 Sum of Products ... 162
4.18.1 Description of Functions ... 165
4.18.2 Cautions for Use.. 165
4.18.3 Description of Data Memory .. 166
4.18.4 Examples of Use.. 166
4.18.5 Principles of Operation.. 166
4.18.6 Program Listing... 168

4.19 Sorting .. 169
4.19.1 Description of Functions ... 171
4.19.2 Description of Data Memory .. 171
4.19.3 Examples of Use.. 172
4.19.4 Principles of Operation.. 173
4.19.5 Processing Method in Program ... 173

v

4.19.6 Program Listing... 175

Appendix A Instruction Set ... 177
A.1 Number of Execution States... 178

Appendix B Assembler.. 190
B.1 .CPU ... 190
B.2 .SECTION .. 191
B.3 .EQU... 193
B.4 .ORG .. 194
B.5 .DATA.. 195
B.6 .RES.. 196
B.7 .END... 197

1

Section 1 CPU Architecture

1.1 Introduction

The H8/300H is a high-speed CPU with an internal 32-bit configuration and architecture that is
upward-compatible with the H8/300. The H8/300H CPU has sixteen 16-bit general registers, can
handle 16 Mbyte of linear address space, and is ideal for realtime control.

1.1.1 Features

The H8/300H has the following features:

• Upward compatibility with the H8/300: H8/300 object programs can be run without any
changes

• Sixteen 16-bit general registers (can also be used as a sixteen 8-bit registers or eight 32-bit
registers)

• Sixty two basic instructions: 8/16/32 bit operation instructions, multiplication/division
instructions, powerful bit-manipulation instructions

• Eight types of addressing modes:

— Register direct (Rn)

— Register indirect (@ERn)

— Register indirect with displacement (@(d:16, ERn)/@(d:24, ERn))

— Post-increment/pre-decrement register indirect (@ERn+/@-ERn),

— Absolute addressing (@aa:8/@aa:16/@aa:24)

— Immediate (#xx:8/#xx:16/#xx:32)

— Program counter relative (d:8, d:16)

— Memory indirect (@@aa:8)

• 16 Mbyte address space

• High-speed operation:

— Almost all common instructions executed in 2, 4, or 6 states

— Maximum operating frequency: 16 MHz

— Addition/subtraction between 8/16/32-bit registers: 0.17 µs

— Multiplication of two 8-bit registers: 1.2 µs

— Division of a 16-bit by an 8-bit register: 1.2 µs

— Multiplication of two 16-bit registers: 1.8 µs

— Division of a 32-bit by a 16-bit register: 1.8 µs

• Two CPU operating modes: Normal mode/advanced mode

• Power-down mode: SLEEP instruction activates power-down mode

2

1.1.2 Register Configuration

Figure 1.1 shows the register configuration for the H8/300H. The H8/300H CPU is composed of
sixteen 8-bit general register (R0H/R0L–R7H/R7L), eight 16-bit extended registers (E0–E7), one
24-bit program counter (PC) and one 8-bit condition code register (CCR), which are used as
control registers.

23 0
PC

015 0
E0 R0H R0L
E1 R1H R1L
E2 R2H R2L
E3 R3H R3L
E4 R4H R4L
E5 R5H R5L
E6 R6H R6L
E7 R7H R7L(SP)

Program counter

Condition code register

Stack pointer

Extension registers

I
7 6 5 4 3 2 1 0

CCR

Carry flag

Overflow flag

Zero flag

Negative flag

User bit

Half-carry flag

User bit

Interrupt mask bit

Control
registers

General registers

7 0 7

U H U N Z V C

Figure 1.1 Composition of Registers

Extended Registers: There are two ways of using extended registers:

• When working with 32-bit data and addresses (24 bits), 16-bit general registers (R0–R7) are
combined as shown in table 1.1 and used as the upper 16 bits of 32-bit registers (ERn).

• They can also be used as independent 16-bit registers (En).

Note: The function of E7 as the upper 16 bits of the stack pointer (SP) is already allocated and is
used implicitly in exception processing and subroutine calls.

3

General Registers:

• General registers can be used as independent 8-bit registers (R0H/R0L–R7H/R7L).

• 8-bit registers can be combined with each other as shown in figure 1.2 for use as 16-bit registers
(Rn).

• When working with 32-bit data and addresses (24 bits) and combining extended registers (E0–
E7) as shown in figure 1.3, general registers can be used as the lower 16 bits of 32-bits registers
(ERn).

Note: The function of R7 as the lower 16 bits of the stack pointer (SP) is already allocated and is
used implicitly in exception processing and subroutine calls.

R0 R0H R0L E0

R1 R1H R1L E1

R2 R2H R2L E2

R3 R3H R3L E3

R4 R4H R4L E4

R5 R5H R5L E5

R6 R6H R6L E6

R7 R7H R7L E7

Figure 1.2 16-Bit Registers (Rn)

ER0 E0 R0

ER1 E1 R1

ER2 E2 R2

ER3 E3 R3

ER4 E4 R4

ER5 E5 R5

ER6 E6 R6

ER7 E7 R7

Figure 1.3 32-Bit Registers (ERn)

4

Program counter (PC): The PC is a 24-bit counter that indicates the address of the next
instruction to be executed by the CPU.

Condition Code Register (CCR): The CCR is an 8-bit register that indicates the internal status of
the CPU (table 1.1).

Table 1.1 Condition Code Register

Bit Function Description

7 Interrupt mask bit (I) When this bit is 1, interrupts are masked. Note that a
nonmaskable interrupt is received regardless of the status of the I
bit. When exception processing begins, this bit is set to 1.

6 User bit (UI) Can read/write using software (LDC, STC, ANDC, ORC, XORC
instructions). Can also be used as an interrupt mask bit. For more
information, see the hardware manual for the product in question.

5 Half carry flag (H) When executing the ADD.B, ADDX.B, SUB.B, SUBX.B, CMP.B,
or NEG.B instructions results in a borrow or carry at bit 3, or
when executing an ADD.W, SUB.W, CMP.W, or NEG.W
instruction results in a borrow or carry at bit 11, or when
executing an ADD.L, SUB.L, CMP.L, or NEG.L instruction results
in a borrow or carry at bit 27, the bit is set to 1; otherwise, it is set
to 0.

4 User bit (U) Can read/write using software (LDC, STC, ANDC, ORC, XORC
instructions).

3 Negative flag (N) The MSB of the data is considered a sign bit and its value is
saved.

2 Zero flag (Z) When the data is zero this bit is set to 1; when the data is
nonzero, the bit is cleared to 0.

1 Overflow flag (V) When execution of an arithmetic operation instruction creates an
overflow, this bit is set to 1. In all other cases, it is set to 0.

0 Carry flag (C) When execution of an operation creates a carry, this bit is set to
1; otherwise, it is set to 0. There are three types of carries:

1. Carries caused by addition

2. Borrows caused by subtraction

3. Carries caused by shift/rotates

The carry flag has a bit accumulator function that can be used by
bit manipulation instructions.

1.1.3 Data Configuration

The H8/300H can work with 1-bit, 4-bit BCD, 8-bit (byte), 16-bit (word), and 32-bit (longword)
data. 1-bit data is handled with bit manipulation instructions and accessed as the nth bit (n = 0, 1,

5

2, …, 7) of the operand data (byte). In the DAA and DAS decimal adjust instructions, byte data is
two columns of 4-bit BCD data.

Data Configuration of Registers: Table 1.2 shows the configuration of data in the registers.

Table 1.2 Register Data Configuration

Data Type Register No. Data Image

1 bit RnH

7 6 5 4 3 2 1 0 Don't care
07

RnL

7 6 5 4 3 2 1 0 Don't care
07

4-bit BCD RnH

Don't care
07 4 3

Upper column

Lower column

RnL

Upper column

Don't care
07 4 3

Lower column

Byte RnH

Don't care
07

RnL

Don't care
07

Word Rn

015

En

015

Long word ERn

1631 015

RnEn

Legend
ERn: General register (long word size)
RnH: Top of general register
RnL: Bottom of general register
MSB: Most significant bit
LSB: Least significant bit

Data Configuration in Memory: Table 1.3 shows the configuration of data in memory. The
H8/300H CPU can access word and longword data in memory. The MOV.W and MOV.L
instructions are limited to data that starts from even addresses. When accessing word or long word

6

data that starts from odd addressees, the LSB of the address is considered 0 and data is accessed
starting from the address one before. In such cases, no address errors are produced. The same
applies to instruction code.

Table 1.3 Memory Data Configuration

Data Type Memory Image

1 bit

7 6 5 4 3 2 1 0
7 0

nth address

Byte

MSB LSBnth address

Word

MSB

LSB

Even address

Odd address

Long word

MSB

LSB

Even address

Odd address

Even address

Odd address

1.1.4 Address Space

There are two H8/300H operating modes: normal mode and advanced mode. Table 1.4 describes
the operating modes and figure 1.4 shows the memory maps for these two modes. The mode pin of
the LSI is used to select the mode. See the hardware manual of the product in question for more
information.

Table 1.4 Address Space for Normal and Advanced Operating Modes

CPU Operating Mode Description

Normal Supports up to a maximum of 64 kbytes of address space. In this mode,
the top 8 bits of the address are ignored and memory is accessed on 16-
bit addresses.

Advanced Supports up to a maximum of 16 Mbytes of address space. Can access
continuous space by using the 24-bit PC and extended registers in
combination.

7

H'0000

H'FFFF

On-chip ROM

On-chip RAM

I/O space

Normal mode
H'000000

H'FFFFFF

On-chip ROM

On-chip RAM

I/O space

Advanced mode

Figure 1.4 Memory Map

1.1.5 Addressing Mode

The H8/300H supports the eight addressing modes shown in table 1.5. The usable addressing
modes vary for each instruction. Addressing modes are explained below using the various MOV
commands as the primary example.

8

Table 1.5 Addressing Modes

Addressing Mode Use

Register direct Specify registers

Absolute addressing Specify address

Register indirect

Post-increment register indirect

Pre-decrement register indirect

Register indirect with displacement

Memory indirect

Program counter relative

Immediate Specify constants

Register Direct: The register name (ER0–ER7, R0–R7, E0–E7, R0H/R0L–R7H/R7L) is written
in the operand and the contents of that register become the subject of the instruction (figure 1.5).

0 1 2 3 4 5 6 7ER0

0 1 2 3 4 5 6 7ER1

Transfer

Example: MOV.L ER0, ER1

Specify
register

Figure 1.5 Register Direct

Absolute Addressing: Specifies the address directly. Addresses are usually specified as 24 bits in
advanced mode and 16 bits in normal mode, but can be accessed by specifying only the lowest 16
bits or 8 bits when the absolute address area is 16 bits (H'000000–H'007FFF, H'FF8000–
H'FFFFFF) or 8 bits (H'FFFF00–H'FFFFFF) (figure 1.6).

9

01
23
45
67

000000

007FFF

001000

01234567ER1

@H'1000:16, ER1MOV. L

Specify
address

16-bit
absolute
address

area
Transfer

01
23
45
67

FF8000

FFFFFF

FF9000

01234567ER1

@H'9000:16, ER1MOV. L

45

FFFF00

FFFFFF

FFFF30

45R1H

 @H'30:8, R1HMOV. B

Value sign-extended to
24 bits becomes the
address.

01
23
45
67

100000

01234567ER1

@H'100000:24, ER1MOV. L

100002
100003

001000
Sign extension

Specify
address

16-bit
absolute
address

area
Transfer

Value sign-extended to
24 bits becomes the
address.

FF9000
Sign extension

Specify
address

Specify
address

Transfer

Transfer

8-bit
absolute
address

area

The value with the upper
bits all 1 becomes the
address.

FFFF 30

100001

Figure 1.6 Absolute Addressing

Register Indirect: The address is specified by the lowest 24 bits of the 32 bit register (figure 1.7).

10

0 1
2 3
4 5
6 7

100001
100000

@ER0, ER1Example: MOV. L

100002
100003

Specify
address

100000ER0 Don't care
31 24 23 0

Address
Address specified by the lowest 24 bits of ER0

Figure 1.7 Register Indirect

Post-Increment Register Indirect: The address is specified by the lowest 24 bits of the 32 bit
register ERn. After instruction execution, the operand size value (B: 1, W: 2, L: 4) is added to the
contents of the 32-bit register ERn (figure 1.8).

0 1
2 3
4 5
6 7

100001
100000

@ER0+, ER1Example: MOV. L

100002
100003

ER0 Don't care
31 24 23 0

Address

After address is specified by the lowest 24 bits of ER0,
ER0 is incremented by four.

ER0 Don't care
31 24 23 0

Specifiy
address

After instruction
execution

100000

100004

Figure 1.8 Post-Increment Register Indirect

11

Pre-Decrement Register Indirect: The address is specified by the lowest 24 bits of the 32 bit
register ERn. Before instruction execution, the operand size value (B: 1, W: 2, L: 4) is subtracted
from the contents of the 32-bit register ERn (figure 1.9).

0 1
2 3
4 5
6 7

100005
100004

@–ER0, ER1Example: MOV. L

100006
100007

100008ER0 Don't care
31 24 23 0

Address

After ER0 is decremented by four, the address is specified
 by the lowest 24 bits of ER0.

100004ER0 Don't care
31 24 23 0

Specify
address

ER0 is decremented
by four.

Figure 1.9 Pre-Decrement Register Indirect

Register Indirect with Displacement: The address is specified by the lowest 24 bits of the 32 bit
register ERn plus a signed displacement of 16 bits or 24 bits. The results of this addition are not
saved in the 32-bit register ERn (figure 1.10).

12

0 1
2 3
4 5
6 7

101001
101000

@(H'1000:16. ER0), ER1Example: MOV. L

101002
101003

100000ER0 Don't care
31 24 23 0

(+1000)

Specify
address

01234567ER1

Transfer

031

101000

+)

The address is the lowest 24 bits of ER0
plus the signed 16-bit displacement (+1000).

Displacement

Address

Mnemonic:
@(displacement:16, ERn): signed displacement is 16 bits
@(displacement:24, ERn): signed displacement is 24 bits

Figure 1.10 Register Indirect with Displacement

13

0 1
2 3
4 5
6 7

200001
200000

@(H'F00000:24, ER0), ER1Example: MOV. L

200002
200003

300000ER0 Don't care
31 24 23 0

(–10000)

Specify
address

01234567ER1

Transfer

031

200000

+)

The address is the lowest 24 bits of ER0
plus the signed 24-bit displacement (-100000).

Displacement

Address

Figure 1.10 Register Indirect with Displacement (cont)

14

Memory Indirect: Uses branch address specification with the JSR and JMP instructions. The
branch address is on the 8-bit memory indirect address area (advanced mode: H'000000–
H'0000FF, normal mode: H'0000–H'00FF). To specify the branch address, specify the lower 8 bits
of the address that stores the branch address. The address is stored in 2-byte units in normal mode
and in 4-byte units for advanced mode (the first byte is ignored). Note that the top region of the 8-
bit memory indirect address area is shared with the exception processing vector area. For more
information, see the hardware manual for the LSI in question (figure 1.11).

H'000000

H'0000FF

(Advanced mode)

H'0000F3
H'0000F4

H'0000F8

8-bit
memory
indirect

address
area

00
00
10

Don't care

Branch address

Exception
processing

vector
region

Example: JSR @@H'F8

Figure 1.11 Memory Indirect

15

H'0000

H'00FF

(Normal mode)

H'0079
H'007A

H'00BA

8-bit
memory
indirect

address
area

00
10

Branch address

Exception
processing

vector
region

Example: JSR @@H'BA (subroutine branch to address 1000)

Figure 1.11 Memory Indirect (cont)

Program Counter Relative: Used to specify branch addresses using the Bcc or BSR instructions.
It specifies the displacement of the branch address (signed 8-bit or signed 16-bit). Displacement is
added to the contents of the PC and the address at the branch destination is generated. The PC
contents become the start address of the next instruction, so the branchable area for the Bcc and
BSR instructions are –126 to +128 bytes or –32766 to +32678 bytes. Normally, the branch
destination symbol is specified rather than the displacement (figure 1.12).

BSR

ADD. W

ABC

R0, E1ABC:

Figure 1.12 Program Counter Relative

16

Immediate: Directly specifies the data on the instruction (figure 1.13).

0 1 2 3 4 5 6 7ER0

Transfer

Example: MOV.L #H'01234567, ER0

31 0

Figure 1.13 Immediate Addressing

1.1.6 Instructions

H8/300H CPU instructions have the following features:

• Instructions use a general register architecture

• A simplified and optimized 62-instruction basic set

• The common instruction length is 2 or 4 bytes

• High-speed executable multiplication and division instructions and powerful bit manipulation
instructions

• 8 types of addressing modes

Instruction Types: There are a total of 62 H8/300H CPU instructions that are categorized
according to function (table 1.6).

Table 1.6 Instruction Categories

Function Instruction Type

Data transfer instructions MOV, PUSH, POP 3

Arithmetic operations
instructions

ADD, SUB, ADDX, SUBX, INC, DEC, ADDS, SUBS,
DAA, DAS, MULXU, DIVXU, MULXS, DIVXS, CMP,
NEG, EXTS, EXTU

18

Logic operations instructions AND, OR, XOR, NOT 4

Shift instructions SHAL, SHAR, SHLL, SHLR, ROTL, ROTR, ROTXL,
ROTXR

8

Bit manipulation instructions BSET, BCLR, BNOT, BTST, BAND, BIAND, BOR,
BIOR, BXOR, BIXOR, BLD, BILD, BST, BIST

14

Branching instructions Bcc, JMP, BSR, JSR, RTS 5

System control instructions RTE, SLEEP, LDC, STC, ANDC, ORC, XORC, NOP,
TRAPA

9

Block transfer instructions EEPMOV 1

17

Section 2 Instructions

2.1 Data Transfer Instructions

2.1.1 MOV

MOV (Move): Transfers 8-bit, 16-bit or 32-bit data (figure 2.1).

B
W
L

MOV.

Destination operand
Source operand
Operand size
Mnemonic

,

Figure 2.1 MOV

18

Table 2.1 MOV

Mnem-
onic

Op.
Sz.

Source
Operand

Dest.
Op. Description

MOV B RnH or RnL RnH or
RnL

7 0 7 0

RnH or RnL RnH or RnL

W Rn or En Rn or
En

15 0 15 0

L ERn ERn

31 0 31 0

ERn ERn

B @ERn
@(d:16,ERn)
@(d:24,ERn)
@–ERn

RnH or
RnL

7 0

RnH or RnL

W @aa:8
@aa:16
@aa:24

Rn or
En

15 0Rn or En
Even address

L ERn

31 0ERn

Even
address

B RnH or RnL @ERn
@(d:16,
ERn)

7 0

RnH or RnL

W Rn or En
@(d:24,
ERn)
@ERn+
@aa:8
@aa:16

15 0Rn or En

Even address

L ERn

@aa:24

31 0ERn

Even
address

19

Table 2.1 MOV (cont)

Mnem-
onic

Op.
Siz
e

Source
Operand

Dest.
Op. Description

MOV
(cont)

B #xx:8 RnH
or
RnL

7 0
#xx:8

RnH or RnL

W #xx:16 Rn or
En

15 0
#xx:16

Rn or En

L #xx:32 ERn

31 0
#xx:32

ERn

2.1.2 PUSH, POP

PUSH (Push Data): Saves the contents of register to stack (figure 2.2).

POP (Pop Data): Recovers the contents of register from stack (figure 2.2).

PUSH.
W
L

POP.

Source operand
Operand size
Mnemonic

Destination operand
Operand size
Mnemonic

W
L

Figure 2.2 PUSH, POP

20

Table 2.2 PUSH, POP

Mnem-
onic

Source
Operand

Destination
Operand
(Source
Operand) Description

PUSH W (Rn, En) After 2 is subtracted from the stack pointer, the contents of
16-bit registers Rn and En are saved to the stack.

Stack

H'×× ××
En or Rn

SP

SP
–2

15 0

The instruction is the same as MOV.W Rn, @–SP or MOV.W
En, @–SP.

L (ERn) After 4 is subtracted from the stack pointer, the contents of
32-bit register ERn are saved to the stack.

H'×× ×× ×× ××

Stack

ERn

SP

SP

–4
31 0

The instruction is the same as MOV.L ERn, @SP–.

POP W Rn, En The contents of 16-bit registers Rn and En saved to the stack
are recovered. After recovery 2 is added to the stack pointer.

H'××
××15 0

Stack

En or Rn

SP

SP
+2

The instruction is the same as MOV.W @SP+,Rn or MOV.W
@SO+, En.

L ERn The contents of 32-bit register ERn saved to the stack are
recovered. After recovery 4 is added to the stack pointer.

Stack
H'××

××

31 0

ERn

SP

SP

××
××

+4

The instruction is the same as MOV.> @SP+, ERn.

21

2.2 Arithmetic Operation Instructions

2.2.1 ADD, SUB

ADD (ADD binary): Summand (8 bit) + addend (8 bit) = sum (8 bit), or
Summand (16 bit) + addend (16 bit) = sum (16 bit), or
Summand (32 bit) + addend (32 bit) = sum (32 bit)

SUB (Subtract binary): Subtrahend (8 bit) – minuend (8 bit) = difference (8 bit), or
Subtrahend (16 bit) – minuend (16 bit) = difference (16 bit), or
Subtrahend (32 bit) – minuend (32 bit) = difference (32 bit)

Figure 2.3 shows examples of ADD and SUB.

ADD
SUB

B
W

Destination operand
Source operand
Operand size
Mnemonic

. ,

Figure 2.3 ADD, SUB

22

Table 2.3 ADD, SUB

Mnem-
onic

Operand
Size

Destination
Operand

Source
Operand Description

ADD
SUB

B RmH or RmL #xx:8
or RnH
or RnL

7 0
7 0

RmH or RmL

RnH or RnL

=±H'××
H'××

H'××
#xx:8

W Rm or Em #xx:16
or Rn or
En

H'×××× ± =
H'××××
#xx:16

Rn or En
H'××××Rm or Em

L ERm #xx:32 or
ERn

H'××××××××
H'××××××××

H'××××××××
#xx:32± =

ERn
ERm

2.2.2 ADDX, SUBX

ADDX (ADD with Extend Carry): Adds with C flag (carry from bottom) included (figure 2.4).

SUBX (Subtract with Extend Carry): Subtracts with C flag (borrow from bottom) included (figure
2.4).

ADDX
SUBX . B

Destination operand
Source operand
Mnemonic

,

Figure 2.4 ADDX, SUBX

23

Table 2.4 ADDX, SUBX

Mnem-
onic

Operand
Size

Source
Operand

Destination
Operand Description

ADDX
SUBX

B #xx:8 or
RnH or RnL

RmH or
RmL

7 0
H'××
#xx:8

H'××
H'××

RmH or RmL
RnH or RnL

C flag
± =±

2.2.3 INC, DEC

INC (Increment): Adds 1 to contents of 8-bit, registers RnH or RnL (figure 2.5). Adds 2 to the
contents of 16-bit registers Rn or En and 32-bit register ERn.

DEC (DECrement): Subtracts 1 from contents of 8-bit, registers RnH or RnL (figure 2.5).
Subtracts 2 from the contents of 16-bit registers Rn or En and 32-bit register ERn.

INC
DEC

INC
DEC

W
L

B

#1
#2

Destination operand
Operand size
Mnemonic

Destination operand
Operand size
Mnemonic

. ,

.

Figure 2.5 INC, DEC

24

Table 2.5 INC, DEC

Mnem-
onic

Operand
Size

Destination
Operand Description

INC
DEC

B RnH or RnL

7 0
H'××

RnH or RnL
±1 =

W Rn or En

H'××××
Rn or En

±
1
2 =

15 0

L ERn

H'××××××××
ERn

31 0
±

1
2 =

2.2.4 ADDS, SUBS

ADDS (Add with Sign Extension): Adds 1, 2 or, 4 to the contents of the 32-bit register ERn
(figure 2.6).

SUBS (Subtract with Sign Extension): Subtracts 1, 2 or 4, from the contents of the 32-bit register
ERn (figure 2.6).

ADDS
SUBS

#1
#2
#4

ERn

Destination operand
Source operand
Mnemonic

,

Figure 2.6 ADDS, SUBS

Table 2.6 ADDS, SUBS

Mnem-
onic

Operand
Size

Source
Operand

Destination
Operand Description

ADDS
SUBS

— #1 or #2
or #4

ERn

31 0
H'××××××××

1
2
4

=±
ERn

25

2.2.5 DAA, DAS

DAA (Decimal Adjust Add): Adjusts the sum from binary addition of 2 columns of 4-bit BCD
data to 4-bit BCD data (figure 2.7).

DAS (Decimal Adjust Subtract): Adjusts the difference from binary subtraction of 2 columns of 4-
bit BCD data to 4-bit BCD data (figure 2.7).

DAA
DAS

Destination operand
Mnemonic

Figure 2.7 DAA, DAS

Table 2.7 DAA, DAS

Mnem-
onic

Destination
Operand Description

DAA RnH or RnL The results of binary addition or subtraction of 2 columns of 4-bit BCD data
is adjusted to 2 columns of 4-bit BCD data.

DAS

Upper
column

7 04 3
H'××

RnH or RnL

Lower
column

2.2.6 MULXU, DIVXU, MULXS, DIVXS

MULXU (Multiply Extended Unsigned): Multiplicand (8 bit) + multiplier (8 bit) = Product (16
bit), or Multiplicand (16 bit) + multiplier (16 bit) = Product (32 bit)

DIVXU (Divide Extended Unsigned): Dividend (16 bit) + divisor (8 bit) = Quotient (8 bit),
Remainder (8 bit), or Dividend (32 bit) + divisor (16 bit) = Quotient (16 bit), Remainder (16 bit)

MULXS (Multiply Extended Signed): Multiplicand (8 bit) + multiplier (8 bit) = Product (16 bit),
or Multiplicand (16 bit) + multiplier (16 bit) = Product (32 bit)

DIVXS (Divide Extended Signed): Dividend (16 bit) + divisor (8 bit) = Quotient (8 bit),
Remainder (8 bit), or Dividend (32 bit) + divisor (16 bit) = Quotient (16 bit), Remainder (16 bit)

Figure 2.8 shows examples of MULXU, DIVXU, MULXS, and DIVXS.

26

MULXU
MULXS
DIVXU
DIVXS

. B
W ,

Destination operand
Source operand
Operand size
Mnemonic

Figure 2.8 MULXU, DIVXU, MULXS, DIVXS

Table 2.8 MULXU, DIVXU, MULXS, DIVXS

Mnem-
onic

Op.
Size

Source
Operand

Destination
Operand Description

MULXU
MULXS

B RnH or
RnL

Rm or Em

Product
H'××××

15 0

Rm or Em
=H'×× ×

87 7 0

RnH or RnL
H'××

W Rn or En ERm

ERm

31 16 15 0
 × =

15 0

Rn or En
H'×××× H'××××

Product
H'××××××××

DIVXU
DIVXS

B RnH or
RnL

Rm or Em

Remainder
H'××

Quotient
H'××

7 015 0
÷ =

Rm or Em RnH or RnL

8 7
H'×××× H'××

W Rn or En ERm

Quotient
H'××××

Remainder
H'××××

H'×××××××× H'××××
ERm Rn or En

÷ =
31 16 15 0 15 0

27

2.2.7 CMP

CMP (Compare): Compares pairs of 8-bit, 16-bit, or 32-bit data (figure 2.9).

CMP .
B
W
L

Destination operand
Source operand
Operand size
Mnemonic

,

Figure 2.9 CMP

Table 2.9 CMP

Mnem-
onic

Op.
Size

Source
Op.

Dest.
Op. Description

CMP B #xx:8
RnH or
RnL

RnH
or
RnL

H' × ×
H'××

7 0
–

H'××
#xx:8
7 0

RnH or RnL
RnH or RnL

W #xx:16
or Rn
or En

Rn or
En

H'××××
H'××××

H'××××
#xx:16

–

Rn or En
Rn or En

15 0
15 0

L #xx:32
or ERn

ERn

H'××××××××
31 0

H'××××××××

H'××××××××
#xx:32

ERn

ERn

–
31 0

28

2.2.8 NEG

NEG (Negate): Takes the two complement of 8-bit registers RnH and RnL, 16-bit registers Rn and
En, and 32-bit register ERn. (figure 2.10)

NEG
B
W
L

.

Destination operand
Operand size
Mnemonic

Figure 2.10 NEG

Table 2.10 NEG

Mnem-
onic

Op.
Size

Destination
Operand Description

NEG B RnH or RnL

H'××
RnH or RnL

0 –
7 0

=

W Rn or En

H'××××0 –
015

Rn or En

=

L ERn

H'××××××××0 –
31

ERn

=
0

2.2.9 EXTS, EXTU

EXTS (Extend as Signed): Sign-extends from 8 bit to 16 bit or from 16 bit to 32 bit (figure 2.11).

EXTU (Extend as Unsigned): Zero-extends from 8 bit to 16 bit or from 16 bit to 32 bit (figure
2.11).

EXTS
EXTU W

L.

Destination operand
Operand size
Mnemonic

Figure 2.11 EXTS, EXTU

29

Table 2.11 EXTS, EXTU

Mnem-
onic

Op.
Size

Destination
Operand Description

EXTU W Rn or En

Rn or En

Zero extended

15 8 7
H' × ×H' 00

0

L ERn

0
H' × × × ×H' 0000

Zero extended

31 16 15

ERn

EXTS W Rn or En

H'××H' 00
Rn or En

Sign extended

15 8 7 0

H'××H' FF
Rn or En

15 8 7 0

Sign extension

When positive

When negative

L ERn

H'××××H' 0000

H' FFFF H'××××

Sign extended

031 16 15

031 16 15

Sign extension

When positive

When negative
ERn

ERn

30

2.3 Logic Operation Instructions

2.3.1 AND, OR, XOR, NOT

AND (And logical): Takes the logical product of pairs of 8-bit, 16-bit, or 32-bit data (figure 2.12).

OR (Inclusive Or Logical): Takes the logical sum pairs of 8-bit, 16-bit, or 32-bit data (figure 2.12).

XOR (Exclusive Or Logical): Takes the exclusive logical sum of pairs of 8-bit, 16-bit, or 32-bit
data (figure 2.12).

NOT (NOT = Logical Complement): Logically inverts pairs of 8-bit, 16-bit, or 32-bit data(figure
2.12).

AND
OR
XOR

NOT.

B
W
L

B
W
L

. ,

Destination operand
Source operand
Operand size
Mnemonic

Destination operand
Operand size
Mnemonic

Figure 2.12 AND, OR, XOR, NOT

31

Table 2.12 AND, OR, XOR, NOT

Mnem-
onic

Op.
Size

Dest.
Op.

Source
Op. Description

AND
OR
XOR

B RmH
or
RmL

#xx:8
or RnH
or RnL

7 0
=∧H'××

H'××

H'××
#xx:8

7 0
RmH or RmL

RnH or RnL

W Rm
or Em

#xx:16
or Rn
or En

H'××××
#xx:1615

15 0 =∧

Rm or Em
Rn or En

H'××××
H'××××

0

L ERm #xx:32
or ERn

31 0
H'××××××××

H'××××××××
31 0

H'××××××××
#xx:32 =∧

ERm
ERn

NOT B RmH
or
RmL

—

7 0
H'××

RmH or RmL
=

W Rm
or Em

—

H' × × × ×
15

Rm or Em

0
=

L ERm —

31
H'××××××××

ERm

0
=

32

2.4 Shift Instructions

2.4.1 SHAL, SHAR, SHLL, SHLR, ROTL, ROTR, ROTXL, ROTXR

The contents of 8-bit, 16-bit, and 32-bit registers can be shifted in the eight ways shown below
(figure 2.13).

SHAL (Shift Arithmetic Left): Does an arithmetic shift 1 bit left.

SHAR (Shift Arithmetic Right): Does an arithmetic shift 1 bit right.

SHLL (Shift Logical Left): Does a logical shift 1 bit left.

SHLR (Shift Logical Right): Does a logical shift 1 bit right.

ROTL (Rotate Left): Rotates 1 bit left.

ROTR (Rotate Right): Rotates 1 bit right.

ROTXL (Rotate with eXtend carry Left): Rotates 1 bit left including the C flag.

ROTXR (Rotate with eXtend carry Right): Rotates 1 bit right including the C flag.

B
W
L

SHAL
SHAR
SHLL
SHLR
ROTL
ROTR
ROTXL
ROTXR Destination operand

Operand size
Mnemonic

.

Figure 2.13 SHAL, SHAR, SHLL, SHLR, ROTL, ROTR, ROTXL, ROTXR

33

Table 2.13 SHAL, SHAR, SHLL, SHLR, ROTL, ROTR, ROTXL, ROTXR

Mnem-
onic

Destination
Operand Description

SHAL RnH or
RnL, Rn or
En, ERn

MSB LSBC flag
0

RnH or RnL, Rn or En, ERn

SHAR

MSB LSB C flag

RnH or RnL, Rn or En, ERn

SHLL

MSB LSBC flag
0

RnH or RnL, Rn or En, ERn

SHLR

MSB LSB C flag

RnH or RnL, Rn or En, ERn
0

ROTL

MSB LSBC flag

RnH or RnL, Rn or En, ERn

ROTR

MSB LSB C flag

RnH or RnL, Rn or En, ERn

ROTXL

MSB LSBC flag

RnH or RnL, Rn or En, ERn

ROTXR

MSB LSB C flag

RnH or RnL, Rn or En, ERn

34

2.5 Bit Manipulation Instructions

2.5.1 BSET, BCLR, BNOT, BTST, BLD, BILD, BST, BIST, BAND, BIAND, BOR, BIOR,
BXOR, BIXOR

Bit data can be accessed in the format of the nth bit (n = 0, 1, 2, …, 7) of the 8-bit data in the 8-bit
registers (R0H–R7H, R0L–R7L) or on memory. The bit numbers for such accesses are specified
as 3-bit immediate data or 8-bit register contents (lower 3 bits) (figure 2.14).

BSET
BCLR
BNOT
BTST
BLD
BILD
BST
BIST
BAND
BIAND
BOR
BIOR
BXOR
BIXOR

#0
#1
#2
#3
#4
#5
#6
#7

. B

7 6 5 4 3 2 1 0

8-bit register
(R0H–R7H, R0L–R7L)

7 6 5 4 3 2 1 0

Memory
(register indirect,

8-bit absolute address)

or

8-bit data

8-bit register (lower 3 bits)
(R0H–R7H, R0L–R7L)

000–111

or Immediate data
#0–#7

Bit numbers (0–7)

,

Figure 2.14 BSET, BCLR, BNOT, BTST, BLD, BILD, BST, BIST, BAND, BIAND, BOR,
BIOR, BXOR, BIXOR

35

Table 2.14 BSET, BCLR, BNOT, BTST, BLD, BILD, BST, BIST, BAND, BIAND, BOR,
BIOR, BXOR, BIXOR

Cate-
gory

Mnem-
onic (Full
Name) Description

Bit set BSET (Bit
set)

Sets the specified bit to 1.

1

Specified bit

Bit clear BCLR (Bit
clear)

Clears the specified bit to 0.

0

Specified bit

Bit
inversion

BNOT (Bit
not)

Inverts the specified bit.

Specified bit

Bit test BTST (Bit
test)

Transfers the specified bit to the zero
flag.

Specified bit Z bit

Bit
transfer

BLD (Bit
load)

Transfers the specified bit to the carry
flag.

Specified bit C bit

BILD (Bit
invert load)

Transfers the inversion of the
specified bit to the carry flag.

Specified bit C bit

BST (Bit
store)

Transfers the carry flag to the
specified bit.

Specified bitC bit

BIST (Bit
Invert store)

Transfers the inversion of the carry
flag to the specified bit.

Specified bitC bit

Bit AND BAND (Bit
and)

Takes the AND of the specified bit
and the carry flag and transfers the
result to the carry flag.

Specified bit C bit C bit

BIAND (Bit
invert and)

Takes the AND of the inversion of the
specified bit ad the carry flag and
transfers the result to the carry flag.

Specified bit C bit C bit

36

Table 2.14 BSET, BCLR, BNOT, BTST, BLD, BILD, BST, BIST, BAND, BIAND, BOR,
BIOR, BXOR, BIXOR (cont)

Cate-
gory

Mnem-
onic (Full
Name) Description

Bit OR BOR (Bit
inclusive or)

Takes the OR of the specified bit and
the carry flag and transfers the result
to the carry flag.

Specified bit C bit C bit

BIOR (Bit
invert
inclusive or)

Takes the OR of the inversion of the
specified bit and the carry flag and
transfers the result to the carry flag.

Specified bit C bit C bit

Bit
exclusive
Or

BXOR (Bit
exclusive or)

Takes the exclusive OR of the
specified bit and the carry flag and
transfers the result to the carry flag.

Specified bit C bit C bit

BIXOR (Bit
invert
exclusive or)

Takes the exclusive OR of the
inversion of the specified bit and the
carry flag and transfers the result to
the carry flag.

Specified bit C bit C bit

2.6 Branch Instructions

2.6.1 Bcc

Bcc (Branch Conditionally): This instruction branches when a condition is met (figure 2.15).

Bcc
Operand
Mnemonic

Figure 2.15 Bcc

37

Table 2.15 Bcc

Mnem-
onic Operand Description

Bcc d:8 or d:16 When the condition is met, the displacement (signed 8 bit or 16 bit) to
the branch

H'××××××

H'××××××

+ H'××
d:8

+ H'××××
d:16

PC

PC

=

=

23 0

23 0

Mnemonic Description Branch Condition

BRA (BT) Always (True) Always

BRN (BF) Never (False(never

BHI High CVZ = 0

BLS Low or same CVZ = 1

BCC(BHS) Carry clear (high or same) C = 0

BCS(BLO) Carry set (Low) C = 1

BNE Not equal Z = 0

BEQ Equal Z = 1

BVC Overflow clear V = 0

BVS Overflow set V = 1

BPL Plus N = 0

BMI Minus N = 1

BGE Greater or equal N ⊕ V = 0

BLT Less than N ⊕ V = 0

BGT Greater than ZV(N ⊕ V) =0

BLE Less or equal ZV(N ⊕ V) =0

38

2.6.2 JMP

JMP (Jump): Jumps unconditionally to branch destination (figure 2.16).

JMP
Operand
Mnemonic

Figure 2.16 JMP

Table 2.16 JMP

Mnem-
onic Operand Description

JMP @ERn or
@aa:24
or
@@aa:8

Branch destination address transferred to PC

H'××

@ERn

@aa:24

@@aa:8

H'××××××

H' ××××××

××
××

31 24 23

023

PC

ERn

0

2.6.3 BSR, JSR

JSR (Jump to Subroutine, BSR (Branch to Subroutine): Instructions that jump to subroutines
(figure 2.17).

BSR
JSR

Operand
Mnemonic

Figure 2.17 BSR, JSR

39

Table 2.17 BSR, JSR

Mnem-
onic Operand Description

BSR d:8 or d:16 The contents of the PC are saved to the stack and the displacement (signed
8 bit or signed 16 bit) tot he subroutine start destination is added to the PC
contents

H'××××××

(Advanced mode) (Normal mode)

H'×× ×× ××

SP

PC

23 0 SP

23 0

PC
H'××
d:8

=+

H'××××××
23 0

PC
H'××××

d16
+

H'××

SP

SP
–2

–4

=

××
15 0

JSR @ERn or
@aa:24 or
@@aa:8

The contents of the PC are saved to the stack

SP
–2

15 0 SP
H'××

(Advanced mode) (Normal mode)

×× ××
PC PC

SP

SP

Stack
Stack

23 0

–4

H'×× ××

31 24 23 0

ERn
@ERn H'××××××

@aa:24 H'××××××

@@aa:8
H'××
××
××

23 0

PC

2.6.4 RTS

RTS (Return from Subroutine): Returns from a subroutine (figure 2.18).

40

RTS
Mnemonic

Figure 2.18 RTS

Table 2.18 RTS

Mnem-
onic

Op.
Size

Source
Operand

Destination
Operand Description

RTS — — — When jumping to a subroutine using BSR or JSR,
the contents of the PC saved in the stack are
transferred back to the PC. After the transfer, the
stack pointer is incremented (+2 for normal mode
and +4 for advanced mode

(Normal mode)

Stack

SP

SP
+2

PC

PC

PC

SP

+4

SP

...

...
PC

(Advanced mode)
Stack

2.7 System Control Instructions

2.7.1 RTE

RTE (Return from Exception): Returns for exception processing program. (figure 2.19)

RTE
Mnemonic

Figure 2.19 RTE

41

Table 2.19 RTE

Mnem-
onic

Op.
Size

Source
Op.

Dest.
Op. Description

RTE — — — When a hardware interrupt or software interrupt (TRAPA
instruction) occurs, the CCR and PC automatically saved to the
stack by the hardware are returned from the stack

Stack

SP

SP

+4

CCR PC

CCR

PC

7 0 23 0

2.7.2 SLEEP

SLEEP (Sleep): The SLEEP instruction places the CPU in power-down status (figure 2.20). In
power-down status, the internal state of the CPU is maintained and instruction execution halted to
wait for a request for exception processing to occur. When a request for exception processing does
occur, the power-down state is cleared and the CPU begins exception processing. Any interrupt
requests other than NMI will be masked on the CPU side at this time so the power-down status
will not be cleared.

SLEEP
Mnemonic

Figure 2.20 SLEEP

2.7.3 LDC, STC

LDC (LodD to Control Register): Transfers 8-bit data to the CCR (figure 2.21).

STC (Store from Control Register): Transfers the contents of the CCR to register or memory
(figure 2.21).

42

STC
LDC B

W
. ,

Destination operand
Source operand
Operand size
Mnemonic

Figure 2.21 LDC, STC

Table 2.20 LDC, STC

Mnem-
onic

Op.
Size

Destination
Operand

Source
Operand Description

LDC B #xx:8
or RnH or
RnL

CCR The 8-bit immediate data or the contents of the
RnH or RnL 8-bit registers are transferred to the
CCR

H'××

H'××
#xx:8

7 0
7 0

CCR
RnH or RnL

W @ERn
@(d:16,ERn)
@(d:24,ERn)
@–ERn
@aa:8
@aa:16
@aa:24

The contents of the even address are transferred
to the CCR

H'××Even address
CCR

7 0

STC B CCR RnH or RnL The 8-bit immediate data or the contents of the
RnH or RnL 8-bit registers are transferred to the
CCR

CCR
H' × ×

7 0 7 0

RnH or RnL

W @ERn
@(d:16,ERn)
@(d:24,ERn)
@ERn+
@aa:8
@aa:16
@aa:24

The contents of the even address are transferred
to the CCR

H'××
0 7

Even address

CCR

2.7.4 ANDC, ORC, XORC

These instructions do logical operations with the contents of the CCR (figure 2.22).

43

ANDC (AND Control Register): Takes the logical product.

ORC (Inclusive OR Control Register): Takes the logical sum.

XORC (Exclusive OR Control Register): Takes the exclusive logical sum.

ANDC
ORC
XORC

#xx:8, CCR

Destination operand
Source operand
Mnemonic

Figure 2.22 ANDC, ORC, XORC

Table 2.21 ANDC, ORC, XORC

Mnem-
onic

Op.
Size

Destination
Operand

Source
Operand Description

ANDC
ORC
XORC

B CCR #xx:8

H'××
7 0

CCR

∧
∨
⊕

H'××
#xx:8

=

2.7.5 NOP

NOP (No Operation): Only increments the PC by 2. No effect on the internal status of the CPU
(figure 2.23).

NOP
Mnemonic

Figure 2.23 NOP

2.7.6 TRAPA

TRAPA (Trap Always): Generates a software interrupt (figure 2.24).

44

TRAPA

#0
#1
#2
#3

Figure 2.24 TRAPA

Table 2.22 TRAPA

Mnem-
onic Operand Description

ANDC
ORC
XORC

#0 or #1 or
#2 or #3

CCR and PC saved to stack

H'×× H'×× ×× ××
CCR PC

CCR
1
I

SP

SP

–4

Vector Address

#xx Normal Mode Advanced Mode

0 H’0008–H’0009 H’000010–H000013

1 H’000A–H’000B H’000014–H000017

2 H’000C–
H’000D

H’000018–H00001B

3 H’000E–H’000F H’00001C–H00001F

2.8 Block Transfer Instructions

2.8.1 EEPMOV

EEPMOV (Move data to EEPROM): Transfer block data to any address. No interrupts will be
detected during the data transfer (figure 2.25).

45

EEPMOV
B
W

Operand size

.

Figure 2.25 EEPMOV

Table 2.23 EEPMOV

Mnem-
onic

Op.
Size Description

EEP-
MOV

B Transfers the block data that starts at the address in ER5 to the address in ER6.
The maximum block data length is 255 bytes.

H'××××××

H'∆∆∆∆∆∆

H' H'××××××

Transfer source
address

Transfer destination
address

R4L

ER5

ER6

Number of bytes to transfer

......

......

H'∆∆∆∆∆∆

H' byte

H' byte

W Transfers the block data that starts at the address in ER5 to the address in ER6.
The maximum block data length is 65535 bytes.

Number of bytes to transfer

ER5

ER6

H'××××××

H'∆∆∆∆∆∆

R4L

H'∆∆∆∆∆∆

H'××××××

Transfer source
address

Transfer destination
address

........

..

..

........

..

..

H' byte

H' byte

H'

46

Section 3 Load Module Conversion Procedures

Figures 3.1 through 3.4 show the load module conversion procedures for the H8/300H.

Editor
(e.g. MIFES)

Assembler source file
(xxx.SRC)

Create the assembler source program using any editor (such as MIFES).

Figure 3.1 Load Module Conversion Procedures (Step 1)

Input file

Assembler source file
(xxx.SRC)

Assembler
(ASM38.EXE)

Output file

Relocatable object file
(xxx.OBJ), List file (xxx.LIS)

Convert the assembler source program to an object module using the assembler (ASM38.EXE).

Figure 3.2 Load Module Conversion Procedures (Step 2)

47

Input file Output file

Linkage editor
(LNK.EXE)

Load module file
(xxx.ABS)

Relocatable object file
(xxx.OBJ)

Simulator
debugger

In-circuit
emulator

Convert the object module to a load module using the linkage editor (LNK.EXE).

Figure 3.3 Load Module Conversion Procedures (Step 3)

Load module converter
(CNVS.EXE)

Input file Output file

Load module file
(xxx.ABS)

S-type format load
module file (xxx.MOT)

PROM writer

Convert the load module to an S-type format load module using the load module compiler
(CNVS.EXE).

Figure 3.4 Load Module Conversion Procedures (Step 4)

48

Section 4 Examples of Software Applications

4.1 Software Applications Examples

Table 4.1 lists software application examples.

Table 4.1 List of Software Application Examples

Software title Label Use Section

Block transfer MOVE MOV.L instruction, post-increment
register indirect

4.3

Block transfer using block transfer
instruction

EEPMOV EEPMOV.W instruction 4.4

Branching using a table CCASE Register indirect with displacement 4.5

Count of number of logical 1 bits in
8-bit data

HCNT ROTL.B instruction, ADDX.B
instruction

4.6

Find first 1 in 32-bit data FIND1 SHLL.L instruction 4.7

64-bit binary addition ADD ADD.L instruction 4.8

64-bit binary subtraction SUB SUB.L instruction 4.9

Unsigned 32-bit binary multiplication MUL MULXU.W instruction 4.10

Unsigned 32-bit binary division DIV SHLL.L instruction, ROTL.L
instruction

4.11

Signed 16-bit binary multiplication MULXS MULXS.W instruction 4.12

Signed 32-bit binary multiplication MULS MULXU.W instruction 4.13

Signed 32-bit binary division (16-bit
divisor)

DIVXS DIVXS.W instruction 4.14

Signed 32-bit binary division (32-bit
divisor)

DIVS SHLL.L instruction, ROTL.L
instruction, NEG.L instruction

4.15

8-digit decimal addition ADDD DAA.B instruction 4.16

8-digit decimal subtraction SUBD DAS.B instruction 4.17

Product/sum operations SEKIWA MULXU.W instruction 4.18

Sorting SORT Post-increment register indirect,
pre-decrement register indirect

4.19

49

4.2 Using Software Examples

Sections 4.3 through 4.19 provide detailed information about the software applications listed in
table 4.1. The following information is consistent throughout sections 4.3 through 4.19.

• Internal registers:

— ER0–ER7: 32-bit general registers that link En and Rn n = 0, 1, 2, … 7.

— E0–E7: 16-bit extended registers

— R0–R7: 16-bit general registers that link RnH and RnL n = 0, 1, 2, … 7.

— R0H–R7H and R0L–R7L: 8-bit general registers

• Condition code register (shown in figures labeled “Changes in Internal Registers and Flag
Changes ...”):

— C: Carry flag

— V: Overflow flag

— Z: Zero flag

— N: Negative flag

— U: User bit

— H: Half carry bit

— U: User bit

— I: Interrupt mask bit

• Programming Specifications: Describes the specifications of the software.

— Program memory bytes.: Indicates the amount of ROM used by the software.

— Data memory bytes.: Indicates the amount of RAM used by the software.

— Stack bytes.: Indicates the amount of stack used by the software. This does not include the
stack used by subroutine calls in the user program. When executing software, the amount of
stack in bytes indicated for the stack area is required, so ensure that the stack requirements
are available in the data memory before execution.

— Number of states: Indicates the number of states in which the software is executed. The
execution time of the software is calculated as follows:

Execution time (s) = No. of states × Cycle time (s),

where

Cycle time (s) = 1/system clock frequency φ (Hz),

and

50

System clock frequency φ (Hz) = External pulse generator frequency 2 divider circuit

version/2,

or

External pulse frequency 1:1 oscillation versions.

— Re-entrant: Indicates whether the structure can be used simultaneously from multiple
programs.

— Relocation: Indicates whether the software will run normally no matter where in the
memory space it is placed.

— Interrupts during execution: Indicates whether the software will run normally even after an
interrupt routine is executed when the software is running. If it won't, inhibit interrupts prior
to calling the software.

4.2.1 Program Listing Page Format (Format 4)

The following list explains the format of the programming list software.

1. List line numbers

2. Location counter values

3. Object code

4. Source line numbers

5. Source statements

6. Comments

7–10 Assembler control instructions

Table 4.2 lists the assembler control instructions used by this software. These instructions are
described further in Appendix B, Assembler Control Instruction Functions. For control
instructions not listed in table 4.2, see the H8/300H Series Cross-Assembler Users Manual.

51

Table 4.2 Assembler Control Instructions List

Control Instruction Function

.CPU Specifies CPU

.SECTION Specifies section

.EQU Sets symbol value

.ORG Sets location counter values

.DATA Reserves integer data

.RES Reserves integer data space

.END End of source program

4.3 Block Transfer

MCU: H8/300H Series

Label Name: MOVE

Functions Used: MOV.L Instruction, Post-Increment Register Indirect

Function: Transfers block data (up to 65535 bytes) to any even address.

Table 4.3 MOVE Arguments

Contents Storage Location Data Length (Bytes)

Input Start address of transfer source ER0 4

Start address of transfer destination ER1 4

Number of bytes transferred ER2 2

Output — — —

52

ER0

ER1

ER2

ER3

ER4

ER5

ER6

ER7(SP)

31 1516 78 0

I U H U N Z V C
— — 1 — 1 0 0 1

Start address of transfer source

Work

Number of
bytes transferred

: No change
: Changes
: Locked to 0
: Locked to 1

—

↔

0
1

Start address of transfer destination

Figure 4.1 Changes in Internal Registers and Flag Changes for MOVE

53

Program memory (bytes)

38

Data memory (bytes)

0

Stack (bytes)

0

Number of states

491580

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Caution: The number of states given in the programming specifications is the value when
H'FFFF bytes are being transferred.

Figure 4.2 Programming Specifications

4.3.1 Description of Functions

Arguments are as follows:

• ER0: Sets the start address of the transfer source as the input argument

• ER1: Sets the start address of the transfer destination as the input argument

• R2: Sets the number of bytes to be transferred as the input argument

Figure 4.3 is an example of execution of the software MOVE. When the input arguments are set as
shown, the data at the transfer source is transferred as a block to the transfer destination (results).

54

Address 100000

C6

47

FF

1FFF bytes

Address 200000

C6

47

FF

1FFF bytes

Results

Input arguments

Don't care

ER0
000002

Don't care

ER1
000001

R2
FFF1

Figure 4.3 Executing MOVE

55

4.3.2 Cautions for Use

• Since R2 is 2 bytes, set data in the region H'0001 ≤ R2 ≤ H'FFFF.

• Set the input arguments so that the block data of the transfer source (area (A) of figure 4.4) and
the block data of the transfer destination (area (B) of the figure) do not overlap.

• When the transfer source and transfer destination overlap as shown in figure 4.4, the data of the
transfer source that overlaps (area (C) in the figure) is destroyed.

B

C

AStart address of
transfer destination

Start address of
transfer source

Memory space

Figure 4.4 Block Transfer with Overlapping Data

4.3.3 Description of Data Memory

No data memory is used by MOVE.

56

4.3.4 Examples of Use

After setting the start address of the transfer source, the start address of the transfer destination and
the number of bytes to be transferred, do a subroutine call to MOVE.

Table 4.4 Block Transfer Example (MOVE)

Label Instruction Action

WORK
1

.RES. L 1 Reserves the data memory area that sets the start
address of the transfer source in the user program.

WORK
2

.RES. L 1 Reserves the data memory area that sets the start
address of the transfer destination in the user program.

WORK
3

.RES. W 1 Reserves the data memory area that sets the number
of bytes to be transferred in the user program.

MOV. L @WORK1,ER0 Sets the start address of the transfer source as set in
the user program as an input argument.

MOV. L @WORK2,ER1 Sets the start address of the transfer destination as set
in the user program as an input argument.

MOV. L @WORK3, R2 Sets the number of bytes to be transferred as set in the
user program as an input argument.

@MOVEJSR

Subroutine call to MOVE.

4.3.5 Principles of Operation

• When the data to be transferred is 4 bytes or more, the MOV.L instruction is used to do repeated
transfers in 4-byte units.

• When the data to be transferred is less than 4 bytes, the software switches to the MOV.B
instruction to do transfers in byte units.

57

2

2

1

1

Yes

Yes

No

No

RTS

Is the
number of transfer

bytes 0?

Number of transfer bytes – 1

Number of transfer bytes + 4

Is number
of transfer bytes 4

or more?

Number of transfer bytes – 4

MOVE

4-byte transfers

1-byte transfer

Figure 4.5 MOVE Flowchart

58

4.3.6 Program Listing

59

4.4 Block Transfer Using Block Transfer Instruction

MCU: H8/300H Series

Label Name: EEPMOV

Functions Used: EEPMOV.W Instruction

Function: Transfers block data (up to 65535 bytes) to any even address using the block transfer
instruction (EEPMOV.W).

Table 4.5 EEPMOV Arguments

Contents Storage Location Data Length (Bytes)

Input Start address of transfer source ER5 4

Start address of transfer destination ER6 4

Number of bytes transferred R4 2

Output — — —

60

ER0

ER1

ER2

ER3

ER4

ER5

ER6

ER7(SP)

31 1516 78 0

I U H U N Z V C
— — — — — — — —

Start address of transfer source

Start address of transfer destination

: No change
: Changes
: Locked to 0
: Locked to 1

—

↔

0
1

Number of bytes
transferred

Figure 4.6 Changes in Internal Registers and Flag Changes for EEPMOV

61

4

0

0

262148

Program memory (bytes)

Data memory (bytes)

Stack (bytes)

Number of states

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Caution: The number of states given in the programming specifications is the value when
H'FFFF bytes are being transferred.

Figure 4.7 Programming Specifications

62

4.4.1 Description of Functions

Arguments are as follows:

• ER5: Sets the start address (even address) of the transfer source.

• ER6: Sets the start address (even address) of the transfer destination.

• R4: Sets the number of bytes to be transferred.

Figure 4.8 is an example of execution of the software EEPMOVE. When input arguments are set
as shown, the data at the transfer source is transferred as a block to the transfer destination (result).

Address 200000

C6

47

FF

1FFF bytes

Address 100000

C6

47

FF

1FFF bytes

Result

Input arguments

Don't care

ER5
000001

Don't care

ER6
000002

R4
FFF1

Figure 4.8 Executing EEPMOVE

63

4.4.2 Cautions for Use

• Since R2 is 2 bytes, set data in the region H'0001 ≤ R2 ≤ H'FFFF.

• Interrupts cannot be detected while EEPMOVE is executing.

• Set the input arguments so that the block data of the transfer source (area (A) of figure 4.9) and
the block data of the transfer destination (area (B) of the figure) do not overlap. When the
transfer source and transfer destination overlap as shown in figure 4.9, the data of the transfer
source that overlaps (area (C) in the figure) is destroyed.

B

C

AStart address of
transfer destination

Start address of
transfer source

Memory space

Figure 4.9 Block Transfer with Overlapping Data

4.4.3 Description of Data Memory

No data memory is used by EEPMOVE.

64

4.4.4 Examples of Use

After setting the start address of the transfer source, the start address of the transfer destination and
the number of bytes to be transferred, do a subroutine call to EEPMOVE.

Table 4.6 Block Transfer Example (EEPMOVE).

Label Instruction Action

WORK
1

RES. L 1 Reserves the data memory area that sets the start
address of the transfer source in the user program.

WORK
2

RES. L 1 Reserves the data memory area that sets the start
address of the transfer destination in the user
program.

WORK
3

RES. W 1 Reserves the data memory area that sets the number
of bytes to be transferred in the user program.

MOV. L @WORK1,ER5 Sets the start address of the transfer source as set in
the user program as an input argument.

MOV. L @WORK2,ER6 Sets the start address of the transfer destination as set
in the user program as an input argument.

MOV. L @WORK3, R4 Sets the number of bytes to be transferred as set in
the user program as an input argument.

@EEPMOVJSR

Subroutine call to EEPMOVE.

4.4.5 Principles of Operation

Use the block transfer instruction (EEPMOV.W).

RTS

Blocks are transferred
using the block transfer

instruction (EEPMOV.W)

EEPMOV

Figure 4.10 EEPMOV Flowchart

65

4.4.6 Program Listing

66

4.5 Branching Using a Table

MCU: H8/300H Series

Label Name: CCASE

Functions Used: Register Indirect with Displacement

Description: Searches for the start address of the processing routine for the input command. This
function is useful and convenient for decoding commands input from the keyboard and for
processing the input command.

Table 4.7 CCASE Arguments

Contents Storage Location Data Length (Bytes)

Input Input command R0 2

Start address of data table ER1 4

Output Start address of processing routine ER1 4

Existence of a processing routine for the
input command (yes = 0, no = 1)

Z flag (CCR) 1

67

WorkER0

ER1

ER2

ER3

ER4

ER5

ER6

ER7(SP)

31 1516 78 0

I U H U N Z V C
— — — 0

Input command

—

↔

0
1

↔↔↔

Start address of data table,
start address of processing routine

: No change
: Changes
: Locked to 0
: Locked to 1

↔

Figure 4.11 Changes in Internal Registers and Flag Changes for CCASE

68

26

0

0

156

Program memory (bytes)

Data memory (bytes)

Stack (bytes)

Number of states

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Caution: The number of states given in the programming specifications is the value when the
last of 6 groups of data is detected.

Figure 4.12 Programming Specifications

4.5.1 Description of Functions

Arguments are as follows:

• R0: Sets the 16-bit command as an input argument.

• ER1: Sets the start address of the data table as an input argument. Also set the start address of
the processing routine for the command as the output argument.

• Z flag (CCR): Indicates whether there are any errors after execution of CCASE.

— When Z flag = 0: Indicates that there is a command on the data table that corresponds to the
one set in R0.

— When Z flag = 1: Indicates that there is no command on the data table that corresponds to
the one set in R0.

Figure 4.13 is an example of execution of the software CCASE. When the input arguments are set
as shown, the data table is checked and the start address of the processing routine is set in ER1.

69

00

41
0A command

Input arguments

Don't care

ER1
00000F

R0
2400

Don't care

10

00

00

00

42

Don't care

20

00

00

00

43

Don't care

30

00

00

00

00

Start address
of data table

Data group 1

Data group 2

Data group 3

Division data

Start address of
processing routine

0B command

0C command

Start address of
processing routine

Start address of
processing routine

Don't care

ER1

000002

Z flag

Output arguments 0

F00000

Figure 4.13 Executing CCASE

4.5.2 Cautions for Use

Since H'0000 is used as the division data, do not use H'0000 as a command in the data table.

4.5.3 Description of Data Memory

No data memory is used by CCASE.

70

4.5.4 Examples of Use

After setting the command and the start address of the data table, do a subroutine call to CCASE.

Table 4.8 Block Transfer Example (CCASE)

Label Instruction Action

WORK 1 .RES. W 1 Reserves the data memory area that sets the
command in the user program.

WORK 2 .RES. L 1 Reserves the data memory area that sets the start
address of the data table in the user program.

MOV. L @WORK2,ER1 Sets the start address of the data table as set in the
user program as an input argument.

MOV. W @WORK1,R0 Sets the command set in the user program as an
input argument.

@CCASEJSR

Subroutine call of CCASE

BEQ ERROR When there is no command in the data table that
corresponds to the command input, the routine
branches to an error program.

ERROR

Program that branches to
the processing routine*

Error program

71

Table 4.8 Block Transfer Example (CCASE) (cont)

Label Instruction Action

DTABLE .ORG H’F000 Start address of data table

.DATA.
W

H’0041 0A command

.DATA.
W

H’F100 Start address of processing routine for 0A command

.DATA.
W

H’0042 0B command

.DATA.
W

H’F200 Start address of processing routine for 0B command

.DATA.
W

H’0000 Division data

@CCASEJSR

Subroutine call of CCASE

BEQ ERROR Branches to ERROR when the Z flag is set

↑
Bran-
ches to
pro-
cessing
routine
↓

JMP @ER1 Jumps to processing routine

ERROR

Error program

Note: Example of program that branches to a processing routine: CCASE only sets the start
address of the processing routine in ER. When actually branching to a processing routine,
create a program like that shown below.

4.5.5 Principles of Operation

• ER1 is used as a pointer to the address storing the command on the data table.

• The command at the address indicated in ER1 of the data table is set in E0 and compared to the
input command.

• When the input command and the data table command match, the start address of the processing
routine located after the command is set, the Z flag is cleared and CCASE ends.

72

• When H'0000 is detected (indicating the end of the data table), the Z flag is set and CCASE
ends.

1

Yes

No

RTS

Clear the Z flag

End of data
table?

The first command in the
data table is set in E0

CCASE

Set the start address of the
processing routine in ER1

No

Yes

1

The next command is
set in ER1

ER1 is incremented to the
address where the next

command is stored

Same command?

Figure 4.14 CCASE Flowchart

73

4.5.6 Program Listing

74

4.6 Counting the Number of Logical 1s in 8-Bit Data

MCU: H8/300H Series

Label Name: HCNT

Functions Used: ROTL.B Instruction, ADDX.B Instruction

Function: Counts the number of logical 1s in 8-bit data.

Table 4.9 HCNT Arguments

Contents Storage Location Data Length (Bytes)

Input 8-bit data R0L 1

Output Number of logical 1 bits R0H 1

ER0

ER1

ER2

ER3

ER4

ER5

ER6

ER7(SP)

31 1516 78 0

I U H U N Z V C
— — — ↔↔↔

Work

— ↔
Number of

logical 1 bits
8-bit data

—

↔

0
1

: No change
: Changes
: Locked to 0
: Locked to 1

Figure 4.15 Changes in Internal Registers and Flag Changes for HCNT

75

16

0

0

126

Program memory (bytes)

Data memory (bytes)

Stack (bytes)

Number of states

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Caution: The number of states given in the programming specifications is the value when the 8-
bit data is H'FF.

Figure 4.16 Programming Specifications

4.6.1 Description of Functions

Arguments are as follows:

• R0L: Sets the 8-bit data.

• R0H: Sets the number of bits of logical 1s in the 8-bit data.

Figure 4.17 is an example of execution of the software HNCT. When the input arguments are set
as shown, the number of bits of logical 1s are set in R0H.

76

R0L

01101110

Five 1s

R0H

50Output arguments

Input arguments

Figure 4.17 Executing HCNT

4.6.2 Cautions for Use

When counting the number of logical 0 bits, first take the 1 complement of R0L and then execute
HCNT.

4.6.3 Description of Data Memory

No data memory is used by HNCT.

4.6.4 Examples of Use

After setting the 8-bit data, do a subroutine call to HCNT.

Table 4.10 Block Transfer Example (HCNT)

Label Instruction Action

WORK 1 .RES. B 1 Reserves the data memory area that sets the 8-bit
data in the user program.

WORK 2 .RES. B 1 Reserves the data memory area that sets the
number of bits of logical 1s in the 8-bit data in the
user program.

MOV. L @WORK1,R0L Sets the 8-bit data as set in the user program as an
input argument.

@HCNTJSR

Subroutine call to HCNT.

MOV. B R0H,@WORK2 Stores the number of bits of logical 1s set in the
output argument in the data memory area of the
user program.

77

4.6.5 Principles of Operation

• The rotate instruction (ROTL.B) is used and the 8-bit data (R0L) is set 1 bit at a time in the C
bit.

• When the logical 1 counter (R0H) is added to 0 using the add instruction with carry (ADDX.B),
1 is added to the logical 1 counter if the C bit is 1 and 0 is added to the logical 1 counter if the C
bit is 0.

• The two steps above are repeated until the rotate counter (R1L) becomes 0, which reveals the
number of logical 1s in the 8-bit data.

78

Yes

No

RTS

Rotate counter = 0?

The rotate counter
is set to 8 (R1L)

HCNT

To return the 8-bit data to its input
state, it is shifted 1 bit to the left

The rotate counter (R1L)
is decremented

The MSB of the 8-bit data
(R0L) is set to the C bit

The logical 1 counter (R0H)
is added to the C bit

The logical 1 counter
(R0H) is cleared

Figure 4.18 HCNT Flowchart

79

4.6.6 Program Listing

80

4.7 Find the First 1 in 32-Bit Data

MCU: H8/300H Series

Label Name: FIND1

Functions Used: SHLL.L Instruction

Function: Identifies the bits of 32-bit data in order from bit 31 and finds the number of the first bit
that is a 1.

Table 4.11 FIND1 Arguments

Contents Storage Location Data Length (Bytes)

Input 32-bit data ER0 4

Output Bit number (bit 31–bit 0) R1L 1

ER0

ER1

ER2

ER3

ER4

ER5

ER6

ER7(SP)

31 1516 78 0

I U H U N Z V C
— — — 0 ↔↔

Bit number

— 0

—

↔

0
1

: No change
: Changes
: Locked to 0
: Locked to 1

32-bit data

Figure 4.19 Changes in Internal Registers and Flag Changes for FIND1

81

14

0

0

398

Program memory (bytes)

Data memory (bytes)

Stack (bytes)

Number of states

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Caution: The number of states given in the programming specifications is the value when the
32-bit data is H'00000000.

Figure 4.20 Programming Specifications

82

4.7.1 Description of Functions

Arguments are as follows:

• ER0: Sets the 32-bit data.

• R1L: Sets the number of the first bit found to have a 1 (bit 31 to bit 0).

Figure 4.21 s an example of execution of the software FIND1. When the input arguments are set
as shown, the number of the first bit with a 1 is set in R1L.

Bit 31
00010000

Bit number

B1
Output

arguments

Input
arguments 10100010 00110111 0110111

Bit 27 Bit 0
1ER0

R1L

Figure 4.21 Executing FIND1

4.7.2 Cautions for Use

When the 32-bit data is H'00000000, H'FF is set as the bit number (R1L).

4.7.3 Description of Data Memory

No data memory is used by FIND1.

83

4.7.4 Examples of Use

After setting the 32-bit data, do a subroutine call of FIND1.

Table 4.12 Block Transfer Example (FIND1)

Label Instruction Action

WORK 1 .RES. L 1 Reserves the data memory area that sets the 32-bit
data in the user program.

WORK 2 .RES. B 1 Reserves the data memory area that sets the
number of the bit that has the first 1.

MOV. L @WORK1,ER0 Sets the 32-bit data set in the user program as an
input argument.

@FIND1JSR Subroutine call of FIND1

MOV. B R0H,@WORK2 Stores the number of the first bit set in the output
argument that has a 1 in the data memory area of
the user program.

4.7.5 Principles of Operation

• The SHLL.L instruction stores the bits of 32-bit data in the C bit in order from bit 31 in order to
identify the bits.

• When the C bit becomes 1, the counter for finding the bit number (R1L) is decremented and
FIND1 ends.

84

Yes

No

The counter (R1L)
is set to H'20

FIND1

The MSB of the 32-bit data
(ER0) is set to the C bit by

the SHLL.L instruction

The counter (R1L)
is decremented

Counter (R1L)
is decremented

RTS

C bit = 0?

Yes

No

Counter (R1L) = 0?

Figure 4.22 FIND1 Flowchart

85

4.7.6 Program Listing

86

4.8 64-Bit Binary Addition

MCU: H8/300H Series

Label Name: ADD

Functions Used: ADD.L Instruction

Function: Does binary addition in the format: Summand (signed 64 bits) + addend (signed 64
bits) = sum (signed 64 bits).

Table 4.13 ADD Arguments

Contents Storage Location Data Length (Bytes)

Input Bottom 32 bits of summand (signed 64
bits)

ER1 4

Top 32 bits of addend (signed 64 bits) ER2 4

Bottom 32 bits of addend (signed 64
bits)

ER3 4

Output Top 32 bits of sum (signed 64 bits) ER0 4

Bottom 32 bits of sum (signed 64 bits) ER1 4

Existence of carrying (yes = 0, no = 1) C flag (CCR) 1

87

ER0

ER1

ER2

ER3

ER4

ER5

ER6

ER7(SP)

31 1516 78 0

I U H U N Z V C
— — — 0

Top 32 bits of summand, top 32 bits of sum

Bottom 32 bits of summand, bottom 32 bits of sum

Bottom 32 bits of addend

Top 32 bits of addend

↔ ↔ ↔ ↔

—

↔

0
1

: No change
: Changes
: Locked to 0
: Locked to 1

Figure 4.23 Changes in Internal Registers and Flag Changes for ADD

88

18

0

0

26

Program memory (bytes)

Data memory (bytes)

Stack (bytes)

Number of states

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Figure 4.24 Programming Specifications

89

4.8.1 Description of Functions

Arguments are as follows:

• ER0: Sets the top 32-bits of the summand (signed 64 bits) as an input argument. Sets the top 32
bits of the sum (signed 64 bits) as an output argument.

• ER1: Sets the bottom 32-bits of the summand (signed 64 bits) as an input argument. Sets the
bottom 32 bits of the sum (signed 64 bits) as an output argument.

• ER2: Sets the top 32-bits of the addend (signed 64 bits) as an input argument.

• ER3: Sets the bottom 32-bits of the addend (signed 64 bits) as an input argument.

• C flag (CCR): Indicates whether a carry has occurred after execution of ADD.

— When C flag = 0: Indicates a carry has occurred.

— When C flag = 1: Indicates no carry has occurred.

Figure 4.25 is an example of execution of the software ADD. When the input arguments are set as
shown, the results of addition are set in ER0 and ER1.

4.8.2 Cautions for Use

Since the results of addition are set in the register used to set the summand, the summand is
destroyed when ADD is executed. When you will still require the summand after executing ADD,
save the summand elsewhere in memory beforehand.

4.8.3 Description of Data Memory

No data memory is used by ADD.

Bit 63
C5763A

ER1
C3F1BB

Bit 0
BA00

ER0

Bit 63
5CED02

ER3
260A89

Bit 0
4051

ER2

Bit 63
22644C

ER1
E9FB35

Bit 0
FA51

ER0
0

C bit

+)

Output
arguments

Input
arguments

Figure 4.25 Executing ADD

90

4.8.4 Examples of Use

After setting the summand and addend, does a subroutine call to ADD.

Table 4.14 Block Transfer Example (ADD)

Label Instruction Action

WORK 1 .RES. L 1 Reserves the data memory area that sets the
top 32-bits of the summand (signed 64 bits) in
the user program.

WORK 2 .RES. L 1 Reserves the data memory area that sets the
bottom 32-bits of the summand (signed 64 bits)
in the user program.

WORK 3 .RES. L 1 Reserves the data memory area that sets the
top 32-bits of the addend (signed 64 bits) in the
user program.

WORK 4 .RES. L 1 Reserves the data memory area that sets the
bottom 32-bits of the addend (signed 64 bits) in
the user program.

MOV. L @WORK1,ER0 Set as the input argument the top 32-bits of the
summand set in the user program.

MOV. L @WORK2,ER1 Set as the input argument the bottom 32-bits of
the summand set in the user program.

MOV. L @WORK3,ER2 Set as the input argument the top 32-bits of the
addend set in the user program.

MOV. L @WORK4,ER3 Set as the input argument the bottom 32-bits of
the addend set in the user program.

@ADDJSR

OVERBCS

Processing routine for carrying overOVER

Subroutine call to ADD.

When carrying occurs, the routine branches to
the processing routine for carrying.

91

4.8.5 Principles of Operation

• Bits 0–31 are added using the ADD.L instruction.

• Bits 32–63 are added in 1-byte units from the bottom using the addition instruction with
carrying (ADDX.B), which can handle carrying. Since bits 48–55 are on the extended register,
the addition instruction with carry is transferred into a usable general register and addition is
then performed.

RTS

Bits 0–31 added using
the ADD.L instruction

ADD

Bits 32–39 added using
the ADDX.B instruction

Bits 40–47 added using
the ADDX.B instruction

Top 16 bits of the summand
transferred to general register (R2)

Top 16 bits of the addend
transferred to general register (R3)

Bits 48–55 added using
the ADDX.B instruction

Bits 56–63 added using
the ADDX.B instruction

Figure 4.26 ADD Flowchart

92

4.8.6 Program Listing

93

4.9 64-Bit Binary Subtraction

MCU: H8/300H Series

Label Name: SUB

Functions Used: SUB.L Instruction

Function: Does binary subtraction in the format: minuend (signed 64 bits) – subtrahend (signed
64 bits) = difference (signed 64 bits).

Table 4.15 SUB Arguments

Contents Storage Location Data Length (Bytes)

Input Top 32 bits of minuend (signed 64 bits) ER0 4

Bottom 32 bits of minuend (signed 64
bits)

ER1 4

Top 32 bits of subtrahend (signed 64
bits)

ER2 4

Bottom 32 bits of subtrahend (signed 64
bits)

ER3 4

Output Top 32 bits of difference (signed 64 bits) ER0 4

Bottom 32 bits of difference (signed 64
bits)

ER1 4

Existence of carrying C flag (CCR) 1

94

ER0

ER1

ER2

ER3

ER4

ER5

ER6

ER7(SP)

31 1516 78 0

I U H U N Z V C
— — — 0

Top 32 bits of minuend, top 32 bits of difference

Bottom 32 bits of minuend,
bottom 32 bits of difference

Bottom 32 bits of subtrahend

Top 32 bits of subtrahend

↔ ↔ ↔ ↔

—

↔

0
1

: No change
: Changes
: Locked to 0
: Locked to 1

Figure 4.27 Changes in Internal Registers and Flag Changes for SUB

95

18

0

0

26

Program memory (bytes)

Data memory (bytes)

Stack (bytes)

Number of states

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Figure 4.28 Programming Specifications

96

4.9.1 Description of Functions

Arguments are as follows:

• ER0: Sets the top 32-bits of minuend (signed 64 bits) as an input argument. Sets the top 32 bits
of the difference (signed 64 bits) as an output argument.

• ER1: Sets the bottom 32-bits of the minuend (signed 64 bits) as an input argument. Sets the
bottom 32 bits of the difference (signed 64 bits) as an output argument.

• ER2: Sets the top 32-bits of the subtrahend (signed 64 bits) as an input argument.

• ER3: Sets the bottom 32-bits of the subtrahend (signed 64 bits) as an input argument.

• C flag (CCR): Indicates whether a borrow has occurred after execution of SUB.

— When C flag = 1: Indicates a borrow has occurred.

— When C flag = 0: Indicates no borrow has occurred.

• Figure 4.29 is an example of execution of the software SUB. When the input arguments are set
as shown, the results of subtraction are set in ER0 and ER1.

Bit 63
ABCDEF

ER1
FFFF89

Bit 0
FFFF

ER0

Bit 63
9ABCDE

ER3
FFFF78

Bit 0
FFFF

ER2

Bit 63
111111

ER1
000011

Bit 0
0000

ER0
0

C bit

+)

Output
arguments

Input
arguments

Figure 4.29 Executing SUB

4.9.2 Cautions for Use

Since the results of subtraction are set in the register used to set the minuend, the minuend is
destroyed after SUB is executed. When you will still require the minuend after executing SUB,
save the minuend elsewhere in memory beforehand.

4.9.3 Description of Data Memory

No data memory is used by SUB.

97

4.9.4 Examples of Use

After setting the subtrahend and minuend, does a subroutine call to SUB.

Table 4.16 Block Transfer Example (SUB)

Label Instruction Action

WORK 1 .RES. L 1 Reserves the data memory area that sets the top
32-bits of the minuend (signed 64 bits) in the user
program.

WORK 2 .RES. L 1 Reserves the data memory area that sets the
bottom 32-bits of the minuend (signed 64 bits) in
the user program.

WORK 3 .RES. L 1 Reserves the data memory area that sets the top
32-bits of the subtrahend (signed 64 bits) in the
user program.

WORK 4 .RES. L 1 Reserves the data memory area that sets the
bottom 32-bits of the subtrahend (signed 64 bits)
in the user program.

MOV. L @WORK1,ER0 Set as the input argument the top 32-bits of the
minuend set in the user program.

MOV. L @WORK2,ER1 Set as the input argument the bottom 32-bits of the
minuend set in the user program.

MOV. L @WORK3,ER2 Set as the input argument the top 32-bits of the
subtrahend set in the user program.

MOV. L @WORK4,ER3 Set as the input argument the bottom 32-bits of the
subtrahend set in the user program.

@SUBJSR

OVERBCS

Processing routine for borrowingOVER

Subroutine call to SUB.

When borrowing occurs, the routine branches to
the processing routine for borrowing.

98

4.9.5 Principles of operation

• Bits 0–31 are subtracted using the SUB.L instruction.

• Bits 32–63 are subtracted in 1-byte units from the bottom using the subtraction instruction with
carrying (SUBX.B), which can handle borrowing. Since bits 48–55 are in the extended register,
the subtraction instruction with borrow is transferred into the usable general register and
subtraction is then performed.

RTS

Bits 0–31 subtracted using
the SUB.L instruction

SUB

Bits 32–39 subtracted using
the SUBX.B instruction

Bits 40–47 subtracted using
the SUBX.B instruction

Top 16 bits of the minuend
transferred to the general register (R2)

Top 16 bits of the subtrahend
transferred to the general register (R3)

Bits 48–55 subtracted using
the SUBX.B instruction

Bits 56–63 subtracted using
the SUBX.B instruction

Figure 4.30 SUB Flowchart

99

4.9.6 Program Listing

100

4.10 Unsigned 32-Bit Binary Multiplication

MCU: H8/300H Series

Label Name: MUL

Functions Used: MULXU.W Instruction

Function: Does multiplication in the format: Multiplicand (unsigned 32 bits) × multiplier
(unsigned 32 bits) = product (unsigned 64 bits).

Table 4.17 MUL Arguments

Contents Storage Location Data Length (Bytes)

Input Multiplicand (unsigned 32 bits) ER0 4

Multiplier (unsigned 32 bits) ER1 4

Output Top 32 bits of product (unsigned 64 bits) ER0 4

Bottom 32 bits of product (unsigned 64
bits)

ER1 4

101

ER0

ER1

ER2

ER3

ER4

ER5

ER6

ER7(SP)

31 1516 78 0

I U H U N Z V C
— — —

Work

Work

—

↔

0
1

↔ ↔ ↔ ↔↔
: No change
: Changes
: Locked to 0
: Locked to 1

Multiplicand
Top 32 bits of product

Multiplier
Bottom 32 bits of product

Figure 4.31 Changes in Internal Registers and Flag Changes for MUL

102

34

0

0

126

Program memory (bytes)

Data memory (bytes)

Stack (bytes)

Number of states

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Caution: The number of states in the programming specifications is the value when calculating
as H'FFFFFFFF x H'FFFFFFFF.

Figure 4.32 Programming Specifications

103

4.10.1 Description of functions

Arguments are as follows:

• ER0: Sets the multiplicand (unsigned 32 bits) as an input argument. Sets the top 32 bits of the
product (unsigned 64 bits) as an output argument.

• ER1: Sets the multiplier (unsigned 32 bits) as an input argument. Sets the bottom 32 bits of the
product (unsigned 64 bits) as an output argument.

• Figure 4.33 is an example of execution of the software MUL. When the input arguments are set
as shown, the product is set in ER0 and ER1.

ER0
FFFF FFFF

ER1
FFFF FFFF

FFFFFF
ER1
0000EF 1000

ER0

×)

Output
arguments

Input
arguments

Figure 4.33 Executing MUL

4.10.2 Cautions for Use

Since the product is set in the register used to set the multiplicand and multiplier, the multiplicand
and multiplier are destroyed after MUL is executed. When you will still require the multiplicand
and multiplier after executing MUL, save them elsewhere in memory beforehand.

4.10.3 Description of Data Memory

No data memory is used by MUL.

104

4.10.4 Examples of Use

After setting the multiplicand and multiplier, do a subroutine call to MUL.

Table 4.18 Block Transfer Example (MUL)

Label Instruction Action

WORK 1 .RES. L 1 Reserves the data memory area that sets the
multiplicand (unsigned 32 bits) in the user program.

WORK 2 .RES. L 1 Reserves the data memory area that sets the
multiplier (unsigned 32 bits) in the user program.

MOV. L @WORK1,ER0 Sets as the input argument the 32-bit binary
multiplicand set in the user program.

MOV. L @WORK2,ER1 Sets as the input argument the 32-bit binary
multiplier set in the user program.

@MULJSR Subroutine call to MUL.

105

4.10.5 Principles of Operation

• The partial products of two 16-bit binary numbers are found using the multiplication instruction
(MULXU.W) and the results of multiplication are then integrated to perform 32-bit binary
multiplication, as shown in figure 4.34.

Bottom 16 bits
of multiplicand

R0E0

ER1

×)

...Partial
 product (1)

ER1ER0

Top 16 bits
of multiplicand

Bottom 16 bits
of multiplier

R1E1
Top 16 bits
of multiplier

Bottom 16 bits of multiplicand ×
bottom 16 bits of multiplier

ER3
...Partial
 product (2)

Top 16 bits of multiplicand ×
bottom 16 bits of multiplier

ER2
...Partial
 product (3)

Bottom 16 bits of multiplicand ×
top 16 bits of multiplier

ER0
...Partial
 product (4)

Top 16 bits of multiplicand ×
top 16 bits of multiplier

...Results of
 multiplication

Figure 4.34 Multiplication

106

1

Yes

No

Is there a carry?

Bottom 16 bits of multiplicand
× bottom 16 bits of multiplier:

Partial product 1

MUL

Top 16 bits of multiplicand
× bottom 16 bits of multiplier:

Partial product 2

Bottom 16 bits of multiplicand
× top 16 bits of multiplier:

Partial product 3

Top 16 bits of multiplicand
× top 16 bits of multiplier:

Partial product 4

Partial product 2 +
partial product 3

Increment top 16 bits of
results of multiplication (E0)

Figure 4.35 MUL Flowchart

107

1

Yes

No

Is there a carry?

Top 16 bits of partial product 1
+ bottom 16 bits of (partial

product 2 + partial product 3)

RTS

Bottom 16 bits of partial
product 4 + top 16 bits of (partial

product 2 + partial product 3)

Increment top 16 bits of
results of multiplication

Yes

No Increment top 32 bits of
results of multiplication

Is there a carry?

Figure 4.35 MUL Flowchart (cont)

108

4.10.6 Program Listing

109

4.11 Unsigned 32-Bit Binary Division

MCU: H8/300H Series

Label Name: DIV

Functions Used: SHLL.L Instruction, ROTXL.L Instruction

Function: Does division in the format: Dividend (unsigned 32 bits) / divisor (unsigned 32 bits) =
quotient (unsigned 32 bits) … remainder (unsigned 32 bits). Dividing by 0 sets the Z flag.

Table 4.19 DIV Arguments

Contents Storage Location Data Length (Bytes)

Input Dividend (unsigned 32 bits) ER0 4

Divisor (unsigned 32 bits) ER1 4

Output Quotient (unsigned 32 bits) ER0 4

Remainder (unsigned 32 bits) ER2 4

Presence of error (division by 0)
(Yes, Z = 0; No, Z = 1)

Z flag (CCR) 1

110

ER0

ER1

ER2

ER3

ER4

ER5

ER6

ER7(SP)

31 1516 78 0

I U H U N Z V C
— — —

Divisor

Work

Remainder

↔ ↔ ↔ ↔↔
—

↔

0
1

: No change
: Changes
: Locked to 0
: Locked to 1

Dividend
Quotient

Figure 4.36 Changes in Internal Registers and Flag Changes for DIV

111

30

0

0

762

Program memory (bytes)

Data memory (bytes)

Stack (bytes)

Number of states

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Caution: The number of states in the programming specifications is the value when calculating
as H'FFFFFFFF / H'1.

Figure 4.37 Programming Specifications

112

4.11.1 Description of Functions

Arguments are as follows:

• ER0: Sets the dividend (unsigned 32 bits) as an input argument. Sets the quotient (unsigned 32
bits) as an output argument.

• ER1: Sets the divisor (unsigned 32 bits) as an input argument.

• ER2: Sets the remainder (unsigned 32 bits) as an output argument.

• Z Flag (CCR): Indicates whether there are any errors (division by 0) after execution of DIV.

— When Z flag = 1: Indicates that there is an error in the division executed.

— When Z flag = 0: Indicates that there is no error in the division executed.

Figure 4.38 is an example of execution of the software DIV. When the input arguments are set as
shown, the quotient is set in ER0 and the remainder is set in ER1.

With the software DIV, the first thing done is to determine if the divisor is 0 or nonzero; if it is 0,
DIV ends.

ER2
0000 0000

ER0
FFFF FFFF

FFFF FFFF

ER1

BCDE 789A

Input arguments

Output arguments

0
Z flag

ER0

Figure 4.38 Executing DIV

4.11.2 Cautions for Use

Since the quotient is set in ER0, the dividend is destroyed after DIV is executed. When you will
still require the dividend after executing DIV, save it elsewhere in memory beforehand.

4.11.3 Description of Data Memory

No data memory is used by DIV.

113

4.11.4 Examples of Use

After setting the dividend and divisor, do a subroutine call to DIV.

Table 4.20 Block Transfer Example (DIV)

Label Instruction Action

WORK 1 .RES. L 1 Reserves the data memory area that sets the
dividend (unsigned 32 bits) in the user program.

WORK 2 .RES. L 1 Reserves the data memory area that sets the divisor
(unsigned 32 bits) in the user program.

MOV. L @WORK1,ER0 Sets as the input argument the dividend (unsigned
32 bits) set in the user program.

MOV. L @WORK2,ER1 Sets as the input argument the divisor (unsigned 32
bits) set in the user program.

@DIVJSR Subroutine call to DIV.

114

4.11.5 Principles of Operation

• Binary division finds the quotient and remainder by repeatedly subtracting. In figure 4.39,
H'0D is divided by H'03 as an example of the division operation.

100
1101

–) 11
Divisor → 11

00
–) 11

–01
+) 11

3 6

← Quotient
← Dividend

1
2
4
5

← Remainder

001
–) 11

–10
+) 11

001

Figure 4.39 Division

• Detailed description of the program:

i. Sets the number of shifts in the counter R3L (which indicates the number of shifts).

ii. The dividend is shifted 1 bit to the left and the MSB loaded in the C bit is set in the LSB of
ER2 (which stores the remainder).

iii. The divisor is subtracted from ER2. When the result of subtraction is positive, the LSB of
ER0 is set (1 to 2 to 3 in figure 4.39). When the results of subtraction is negative, the LSB
of ER0 is cleared and the divisor is added to the results of subtraction, returning it to the
state prior to subtraction. ((4) to (5) to (6) in figure 4.39).

iv. The shift counter set in step (i) is decremented.

v. Steps (ii) through (iv) are repeated until the shift counter reaches –1.

115

No

Yes

Is the shift counter = 0?

RTS

Add the divisor to the
results of subtraction

Yes

No

Divisor = 0?

DIV

Set the number of shifts (32)
in the shift counter (R3L)

Clear the work area

Set the MSB of the dividend to
the LSB of the work area

Subtract the divisor from
the work area

Set the LSB of the dividend

Are the results
of subtraction ≥ 0?

Decrement the shift counter

Clear the Z flag

No

Yes

Figure 4.40 DIV Flowchart

116

4.11.6 Program Listing

117

4.12 Signed 16-Bit Binary Multiplication

MCU: H8/300H Series

Label Name: MULXS

Functions Used: MULXS.W Instruction

Function: Does multiplication in the format: Multiplicand (signed 16 bits) × multiplier (signed 16
bits) = product (signed 32 bits).

Table 4.21 MULXS Arguments

Contents Storage Location Data Length (Bytes)

Input Multiplicand (signed 16 bits) R0 2

Multiplier (signed 16 bits) E0 2

Output Product (signed 32 bits) ER0 4

ER0

ER1

ER2

ER3

ER4

ER5

ER6

ER7(SP)

31 1516 78 0

I U H U N Z V C
— — —

Product

↔ ↔— — —

—

↔

0
1

: No change
: Changes
: Locked to 0
: Locked to 1

Multiplier Multiplicand

Figure 4.41 Changes in Internal Registers and Flag Changes for MULXS

118

4

0

0

24

Program memory (bytes)

Data memory (bytes)

Stack (bytes)

Number of states

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Figure 4.42 Programming Specifications

119

4.12.1 Description of Functions

Arguments are as follows:

• E0: Sets the multiplicand (signed 16 bits) as an input argument.

• R0: Sets the multiplier (signed 16 bits) as an input argument.

• ER0: Sets the product (signed 32 bits) as an output argument.

Figure 4.43 is an example of execution of the software MULXS.B When the input arguments are
set as shown, the results of multiplication are set in ER0.

E0
FFFF

R0
FFFF

ER0
0000 1000

×)

Output
arguments

Input
arguments

Figure 4.43 Executing MULXS

4.12.2 Cautions for Use

Since the results of multiplication are set in the register used to set the multiplicand and multiplier,
the multiplicand and multiplier are destroyed after MULXS is executed. When you will still
require the multiplicand and multiplier after executing MULXS, save them elsewhere in memory
beforehand.

4.12.3 Description of Data Memory

No data memory is used by MULXS.

120

4.12.4 Examples of Use

After setting the multiplicand and multiplier, do a subroutine call to MULXS.

Table 4.22 Block Transfer Example (MULXS)

Label Instruction Action

WORK 1 RES. W 1 Reserves the data memory area that sets the
multiplicand (signed 16 bits) in the user program.

WORK 2 RES. W 1 Reserves the data memory area that sets the
multiplier (signed 16 bits) in the user program.

MOV. L @WORK1,R0 Sets as the input argument the 16-bit binary
multiplicand set in the user program.

MOV. L @WORK2,E0 Sets as the input argument the 16-bit binary
multiplier set in the user program.

@MULXSJSR Subroutine call to MULXS.

4.12.5 Principles of Operation

Use the signed 16-bit multiplication instruction MULXS.W.

MULXS

Multiplication by the signed 16-bit
multiplication instruction MULXS.W

RTS

Figure 4.44 MULXS Flowchart

121

4.12.6 Program Listing

122

4.13 Signed 32-Bit Binary Multiplication

MCU: H8/300H Series

Label Name: MULS

Functions Used: MULXU.W Instruction

Function: Does binary multiplication in the format: Multiplicand (signed 32 bits) x multiplier
(signed 32 bits) = product (signed 64 bits).

Table 4.23 MULS Arguments

Contents Storage Location Data Length (Bytes)

Input Multiplicand (signed 32 bits) ER0 4

Multiplier (signed 32 bits) ER1 4

Output Top 32 bits of product (signed 64 bits) ER3 4

Bottom 32 bits of product (signed 64
bits)

ER0 4

123

ER0

ER1

ER2

ER3

ER4

ER5

ER6

ER7(SP)

31 1516 78 0

I U H U N Z V C
— — —

Top 32 bits of product

Work

↔ ↔ ↔ ↔

Work

↔
—

↔

0
1

: No change
: Changes
: Locked to 0
: Locked to 1

Multiplier

Multiplicand
Bottom 32 bits of product

Figure 4.45 Changes in Internal Registers and Flag Changes for MULS

124

66

0

0

156

Program memory (bytes)

Data memory (bytes)

Stack (bytes)

Number of states

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Caution: The number of states in the programming specifications is the value when calculated
as H'80000000 x H'7FFFFFFF.

Figure 4.46 Programming Specifications

125

4.13.1 Description of Functions

Arguments are as follows:

• ER0: Sets the multiplicand (signed 32 bits) as an input argument. Sets the bottom 32 bits of the
product (signed 64 bits) as an output argument.

• ER1: Sets the multiplier (signed 32 bits) as an input argument. Sets the bottom 32 bits of the
product (signed 64 bits) as an output argument.

• Sets the top 32 bits of the product (signed 64 bits) as an output argument.

Figure 4.47 is an example of execution of the software MULS. When the input arguments are set
as shown, the product is set in ER3 and ER0.

ER0
FFF7 FFFF

ER1
0008 0000

00000C
ER0
000800 0000

ER3

×)

Output
arguments

Input
arguments

Figure 4.47 Executing MULS

4.13.2 Cautions for Use

Since the results of multiplication are set in the register used to set the multiplicand and multiplier,
the multiplicand and multiplier are destroyed after MULS is executed. When you will still require
the multiplicand and multiplier after executing MULS, save them elsewhere in memory
beforehand.

4.13.3 Description of Data Memory

No data memory is used by MULS.

126

4.13.4 Examples of Use

After setting the multiplicand and multiplier, do a subroutine call to MULS.

Table 4.24 Block Transfer Example (MULS)

Label Instruction Action

WORK 1 .RES. L 1 Reserves the data memory area that sets the
multiplicand (signed 32 bits) in the user program.

WORK 2 .RES. L 1 Reserves the data memory area that sets the
multiplier (signed 32 bits) in the user program.

MOV. L @WORK1,ER0 Sets as the input argument the multiplicand
(signed 32 bits) set in the user program.

MOV. L @WORK2,ER1 Sets as the input argument the multiplier (signed
32 bits) set in the user program.

@MULSJSR Subroutine call to MULS.

127

4.13.5 Principles of Operation

• Negative multiplicands and multipliers are converted to positive.

• The product is found by taking the partial products ((1), (2), (3) and (4) in figure 4.48) and then
accumulating the results of multiplication (figure 4.48 (5)). The partial products are found by
using the signed multiplication instruction (MULXU.W) on two 16-bit binary numbers.

• The product is then converted to negative if the sign flag is 1, as shown in table 4.25.

Bottom 16 bits
of multiplicand

R0E0

ER0

×)

...Partial
 product (1)

ER0ER3

Top 16 bits
of multiplicand

Bottom 16 bits
of multiplier

R1E1
Top 16 bits
of multiplier

Bottom 16 bits of multiplicand ×
bottom 16 bits of multiplier

ER1
...Partial
 product (2)

Top 16 bits of multiplicand ×
bottom 16 bits of multiplier

ER2
...Partial
 product (3)

Bottom 16 bits of multiplicand ×
top 16 bits of multiplier

ER3
...Partial
 product (4)

Top 16 bits of multiplicand ×
top 16 bits of multiplier

...Results of
 multiplication (5)

Figure 4.48 Multiplication

Table 4.25 Sign of Results of Multiplication and Sign Flag

Multiplicand Multiplier Product Sign Flag

Positive Positive Positive 0

Negative Negative 1

Negative Positive Negative 1

Negative Positive 0

128

1

No

Yes

Is multiplicand ≥ 0?

MULS

Bottom 16 bits of mutiplicand
× bottom 16 bits of multiplier:

Partial product 1

Multiplicand converted
to positive

Clear sign flag

Sign flag inverted

No

Yes

Is multiplier ≥ 0?

Multiplier converted
to positive

Sign flag inverted

Top 16 bits of mutiplicand
× bottom 16 bits of multiplier:

Partial product 2

Bottom 16 bits of mutiplicand
× top 16 bits of multiplier:

Partial product 3

Top 16 bits of mutiplicand
× top 16 bits of multiplier:

Partial product 4

Figure 4.49 MULS Flowchart

129

1

Yes

No

Is C flag = 1?

Partial product 2 +
partial product 3

Increment register E3

Top 16 bits of partial product 1
+ bottom 16 bits of (partial

product 2 + partial product 3)

Yes

No

Is C flag = 1?

Increment register ER3

Bottom 16 bits of partial
product 4 + top 16 bits of (partial

product 2 + partial product 3)

Yes

No

Is C flag = 1?

Increment register E3

2

Figure 4.49 MULS Flowchart (cont)

130

Yes

No

Is the sign flag = 0?

Invert bottom 32 bits of the
results of multiplication

Yes

No

Is Z flag = 1?

Increment register ER3

RTS

Invert top 32 bits of the
results of multiplication

Increment bottom 32 bits of
the results of multiplication

2

Figure 4.49 MULS Flowchart (cont)

131

4.13.6 Program Listing

132

4.14 Signed 32-Bit Binary Division (16-Bit Divisor)

MCU: H8/300H Series

Label Name: DIVXS

Functions Used: DIVXS.W Instruction

Function: Does division in the format: Dividend (signed 32 bits) / divisor (signed 16 bits) =
quotient (signed 32 bits) … remainder (signed 16 bits).

Table 4.26 DIVXS Arguments

Contents Storage Location Data Length (Bytes)

Input Dividend (signed 32 bits) ER1 4

Divisor (signed 16 bits) R0 2

Output Quotient (signed 32 bits) ER2 4

Remainder (signed 16 bits) E1 2

Presence of error Z flag (CCR) 1

133

ER0

ER1

ER2

ER3

ER4

ER5

ER6

ER7(SP)

31 1516 78 0

I U H U N Z V C
— — —

Divisor

Dividend

Quotient

↔ ↔— 0

—

↔

0
1

: No change
: Changes
: Locked to 0
: Locked to 1

Remainder

—

Figure 4.50 Changes in Internal Registers and Flag Changes for DIVXS

134

26

0

0

76

Program memory (bytes)

Data memory (bytes)

Stack (bytes)

Number of states

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Caution: The number of states in the programming specifications is the value when calculated
as H'80000000 / H7FFF'.

Figure 4.51 Programming Specifications

135

4.14.1 Description of Functions

Arguments are as follows

• R0: Sets the divisor (signed 16 bits) as an input argument.

• ER1: Sets the dividend (signed 32 bits) as an input argument.

• ER2: Sets the quotient (signed 32 bits) as an output argument.

• E1: Sets the remainder (signed 16 bits) as an output argument.

• Z Flag (CCR): Indicates whether there are any errors (division by 0) after execution of DIVXS.

— When Z flag = 1: Indicates that there is an error in the division.

— When Z flag = 0: Indicates that there is no error in the division.

Figure 4.52 is an example of execution of the software DIVXS. When the input arguments are set
as shown, the quotient is set in ER2 and the remainder is set in ER1.

E1
0000

ER2
FFFF FFFF

FFFF FFFF

R0

789A

Input arguments

Output arguments

0
Z flag

ER1

Figure 4.52 Executing DIVXS

• With the software DIVXS, the first thing done is to determine if the divisor is 0 or nonzero; if it
is 0, DIVXS ends.

4.14.2 Cautions for Use

Since the remainder is set in E1 and the bottom 16 bits of the quotient are set in R1, the dividend
is destroyed after DIVXS is executed. When you will still require the dividend after executing
DIVXS, save it elsewhere in memory beforehand.

4.14.3 Description of Data Memory

No data memory is used by DIVXS.

136

4.14.4 Examples of Use

After setting the dividend and divisor as input arguments, do a subroutine call to DIVXS.

Table 4.27 Block Transfer Example (DIVXS)

Label Instruction Action

WORK 1 .RES. L 1 Reserves the data memory area that sets the
dividend (signed 32 bits) in the user program.

WORK 2 .RES. W 1 Reserves the data memory area that sets the
divisor (signed 16 bits) in the user program.

MOV. L @WORK1,ER1 Sets as the input argument the dividend set in the
user program.

MOV. L @WORK2,R0 Sets as the input argument the divisor set in the
user program.

@DIVXSJSR

ERRORBEQ

Processing routine for errorsERROR

Subroutine call to DIVXS.

When division by 0 is attempted, the program
branches to the processing routine for errors.

4.14.5 Principles of Operation

• First, the program searches for zero-division errors. If there is such an error, the divisor is
transferred to the register in which it is itself stored so that the resulting Z bit can be used to
determine if the divisor is 0. If the Z bit is 1 (divisor = 0), DIVXS ends.

• When 32 bits is being divided by 16 bits using the signed division instruction (DIVXS.W), a
quotient of 16 bits is found. The quotient will thus overflow when division such as
H'FFFFF/H'1 is performed. For that reason, a quotient of 32 bits is found using the following
procedure.

— The top 16 bits of the dividend are sent to R2 and sign-extended into 32 bits (figure 4.53
(1)).

— The top 16 bits of the dividend are divided to obtain the top 16 bits of the quotient (ii)
(figure 4.53 (2)).

— The remainder of (ii) (remainder 1) is sent to R1 (figure 4.53 (3)).

— Division is performed on the bottom 16 bits of the dividend to find the bottom 16 bits of the
quotient and the remainder (remainder 2) (figure 4.53 (4)).

137

Dividend
(top 16 bits)

ER1

1

/ =

3

2

ER2

Dividend
(bottom 16 bits)

Sign
extension

Dividend
(top 16 bits)

R0

Divisor

ER2

Remainder 1
Quotient

(top 16 bits)

/ = 4

ER1

Remainder 1 Dividend
(bottom 16 bits)

R0

Divisor

ER1
Quotient

(bottom 16 bits)Remainder 2

Figure 4.53 Overflow Processing

138

Yes

No

Is divisor = 0?
(Z bit = 1)

Sign-extend the top 16 bits of
the dividend to 32 bits

RTS

Divide the top 16 bits of the
dividend that was extended to

32 bits (ER2) by the divisor (R0)

DIVXS

Divide the bottom 16 bits (ER1)
of the dividend, whose top 16

bits are the remainder (E2)
from the division of the top 16

bits of the dividend(ER2),
by the divisor (R0)

Set the top 16 bits of the
quotient (R2) as an output

argument (E2)

Set the bottom 16 bits of the
quotient (R1) as an output

argument (R2)

Clear the Z flag

Figure 4.54 DIVXS Flowchart

139

4.14.6 Program Listing

140

4.15 Signed 32-Bit Binary Division (32-Bit Divisor)

MCU: H8/300H Series

Label Name: DIVS

Functions Used: SHLL.L Instruction, ROTL.L Instruction, NEG.L Instruction

Function: Does division in the format: Dividend (signed 32 bits) / divisor (signed 32 bits) =
quotient (signed 32 bits) … remainder (signed 32 bits).

Table 4.28 DIVS Arguments

Contents Storage Location Data Length (Bytes)

Input Dividend (signed 32 bits) ER0 4

Divisor (signed 32 bits) ER1 4

Output Quotient (signed 32 bits) ER0 4

Remainder (signed 32 bits) ER2 4

Presence of error Z flag (CCR) 1

141

ER0

ER1

ER2

ER3

ER4

ER5

ER6

ER7(SP)

31 1516 78 0

I U H U N Z V C
— — —

Dividend

Divisor

Remainder

↔ ↔ ↔ ↔

Work

↔

Work

—

↔

0
1

: No change
: Changes
: Locked to 0
: Locked to 1

Quotient

Figure 4.55 Changes in Internal Registers and Flag Changes for DIVS

142

66

0

0

770

Program memory (bytes)

Data memory (bytes)

Stack (bytes)

Number of states

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Caution: The number of states in the programming specifications is the value when calculated
as H'80000000 / H7FFFFFFF.

Figure 4.56 Programming Specifications

143

4.15.1 Description of Functions

Arguments are as follows:

• ER0: Sets the dividend (unsigned 32 bits) as an input argument. Sets the quotient (unsigned 32
bits) as an output argument.

• ER1: Sets the divisor (unsigned 32 bits) as an input argument.

• ER2: Sets the remainder (unsigned 32 bits) as an output argument.

• Z Flag (CCR): Indicates whether there are any errors (division by 0) after execution of DIVS.

— When Z flag = 1: Indicates that there is an error in the division.

— When Z flag = 0: Indicates that there is no error in the division.

• Figure 4.57 is an example of execution of the software DIVS. When the input arguments are set
as shown, the quotient is set in ER0 and the remainder is set in ER2.

• When the divisor is 0, DIVS ends immediately.

ER2
0000 0000

ER0
FFFF FFFF

FFFF FFFF

ER1

0000 1000

Input arguments

Output arguments

0
Z flag

ER0

Figure 4.57 Executing DIVS

4.15.2 Cautions for Use

Since the quotient is set in ER0, the dividend is destroyed after DIVS is executed. When you will
still require the dividend after executing DIVS, save it elsewhere in memory beforehand.

4.15.3 Description of Data Memory

No data memory is used by DIVS.

144

4.15.4 Examples of Use

After setting the dividend and divisor, do a subroutine call to DIVS.

Table 4.29 Block Transfer Example (DIVS)

Label Instruction Action

WORK 1 .RES. L 1 Reserves the data memory area that sets the
dividend (signed 32 bits) in the user program.

WORK 2 .RES. L 1 Reserves the data memory area that sets the divisor
(signed 32 bits) in the user program.

MOV. L @WORK1,ER0 Sets as the input argument the dividend (signed 32
bits) set in the user program.

MOV. L @WORK2,ER1 Sets as the input argument the divisor (signed 32
bits) set in the user program.

@DIVSJSR Subroutine call to DIVS.

145

4.15.5 Principles of Operation

• Negative dividends and divisors are converted to positive.

• Division finds the quotient and remainder by repeatedly subtracting. In figure 4.58, H'0D is
divided by H'03 as an example of the division operation.

i. Sets the number of shifts in the counter R3L (which indicates the number of shifts).

ii. The dividend is shifted 1 bit to the left and the MSB loaded in the C bit is set in the LSB of
ER2 (which stores the remainder).

iii. The divisor is subtracted from ER2. When the result of subtraction is positive, the LSB of
ER0 is set. ((1) to (2) to (3) in figure 4.58). When the results of subtraction is negative, the
LSB of ER0 is cleared and the divisor is added to the results of subtraction, returning it to
the state prior to subtraction. ((4) to (5) to (6) in figure 4.58).

iv. The shift counter set in step (i) is decremented.

v. Steps (ii) through (iv) are repeated until the shift counter reaches -1.

• The quotient and/or remainder is then converted to negative if the sign flag is 1, as shown in
table 4.30.

100
1101

–) 11
Divisor → 11

00
–) 11

–01
+) 11

3 6

← Quotient
← Dividend

1
2
4
5

← Remainder

001
–) 11

–10
+) 11

001

Figure 4.58 Division Example

Table 4.30 Sign of Results of Division and the Sign Flag

Dividend Divisor Quotient Remainder Quotient Sign Flag Remainder Sign Flag

Positive Positive Positive Positive 0 0

Negative Negative Positive 1 0

Negative Positive Negative Negative 1 1

Negative Positive Positive 0 0

146

4.15.6 Program Listing

147

4.16 8-Digit Decimal Addition

MCU: H8/300H Series

Label Name: ADDD

Functions Used: DAA.B Instruction

Function: Does addition in the format: Summand (8-digit 4-bit BCD) × addend (8-digit 4-bit
BCD) = sum (8-digit 4-bit BCD).

Table 4.31 ADDD Arguments

Contents Storage Location Data Length (Bytes)

Input Summand (8-digit 4-bit BCD) ER0 4

Summand (8-digit 4-bit BCD) ER1 4

Output Sum (8-digit 4-bit BCD) ER0 4

Presence of carry (Yes, C = 1;
No, C = 0)

C flag 1

148

ER0

ER1

ER2

ER3

ER4

ER5

ER6

ER7(SP)

31 1516 78 0

I U H U N Z V C
— — —

Summand (8-digit 4-bit BCD)

Addend (8-digit 4-bit BCD)

↔ ↔ ↔ ↔0

—

↔

0
1

: No change
: Changes
: Locked to 0
: Locked to 1

Sum (8-digit 4-bit BCD)

Figure 4.59 Changes in Internal Registers and Flag Changes for DIVS

149

28

0

0

36

Program memory (bytes)

Data memory (bytes)

Stack (bytes)

Number of states

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Figure 4.60 Programming Specifications

150

4.16.1 Description of Functions

Arguments are as follows:

• ER0: Sets the summand (8-digit 4-bit BCD) as an input argument. Sets the sum (8-digit 4-bit
BCD) as an output argument.

• ER1: Sets the addend (8-digit 4-bit BCD) as an input argument.

• C flag (CCR): Indicates whether there is carrying after ADDD is executed.

— C flag = 1: Indicates there is a carry.

— C flag = 0: Indicates there is no carry.

Figure 4.61 is an example of execution of the software ADDD. When the input arguments are set
as shown, the sum is set in ER0.

ER0
0081 0000

ER1
0021 0000

C flag

+)

Output
arguments

Input
arguments

ER0
0000 00003

Figure 4.61 Executing ADDD

4.16.2 Cautions for Use

Since the results of addition are set in the register used to set the summand, the summand is
destroyed after ADDD is executed. When you will still require the summand after executing
ADDD, save it elsewhere in memory beforehand.

4.16.3 Description of Data Memory

No data memory is used by ADDD

151

4.16.4 Examples of Use

After setting the summand and addend, do a subroutine call to ADDD.

Table 4.32 Block Transfer Example (ADDD)

Label Instruction Action

WORK 1 .RES. L 1 Reserves the data memory area that sets the
summand (8-digit 4-bit BCD) in the user
program.

WORK 2 .RES. L 1 Reserves the data memory area that sets the
addend (8-digit 4-bit BCD) in the user program.

MOV. L @WORK1,ER0 Sets as the input argument the summand set in
the user program.

MOV. L @WORK2,ER1 Sets as the input argument the addend set in
the user program.

@ADDDJSR

OVERBCS

Processing routine for carrying overOVER

Subroutine call to ADDD.

When the results of addition produce carrying,
the program branches to the processing
routine for carrying.

4.16.5 Principles of Operation

• Binary addition occurs in 2-digit increments from the bottom and the results of addition are
corrected into 2 digits of 4-bit BCD by the DAA.B instruction. This process is repeated four
times.

• Addition of everything after the initial bottom 2 digits is performed by ADDX.B (addition with
carrying instruction), since carrying occurs.

• In the extended register in which the upper four digits of the summand and addend are stored,
the DAA.B and ADDX.B instructions cannot be used, so the upper 4 digits of the summand and
addend are added after transfer to the general registers.

152

RTS

Binary addition of first
and second digits

ADDD

Decimal correction of
results of addition

Binary addition with carry
of the third and fourth digits

Decimal correction of
results of addition

Transfer the top 4 digits
of the addend (E1) to R1

Transfer the lower 4 digits
of results of addition

 (R0) to E1

Transfer the top 4 digits
of the summand (E0) to R0

Binary addition with carry
of the fifth and sixth digits

Decimal correction of
results of addition

Binary addition with carry
of the seventh and

eighth digits

Decimal correction of
results of addition

Figure 4.62 ADDD Flowchart

153

4.16.6 Program Listing

155

4.17 8-Digit Decimal Subtraction

MCU: H8/300H Series

Label Name: SUBD

Functions Used: DAS.B Instruction

Function: Does subtraction in the format: Minuend (8-digit 4-bit BCD) – subtrahend (8-digit 4-bit
BCD) = difference (8-digit 4-bit BCD).

Table 4.33 SUBD Arguments

Contents Storage Location Data Length (Bytes)

Input Minuend (8-digit 4-bit BCD) ER0 4

Subtrahend (8-digit 4-bit BCD) ER1 4

Output Difference (8-digit 4-bit BCD) ER0 4

Presence of borrow (Yes, C = 1; No, C = 0) C flag (CCR) 1

156

ER0

ER1

ER2

ER3

ER4

ER5

ER6

ER7(SP)

31 1516 78 0

I U H U N Z V C
— — —

Minuend (8-digit 4-bit BCD

Subtrahend (8-digit 4-bit BCD

↔ ↔ ↔ ↔0

—

↔

0
1

: No change
: Changes
: Locked to 0
: Locked to 1

Difference (8-digit 4-bit BCD

Figure 4.63 Changes in Internal Registers and Flag Changes for SUBD

157

28

0

0

36

Program memory (bytes)

Data memory (bytes)

Stack (bytes)

Number of states

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Figure 4.64 Programming Specifications

158

4.17.1 Description of Functions

Arguments are as follows:

• ER0: Sets the minuend (8-digit 4-bit BCD) as an input argument. Sets the difference (8-digit,
4-bit BCD) as an output argument.

• ER1: Sets the subtrahend (8-digit 4-bit BCD) as an input argument.

• C flag (CCR): Indicates whether there is borrowing after SUBD is executed.

— C flag = 1: Indicates there is a borrow.

— C flag = 0: Indicates there is no borrow.

Figure 4.65 is an example of execution of the software SUBD. When the input arguments are set
as shown, the difference is set in ER0.

ER0
0081 0000

ER1
0021 0000

C flag

–)

Output
arguments

Input
arguments

ER0
0060 00000

Figure 4.65 Executing SUBD

4.17.2 Cautions for Use

Since the results of subtraction are set in the register used to set the minuend, the minuend is
destroyed after SUBD is executed. When you will still require the minuend after executing
SUBD, save it elsewhere in memory beforehand.

4.17.3 Description of Data Memory

No data memory is used by SUBD.

159

4.17.4 Examples of Use

After setting the minuend and subtrahend, do a subroutine call to SUBD.

Table 4.34 Block Transfer Example (SUBD)

Label Instruction Action

WORK 1 .RES. L 1 Reserves the data memory area that sets the
minuend (8-digit 4-bit BCD) in the user program.

WORK 2 .RES. L 1 Reserves the data memory area that sets the
subtrahend (8-digit 4-bit BCD) in the user
program.

MOV. L @WORK1,ER0 Sets as the input argument the minuend set in
the user program.

MOV. L @WORK2,ER1 Sets as the input argument the subtrahend set in
the user program.

@SUBDJSR

OVERBCS

Processing routine for borrowingOVER

Subroutine call to SUBD.

When the results of subtraction produce
borrowing, the program branches to the
processing routine for borrowing.

4.17.5 Principles of Operation

• Binary subtraction occurs in 2-digit increments from the bottom and the results of subtraction
are corrected into 2 digits of 4-bit BCD by the DAS.B instruction. This process is repeated four
times.

• Subtraction of everything after the initial bottom 2 digits is performed by SUBX.B (subtraction
with borrowing instruction), since borrowing occurs.

• In the extended register in which the upper four digits of the minuend and subtrahend are stored,
the DAS.B and SUBX.B instructions cannot be used, so the upper 4 digits of the minuend and
subtrahend are subtracted after transfer to the general registers.

160

RTS

Binary subtraction of first
and second digits

SUBD

Decimal correction of
results of subtraction

Binary subtraction with borrow
of the third and fourth digits

Decimal correction of
results of subtraction

Transfer the top 4 digits
of the subtrahend (E1) to R1

Transfer the lower 4 digits
of results of subtraction

 (R0) to E1

Transfer the top 4 digits
of the minuend (E0) to R0

Binary subtraction with borrow
of the fifth and sixth digits

Decimal correction of
results of subtraction

Binary subtraction with
borrow of the seventh and

eighth digits

Decimal correction of
results of subtraction

Figure 4.66 SUBD Flowchart

161

4.17.6 Program Listing

162

4.18 Sum of Products

MCU: H8/300H Series

Label Name: SEKIWA

Functions Used: MULXU.W Instruction

Function: Does the following sum of products on unsigned 16-bit data an, bn (n = 1, 2, …, n)
from data tables a and b. The maximum number of data n is 255.

a n bn = a1b1 + a2b2 + ... + anbn

n = 1

n
∑

Table 4.35 SEKIWA Arguments

Contents Storage Location Data Length (Bytes)

Input Start address of data table a ER0 4

Start address of data table b ER1 4

Number of data n R3H 1

Output Results of sum of products (top
8 bits)

R3L 1

Results of sum of products
(bottom 32 bits)

ER2 4

163

ER0

ER1

ER2

ER3

ER4

ER5

ER6

ER7(SP)

31 1516 78 0

I U H U N Z V C
— — —

Start address of data table a

Start address of data table b

↔ ↔ ↔ ↔1

Results of sum of products (bottom 32 bits)

Work

—

↔

0
1

: No change
: Changes
: Locked to 0
: Locked to 1

Results of sum
of products
(top 8 bits)

Number of
data n

Figure 4.67 Changes in Internal Registers and Flag Changes for SUBD

164

20

0

0

11234

Program memory (bytes)

Data memory (bytes)

Stack (bytes)

Number of states

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Caution: The number of states in the programming specifications is the value when the number
of data n is H'FF.

Figure 4.68 Programming Specifications

165

4.18.1 Description of Functions

Arguments are as follows:

• ER0: Sets the start address of data table a (multiplicands) as an input argument.

• ER1: Sets the start address of data table b (multipliers) as an input argument.

• R3H: Sets the number as an input argument.

• R3L: Sets the top 8 bits of the result of the sum of products operation as an output argument.

• ER2: Sets the bottom 32 bits of the result of the sum of products operation as an output
argument.

Figure 4.69 is an example of execution of the software. When the start address of data table a, start
address of data table b, and number are set as shown, the top 8 bits of the result of the sum of
products operation are set in R3L and bottom 32 bits of the result of the sum of products operation
are set in ER2.

FF
FF
10
00

800000

Input
argurments

Don't care

ER0
000008

Don't care

ER1
00000F

R3H
30

C6
AA

Data table a

FF
FF
CD
FF
9B
70

F00000

Data a1

Data a2

Data a3

Data b1

Data b2

Data b3

Data table b

Output arguments

5810 8CD7 16 Σ anbn = a1b1 + a2b2 + a3b3 =

R3L ER23

n = 1

Figure 4.69 Executing SEKIWA

4.18.2 Cautions for Use

Since R0H is 1 byte, set data in the range H'01 ≤ R3H ≤ H'FF.

166

4.18.3 Description of Data Memory

No data memory is used by SEKIWA.

4.18.4 Examples of Use

After setting the start address of data table a, start address of data table b and number, do a
subroutine call to SEKIWA.

Table 4.36 Block Transfer Example (SEKIWA)

Label Instruction Action

WORK 1 .RES. L 1 Reserves the data memory area that sets the start
address of data table a in the user program.

WORK 2 .RES. L 1 Reserves the data memory area that sets the start
address of data table b in the user program.

WORK 3 .RES. B 1 Reserves the data memory area that sets the
number in the user program.

MOV. L @WORK1,ER0 Sets as the input argument the start address of data
table a set in the user program.

MOV. L @WORK2,ER1 Sets as the input argument the start address of data
table b set in the user program.

MOV. B @WORK3,R3H Sets as the input argument the number set in the
user program

@SEKIWAJSR

Subroutine call to SEKIWA.

4.18.5 Principles of Operation

1. ER0 and ER1 are used as pointers to the addresses of the multiplicand (data table a) and
multiplier (data table b) data. After the multiplicands and multipliers are set in E4 and R4
respectively, the program increments to the next data address by post-increment register
indirect.

2. E4 and R4 are de-signed and multiplied.

3. The results of multiplication stored in ER4 are added to ER2, where the bottom 32 bits of the
results of the sum of products are stored.

4. Because of carrying, addition of R3L, where the top 8 bits of the result of the sum of products
is stored, uses addition with carrying.

5. R3H is decremented and the processes of steps 1 through 4 repeat until R3H = –1.

167

Yes

No

RTS

Is the item
number (R3H) = –1?

Data an (@ER0) of data table a
is set in the multiplier register (E4)

SEKIWA

Data bn (@ER1) of data table b
is set in the multiplier register (R4)

Increment to the address of the
next data an + 1 of data table a

Increment to the address of the
next data bn + 1 of data table b

Multiply

Add the results of multiplication
(ER4) to the lower 32 bits of the

result of the sum of products (ER2)

Add the C bit to the top 8 bits
of the results of the sum of

products (R3L)

Decrement the item number (R3H)

Figure 4.70 SEKIWA Flowchart

168

4.18.6 Program Listing

169

4.19 Sorting

MCU: H8/300H Series

Label Name: SORT

Functions Used: Post-Increment Register Indirect, Pre-Decrement Register Indirect

Function: Sorts data (unsigned 16 bits) of the data table from largest to smallest. The maximum
number of data is 65535.

Table 4.37 SORT Arguments

Contents Storage Location Data Length (Bytes)

Input Number of sort data R0 2

Start address of data table ER2 4

Output — — —

ER0

ER1

ER2

ER3

ER4

ER5

ER6

ER7(SP)

31 1516 78 0

I U H U N Z V C
— — — 0

Work

Start address of data table

Work Number of sort data

Work Work

0100

—

↔

0
1

: No change
: Changes
: Locked to 0
: Locked to 1

Figure 4.71 Changes in Internal Registers and Flag Changes for SORT

170

32

0

0

404

Program memory (bytes)

Data memory (bytes)

Stack (bytes)

Number of states

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Caution: The number of states in the programming specifications is the value when 5 words of data
arranged smallest to largest is sorted into largest to smallest.

Figure 4.72 Programming Specifications

171

4.19.1 Description of Functions

Arguments are as follows:

• R0: Sets the number of sort data.

• ER1: Sets the start address of the data table.

Figure 4.73 is an example of execution of the SORT software. When the input arguments are set
as shown, the data table data is sorted largest to smallest.

16FD
08A9
A06C
FF01

100000

8657

R0
5000

Input
arguments

FF01
A06C
8657
16FD

100000

08A9

Results

Sorted largest
to smallest

Don't care

ER1
000001

Figure 4.73 Executing SORT

4.19.2 Description of Data Memory

No data memory is used by SORT.

172

4.19.3 Examples of Use

After setting the start address of the data table and the number of sort data, do a subroutine call to
SORT.

Table 4.38 Block Transfer Example (SORT)

Label Instruction Action

WORK 1 .RES. W 1 Reserves the data memory area that sets the
number of sort data in the user program.

WORK 2 .RES. L 1 Reserves the data memory area that sets the start
address of the data table in the user program.

MOV. W @WORK1,R0 Sets as the input argument the number of sort data
set in the user program.

MOV. L @WORK2,ER1 Sets as the input argument the start address of the
data table set in the user program.

@SORTJSR

Subroutine call of SORT.

173

4.19.4 Principles of Operation

Figure 4.74 shows an example of sorting 3 items of data from largest to smallest.

5 10 8Input data

First time
(number of comparison

n – 1 = 2)

Second time
(number of comparison

n – 2 = 1)

5 10

10 5

10 5 8

10 5

10 8

8

5

8

8 1

2

3

4

5

Number of data n = 3

Indicates a comparison

Indicates a switch

Note:

Figure 4.74 Sorting Example

1. Selects the largest of the 3 input data and places it at the far left ((1), (2) and (3) in figure
4.74).

2. Selects the largest data from second to left to the end and places it at the second place from
left ((4) and (5) in figure 4.74).

4.19.5 Processing Method in Program

1. The number being compared (reference data) is set to E1 and the comparison number is set to
R1; the comparison is then done. Since the data being compared is supposed to be the larger
of the two numbers, the data are switched whenever the comparison number is larger.

2. ER3 is used as a pointer to the address of the comparison number. Using the post-increment
register indirect method, the pointer is incremented to the address where the next comparison
number is stored.

3. E0 is used as the counter that counts the number of comparisons done between data to find
the largest item in the group of data. Each time a comparison is completed, E0 is
decremented and the process repeats until E0 becomes 0.

4. ER2 is used as the pointer that indicates the address of the memory that stores the next largest
value. Using the post-increment register indirect method, ER2 is incremented to the address
that stores the next maximum value.

5. R0 is used as the counter that counts the number of determinations of the maximum value.
Each time a maximum value is determined, R0 is decremented and the process repeats until
R0 becomes 0.

174

Yes

No

RTS

Counter 1 = 0?

The number of sorts
(data no. – 1) is set in counter 1

SORT

Number being
compared is set in E1

Number of comparisons
is set in counter 2

Comparison number is set in R1

Is number being
compared < comparison

number?

No

Yes

Number being compared and
comparison number are exchanged

Decrement counter 2

Decrement counter 1

Yes

No Counter 2 = 0?

Figure 4.75 SORT Flowchart

175

4.19.6 Program Listing

176

177

Appendix A Instruction Set

Table A.1 Operation Symbols

Symbol Description

PC Program counter

SP Stack pointer (ER7)

CCR Condition code register

Z Zero flag of condition code register

C Carry flag of condition code register

Rs, Rd, Rn General registers <data> (8 bits: R0H/R0L–R7H/R7L and 16 bits: R0–R7, E0–
E7)

ERs, ERd General registers <address> (24 bits: ER0–ER7), <data> (32 bits: ER0–ER7)

d:8, d:16, d:24 Displacement: 8 bits/16 bits/24 bits

#xx:2/3/8/16/32 Immediate data: 2 bits/3 bits/8 bits/16 bits/32 bits

→ Left end operand transferred to right end operand

+ Add operands of both sides

- Subtract right end operand from left end operand

× Multiply both operands

÷ Divide left end operand by right end operand

∧ AND of both operands

∨ OR of both operands

⊕ Exclusive OR of both end operands

Logical complement (complement of 1)

() < > Description of execution address of operand

Table A.2 Condition Code Symbols

Symbol Description

↕ Changes with the results of operation

* Undetermined. Value not guaranteed.

0 Always cleared to 0.

- No effect on operation.

178

Notes: 1. (The number of execution states is the value when the operation code and operand
data is in the 2-cycle area that is word accessible, such as on-chip RAM.)

2. For a word-size operation: When there is a carry or borrow to or from bit 11, this bit is
set to 1; otherwise, it is cleared to 0.

3. For a longword size operation: When there is a carry or borrow to or from bit 27, this bit
is set to 1; otherwise, it is cleared to 0.

4. When the operation result is 0, the value prior to the operation is held; otherwise, it is
cleared to 0.

5. Set to 1 when the results of correction causes a carry; otherwise, the value prior to the
operation is held.

6. The number of execution states is 4n+8 when the value set for R4L (for EEPMOV.B) or
R4 (for EEPMOV.W) is n.

7. Do not use the E clock synchronous transfer instruction with the H8/3003.

A1 Number of Execution States

The number of execution states for the instruction set is the value when the operation code and
operand data is in the 2-cycle area that is word accessible, such as on-chip RAM. Operation code
resides in external memory, but its attributes (byte/word access, 2/3 state access, wait/not wait,
number of waits) can be set with the bus controller and wait state controller. The attributes of the
on-chip peripheral modules are fixed and come in two types: 3-state word access modules and 3-
state byte access modules. These combinations increase the number of execution states by the
number of states indicated in the following table.

Table A.3 Increase in Number of Execution States by Operand Data

Access Conditions Data Type
Increase in Number of
Execution States

External address (2-state byte access) Byte

Word

0

2

External address/on-chip RAM (2-state word access) Byte

Word

0

0

On-chip peripheral module (3-state byte access) Byte

Word

1

4

On-chip peripheral module (3-state word access) Byte

Word

1

1

External address (3-state byte access m cycle wait) Byte

Word

1 + m

4 + 2m

External address (3-state word access m cycle wait) Byte

Word

1 + m

1 + m

179

Table A.4 Increase in Number of Execution States by Operand Code

Access Conditions Increase in Number of Execution States

Instructio
n Length
(Byte) 2 4 6 8 10

External address (2-state byte access) Nonbranch 2 4 6 8 10

Branch 4 6 - - -

External address/on-chip RAM (2-
state word access)

Nonbranch 0 0 0 0 0

Branch 0 0 - - -

External address (3-state byte access
m cycle wait)

Nonbranch 4 + 2m 8 + 4m 12 +
6m

16 +
8m

20 +
10m

Branch 8 + 4m 12 +
6m

- - -

External address (3-state word access
m cycle wait)

Nonbranch 1 + m 2 + 2m 3 + 3m 4 + 4m 5 + 5m

Branch 2 + 2m 3 + 3m - - -

180

Table A.5 Instruction List

Addressing Mode/
Instruction Length Condition Code

Mnem-
-onic

Op.
Sz. Operation #x

x:

R
n

@
E

R
n

@
(d

:
 ,

E
R

n
)

@
–E

R
n

/@
E

R
N

+

@
aa

:

@
(d

:
 ,

P
C

)

@
@

aa

Im
p

lie
d

I UI H N Z V C N
o

. o
f

E
xe

cu
ti

o
n

S
ta

te
s

Data
transfer

MOV.B #xx:8,
Rd

B #xx:8→Rd8 2 — — — ↕ ↕ 0 — 2

instr. MOV.B Rs,Rd B Rs8→Rd8 2 — — — ↕ ↕ 0 — 2

MOV.B
@ERs,Rd

B @ERs→Rd8 2 — — – ↕ ↕ 0 — 4

MOV.B
@(d:16,ERs)Rd

B @(d:16,ERs)→Rd8 4 — — — ↕ ↕ 0 — 6

MOV.B
@(d:24,ERs),Rd

B @(d:24,ERs)→
Rd8

8 — — — ↕ ↕ 0 — 10

MOV.B
@ERs+,Rd

B @ERs→Rd8,
ERs+1→ERs

2 — — — ↕ ↕ 0 — 6

MOV.B
@aa:8,Rd

B @aa:8→Rd8 2 — — — ↕ ↕ 0 — 4

MOV.B
@aa:16,Rd

B @aa:16→Rd8 4 — — — ↕ ↕ 0 — 6

MOV.B
@aa:24,Rd

B @aa:24→Rd8 6 — — — ↕ ↕ 0 — 8

MOV.B
Rs,@ERd

B Rs8→@ERd 2 — — — ↕ ↕ 0 — 4

MOV.B
Rs,@(d:16,ERd)

B Rs8→

@(d:16,ERd)
4 — — — ↕ ↕ 0 — 6

MOV.B
Rs,@(d:24,ERd)

B Rs8→

@(d:24,ERd)
8 — — — ↕ ↕ 0 — 10

MOV.B Rs,
@–ERd

B ERd–1→ERd,
Rs8→@ERd

2 — — — ↕ ↕ 0 — 6

MOV.B Rs,
@aa:8

B Rs8→@aa:8 2 — — — ↕ ↕ 0 — 4

MOV.B Rs,
@aa:16

B Rs8→@aa:16 4 — — — ↕ ↕ 0 — 6

MOV.B Rs,
@aa:24

B Rs8→@aa:24 6 — — — ↕ ↕ 0 — 8

MOV.W#xx:16,
Rd

W #xx:16→Rd16 4 — — — ↕ ↕ 0 — 4

MOV.W Rs,Rd W Rs16→Rd16 2 — — — ↕ ↕ 0 — 2

MOV.W
@ERs,Rd

W @ERs→Rd16 2 — — — ↕ ↕ 0 — 4

MOV.W
@(d:16,ERs),Rd

W @(d:16,ERs)→
Rd16

4 — — — ↕ ↕ 0 — 6

MOV.W
@(d:24,ERs),Rd

W @(d:24,ERs)→
Rd16

8 — — — ↕ ↕ 0 — 10

MOV.W
@ERs+,Rd

W @ERs→Rd16,
ERs+2→ERs

2 — — — ↕ ↕ 0 — 6

MOV.W
@aa:16,Rd

W @aa:16→Rd16 4 — — — ↕ ↕ 0 — 6

181

Table A.5 Instruction List (cont)

Addressing Mode/
Instruction Length Condition Code

Mnem-
onic

Op.
Sz. Operation #x

x:

R
n

@
E

R
n

@
(d

:
 ,

E
R

n
)

@
–E

R
n

/@
E

R
N

+

@
aa

:

@
(d

:
 ,

P
C

)

@
@

aa

Im
p

lie
d

I UI H N Z V C N
o

. o
f

E
xe

cu
ti

o
n

S
ta

te
s

Data
transfer

MOV.W
@aa:24,Rd

W @aa:24→Rd16 6 — — — ↕ ↕ 0 — 8

instr.
(cont)

MOV.W
Rs,@ERd

W Rs16→@ERd 2 — — — ↕ ↕ 0 — 4

MOV.W
Rs,@(d:16,ERd)

W Rs16→

@(d:16,ERd)
4 — — — ↕ ↕ 0 — 6

MOV.W
Rs,@(d:24,ERd)

W Rs16→

@(d:24,ERd)
8 — — — ↕ ↕ 0 — 10

MOV.W
Rs,@– ERd

W ERd–2→ERd,
Rs16→@ERd

2 — — — ↕ ↕ 0 — 6

MOV.W
Rs,@aa:16

W Rs16→@aa:16 4 — — — ↕ ↕ 0 — 6

MOV.W
Rs,@aa:24

W Rs16→@aa:24 6 — — — ↕ ↕ 0 — 8

MOV.L#xx:32,
ERd

L #xx:32→ERd32 6 — — — ↕ ↕ 0 — 6

MOV.L
ERs,ERd

L ERs32→ERd32 2 — — — ↕ ↕ 0 — 2

MOV.L
@ERs,ERd

L @ERs→Erd32 4 — — — ↕ ↕ 0 — 8

MOV.L @
(d:16,ERs),ERd

L @(d:16,ERs)→
ERd32

6 — — — ↕ ↕ 0 — 10

MOV.L @
(d:24,ERs),ERd

L @(d:24,ERs)→
ERd32

10 — — — ↕ ↕ 0 — 14

MOV.L
@ERs+,ERd

L @ERs→ERd32,
ERs+4→ERs

4 — — — ↕ ↕ 0 — 10

MOV.L
@aa:16,ERd

L @aa:16→ERd32 6 — — — ↕ ↕ 0 — 10

MOV.L
@aa:24,ERd

L @aa:24→ERd32 8 — — — ↕ ↕ 0 — 12

MOV.L
ERs,@ERd

L ERs32→@ERd 4 — — — ↕ ↕ 0 — 8

MOV.L ERs,
@(d:16,ERd)

L ERs32→

@(d:16,ERd)
6 — — — ↕ ↕ 0 — 10

MOV.L ERs,
@(d:24,ERd)

L ERs32→

@(d:24,ERd)
10 — — — ↕ ↕ 0 — 14

MOV.L ERs,
@–ERd

L ERd–4→ERd,
ERs32→@ERd

4 — — — ↕ ↕ 0 — 10

MOV.L
ERs,@aa:16

L ERs32→@aa:16 6 — — — ↕ ↕ 0 — 10

MOV.L
ERs,@aa:24

L ERs32→@aa:24 8 — — — ↕ ↕ 0 — 12

ADD.B #xx:8,Rd B Rd8+#xx:8→Rd8 2 — — ↕ ↕ ↕ ↕ ↕ 2

ADD.B Rs,Rd B Rd8+Rs8→Rd8 2 — — ↕ ↕ ↕ ↕ ↕ 2

Arith.
Op
instr

182

Table A.5 Instruction List (cont)

Addressing Mode/
Instruction Length Condition Code

Mnem-
onic

Op.
Sz. Operation #x

x:

R
n

@
E

R
n

@
(d

:
 ,

E
R

n
)

@
–E

R
n

/@
E

R
N

+

@
aa

:

@
(d

:
 ,

P
C

)

@
@

aa

Im
p

lie
d

I UI H N Z V C N
o

. o
f

E
xe

cu
ti

o
n

S
ta

te
s

Arith.
op.

ADD.W
#xx:16,Rd

W Rd16+#xx:16→

Rd16
4 — — *1 ↕ ↕ ↕ ↕ 4

instr.
(cont)

ADD.W Rs,Rd W Rd16+Rs16→

Rd16
2 — — *1 ↕ ↕ ↕ ↕ 2

ADD.L#xx:32,
ERd

L ERd32+#xx:32→

ERd32
6 — — *1 ↕ ↕ ↕ ↕ 6

ADD.L ERs,ERd L ERd32+ERs32→

ERd32
2 — — *1 ↕ ↕ ↕ ↕ 2

ADDX.B
#xx:8,Rd

B Rd8+#xx:8+C→

Rd8
2 — — ↕ ↕ *2 ↕ ↕ 2

ADDX.B Rs,Rd B Rd8+Rs8+C→Rd8 2 — — ↕ ↕ *2 ↕ ↕ 2

ADDS #1,ERd L ERd32+1→ERd32 2 — — — — — — — 2

ADDS #2,ERd L ERd32+2→ERd32 2 — — — — — — — 2

ADDS #4,ERd L ERd32+4→ERd32 2 — — — — — — — 2

INC.B Rd B Rd8+1→Rd8 2 — — — ↕ ↕ ↕ — 2

INC.W #1,Rd W Rd16+1→Rd16 2 — — — ↕ ↕ ↕ — 2

INC.W #2,Rd W Rd16+2→Rd16 2 — — — ↕ ↕ ↕ — 2

INC.L #1,ERd L ERd32+1→ERd32 2 — — — ↕ ↕ ↕ — 2

INC.L #2,ERd L ERd32+2→ERd32 2 — — — ↕ ↕ ↕ — 2

DAA Rd B Rd8 decimal
correction→Rd8

2 — — * ↕ ↕ * *3 2

NEG.B Rd B 0–Rd8→Rd8 2 — — ↕ ↕ ↕ ↕ ↕ 2

NEG.W Rd W 0–Rd16→Rd16 2 — — *1 ↕ ↕ ↕ ↕ 2

NEG.L ERd L 0–ERd32
→ERd32

2 — — *1 ↕ ↕ ↕ ↕ 2

SUB.B Rs,Rd B Rd8–Rs8→Rd8 2 — — ↕ ↕ ↕ ↕ ↕ 2

SUB.W
#xx:16,Rd

W Rd16–#xx:16→

Rd16
4 — — *1 ↕ ↕ ↕ ↕ 4

SUB.W Rs,Rd W Rd16–Rs16
→Rd16

2 — — *1 ↕ ↕ ↕ ↕ 2

SUB.L#xx:32,
ERd

L ERd32–#xx:32→

ERd32
6 — — *1 ↕ ↕ ↕ ↕ 6

SUB.L ERs,ERd L ERd32–ERs32
→ERd32

2 — — *1 ↕ ↕ ↕ ↕ 2

SUBX.B
#xx:8,Rd

B Rd8–#xx:8
– C→Rd8

2 — — ↕ ↕ *2 ↕ ↕ 2

SUBX.B Rs,Rd B Rd8–Rs8–C→Rd8 2 — — ↕ ↕ *2 ↕ ↕ 2

SUBS #1,ERd L ERd32–1→ERd32 2 — — — — — — — 2

SUBS #2,ERd L ERd32–2→ERd32 2 — — — — — — — 2

SUBS #4, ERd L ERd32–4→ERd32 2 — — — — — — — 2

DEC.B Rd B Rd8–1→Rd8 2 — — — ↕ ↕ ↕ — 2

DEC.W #1,Rd W Rd16–1→Rd16 2 — — — ↕ ↕ ↕ — 2

DEC.W #2,Rd W Rd16–2→Rd16 2 — — — ↕ ↕ ↕ — 2

183

Table A.5 Instruction List (cont)

Addressing Mode/
Instruction Length Condition Code

Mnem-
onic

Op.
Sz. Operation #x

x:

R
n

@
E

R
n

@
(d

:
 ,

E
R

n
)

@
–E

R
n

/@
E

R
N

+

@
aa

:

@
(d

:
 ,

P
C

)

@
@

aa

Im
p

lie
d

I UI H N Z V C N
o

. o
f

E
xe

cu
ti

o
n

S
ta

te
s

Arith. DEC.L #1,ERd L ERd32–1→ERd32 2 — — — ↕ ↕ ↕ — 2
op. DEC.L #2,ERd L ERd32–2→ERd32 2 — — — ↕ ↕ ↕ — 2
instr.
(cont) DAS Rd B Rd8 decimal

correction→Rd8
2 — — * ↕ ↕ * — 2

CMP.B #xx:8,
Rd

B Rd8–#xx:8 2 — — ↕ ↕ ↕ ↕ ↕ 2

CMP.B Rs,Rd B Rd8–Rs8 2 — — ↕ ↕ ↕ ↕ ↕ 2

CMP.W #xx:16,
Rd

W Rd16–#xx:16 4 — — *1 ↕ ↕ ↕ ↕ 4

CMP.W Rs,Rd W Rd16–Rs16 2 — — *1 ↕ ↕ ↕ ↕ 2

CMP.L#xx:32,
ERd

L ERd32–#xx:32 6 — — *1 ↕ ↕ ↕ ↕ 6

CMP.L ERs,
ERd

L ERd32–ERs32 2 — — *1 ↕ ↕ ↕ ↕ 2

MULXU.B Rs,
Rd

B Rd8×Rs8→Rd16 2 — — — — — — — 14

MULXU.W
Rs,ERd

W Rd16×Rs16→
ERd32

2 — — — — — — — 22

DIVXU.B Rs,Rd B Rd16÷Rs8→Rd16
(H: remainder
L: quotient)

2 — — — — — — — 14

DIVXU.W
Rs,ERd

W ERd32÷Rs16→
ERd16
(E: remainder,
R: quotient)

2 — — — ↕ ↕ — — 22

MULXS.B Rs,
Rd

B Rd8×Rs8→Rd16 2 — — — ↕ ↕ — — 16

MULXS.W
Rs,ERd

W Rd16×Rs16→
ERd32

2 — — — ↕ ↕ — — 24

DIVXS.B Rs,
Rd

B Rd16÷Rs8→Rd16
(H: remainder,
L: quotient)

2 — — — ↕ ↕ — — 16

DIVXS.W
Rs,ERd

W ERd32÷Rs16→ERd
16(E: remainder,
R: quotient)

4 — — — ↕ ↕ — — 24

EXTU.W Rd W RdL8 zero
extension→Rd16

2 — — — ↕ ↕ 0 — 2

EXTU.L ERd L RdL16 zero
extension→Rd32

2 — — — ↕ ↕ 0 — 2

EXTS.W Rd W RdL8 sign
extension→Rd16

2 — — — ↕ ↕ 0 — 2

EXTS.L ERd L Rd16 sign
extension→ERd32

2 — — — ↕ ↕ 0 — 2

184

Table A.5 Instruction List (cont)

Addressing Mode/
Instruction Length Condition Code

Mnem-
onic

Op.
Sz. Operation #x

x:

R
n

@
E

R
n

@
(d

:
 ,

E
R

n
)

@
–E

R
n

/@
E

R
N

+

@
aa

:

@
(d

:
 ,

P
C

)

@
@

aa

Im
p

lie
d

I UI H N Z V C N
o

. o
f

E
xe

cu
ti

o
n

S
ta

te
s

Logical AND.B #xx:8,Rd B Rd8∧ #xx:8→Rd8 2 — — — ↕ ↕ 0 — 2
op. AND.B Rs,Rd B Rd8∧ Rs8→Rd8 2 — — — ↕ ↕ 0 — 2
instr.

AND.W
#xx:16,Rd

W Rd16∧ #xx:16
→RD16

Rd16

4 — — — ↕ ↕ 0 — 4

AND.W Rs,Rd W Rd16∧ Rs16→ 2 — — — ↕ ↕ 0 — 2

AND.L
#xx:32,ERd

L ERd32∧ #xx:32→
ERd32

6 — — — ↕ ↕ 0 — 6

AND.L ERs,ERd L ERd32∧ ERs32→
ERd32

4 — — — ↕ ↕ 0 — 4

OR.B #xx:8,Rd B Rd8∨ #xx:8→Rd8 2 — — — ↕ ↕ 0 — 2

OR.B Rs,Rd B Rd8∨ Rs8→Rd8 2 — — — ↕ ↕ 0 — 2

OR.W
#xx:16,Rd

W Rd16∨ #xx:16→
Rd16

4 — — — ↕ ↕ 0 — 4

OR.W Rs,Rd W Rd16∨ Rs16→
Rd16

2 — — — ↕ ↕ 0 — 2

OR.L #xx:32,
ERd

L ERd32∨ #xx:32→
ERd32

6 — — — ↕ ↕ 0 — 6

OR.L ERs,ERd L ERd32∨ ERs32→
ERd32

4 — — — ↕ ↕ 0 — 4

XOR.B #xx:8,
Rd

B Rd8⊕ #xx:8→Rd8 2 — — — ↕ ↕ 0 — 2

XOR.B Rs,Rd B Rd8⊕ Rs8→Rd8 2 — — — ↕ ↕ 0 — 2

XOR.W
#xx:16,Rd

W Rd16⊕ #xx:16→
Rd16

4 — — — ↕ ↕ 0 — 4

XOR.W Rs,Rd W Rd16⊕ Rs16→Rd16 2 — — — ↕ ↕ 0 — 2

XOR.L
#xx:32,ERd

L ERd32⊕ #xx:32→
ERd32

6 — — — ↕ ↕ 0 — 6

XOR.L ERs,
ERd

L ERd32⊕ ERs32→
ERd32

4 — — — ↕ ↕ 0 — 4

NOT.B Rd B Rd8→Rd8 2 — — — ↕ ↕ 0 — 2

NOT.W Rd W Rd16→Rd16 2 — — — ↕ ↕ 0 — 2

NOT.L ERd L ERd32→ERd32 2 — — — ↕ ↕ 0 — 2

Shift
instr.

SHAL.B Rd B Rd8 left arithmetic
shift→Rd8

2 — — — ↕ ↕ ↕ ↕ 2

SHAL.W Rd W Rd16 left
arithmetic
shift→Rd16

2 — — — ↕ ↕ ↕ ↕ 2

SHAL.L ERd L ERd32 left
arithmetic
shift→ERd32

2 — — — ↕ ↕ ↕ ↕ 2

SHAR.B Rd B Rd8 right
arithmetic
shift→Rd8

2 — — — ↕ ↕ 0 ↕ 2

185

Table A.5 Instruction List (cont)

Addressing Mode/
Instruction Length Condition Code

Mnem-
onic

Op.
Sz. Operation #x

x:

R
n

@
E

R
n

@
(d

:
 ,

E
R

n
)

@
–E

R
n

/@
E

R
N

+

@
aa

:

@
(d

:
 ,

P
C

)

@
@

aa

Im
p

lie
d

I UI H N Z V C N
o

. o
f

E
xe

cu
ti

o
n

S
ta

te
s

Shift
instr.
(cont)

SHAR.W Rd W Rd16 right
arithmetic
shift→Rd16

2 — — — ↕ ↕ 0 ↕ 2

SHAR.L ERd L ERd32 right
arithmetic
shift→ERd32

2 — — — ↕ ↕ 0 ↕ 2

SHLL.B Rd B Rd8 left logical
shift→Rd8

2 — — — ↕ ↕ 0 ↕ 2

SHLL.W Rd W Rd16 left logical
shift→Rd16

2 — — — ↕ ↕ 0 ↕ 2

SHLL.L ERd L ERd32 left logical
shift→ERd32

2 — — — ↕ ↕ 0 ↕ 2

SHLR.B Rd B Rd8 right logical
shift→Rd8

2 — — — 0 ↕ 0 ↕ 2

SHLR.W Rd W Rd16 right logical
shift→RD16

2 — — — 0 ↕ 0 ↕ 2

SHLR.L ERd L ERd32 right logical
shift→ERd32

2 — — — 0 ↕ 0 ↕ 2

ROTXL.B Rd B Rd8C left
rotation→Rd8C

2 — — — ↕ ↕ 0 ↕ 2

ROTXL.W Rd W Rd16C left
rotation→Rd16C

2 — — — ↕ ↕ 0 ↕ 2

ROTXL.L ERd L ERd32C left
rotation→ERd32C

2 — — — ↕ ↕ 0 ↕ 2

ROTXR.B Rd B Rd8C right
rotation→Rd8C

2 — — — ↕ ↕ 0 ↕ 2

ROTXR.W Rd W Rd16C right
rotation→Rd16C

2 — — — ↕ ↕ 0 ↕ 2

ROTXR.L ERd L ERd32C right
rotation→ERd32C

2 — — — ↕ ↕ 0 ↕ 2

ROTL.B Rd B Rd8 left rotation
→Rd8

2 — — — ↕ ↕ 0 ↕ 2

ROTL.W Rd W Rd16 left rotation
→Rd16

2 — — — ↕ ↕ 0 ↕ 2

ROTL.L ERd L ERd32 left rotation
→ERd32

2 — — — ↕ ↕ 0 ↕ 2

ROTR.B Rd B Rd8 right rotation
→Rd8

2 — — — ↕ ↕ 0 ↕ 2

ROTR.W Rd W Rd16 right rotation
→Rd16

2 — — — ↕ ↕ 0 ↕ 2

ROTR.L ERd L ERd32 right
rotation→ERd32

2 — — — ↕ ↕ 0 ↕ 2

186

Table A.5 Instruction List (cont)

Addressing Mode/
Instruction Length Condition Code

Mnem-
onic

Op.
Sz. Operation #x

x:

R
n

@
E

R
n

@
(d

:
 ,

E
R

n
)

@
–E

R
n

/@
E

R
N

+

@
aa

:

@
(d

:
 ,

P
C

)

@
@

aa

Im
p

lie
d

I UI H N Z V C N
o

. o
f

E
xe

cu
ti

o
n

S
ta

te
s

BSET Rn,Rd B (Rn8 of Rd8)←1 2 — — — — — — — 2

BSET Rn,@ERd B (Rn8 of @ERd)←1 4 — — — — — — — 8

BSET Rn,@aa:8 B (Rn8 of @aa:8)←1 4 — — — — — — — 8

BCLR #xx:3, Rd B (#xx:3 of Rd8)←0 2 — — — — — — — 2

BCLR
#xx:3,@ERd

B (#xx:3 of @ERd)
←0

4 — — — — — — — 8

BCLR
#xx:3,@aa:8

B (#xx:3 of @aa:8)
←0

4 — — — — — — — 8

BCLR Rn,Rd B (Rn8 of Rd8)←0 2 — — — — — — — 2

BCLR Rn,@ERdB (Rn8 of @ERd)←0 4 — — — — — — — 8

BCLR Rn,@aa:8B (Rn8 of @aa:8)←0 4 — — — — — — — 8

BNOT #xx:3,Rd B (#xx:3 of Rd8)
←(#xx:3 of Rd8)

2 — — — — — — — 2

BNOT #xx:3,
@ERD

B (#xx:3 of @ERd)
←(#xx:3 of @ERd)

4 — — — — — — — 8

BNOT #xx:3,
@aa:8

B (#xx:3 of @aa:8)
←(#xx:3 of @aa:8)

4 — — — — — — — 8

BNOT Rn,Rd B (Rn8 of Rd8)
←(Rn8 of Rd8)

2 — — — — — — — 2

BNOT Rn,
@ERd

B (Rn8 of @ERd)
←(Rn8 of @ERd)

4 — — — — — — — 8

BNOT Rn,
@aa:8

B (Rn8 of @aa:8)
←(Rn8 of @ aa:8)

4 — — — — — — — 8

BTST #xx:3,Rd B (#xx:3 of Rd8)→Z 2 — — — — ↕ — — 2

BTST #xx:3,
@ERd

B (#xx:3 of @ERd)
→Z

4 — — — — ↕ — — 6

BTST #xx:3,
@aa:8

B (#xx:3 of
@aa:8) →Z

4 — — — — ↕ — — 6

BTST Rn,Rd B (Rn8 of Rd8)→Z 2 — — — — ↕ — — 2

BTST Rn,@ERd B (Rn8 of @ERd)→Z 4 — — — — ↕ — — 6

BTST Rn,@aa:8 B (Rn8 of @aa:8)→Z 4 — — — — ↕ — — 6

BLD #xx:3,Rd B (#xx:3 of Rd8)→C 2 — — — — — — ↕ 2

BLD #xx:3,
@ERd

B (#xx:3 of
@ERd) →C

4 — — — — — — ↕ 6

BLD #xx:3,
@aa:8

B (#xx:3 of
@aa:8)→C

4 — — — — — — ↕ 6

BILD #xx:3,Rd B (#xx:3 of Rd8)→C 2 — — — — — — ↕ 2

BILD #xx:3,
@ERd

B (#xx:3 of
@ERd)→C

4 — — — — — — ↕ 6

Bit BSET #xx:3,Rd B (#xx:3 of Rd8)←1 2 — — — — — — — 2
man.
instr.

BSET
#xx:3@ERd

B (#xx:3 of
@ERd) ←1

4 — — — — — — — 8

BSET
#xx:3@aa:8

B (#xx:3 of
@aa:8) ←1

4 — — — — — — — 8

187

Table A.5 Instruction List (cont)

Addressing Mode/
Instruction Length Condition Code

Mnem-
onic

Op.
Sz. Operation #x

x:

R
n

@
E

R
n

@
(d

:
 ,

E
R

n
)

@
–E

R
n

/@
E

R
N

+

@
aa

:

@
(d

:
 ,

P
C

)

@
@

aa

Im
p

lie
d

I UI H N Z V C N
o

. o
f

E
xe

cu
ti

o
n

S
ta

te
s

Bit man.
instr.

BILD #xx:3,
@aa:8

B (#xx:3 of @aa:8)
→C

4 — — — — — — 6

(cont) BST #xx:3,Rd B C→(#xx:3 of Rd8) 2 — — — — — — — 2

BST #xx:3,
@ERd

B C→(#xx:3 of
@ERd)

4 — — — — — — — 8

BST #xx:3,
@aa:8

B C→(#xx:3 of
@aa:8)

4 — — — — — — — 8

BIST #xx:3,Rd B C→(#xx:3 of Rd8) 2 — — — — — — — 2

BIST #xx:3,
@ERd

B C→(#xx:3 of
@ERd)

4 — — — — — — — 8

BIST #xx:3,
@aa:8

B C→(#xx:3 of
@aa:8)

4 — — — — — — — 8

BAND #xx:3,
Rd

B C∧ (#xx:3 of Rd8)
→C

2 — — — — — — 2

BAND #xx:3,
@ERd

B C∧ (#xx:3 of
@ERd)→C

4 — — — — — — 6

BAND #xx:3,
@aa:8

B C∧ (#xx:3 of
@aa:8)→C

4 — — — — — — 6

BIAND #xx:3,
Rd

B C∧ (#xx:3 of
Rd8)→C

2 — — — — — — 2

BIAND #xx:3,
@ERd

B C∧ (#xx:3 of
@ERd)→C

4 — — — — — — 6

BIAND #xx:3,
@aa:8

B C∧ (#xx:3 of
@aa:8)→C

4 — — — — — — 6

BOR #xx:3,Rd B C∨ (#xx:3 of
Rd8)→C

2 — — — — — — 2

BOR #xx:3,
@ERd

B C∨ (#xx:3 of
@ERd)→C

4 — — — — — — 6

BOR #xx:3,
@aa:8

B C∨ (#xx:3 of
@aa:8)→C

4 — — — — — — ↕ 6

BIOR #xx:3,Rd B C∨ (#xx:3 of
Rd8)→C

2 — — — — — — ↕ 2

BIOR #xx:3,
@ERd

B C∨ (#xx:3 of
@ERd)→C

4 — — — — — — ↕ 6

BIOR #xx:3,
@aa:8

B C∨ (#xx:3 of
@aa:8)→C

4 — — — — — — ↕ 6

BXOR #xx:3,
Rd

B C⊕ (#xx:3 of
Rd8)→C

2 — — — — — — ↕ 2

BXOR #xx:3,
@ERd

B C⊕ (#xx:3 of
@ERd)→C

4 — — — — — — ↕ 6

BXOR #xx:3,
@aa:8

B C⊕ (#xx:3 of
@aa:8)→C

4 — — — — — — ↕ 6

BIXOR #xx:3,
Rd

B C⊕ (#xx:3 of
Rd8)→C

2 — — — — — — ↕ 2

188

Table A.5 Instruction List (cont)

Addressing Mode/
Instruction Length Condition Code

Mnem-
onic

Op.
Sz. Operation #x

x:

R
n

@
E

R
n

@
(d

:
 ,

E
R

n
)

@
–E

R
n

/@
E

R
N

+

@
aa

:

@
(d

:
 ,

P
C

)

@
@

aa

Im
p

lie
d

I UI H N Z V C N
o

. o
f

E
xe

cu
ti

o
n

S
ta

te
s

Bit man.
instr.

BIXOR
#xx:3,@ERd

B C
@ERd)

⊕ (#xx:3 of
→C

4 — — — — — — ↕ 6

(cont) BIXOR
#xx:3,@aa:8

B C
@aa:8)

⊕ (#xx:3 of
→C

4 — — — — — — ↕ 6

Branch
instr.

Bcc d:8 — if condition is true,
then PC←PC+d:8
else next

2 — — — — — — — 4

Bcc d:16 — If condition is true,
then
PC←PC+d:16 else
next

4 — — — — — — — 6

JMP @ERn — PC←ERn 2 — — — — — — — 4

JMP @aa:24 — PC←aa:24 4 — — — — — — — 6

JMP @@aa:
8(normal)

— PC←(@aa:8)16 2 — — — — — — — 8

BSR d:8
(normal)

— SP–2 →SP,
PC16→@SP
PC←PC+d:8

2 — — — — — — — 6

BSR d:8
(advanced)

— SP–4 →SP,
PC24→@SP
PC←PC+d:8

2 — — — — — — — 8

BSR d:16
(normal)

— SP–2 →SP,
PC16→@SP
PC←PC+d:16

4 — — — — — — — 6

BSR d:16
(advanced)

— SP–4 →SP,
PC24→@SP
PC←PC+d:16

4 — — — — — — — 8

JSR @ERn
(normal)

— SP–2 →SP, PC16
→@SP PC←ERn

2 — — — — — — – 6

JSR @ERn
(advanced)

— SP–4 →SP,
PC24→@SP
PC←ERn

2 — — — — — — — 8

JSR @aa:24
(normal)

— SP – 2→SP,
PC16→@SP
PC←aa:24

4 — — — — — — — 8

JSR @aa:24
(advanced)

— SP – 4→SP,
PC24→@SP
PC←aa:24

4 — — — — — — — 10

JSR @@aa:8
(normal)

— SP – 2→SP,
PC16→@SP
PC←(@aa:8)16

2 — — — — — — — 8

JSR @@aa:8
(advanced)

— SP – 4→SP,
PC24→@SP
PC←(@aa:8)24

2 — — — — — — — 12

RTS (normal) — PC←(@SP)16 SP
+ 2→SP

2 — — — — — — — 8

JMP @@aa:
8(advanced)

— PC←(@aa:8)24 2 — — — — — — — 10

189

Table A.5 Instruction List

Addressing Mode/
Instruction Length Condition Code

Mnem-
onic

Op.
Sz. Operation #x

x:

R
n

@
E

R
n

@
(d

:
 ,

E
R

n
)

@
–E

R
n

/@
E

R
N

+

@
aa

:

@
(d

:
 ,

P
C

)

@
@

aa

Im
p

lie
d

I UI H N Z V C N
o

. o
f

E
xe

cu
ti

o
n

S
ta

te
s

System
control
instr.

RTE — CCR←(@SP)8,
PC24←(@SP)24
SP + 4→SP

2 ↕ ↕ ↕ ↕ ↕ ↕ ↕ 10

TRAPA #xx:2 — SP–4→SP,
CCR←(@SP)8,
PC24←(@SP)24,
vector →PC

2 1 — — — — — — 14

SLEEP — Enters sleep mode — — — — — — — 2

NOP — No operation 2 — — — — — — — 2

LDC #xx:8,CCR B #xx:8→CCR 2 ↕ ↕ ↕ ↕ ↕ ↕ ↕ 2

LDC Rs,CCR B Rs8→CCR 2 ↕ ↕ ↕ ↕ ↕ ↕ ↕ 2

LDC @ERs,
CCR

W @ERs(even)→
CCR

4 ↕ ↕ ↕ ↕ ↕ ↕ ↕ 6

LDC @
(d:16,ERs),CCR

W @(d:16,ERs)
(even)→CCR

6 ↕ ↕ ↕ ↕ ↕ ↕ ↕ 8

LDC @
(d:24,ERs),CCR

W @(d:24,ERs)
(even)→CCR

10 ↕ ↕ ↕ ↕ ↕ ↕ ↕ 12

LDC @ERs+,
CCR

W @ERs(even)→
CCR,ERs+2→ERs

4 ↕ ↕ ↕ ↕ ↕ ↕ ↕ 8

LDC @aa:16,
CCR

W @aa:16(even)→
CCR

6 ↕ ↕ ↕ ↕ ↕ ↕ ↕ 8

LDC @aa:24,
CCR

W @aa:24(even)→
CCR

8 ↕ ↕ ↕ ↕ ↕ ↕ ↕ 10

STC CCR,Rd B CCR→Rd8 2 — — — — — — — 2

STC CCR,
@ERd

W CCR→@ERd
(even)

4 — — — — — — — 6

STC CCR,
@(d:16,ERd)

W CCR→@(d:16,
ERd)(even)

6 — — — — — — — 8

STC CCR,
@(d:24,ERd)

W CCR→@(d:24,
ERd)(even)

10 — — — — — — — 12

STC CCR,@
– ERd

W ERd–2→ERd,
CCR →@ERd
(even)

4 — — — — — – — 8

STC CCR,
@aa:16

W CCR→@aa:16
(even)

6 — — — — — — — 8

STC CCR,
@aa:24

W CCR→@aa:24
(even)

8 — — — — — — — 10

ANDC #xx:8,
CCR

B #xx:8∧ CCR→CCR 2 ↕ ↕ ↕ ↕ ↕ ↕ ↕ 2

ORC #xx:8,CCR B #xx:8∨ CCR→CCR 2 ↕ ↕ ↕ ↕ ↕ ↕ ↕ 2

XORC #xx:8,
CCR

B #xx:8⊕ CCR→CCR2 ↕ ↕ ↕ ↕ ↕ ↕ ↕ 2

RTS (advanced) — PC24←(@SP)24
SP + 4→SP

2 — — — — — — — 10

190

Appendix B Assembler
Control Instruction Functions

B.1 .CPU

Specifies the CPU.

Format:

Label Operation Operand

x .CPU CPU type

Note: CPU type: {300HA | 300HN | 300 | 300L}

Description: Specifies the CPU that the source program to be assembled is for. The assembler
assembles it for the specified CPU.

CPU types are as follows:

• 300HA H8/300H advanced mode

• 300HN H8/300H normal mode

• 300 H8/300

• 300L H8/300L

When this control instruction is omitted, 300HA is set.

This control instruction should be stated at the start of the source program. If there is nothing at
the start of the source program except the control instruction for the assembler list, an error will
result.

This control instruction is valid only once. It is valid when there is no /CPU command line option
specified.

Example:

.CPU: 300HA

.SECTION A, CODE, ALIGN = 2
MOV.W R0, R1
MOV.W R0, R2

Assembles for H8/300H, advanced mode.

191

B.2 .SECTION

Declares the section.

Format:

Label Operation Operand

x .SECTION Section name [, section
attributes [, format type]] type

Note: Section attributes: {CODE | DATA | STACK | COMMON | DUMMY}

Format type: {LOCATE = start address|ALIGN = boundary adjust number}

Description: Declares the start and restart of the section.

• Section start: Starts the section and sets the section name, section attributes and type of format.

— Section name: Specifies the section name. Section names are written the same as symbol
names. Case is not distinguished.

— Section attributes: Sets the section attributes. Section attributes are as follows:

CODE: Code section

DATA: Data section

STACK: Stack section

COMMON: Common section

DUMMY: Dummy section

When no attribute is specified, CODE is set.

— Format type: Sets the format type:

LOCATE = start address Absolute addressing
ALIGN = boundary adjust number Relative addressing

When no format is specified, ALIGN = 2 is set.

With absolute addressing, the start address of the section is set. The start address is specified as a
rear-referenced absolute value. The maximum start address values are as follows:

• H8/300H advanced mode: H'00FFFFFF

• H8/300H normal mode: H'0000FFFF

• H8/300: H'0000FFFF

• H8/300L: H'0000FFFF

192

Relative addressing sets the boundary adjust number of the section. With the linkage editor, the
start address of the relative address section when linked to an object module is corrected to a
multiple of the boundary adjust number. The boundary adjust number is specified as a rear-
referenced absolute value. The boundary adjust number can be specified as a 2n value.

If no section is declared with this control instruction, the following is set as the default section.

.SECTION P, CODE, ALIGN=2

• Section restart: Restarts the section already existing in the source program. At section restart,
the section name of the existing section is specified. The previously declared section attributes
and formats are used.

Example:

.SECTION A, CODE, ALIGN=2 (1)
MOV.W R0, R1
.SECTION B, DATA, LOCATE=H'001000 (2)
DATA1
.DATA.W H'0001
.SECTION A (3)
MOV.W R0, R3

• Starts section A. The section name is A, the section attribute is code section, the format type is
relative address format, and the boundary adjust number is 2.

• Starts section B. The section name is B, the section attribute is data section, the format type is
absolute address format, and the start address is H'001000.

• Restarts section A.

193

B.3 .EQU

Sets the symbol value.

Format:

Label Operation Operand

Symbol name .EQU Number

Description: Sets a value for the symbol. The value is set as a rear-referenced absolute value or a
rear-referenced address value. The symbol value defined by this control instruction cannot be
changed.

Example:

SYM1 .EQU 1
SYM2 .EQU 2
.SECTION A, CODE, ALIGN = 2
MOV.B #SYM1:8, R0L… Same as MOV.B #1:8, R0L
MOV.B #SYM2:8, R1L… Same as MOV.B #2:8, R1L

Sets 1 for SYM1 and 2 for SYM2.

194

B.4 .ORG

Sets the location counter value.

Format:

Label Operation Operand

x .ORG Location counter value

Description: Changes the location counter value in the section to the specified value.

The location counter value is specified as a rear-referenced absolute value or as a rear-referenced
address value of the section itself. The maximum location counter values are as follows.

H8/300H advanced mode: H'00FFFFFF
H8/300H normal mode: H'0000FFFF
H8/300: H'0000FFFF
H8/300L: H'0000FFFF

When specified in the absolute address section, the location counter value specified must be a
value after the start address of the section. When this control instruction is specified in the
absolute address section, the set location counter value becomes an absolute address; when
specified in the relative address section, it becomes a relative address.

Example:

.SECTION A, DATA, ALIGN = 2
DATA1
.DATA.W H'0001
.DATA.W H'0002
.ORG H'000100 (1)
DATA2
.DATA.W H'0003
.DATA.W H'0004

(1) The location counter value is changed to the relative H'000100 address for A.

195

B.5 .DATA

Reserves integer data.

Format:

Label Operation Operand

x .DATA [. s] Integer data [, integer data …]

Note: s (size): {B|W|L}

Description: Reserves integer data according to the size specified.

The sizes are as follows.

• B: Byte (1 byte)

• W: Word (2 byte)

• L: Longword (4 bytes)

When not specified, B is set.

The following integer data values can be specified according to size.

• B: –128 to 255

• W: –32,768 to 65,535

• L: –2,147,483,648 to 4,294,967,295

Example:

.SECTION A, DATA, ALIGN = 2

.DATA.W H'0102, H'0304

.DATA.B H'05, H'06, H'07, H'08

Data is reserved as follows:

01 02 03 04 05 06 07 08

196

B.6 .RES

Reserves the integer data region.

Format:

Label Operation Operand

[Symbol name] .RES [. s] Number of regions

Note: s (size): {B|W|L}

Description: Reserves integer data regions. A region of exactly the size specified for the integer
data region is ensured.

The sizes are as follows:

• B: Byte (1 byte)

• W: Word (2 byte)

• L: Longword (4 bytes)

When not specified, B is set.

The number of regions is specified as a rear-referenced absolute value. Any number higher than 1
can be specified.

Example:

.SECTION A, DATA, ALIGN = 2

.RES.W 10

.RES.B 255

A 20 byte region and a 255 byte region are kept.

197

B.7 .END

End of source program.

Format:

Label Operation Operand

x .END [Execution start address]

Description: Indicates the end of the source program. When this control instruction appears, the
assembler quits assembling. The execution start address allows you to specify the address used
when the simulation is started on a simulation debugger. The code section address is set for the
execution start address. The execution start address is specified as an absolute value or address
value.

Example:

.CPU 300HA

.OUTPUT DBG
:
.SECTION A, CODE, ALIGN = 2
START
MOV.L #0:32, ER0
MOV.L #1:32, ER1
MOV.L #2:32, ER2
BRA START:8
;
.END START

In the simulation debugger, the simulation starts from the START address.

	cover
	Contents
	Section 1 CPU Architecture
	1.1 Introduction

	Section 2 Instructions
	2.1 Data Transfer Instructions
	2.2 Arithmetic Operation Instructions
	2.3 Logic Operation Instructions
	2.4 Shift Instructions
	2.5 Bit Manipulation Instructions
	2.6 Branch Instructions
	2.7 System Control Instructions
	2.8 Block Transfer Instructions

	Section 3 Load Module Conversion Procedures
	Section 4 Examples of Software Applications
	4.1 Software Applications Examples
	4.2 Using Software Examples
	4.3 Block Transfer
	4.4 Block Transfer Using Block Transfer Instruction
	4.5 Branching Using a Table
	4.6 Counting the Number of Logical 1s in 8-Bit Data
	4.7 Find the First 1 in 32-Bit Data
	4.8 64-Bit Binary Addition
	4.9 64-Bit Binary Subtraction
	4.10 Unsigned 32-Bit Binary Multiplication
	4.11 Unsigned 32-Bit Binary Division
	4.12 Signed 16-Bit Binary Multiplication
	4.13 Signed 32-Bit Binary Multiplication
	4.14 Signed 32-Bit Binary Division (16-Bit Divisor)
	4.15 Signed 32-Bit Binary Division (32-Bit Divisor)
	4.16 8-Digit Decimal Addition
	4.17 8-Digit Decimal Subtraction
	4.18 Sum of Products
	4.19 Sorting

	Appendix A Instruction Set
	A1 Number of Execution States

	Appendix B Assembler Control Instruction Functions
	B.1 .CPU
	B.2 .SECTION
	B.3 .EQU
	B.4 .ORG
	B.5 .DATA
	B.6 .RES
	B.7 .END

