

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

 APPLICATION NOTE

REJ06J0074-0100/Rev.1.00 April 2009 Page 1 of 24

R8C Family, H8/300H Tiny Series, H8/300H Series and
M16C/Tiny Series
M3S-T2-Tiny: Ultracompact TCP/IP Protocol Stack Software

Introduction
This document explains the outline of ultracompact TCP/IP protocol stack software library .

Target device
R8C Family, H8/300H Tiny Series, H8/300H Series and M16C/Tiny Series

Contents

1. Overview .. 2

2. Outline of the T2 .. 3
2.1 Product information .. 3

2.1.1 T2 Library ..3
2.1.2 Sample Driver..3
2.1.3 Sample Application Program ..4

2.2 Outline Library Specifications ... 4

3. T2 API Specification.. 4
3.1 Data Structures and Macro Definitions... 6
3.2 TCP wait for connection request (Passive Open) tcp_acp_cep().. 8
3.3 TCP request connection (Active Open)) tcp_con_cep() ... 9
3.4 TCP Terminate data transmission tcp_sht_cep() ... 10
3.5 TCP Close communication end point tcp_cls_cep() .. 11
3.6 Transmit TCP data tcp_snd_dat() ... 12
3.7 Receive TCP data tcp_rcv_dat().. 13
3.8 Transmit UDP data udp_snd_dat().. 14
3.9 Receive UDP data udp_rcv_dat() .. 16
3.10 UDP callback function callback()... 18
3.11 Get work memory size used tcpudp_get_ramsize() .. 19
3.12 Open T2 library tcpudp_open() .. 20
3.13 TCP/IP processing _process_tcpip()... 20
3.14 Close T2 library tcpudp_close()... 21
3.15 T2 Limitations and Usage Precautions.. 22

R8C Family, H8/300H Tiny Series, and M16C/Tiny Series
M3S-T2-Tiny: Ultracompact TCP/IP Protocol Stack Software

REJ06B0074-0100/Rev.1.00 April 2009 Page 2 of 24

1. Overview
The Tiny TCP/IP library M3S-T2-xxx (hereafter referred to as “the T2") is the network software library for the
following series and groups of microcomputers. This manual provides the common information necessary to create
application programs using the T2. The MCU-dependent information (e.g., development environment) is supplied in
the respective Release Notes.

M3S-T2-Tiny : R8C Family, H8/300H Tiny Series, H8/300H Series and M16C/Tiny Series
M3S-T2-30 : M16C/62 Group
M3S-T2-308 : M32C/83 Group
* The xxx in the description below denotes the series and MCU names.

Fig 1 shows the position of the T2 in a software group associated with network middleware.

User Appl icat ion

ITRON TCP/ IP API

TCP, UDP

Ethernet PPP

IP, ARP, ICMP

r

Ethernet dr iver PPP dr iver

HTTPserver,etc.

Fig 1. Position of the T2 in network software structure

● Fig 1 shows the position of the T2 in a general structure of the software that comprises network middleware.
Shown in the gray background at center is the T2.
The arrows represent function calls.

● The T2 performs protocol processing between the Ethernet or PPP driver and an application program as it sends
or receives data to and from the network.

● Included as protocol processing in the T2 are TCP, UDP, IP, ICMP, ARP and PPP.
To perform TCP or UDP communication from a user application or a higher-level protocol program, functions
must be called from within the library by using the API (compliant with ITRON TCP/IP API) that is stipulated
in the T2. IP, ICMP, ARP and PPP are the lower-level protocols below TCP and UDP, so that in no case will
the functions to process these protocols be called directly from a user application.

● The T2 supports Ethernet and PPP as the data link and physical layers. Of these, part of the library that depends
on the user hardware such as LAN controller or serial I/O is separated as a driver from the library body.
To create drivers matched to the hardware used, refer to specifications for the driver API that are written in the
user’s manual for the driver concerned.
* The user’s manuals for drivers are included with the product package separately from this manual.
When using the T2 to create a program, make sure that the driver’s initialization and termination functions are
called directly from the program. (In Figure 1, these function calls are shown by the gray arrows.) Specifications
of these API functions are described in the T2 manual, not just in the user’s manual for the driver.

R8C Family, H8/300H Tiny Series, and M16C/Tiny Series
M3S-T2-Tiny: Ultracompact TCP/IP Protocol Stack Software

REJ06B0074-0100/Rev.1.00 April 2009 Page 3 of 24

● This product package comes with sample programs for drivers. Refer to these sample programs when creating
your original driver.

● The T2 library does not use the real-time OS.

2. Outline of the T2
2.1 Product information
The T2 consists of library files, sample drivers and sample application.

Table 1. Directory Structure for the T2

 Description
T2 Library

T2_ether_xxx.lib
T2_ppp_xxx.lib

T2 Library file (for Ethernet)
T2 Library file (for PPP)

itcpip.h Header file for T2

config_tcpudp.c.tpl Configuration file template for T2
Sample Driver

eth_drv.c
eth_drv.h

Source file for the Ethernet driver
Header file for the Ethernet driver

ppp_drv.c
ppp_drv.h

Source file for the PPP driver
Header file for the PPP driver

Sample Application Program

main.c
config_tcpudp.c
intprg.c

Sample program
Configuration file
Cyclic activation program of TCP/IP processing

2.1.1 T2 Library
● Library files (binary file)

These files contain API functions and various protocol processing programs. Use these files along with the
application program after linking.

Use T2_ether_xxx.lib when using Ethernet or T2_ppp_xxx.lib when using PPP.

● Header files (itcpip.h)
The T2 API prototype declarations, macro definitions, etc. are written in this file. For application programs that
call T2 APIs, include this header file.

● Configuration file template (config_tcpudp.c.tpl)
This template is provided for the file to define the necessary data for communication such as the T2
communication end points and reception points. Although this file is referred to in the T2 as the configuration file,
it actually is comprised of a C source file that contains the above data definition, and must therefore be compiled
and linked along with the user application program.
Because this template contains all of the necessary data definitions, rewrite the content of each data according to
the user application.

* This file is not intended for direct use, it must always be modified before use.

2.1.2 Sample Driver
Contained in this directory are the Ethernet and PPP sample drivers that can be used with the T2.

The Ethernet driver handles device-dependent processing such as Ethernet frame transmission/reception processing.
This driver supports RTL8019AS, the Ethernet controller available from RealTek.

R8C Family, H8/300H Tiny Series, and M16C/Tiny Series
M3S-T2-Tiny: Ultracompact TCP/IP Protocol Stack Software

REJ06B0074-0100/Rev.1.00 April 2009 Page 4 of 24

The PPP driver performs device-dependent processing such as modem control, dialing-up and serial I/O data
transmission/reception.

2.1.3 Sample Application Program
Sample sources for application programs (which use Telenet) are included.

2.2 Outline Library Specifications
Outline specifications of the T2 are shown in Table 2. This library supports the TCP, UDP, IP, ICMP, ARP and PPP
protocols. The Application Program Interface (API) is compliant with ITRON TCP/IP API Specification.

Table 2. Outlines Specifications by Protocol

Protocol Item Specification
TCP API Compliant with ITRON TCP/IP API Specification
 Non-blocking call Not supported (Only blocking calls are supported)
 Callback feature Not supported
 Maximum size TCP data segment length (data length): 1,480 (1,460) bytes

TCP header option
Only MSS is supported

Reception: Header options except MSS are ignored
Transmission: No header options except MSS are accepted

UDP API Compliant with ITRON TCP/IP API Specification
 Non-blocking call Supported
 Callback feature Supported
 Queuing Not supported
 Maximum size * UDP datagram length (data length): 1,480 (1,472) bytes

IP Version IPv4 (version 4) only

 Fragment
Not supported

Reception: Fragmented datagrams are discarded
Transmission: Datagrams cannot be fragmented

 Header option
Not supported

Reception: Datagrams that include header options are discarded
Transmission: No header options are accepted

 Maximum size * IP datagram (data length): 1,500 (1,480) bytes
ICMP

Message type

Only echo responses are supported
Reception: Only echo request

Other messages discarded
Transmission: Only echo response

ARP Cache entry depend on User definition
 Cache retention time Approx. 10 minutes
PPP Server/client Only client is supported, server is unsupported

 Maximum size * PPP frame (data length): 1,504 (1,500) bytes
 Authentication method PAP

Compression option

Compression-related options are not supported
Setup requests for compressing the protocol field,
address and control field
and TCP/IP header are rejected

* The maximum sizes of TCP, UDP, IP, and PPP depend on the transmission/reception buffers sizes of the driver.

3. T2 API Specification
Table 3 lists the APIs that are supported by the T2. The TCP and UDP APIs each are compliant with ITRON TCP/IP
Specification. The number of APIs that can executed at the same time in the T2 is one for TCP and UDP each.

R8C Family, H8/300H Tiny Series, and M16C/Tiny Series
M3S-T2-Tiny: Ultracompact TCP/IP Protocol Stack Software

REJ06B0074-0100/Rev.1.00 April 2009 Page 5 of 24

Table 3. List of T2 APIs

 T2 APIs C Language API
TCP Wait for Connection Request (Passive Open) tcp_acp_cep()

 Request Connection (Active Open) tcp_con_cep()
 Terminate data transmission tcp_sht_cep()
 Close communication end point tcp_cls_cep()
 Transmit data tcp_snd_dat()
 Receive data tcp_rcv_dat()

UDP Transmit packet udp_snd_dat()
 Receive packet udp_rcv_dat()

Initialization Get work memory size used tcpudp_get_ramsize()
 Open T2 library tcpudp_open()

Cyclic process TCP/IP protocol process _process_tcpip()
Termination
processing Close T2 library tcpudp_close()

* Refer to release note for the stack size of each APIs.

The following describes the data structures and macro definitions used in APIs. This is followed by a detailed
description of each API, which is given in the format shown below.

[(API format)]

Shows the API format.

[(Parameters)]

Shows the meaning of parameters to the API and limitations on acceptable values.

[(Returns and error codes)]

Shows the type of value or error code returned by the API and the conditions under which an error occurs.

[(Description)]

Shows the functionality and behavior of each API and the precautions to be observed when using API.

R8C Family, H8/300H Tiny Series, and M16C/Tiny Series
M3S-T2-Tiny: Ultracompact TCP/IP Protocol Stack Software

REJ06B0074-0100/Rev.1.00 April 2009 Page 6 of 24

3.1 Data Structures and Macro Definitions
The data structures and macro definitions used in the T2 APIs are defined in the header file itcpip.h. Also found in
itcpip.h are the API prototype declarations.

(1) Data structures

[(Data type)]

typedef char B;
typedef unsigned char UB;
typedef short H;
typedef unsigned short UH;
typedef long W;
typedef unsigned long UW;
typedef void (*FP)();
typedef void far *VP;
typedef H INT;
typedef H ID;
typedef H TMO;
typedef H ER;
typedef H ATR;
typedef INT FN;

[(IP address and port number)]

typedef struct t_ipv4ep {
 UW ipaddr; /* IP address */
 UH portno; /* Port number */
} T_IPV4EP;

[(TCP reception point)]

typedef struct t_tcp_crep {
 ATR repatr; /* Attribute of TCP reception point */
 T_IPV4EP myaddr; /* Local IP address and port number */
} T_TCP_CREP;

[(TCP communication end point)]

typedef struct t_tcp_ccep {
 AT cepatr; /* Attribute of TCP communication end point */
 VP sbuf; /* Top address of transmit window buffer */
 INT sbufsz; /* Size of transmit window buffer */
 VP rbuf; /* Top address of receive window buffer */
 INT rbufsz; /* Size of receive window buffer */
 FP (*callback)(ID cepid, FN fncd , VP p_parblk); /* Callback routine */
} T_TCP_CCEP;

[(UDP communication end point)]

typedef struct t_udp_ccep {
 ATR cepatr; /* Attribute of UDP communication end point */
 T_IPV4EP myaddr; /* Local IP address and port number */
 FP (*callback)(ID cepid, FN fncd , VP p_parblk); /* Callback routine */
} T_UDP_CCEP;

R8C Family, H8/300H Tiny Series, and M16C/Tiny Series
M3S-T2-Tiny: Ultracompact TCP/IP Protocol Stack Software

REJ06B0074-0100/Rev.1.00 April 2009 Page 7 of 24

[(T2 library environment variable)]

typedef struct {
 UB ipaddr[4]; /* Local IP address */
 UB maskaddr[4]; /* Subnet mask */
 UB gwaddr[4]; /* Gateway address */
} TCPUDP_ENV;

(2)Macro definitions

[(Macros used in APIs)]

Table 4. Functional Codes and Event Codes Used in APIs

Name Value Meaning

TFN_UDP_SND_DAT -0x0223 Transmit UDP data

TFN_UDP_RCV_DAT -0x0224 Receive UDP data

TEV_UDP_RCV_DAT 0x221 UDP packet received

TMO_POL 0 Polling

TMO_FEVR -1 Waiting forever

TMO_NBLK -2 Non-blocking call

Table 5. Special IP Addresses and Port Numbers

Name Value Meaning

IPV4_ADDRANY 0 IP address specification omitted

TCP_PORTANY 0 TCP port number specification omitted

NADR -1 Invalid address

[(Error codes)]

Table 6. Error Codes Used in APIs

Name Value Meaning

E_OK 0 Terminated normally

E_OBJ -63 Object status error

E_QOVR -73 Queuing overflow

E_WBLK -83 Non-blocking call accept

E_TMOUT -85 Timeout

E_CLS -87 Failed to connect

E_BOVR -89 Buffer overflow

R8C Family, H8/300H Tiny Series, and M16C/Tiny Series
M3S-T2-Tiny: Ultracompact TCP/IP Protocol Stack Software

REJ06B0074-0100/Rev.1.00 April 2009 Page 8 of 24

3.2 TCP wait for connection request (Passive Open) tcp_acp_cep()

[(API Format)]

ER tcp_acp_cep(ID cepid, ID repid, T_IPV4EP *p_dstaddr, TMO tmout)

[(Parameters)]

ID cepid Specify the ID of a TCP communication end point (Only “1”)
ID repid Specify the ID of a TCP reception point (Only “1”)
T_IPV4EP *p_dstaddr Get the remote IP address and port number

 Get the IP address and port number of the remote node that requested a
 connection

TMO tmout Specify a timeout
 Positive value: Timeout period for waiting until a connection is completed

The unit of time is 10 ms
 TMO_FEVR: Keeps waiting until a connection is completed

(waiting forever)

[(Returns and error codes)]

E_OK Terminated normally (connection established)
E_OBJ Object status error (communication end point ID in use is specified)
E_TMOUT Time out (time set in tmout expired)

[(Description)]

This API waits for a connection request for the TCP reception point repid. When a connection request is received, the
API establishes a connection by using the TCP communication end point cepid and stores the IP address and port
number of the remote node which requested a connection in the area indicated by the parameter p_dstaddr before
returning that information to the task.

The API is in a wait state until a connection is established. A timeout period may be specified for this wait state. An
error code E_TMOUT is returned if a connection cannot be established within the specified time.

When a connection is established, the return value E_OK is returned. If a connection is not established, one of the
above error codes other than E_OK is returned depending on the cause of error. The cause of error is indicated in () for
each error code.

Specify “1” for the ID number, because only one TCP reception point and communication end point can exist in the T2.
When id the specified value is other than “1”, no errors are returned and processing is continued assuming the ID
number is “1”.

R8C Family, H8/300H Tiny Series, and M16C/Tiny Series
M3S-T2-Tiny: Ultracompact TCP/IP Protocol Stack Software

REJ06B0074-0100/Rev.1.00 April 2009 Page 9 of 24

3.3 TCP request connection (Active Open)) tcp_con_cep()

[(API format)]

ER tcp_con_cep(ID cepid, T_IPV4EP *p_myaddr, T_IPV4EP *p_dstaddr, TMO tmout)

[(Parameters)]

ID cepid Specify the ID of a TCP communication end point (Only “1”)
T_IPV4EP *p_myaddr Specify the local IP address and port number
T_IPV4EP *p_dstaddr Specify the remote IP address and port number
TMO tmout Specify a timeout

Positive value: Timeout period for waiting until a connection is ompleted
The unit of time is 10 ms

TMO_FEVR: Keeps waiting until a connection is completed
(waiting forever)

[(Returns and error codes)]

E_OK Terminated normally (connection established)
E_OBJ Object status error (communication end point ID in use or local port number in use is specified)
E_TMOUT Time out (time set in tmout expired)
E_CLS Failed to connect (connection rejected)

[(Description)]

This API requests a connection to the IP address and port number of the other node to which to connect by using the
TCP communication end point cepid, and keeps waiting until a connection is completed. Although the API remains
waiting until a connection is established, a timeout period may be specified for this wait state. An error code
E_TMOUT is returned if a connection cannot be established within the specified time.

If the connection request is canceled due to time out or if the connection request is rejected for reasons that for example,
a port number unsupported by the remote node is specified, the communication end point cepid returns to an “unused”
state.

When this API is called, whether specified communication end point is using is checked first.

The local IP address that is set in the variable tcpudp_env is assumed for the local IP address.

If any value other than 0 is specified for the local port number, this value is set. On the other hand, if TCP_PORTANY
(0) is specified for the local port number, the API assigns a port number from within the range of numbers 1,024 to
5,000 in the T2.

If NADR(–1) is specified for the local IP address and port number p_myaddr, the API assigns the IP address that is set
in the variable tcpudp_env for the local IP address, and for the local port number, it assigns a port number from within
the range of numbers 1,024 to 5,000 in the T2.

When a connection is established, the return value E_OK is returned. If a connection is not established, one of the
above error codes other than E_OK is returned depending on the cause of error. The cause of error is indicated in () for
each error code.

Specify “1” for the ID number, because only one communication end point can exist in the T2. When id the specified
value is other than “1”, no errors are returned and processing is continued assuming the ID number is “1”.

R8C Family, H8/300H Tiny Series, and M16C/Tiny Series
M3S-T2-Tiny: Ultracompact TCP/IP Protocol Stack Software

REJ06B0074-0100/Rev.1.00 April 2009 Page 10 of 24

3.4 TCP Terminate data transmission tcp_sht_cep()

[(API format)]

ER tcp_sht_cep(ID cepid)

[(Parameters)]

ID cepid Specify the ID of a TCP communication end point (Only “1”)

[(Returns and error codes)]

E_OK Terminated normally (data transmission completed)
E_OBJ Object status error (specified communication end point is unconnected)

[(Description)]

This API terminates data transmission as a preparatory procedure before closing a connection to the TCP
communication end point cepid. More specifically, it sends FIN upon receiving ACK for the transmitted data. Because
this API only prepares for disconnection processing, it does not enter a wait state.

After this API is called, no data can be transmitted to the TCP communication end point cepid. If transmission is
attempted, an error code E_OBJ is returned. Data can be received though.

When a data transmission terminating procedure is completed, a value E_OK is returned. If failed to terminate data
transmission, one of the above error codes other than E_OK is returned depending on the cause of error. The cause of
error is indicated in () for each error code.

Specify “1” for the ID number, because only one communication end point can exist in the T2. When id the specified
value is other than “1”, no errors are returned and processing is continued assuming the ID number is “1”.

R8C Family, H8/300H Tiny Series, and M16C/Tiny Series
M3S-T2-Tiny: Ultracompact TCP/IP Protocol Stack Software

REJ06B0074-0100/Rev.1.00 April 2009 Page 11 of 24

3.5 TCP Close communication end point tcp_cls_cep()

[(API format)]

ER tcp_cls_cep(ID cepid, TMO tmout)

[(Parameters)]

ID cepid Specify the ID of a TCP communication end point (Only “1”)
TMO tmout Specify a timeout

Positive value: Timeout period for waiting until a connection is closed
The unit of time is 10 ms

TMO_FEVR: Keeps waiting until a connection is closed
(waiting forever)

[(Returns and error codes)]

E_OK Terminated normally (connection closed normally)
E_OBJ Object status error (specified communication end point is unconnected)
E_TMOUT Time out (time set in tmout expired / connection is forcibly closed)

[(Description)]

This API disconnect for the TCP communication end point cepid. After this API is called, the data transmitted from the
other node is discarded.

If the connection closing processing is canceled due to time out, RST is sent from the TCP communication end point
specified in this API to forcibly close the connection. In this case, because the connection is not closed normally, an
error code E_TMOUT is returned.

This API waits until the communication end point enters an “unused” state regardless of whether disconnected
normally or forcibly before it returns, the TCP communication end point cepid can be used immediately after returning
from the API. The communication end point does not enter an “unused” state unless a connection is completely closed.
According to TCP/IP standards, the communication end point remains in a TIME_WAIT state for some time which
normally is several minutes until a connection is completely closed. The TIME_WAIT time, 2MSL, can be set in the T2
configuration file.

When a connection is closed normally, a value E_OK is returned. If forcibly closed, an error code E_TMOUT is
returned. When one of these codes is returned, the specified TCP communication end point is in an “unused” state
because a connection has been completely closed. If the TCP communication end point specified in this API does not
connect, E_OBJ is returned.

Specify “1” for the ID number, because only one communication end point can exist in the T2. When id the specified
value is other than “1”, no errors are returned and processing is continued assuming the ID number is “1”.

[(Supplements)]

In ITRON specifications, if data transmission is not completed yet, the API waits until the transmission finishes, and
disconnects by sending FIN. In the T2, because multiple APIs cannot be executed at the same time, data transmission is
already completed by the time this API is issued. Therefore, the API will not wait until FIN segment is sent.

R8C Family, H8/300H Tiny Series, and M16C/Tiny Series
M3S-T2-Tiny: Ultracompact TCP/IP Protocol Stack Software

REJ06B0074-0100/Rev.1.00 April 2009 Page 12 of 24

3.6 Transmit TCP data tcp_snd_dat()

[(API format)]

ER tcp_snd_dat(ID cepid, VP data, INT len, TMO tmout)

[(Parameters)]

ID cepid Specify the ID of a TCP communication end point (Only “1”)
VP data Specify the top address of transmit data

The top address of the data to be sent by the user
INT len Specify the length of transmit data

Positive value
TMO tmout Specify a timeout

Positive value: Timeout period for waiting until it finishes sending
The unit of time is 10 ms

TMO_FEVR: Keeps waiting until it finishes sending
(waiting forever)

[(Returns and error codes)]

Positive value Terminated normally (transmitted data size in bytes = value of len)
E_OBJ Object status error (specified communication end point is unconnected or it has transmission

 completed)
E_TMOUT Time out (time set in tmout expired)
E_CLS Connection closed by remote node (forcibly closed by transmission/reception RST)

[(Description)]

This API transmits data from the TCP communication end point cepid. When transmitted normally, it returns the
transmitted data size.

The T2 differs from ITRON TCP Specification in several points for reasons of increased RAM usage efficiency and
transmission speed. In this library, the area in which transmit data is stored (hereafter called the user transmit buffer)
serves as the transmit window defined in ITRON TCP Specification. Similarly, the transmit window size equals the
transmit data length, and the size varies with the usage condition of this API.

In ITRON Specification, the task returns from the API when it finished copying data from the user transmit buffer to
the transmit window. In this API, however, the task returns from the API when it received ACK for the data it
transmitted. More specifically, if a TCP-level segment division occurs for reasons of the MSS or the receive window
size of the other node, the task returns from the API only when ACK is received for all of the transmitted data, and not
for the first divided data transmitted.

When data has been transmitted normally, the transmitted data size (= value of len) is returned. If failed to transmit,
one of the above error codes is returned depending on the cause of error. The cause of error is indicated in () for each
error code.

Specify “1” for the ID number, because only one communication end point can exist in the T2. When id the specified
value is other than “1”, no errors are returned and processing is continued assuming the ID number is “1”.

[(Supplements)]

In ITRON specifications, the size of transmit data is determined by the size of free space in the transmit window.
Therefore, the value returned by the API when it normally terminated does not always match the third parameter len.
This requires caution when the API is ported to the protocol stack compliant with ITRON TCP/IP API specifications
other than the T2.

R8C Family, H8/300H Tiny Series, and M16C/Tiny Series
M3S-T2-Tiny: Ultracompact TCP/IP Protocol Stack Software

REJ06B0074-0100/Rev.1.00 April 2009 Page 13 of 24

3.7 Receive TCP data tcp_rcv_dat()

[(API format)]

ER tcp_rcv_dat(ID cepid, VP data, INT len, TMO tmout)

[(Parameters)]

ID cepid Specify the ID of a TCP communication end point (Only “1”)
VP data Specify the top address of area in which received data will be stored

The top address of the buffer reserved by the user for storing the received
data

INT len Maximum size in which to store the received data
Positive value

TMO tmout Specify a timeout
Positive value: Timeout period for waiting until it finishes receiving

The unit of time is 10 ms
TMO_FEVR: Keeps waiting until it finishes receiving

(waiting forever)

[(Returns and error codes)]

Positive value Terminated normally (received data size in bytes)
0 Data terminated (connection closed normally. All data is received until disconnected)
E_OBJ Object status error (specified communication end point is unconnected)
E_TMOUT Time out (time set in tmout expired)
E_CLS Connection closed and the receive window is empty (forcibly closed by reception RST)

[(Description)]

This API receives data from the TCP communication end point cepid.

The data transmitted from the other node of communication is stored in the receive window. This API copies data from
the receive window to the user area indicated by the parameter data (hereafter referred to as “retrieving data”) and then
returns. If the receive window is empty, the API is kept waiting until data is received.

If the data size stored in the receive window is smaller than the data size len to be received, data is retrieved from the
receive window until it is emptied and the retrieved data size is returned.

When the connection is closed normally by the remote node and all of data is retrieved from the receive window so that
no data exists in it, value 0 is returned from the API.

When data has been received normally, the received data size is returned. If failed to receive, one of the above error
codes is returned depending on the cause of error. The cause of error is indicated in () for each error code.

Specify “1” for the ID number, because only one communication end point can exist in the T2. When id the specified
value is other than “1”, no errors are returned and processing is continued assuming the ID number is “1”.

R8C Family, H8/300H Tiny Series, and M16C/Tiny Series
M3S-T2-Tiny: Ultracompact TCP/IP Protocol Stack Software

REJ06B0074-0100/Rev.1.00 April 2009 Page 14 of 24

3.8 Transmit UDP data udp_snd_dat()

[(API format)]

ER udp_snd_dat(ID cepid, T_IPV4EP *p_dstaddr, VP data, INT len, TMO tmout)

[(Parameters)]

ID cepid Specify the ID of a UDP communication end point (Only “1”)
T_IPV4EP *p_dstaddr Specify the remote IP address and port number
VP data Specify the top address of transmit data

The top address of the data to be sent by the user
INT len Specify the length of transmit data

no fewer than 0, nor more than 1,472
TMO tmout Specify a timeout

Positive value: Timeout period for waiting until it finishes sending
The unit of time is 10 ms

TMO_FEVR: Keeps waiting until it finishes sending
(waiting forever)

[(Returns and error codes)]

0, positive value Terminated normally (transmitted data size in bytes = value of len)
E_PAR Parameter error (tmout is invalid)
E_QOVR Queuing overflow (total transmit/receive count that can be queued is exceeded)
E_TMOUT Time out (time set in tmout expired)
E_WBLK Non-blocking call accepted

[(Description)]

This API sends UDP datagram from the UDP communication end point cepid after specifying the remote IP address
and the port number. The API returns when the UDP datagram is stored in the transmit buffer. The transmit buffer
referred to here is not the one reserved internally in the T2, but is the internal transmit buffer of the Ethernet controller
(for Ethernet) or the transmit buffer reserved by the serial driver (for PPP). When data is stored in the transmit buffer,
the size of the transmitted data (= value of the fourth parameter len) is returned. If the API failed to send, one of the
above error codes is returned, with the cause of the error indicated in ().

In this API, a unicast address or multicast address can be specified for the remote IP address before sending data. No
data can be sent whose destination is specified by a broadcast address. If a broadcast address is specified, the behavior
and the returned value of the API are indeterminate.

In the T2, the maximum value of the UDP datagram size that can be sent at a time (It’s referred to as N.) depends on
the size of the transmit buffer. If M bytes of Ethernet / PPP frame data can be transmitted with the driver interface
function lan_write() / ppp_write(), N is as follows.

N = M – Size of Frame header (F) – Minimum size of IP header (I) – Size of UDP header (U)

M <= 1514 (for Ethernet), M <= 1504 (for PPP)

F = 14 (for Ethernet), F = 4 (for PPP)

I = 20

U = 8

Because IP fragments are not supported in the T2, if the data larger than N bytes needs to be sent, the data must be
divided to smaller than or equal to N bytes. If a data size larger than N bytes is specified, the behavior and the returned
value of the API are indeterminate.

If TMO_FEVR is specified for the timeout specification tmout, the API is kept waiting until data is stored in the
transmit buffer. If a positive value is specified for the timeout specification tmout, the API is kept waiting until the
specified time is reached. If no data is stored in the transmit buffer by the specified time, the error code E_TMOUT is
returned. If data is stored in the transmit buffer by the specified time, the size of the stored data is returned.

R8C Family, H8/300H Tiny Series, and M16C/Tiny Series
M3S-T2-Tiny: Ultracompact TCP/IP Protocol Stack Software

REJ06B0074-0100/Rev.1.00 April 2009 Page 15 of 24

If TMO_NBLK is specified for the timeout specification tmout, a non-blocking call is assumed and this API is not kept
waiting. When a transmit request is accepted, non-blocking call accepted E_WBLK is returned. In this case, a callback
function is called at the time data is stored in the transmit buffer. The callback function has the UDP communication
end point ID, function code TFN_UDP_SND_DAT, and the pointer to error code passed to it as arguments. The size
of the stored data is indicated in the error code.

The following period, it is assumed that UDP transmit processing is underway. Therefore, do not rewrite the transmit
data during this processing period.

* Within a period from when this API is blocking-called to when the API returns.

* For a while until the callback function (with function code TFN_UDP_SND_DAT) is called after the non-blocking
call.

In the T2, except when udp_rcv_dat() is called by polling specification (TMO_POL) in the callback function called
by the event code TEV_UDP_RCV_DAT, multiple UDP functions (udp_rcv_dat() and udp_snd_dat()) cannot be
issued at the same time. If this API is issued while any UDP function is being processed, the error code E_QOVR is
returned.

Specify “1” for the ID number, because only one communication end point can exist in the T2. When if the specified
value is other than “1”, no errors are returned and processing is continued assuming the ID number is “1”.

R8C Family, H8/300H Tiny Series, and M16C/Tiny Series
M3S-T2-Tiny: Ultracompact TCP/IP Protocol Stack Software

REJ06B0074-0100/Rev.1.00 April 2009 Page 16 of 24

3.9 Receive UDP data udp_rcv_dat()

[(API format)]

ER udp_rcv_dat(ID cepid, T_IPV4EP *p_dstaddr, VP data, INT len, TMO tmout)

[(Parameters)]

ID cepid Specify the ID of a UDP communication end point (Only “1”)
T_IPV4EP *p_dstaddr Get the remote IP address and port number

Get the IP address and port number of the remote node that transmitted
data

VP data Specify the top address of area in which to store the received data
The top address of the buffer reserved by the user for storing the received
data

INT len Specify the maximum size in which to store the received data
no fewer than 0, nor more than 1,472

TMO tmout Specify a timeout
Positive value: Timeout period for waiting until it finishes receiving

The unit of time is 10 ms
TMO_FEVR: Keeps waiting until it finishes receiving

(waiting forever)
TMO_NBLK: Non-blocking call
TMO_POL: Polling

using in callback function for the event code
TEV_UDP_RCV_DAT

[(Returns and error codes)]

0, positive value Terminated normally (received data size in bytes)
E_PAR Parameter error (tmout is invalid)
E_QOVR Queuing overflow (total transmit/receive count that can be queued is exceeded)
E_TMOUT Time out (time set in tmout expired)
E_WBLK Non-blocking call accepted
E_BOVER Buffer overflow (large data received that exceeds the received data storage area)

[(Description)]

This API receives UDP datagram from the UDP communication end point cepid and gets the remote IP address and
port number. When data has been received, the size of the received data is returned. If the API failed to receive, one of
the above error codes is returned, with the cause of the error indicated in ().

In the T2, the maximum value of the UDP datagram size that can be received at a time (It’s referred to as N.) depends
on the size of the receive buffer of the driver. If M bytes of Ethernet / PPP frame data can be transmitted with the driver
interface function lan_read() / ppp_read(), N is as follows.

N = M – Size of Frame header (F) – Minimum size of IP header (I) – Size of UDP header (U)

M <= 1514 (for Ethernet), M <= 1504 (for PPP)

F = 14 (for Ethernet), F = 4 (for PPP)

I = 20

U = 8

Because IP fragments are not supported in the T2, if the data larger than N bytes is received, the data is discarded.

If TMO_FEVR is specified for the timeout specification tmout, the API is kept waiting until UDP datagram is received.
If a positive value is specified for the timeout specification tmout, the API is kept waiting until the specified time is
reached. If no UDP datagram is received by the specified time, the error code E_TMOUT is returned.

R8C Family, H8/300H Tiny Series, and M16C/Tiny Series
M3S-T2-Tiny: Ultracompact TCP/IP Protocol Stack Software

REJ06B0074-0100/Rev.1.00 April 2009 Page 17 of 24

If TMO_NBLK is specified for the timeout specification tmout, a non-blocking call is assumed and this API is not kept
waiting. When a receive request is accepted, the non-blocking call-accepted E_WBLK is returned. In this case, a
callback function is called at the time the received data is stored in the user's receive buffer. The callback function has
the UDP communication end point ID, function code TFN_UDP_RCV_DAT, and the pointer to error code passed to it
as arguments. The size of the received data is indicated in the error code, and the received data is stored in the user area
data that is specified in the API in which the non-blocking call was invoked.

The following period, it is assumed that the API is waiting for the UDP data to receive and that UDP receive processing
is underway.

* Within a period from when this API is blocking-called to when the API is exited.

* For a while until the callback function (with function code TFN_UDP_RCV_DAT) is invoked after the non-blocking
call.

If UDP datagram is received while the API is waiting for the UDP data to receive, the received UDP datagram is copied
to the received data area data beginning with the first part byte of data. If the size of the received data is equal to or less
than the specified data size len, all amounts of the received data is copied. If the size of the received data is larger than
the specified data size len, the received data is copied for up to an amount equal to the specified data size len and the
rest is discarded. The error code returned in the former case is the size of the received data, and that in the latter case is
the buffer overflow E_BOVR.

If UDP datagram is received while the API is not waiting for the UDP data to receive, a callback function for the event
code TEV_UDP_RCV_DAT is called. The callback function has the UDP communication end point ID, event code
TEV_UDP_RCV_DAT, and the pointer to error code (size of the received data) passed to it as arguments. The size of
received data is indicated in the error code. Data can be read out only when this API that specifies polling TMO_POL
for the timeout specification tmout is called in the callback function. If data is not read out by polling specification, the
receive buffer of the driver is freed after exiting the callback function.

In the T2, except when udp_rcv_dat() is called by polling specification (TMO_POL) in the callback function called
by the event code TEV_UDP_RCV_DAT, multiple UDP functions (udp_rcv_dat() and udp_snd_dat()) cannot be
issued at the same time. If this API is issued while any UDP function is being processed, the error code E_QOVR is
returned.

In this API, it is possible to receive UDP datagrams whose remote IP address is a unicast address or multicast addresses
(224.0.0.0 – 239.255.255.255). However, since IGMP is not supported in the T2, routers cannot be notified of
participation in multicast communication. No UDP datagrams can be received that have broadcast addresses set in their
remote IP address.

Specify “1” for the ID number, because only one communication end point can exist in the T2. When if the specified
value is other than “1”, no errors are returned and processing is continued assuming the ID number is “1”.

[(Supplements)]

When using a non-blocking call, note that depending on the call timing, a callback function for the event code
TEV_UDP_RCV_DAT may be called before that. In this case, a callback function for the function code
TFN_UDP_RCV_DAT is called upon receiving the next UDP data.

R8C Family, H8/300H Tiny Series, and M16C/Tiny Series
M3S-T2-Tiny: Ultracompact TCP/IP Protocol Stack Software

REJ06B0074-0100/Rev.1.00 April 2009 Page 18 of 24

3.10 UDP callback function callback()

[(API format)]

ER callback(ID cepid, FN fncd, VP p_parblk)

[(Parameters)]

ID cepid The ID of a UDP communication end point (Only “1”)
FN fncd Event code
VP data The address of parameter block defined for each event

[(Returns and error codes)]

A value of type ER is returned, which is not referred on the library side, however.

[(Description)]

The UDP callback function is called when the process of a non-blocking call has completed and when the UDP data is
received in a sate where no udp_rcv_dat() is pending.

The processing of the UDP callback function consists in each notification, one that is created by the user. The argument
fncd indicates the type of notification. Kinds of events and the timing with which the callback function is called are
shown in Table 7.

Table 7. Callback Function Invocation Timing and Arguments

Timing Argument fncd Argument p_parblk Remark
When the UDP data
transmission is completed
after calling udp_snd_dat
(,, s_buf,, TMO_NBLK)

TFN_UDP_SND_DAT Transmitted data size
(equivalent to the
returned value of a
blocking call)

Called after sending the user’s
transmit data s_buf.

When the UDP data
reception is completed
after calling udp_rcv_dat
(, d_addr, r_buf,,
TMO_NBLK)

TFN_UDP_RCV_DAT Received data size or
E_BOVR (equivalent
to the returned value of
a blocking call)

Called when the received data
has been copied to the user's
data receive area r_buf. The
remote IP address and port
number are stored in the
region pointed by d_addr.

When UDP data is
received while not waiting
for UDP data to receive

TEV_UDP_RCV_DAT Received data size The received data is copied to
buf when udp_rcv_dat (,,
buf,, TMO_POL) is called in
the callback function. The
returned value is either the
received data size or
E_BOVR.

The arguments to the callback function can only be read, and cannot be written to.

Although specifications of the callback function dictate that it returns a value of type ER, the returned value is not
inspected on the T2 library side.

When using the UDP callback function, in UDP communication end point definitions of the T2 configuration file, be
sure to set the address to the created callback function in the address of callback routine.

R8C Family, H8/300H Tiny Series, and M16C/Tiny Series
M3S-T2-Tiny: Ultracompact TCP/IP Protocol Stack Software

REJ06B0074-0100/Rev.1.00 April 2009 Page 19 of 24

3.11 Get work memory size used tcpudp_get_ramsize()

[(API format)]

W tcpudp_get_ramsize(void)

[(Parameters)]

None

[(Returns and error codes)]

The size of the work area used by the T2 (in bytes)

[(Description)]

This API gets the size of the work area used by the T2 (RAM size) which is returned as its return value. The work area
is a memory area used for the TCP receive window and other purposes, which needs to be reserved in a program and
initialized with parameters to the initialization function of API, tcpudp_open(). The top address of the work area is
aligned to 4 byte boundaries.

EX) When this API’s return value is 100, the work area used by the T2 is aligned as follows:

 UW work[100/4];

This API can be used for the following purposes:

1) To reserve a work area using a static array

Although this API calculates the size of the work area used by the T2 according to the contents set in the TCP/IP
configuration file, the user will have difficulty calculating it in advance. Therefore, when the contents of the T2
configuration file have been determined, rebuild the program and execute this API in a debugger to examine its
returned value. Then reserve as much memory array for the work area as the size indicated by the returned value.

Note, however, that if the T2 configuration file is altered, the necessary size of the work area changes. In that case,
recalculate the size of the work area by using this API. Furthermore, as a processing to check for errors, always be
sure to call this API in the initialization processing and compare the returned value with the final size of the work
area determined by the user. If they do not match, branch to error handling. That way, errors can be found at the
debugging or test stages.

2) To reserve a work area from dynamic memory

Call this API in the initialization step of the application program to calculate the size of the work area. Reserve the
calculated size of the work area from dynamic memory and pass the reserved area to the initialization function
tcpudp_open() to have the work area initialized with it.

R8C Family, H8/300H Tiny Series, and M16C/Tiny Series
M3S-T2-Tiny: Ultracompact TCP/IP Protocol Stack Software

REJ06B0074-0100/Rev.1.00 April 2009 Page 20 of 24

3.12 Open T2 library tcpudp_open()

[(API format)]

ER tcpudp_open(UW *work)

[(Parameters)]

B *work Address of the work area used by the T2

[(Returns and error codes)]

E_OK Terminated normally
Negative value Failed to initialize

[(Description)]

This API initializes the T2 library. In the library initialization processing, the API performs memory allocation and
initialization of the internal managed area, as well as invokes the TCP/IP cyclic processing each task used by the
library.

Specify the top address of the work area used by the T2 for work. The necessary size of the work area may be obtained
from the returned value of tcpudp_get_ramsize().

Call this API before lan_open() when it is used in combination with Ethernet or before ppp_start() when used in
combination with PPP too.

3.13 TCP/IP processing _process_tcpip()

[(API format)]

void _process_tcpip(void)

[(Parameters)]

None

[(Returns and error codes)]

None

[(Description)]

This API processes the TCP/IP protocol of the T2 library.

Make sure this API is called at intervals of less than 10 ms (for example, by using a Timer interrupt).

Since the TCP/IP protocol of the T2 manages time in 10 ms units, if the invocation interval exceeds 10 ms, one or more
of the following problems may be incurred:

* The timeout specified in an API does not occur within the designated time.

* Retransmission operations are not performed at designated intervals.

* The zero window probe is not performed at designated intervals.

* The timeout period of 2MSL for disconnecting does not conform to the designated time.

R8C Family, H8/300H Tiny Series, and M16C/Tiny Series
M3S-T2-Tiny: Ultracompact TCP/IP Protocol Stack Software

REJ06B0074-0100/Rev.1.00 April 2009 Page 21 of 24

3.14 Close T2 library tcpudp_close()
[(API format)]

ER tcpudp_close(void)

[(Parameters)]

None

[(Returns and error codes)]

E_OK Terminated normally
Negative value Failed to close

[(Description)]

This API closes the T2 library. In the library closing processing, the API terminates the TCP/IP cyclic processing used
by the library.

Before calling this API, be sure to disconnect all of the TCP and UDP communication end points and enter an
“unused” state.

Before calling this API, call lan_close() when it is used in combination with Ethernet or ppp_stop() when used in
combination with PPP.

The work area specified by the library open function tcpudp_open() is deallocated after executing this API, so that the
work area is free to use in the application program.

R8C Family, H8/300H Tiny Series, and M16C/Tiny Series
M3S-T2-Tiny: Ultracompact TCP/IP Protocol Stack Software

REJ06B0074-0100/Rev.1.00 April 2009 Page 22 of 24

3.15 T2 Limitations and Usage Precautions
The T2 limitations and usage precautions are described in (1) to (17) below.

(1) The cancel pending process functions tcp_can_cep() and udp_can_cep().
(2) The data transmit and receive functions that use copy-saving APIs tcp_get_buf(), tcp_snd_buf(), tcp_rcv_buf()

and tcp_rel_buf(), are not supported.
(3) The emergency data transmit and receive functions tcp_snd_oob() and tcp_rcv_oob() are not supported.
(4) The option setting and acquisition functions tcp_set_opt(), tcp_get_opt(), udp_set_opt() and udp_get_opt() are

not supported.
(5) In TCP APIs, multicast address, broadcast address and loopback address cannot be specified for the remote IP

address.
(6) In UDP APIs, broadcast address and loopback address cannot be specified for the remote IP address.
(7) The callback feature is not supported in TCP. The address of callback routine specified in TCP communication

end point definition have no effect.
(8) The timeout specification that can be accepted in TCP APIs are only waiting forever (TMO_FEVR) and

positive values. If a non-blocking call (TMO_NBLK) or polling (TMO_POL) is specified for the timeout
specification, the behavior is indeterminate.

(9) Polling (TMO_POL) that is specified to be the UDP receive function udp_rcv_dat() is accepted in only the
callback function called by the event code TEV_UDP_RCV_DAT. If polling (TMO_POL) is specified in other
than the callback function, a parameter error (E_PAR) is returned.

(10) Since IGMP is not supported, routers cannot be requested for transfer of IP datagrams whose remote IP
addresses are multicast addresses.

(11) The number of APIs that can be executed at the same time in the T2 is one for TCP and UDP each. If multiple
APIs are executed at the same time, the behavior is indeterminate.

(12) For TCP, the T2 only supports the MSS in header option. All options but MSS are ignored when receiving TCP
segments.

(13) For IP, the T2 does not support IP options and fragments. If the received IP datagram contains IP options or has
been fragmented, the datagram is discarded.

(14) For ICMP, the T2 only supports receiving an echo request and transmitting an echo response in return for that.
If the received packet contains any other ICMP messages, the packet is discarded.

(15) For PPP, the T2 does not support compression-related options (i.e., protocol field compression, address and
control field compression and TCP/IP header compression). If a request is received that requires setting
compression-related options, Configure-Rejects of setting is transmitted in response.

(16) Calling APIs in an interrupt handler does not recommend.
(17) Before calling the function tcpudp_close(), be sure to close all of the communication end points and enter an

“unused” state. If tcpudp_close() is called while communication is on, the program may behave erratically.

R8C Family, H8/300H Tiny Series, and M16C/Tiny Series
M3S-T2-Tiny: Ultracompact TCP/IP Protocol Stack Software

REJ06B0074-0100/Rev.1.00 April 2009 Page 23 of 24

Website and Support
Renesas Technology Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry
csc@renesas.com

Revision Record
Description

Rev.

Date Page Summary

1.00 Apr.24.09 — First edition (M3S-T2-Tiny Ver.1.01 Release02E)

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/inquiry
mailto:csc@renesas.com

R8C Family, H8/300H Tiny Series, and M16C/Tiny Series
M3S-T2-Tiny: Ultracompact TCP/IP Protocol Stack Software

REJ06B0074-0100/Rev.1.00 April 2009 Page 24 of 24

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate
Renesas products for their use. Renesas neither makes warranties or representations with respect to the
accuracy or completeness of the information contained in this document nor grants any license to any intellectual
property rights or any other rights of Renesas or any third party with respect to the information in this document.

2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out
of the use of any information in this document, including, but not limited to, product data, diagrams, charts,
programs, algorithms, and application circuit examples.

3. You should not use the products or the technology described in this document for the purpose of military
applications such as the development of weapons of mass destruction or for the purpose of any other military
use. When exporting the products or technology described herein, you should follow the applicable export
control laws and regulations, and procedures required by such laws and regulations.

4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and
application circuit examples, is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas products listed in this
document, please confirm the latest product information with a Renesas sales office. Also, please pay regular
and careful attention to additional and different information to be disclosed by Renesas such as that disclosed
through our website. (http://www.renesas.com)

5. Renesas has used reasonable care in compiling the information included in this document, but Renesas
assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information
included in this document.

6. When using or otherwise relying on the information in this document, you should evaluate the information in light
of the total system before deciding about the applicability of such information to the intended application.
Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any
particular application and specifically disclaims any liability arising out of the application and use of the
information in this document or Renesas products.

7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products
are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of
which may cause a direct threat to human life or create a risk of human injury or which require especially high
quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare,
combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you
are considering the use of our products for such purposes, please contact a Renesas sales office beforehand.
Renesas shall have no liability for damages arising out of the uses set forth above.

8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 (1) artificial life support devices or systems
 (2) surgical implantations
 (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 (4) any other purposes that pose a direct threat to human life
 Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who

elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas
Technology Corp., its affiliated companies and their officers, directors, and employees against any and all
damages arising out of such applications.

9. You should use the products described herein within the range specified by Renesas, especially with respect to
the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or
damages arising out of the use of Renesas products beyond such specified ranges.

10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific
characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions.
Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or
damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and
software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment
for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer
software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

11. In case Renesas products listed in this document are detached from the products to which the Renesas products
are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You
should implement safety measures so that Renesas products may not be easily detached from your products.
Renesas shall have no liability for damages arising out of such detachment.

12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written
approval from Renesas.

13. Please contact a Renesas sales office if you have any questions regarding the information contained in this
document, Renesas semiconductor products, or if you have any other inquiries.

Notes regarding these materials

© 2009. Renesas Technology Corp., All rights reserved.

	Overview
	Outline of the T2
	Product information
	T2 Library
	Sample Driver
	Sample Application Program

	Outline Library Specifications

	T2 API Specification
	Data Structures and Macro Definitions
	TCP wait for connection request (Passive Open) tcp_acp_cep(
	TCP request connection (Active Open)) tcp_con_cep()
	TCP Terminate data transmission tcp_sht_cep()
	TCP Close communication end point tcp_cls_cep()
	Transmit TCP data tcp_snd_dat()
	Receive TCP data tcp_rcv_dat()
	Transmit UDP data udp_snd_dat()
	Receive UDP data udp_rcv_dat()
	UDP callback function callback()
	Get work memory size used tcpudp_get_ramsize()
	Open T2 library tcpudp_open()
	TCP/IP processing _process_tcpip()
	Close T2 library tcpudp_close()
	T2 Limitations and Usage Precautions

