

M16C/5LD, 5L, 5M, 6C Groups Outputting a 16-Bit PWM Waveform Using Timer S in Set/Reset Waveform Output Mode

R01AN0393EJ0101 Rev. 1.01 June 30, 2011

Abstract

This document describes a method for outputting a 16-bit PWM waveform using timer S in set/reset waveform output mode with the M16C/5LD, 5L, 5M, and 6C Group microcomputers (MCUs).

Products

MCUs: M16C/5LD, 5L, 5M, 6C Groups

When using this application note with other Renesas MCUs, careful evaluation is recommended after making modifications to comply with the alternate MCU.

Contents

	Abstract	1
	Products	1
1.	Introduction	3
1.1	Waveform Generation Function	3
1.2	SR Waveform Output Mode	3
2.	Software	6
2.1	Operation Overview	6
2.2	Flowcharts	8
2.2	2.1 Main Processing	8
2.2		
2.2	2.3 Base Timer Interrupt Handling Function 1	0
3.	Application Example 1	1
3.1	Changing the Period1	1
4.	Sample Code1	5
5.	Reference Documents1	5

1. Introduction

Timer S has an input capture/output compare function (IC/OC). The input capture (IC) is used for time measurement and the output compare (OC) is used for waveform generation. The IC/OC has one 16-bit free-running base timer and eight channels for timer measurement and waveform generation.

1.1 Waveform Generation Function

Waveforms are generated based on the values of the base timer and the G1POj register (j = 0 to 7). Table 1.1 lists the Waveform Generation Function Settings. Items marked with a check mark (\checkmark) are described in this chapter.

Item	Setting
	Single-phase waveform output mode
Waveform generation function	Inverted waveform output mode
	✓ Set/reset waveform output mode (SR waveform output mode)
	\checkmark Base timer is reset when the base timer and G1BTRR register values match
Base timer reset source	Base timer is reset when the base timer and G1PO0 register values match
	Base timer is reset when the input level to the INT1 pin is low
Initial output level selection	✓ Output low as default level
	Output high as default level
Output level inversion selection	✓ Output level not inverted
Output level inversion selection	Output level inverted
	✓ Channel 0
	Channel 1
	✓ Channel 2
Channels	Channel 3
Charmers	✓ Channel 4
	Channel 5
	✓ Channel 6
	Channel 7
	✓ IC/OC base timer interrupt
	IC/OC interrupt 0
	IC/OC interrupt 1
Interrupts	IC/OC channel 0 interrupt
	IC/OC channel 1 interrupt
	IC/OC channel 2 interrupt
	IC/OC channel 3 interrupt

 Table 1.1
 Waveform Generation Function Settings

1.2 SR Waveform Output Mode

When the base timer and G1POj register values match, if the INV bit in the G1POCRj register is 0 (output level not inverted), the output level from the OUTC1_j pin becomes high (j = 0, 2, 4, 6). When the base timer matches the G1POk register, the OUTC1_j pin outputs low (k = j + 1). When using SR waveform output mode, set the base timer to increment mode.

RENESAS

In SR waveform output mode, not only can the PWM period and duty variable, but the duty start position (set width) and end position (reset width) are user discretionary.

The following is an explanation for setting the PWM period using the G1BTRR register, setting the set width using the G1POj register, and setting the reset width using the G1POk register (j = 0, 2, 4, 6; k = j + 1). PWM waveforms are output from the OUTC1_j pin corresponding to channel j. fBT1 is the operating clock for the base timer.

(1) PWM period setting

The base timer is reset when the base timer and G1BTRR register values match. If the G1BTRR register setting value is p, the PWM period is as follows:

PWM period: $\frac{p+2}{fBT1}$

When changing the period, change the G1BT register in the interrupt handling without changing the G1BTRR register, or set the BTS bit in the G1BCR1 register to 0 before changing the G1BTRR register.

(2) Set width and reset width setting

Set channel j to SR waveform output mode in the waveform generation function. If the G1POj register setting value is m, and the G1POk register setting value is n, the set width and reset width are as follows:

Set width: $\frac{m}{fBT1}$; reset width: $\frac{n}{fBT1}$

Figure 1.1 shows the operation of SR waveform output mode when the base timer is reset by the base timer and G1BTRR register values matching.

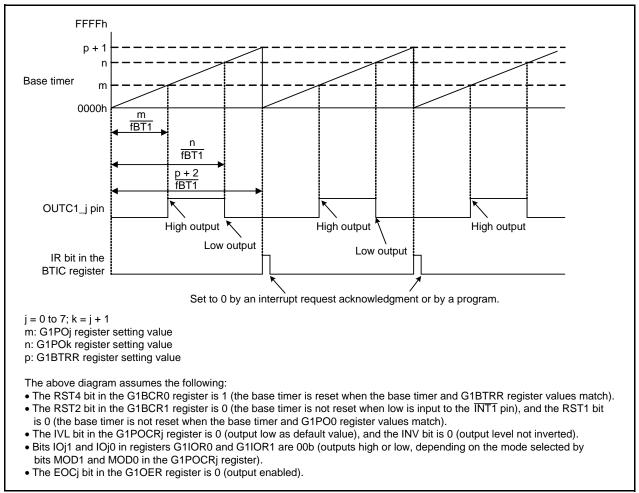
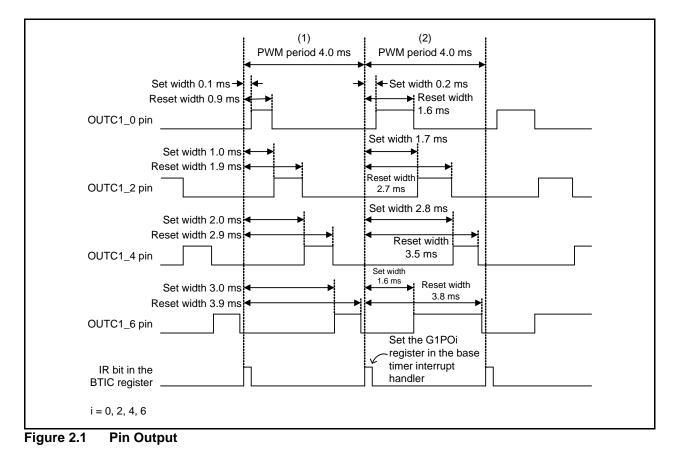


Figure 1.1 SR Waveform Output Mode Operation

2. Software


2.1 **Operation Overview**

The OUTC1_k (P2_k) pin is used by timer S and outputs a PWM waveform (k = 0, 2, 4, 6). Every five times a base timer interrupt is generated, the G1POi register is rewritten in the base timer interrupt handler, and the set width and reset width are changed (i = 0 to 7).

Clock statistics are as follows:

- Main clock: 20 MHz
- Base timer operating clock (fBT1): 1 MHz

Figure 2.1 shows the Pin Output, and Table 2.1 lists the Set Width and Reset Width Setting Values.

Output Pin	Width	Register	(1)	(2)
OUTC1_0 (P2_0)	Set width: $\frac{m}{fBT1}$	G1PO0	0.1 ms (m = 100)	0.2 ms (m = 200)
00101_0(12_0)	Reset width: $\frac{n}{fBT1}$	G1PO1	0.9 ms (n = 900)	1.6 ms (n = 1600)
OUTC1_2 (P2_2)	Set width: $\frac{m}{fBT1}$	G1PO2	1.0 ms (m = 1000)	1.7 ms (m = 1700)
00101_2 (F2_2)	Reset width: $\frac{n}{fBT1}$	G1PO3	1.9 ms (n = 1900)	2.7 ms (n = 2700)
OUTC1_4 (P2_4)	Set width: $\frac{m}{fBT1}$	G1PO4	2.0 ms (m = 2000)	2.8 ms (m = 2800)
00101_4 (F2_4)	Reset width: $\frac{n}{fBT1}$	G1PO5	2.9 ms (n = 2900)	3.5 ms (n = 3500)
OUTC1_6 (P2_6)	Set width: $\frac{m}{fBT1}$	G1PO6	3.0 ms (m = 3000)	1.6 ms (m = 1600)
00101_0 (F2_0)	Reset width: $\frac{n}{fBT1}$	G1PO7	3.9 ms (n = 3900)	3.8 ms (n = 3800)

 Table 2.1
 Set Width and Reset Width Setting Values

2.2 Flowcharts

2.2.1 Main Processing

Figure 2.2 shows the Main Processing.

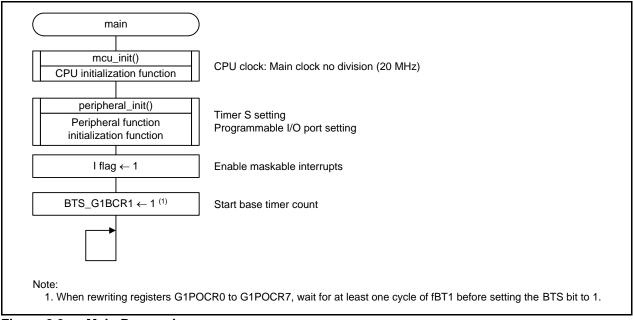


Figure 2.2 Main Processing

2.2.2 Peripheral Function Initialization Function

Figure 2.3 shows the Peripheral Function Initialization Function.

peripheral_init	
BTS_G1BCR1 ← 0	Reset base timer
G1BCR0 ← 00h	Stop clock
G1DV ← 20 - 1	Divide count source (fBT1: 1 MHz)
G1BCR0 ← 07h	Count source: f1TIMS or f2TIMS
	Base timer reset source: Base timer is reset when the G1BTRR register and base timer values match
G1BCR1 ← 00h	\int Base timer reset source: Base timer is not reset when the G1PO0 register and base timer
	values match Increment/decrement control: Increment mode
G1IOR0 ← 00h	Output control pins OUTC1_0 to OUTC1_3: Outputs high or low, depending on the mode selected by bits MOD1 and MOD0 in registers G1POCR0 to G1POCR3
G1IOR1 ← 00h	Output control pins OUTC1_4 to OUTC1_7: Outputs high or low, depending on the mode selected by bits MOD1 and MOD0 in registers G1POCR4 to G1POCR7
G1FS ← 00h	Select channel 0 to 7 timer measurement/waveform generation function: Waveform generation function selected
G1FE ← 00h	Disable channel 0 to 7 function
G1POCR0 ~ 01h (1)	Select operating mode: Set/reset waveform output mode
G1POCR2 \leftarrow 01h ⁽¹⁾	Select default output value: Output low as default value > Select G1PO0, G1PO2, G1PO4, and G1PO6 register value reload timing: Reload on a
G1POCR4 ← 01h ⁽¹⁾	write access
G1POCR6 ← 01h ⁽¹⁾	Select output level inversion: Output level not inverted
G1BTRR ← 4000 - 2 ⁽²⁾	Set PWM period (4.0 ms)
G1PO0 ← 100 ⁽²⁾	Set set width of channel 0 when starting waveform output (0.1 ms)
G1PO1 ← 900 ⁽²⁾	Set reset width of channel 0 when starting waveform output (0.9 ms)
G1PO2 ← 1000 ⁽²⁾	Set set width of channel 2 when starting waveform output (1.0 ms)
G1PO3 ← 1900 ⁽²⁾	Set reset width of channel 2 when starting waveform output (1.9 ms)
G1PO4 ← 2000 ⁽²⁾	Set set width of channel 4 when starting waveform output (2.0 ms)
G1PO5 ← 2900 ⁽²⁾	Set reset width of channel 4 when starting waveform output (2.9 ms)
G1PO6 ← 3000 ⁽²⁾	Set set width of channel 6 when starting waveform output (3.0 ms)
G1PO7 ← 3900 ⁽²⁾	Set reset width of channel 6 when starting waveform output (3.9 ms)
G1IR ← 00h	Channel 0 to 7 interrupt request: Interrupt not requested
G1IE0 ← 00h	Disable IC/OC interrupt 0 request
G1IE1 ← 00h	Disable IC/OC interrupt 1 request
BTIC ← 04h	Select interrupt priority level: Level 4
$G1FE \leftarrow FFh^{(2)}$	Enable channel 0 to 7 functions
G10ER ← AAh	Enable output for pins OUTC1_0, OUTC1_2, OUTC1_4, and OUTC1_6 Disable output for pins OUTC1_1, OUTC1_3, OUTC1_5, and OUTC1_7
Wait for at least two cycles of fBT1	Wait until registers are written to (when fBT1 is 1 MHz, approx. 2 μ s)
Set port to output	
return	

Notes:

1. When rewriting this register, after waiting for at least one cycle of fBT1, set the BTS bit to 1.

2. The values written to these registers are simultaneously reflected to the base timer count source (fBT1).

Figure 2.3 Peripheral Function Initialization Function

2.2.3 Base Timer Interrupt Handling Function

Figure 2.4 shows the Base Timer Interrupt Handling Function.

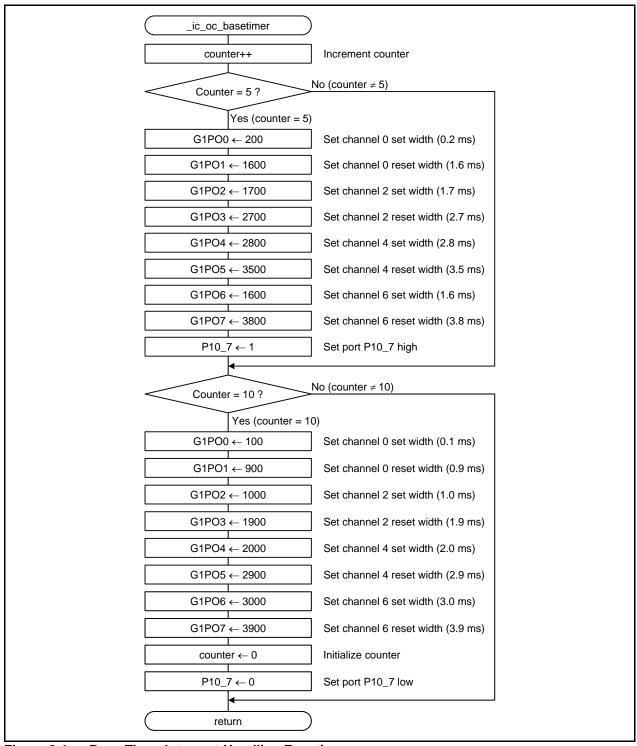


Figure 2.4 Base Timer Interrupt Handling Function

3. Application Example

3.1 Changing the Period

The PWM output period can be set using the G1BTRR register when the RST4 bit in the G1BCR0 register is 1, or it can be set using the G1PO0 register when the RST1 bit in the G1BCR1 register is 1. When changing the period during a count operation, after setting the BTS bit in the G1BCR1 register to 0 (base timer reset), wait at least one cycle of fBT1, and rewrite the G1BTRR or G1PO0 register. The procedure is as follows:

- (1) Set the BTS bit to 0. $^{(1)}$
- (2) Wait at least one cycle of fBT1.
- (3) Rewrite the register where the period was set.
- (4) Set the BTS bit to 1.

Note:

1. One cycle of fBT1 passes between setting the BTS bit to 0 and the count stopping.

When changing the period in SR waveform output mode, the output waveform changes using the timing in the following:

- [1] Before the base timer and G1POj register values match (j = 0, 2, 4, 6)
- [2] After the base timer and G1POj register values match, or before the base timer and G1POk register values match (j = 1, 3, 5, 7)
- [3] After the base timer and G1POk register values match, or before the base timer and G1BTRR register values match

Figure 3.1 shows Timing Diagram for Period Change When Using SR Waveform Output Mode. Figure 3.2 shows Output When Changing the Period Before the Base Timer and G1POj Register Values Match. Figure 3.3 shows Output When Changing the Period After the Base Timer and G1POj Register Values Match and Before the Base Timer and G1POk Register Values Match. Figure 3.4 shows Output When Changing the Period After the Base Timer and G1POk Register Values Match and Before the Base Timer and G1POk Register Values Match and Before the Base Timer and G1POk Register Values Match and Before the Base Timer and G1POk Register Values Match and Before the Base Timer and G1POk Register Values Match and Before the Base Timer and G1POk Register Values Match and Before the Base Timer and G1POk Register Values Match and Before the Base Timer and G1POk Register Values Match and Before the Base Timer and G1POk Register Values Match and Before the Base Timer and G1POk Register Values Match and Before the Base Timer and G1POk Register Values Match and Before the Base Timer and G1BTRR Register Values Match.

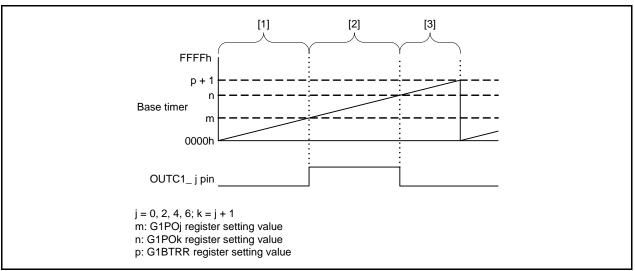


Figure 3.1 Timing Diagram for Period Change When Using SR Waveform Output Mode

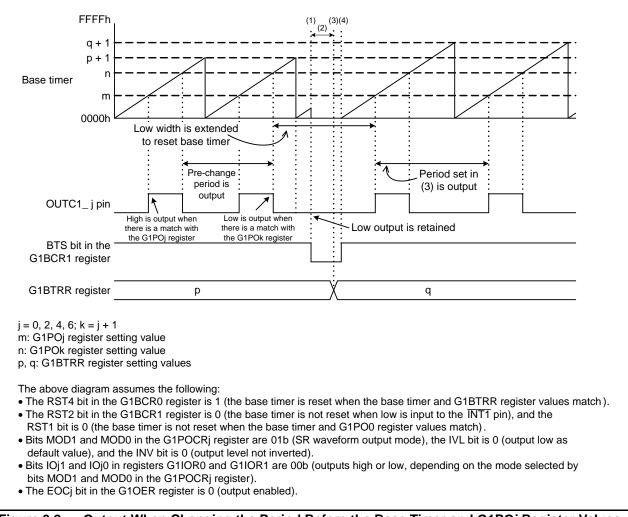


Figure 3.2 Output When Changing the Period Before the Base Timer and G1POj Register Values Match

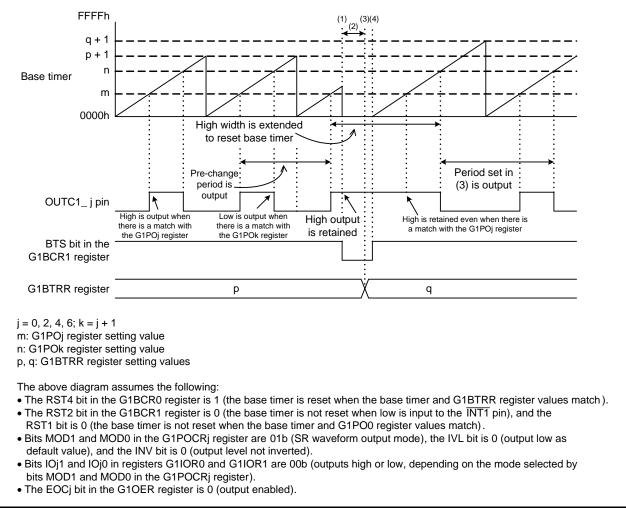


Figure 3.3 Output When Changing the Period After the Base Timer and G1POj Register Values Match and Before the Base Timer and G1POk Register Values Match

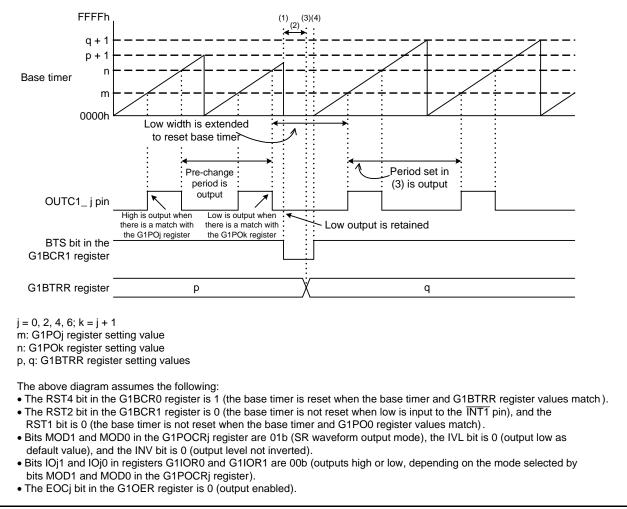


Figure 3.4 Output When Changing the Period After the Base Timer and G1POk Register Values Match and Before the Base Timer and G1BTRR Register Values Match

4. Sample Code

Sample code can be downloaded from the Renesas Electronics website.

5. Reference Documents

M16C/5LD, M16C/56D Group User's Manual: Hardware Rev.1.10 M16C/5L, M16C/56 Group User's Manual: Hardware Rev.1.00 M16C/5M, M16C/57 Group User's Manual: Hardware Rev.1.01 M16C/6C Group User's Manual: Hardware Rev.2.00 The latest versions can be downloaded from the Renesas Electronics website.

Technical Update/Technical News The latest information can be downloaded from the Renesas Electronics website.

C Compiler Manual M16C Series, R8C Family C Compiler Package V.5.45 C Compiler User's Manual Rev.2.00 The latest version can be downloaded from the Renesas Electronics website.

Website and Support

Renesas Electronics website http://www.renesas.com/

Inquiries http://www.renesas.com/inquiry

	M16C/5LD, 5L, 5M, 6C Groups
Revision History	Outputting a 16-Bit PWM Waveform Using Timer S in Set/Reset
	Waveform Output Mode

Rev.	Date	Description		
		Page	Summary	
1.00	Sep. 30, 2010	_	First edition issued	
1.01	June 30, 2011		Added chapter 3	

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 - In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do
 not access these addresses; the correct operation of LSI is not guaranteed if they are
 accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renease Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renease Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or tor which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product for any application categorized as "Specific" or tor which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is expressly specified in a Renesas Electronics data sheets or data books, etc.
- "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools
- personal electronic equipment; and industrial robots. "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
- "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and mafunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and mafunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-4000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220 Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-585-900 Renesas Electronics Corpo GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-585-900 Renesas Electronics (Shanghai) Co., Ltd. 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +480-124235-1155, Tax: +480-2483-7679 Renesas Electronics (Shanghai) Co., Ltd. Unit 204, 205, A221 Center, No.1233 Lujiazu Ring Rd., Pudong District, Shanghai 200120, China Tel: +482-13-877-1818, Fax: +480-24887-7859 Renesas Electronics Hong Kong Limited Unit 1001-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +482-2869-9318, Fax: +485-24887-9022/9044 Renesas Electronics Taiwan Co., Ltd. 7F, No. 363 Fu Shing North Road Taipel, Taiwan Tel: +486-2-4175-9600, Fax: +4882-24175-9670 Renesas Electronics Taiwan Co., Ltd. 1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +656-2175-9600, Fax: +4882-24175-9670 Renesas Electronics Kong Acnong, Amorop Trade Centre, No. 18, Jin Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7755-9390, Fax: +60-5-7955-9301, Fax: +60-5