= ’\ENESAS APPLICATION NOTE
M16C/Tiny Series RO1AN0441EJ0101

Rev. 1.01
Rewriting the User ROM Area in EW1 Mode Dec 28, 2010

1. Abstract

This application note presents a method for rewriting the flash memory in EW1 mode of the
M16C/Tiny-series microcomputers.

2. Introduction

The example application presented here is intended for use in the following type of microcomputer.
- Applicable microcomputer: M16C/Tiny-series

This sample program may also be used in other M16C-family microcomputers that have the SFR
(Special Function Registers) similar to those in the M16C/Tiny series. However, since it is possible that
some functions of your microcomputer will have been altered for functional enhancements, etc., please
consult the user’s manual for confirmation. Note also that careful evaluation is required before the
sample program in this application note can be used.

RO1AN0441EJ0101 Rev. 1.01 Page 1 of 69
RENESAS

Document Name

Table of Contents

3. Explanation of EXample USAQEccuuiiiiiiiei it ettt e e s st ee e e e e e s s e e e e e e e s nnnanneeaaees 3
A -1 o] (= o | I @]] (=] o £ PUPPRPTUPRR 3
3.2 ADOUL FIASN IMEBIMOIY ...ttt e e e e e e et e e e e e e e s e anb b e et e e e e e e e e snnnbeaeeaaaeas 4
3.2.1 Operations 0N FIash MEMOIY.........ciiiiuiiiiiiiee et e e e s e e e e e e e s ar e e e e e e e e snnnnneees 4
3.3 Rewriting the Flash Memory in EWL MOGE........ccuiiiiiiiiiiiiiiicc ettt e e e sninnee e e e e e e ennes 5
IR 0 R Y1V I 1/ To L= PSP 5
3.3.2 Flash Memory Mode TranSItiONcc.uereiiieee e e it e e e e e sriee e e e e e e s s e e e e e e e s snnn e e e e e e e e e snnnnreees 6
3.3.3 Interrupts during Flash MemOry REWIILE..........uuuiiiiieiiiiiiiiieee e e e e ssnarree e e e 7
3.4 EW1 Auto Program and AuUtO ErasSe PrOCEAUNE.........ccoiiiiiiiiiiiea ettt ee e e 8
3.4.1 Auto Program and Auto Erase ProCEAUIEuueeiieeeiiiiiiiiiiie e e e st ee e e e e sstnrae e e e e e s e e snnennees 8
ST L= T Vo [10 A o o o3 =To [0 = SRS PR 17
Y- 10 4] o] (SN = (ol | = 1o o [T PTT ORI 18
o R T =N @0 Yo {8 = U1 o] o SO 19
o e (ol = 1 @ o T=T = 1 o] o SRS 20
4.2.1 Auto Program and Auto Erase OPErationsceeieeiiiiiuiiiiieeaaaaiaiiiieeeeeae e e sessieeeeeae e e ennreees 20
4.2.2 Erase SUSPENT PrOCESSING.....cuuiiiiiiiiiiiiieiieeeisiiiitrieeeeeesssssteeeeeeeeesssnntaaeeeeeeesaaassseereeeeesanannssnns 21
4.3 SOMWAIE INTEITACE .. .eeiiii it e e st e e e st e e e s bt e e s annbe e e e snbeneeenees 23
4.3.1 The sample program iNEITACEo..ueiiieie ettt e e e e e e e e aneeees 23
A O U RS (o]0 174 o] P SRS 29
4.4.1 Customizing CPU CIOCK SEHINGSuuuiiiiiiee it it e e e erteer e e e e e s s siraee e e e e e e s s snntaaeeeeeeesennnreees 29
4.4.2 Customizing Operation Of the Driver SOftWAIEoou i 29
LT S T= U 4] 0] =38 =d (0T | = o' SO 30
oI S 1o 11 (o1 0o Lo [PP PUPRRPTRR 31
5.1.1 flaShdeVCONT.N ...ttt e e e e e e e e e nnereees 31
B5.1.2 flashdeVArV.N... ..o e e sra e e 32
oI IOC T 1= 11 o o T o USSP 36
5.1.4 flashdrvdeV_EWL.C ... 38
L0t o 1= =T o N 0 1o o PUERR: 44
oI O ST o ol (O T T O I PRSP 47
5.1.7 SECI30 _EWLNC .o 52
L0t - T o = 1 T . 1 Ko o SR 62
5.1.9 MLBC EWLAMK . coitiiiiiiiiiie ettt s ittt ettt e ettt e e e se et e e e snt e e e sntb e e e e e bt eeeesabbeeeesasbeeeesanneeeneanes 67
T (] (T (=10 o = TR PRUP PR 69
T A=) o7 (= g Lo IS U T o] o o SO PR PRP 69
RO1AN0441EJ0101 Rev. 1.01 Page 2 of 69

RENESAS

Document Name

3. Explanation of Example Usage

3.1 Table of Contents

The M16C/Tiny series has a special mode known as CPU rewrite mode in which the user ROM area can
be rewritten from the CPU by executing software commands. This mode consists of two modes: EWO0
and EW1.

® EWO0 mode
Advantages : The CPU continues operating even while programming and erasing.
: Interrupts generated while programming or erasing are responded quickly.
(This applies when the interrupt handler routines are located in the RAM.)
Disadvantages : The flash memory program cannot be executed while programming or
erasing.
(Flash memory cannot be accessed for read.)
: Alarge amount of RAM is used.
(The programming/erasing routines must be located in the RAM.)

® EWI1 mode

Advantages : The amount of RAM used is small.

(The programming/erasing routines can be located in the flash memory.)
Disadvantages : The CPU remains idle (in hold state) while programming and erasing.

: Interrupts generated while programming or erasing cannot be responded
quickly.
(The response time in the M16C/26, for example, is 100 ps typ. during
programming and 8 ms max. during erasing.)

® Rewriting operation specifications (for the M16C/26)

Rewrite mode EW1
Operating CPU frequency during rewrite 10 MHz Note
Programming time (2 bytes) 75 us, typ.
Erase time, 2 Kbyte block 0.2 s, typ.
Erase operation to erase suspend transition time | 8 ms, max.

Note: For details about limitations on the on-chip oscillator and PLL, refer to Section 3.4.1,
“Auto Program and Auto Erase Procedure.”
These limitations apply to flash memory rewrite operation in CPU rewrite mode, and
not to normal operation of the microcomputer.

In this application note, a description is made of the programming procedure in EW1 mode, showing
how to read/write and erase the flash memory.

The procedure described in the following pages will help you understand how to rewrite the flash
memory in EW1 mode of the M16C/Tiny-series microcomputers.

RO1AN0441EJ0101 Rev. 1.01 Page 3 of 69
RENESAS

Document Name

3.2 About Flash Memory

Flash memory is electrically programmable and erasable nonvolatile memory.

The following shows the manner in which the flash memory of the M16C/Tiny series is accessed:
® The flash memory can be programmed in units of one byte.
® The flash memory is erased in block units.
® The flash memory cannot be accessed for read during programming and erasing.

3.21 Operations on Flash Memory

The following shows operations performed on flash memory.
Table 3-1 Operations and Limitations on Flash Memory

Operation name Description of operation Limitation
Read Means reading out written data. Any blocks cannot be accessed for read
while programming and erasing.
Write Means changing bit value from 1 to 0. Writing further to any already written address
is prohibited.
Erase Means changing bit value in the entire Must be performed in block units.
block to 1 (changed all to FF16).

The following shows how to resolve the limitations imposed on data rewrite operation of flash memory.
Table 3-2 Flash Memory Limitations and How to Resolve

Limitation Solution

Flash memory cannot be Locate the programming/erasing routines in other than the flash memory.
accessed for read while (EWO0 mode)

programming and erasing. | The CPU automatically halts while programming or erasing, unable to read
(Programs cannot be run from flash memory.

in flash memory.) (EW1 mode)
Flash memory can only be | Devise the data retention method so as to reduce the number of times the
erased in block units. flash memory needs to be erased. "

Note: This method is not discussed in this application note.

This application note describes a rewriting process for rewriting in EW1 mode from the rewrite program
present in the flash memory to another flash memory block (where the rewrite program is not stored).

RO1AN0441EJ0101 Rev. 1.01 Page 4 of 69
RENESAS

Document Name

3.3 Rewriting the Flash Memory in EW1 Mode
3.3.1 EW1 Mode

The EW1 mode permits the user ROM area to be rewritten from the rewrite program present in the
flash memory by issuing the program (auto write)/block erase (auto erase) commands. During the auto
write/auto erase process, the CPU is placed in a hold state (where the input/output ports retain the
state in which they were before a command was executed).

Interrupt request accepted Interrupt request accepte

after byte write finished

after byte write finished
Interrupt Program 3 Program command ——
command 'SS< Interrupt request 'ssui Interrl;); request
Wnte ssss 0000 Mo s 00 0 0 5 0 0 ¢ ¢ ¢ ———
. - Return .
processing Byte write Next byte write :
(50 ps, typ.) (50 ps, typ.)
CPU operation Operating dle Operating Idle Operating
(hold state) (hold state)
Flash Program execution | Write operation | Program execution | \rite operation| - ro9ram
operation (read array mode) (read array mode) execution

» Processing flow
Figure 3-1 Conceptual Diagram of the Auto Write Operation

The auto erase process has an erase suspend function. This function suspends the auto erase process
while underway in order to read data out of the flash memory. Before this erase suspend function can be
used, the registers must be set up in software. For details, refer to Section 4.2.2, “Erase Suspend
Processing.” During erase suspend mode, it is possible to call a processing routine present in the flash
memory or read data out of the flash memory.

p—
Interrupt Block erase Interrupt$ Eranh?F{flsEagted Interrupt
command executed request (=0 request
Erase . ~L_.......I.l...
processing :]4—0 Return
Transition time from interrupt Transition time from interrupt
request to erase suspend request to erase suspend
td(SR-ES) td(SR-ES)
CPU : Idle : Idle :
operation Operating (hold state) Operating (hold state) Operating
Flash Program execution . Erase suspended Erase restarted |Erase suspended
operation (read array mode) Erase operation (read array mode) (read array mode)

$» Processing flow

Figure 3-2 Conceptual Diagram of the Auto Erase Operation

RO1ANO441EJ0101 Rev. 1.01 Page 5 of 69

RENESAS

Document Name

3.3.2 Flash Memory Mode Transition

The flash memory control registers and software commands are used to control the flash memory in the
M16C/Tiny series of microcomputers.

Software commands are generated by writing to the flash memory.

The diagram below shows operation modes of the flash memory during EW0 mode.

A

Start from here after reset CPU operating state

CPU rewrite
disabled

Write 0 and then 1 to FMRO1 bit
A in succession

EMROL1 = 0| EW0 mode ' Write 0 and then 1 to EMR11 bit l Limitations apply to the CPU clock

— T No limitations apply to the CPU clock

— in succession
EW1 mode
e N N\
5016 | |
Read array 2016 4016
f e
— [Block erasej (Program setupj
J setup
T\ ' |
D016 Write data
Suspend
> - < Y
I
I
FMR41=0 A

CPU idle state

Interrupt generated

FMR41=1 L v

_ 5| Block erase] [Program J

P

Block erase complete |

Program complete

Figure 3-3 Flash Memory Operation Modes

In Figure 3-3, “Flash Memory Operation Modes,” transitions of “xx4016,” etc. are software commands.
“FMR41 = 0” means setting the indicated register bit to 0.

In EW1 mode, when an auto erase or auto write operation has finished, the content of the flash memory
can be read out.

RO1AN0441EJ0101 Rev. 1.01 Page 6 of 69
RENESAS

Document Name

3.3.3

Interrupts during Flash Memory Rewrite

If the erase suspend function is used in EW1 mode, be aware that the erase operation performed differs

depending on the type of interrupt used (maskable interrupt or nonmaskable interrupt). During

programming too, if interrupts are used in other than byte write, the programming operation performed

differs depending on the type of interrupt used, as for the erase operation.

Operational differences due to the type of interrupt are outlined below.

Table 3-3 Auto Erase/Auto Program and Interrupt Operation

progress (erase
suspend function

suspended, and
interrupt processing is

is accepted, auto erase or
auto write is forcibly

Mode State When a maskable When a nonmaskable interrupt is accepted
interrupt is accepted NMI interrupt Watchdog timer
EW1 | Auto erase in Auto erase is When an interrupt request The watchdog timer is

stopped and remains idle
during command

enabled) executed. Auto erase stopped and the flash operation.
can be restarted by memory is reset. Interrupt
clearing the erase processing starts a certain
suspend request bit to 0 | time after the flash memory
(= erase start) after the is reactivated.
interrupt processing has | Since the operation is
finished. forcibly stopped, it is
Auto erase in Auto erase has priority, | possible that the auto-
progress (erase and interrupt requests erased block or the auto-
suspend function | are kept waiting. written address whichever
disabled) Interrupt processing is | was underway will not show
executed after auto the correct value when they
erase has finished. are read. Therefore, be
Auto write Auto write has priority, | Sure to execute auto
and interrupt requests erase/auto write again after
are kept waiting. the flash memory has been
Interrupt processing is reactivated to confirm that
executed after auto write | the operation finishes
has finished. normally.
RO1ANO441EJ0101 Rev. 1.01 Page 7 of 69

RENESAS

Document Name

3.4 EW1 Auto Program and Auto Erase Procedure

3.4.1

Auto Program and Auto Erase Procedure

The following shows an auto program flowchart.

Program in the flash memory

Programming
commands

Erase process

Set clock and wait

FMRO1 = 0;

| FCLR | (disable interrupt) |/

Description

[Set the CPU clock to 10 MHz or less. (PLL unusable, see page 9 for the on-chip oscillator.)
Set the PM17 bit in the PML1 register to 1. (One wait cycle is inserted for access to any area.)

[Make sure no interrupts occur while writing 0 and then 1 to FMRO1. Also, make sure no DMA
transfers occur during that time.

_Enable CPU rewrite mode.
Write 0 and then 1 to FMROL in succession.

FMRO1 = 1;

| FSET I (enable interrupt) |

| FCLR | (disable interrupt) I/

Remove write protect

Make sure no DMA transfers occur during that time.

Make sure no interrupts occur when removing write protect.
Also, make sure no DMA transfers occur during that time.

To remove write protect, use FMRO2 for the M16C/26 or FMR02 and FMR16 for the M16C/26A,

| FSET | (enable interrupt) |

28 and 29. To set FMRO02 to 1, write 0 and then 1 in succession. (The same applies for FMR16.)
This will be detailed in "Removing write protect.”

FCLR | (disable interrupt . . .
| ¢ 7) }\Enterrupts are disabled when a write command is issued.

Write 5016 to
programming address
(Clear status register)

v

Write 4016 to
programming address

v

programming address

| FSET | (enable interrupt) |

A 4

Check full status

v

FMRO1 = 0;
Set CMO, CM1

and PML1 registers

(End of programming process)

\|:Clear the status.
—Essue a program command.

Write program data to Subsequent to the program command, write program data to the programming address.

Program data is handled in byte units.

—[Check to see if programming is terminated normally.
—[Disable CPU rewrite mode.

—[Restore the CPU clock to its original setting.

Figure 3-4 Auto Program Flowchart

RO1ANO441EJ0101 Rev. 1.01

Page 8 of 69
RENESAS

Document Name

The auto erase flowchart is shown below.

Program in the flash memory Description

Set CMO, CM1

and PM1 registers

FCLR | (disable interrupt)

FMRO1
FMRO1

[Set the CPU clock to 10 MHz or less. (PLL unusable, see page 9 for the on-chip oscillator.)
Set the PM17 bit in the PM1 register to 1. (One wait cycle is inserted for access to any area.)

[Make sure no interrupts occur while writing 0 and then 1 to FMRO1. Also, make sure no
DMA transfers occur during that time.

0
1

[Enable CPU rewrite mode.
Write 0 and then 1 to FMRO1 in succession.
Make sure no DMA transfers occur during that time.

FSET | (enable interrupt)
FCLR | (disable interrupt)

Remove write protect

[Make sure no interrupts occur when removing write protect.
Also, make sure no DMA transfers occur during that time.

To remove write protect, use FMRO02 for the M16C/26 or FMR02 and FMR16 for the M16C/26A, 28 and 29.
To set FMRO2 to 1, write 0 and then 1 in succession. (The same applies for FMR16.)
FSET | (enable interrupt) This will be detailed in "Removing write protect."
FCLR | (disable interrupt) —
Make sure no interrupts occur while writing 0 and then 1 to FMR40.
Also, make sure no DMA transfers occur during that time.

FMR40 = 0;
FMR40 =1,

FSET | (enable interrupt)

FCLR | (disable interrupt)

[Enable erase suspend processing.
Write 0 and then 1 to FMR40 in succession.
Also, make sure no DMA transfers occur during that time.

7merrupts are disabled in case a command is issued to the flash memory or erase suspend is
activated during interrupt processing.

~ Write xx5016 to the (Read array command included)
h'ghgéte?fscé(daé%fnss to Therefore, this step is unnecessary if no commands will be issued or erase suspend will not
address) be activated in interrupt processing.

(Clear status register)

Clear the status.

Write xx2016 to the highest

Block erase block address to be erased
(even address) .

commands i Issue the first bus cycle of the block erase command.

Write xxD016 to the
highest block address to
begerased (even address) \Essue the second bus cycle of the block erase command.

Erase suspend
acceptable range

Erase suspend is enabled to be accepted.

FSET | (enable interrupt) The time needed for transition from an interrupt request to erase suspend is 20
ms at maximum. (The time needed for transition to erase suspend varies with
each type of microcomputer, so be sure to check the latest datasheet.)

v
FMR41="0")
"ﬂBIock erase is restarted. Erase restart is repeated until FMROO = 1 (ready).

Check to see if erase operation is completed.

Check to see if erase operation is terminated normally.

I Check full status

FMRO1 = 0;

Disable CPU rewrite mode.

Set CMO, CM1
and PM1 registers

End of erase process

Restore the CPU clock to its original setting.

Figure 3-5 Auto Erase Flowchart

RO1AN0441EJ0101 Rev. 1.01 Page 9 of 69
RENESAS

Document Name

The flowcharts shown in the preceding pages are described in detail below.
® Setting clock and wait
When the flash memory is placed in CPU rewrite mode (by setting FMRO1 to 1), the following
limitations apply.
- A wait cycle must be inserted for access to any ROM and RAM area (by setting PM17 to 1).
* The CPU clock must satisfy the conditions below.

Table 3-4 Clock Limitations for CPU Rewrite Mode

Operating clocks Limitations Remarks
Main clock 10 MHz or less Set by CMO and CM1.
On-chip oscillator f1 (ROO), Set by ROCR.

(M16C/26A, 28 and 29) | f2 (ROC) or
3 (ROC) and the ROCR register
1s set to divide by 4 or 8.

PLL clock Unusable Change from the PLL clock to the main

(M16C/26A, 28 and 29) clock using the system clock control bit
(CM11) in System Clock Control Register
1(CMD).

There is no need to stop the operation
of the PLL frequency synthesizer.

Furthermore, if blocks A and B are rewritten 100 times or more, blocks A and B must be accessed for
read with one wait cycle by setting FMR17 to 1, even in other than CPU rewrite mode.
These are summarized below.

Table 3-5 CPU Rewrite Mode and Limitations

State Clock limitations | Use of PLL Wait
CPU rewrite mode | Read from any block Yes Unusable Necessary
enabled Issuance of software command
CPU rewrite mode | Read from blocks A and B No Usable Unnecessary
disabled (Rewritten less than 100 times)
Read from blocks A and B No Usable Necessary
(Rewritten 100 times or more)
Read from any blocks other than No Usable Unnecessary
A and B
RO1ANO0441EJ0101 Rev. 1.01 Page 10 of 69

RENESAS

Document Name

Limitations on the CPU clock can be lifted during erase suspend. To remove limitations on the CPU
clock, reset the CPU rewrite mode select bit (FMRO1) to 0 (disable) during erase suspend. The erase
suspend state is retained intact even when CPU rewrite mode is disabled.

To resume auto erase, select a CPU clock of 5 MHz or less, enable CPU rewrite mode, and then set the
erase restart bit (FMR41) to 0.

An example operation is shown below.

Clock limitations

@

Set CPUclockto 5 [None Set CPU clock to 5
MHz or less MHz or less None
Enable CPU / Enable CPU
rewrite mode rewrite mode
Auto erase start Erase restart
¢ Yes ¢ Yes

Wait for completion
of auto erase

* * (Erase completed)

Disa_ble CPU N Disable CPU
rewrite mode rewrite mode

y !

Remove CPU clock Remove CPU clock

Erase suspend

limitations limitations
¢ None * None
Normal processing Normal

(except flash rewrite) processing

v
N
l Erase completed

Figure 3-6 Clock Control during Erase Suspend

® Entering CPU rewrite mode
Set bit 1 (FMRO1) in Flash Memory Control Register 0 (FMRO0).To set the FMRO1 bit to 1, write 0 and
then 1 in succession. Make sure no interrupts occur before writing 1 after writing 0.

RO1AN0441EJ0101 Rev. 1.01 Page 11 of 69
RENESAS

Document Name

® Removing write protect
Some areas must have their write protect removed before they can be rewritten.
To remove write protect, the FMR02 and FMR16 bits (M16C/26A, 28 and 29) must be set.

The tables below show how write protect is set for each type of microcomputer.
Table 3-6 Write Protect Set for the M16C/26

Register settings Rewrite areas
FMRO02 Blocks A and B Blocks 0 and 1 Other blocks
0 O X O
1 O O O

O: Rewritable X: Not rewritable
Table 3-7 Write Protect Set for the M16C/26A, 28 and 29

Register settings Rewrite areas
FMR16 FMRO02 Blocks A and B Blocks 0 and 1 Other blocks
0 0 O X X
0 1 O X X
1 0 O X O
1 1 O O O

O: Rewritable X: Not rewritable

The following shows how to set FMR02 and FMR16.
Table 3-8 How to Set FMR02 and FMR16

Bit name If FMRO1 bit=0 If FMRO1 bit=1

FMRO02 | Always 0 Can be set.

To set the bit to 1, write 0 and then 1 in succession. Note

FMR16 | Cannot be set.
(Value retained)

Can be set.

To set the bit to 1, write O and then 1 in succession. Note

Note: Make sure no interrupts or DMA transfers occur before writing 1 after writing O.

The data areas (blocks A and B) have an access enable bit (PM10). Set the PM10 bit to 1 when accessing
the data area for read. When CPU rewrite mode is enabled (FMRO1 = 1), the PM10 bit is automatically
set to 1. For this reason, blocks A and B do not have write protect.

For details about the PM10 bit, refer to Section 3.5, “Readout Procedure.”

As shown in Table 3-8, “How to Set FMR02 and FMR16,” the FMRO2 bit retains its value only when the
CPU rewrite mode is enabled (FMRO1 bit = 1), but the FMR16 bit always retains its value regardless of
whether the CPU rewrite mode is enabled. For this reason, the driver program sets FMR02 and FMR16
in the processes shown below.

RO1ANO441EJ0101 Rev. 1.01 Page 12 of 69

RENESAS

Document Name

Write protect by Write protect by During rewrite
setting FMR16 setting FMR02
(Clear/set write protect) (_Clear/set write protect) (_ During rewrite)
Set limitations on CPU Store FMRO02 setting in Set limitations on CPU
rewrite mode RAM rewrite mode
Set FMRO1 to 1 Write protect setting Set FMRO1 to 1
(CPU rewrite mode enabled) finished (CPU rewrite mode enabled)

Get RAM settings
Set FMR16 reflected in FMR02

v

A 4

Reset FMR0O1to 0
(CPU rewrite mode disabled) Rewrite processing
Lift limitations on CPU y
rewrite mode Clear FMRO1to O
(CPU rewrite mode disabled)
Write protect setting ¢
finished Lift limitations on CPU

rewrite mode

v

Rewrite processing
finished

Figure 3-7 Write Protect Settings in the Sample Program

In the sample program, the “write protect setting” interface function and the “rewrite” interface
function are separated.

The FMR16 bit has its value retained even when CPU rewrite mode is disabled (FMRO1 bit = 0). On the
other hand, the FMRO2 bit has its value not retained and changed to 0 when CPU rewrite mode is
disabled (FMRO1 bit = 0).

The FMR16 bit is set in the “write protect setting” interface function. The FMRO02 bit is set up back
again from its last set content during rewrite.

Before the “rewrite” interface function can be called, the “write protect setting” interface function must
be called in order to remove write protect. The write protect information once set remains effective
unless it is set again in the “write protect setting” interface function.

RO1AN0441EJ0101 Rev. 1.01 Page 13 of 69
RENESAS

Document Name

® Program command
This command writes data to the flash memory one word (two bytes) at a time.

When the program command is issued, the CPU auto-programs the flash memory (by writing program

data and verifying).
The auto program operation is depicted below.

First bus cycle of the Second bus cycle of Programming Read array
program command the program command completed command
Address
Status changes when Read d
0OF0001s 1216 Written in 2-byte units to 1216 Written in 2-byte units to 0016 flash megmory 8016 V?I:nea:'r;ytﬁgn;;n;g
OF00116 3416 even address in blank 3416 samevadldgess aslfor the 27?16 programming is 27?16 address as programmed
area Irst bus cycle i
0F00216 5616 5616 y 0016 completed 8016 address in 2-byte units
.
H 7816 / 7816 / 2?16 ??16 /
Units in FF16 4016 FFie 9A16 0016 Auto program (writing 8016 FF16
which written FF16 Write | XX16 FFis Write | BCie 2?16 program data and ?7?16 Write | XX16
FFi6 FF16 0016 verifying) 8016
FFi6 FF16 2?16 2?16
FFis Program FFie Data to be 001 8016 Read array
FFis command FFie written ??16 2?16 command

/\ Flash memory in

read array mode

/\ Flash memory in

read array mode

/\ Flash memory in

read status mode

/\ Flash memory in

read status mode

Figure 3-8 Auto Program Procedure

1216

3416

5616

7816

FF16

FF16

FFi6

FFi6

/\ Flash memory in

read array mode

Make sure the command is written in 16-bit units to the even addresses in the user ROM area.
For details about the change of flash memory modes after the CPU started programming the flash

memory, refer to Figure 3-3, “Flash Memory Operation Modes.”

® KErase command

This command erases data from the flash memory in block units. When the erase command is issued,

the CPU auto-erases the flash memory (by erasing data and verifying). The auto erase operation is

depicted below.

First bus cycle of the
program command

Second bus cycle of

the program command Erase completed

Read array command

1216

3416

FFi6

FFi6

FFi6

FFi6

——

—_——

FF16

FFi6

Address
Status changes when Written in 2-byte units to
OF7FE1s 1216 1216 0016 flash memory erase is 8016 even address
OF7FF1s 3416 3416 2?16 completed 2?16
0F800:15 5616 5616 0016 8016 >, FF16
: 7816 7816 2716 2716 N Write | XXi6
9A16 9A16 0016 Auto erase (erasing 8016
Units in which BC16 Highest block address BC16 Highest block address 2?16 data and verifying) 2?16
erased (even address) (even address) 9
(erased in blacks) = Written in 2-byte units —————————"ritten in 2-byte units J——————— T— Read array
command
1216 2016 1216 D016 0016 8016
OFFSFF" 3416 XX16 3416 XX16 2216 2210

Erase command (2)

Flash memory in
read array mode

Erase command (1)
Flash memory in
read array mode

\ \ \ Flash memory in

read status mode

\ Flash memory in

read status mode

Figure 3-9 Auto Erase Procedure

\ Flash memory in

read array mode

Make sure the command is written in 16-bit units to the even addresses in the user ROM area.
For details about the change of flash memory modes after the CPU started erasing the flash memory,

refer to Figure 3-3, “Flash Memory Operation Modes.”

RO1AN0441EJ0101 Rev. 1.01
RENESAS

Page 14 of 69

Document Name

® Full status check

To confirm whether auto program or auto erase has been executed normally, inspect the FMR06 and
FMRO7 bits.

The table below shows the relationship between the status register status and errors.
Table 3-9 Status of the FMRO Register and Errors

Status of the FMR00
register (status register) Error Error occurrence conditions
FMRO07 FMRO06

- When the command was not written correctly
 When invalid data (not “xxD016” or “xxFF16) was written in
the second bus cycle of the block erase command Note 1

Command)
1 1 * When the block erase command was executed on a write
sequence error
protected block.
* When the program command was executed on a write
protected block.
* When the block erase command was executed on a write “enabled”
1 0 Erase error
block, but the block was not auto-erased correctly
* When the program command was executed on a write “enabled”
0 1 Program error
block, but the block was not auto-programmed correctly
+ Successfully executed.
0 0 No error - When a program/erase software command is issued to block A or B

while PM 10 is disabled.

Note 1: Writing “xxFF16” in the second bus cycle of these commands places the flash memory into read
array mode, in which case the command code written in the first bus cycle is invalidated.

® Read array command

This command places the flash memory into read array mode.

In read array mode, the content recorded in the flash memory can be read out.

The flash memory is placed into read array mode by writing “xxFF16” in the first bus cycle. Then, when
the address from which to read is entered in the next or the subsequent bus cycle, the content of the
specified address can be read out in 16-bit units.

Read array mode is retained intact until another command is written to the flash memory, the contents
of multiple addresses can be read out successively.

® Disabling CPU rewrite mode
Reset bit 1 (FMRO1) in Flash Memory Control Register 0 (FMRO) to 0.

® Erase suspend

The erase suspend function is enabled by setting the FMR40 bit in the Flash Memory Control Register
(FMR4 Register) to 1.

The erase suspend function permits interrupt requests to be accepted during erase. (Note, however, that
it takes a finite time of 20 ms at maximum (for the M16C/26 case) before an interrupt request is
accepted after the erase command is issued. For this timing parameter in other types of microcomputers,
refer to the respective datasheets.)

Erase can be restarted by setting the FMR41 bit in the Flash Memory Control Register (FMR4 Register)
to 0.

RO1AN0441EJ0101 Rev. 1.01 Page 15 of 69
RENESAS

Document Name

® About differences between microcomputers in the M16C/Tiny series
The M16C/26, 26A, 28 and 29 differ in the following points with respect to the flash memory related

features.

Table 3-10 Differences between the M16C/26, 26A, 28 and 29 with respect to the flash memory related features

Item M16C/26 M16C/26A M16C/28 M16C/29
Write protect Write protected Write protected by - -
by FMR02 FMR16 and FMR02
FMR16 included or not Not included Included <« «—
PLL included or not, and PLL PLL not included | PLL based rewriting
.. o “— “—

based rewriting prohibited

RO1ANO441EJ0101 Rev. 1.01

RENESAS

Page 16 of 69

Document Name

35 Readout Procedure

The flash memory can be accessed for data readout during read array mode.

Writing “xxFF16” in the first bus cycle places the flash memory into read array mode. (When the
program is running in the flash memory, read array mode is already entered into. When the flash
memory is being rewritten following the procedure described in this application note, it is placed into
read array mode when a programming process is completed.)

Furthermore, before data can be read from the data area (block A or B), the data area access enable bit
(PM10) in Processor Mode Register 1 (PM1) must be set to 1.
About the PM10 bit

® Set the PRC1 bit in the PRCR register to 1 (write enabled) before rewriting the PM10 bit.

® When CPU rewrite mode is enabled (FMRO1 = 1), the PM10 bit is automatically set to 1.

Table 3-11 PM10 Bit and the Status of Blocks A and B

PM10 Status of blocks A and B
0 Cannot be read (Always PM10 = 1 during rewrite)
Can be read

Can be rewritten

In the sample program, the PM10 bit is set to 1 in the device initialization process.

RO1AN0441EJ0101 Rev. 1.01 Page 17 of 69
RENESAS

Document Name

4. Sample Program

The driver program is described here. The driver program is written as a device driver for the flash

memory. The following are defined as the driver interface.

If an error occurs in this program when auto-writing or auto-erasing the flash memory, error code is

returned. If such an error occurs, perform the appropriate processing written in the user’s manual.

Table 4-1 Function Table

Function Name

Description

Remark

StartEraseFlash(Starts erasing flash memory. | Unusable in an interrupt.
Interrupts are controlled using the I flag internally. If
interrupts need to be disabled in order to use this
function, disable interrupts in the IPL.
RestartEraseFlash() | Resumes suspended erase. Unusable in an interrupt.
Interrupts are controlled using the I flag internally. If
interrupts need to be disabled in order to use this
function, disable interrupts in the IPL.
WriteFlash(Writes to flash memory. Unusable in an interrupt.
Interrupts are controlled using the I flag internally. If
interrupts need to be disabled in order to use this
function, disable interrupts in the IPL.
ReadFlash() Reads from flash memory.
UnlockBlockFlash() | Unlocks flash memory from
write protect.
LockBlockFlash() Locks flash memory to write
protect.
SuspendErase(Issues an event requesting If this function is called after calling the

that flash memory erase be
suspended

StartEraseFlash() function, StartEraseFlash(
suspends the erase operation and returns with
F_SUSPEND. Thereafter, the erase operation is
resumed by RestartEraseFlash(). (At this time, the
erase operation will be suspended again by
SuspendErase().)

ResumErase ()

Cancels an event requesting
that flash memory erase be
suspended

If this function is called after calling the
SuspendErase() function, the request to suspend
erase operation issued by SuspendErase() is canceled.

RO1ANO441EJ0101 Rev. 1.01

Page 18 of 69

RENESAS

Document Name

4.1 File Configuration

The sample program is comprised of the files listed below.

Table 4-2 File Configuration Table

File Name Description
flashdevdrv.h This header file is included when using the driver.
flashdevconf.h This file sets up the driver.
Flashm16c.h This is the include file in the flash memory driver for the M16C/Tiny type dependent

part.

flashdrvdev_ewl.c

This is the EW1 mode flash memory driver file.

depend_m16c.c

This is the file of the flash memory driver for the M16C/Tiny type dependent part.

ncrt0_EW1.a30

This is a C language initialization file.
It is an upgraded version from the standard file (ncrt0.a30) with the RAM transfer
processing at startup added.

sect30_EW1.inc

This is a C language section file.
It has had a new program section that runs in the RAM added from the earlier
version.

sfr_r26.h
sfr_r26a.h
sfr_r28.h
sfr_r29.h

These are include files for the M16C/26, 26A, 28 and 29. Please be sure to obtain
the latest file.

M16C_EW1.tmk

This is the Makefile. (Specify make -f M16C_EW1.tmk to compile it.)

RO1ANO441EJ0101 Rev. 1.01 Page 19 of 69

RENESAS

Document Name

Program Operati

flash memory.
A sequence flow of the driver during auto erase is shown below.

on

Auto Program and Auto Erase Operations

Appl Driver

Interrupt

StartEraseFlash()
or WriteFlash()

Return value
F_SUCCESS

Erase command input or
program command input

Driver
(interrupt)

This section explains operation of the sample program as flash memory driver.
The driver is always used when reading or writing to the flash memory, as well as when erasing the

The following shows an example driver operation using auto program and auto erase APIs.

CPU idle

Freed from hold

Error check

Figure 4-1 Operation of Auto Program and Auto Erase APIs -1

Device CPU
status status
Read array mode CPU
operating
Auto erase under .
execution or auto program CPU idle
under execution
CPU
Read array mode operating

The auto program and the auto erase APIs return F_SUCCESS when the respective operations are
successfully completed.

RO1ANO441EJO101 Rev. 1.0

1

RENESAS

Page 20 of 69

Document Name

4.2.2

Erase Suspend Processing
The SuspendErase() function suspends the erase processing being executed by StartEraseFlash(or
RestartEraseFlash(). The operation sequence is shown below.

Appl Driver

StartEraseFlash(

7~ Erase command input

Driver

Interrupt (interrupt)

Device status

‘ CPU status

1

Read array mode

I)‘\
|

Interrupt generated

Erase under execution

CPU idie) {
q — L—
./ _Interrupt Intefrupt
SuspendErase()
SuspendErase request
return
Return Intefrupt

Return value ¢
F_SUSPED

RetartEraseFlash

Erase suspend

It takes 8 ms (M16C/26) at
maximum before an interrupt
request is accepted after
executing the Erase command.

Erase restart

Read array mode

q
CPUidle §

q

Erase completed (polling)

Erase under
execution

Return value
F _SUCCESS

Error check

Read array

Figure 4-2 Erase Suspend Processing Sequence Flow -1

/|\

CPU operating

CPU idle

CPU operating

CPU idle

CPU operating

Although the functions that comprise the erase interface are a synchronous type, the SuspendErase()
function may be used to return from the erase interface.

RO1ANO441EJ0101 Rev. 1.01

RENESAS

Page 21 of 69

Document Name

The request from SuspendErase() processing holds the currently erase-suspended call too.
ResumeErase() may be used to avoid it. A sequence is shown below.

main Driver Interrupt Driver Device EXpI anation

)) CPU status
Suspend request (timer) (interrupt) status
— Requested i
No?request Interrupt generated | Calling SuspendErase()
Interrupt during other than erase
does not cause any action
SuspendErase() to take plage. y
return Read array mode CPU
Return operating
StartEraseFlash() Erase command
input
CPU idle Interrupt generated . CPU idle
Interrupt — 1 Erase under execution If SuspendErase request is
e e K___issued in an interrupt, wait
SuspendErase SuspendErase() for completion of erase is
request dropped.
return Erase suspend underway
Return
Return value The SuspendErase request
F_SUSPEND issued during suspend is
Interrupt generated stored in memory. (However,
ptg / stored only once no matter
Interrupt /l/ how many times a request is
E issued, because no count
Sus&zr:is;ase SuspendErase() functions are available.)
Tetumn Read array mode
Return
Erase is suspended
RestartEraseFlash() immediately after it started
Erase command because a suspend request
input CcPU already exists.
':Reéﬂgsgﬁg Suspend request operating
= Response for stopped auto erasg (polling)
Interrupt generated
Interrupt — L
SuspendErase SuspendErase()
request »
return
Return Read array mode
The suspend request is
N B — | cleared temporarily before
e restarting.
ResumErase() - |
return
RestartEraseFlash():
»
Erase restart
. Erase operation)
CPU idle under way CPU idle
Erase campleted (polling)
Error check
Return value CPU
F_SUCCESS
—] Read array mode operating When erase is completed,
i process returns with
o I F_SUCCESS.

Figure 4-3 Erase Suspend Processing Sequence Flow -2

By inserting a SuspendErase() process using the timer as shown in Figure 4-3, it is possible
to prevent StartFlashErase() or RestartFlashErase () from occupying the CPU.

RO1AN0441EJ0101 Rev. 1.01 Page 22 of 69
RENESAS

Document Name

4.3 Software Interface

4.3.1 The sample program interface

The sample program interface is described below.
Table 4-3 StartEraseFlash()

Outline Resets the device.
Declaration FlashResult StartEraseFlash(F_ADR flashAddress);
Include flash_ewldrv.h
Parameter Meaning Remark
F_ADR flashAddress Highest address of the flash
memory to be erased (even
address)
Return value Meaning Value
FlashResult Error code F _SUCCESS Successfully executed
Other Error code
See Table 4-11.
Description

This function erases the flash memory (all OXFF).

If SuspendErase() is called in an interrupt process during erase and the interrupt processing is
completed, this function is terminated in the middle, with the error code F_SUSPEND returned. In this
case, RestartEraseFlash() described next should be called to resume suspended erase and complete it.

Error code

F SUCCESS Successfully executed
Other Error code
See Table 4-11.

Remark

If an error occurs (responded with error from the flash memory device), no retry operation is attempted.
If an error occurs, therefore, the erase operation should be retried a number of times as specified in the
manual.

This function cannot be used in an interrupt.

Interrupts are controlled using the | flag internally. If interrupts need to be disabled in order to use this
function, disable interrupts in the IPL.

RO1AN0441EJ0101 Rev. 1.01 Page 23 of 69
RENESAS

Document Name

Table 4-4 RestartEraseFlash()

Outline Resumes device erase.
Declaration FlashResult RestartEraseFlash(void);
Include flash_ewldrv.h
_Parameter | Meaning | Remark ...
None
Returnvalue | Meaning | Value .
FlashResult Error code F_SUCCESS Successfully
executed
Other Error code
See Table 4-11.
Description

This function resumes erase of the flash memory (all OxFF).If StartEraseFlash() or RestartEraseFlash()
returns with the error code F_SUSPEND (erase suspended), this function is called in order to resume
suspended erase. When erase is completed after being resumed, F_SUCCESS is flagged. As for
StartEraseFlash(), the erase operation resumed by this function can be suspended again by
SuspendErase().

Error code

F SUCCESS Successfully executed
Other Error code

See Table 4-11.

Remark

If an error occurs (responded with error from the flash memory device), no retry operation is attempted.
If an error occurs, therefore, the erase operation should be retried a number of times as specified in the
manual.

This function cannot be used in an interrupt. Interrupts are controlled using the | flag internally. If
interrupts need to be disabled in order to use this function, disable interrupts in the IPL.

RO1AN0441EJ0101 Rev. 1.01 Page 24 of 69
RENESAS

Document Name

Table 4-5 WriteFlash()

QOutline Writes data to the flash memory.

Declaration FlashResult WriteFlash(F_ADR flashAddress,
const void * buffer,
unsigned short size);

Include flash_ewldrv.h
_Parameter || Meaning | Remark
F_ADR flashAddress, | Beginning address of the area to which Because data is written in 2-byte
I datais to be writen | units, specify an even address.
_const void * buffer | | Beginning address of the data to be writen |
unsigned short size The data size to be written Be sure to specify in 2-byte units.
Returnvalue || Meaning | vaye
FlashResult Error code F_SUCCESS Successfully
executed
Other Error code
See Table 4-11.
Description

This function writes data to the flash memory. Data is written to the flash memory in byte unit.

Error code

F SUCCESS Successfully executed
Other Error code

See Table 4-11.

Remark

This function cannot be used in an interrupt.
Interrupts are controlled using the | flag internally. If interrupts need to be disabled in order to use this
function, disable interrupts in the IPL.

RO1AN0441EJ0101 Rev. 1.01 Page 25 of 69
RENESAS

Document Name

Table 4-6 ReadFlash()

returned in EW1 mode)

QOutline Reads data from the flash memory.
Declaration FlashResult ReadFlash(F_ADR flashAddress,
void * buffer,
unsigned short size);
Include flash_ewldrv.h
_Parameter | Meaning | Remark ...
_F_ADRflashAddress | Beginning address of theread data. __ | ...
void*buffer | Address into which dataisread | ...
unsigned short size The data size to be written
Returnvalue | Meaning | Value .
FlashResult(No values Error code F_SUCCESS Successfully

executed
Other Error code
See Table 4-11.

Description

This function reads data from the flash memory.

enum FlashBlock blockNumber | Level of write protect to be lifted

Error code
F SUCCESS Successfully executed
Other Error code
See Table 4-11.
Remark
Table 4-7 UnlockBlockFlash()
Outline Unlocks flash memory blocks to lift write protect.
Declaration void UnlockBlockFlash(enum FlashBlock blockNumber);
Include flash_ewldrv.h
Parameter Meaning Remark

When F_ALLBLOCK, all blocks
are removed of write protect

Return value

Description

This function removes write protect for the flash memory.
F_BLOCK 0: Block 0 is write enabled. F_BLOCK_1: Block 1 is write enabled.
F ALLBLOCK: Blocks 0 and 1 are write enabled.

Error code

None

Remark

RO1ANO441EJ0101 Rev. 1.01

RENESAS

Page 26 of 69

Document Name

Table 4-8 LockBlockFlash()

QOutline Locks flash memory blocks to write protect.

Declaration void LockBlockFlash(enum FlashBlock blockNumber);

Include flash_ewldrv.h
_Parameter || Meaning .| Remark .
enum FlashBlock blockNumber Level be write protected When F_ALLBLOCK, all blocks

are write protected

Returnvalve | Meaning .| Value
None

Description

This function write protects the flash memory..
F_BLOCK_0: Block 0 is write protected. F_BLOCK_1: Block 1 is write protected.
F _ALLBLOCK: Blocks 0 and 1 are write protected.

Error code
None
Remark
Table 4-9 SuspendErase()
Outline Issues a request to suspend wait for completion of erase
Declaration void SuspendErase(void);
Include flash_ewldrv.h
_Parameter | Meaning .| Remark ..
None
Retunvalue | Meaning | Value .
None
Description

StartEraseFlash()/RestartEraseFlash() is being waited for. The content of processing varies depending
on the flash memory status, as follows:

During programming : No operation performed

During normal : No operation performed

During erase suspend : Arequest to suspend erase restart is issued.
Error code

None

Remark

If this function is called after calling the StartEraseFlash() function, StartEraseFlash() suspends erase
and returns with F_SUSPEND. Thereafter, erase is restarted by RestartEraseFlash(). (In this case,
erase may be suspended again by SuspendErase().)

RO1AN0441EJ0101 Rev. 1.01 Page 27 of 69
RENESAS

Document Name

Table 4-10 ResumErase()

QOutline Cancels a request to suspend wait for completion of erase
Declaration void ResumErase(void);
Include flash_ewldrv.h

_Parameter | Meaning | Remark ...
None

Retunvalue | Meaning | Value .
None
Description

This function drops the request to suspend erase issued by SuspendErase(). If no requests occur, no

operation is performed.

Error code

Remark

If this function is called after calling SuspendErase(), the request to suspend erase issued by
SuspendErase() is dropped. However, this does not apply if this function is called after SuspendErase()

has once been accepted.

Table 4-11 Error Code (enum FlashResult)

Name Value Meaning

F_SUCCESS 0 Successfully executed.

F_WRITE_ERROR 1 Write error. A write error was notified from the flash memory.

F_ERASE_ERROR 2 Erase error.

F_CMD_SEQUENCE_ERROR 3 Sequence error. A sequence error was notified from the flash
memoaory.

F_WRITE_ADDRESS_ERROR 4 Write address alignment error (2 bytes aligned)

F_WRITE_SIZE_ERROR 5 Invalid write size error (written in 2-byte units)

F_DEVICE_BUSY 6 Device busy (read during programming or erase)

F_SUSPEND 7 Suspended by a suspend request in the middle of
programming

F_RESUM_ERROR 8 Called by ResumFlash() when not suspended

F RESET OCCURRED 9 Successfully executed.

RO1ANO441EJ0101 Rev. 1.01

Page 28 of 69
RENESAS

Document Name

4.4

Customization

The sample program requires partial setup that needs to be made for each system.

The following describes how to customize the sample program to make it suitable for each system.

441

Customizing CPU Clock Settings

In CPU rewrite mode, the CPU clock settings are subject to limitations.

To meet the conditions, customize the processing in the functions listed below.

In the sample program, the CPU clock settings are created assuming M16C/28 Xin = 20 MHz.
Table 4-12 Functions That Need to Be Customized

Function name

Description

void SlowMCU(ProcessorMode * save);

Corrects the CPU clock settings to overcome the limitations and
saves the settings prior to correction in save.

void RestoreMCU(ProcessorMode * save);

Restores the save data as CPU clock settings.

4.4.2

For details about clock limitations, refer to the contents described in Section 3.4.1

Customizing Operation of the Driver Software

Use flashdevconf.h to customize the driver software.
Table 4-13 Definition of Sample Program Options

Setup content Define name Default Contents to be set or description
CPU series setting M16C_SERIES M16C_SERIES Add a M16C type dependent part to the
source.
CPU group setting M16C_26 M16C_28 Set a CPU group. Include the header
M16C_26A provided for each type. Add a type
M16C_28 dependent part of lock bit settings.
M16C_29

Programming mode
setting

FLASH_MODE_EW1

FLASH_MODE_EW1

Select the programming mode used.

Watchdog timer clear

ENABLE_WATCHDOG

_RESET

Unspecified

Specify whether or not to clear the
watchdog timer while waiting for
completion of auto erase or auto
program. Normally, do this in the main
processing of the user program rather
than using this processing.

Address error check

ENABLE_FLASH_ER

ENABLE_FLASH_E

Check address alignment and 2-byte

specification R_CHECK RR_CHECK unit programming.

Definition for use of | USE_SUSPEND_FLA | Unspecified Define this when the SuspendFlash()
flash memory SH_FUNCTION function is to be used. Normally, use the
suspend function SuspendFlash() function.

Definition of flash F_ADR_SIZE Far Specify the definition of the write pointer

memory address

that indicates the flash memory location
to which to write. If only the data area
needs to be written to, this can be
defined as near.

RO1ANO441EJ0101 Rev. 1.01

RENESAS

Page 29 of 69

Document Name

5. Sample Program

An example method for using the sample program is shown in the main of main_m16c.c.
For details on how to use, refer to the main_m16c.c file.

The following shows specifications of the main processing.
- Operates with M16C/28 Xin = 20 MHz.
- The main loop executed every 20 ms is created by timer A interrupt processing.
- Block B is erased every 1 s.
- Erase is suspended every 20 ms, with control returned to the main loop. This processing is
performed in timer A interrupt processing.

- After completion of erase, data is written to the flash memory every 32 bytes beginning with
0F00016 and the written data is read out.

RO1ANO441EJ0101 Rev. 1.01 Page 30 of 69

RENESAS

Document Name

51 Source Code
5.1.1 flashdevconf.h

/ /
/* FILE NAME : flashdevconf.h */
/* Ver :1.00 */
/* CPU : M16C/Tiny R8C/Tiny */
/* FUNCTION : Flash erase/read/write driver. */
/* by EWO or EW1 mode operation */
/* ___ */
/* Copyright(C)2004, Renesas Technology Corp. */
/* Copyright(C)2004, Renesas Solutions Corp. */
/* All rights reserved. */
/ /
/*

// $1d: flashdevconf.h,v 1.12 2004/08/30 05:16:21 kato Exp $

*/

#ifndef _ FLASHDEVCONF H__
#define _ FLASHDEVCONF H__

/** Select CPU TYPE /
//#define R8C_SERIES
//#define R8C_10
//#define R8C_11
//#define R8C_12
//#define R8C_13
#define M16C_SERIES
//#define M16_26
//#define M16_26A
#define M16_28
//#define M16_29

/** Write Mode Define (EWO or EW1) /
//#define FLASH_MODE_EWO
#define FLASH_MODE_EW1

// Watch Dog Reset Enable
//#define ENABLE_WATCHDOG_RESET

//M16C only//
//#define ENABLE_FLASH_ERR_CHECK

// USE SuspendFlash function (EWO mode)
//#define USE_SUSPEND_FLASH_FUNCTION

#if defined(M16C_SERIES)

#define F_ADR_SIZE far

#elif defined(R8C_SERIES)

#define F_ADR_SIZE

#undef ENABLE_FLASH_ERR_CHECK

#else

#error "Please choose either R8C_SERIES\ or M16C_SERIES\. "
#endif

/** Check 11! /

#if (1defined(FLASH_MODE_EWO) && !defined(FLASH_MODE_EW1))
#error "Please choose FLASH_MODE_EWO , FLASH MODE_EW1 or both. *
#endif

#endif /* #ifndef _ FLASHDEVCONF_H__ */

RO1AN0441EJ0101 Rev. 1.01 Page 31 of 69
RENESAS

Document Name

5.1.2 flashdevdrv.h

/ /
/* FILE NAME : flashdevdrv.h */
/* Ver :1.00 */
/* CPU : R8C/Tiny */
/* FUNCTION : Flash erase/read/write driver. */
/* by EWO or EW1 mode operation */
/* ___ -k/
/* Copyright(C)2004, Renesas Technology Corp. */
/* Copyright(C)2004, Renesas Solutions Corp. */
/* All rights reserved. */
/ /
/*

// $1d: flashdevdrv.h,v 1.9 2004/09/09 01:41:28 kato Exp $

*/

#include "flashdevconf.h"

#ifndef _ FLASHDEVDRV_H_

#define __ FLASHDEVDRV_H_

/** Write Mode Define (EWO or EW1l) /
#if (defined(FLASH_MODE_EWO) && !defined(FLASH_MODE_EW1))

#define WriteFlash(a,b,c) WriteFlashEWO(a,b,c)

#define ReadFlash(a,b,c) ReadFlashEWO(a,b,c)

#define StartEraseFlash(a)
#define RestartEraseFlash()
#define SuspendErase()

#define ResumErase()

#define GetFlashStatus(Q)

#endif /* #if (defined(FLASH_MO

#if (1defined(FLASH_MODE_EWO) &&
#define WriteFlash(a,b,c)
#define ReadFlash(a,b,c)

#define StartEraseFlash(a)
#define RestartEraseFlash()
#define SuspendErase()

#define ResumErase()

#define GetFlashStatus()

#endif /7* #if (1defined(FLASH_MO

StartEraseFlashEW0(a)
RestartEraseFlashEW0()
SuspendEraseEW0()

ResumEraseEW0()

GetFlashStatusewo()

DE_EWO) && !'defined(FLASH_MODE_EW1)) */

defined(FLASH_MODE_EW1))
WriteFlashEWl(a,b,c)
ReadFlashEWl1l(a,b,c)
StartEraseFlashEW1l(a)
RestartEraseFlashEW1()
SuspendEraseEW1()

ResumEraseEW1()

GetFlashStatusew1i()

DE_EWO) && defined(FLASH_MODE_EW1)) */

/* */

/*! The address definition of the flash memory */

typedef void F_ADR_SIZE * F_ADR;

/* */

/*! Error code */

typedef enum FlashResult{
F_SUCCESS, /*! Success */
F_WRITE_ERROR, /*! Program error (from the flash device) */
F_ERASE_ERROR, /*! Block erase error (from the Flash device) */

F_CMD_SEQUENCE_ERROR, /*1
F_WRITE_ADDRESS_ERROR, /*1

Command sequence error(from the Flash device) */
The address alignment error of the argument */

F_WRITE_SIZE_ERROR, /*! The size error of the argument */
F_DEVICE_BUSY, /*! When a Read/Programing/Erasing requirement */
/* in Programing/Erasing occurs. */
F_SUSPEND, /*! Suspend requirement acceptance. */
F_RESUM_ERROR, /*! When Suspend isn"t being done with */
/* ResumFlash(), call */
} FlashResult;
/* */
/*1

* Erase flash memory in the EWO
* @param FflashAddress

*

@retval F_SUCCESS

@retval F_ERASE_ERROR
@retval F_CMD_SEQUENCE_ERROR
@retval F_WRITE_ADDRESS_ERROR
@retval F_DEVICE_BUSY

ok X % ok % X%

mode.
[in] physical address of the head of
the block on flash.

@return Success or Error code.

Success

Block erase error (from the Flash device)
Command sequence error(from the Flash device)
The address alignment error of the argument.
When a Read/Programing/Erasing requirement

in Programing/Erasing occurs.

RO1ANO441EJ0101 Rev. 1.01

RENESAS

Page 32 of 69

Document Name

* @retval F_SUSPEND Suspend requirement acceptance.
*/
FlashResult StartEraseFlashEWO(F_ADR flashAddress);
/* */
/*1
* Erase flash memory in the EW1 mode.
* @param flashAddress [in] physical address of the head of
* the block on flash.
* @return Success or Error code.
* @retval F_SUCCESS Success
* @retval F_ERASE_ERROR Block erase error (from the Flash device)
* @retval F_CMD_SEQUENCE_ERROR Command sequence error(from the Flash device)
* @retval F_WRITE_ADDRESS_ERROR The address alignment error of the argument.
* @retval F_DEVICE_BUSY When a Read/Programing/Erasing requirement
* in Programing/Erasing occurs.
* @retval F_SUSPEND Suspend requirement acceptance.
*/
FlashResult StartEraseFlashEW1(F_ADR flashAddress);
/* */
/*1
* Restart to erase a block of the flash memory in the EWO mode.
* @return Success or Error code.
* @retval F_SUCCESS Success
* @retval F_ERASE_ERROR Block erase error (from the Flash device)
* @retval F_CMD_SEQUENCE_ERROR Command sequence error(from the Flash device)
* @retval F_WRITE_ADDRESS_ ERROR The address alignment error of the argument.
* @retval F_DEVICE_BUSY When a Read/Programing/Erasing requirement
* in Programing/Erasing occurs.
* @retval F_SUSPEND Suspend requirement acceptance.
*/
FlashResult RestartEraseFlashEWO(void);
/* */
/*1
* Restart to erase a block of the flash memory in the EW1 mode.
* @return Success or Error code.
* @retval F_SUCCESS Success
* @retval F_ERASE_ERROR Block erase error (from the Flash device)
* @retval F_CMD_SEQUENCE_ERROR Command sequence error(from the Flash device)
* @retval F_WRITE_ADDRESS ERROR The address alignment error of the argument.
* @retval F_DEVICE_BUSY When a Read/Programing/Erasing requirement
* in Programing/Erasing occurs.
* @retval F_SUSPEND Suspend requirement acceptance.
*/
FlashResult RestartEraseFlashEW1(void);
/* */
/*1
* Write data to flash memory in the EWO mode.
* @param flashAddress [in] physical address on flash to begin write
* @param buffer [in] address in buffer to write from
* @param size [in] number of byte to write.
* @return Success or Error code.
* @retval F_SUCCESS Success
* @retval F_WRITE_ERROR Program error (from the flash device)
* @retval F_CMD_SEQUENCE_ERROR Command sequence error(from the Flash device)
* @retval F_WRITE_ADDRESS_ERROR The address alignment error of the argument.
* @retval F_WRITE_SIZE_ERROR, The size error of the argument
* @retval F_DEVICE_BUSY When a Read/Programing/Erasing requirement
* in Programing/Erasing occurs.
*/
FlashResult WriteFlashEWO(F_ADR flashAddress,
const void * buffer,
unsigned short size);
/* */
/*1
* Write data to flash memory in the EW1 mode.
* @param flashAddress [in] physical address on flash to begin write.
RO1ANO441EJ0101 Rev. 1.01 Page 33 of 69

RENESAS

Document Name

* @param buffer [in] address in buffer to write from.

* @param size [in] number of byte to write.

* @return Success or Error code.

* @retval F_SUCCESS Success

* @retval F_WRITE_ERROR Program error (from the flash device)

* @retval F_CMD_SEQUENCE_ERROR Command sequence error(from the Flash device)
* @retval F_WRITE_ADDRESS_ ERROR The address alignment error of the argument.
* @retval F_WRITE_SIZE_ERROR, The size error of the argument

* @retval F_DEVICE_BUSY When a Read/Programing/Erasing requirement

* in Programing/Erasing occurs.

*/

FlashResult WriteFlashEW1(F_ADR flashAddress,
const void * buffer,
unsigned short size);

/* */
/*1
* Read data from flash memory for the EW1 mode.
* @param FflashAddress [in] physical address on flash to begin read.
* @param buffer [out] address in buffer to read to.
* @param size [in] number of byte to read.
* @return Success or Error code.
* @retval F_SUCCESS Success
* @retval F_DEVICE_BUSY When a Read/Programing/Erasing requirement

in Programing/Erasing occurs.
*/

FlashResult ReadFlashEWO(F_ADR flashAddress,

void * buffer,

unsigned short size);

/> */
/*1
* Read data from flash memory for the EW1 mode.
* @param flashAddress [in] physical address on flash to begin read.
* @param buffer [out] address in buffer to read to.
* @param size [in] number of byte to read.
* @return Success or Error code.
* @retval F_SUCCESS Success
* @retval F_DEVICE_BUSY When a Read/Programing/Erasing requirement
*

in Programing/Erasing occurs.
*
/
FlashResult ReadFlashEW1(F_ADR flashAddress,
void * buffer,
unsigned short size);

/* */
/*1 Block number */
enum FlashBlock{

F_BLOCK_O,
F_BLOCK_1,
F_BLOCK_2,
F_BLOCK_3,
F_BLOCK_ 4,
F_BLOCK_5,
F_ALLBLOCK = -1,
F_BLOCK_A = -2,
F BLOCK B = -3,
}:
/* */
/*1
* Disable write protect.
* @param blockNumber [in] The block number to protect it.
*/
void UnlockBlockFlash(enum FlashBlock blockNumber);
/> */
/*1
* Enable write protect.
* @param blockNumber [in] The block number to unprotect it.
*/

void LockBlockFlash(enum FlashBlock blockNumber);

/* */
/*1

* Send the suspension request of a flash memory in the EWO mode.

*/
void SuspendEraseEWO(void);

RO1AN0441EJ0101 Rev. 1.01 Page 34 of 69
RENESAS

Document Name

/* */
/*1

* Send the suspension request of a flash memory in the EW1 mode.

*/
void SuspendEraseEW1l(void);
/* */
/*1

* Clear the suspension request of a flash memory in the EWO mode.

*/
void ResumEraseEWO(void);
/> */
/*1

* Clear the suspension request of a flash memory in the EWO mode.

*/
void ResumEraseEW1(void);
/* */
/*! Status of flash memory or this driver. */

typedef enum FlashStatus{

FLASH_READY, /*! ready */
FLASH_WRITE, /*! programing */
FLASH_ERASE, /*! erasing */
FLASH_SUSPEND, /*! suspend erasing */
FLASH_INT_SUSPEND, /*! suspend erasing during the interruption */
}FlashStatus;
/* */

#ifdef FLASH_MODE_EWO

/* */
/*1
* Suspend at interrupt.
*/
FlashResult SuspendFlashEWO(void);
/* */
/*1
* This function resumes the erasure processing suspended by SuspendFlashEWO() .
*/
FlashResult ResumFlashEWO(void);

#endif

#endif /* #ifndef _ FLASHDEVDRV_H__ */

RO1AN0441EJ0101 Rev. 1.01 Page 35 of 69
RENESAS

Document Name

5.1.3 flashm16c¢.h

/ /
/* FILE NAME : flashml6c.h */
/* Ver :1.00 */
/* CPU : M1e6C */
/* FUNCTION : Flash erase/read/write driver. */
/* by EWO or EW1 mode operation */
/* ___ */
/* Copyright(C)2004, Renesas Technology Corp. */
/* Copyright(C)2004, Renesas Solutions Corp. */
/* All rights reserved. */
/ /
/*

// $1d: flashml6c.h,v 1.6 2004/09/09 01:32:51 kato Exp $

*/

#include "flashdevconf._h"

#if defined(M16_26)

#include "'sfr26.

h

#elif defined(M16_26A)
#include "'sfr26a.h"
#elif defined(M16_28)

#include "'sfr28.

h

#elif defined(M16_29)

#include "'sfr29.

#else

h*

#error "This cpu type not support.™

#endif

#ifndef _ FLASHM16C H__
#define _ FLASHM16C H__

//typedef volatile unsigned short F_ADR_SIZE * DEPEND_F_ADR;

typedef volatile unsigned short DEPEND_FSIZE;

#define FLASH_READARRAY_CMD
#define FLASH_STSREGS_CMD
#define FLASH_CLEAR_STSREGS_CMD
#define FLASH_PRG_CMD

#define FLASH_BLOCK_ERASE_1_CMD
#define FLASH_BLOCK_ERASE 2 CMD

#define _FLASH E EWQO {\
fmrol = 0O;
asm("™);
fmrol = 1;
asmC"™):

77771

#define _FLASH_DIS EWQ) {\
fmrol = 0; \

s
#define FLASH_E SUSPENDQ) {\
fmr40 = 0; \
asm(""""); \
fmr40 = 1; \
asm(""""); \
¥

#define _FLASH_DIS_SUSPEND() {\
fmr40 = 0; \
¥

#define _FLASH_SUSPEND_ERASEQ) {\

fmr4al = 1;\

by
#define _FLASH_RESUME_ERASEQ) {\

fmr4l = 0;\
bs

#define _FLASH_RESUME_ERASE_EW1(a) {\

fmr4l = a;\
s

((unsigned short)0Oxff)
((unsigned short)0x70)
((unsigned short)0x50)
((unsigned short)0x40)
((unsigned short)0x20)
((unsigned short)0xd0)

RO1ANO441EJ0101 Rev. 1.01

RENESAS

Page 36 of 69

Document Name

#define _FLASH_EWO_MODEQ) {\

fmrll = O;\

}

#define _FLASH_EW1 MODE(Q) {\
fmrll = O;\
fmrll = 1;\

3

#define _CLEAR_WATCHDOGQ) {\
wdts = Ox7FfFF;\
3
#define _FLASH_BUSY() (fmr00 == 0)
#define _FLASH_READY() (fmr00 == 1)

#define _DATA_FLASH_ENAQ {\

prcr = 0x3; /* Unlock CMO, CM1, PM1 */\
pml0 = 1; /* enable flash data block (4KB Virtual EEPROM) access */\
prcr = 0; /* Lock the System Clock Control Register */\

¥

#define _DATA_FLASH_DISQ {\
prcr = 0x3; /* Unlock CMO, CM1, PM1 */\
pml10 = O; /* disable flash data block (4KB Virtual EEPROM) access */\
prcr = 0; /* Lock the System Clock Control Register */\

}

#define ERASE_ERR 0x40
#define PRGRAM_ERR 0x80

#define FMRO7_06 (PRGRAM_ERR | ERASE_ERR)

#define _FLASH_GET_STAT FLG() (fmrO & FMRO7_06)

#define DEBUG_OUT ERASE_START 0x04
#define DEBUG_OUT SUSPEND 0x02
#define DEBUG_OUT_READY 0x07
#define DEBUG_OUT WAIT_ERASE OxFF

//#define DEBUG_M16C

#ifdef DEBUG_M16C

#define DEBUG_OUT(a) {\
if(a 1= OXFF){ \

p7_0 = (Ox01 & a); />
p7_1 = (0x01 & (a>>1)); /*
p7_2 = (Ox01 & (a>>2)); /*
} N\
by
#else

#define DEBUG_OUT(a)
#endif /* #ifdef DEBUG_M16C */

struct LockBitStatus{
unsigned char s_fmrl6:1;
unsigned char s_fmr02:1;

¥

/*! for SlowMCU/RestoreMCU */
#define USE_CLOCKGEAR
typedef struct ProcessorMode

unsigned char p_pml;

unsigned char p_cmO;

unsigned char p_cml;
} ProcessorMode;
void SlowMCU(ProcessorMode * save);
void RestoreMCU(ProcessorMode * save);

/* xxxx100
/* xxxx010
/* xxxx111
/* not use

0:Eraseing
0 Erase 1:
0:Suspend

*/
*/
*/
*/

1:Eraseed

*/ \

suspend or erase complete */ \

1: not Suspend

/*

/*1
* Initialize flash device.
*/

void Flashlnitialize(void);

#endif /* #ifndef _ FLASHM16C H__ */

*/

*/ \

RO1ANO441EJ0101 Rev. 1.01

RENESAS

Page 37 of 69

Document Name

5.1.4 flashdrvdev_ewl.c

/ /
/* FILE NAME : flashdrvdev_ewl.c */
/* Ver :1.00 */
/* CPU : R8C/Tiny M16C/26,26A,28,29 */
/= FUNCTION : Flash low level (erase/read/write) driver. */
/* by EW1 mode operation */
/* ___ */
/* Copyright(C)2004, Renesas Technology Corp. */
/* Copyright(C)2004, Renesas Solutions Corp. */
/* All rights reserved. */
/ /
/*

// $1d: flashdrvdev_ewl.c,v 1.22 2004/09/10 04:05:05 kato Exp $

*/

#include <string.h>
#include "flashdevdrv.h"

#if defined(M16C_SERIES)
#include "flashml6c.h"
#endif

#if defined(R8C_SERIES)
#include "flashr8c.h"
#endif

#ifdef FLASH_MODE_EW1

/* RAM */
/*! Flash status */
enum FlashStatus stat = FLASH_READY;

/*! Flash status */
unsigned char suspendReq;

/*! Command target address. */
DEPEND_FSIZE F_ADR_SIZE * com_adr;

/*=== Prototype */
FlashResult EraseChecklnternal(void);
FlashResult FullStatusCheck(void);

void SetUpLockBit(void);

void WaitEraseComplete(void);

/
Name :ReadFlashEW1()
Purpose :Read data from flash memory.
Arguments M
[in] flashAddress physical add on flash to begin read
[out] buf address in buffer to read to
[in] size number of byte to read
Return :Result
Notice :None

FlashResult ReadFlashEW1(F_ADR flashAddress,
void * buf,
unsigned short size)

if(stat !'= FLASH_READY && stat != FLASH_SUSPEND)return F_DEVICE_BUSY;
memcpy(buf , FlashAddress , size);
return F_SUCCESS;

}

/
Name :StartEraseFlashEW1()
Purpose :Start to erase 1 block of the flash memory.
Arguments :physical address of the head of the block on flash.
Return “Result
Notice :This function erase and return result only.
This function does not perform retry at the time of error.

FlashResult StartEraseFlashEW1(F_ADR flashAddress)

FlashResult ret;

RO1AN0441EJ0101 Rev. 1.01 Page 38 of 69
RENESAS

Document Name

#if defined(USE_CLOCKGEAR)
ProcessorMode save_dat;
#endif

DEPEND_FSIZE F_ADR_SIZE * adr = flashAddress;

#ifdef ENABLE_FLASH_ERR_CHECK
iT(0Ox01 & ((unsigned long)adr))return F_WRITE_ADDRESS ERROR;
#endif

// disable interrupt.
asm('FCLR 1'");
if(stat != FLASH_READY){
asm('FSET 1'");
return F_DEVICE_BUSY;

}
asm('FSET 1');

suspendReq = O; /* initialize request */

#if defined(USE_CLOCKGEAR)
SlowMCU(&save_dat); /* Must change main clock speed to meet flash */
#endif

asm("'FCLR 1'");
_FLASH_E_EWQ;
asm('FSET 1'");

asm(""FCLR 1');
_FLASH_EW1_MODEQ);
asm('FSET 1'");

asm('FCLR 1');
SetUpLockBit();
asm('FSET 1'");

asm('FCLR 1'");
_FLASH_E_SUSPENDQ) ;
asm('FSET 1'");

L11117777777777777777////7/77///777

// Clear status register.

[111117777777777/7777///7777///777

asm('FCLR 1'");

adr = FLASH_CLEAR_STSREGS CMD; / Clear status register */

com_adr = adr;

stat = FLASH_ERASE;

L111117777777777/7777///7777///777

// Flash command (Erase) entry.

L11111777777777777777/7//7/777///777

adr = FLASH_BLOCK_ERASE_1_CMD; / Erase command 1 */
adr = FLASH_BLOCK_ERASE_2_ CMD; / Erase command 2 */

asm('FSET 1'");

WaitEraseComplete();
ret = EraseChecklInternal();
i F(_FLASH_READY())
{_FLASH_DIS_SUSPEND();
_FLASH_DIS_EWQ);

#if defined(USE_CLOCKGEAR)

RestoreMCU(&save_dat); /* Restore clock back to original speed */
#endif
return ret;
}
/
Name :RestartEraseFlashEW1()
Purpose :Restart to erase 1 block of the flash memory.
Return :Result
Notice :This function erases flash memory with operating erase command.
RO1ANO441EJ0101 Rev. 1.01 Page 39 of 69

RENESAS

Document Name

It does not perform retry at the time of error.

/
FlashResult RestartEraseFlashEW1l(void)
FlashResult ret;
#i1f defined(USE_CLOCKGEAR)
ProcessorMode save_dat;
#endif
asm('FCLR 1'");
if(stat !'= FLASH_SUSPEND)
asm("'FSET 1');
return F_DEVICE_BUSY;
}
asm('FSET 1'");
#i1f defined(USE_CLOCKGEAR)
SlowMCU(&save_dat); /* Must change main clock speed to meet flash */
#endi T
asm("'FCLR 1');
_FLASH_E_EWQ;
asm('FSET 1'");
asm("'FCLR 1'");
_FLASH_EW1_MODEQ);
asm('FSET 1'");
asm("'FCLR 1');
SetUpLockBit();
asm('FSET 1'");
stat = FLASH_ERASE;
WaitEraseComplete();
ret = EraseChecklInternal();
iF(_FLASH_READY(Q))
_FLASH_DIS_SUSPENDQ);
3
_FLASH_DIS_EWQ);
#i1f defined(USE_CLOCKGEAR)
RestoreMCU(&save_dat); /* Restore clock back to original speed */
#endif
return ret;
¥
/
Name :EraseCheckliInternal ()
Purpose :The eraseed result is judged.
Return :Result.
Notice
/
FlashResult EraseChecklnternal(void)
{
FlashResult ret;
iF(FLASH_BUSY()){
ret = F_SUSPEND;
stat = FLASH_SUSPEND;
3
else{
ret = FullStatusCheck(); /* Erasing error? */
stat = FLASH_READY;
}
return ret;
3
/
Name :WriteFlashEW1(Q)
Purpose :Write data to flash memory.
Arguments :Address
RO1ANO441EJ0101 Rev. 1.01 Page 40 of 69

RENESAS

Document Name

[in] flashAddress physical add on flash to begin write
[in] buf address in buffer to write from
[in] size number of byte to write
Return :Result
Notice :This function writes flash memory with operating write command.
It does not perform retry at the time of error.

FlashResult WriteFlashEW1(F_ADR flashAddress,
const void * buffer,
unsigned short size)

{
#if defined(USE_CLOCKGEAR)
ProcessorMode save_dat;
#endif
FlashResult ret;
unsigned short data;
DEPEND_FSIZE F_ADR_SIZE * adr = flashAddress;
const DEPEND_FSIZE * buf = buffer;

#ifdef ENABLE_FLASH_ERR_CHECK
if(0x01 & ((unsigned long)adr))return F_WRITE_ADDRESS_ERROR;
iT(Ox01 & size)return F_WRITE_SIZE_ERROR;

#endif

/* disable interrupt. */
asm('FCLR 1'");
if(stat 1= FLASH READY){
asm('FSET 1');
return F_DEVICE_BUSY;

}
asm('FSET 1'");

#if defined(USE_CLOCKGEAR)
SlowMCU(&save_dat); /* Must change main clock speed to meet flash */
#endif

asm("'FCLR 1');
_FLASH_E_EWQ;
asm('FSET 1'");

asm("'FCLR 1');
_FLASH_EW1_MODEQ);
asm('FSET 1'");

asm("'FCLR 1');
SetUpLockBit();
asm('FSET 1'");

ret = F_SUCCESS;
while(size > 0)
{
asm('FCLR 1'");
stat = FLASH_WRITE;
* adr = FLASH_CLEAR_STSREGS_CMD; /* Clear status register */
data = *buf;
* adr = FLASH_PRG_CMD; /* Send write command */
* adr = data; /* Write next word of data */
asm("'FSET 1');

#ifdef ENABLE_WATCHDOG_RESET
_CLEAR_WATCHDOGQ) ;
#endif

ret = FullStatusCheck(); /* Write error? */
stat = FLASH_READY;

if(ret '= F_SUCCESS) break;

size -= sizeof(DEPEND_FSIZE); /* subract 2 from byte counter */
buf++; /* increase to next data index */
adr++; /* increase to next flash index */

b
_FLASH_DIS_EWQ);

#if defined(USE_CLOCKGEAR)

RO1AN0441EJ0101 Rev. 1.01 Page 41 of 69
RENESAS

Document Name

RestoreMCU(&save_dat); /* Restore clock back to original speed */
#endi T
return ret; /* Write Pass */
3
/
Name :FullStatusCheck()
Purpose :Check the status of flash memory.
Arguments :None
Return :Result
/
FlashResult FullStatusCheck(void)
{
unsigned char reg;
reg = _FLASH _GET_STAT_FLGQ);
if(reg == 0)return F_SUCCESS;
if(reg == PRGRAM_ERR) return F_WRITE_ERROR;
if(reg == ERASE_ERR) return F_ERASE_ERROR;
return F_CMD_SEQUENCE_ERROR;
¥
/
Name :SuspendEraseEW1()
Purpose :Send the suspension request of a flash memory.
Return -None
/
void SuspendEraseEW1l(void)
{
if(stat == FLASH_ERASE || stat==FLASH_SUSPEND)
{
/* send event to wait roop */
suspendReq = 1;
3
3
/
Name :ResumEraseEW1()
Purpose :This function clears suspension request.
Return :None
/
void ResumEraseEW1(void)
{
if(stat==FLASH_ERASE || stat==FLASH_SUSPEND)
/* send event to wait roop */
suspendReq = 0;
}
/
Name :WaitEraseComplete
Purpose :Wait until complete or suspended.
Flash memory will be set "Read Array” mode (you can read data on
flash memory) ,if this function return.
Return -None
Notice :None
/
void WaitEraseComplete (void)
while(_FLASH_BUSY())
stat = FLASH_SUSPEND;
#ifdef ENABLE_WATCHDOG_RESET
_CLEAR_WATCHDOGQ) ;
#endif
iT(suspendReq)
{
suspendReq = 0;
return;
¥
else
{
asm('FCLR 1'");
_FLASH_RESUME_ERASE_EW1(suspendReq) ;
asm("'FSET 1'");
3
RO1ANO0441EJ0101 Rev. 1.01 Page 42 of 69

RENESAS

Document Name

}

return ;

#endif /* #ifdef FLASH_MODE_EW1 */

RO1AN0441EJ0101 Rev. 1.01 Page 43 of 69
RENESAS

Document Name

5.1.5 depend_m1l6c.c

/
/* FILE NAME : depend_ml6c.c

/* Ver
/= CPU

:1.00
: M16C/26,26A,28,29

/= FUNCTION : Flash low level (erase/read/write) driver for M16C
/>
/* Copyright(C)2004, Renesas Technology Corp.

/* Copyright(C)2004, Renesas Solutions Corp.

/* All rights reserved.

/
/*

// $1d: depend_ml6c.c,v 1.3 2004/08/18 08:04:03 ikari Exp $

*/

#include "flashdevdrv.h"
#include "flashml6c.h"

#ifndef M16C_SERIES
#error "This file is only for M16C."

#endif

/*! Protect flash status */
struct LockBitStatus fmr_status = {0,0};

/

Name: Flashinitialize()

Purpose :Initial the flash memory
Arguments none

Return Inonr

Notice :None

void Flashlnitialize(void)

_DATA_FLASH_ENAQ);

3

/

Name :SlowMCUQ

Purpose :In order to rewrite a flash memory, the clock of MCU operation is made late.
(Flash Accsess time nomal -> slow)

Arguments address iIn area to save CPU clock setting.

Return :None

Notice 1t depends on your system.

You must modify this function for your system.
This function is the example of "M16C/26 Xin=20MHz."

void SlowMCU(ProcessorMode * save)

{

asmC'FCLR 1');

save->p_cm0 = cmO; /* Save current CPU clock setting */
save->p_cml = cml;
save->p_pml = pml;

/* "Modify for your system. This code is sample for M16C/26 Xin=20MHz." */
fmrl7 = 1; /* Set lwait to Block A/B access */
prcr = 3; /* Unprotect registers CMO and PMO */
cmle = 1; /* Use Xin, Xin drive HIGH, Xin/2 (f2) */
cml?7 = 0; /* Use Xin, Xin drive HIGH, Xin/2 (f2) */
cm06 = 0; /* CM16 and CM17 are valid */
pmi7 = 1; /* enable flash data block 1 wait access */
prcr = 0; /* Protection register back on */
asm('FSET 1'");

by

/

Name :RestoreMCUQ)

Purpose :Restore MCU clock.

Arguments taddress in area to load CPU clock setting.

Return :None

Notice :1t depends on your system.

You must modify this function for your system.
This function is the example of "M16C/26 Xin=20MHz."

void RestoreMCU(ProcessorMode * save)

{

RO1ANO441EJ0101 Rev. 1.01

RENESAS

Page 44 of 69

Document Name

asm("FCLR 1');

fmrl7 = 0; /* Set none wait to Block A/B access */
prcr = 3; /* Unprotect registers CMO and PMO */
pml = save->p_pml;
cml = save->p_cml;
cm0 = save->p_cmO;
prcr = 0; /* Protection register back on */
asm("'FSET 1');
3
/
Name :UnlockBlockFlash()
Purpose :Disable write protect.
Arguments :F_BLOCK 0,F_BLOCK_ 1,F_ALLBLOCK All area writing is possible.
F_BLOCK_2,F BLOCK_3,F BLOCK_4,F BLOCK_5
Block2 to 4 area writing is possible.(only M16C/26A,28,29)
Return :None
Notice 1t depends on your system.
/
void UnlockBlockFlash(enum FlashBlock blockNumber)
{
#if (defined(M16_26A) || defined(M16_28) || defined(M16_29))
ProcessorMode save_dat;
#endif
asm("'FCLR 1');
switch(blockNumber){
case F_BLOCK 0: case F BLOCK 1: case F_ALLBLOCK:
fmr_status.s_fmr02 = 1;
/* Not break */
#if (defined(M16_26A) || defined(M16_28) || defined(M16_29))
case F_BLOCK 2: case F_BLOCK 3: case F _BLOCK 4: case F_BLOCK 5:
SlowMCU(&save_dat); // Must change main clock speed to meet flash
_FLASH_E_EWQ);
fmrlé = 0;
fmrlé = 1;
_FLASH_DIS_EWQ);
RestoreMCU(&save_dat); // Restore clock back to original speed
#endif
break;
// case F_ALLBLOCK: case F_BLOCK A : case F_BLOCK_B :
defaul t:
break;
¥
asm('FSET 1'");
}
/
Name :LockBlockFlash(Q)
Purpose :Enable write protect.
Arguments :F_BLOCK_0,F_BLOCK_1 Block0,1 are locked.
F BLOCK_2,F_BLOCK_3,F BLOCK 4,F BLOCK_5
all area is locked.
F_BLOCK_A,F_BLOCK B don"t have bit for write to lock.
Return :None
Notice 1t depends on your system.
/

void LockBlockFlash(enum FlashBlock blockNumber)

{
#if (defined(M16_26A) || defined(M16_28) || defined(M16_29))
ProcessorMode save_dat;
#endif
asm("'FCLR 1');
switch(blockNumber){
#if (defined(M16_26A) || defined(M16_28) || defined(M16_29))
case F_BLOCK_2: case F_BLOCK_3: case F_BLOCK_ 4: case F_BLOCK_5: case F_ALLBLOCK:
SlowMCU(&save_dat); // Must change main clock speed to meet flash
_FLASH_E_EWQ);
fmrlé = 0O;
_FLASH_DIS_EWQ);
RestoreMCU(&save_dat); // Restore clock back to original speed
/* not break */
#endif
case F_BLOCK_0O: case F_BLOCK_1:
fmr_status.s_fmr02 = O;
break;
// case F_ALLBLOCK: case F_BLOCK_A : case F_BLOCK_ B :

RO1AN0441EJ0101 Rev. 1.01 Page 45 of 69
RENESAS

Document Name

default:
break;

}

asm("'FSET 1');
by
/
Name :SetUpLockBit()
Purpose :set up lock bit.
Notice 1t depends on your system.

void SetUpLockBit(void)

if(fmr_status.s_fmr02){
fmro2 0;

fro2 = 1:

RO1AN0441EJ0101 Rev. 1.01 Page 46 of 69
RENESAS

Document Name

5.1.6 ncrt0_EW1.a30

; C COMPILER for R8C/Tiny, M16C/60,30,20,10

; COPYRIGHT(C) 1999(2000-2002) RENESAS TECHNOLOGY CORPORATION
; AND RENESAS SOLUTIONS CORPORATION ALL RIGHTS RESERVED
ncrt0.a30 : NC30 startup program

; This program is applicable when using the basic 1/0 library

; $1d: ncrtO_EW1.a30,v 1.1 2004/06/25 02:25:54 nagayoshi Exp $

.if _ HEAP__ ==
HEAPSIZE -equ OH
.else

.if _ HEAPSIZE__ ==

HEAPSIZE -equ 50H

.else

HEAPSIZE -equ __ HEAPSIZE_
.endif

.endif

; STACK SIZE definition

.if __USTACKSIZE__ ==

STACKSIZE -equ 300h

.else

STACKSIZE -equ _ USTACKSIZE_
.endif

_if __ISTACKSIZE__ ==

ISTACKSIZE -equ 300h

.else

ISTACKSIZE .equ __ ISTACKSIZE_
.endif

if __R8C__ I=1
;VECTOR_ADR .equ Offdooh
VECTOR_ADR -equ Off700h
.else

VECTOR_ADR -equ Ofedch
.endif

list OFF
-include sect30_EWl.inc
.list ON

-glb __SB__
__SB .equ data_SE_top
; Initialize Macro declaration
N_BZERO _macro TOP_ ,SECT

mov.b #0OH, ROL

RO1AN0441EJ0101 Rev. 1.01 Page 47 of 69
RENESAS

Document Name

mov.w #(TOP_ & OFFFFH), Al
mov.w #sizeof SECT_ , R3
sstr.b

.endm

N_BCOPY _macro FROM_,TO_,SECT_
mov.w #(FROM_ & OFFFFH),AO0
mov.b #(FROM_ >>16),R1H
mov.w #TO_ ,Al
mov.w #sizeof SECT_ , R3
smovf.b
.endm

BZERO .macro TOP_,SECT_
push.w #sizeof SECT_ >> 16
push.w #sizeof SECT_ & Offffh
pusha TOP_ >>16
pusha TOP_ & Offffh

.stk 8

-glb _bzero
.call _bzero,G
jsr.a _bzero
-endm

BCOPY .macro FROM_ ,TO_ ,SECT_
push.w #sizeof SECT_ >> 16
push.w #sizeof SECT_ & OFfffh
pusha TO_ >>16
pusha TO_ & Offffh
pusha FROM_ >>16
pusha FROM_ & OFffffh
.Stk 12
.glb _bcopy
.call _bcopy,G
jsr.a _bcopy
-endm

.if _R8C__1=1

> for M16C/60,30,20,10 series

; .glb __BankSelect
;_ BankSelect -equ OBH

macro define for special page

;Format:
; SPECIAL number
SPECIAL .macro NUM
.org OFFFFEH-(NUM*2)
.glb __ SPECIAL_@NUM
.word __ SPECIAL_@NUM & OFFFFH
.endm

; Interrupt section start

.insf start,S,0
-glb start
.section interrupt

ldc #istack_top, isp ;set istack pointer
mov.b #03h,0ah

mov.b #00h,04h ;set processer mode
mov.b #00100000B,07h ;set CM1

mov.b #00000000B,06h ;set CMO

mov.b #00000000B,0Ch ;set CM2

mov.b #00h,0Oah

Idc #0080h, flg

Idc #stack_top, sp ;set stack pointer

RO1ANO441EJ0101 Rev. 1.01

RENESAS

Page 48 of 69

Document Name

Idc #data_SE_top, sb ;set sb register
Idintb #VECTOR_ADR

; Program RAM Initialize

N_BCOPY _from_addr, program_ram_top,program_ram

; NEAR area initialize.

N_BZERO bss_SE_top,bss_SE
N_BZERO bss_SO_top,bss_SO
N_BZERO bss_NE_top,bss_NE
N_BZERO bss_NO_top,bss_NO

N_BCOPY data_SEIl_top,data_SE_top,data_SE
N_BCOPY data_SOI_top,data_SO_top,data_SO
N_BCOPY data_NEI_top,data NE_top,data_NE
N_BCOPY data_NOI_top,data_NO_top,data_NO

; FAR area initialize.

; BZERO bss_FE_top,bss_FE
; BZERO bss_FO_top,bss_FO

; BCOPY data_FEl_top,data_FE_ top,data_FE
BCOPY data_FOIl_top,data_FO_top,data_FO

Idc #stack_top,sp
.stk -40

; heap area initialize
Jif _HEAP_ 1= 1
-glb __mbase
-glb __mnext
.glb __msize

mov.w #(heap_top&OFFFFH), _ mbase

mov.w #(heap_top>>16), _ mbase+2

mov.w #(heap_top&0OFFFFH), _ mnext

mov.w #(heap_top>>16), mnext+2

mov.w #(HEAPSIZE&OFFFFH), _ msize

mov.w #(HEAPSIZE>>16), _ msize+2
.endif

: Initialize standard 1/0

.call _init,G
Jjsr.a _init
.endif

; Call main() function

Idc #0h,fb ; for debuger

RO1AN0441EJ0101 Rev. 1.01 Page 49 of 69
RENESAS

Document Name

; for R8C/Tiny

.insf start,S,0
-glb start
.section interrupt

#istack_top, isp ;set
#02h,0ah

#00h,04h ;set
#00h,0ah

#0080h, flg

#stack_top, sp ;set
#data_SE_top, sb ;set

Idintb #VECTOR_ADR

istack pointer

processer mode

stack pointer
sb register

; NEAR area

initialize.

N_BZERO bss_SE_top,bss_SE
N_BZERO bss_SO_top,bss_SO
N_BZERO bss_NE_top,bss_NE
N_BZERO bss_NO_top,bss_NO

N_BCOPY data_SEIl_top,data_SE_top,data_SE
N_BCOPY data_SOIl_top,data_SO_top,data_SO
N_BCOPY data_NEI_top,data_NE_top,data_NE
N_BCOPY data_NOI_top,data_NO_top,data_NO

FAR area

BZERO
BZERO

: BCOPY

: BCOPY
Idc

; .stk

initialize.

bss_FE_top,bss_FE
bss_FO_top,bss_FO

data_FEI_top,data_FE_top,data_FE
data_FOIl_top,data_FO_top,data_FO

#stack_top,sp
-40

Jif _ HEAP

-glb
-glb
-glb
mov .w
mov .w
mov .w
.endif

heap area initialize

=1

__mbase

__mnext

__msize

#(heap_top&OFFFFH), mbase
#(heap_top&OFFFFH), _ mnext
#(HEAPSIZE&OFFFFH) , _ msize

; Program RAM Initialize

N_BCOPY _from_addr,_program_ram_top,program_ram

RO1ANO441EJ0101 Rev. 1.01

RENESAS

Page 50 of 69

Document Name

Initialize standard 1/0

.glb _?nlt
.call _init,G
Jjsr.a _init

.endif

; Call main() function

Idc #0h,fb ; for debuger

-glb _exit
glb $exit
exit ; End program
$exit
Jmp _exit
einsf

dummy_int:
reit

.end

; C COMPILER for R8C/Tiny, M16C/60,30,20,10
; COPYRIGHT(C) 1999(2000-2002) RENESAS TECHNOLOGY CORPORATION
; AND RENESAS SOLUTIONS CORPORATION ALL RIGHTS RESERVED

RO1ANO441EJ0101 Rev. 1.01

RENESAS

Page 51 of 69

Document Name

5.1.7 sect30_EW1l.inc

; C Compiler for R8C/Tiny, M16C/60,30,20,10

; COPYRIGHT(C) 1999(2000-2002) RENESAS TECHNOLOGY CORPORATION
; AND RENESAS SOLUTIONS CORPORATION ALL RIGHTS RESERVED

; Written by T.Aoyama

; sect30.inc : section definition
; This program is applicable when using the basic 1/0 library

; $1d: sect30_EWl.inc,v 1.1 2004/06/25 02:25:54 nagayoshi Exp $

if _R8C__1=1
; for M16C/60,30,20,10

SBDATA area

.section data_SE,DATA

.org 400H
data_SE_top:

.section bss_SE,DATA,ALIGN
bss_SE_top:

.section data_SO,DATA
data_SO_top:

.section bss_SO,DATA
bss_SO_top:
; hear RAM area

.section data_NE,DATA,ALIGN
data NE_top:

.section bss_NE,DATA,ALIGN
bss_NE_top:

.section data_NO,DATA
data_NO_top:

.section bss_NO,DATA
bss_NO_top:

; Stack area

.section stack,DATA
-blkb STACKSIZE
stack_top:

-blkb ISTACKSIZE
istack_top:

.section heap,DATA
heap_top:
-blkb HEAPSIZE

.section program_ram,ALIGN

RO1AN0441EJ0101 Rev. 1.01 Page 52 of 69
RENESAS

Document Name

_program_ram_top:
.glb _program_ram_top

.section rom_NE,ROMDATA
.org Of000H
rom_NE_top:
.section rom_NO,ROMDATA
rom_NO_top:

.section data_FE,DATA

.org 10000H
data_FE_top:

.section bss_FE,DATA,ALIGN
bss_FE_top:

.section data_FO,DATA
data_FO_top:

.section bss_FO,DATA
bss_FO_top:

.section rom_FE,ROMDATA

.org OF8000H
rom_FE_top:

.section rom_FO,ROMDATA
rom_FO_top:
; Initial data of "data® section
’ _section data_SEI,ROMDATA
data_SEI_top:

.section data_SOl ,ROMDATA
data_SOI_top:

.section data_NEI ,ROMDATA
data NEI_top:

.section data_NOI ,ROMDATA
data_NOI_top:

.section data_FEIl ,ROMDATA
data_FEI_top:

.section data_FOIl ,ROMDATA
data_FOI_top:
; Switch Table Section
| .section switch_table,ROMDATA
switch_table_top:

Q
o]
a
)
o
=
@
o

.section program

.section interrupt
;.org ;must be set internal ROM area
.section program_S

RO1AN0441EJ0101 Rev. 1.01 Page 53 of 69
RENESAS

Document Name

<
o
=
o
=2
o
<
®
0
-+
o
=
[0
o
0
~+
o
=

.section vector ,ROMDATA
.org VECTOR_ADR
.if M6OTYPE ==
-lword dummy_int
-lword dummy_int
-lword dummy_int
-Ilword dummy_int
-lword dummy_int
-lword dummy_int
-lword dummy_int
-Ilword dummy_int
-lword dummy_int
-lword dummy_int
-lword dummy_int
-lword dummy_int
-Ilword dummy_int
-lword dummy_int
-lword dummy_int
-lword dummy_int
-Ilword dummy_int
-lword dummy_int
-lword dummy_int
-lword dummy_int
-Ilword dummy_int
-lword dummy_int
-lword dummy_int
-lword dummy_int
-Ilword dummy_int
_Ilword dummy_int
-lword dummy_int
-lword dummy_int
-lword dummy_int
-Ilword dummy_int
-lword dummy_int
-lword dummy_int
.else
.glb
-glb
-lword
-lword
-lword
-lword
-lword
- lword
-lword
-lword
-lword
-lword
-lword
-lword
-lword
-lword
-lword
-lword
-lword
-lword
-lword
-lword
-lword
-lword
-lword
-Iword
-lword
-lword
-lword
-lword
-lword
-lword
-lword
-lword
.endif
-lword

_timerAl_int

_vec_dummy_int
_vec_dummy_int
_vec_dummy_int
_vec_dummy_int
_vec_dummy_int
_vec_dummy_int
_vec_dummy_int
_vec_dummy_int
_vec_dummy_int
_vec_dummy_int
_vec_dummy_int
_vec_dummy_int
_vec_dummy_int
_vec_dummy_int
_vec_dummy_int
_vec_dummy_int
_vec_dummy_int
_vec_dummy_int
_vec_dummy_int
_vec_dummy_int
_vec_dummy_int
_vec_dummy_int
_vec_dummy_int
_timerAl_int

_vec_dummy_int
_vec_dummy_int
_vec_dummy_int
_vec_dummy_int
_vec_dummy_int
_vec_dummy_int
_vec_dummy_int
_vec_dummy_int
_vec_dummy_int

dummy_int

variable vector table

vector 0 (BRK)

vector 1

vector 2

vector 3

vector 4

vector 5

vector 6

vector 7

vector 8

vector 9

vector 10

DMAO (for user) (vector 11)

DMA1l 2 (for user) (vector 12)

input key (for user) (vector 13)

AD Convert (for user) (vector 14)
vector 15

vector 16

uartO trance (for user) (vector 17)
uartO receive (for user) (vector 18)
uartl trance (for user) (vector 19)
uartl receive (for user) (vector 20)
TIMER (for user) (vector 21)
TIMER (for user) (vector 22)
TIMER (for user) (vector 23)
TIMER (for user) (vector 24)
TIMER (for user) (vector 25)
TIMER (for user) (vector 26)
TIMER (for user) (vector 27)
TIMER (for user) (vector 28)
INTO (for user) (vector 29)

INT1 (for user) (vector 30)

INT2 (for user) (vector 31)

BRK (vector 0)

(vector 1)

(vector 2)

(vector 3)

int3(for user)(vector 4)
timerB5(for user)(vector 5)
timerB4(for user)(vector 6)
timerB3(for user)(vector 7)

si/o4 /int5(for user)(vector 8)
si/o03 /int4(for user)(vector 9)

Bus collision detection(for user)(v10)
DMAO(for user)(vector 11)

DMA1(for user)(vector 12)

Key input interrupt(for user)(vect 13)
A-D(for user)(vector 14)

uart2 transmit(for user)(vector 15)
uart2 receive(for user)(vector 16)
uart0 transmit(for user)(vector 17)
uartO receive(for user)(vector 18)
uartl transmit(for user)(vector 19)
uartl receive(for user)(vector 20)
timer AO(for user)(vector 21)

timer Al(for user)(vector 22)

timer A2(for user)(vector 23)

timer A3(for user)(vector 24)

timer A4(for user)(vector 25)

timer BO(for user)(vector 26)

timer Bl(for user)(vector 27)

timer B2(for user)(vector 28)

int0 (for user)(vector 29)

intl (for user)(vector 30)

int2 (for user)(vector 31)

vector 32 (for user or MR30)

RO1ANO441EJ0101 Rev. 1.01

Page 54 of 69
RENESAS

Document Name

- lword
- lword
- Iword
- Iword
. lword
- lword
- Iword
- Iword
. lword
- lword
- Iword
- Iword
. lword
- lword
- lword
- Iword
. lword
- Iword
- Iword
- lword
- lword
. lword
- lword
- Iword
- lword
. lword
- Iword
- Iword
- Iword
- lword
- Iword

dummy_int
dummy_int
dummy_int
dummy_int
dummy_int
dummy_int
dummy_int
dummy_int
dummy_int
dummy_int
dummy_int
dummy_int
dummy_int
dummy_int
dummy_int
dummy_int
dummy_int
dummy_int
dummy_int
dummy_int
dummy_int
dummy_int
dummy_int
dummy_int
dummy_int
dummy_int
dummy_int
dummy_int
dummy_int
dummy_int
dummy_int

; vector

vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector

; vector

vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector

(for
(for
(for
(for
(for
(for
(for
(for
(for
(for
(for
(for
(for
(for
(for

user
user
user
user
user
user
user
user
user
user
user
user
user
user
user

or
or
or
or
or
or
or
or
or
or
or
or
or
or
or

MR30)
MR30)
MR30)
MR30)
MR30)
MR30)
MR30)
MR30)
MR30)
MR30)
MR30)
MR30)
MR30)
MR30)
MR30)

fixed vector section

.section fvector,ROMDATA

; special page defination

; Format:
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL

SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL

SPECIAL number

macro is defined in ncrt0.a30

RO1ANO441EJ0101 Rev. 1.01

RENESAS

Page 55 of 69

Document Name

; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL

SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL

221
220
219
218
217
216
215
214
213
212
211
210
209
208
207
206
205
204
203
202
201
200
199
198
197
196
195
194
193
192
191
190
189
188
187
186
185
184
183
182
181
180
179
178
177
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
156
155
154
153
152
151
150
149
148
147
146
145

RO1ANO441EJ0101 Rev. 1.01

RENESAS

Page 56 of 69

Document Name

SPECIAL 144
SPECIAL 143
SPECIAL 142
SPECIAL 141
SPECIAL 140
SPECIAL 139

; SPECIAL 138
; SPECIAL 137
; SPECIAL 136
; SPECIAL 135
; SPECIAL 134
; SPECIAL 133
; SPECIAL 132
; SPECIAL 131
; SPECIAL 130
; SPECIAL 129

; SPECIAL 128
; SPECIAL 127
; SPECIAL 126
; SPECIAL 125

; SPECIAL 124
; SPECIAL 123
; SPECIAL 122
; SPECIAL 121
; SPECIAL 120
; SPECIAL 119
; SPECIAL 118
; SPECIAL 117
; SPECIAL 116

; SPECIAL 115
; SPECIAL 114
SPECIAL 113
SPECIAL 112
SPECIAL 111
SPECIAL 110
SPECIAL 109

; SPECIAL 108
; SPECIAL 107
; SPECIAL 106
; SPECIAL 105
; SPECIAL 104
; SPECIAL 103
; SPECIAL 102
; SPECIAL 101
; SPECIAL 100
; SPECIAL 99
; SPECIAL 98
; SPECIAL 97
; SPECIAL 96
; SPECIAL 95
; SPECIAL 94
; SPECIAL 93
; SPECIAL 92
; SPECIAL 91
; SPECIAL 90
; SPECIAL 89
; SPECIAL 88
; SPECIAL 87
; SPECIAL 86
; SPECIAL 85
; SPECIAL 84
; SPECIAL 83
; SPECIAL 82
; SPECIAL 81
SPECIAL 80
; SPECIAL 79
; SPECIAL 78
; SPECIAL 77
; SPECIAL 76
; SPECIAL 75
; SPECIAL 74
; SPECIAL 73
; SPECIAL 72
; SPECIAL 71
; SPECIAL 70
; SPECIAL 69
; SPECIAL 68
RO1ANO441EJ0101 Rev. 1.01 Page 57 of 69

RENESAS

Document Name

; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL
; SPECIAL

; Fixed vector section

Offfdch

dummy_int
dummy_int
dummy_int
dummy_int
dummy_int
dummy_int
dummy_int

dummy_int
OffffcH

start

org
uDlI:

- lword
OVER_FLOW:

. lword
BRKI :

- lword
ADDRESS_MATCH:

. lword
SINGLE_STEP:

- lword
WDT:

- lword
DBC:

- Iword
NMI :

- lword

.org
RESET:

- Iword
.else; __R8C__

RO1ANO441EJ0101 Rev. 1.01

RENESAS

Page 58 of 69

Document Name

> for R8C/Tiny

; SBDATA area
.section data_SE,DATA
.org 400H

data_SE_top:

.section bss_SE,DATA,ALIGN
bss_SE_top:

.section data_SO,DATA
data_SO_top:

.section bss_S0,DATA
bss_SO_top:

; hear RAM area
.section data_NE,DATA,ALIGN
data_NE_top:

.section bss_NE,DATA,ALIGN
bss_NE_top:

.section data_NO,DATA
data_NO_top:

.section bss_NO,DATA
bss_NO_top:

.section stack,DATA,ALIGN
-blkb STACKSIZE
stack_top:
-blkb ISTACKSIZE
istack_top:
; heap section
.section heap,DATA
heap_top:

-blkb HEAPSIZE

.section program_ram,ALIGN
_program_ram_top:
-glb _program_ram_top

.section rom_NE,ROMDATA

.org 0eO00H
rom_NE_top:

.section rom_NO, ROMDATA
rom_NO_top:

; Initial data of "data® section

.section data_SEI ,ROMDATA,ALIGN
data_SEIl_top:
RO1ANO0441EJ0101 Rev. 1.01 Page 59 of 69

RENESAS

Document Name

.section data_SOI ,ROMDATA
data_SOI_top:

.section data_NEI ,ROMDATA,ALIGN
data_NEI_top:

.section data_NOI ,ROMDATA
data_NOI_top:

w
=
~
[¢)
>
—
QD
=}
o
w
®
(¢}
~
o
]

.section switch_table,ROMDATA
switch_table_top:

(2]
o)
o
o
o
=
o)
o

.section program,CODE,ALIGN
.section interrupt,CODE,ALIGN
; variable vector section

.section vector ,ROMDATA ; variable vector table
.org VECTOR_ADR
.glb _int_timerx
-lword dummy_int ; vector O
-lword dummy_int ; vector 1
-Ilword dummy_int ; vector 2
-Ilword dummy_int ; vector 3
-lword dummy_int ; vector 4
-lword dummy_int ; vector 5
-lword dummy_int ; vector 6
-Ilword dummy_int ; vector 7
-lword dummy_int ; vector 8
-lword dummy_int ; vector 9
-lword dummy_int ; vector 10
-lword dummy_int ; vector 11
-lword dummy_int ; vector 12
-lword dummy_int ; vector 13
-lword dummy_int ; vector 14
-Ilword dummy_int ; vector 15
-lword dummy_int ; vector 16
-lword dummy_int ; vector 17
-lword dummy_int ; vector 18
-lword dummy_int ; vector 19
-Ilword dummy_int ; vector 20
-lword dummy_int ; vector 21
-lword _int_timerx ; timerx(vector 22)
-lword dummy_int ; vector 23
-Ilword dummy_int ; vector 24
-lword dummy_int ; vector 25
-lword dummy_int ; vector 26
-lword dummy_int ; vector 27
-lword dummy_int ; vector 28
-lword dummy_int ; vector 29
-lword dummy_int ; vector 30
-lword dummy_int ; vector 31
-lword dummy_int ; vector 32
-lword dummy_int ; vector 33
-lword dummy_int ; vector 34
-lword dummy_int ; vector 35
-lword dummy_int ; vector 36
-lword dummy_int ; vector 37
-lword dummy_int ; vector 38
-lword dummy_int ; vector 39
-lword dummy_int ; vector 40
-lword dummy_int ; vector 41
-lword dummy_int ; vector 42
-lword dummy_int ; vector 43
_lword dummy_int ; vector 44
-lword dummy_int ; vector 45
-lword dummy_int ; vector 46

RO1ANO441EJ0101 Rev. 1.01 Page 60 of 69

RENESAS

Document Name

-lword dummy_int ; vector 47
-lword dummy_int ; vector 48
-Ilword dummy_int ; vector 49
-Ilword dummy_int ; vector 50
-lword dummy_int ; vector 51
-lword dummy_int ; vector 52
-lword dummy_int ; vector 53
-Ilword dummy_int ; vector 54
-lword dummy_int ; vector 55
-lword dummy_int ; vector 56
-lword dummy_int ; vector 57
-Ilword dummy_int ; vector 58
-lword dummy_int ; vector 59
-lword dummy_int ; vector 60
-lword dummy_int ; vector 61
-Ilword dummy_int ; vector 62
-lword dummy_int ; vector 63

; Fixed vector section
.section fvector,ROMDATA ; Fixed vector table

; .org OffdcH

;UDI:
-Ilword dummy_int

OVER FLOW:
-lword dummy_int

'BRKI
-Ilword dummy_int

ADDRESS MATCH:
-lword dummy_int

SINGLE STEP:

; -Ilword dummy_int

SWDT:

; -lword dummy_int

;DBC:

; -lword dummy_int

SNMI

; -lword dummy_int
.org OfffcH

RESET
-lword start | OFFOOOOOOH

endif __R8C

; Far ROM data area

; .section rom_FE,ROMDATA

; .org 10000H

; .section rom_FO,ROMDATA
.section data_FEI ,ROMDATA,ALIGN

data FEI1_top:
.section data_FOI ,ROMDATA

data FOI_top:

; C Compiler for R8C/Tiny, M16C/60,30,20,10

; COPYRIGHT(C) 1999(2000-2002) RENESAS TECHNOLOGY CORPORATION
; AND RENESAS SOLUTIONS CORPORATION ALL RIGHTS RESERVED

RO1ANO441EJ0101 Rev. 1.01

RENESAS

Page 61 of 69

Document Name

5.1.8 main_m1l6c.c
/ /
/* FILE NAME : main_ml6c.c */
/* Ver :1.00 */
/* CPU : M16C/26 */
/= FUNCTION : Data Flash rewrite Apllication Note sample program */
/* for EWO mode operation */
/* ___ */
/* Copyright(C)2004, Renesas Technology Corp. */
/* Copyright(C)2004, Renesas Solutions Corp. */
/* All rights reserved. */
/ /

// $1d: main_ml6c.c,v 1.7 2004/08/18 04:37:15 ikari Exp $
#include <string.h>

#include <stdio.h>

//#include "sfr28.h"

#include "flashdevdrv.h"

#include "flashml6c.h"

#ifndef FALSE
#define FALSE O
#endif

#ifndef TRUE
#define TRUE 1
#endif

typedef unsigned char BOOL;
#define BLOCK_SIZE 2048

#pragma INTERRUPT timerAl_int;
void timerAl_int(void);

/*** Interrupt dummy (running on ram) ***/
#pragma INTERRUPT vec_dummy_int;

void far vec_dummy_int(void);

void ErrorDisp(const char * dt);

void mcu_init(void);

int CheckErasedBlank(void F_ADR_SIZE * f _addr, short size);
int CmpBlank(unsigned char F_ADR_SIZE * buf , short size);

/* */
/* */
enum TimerSource{

TIMER_DEV_1 = 0x00,

TIMER_DEV_8 = 0x40,

TIMER_DEV_32 = 0x80,

TIMER_SUB_32 = 0xCO,

¥

#define TIMER_CLOCK_Hz 20000000

#define TIMER_SUBCLOCK_Hz 32768

#define TA1 DEV32_MS(a) ((TIMER_CLOCK Hz / 32000) * (a) - 1)
#define TA1_DEV8 MS(a) ((TIMER_CLOCK Hz / 8000) * (a) - 1)
#define TA1_DEV1 MS(a) ((TIMER_CLOCK Hz / 1000) * (a) - 1)

BOOL CheckTalPassed(void);
void SetTickTimer(unsigned char tm);

void TimerAllnitTimerMode(enum TimerSource source,
unsigned short timer);

inline void StartTimerAl(void);
inline void StartTimerAl(void)

{
}

void ClearTotalTimer(void);

tals = 1; // TimerAl start

void SystemTimerlInc(void);
/** RAM for Timer **/

RO1AN0441EJ0101 Rev. 1.01 Page 62 of 69
RENESAS

Document Name

BOOL tm_ps = FALSE;
unsigned char tm_ms = 0;
unsigned long totalTimer = 0; // ms

inline unsigned long GetTotalTimer(void);
inline unsigned long GetTotalTimer(void)

{
return totalTimer;
¥
/* */
/** Timer End ****/
/* */

enum MainMode{

ERASE_TEST_START,

ERASE_TEST_RESTART,

ERASE_TEST_CHECK,

PROGRAM_TEST,

OTHER,
} mode = ERASE_TEST_START;
const char TestData[33] = '""0123456789ABCDEF0123456789ABCDEF"";
/
// Main loop

/
void main(void)
{
unsigned char buffer_addr[32];
FlashResult err_code = F_SUCCESS;
mcu_initQ; /* initialize MCU */
FlashInitialize(); /* FlashMemory Initialize */
StartTimerA1();
asm("'fset i");
/* Unlock gives a Flash block to write. (This example is unnecessary.) */
UnlockBlockFlash(F_BLOCK_3);
/* example : When a main loop is done in 20mS and made to work.
The turn of the movement
mode Address and contents of a test
<< start >>
ERASE_TEST_START OxFO00-OxF7FF Start Erasing
ERASE_TEST_RESTART OXFO00-0OxF7FF Restart Erasing
ERASE_TEST_CHECK OXxFO00-0OxF7FF Erasing confirmation
PROGRAM_TEST OxFO00-0xFO1F Write and confirmation
OTHER Wait until it passes from the erasing start for one second.
Judge it as the error, and reset a flash memory
when erasing isn"t completed in one second.
<< Repetition >>
*/
for(G:){
/* Waiting 20ms passed */
while(!CheckTalPassed());
switch(mode){
case ERASE_TEST_START:
case ERASE_TEST_RESTART:
/* Start/Restart erasing */
/* So that it may clear a suspend requirement to do ResumErase()
before resuming elimination. */
if(mode == ERASE_TEST_START){
ClearTotalTimer(); /* Make totalTimer O for the erasing time acquisition. */
err_code = StartEraseFlash((void F_ADR_SIZE *)OxF7FE);
else {
ResumErase();
err_code = RestartEraseFlash();
/* Check err code. */
switch(err_code){
case F_SUSPEND: mode = ERASE_TEST RESTART; break;
case F_SUCCESS: mode = ERASE_TEST_CHECK; break;
RO1ANO441EJ0101 Rev. 1.01 Page 63 of 69

RENESAS

Document Name

default: ErrorDisp("'EraseER1"); break;

by
/* TimeOut Check */
/* Take an error when F_SUSPEND occurs for one second after you start elimination. */
if(GetTotalTimer() >= 1000){

if(mode == ERASE_TEST RESTART){

ErrorDisp("Err Tout™);

}

}

break;
case ERASE_TEST_CHECK:
/* Check whether even an erase block (OxFO00-OxF7FFF) is being erased. */
if(0 == CheckErasedBlank((void F_ADR_SIZE *)OxF000, BLOCK_SIZE)){
ErrorDisp("'EraseER2™);

}
mode = PROGRAM_TEST;
break;
case PROGRAM_TEST:
/* Writing 32byte and error code check */
err_code = WriteFlash((void F_ADR_SIZE *)OxF000,TestData,32);
if(err_code = F_SUCCESS)ErrorDisp("WriteERR™);
/* The data being written check whether it begins to read it. */
err_code = ReadFlash((void F_ADR_SIZE *)OxF000 , buffer_addr, 32);
if(err_code = F_SUCCESS)ErrorDisp(*'Read ERR™);
/* Compare data of write and data of read. */
if(memcmp(buffer_addr , TestData , 32)){
ErrorDisp(*’Comp ERR™);

3
mode = OTHER;
break;
default:
if(GetTotalTimer() >= 1000){
mode = ERASE_TEST_START;

3
3
}
3
/*
* Confirm whether a flash memory is in the blank.
* f_addr : physical address on flash memory to confirm.
* size : Number of bytes to confirm.
* return : 1:blank
* : 0:not blank
*/
int CheckErasedBlank(void F_ADR_SIZE * f_addr, short size)
{
unsigned char F_ADR_SIZE * faddr = f_addr;
FlashResult err_code = F_SUCCESS;
unsigned short r_buf[16];
unsigned short r_size;
for(; size > 0 ;){
r_size = (size > sizeof(r_buf))? sizeof(r_buf):size;
err_code = ReadFlash(faddr , r_buf , r_size);
if(CmpBlank((unsigned char F_ADR_SIZE *)r_buf , r_size)){
return O;
faddr += r_size;
size -= r_size;
¥
return 1;
3
/-k
* Compare the matter whether designated data are "BLANK_PATTERN'.
* f_addr : physical address on flash memory to confirm.
* size > Number of bytes to confirm.
* return : 1:blank
* : 0:not blank

*/
#define BLANK_PATTERN Oxff
int CmpBlank(unsigned char F_ADR_SIZE * buf , short size)

while(size --){
if(* buf ++ 1= BLANK_PATTERN)return -1;

RO1AN0441EJ0101 Rev. 1.01 Page 64 of 69
RENESAS

Document Name

return O;
T
/*
Error display and cancellation of a movement.
*/
void ErrorDisp(const char * dt)
{
// DISPLAY(1, dt);
while(l);
/*
initialize MCU
*/

void mcu_init(void)

{

/* Select full speed operation */
/* Switch port initialization */
pd10_5 0; // change switch ports to inputs
pd10_6
pd10_7

/* LED initialization */

pd7_0 // Change LED ports to outputs (connected to LEDs)
pd7_1
pd7_2

oo
PR R3S

/* unused pins - configure as outputs to decrease power consumption */
pd6 = 0x90;

pd8_0
pds8_1
pd8_2
pd8_3

prc2 = 1; // P9 is write protected - disable protection before writing to P9
pdo_0
pdo_1
pdo_2
pdo_3
prc2 =

o

// Write protect P9

pd10_0
pd10_1
pd10_2
pd10_3
pd10_4

RPRRRE

// Set up a Timer Al
TimerAllnitTimerMode(TIMER_DEV_32,TA1_DEV32_MS(20));

SetTickTimer(20);
talic = 0x07; // Set Timer-Al Interrupt-Priolity-Level
// Port Initialize
p6 = 0x00; // Port-6 clear
// pd6 = Oxff; // Port-6 is output port
p7 = 0x07; // p7_0 - p7_2 LED off
pd7 = 0x07; // p7_0 to p7_2 output select
pu25 = 1; // pl0_4 to P10_7 pull-up
pl0 = 0x00; // Port-10 clear
pd10 = Ox1f; // pl0_5 to pl0_7 is Key-in port
3
/ /
/* Timer */
/ /
/*
Check tick time.
*/
RO1ANO441EJ0101 Rev. 1.01 Page 65 of 69

RENESAS

Document Name

BOOL CheckTalPassed(void)

{
if(tm_ps){
tm_ps = FALSE;
return TRUE;
¥
return FALSE;
ks
/*
Set up value of tick time.

*/
void SetTickTimer(unsigned char tm)
{

tm_ms = tm;
by
/*
Initialize Timer Al.
*/

void TimerAllnitTimerMode(enum TimerSource source,
unsigned short timer)

{
// Set up a Timer Al
tals = 0; // Timer-Al Stopped
talic = 0x07; // Set Timer-Al Interrupt-Priolity-Level
talmr = source; // Set Timer-Al mode regster
// Mode=Timer-mode,Count-src=Ff1
tal = timer; // Set Timer-Al timer-value (50ms)
by
/-k

Clear totaltimer

*/
void ClearTotalTimer(void)

totalTimer = 0;

}
/

The following is a program to work by the RAM.(EWO only)

#ifdef FLASH_MODE_EWO

#pragma SECTION program program_ram
#endif

/*
Timer Al Interrupt function

*/

void timerAl_int(void)

/* Suspend erasing and advance timer. */
SuspendErase();
SystemTimerinc();

}

/-k
This is function for Timer Al interrupt.
*
/

void SystemTimerlInc(void)

// 1ms
tm_ps = TRUE;
totalTimer += tm_ms;

}

/*
dummy Interrupt

*/

void vec_dummy_int(void)
{
}

RO1AN0441EJ0101 Rev. 1.01 Page 66 of 69
RENESAS

Document Name

5.1.9 M16C_EW1.tmk
e e S s

3+

Makefile for TM V.3.20A

COPYRIGHT(C) 1998(1998-2003)
RENESAS TECHNOLOGY CORPORATION ALL RIGHTS RESERVED

#

#

AND

RENESAS SOLUTIONS CORPORATION ALL RIGHTS RESERVED

#

Notice Don"t edit.

Date 2004 06(June) 25(Friday) AM.11.28

Project : M16C_EW1

HHHHHHHHHHHHHHHHHHHHHHH

DELETE = @-del

LNLIST = $(PROJECT) .cmd

FROM_ADDR = OFB0O0O

LMC = LMC30

ccC = NC30

AR = LB30

utL = utl30

AS = AS30

LIBFILE = $(PROJECT) . lib

OUTDIR = M16CEW1

MKDIR = @-mkdir

ABSFILE = $(PROJECT) .x30

ODINCMD = $(OUTDIR)

LN = LN30

TARGET = $(ABSFILE)

ECHO = @-echo

MKFILE = $(PROJECT) . tmk

PROJECT = M16C_EW1

TYPE = @-type

LFLAGS = -MS -L nc30lib -G -LOC program_ram=$(FROM_ADDR) -0 $(OUTDIR)\$(TARGET)

UTLFLAGS =

CFLAGS = -c -dir $(OUTDIR) -g -gbool_to_char -OR -04 -0SA -finfo -fUD -fNA -fSA -WNP -
WUP -WNC -Wall -WUV -WNUA

LMCFLAGS = -L

LIBFLAGS = -C

AFLAGS = -LM -D__HEAP__ =1 -D__STANDARD_10__ =1 -

D_from_addr=$(FROM_ADDR)h:__USTACKSIZE__ =160h:__ ISTACKSIZE__ =160h -finfo -0$(OUTDIR)
.SUFFIXES: .a30 .r30 .c .x30 .lib

.PHONY: all
all: \

.PHONY: clean

clean:

$(OUTDIR)\$(TARGET)

$(DELETE) $(OUTDIR)\$(TARGET)

$(DELETE) $(ODINCMD)\$(LNLIST)

$(DELETE) $(OUTDIR)\ncrt0 EW1.r30

$(DELETE) $(OUTDIR)\depend_mi6c.r30

$(DELETE) $(OUTDIR)\flashdrvdev_ewl.r30

$(DELETE) $(OUTDIR)\main_ml6c.r30
$(ODINCMD)NS(LNLIST) - \

\S$(MKFILE)

$(ECHO)\$(MRLFLAGS) $(LFLAGS) > $(ODINCMD)\$(LNLIST)
$(ECHO)\$(OUTDIR)\ncrt0_EW1.r30 >> $(ODINCMD)\$(LNLIST)
$(ECHO)\$(OUTDIR)\depend_m16c.r30 >> $(ODINCMD)\S$(LNLIST)

$(ECHO)\$(OUTDIR)\flashdrvdev_ewl.r30 >>

$(ECHO)\$(OUTDIR)\main_ml6c.r30 >> $(ODINCMD)\$(LNLIST)
$(OUTDIR)\$(TARGET): \

$(ODINCMD)\$(LNLIST) \
$(OUTDIR)\ncrt0_EW1.r30 \
$(OUTDIR)\depend_m16c.r30 \
$(OUTDIR)\flashdrvdev_ewl.r30 \
$(OUTDIR)\main_ml6c.r30

$(LN) @$(ODINCMD)\$(LNLIST)
$(OUTDIR)\depend_m16c.r30: \

\depend_ml6c.c \
\flashdevdrv.h \
\flashdevconf.h \
\flashml6c.h

$(CC) $(MRCFLAGS) $(CFLAGS) depend_ml6c.c
$(OUTDIR)\flashdrvdev_ewl.r30: \

\flashdrvdev_ewl.c \
\flashdevdrv.h \
\flashdevconf._h \

$(ODINCMDY\S(LNLIST)

RO1ANO441EJ0101 Rev. 1.01

RENESAS

Page 67 of 69

Document Name

\flashml6c.h
$(CC) $(MRCFLAGS) $(CFLAGS) flashdrvdev_ewl.c
$(OUTDIR)\main_m16c.r30: \
-\main_ml6c.c \
\flashdevdrv.h \
\flashdevconf._h
$(CC) $(MRCFLAGS) $(CFLAGS) main_ml6c.c
$(OUTDIR)\ncrt0_EW1.r30: \
-\ncrtO_EW1.a30 \
-\sect30_EW1.inc
$(AS) $(MRAFLAGS) $(AFLAGS) ncrtO_EW1.a30
HAHAH AR R R R A R R R R R R R R R R A AR
End of makefile for TM V_.3.20A
COPYRIGHT(C) 1998(1998-2003)
RENESAS TECHNOLOGY CORPORATION ALL RIGHTS RESERVED
AND
RENESAS SOLUTIONS CORPORATION ALL RIGHTS RESERVED
R T R R

RO1AN0441EJ0101 Rev. 1.01 Page 68 of 69
RENESAS

Document Name

6. Reference

Hardware Manual

M16C/26 Group Hardware Manual Rev.0.90
M16C/28 Group Hardware Manual Rev.0.60
M16C/29 Group Hardware Manual Rev.1.00

The latest version can be downloaded from the Renesas Electronics website.

TECHNICAL UPDATE/TECHNICAL NEWS

The latest information can be downloaded from the Renesas Electronics website.

7. Website and Support

Renesas Electronics Website
http://www.renesas.com/

Inquiries
http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.

RO1ANO441EJ0101 Rev. 1.01

RENESAS

Page 69 of 69

http://www.renesas.com/
http://www.renesas.com/inquiry

Revision Record

Description
Rev. Date Page Summary
1.00 Mar.16. 05 — First edition issued
1.01 Dec.28.10 9 Figure 3-5 “Auto Erase Flowchart” partially modified
14 Figure 3-9 “Auto Erase Procedure” partially modified
23 Table 4-3 “StartEraseFlash()” Parameter meaning
“Beginning address of the flash memory to be” — “Highest
address of the flash memory to be erased (even address)”
63 68th line 0xFO00 — OXF7FE

A-1

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General
Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the
description in the body of the manual takes precedence.

1.

Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

— The input pins of CMOS products are generally in the high-impedance state. In operation with an
unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

— The states of internal circuits in the LSI are indeterminate and the states of register settings and
pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

— The reserved addresses are provided for the possible future expansion of functions. Do not access
these addresses; the correct operation of LSl is not guaranteed if they are accessed.

Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.

When switching the clock signal during program execution, wait until the target clock signal has

stabilized.

— When the clock signal is generated with an external resonator (or from an external oscillator)
during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

Differences between Products

Before changing from one product to another, i.e. to one with a different type number, confirm that the

change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different type numbers may differ
because of the differences in internal memory capacity and layout pattern. When changing to
products of different type numbers, implement a system-evaluation test for each of the products.

Notice

1. Allinformation included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas

Electronics products listed herein, please confirm the latest product i with a Renesas El sales office. Also, please pay regular and careful attention to additional and different information to
be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or
technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the ion of i ictor products and icati You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the
use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and
regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to
the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics
assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product
depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas
Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the
use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics.
The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools;
personal electronic equipment; and industrial robots.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically
designed for life support.

"Specific": Aircraft; equipment; i P ; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical

implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage
range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the
use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and
malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate Because the ion of mi iter software alone is very difficult,
please evaluate the safety of the final products or system manufactured by you.
10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your r iance with i laws and ions.
11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
(Note 1) "Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

RENESAS

SALES OFFICES Renesas Electronics Corporation http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Dusseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898

Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044

Renesas Electronics Taiwan Co., Ltd.
7F, No. 363 Fu Shing North Road Taipei, Taiwan, R.O.C.
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001

Renesas Electronics Malaysia Sdn.Bhd.

Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, JIn Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd.

11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea

Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2010 Renesas Electronics Corporation. All rights reserved.
Colophon 1.0

	1. Abstract
	2. Introduction
	3. Explanation of Example Usage
	3.1 Table of Contents
	3.2 About Flash Memory
	3.2.1 Operations on Flash Memory

	3.3 Rewriting the Flash Memory in EW1 Mode
	3.3.1 EW1 Mode
	3.3.2 Flash Memory Mode Transition
	3.3.3 Interrupts during Flash Memory Rewrite

	3.4 EW1 Auto Program and Auto Erase Procedure
	3.4.1 Auto Program and Auto Erase Procedure

	3.5 Readout Procedure

	4. Sample Program
	4.1 File Configuration
	4.2 Program Operation
	4.2.1 Auto Program and Auto Erase Operations
	4.2.2 Erase Suspend Processing

	4.3 Software Interface
	4.3.1 The sample program interface

	4.4 Customization
	4.4.1 Customizing CPU Clock Settings
	4.4.2 Customizing Operation of the Driver Software

	5. Sample Program
	5.1 Source Code
	5.1.1 flashdevconf.h
	5.1.2 flashdevdrv.h
	5.1.3 flashm16c.h
	5.1.4 flashdrvdev_ew1.c
	5.1.5 depend_m16c.c
	5.1.6 ncrt0_EW1.a30
	5.1.7 sect30_EW1.inc
	5.1.8 main_m16c.c
	5.1.9 M16C_EW1.tmk

	6. Reference
	7. Website and Support

