RENESAS

M16C/64A Group

Supplement for Serial Interface UARTi (i = 0 to 2, 5 to 7)

R01AN0419EJ0100 Rev.1.00 Mar. 09, 2011

1. Abstract

This document is a supplement for serial interface UARTi (i = 0 to 2, 5 to 7) specifications in the M16C/64A Group.

2. Introduction

This document includes modifications to the serial interface UARTi specifications in Technical Update: TN-16C-A201A/E "Specification Modifications in M16C/65, M16C/64A, M16C/63 and M16C/6C Groups", and supplemental information for the Serial Interface UARTi chapter in the M16C/64A Group User's Manual: Hardware. Use this document to verify changes made to the specifications. A previous version of the chapter from the hardware manual is attached at the end for comparison.

When making a program using I²C mode, refer to application notes listed below.

- I²C-bus Interface Using UARTi Special Mode 1 (REJ05B1349)
- I²C-bus Interface Using UARTi Special Mode 1 (Master Transmit/Receive) (REJ05B1422)
- I²C-bus Interface Using UARTi Special Mode 1 (Slave Transmit/Receive) (REJ05B1423)

3. Supplement Content and Modifications to Specifications

3.1 Clock Synchronous Serial I/O Mode, UART Mode

The description for "Transmit/Receive Circuit Initialization" in the previous version of the hardware manual is correct, but not clear enough. The description has been rewritten as shown below.

Processing When Terminating Communication or When an Error Occurs

When communication is terminated in clock synchronous serial I/O mode or UART mode, or when a communication error occurs, use the following procedure to reset communication:

- (1) Set the TE bit in the UiC1 register to 0 (transmission disabled) and the RE bit to 0 (reception disabled).
- (2) Set bits SMD2 to SMD0 in the UiMR register to 000b (serial interface disabled).
- (3) Set bits SMD2 to SMD0 in the UiMR register to one of the following:
- 001b (clock synchronous serial I/O mode)
- 100b (UART mode, character length is 7 bits)
- 101b (UART mode, character length is 8 bits)
- 110b (UART mode, character length is 9 bits)
- (4) Set the TE bit in the UiC1 register to 1 (transmission enabled) and the RE bit to 1 (reception enabled).

3.2 I²C Mode

This section describes the modifications made to the specifications. I^2C mode function descriptions have been revised. Refer to 4. "Special Mode 1 (I^2C Mode)" for details on major changes.

3.2.1 UiSMR4 Register

Bits in the UiSMR4 register are used in I²C mode. To set these bits to 1, preset the IICM bit in the UiSMR register to 1 (I²C mode). Do not set these bits to 1 when the IICM bit is 0.

Bits STAREQ, RSTAREQ, STPREQ, STSPSEL, and SCLHI are used in master mode of I²C mode. Set the STSPSEL bit to 1 (select start condition/stop condition generate circuit) after setting the STARREQ, RSTAREQ, or STPREQ bit to 1 (start).

Bits ACKD, ACKC, and SWC9 are used in slave mode of I²C mode.

3.2.2 UiBRG Register

Set the UiBRG register to a value of 03h or greater in I²C mode.

3.2.3 UiSMR3 Register

Set the CKPH bit in the UiSMR3 register to 1 (with clock delay) in I²C mode.

3.2.4 Additional Notes

Notes listed below have been added.

3.2.4.1 Low/High-level Input Voltage and Low-level Output Voltage

The low-level input voltage, high-level input voltage, and low-level output voltage differ from the I²C-bus specification.

Refer to the recommended operating conditions for I/O ports which share the pins with SCL and SDA.

I²C-bus specification High level input voltage (V_{IH}) = min. 0.7 V_{CC} Low level input voltage (V_{II}) = max. 0.3 V_{CC}

3.2.4.2 Setup and Hold Times When Generating a Start/Stop Condition

When generating a start condition, the hold time (t_{HD} :STA) is a half cycle of the SCL clock. When generating a stop condition, the setup time (t_{SU} :STO) is a half cycle of the SCL clock.

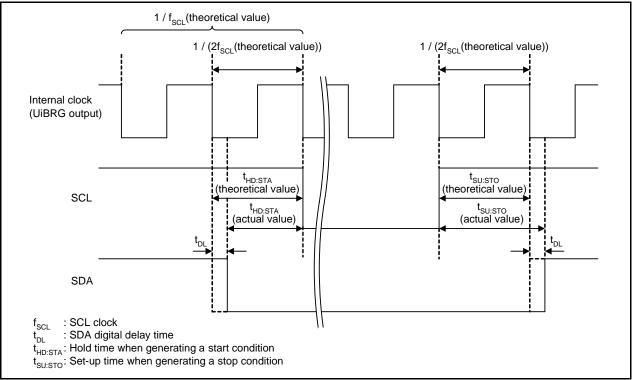
When the SDA digital delay function is enabled, take delay time into consideration.

The following shows a calculation example of hold and setup times when generating a start/stop condition.

Calculation example when setting 100 kbps

- UiBRG count source: f1 = 20 MHz
- UiBRG register setting value: n = 100 1
- SDA digital delay setting value: DL2 to DL0 are 101b (5 or 6 cycles of UiBRG count source)

 f_{SCI} (theoretical value) = f1 / (2(n+1)) = 20 MHz / (2 × (99 + 1)) = 100 kbps


 t_{DL} = delay cycle count / f1 = 6 / 20 MHz = 0.3 μ s


 $t_{HD:STA}$ (theoretical value) = 1 / (2 f_{SCL} (theoretical value)) = 1 / (2 × 100 kbps) = 5 µs

 $t_{\text{SU:STO}}$ (theoretical value) = 1 / (2 f_{SCL} (theoretical value)) = 1 / (2 × 100 kbps) = 5 µs

 $f_{HD:STA}$ (actual value) = $t_{HD:STA}$ (theoretical value) - t_{DL} = 5 µs - 0.3 µs = 4.7 µs

 $f_{SU:STO}$ (actual value) = $t_{SU:STO}$ (theoretical value) + t_{DL} = 5 µs + 0.3 µs = 5.3 µs

3.2.4.3 Restrictions on the Bit Rate When Using the UiBRG Count Source

In I²C mode, set the UiBRG register to a value of 03h or greater.

A maximum of three UiBRG count source cycles are necessary until the internal circuit acknowledges the SCL clock level. The connectable I²C-bus bit rate is one third or less than the UiBRG count source speed. If a value between 00h to 02h is set to the UiBRG register, bit slippage may occur.

3.2.4.4 Restart Condition in Slave Mode

When a restart condition is detected in slave mode, the successive processes may not be executed correctly. In slave mode, do not use a restart condition.

3.2.4.5 Requirements to Start Transmission/Reception in Slave Mode

When transmission/reception is started in slave mode and the TXEPT bit in the UiC0 register is 1 (no data present in transmit register), meet the last requirement when the external clock is high.

Requirements to start transmission (in no particular order):

- The TE bit in the UiC1 register is 1 (transmission enabled).
- The TI bit in the UiC1 register is 0 (data present in the UiTB register).
- •Requirements to start reception (in no particular order):
- The RE bit in the UiC1 register is 1 (reception enabled).
- The TE bit in the UiC1 register is 1 (transmission enabled).
- The TI bit in the UiC1 register is 0 (data present in the UiTB register).

3.3 Special Mode 2

Use special mode 2 in master mode. Do not use special mode 2 in slave mode (external clock). Set the CKDIR bit in the UiMR register to 0 (internal clock) in special mode 2.

However, slave mode can be used under certain conditions. An application note for this is being prepared. Serial Interface Special Mode 2 (Slave Transmission) (REJ05B1472-0100)

4. Special Mode 1 (I²C Mode)

4.1 Detecting Start and Stop Conditions

Start and stop conditions are detected by their respective detectors.

Whether a start or a stop condition has been detected is determined.

A start condition detect interrupt request is generated when the SDAi pin changes state from high to low while the SCLi pin is in the high state. A stop condition detect interrupt request is generated when the SDAi pin changes state from low to high while the SCLi pin is in the high state.

Because the start and stop condition detect interrupts share the interrupt control register and vector, check the BBS bit in the UiSMR register to determine which interrupt source is requesting the interrupt.

To detect a start or stop condition, both the set-up and hold times require at least six cycles of the BRGi count source as shown in Figure 4.1. To meet the condition for the Fast-mode specification, the BRGi count source must be at least 10 MHz.

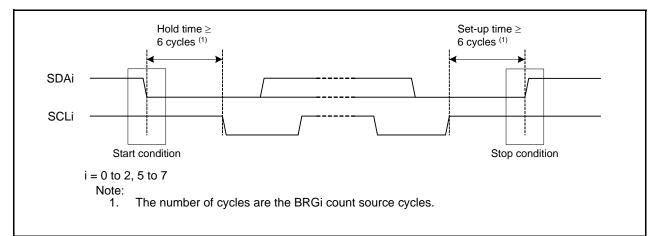


Figure 4.1 Detecting Start and Stop Conditions

4.2 Generating Start and Stop Conditions

A start condition is generated by setting the STAREQ bit in the UiSMR4 register (i = 0 to 2, 5 to 7) to 1 (start). A restart condition is generated by setting the RSTAREQ bit in the UiSMR4 register to 1 (start).

A stop condition is generated by setting the STPREQ bit in the UiSMR4 register to 1 (start).

The output procedure is described below.

- (1) Set the STAREQ bit, RSTAREQ bit or STPREQ bit to 1 (start).
- (2) Set the STSPSEL bit in the UiSMR4 register to 1 (output).

The functions of the STSPSEL bit are shown in Table 4.1 and Figure 4.2.

Function	STSPSEL = 0	STSPSEL = 1
Output of pins SCLi and SDAi	Output of transmit/receive clock and data Output of start/stop condition is accomplished by a program using ports (not automatically generated in hardware)	Output of a start/stop condition according to bits STAREQ, RSTAREQ, and STPREQ
Start/stop condition Interrupt request generation timing	Detection of start/stop condition	Completion of generating start/stop condition

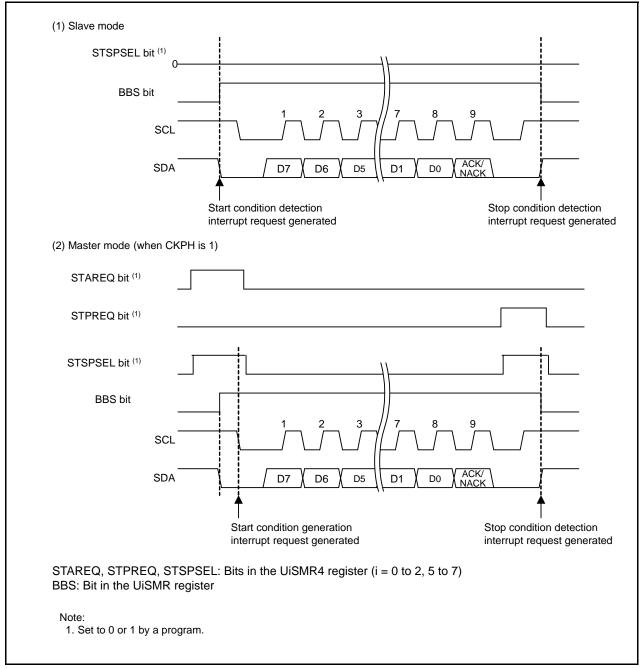


Figure 4.2 STSPSEL Bit Functions

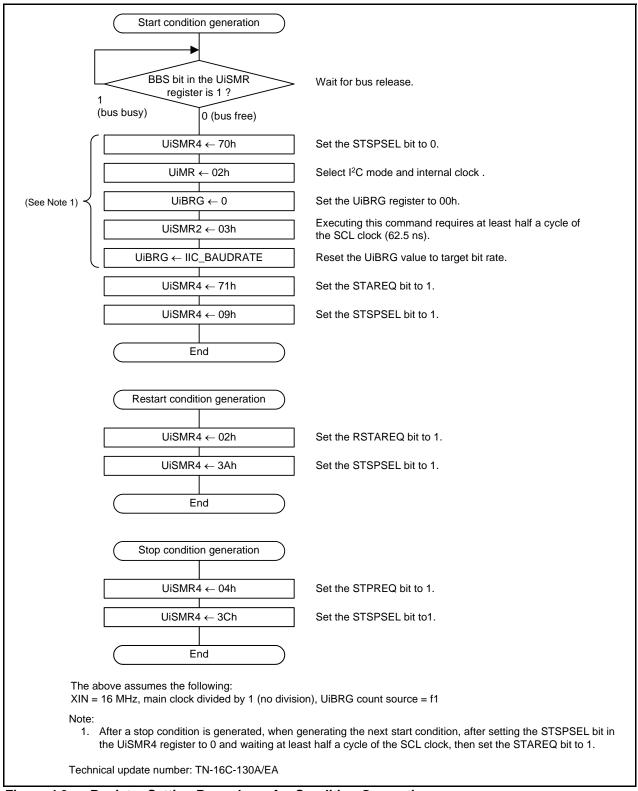


Figure 4.3 Register Setting Procedures for Condition Generation

4.3 Arbitration

The MCU determines whether the transmit data matches data input to the SDAi pin on the rising edge of SCLi. If it does not match the input data, arbitration takes place at the SDAi pin by stopping data output.

The ABC bit in the UiSMR register (i = 0 to 2, 5 to 7) determines the update timing for the ABT bit in the UiRB register.

When the ABC bit is 0 (update per bit), the ABT bit becomes 1 as soon as a data discrepancy is detected. If not detected, the ABT bit becomes 0. When the ABC bit is 1 (update per byte), the ABT bit becomes 1 on the falling edge of the eighth bit of SCLi if any discrepancy is detected. In this ABC bit setting, the ABT bit should be set to 0 to start the next 1-byte transmission/reception.

When the ALS bit in the UiSMR2 register is set to 1 (SDA output stop enabled), an arbitration lost occurs. As soon as the ABT bit becomes 1, the SDAi pin becomes high-impedance.

4.4 SCL Control and Clock Synchronization

Data transmission/reception in I²C mode uses the transmit/receive clock. The clock speed increase makes it difficult to secure the required time for ACK generation and data transmit procedure. The I²C mode supports a function of wait-state insertion to secure this required time and a function of clock synchronization with a wait-state inserted by other devices.

The SWC bit in the UiSMR2 register (i = 0 to 2, 5 to 7) is used to insert a wait-state for ACK generation. When the SWC bit is set to 1 (the SCLi pin is held low after the eighth bit of SCLi is received), the SCLi pin is held low on the falling edge of the eighth bit of SCLi. When the SWC bit is set to 0 (no wait-state/wait-state cleared), the SCLi line is released.

When the SWC2 bit in the UiSMR2 register is set to 1 (the SCLi pin is held low), the SCLi pin is forced low even during transmission or reception. When the SWC2 bit is set to 0 (transmit/receive clock is output at the SCLi pin), the SCLi line is released to output the transmit/receive clock.

The SWC9 bit in the UiSMR4 register is used to insert a wait-state for checking received acknowledge bits. While the CKPH bit in the UiSMR3 register is 1 (clock delayed), when the SWC9 bit is set to 1 (the SCLi pin is held low after the ninth bit of the SCLi is received), the SCLi pin is held low on the falling edge of the ninth bit of SCLi. When the SWC9 bit is set to 0 (no wait-state/wait-state cleared), the SCLi line is released.

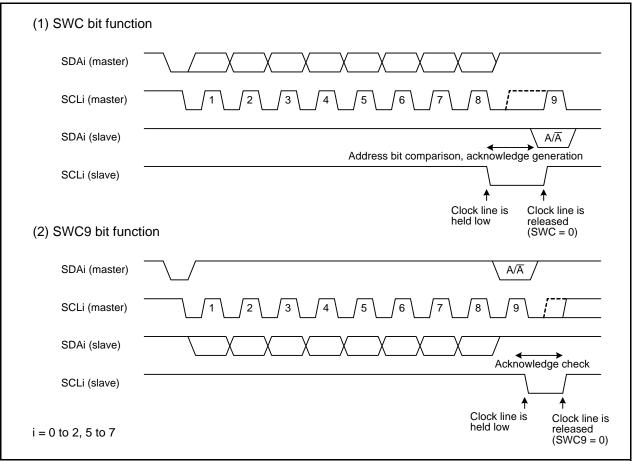


Figure 4.4 Inserting Wait-states Using Bits SWC and SWC9

The CSC bit in the UiSMR2 register synchronizes an internally generated clock with the clock applied to the SCLi pin. For example, if a wait-state is inserted from other devices, the two clocks are not synchronized. While the CSC bit is 1 (clock synchronization enabled) and the internal clock is held high, when a high at the SCLi pin changes to low, the internal clock becomes low in order to reload the UiBRG register value and resume counting. While the SCLi pin is held low, when the internal clock changes from low to high, the count is stopped until the SCLi pin becomes high. That is, the UARTi transmit/receive clock is the logical AND of the internal clock and SCLi. The synchronized period starts from one clock prior to the first synchronized clock and ends when the ninth clock is completed. The CSC bit can be set to 1 only when the CKDIR bit in the UiMR register is set to 0 (internal clock selected).

The SCLHI bit in the UiSMR4 register is used to leave the SCLi pin open when another master generates a stop condition while the master is performing a transmit/receive operation. While the SCLHI bit is set to 1 (output stopped), the SCLi pin is open (the pin is high-impedance) when a stop condition is detected and the clock output is stopped.

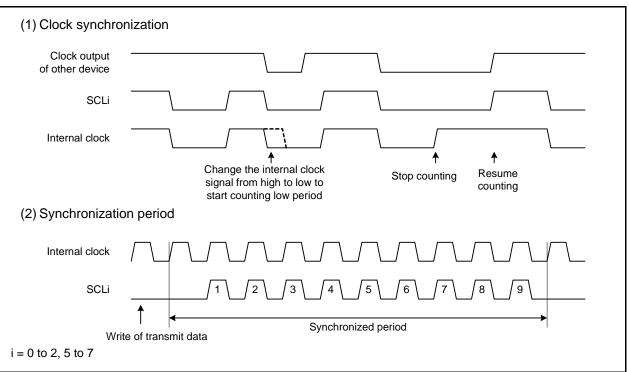


Figure 4.5 Clock Synchronization

4.5 SCL Clock Frequency

The SCL clock duty generated in I²C mode is 50%. The low-level width of the SCL clock is 1.25 μ s when the I²C-bus setting is Fast-mode maximum SCL clock (400 kbps). This value does not satisfy the Fast-mode I²C-bus specification (f_{LOW} = minimum 1.3 μ s). Set the SCL clock to 384.6 kbps or less to satisfy the SCL clock low-level width of 1.3 μ s or more.

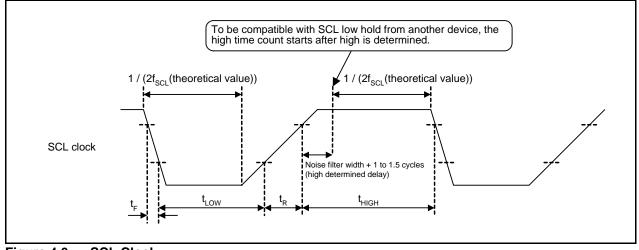
When the clock synchronous function (Figure 4.5 "Clock Synchronization") is enabled, there is a sampling delay of the noise filter plus 1 to 1.5 cycles of UiBRG count source.

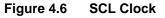
There is also a delay of the SCL clock when high is determined and the SCL clock high width is extended. Therefore, the actual SCL clock becomes slower than SCL clock bit rate setting.

To calculate the effective value of SCL clock, take the SCL clock rise time (t_R) into consideration.

The following is an example of an SCL clock calculation.

Example of an effective value of SCL clock calculation at 384.6 kbps


- UiBRG count source: f1 = 20 MHz
- UiBRG register setting value: n = 26 1
- SCL clock rise time: $t_R = 100 \text{ ns}$
- SCL clock fall time: $t_F = 0$ ns
- Noise filter width: $t_{NF} = 100 \text{ ns}^{(1)}$
- Sampling delay: t_{SD} = 1 cycle


$$\begin{split} &f_{SCL} \ (\text{theoretical value}) = \text{f1} / (2(n+1)) = 20 \ \text{MHz} / (2(25+1)) = 384.6 \ \text{kbps} \\ &t_{LOW} = 1 / (2f_{SCL} \ (\text{theoretical value})) = 1 / (2 \times 384.6 \ \text{kbps}) = 1.3 \ \mu\text{s} \\ &t_{\text{HIGH}} = 1 / (2f_{SCL} \ (\text{theoretical value})) + t_{\text{NF}} + (t_{\text{SD}} \times 1 / \text{f1}) \\ &= 1 / (2 \times 384.6 \ \text{kbps}) + 100 \ \text{ns} + (1 \times 1 / 20 \ \text{MHz}) \\ &= 1.45 \ \mu\text{s} \\ &f_{SCL} \ (\text{actual value}) = 1 / (t_{\text{F}} + t_{\text{LOW}} + t_{\text{R}} + t_{\text{HIGH}}) = 1 / (0 \ \text{ns} + 1.3 \ \mu\text{s} + 100 \ \text{ns} + 1.45 \ \mu\text{s}) \approx 350.8 \ \text{kbps} \end{split}$$

Note:

1. Maximum 200 ns.

4.6 SDA Output Control

When transmitting byte data, the SDAi pin outputs transmit data for the first to eighth bits, and it is released to receive an acknowledgement for the ninth bit.

In I²C mode, set 9-bit data to the UiTB register. In 9-bit data, set the transmit data to bits b7 to b0 and set b8 to 1. By setting the UFORM bit in the UiC0 register to 1 (MSB first) and 9-bit data to the UiTB register, transmit data is output from the SDAi pin in the following order: b7, b6, b5, b4, b3, b2, b1, b0 and b8. As b8 is 1, the SDAi pin becomes high-impedance at the ninth bit and an acknowledgment can be received.

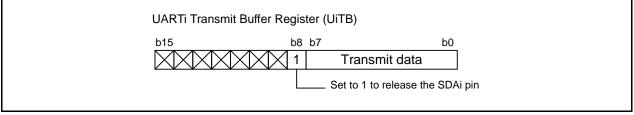


Figure 4.7 UiTB Register Setting (SDA Output)

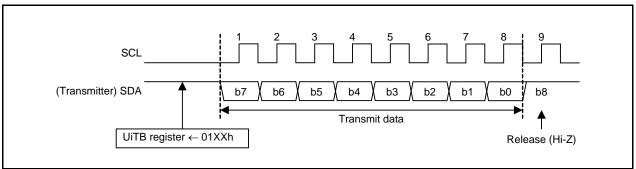


Figure 4.8 Byte Data Transmission

Set bits DL2 to DL0 in the UiSMR3 register to add no delays or a delay of one to eight UiBRG count source clock cycles to SDAi output.

Setting the SDHI bit in the UiSMR2 register to 1 (SDA output disabled) forcibly places the SDAi pin in a highimpedance state. Do not write to the SDHI bit at the rising edge of the UARTi transfer clock as the ABT bit may inadvertently become 1 (detected).

4.7 SDA Digital Delay

When transferring data with the I^2C -bus, change the data while the SCL clock is low. When SDA is changed while the SCL clock is a high, the change is recognized as one of the corresponding conditions (see 3.2.4.2 "Setup and Hold Times When Generating a Start/Stop Condition").

This function delays output from the SDAi pin. By delaying the change of the SDA, the data can be changed while the SCL clock is low. This function is enabled by setting bits DL2 to DL0 in the UiSMR3 register to 001b to 111b, and disabled by setting them to 000b.

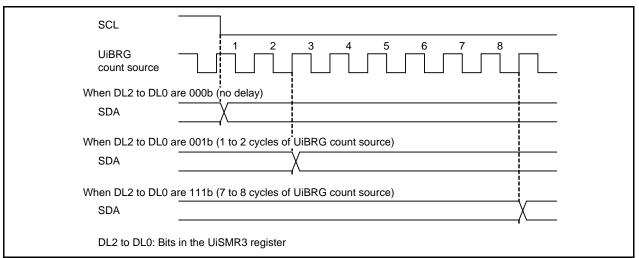
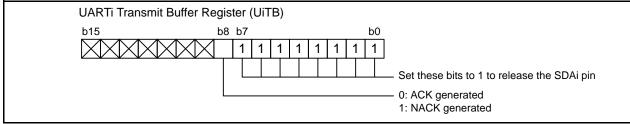


Figure 4.9 SDA Output Selection by Setting Bits DL2 to DL0

4.8 SDA Input

When the IICM2 bit in the UiSMR2 register (i = 0 to 2, 5 to 7) is set to 0, the first 8 bits of received data (D7 to D0) are stored in bits 7 to 0 in the UiRB register and the ninth bit (ACK/NACK) is stored in bit 8.

When the IICM2 bit is 1, the first to seventh bits (D7 to D1) of the received data are stored in bits 6 to 0 in the UiRB register and the eighth bit (D0) is stored in bit 8 in the UiRB register. Even when the IICM2 bit is 1, if the CKPH bit in the UiSMR3 register is 1, the same data as when the IICM2 bit is 0 can be read. To read the data, read the UiRB register after the rising edge of ninth bit of the corresponding clock pulse.


When receiving byte data, the SDAi pin is released for the first to eighth bits to receive data, and an acknowledgment is generated for the ninth bit. NACK is generated when the last byte data is received in master mode, or when the slave address does not match in slave mode. In all other cases, ACK is generated.

In I²C mode, set 9-bit data to the UiTB register. In 9-bit data, set FFh to b7 to b0 to release the SDAi pin and set b8 to 0 to generate ACK or 1 to generate NACK.

By setting 00FFh or 01FFh as 9-bit data to the UiTB register, the SDAi pin becomes high-impedance for the first to eighth bits, and data can be received. ACK or NACK is generated at the ninth bit.

Read the received data from the UiRB register. When the clock delay function is used, data transfer to the UiRB register occurs twice and each UiRB register value is different.

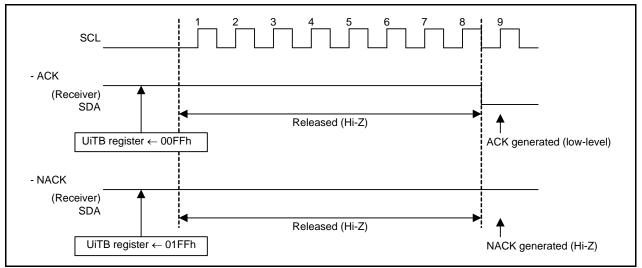


Figure 4.11 Byte Data Reception

4.9 ACK and NACK

When data is to be received in master mode, ACK is output after 8 bits are received by setting the UiTB register to 00FFh as dummy data. When the STSPSEL bit in the UiSMR4 register (i = 0 to 2, 5 to 7) is set to 0 (serial I/O circuit selected) and the ACKC bit is set to 1 (ACK data output), the value of the ACKD bit is output at the SDAi pin. If the IICM2 bit is 0, a NACK interrupt request is generated when the SDAi pin is held high at the rising edge of the ninth bit of SCLi. An ACK interrupt request is generated when the SDAi pin is held low.

If the DMA request source is "UARTi receive interrupt request or ACK interrupt request", the DMA transfer is activated when ACK is detected.

4.10 Initialization of Transmission/Reception

Select the external clock as the transmit/receive clock when using this function.

If a start condition is detected while the STAC bit in the UiSMR2 register is 1 (initialize the circuit if the start condition is detected), the serial interface operates as follows:

- The transmit shift register is initialized, and the UiTB register value is transferred to the transmit shift register. Doing so starts the data transmission when the next clock pulse is applied. However, the UARTi output value does not change until the first bit of data is output synchronously with the input clock. It remains the same as when a start condition was detected.
- The receive shift register is initialized, and the serial interface starts receiving data when the next clock pulse is applied.
- The SWC bit becomes 1 (hold the SCLi pin low after the eighth bit of SCLi is received). Consequently, the SCLi pin is pulled low at the falling edge of the ninth clock pulse.

When UARTi transmission/reception is started using this function, the TI bit does not change.

When the UARTi initializing function is used in slave mode, UARTi is initialized automatically when a start condition is detected. Therefore, an interrupt is unnecessary for detecting a start condition.

5. Reference Documents

M16C/64A Group User's Manual: Hardware Rev.2.00 (R01UH0136EJ0200)

Application Notes Application notes indicated in 2. "Introduction" and application notes for other modes have been prepared.

The latest versions can be downloaded from the Renesas Electronics website.

Reference: the previous version of the UARTi document The previous version of UARTi document is attached at the end of this document.

Website and Support

Renesas Electronics website http://www.renesas.com/

Inquiries http://www.renesas.com/inquiry

Revision History	M16C/64A Group Supplement for Serial Interface UARTi (i = 0 to 2, 5 to 7)
------------------	--

Rev.	Date		Description
itev.	Date	Page	Summary
1.00	2011.03.09	_	First edition issued

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 - In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.

Notice

- All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or otherwise.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of ach Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application any application for which it is not intended without the prior written consent of Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - *Specific*: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

SALES OFFICES

Refer to "http://www.renesas.com/" for the latest and detailed information

Renesas Electronics Corporation

http://www.renesas.com

 Renesas Electronics America Inc.

 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.

 Tel: +1-408-588-6000, Fax: +1-408-588-6130

 Renesas Electronics Canada Limited

 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada

 Tel: +1-905-898-5441, Fax: +1-905-898-3220

 Renesas Electronics Europe Limited

 Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K

 Tel: +4-902-585-100, Fax: +44+1628-585-900

 Renesas Electronics Europe GmbH

 Arcadiastrasse 10, 40472 Disseldorf, Germany

 Tel: +49-211-65030, Fax: +449-211-6503-1327

 Renesas Electronics China) Co., Ltd.

 Th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China

 Tel: +86-10-8235-7679

 Renesas Electronics Changhai) Co., Ltd.

 Unit 204, 205, AZIA Center, No. 1233 Lujiazui Bing Rd., Pudong District, Shanghai 200120, China

 Tel: +862-5869-59316, Fax: +865-216867-7588

 Renesas Electronics Hong Kong Limited

 Unit 101-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong

 Tel: +886-24175-9600

 Renesas Electronics Singapore Pte. Ltd.

 1 harbourfront Avenue, 406-10, keppel Bay Tower, Singapore 098632

 Tel: +865-2130-200, Fax: +868 2-48175-9601

 Renesas Electronics S

23. Serial Interface UARTi (i = 0 to 2, 5 to 7)

23.1 Introduction

Each UARTi has a dedicated timer to generate a transmit/receive clock, and operates independently of the others.

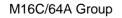

Table 23.1 lists UARTi Specifications (i = 0 to 2, 5 to 7), Table 23.2 lists Specification Differences between UART0 to UART2 and UART5 to UART7, Figure 23.1 to Figure 23.3 show UARTi Block Diagram, and Figure 23.4 shows UARTi Transmit/Receive Unit Block Diagram.

Table 23.1 UARTi Specifications (i = 0 to 2, 5 to 7)

Item	Specification
Operational mode	 Clock synchronous serial I/O mode Clock asynchronous serial I/O mode (UART mode) Special mode 1 (I²C mode) Special mode 2 The simplified I²C-bus interface is supported. Special mode 3 (bus collision detection function, IE mode) A 1-byte wave of the UART mode approximates 1-bit of the IEBus. Special mode 4 (SIM mode) UART2 is available. The SIM interface is supported.

Table 23.2 Specification Differences between UART0 to UART2 and UART5 to UART7

Mode	UART0	UART1	UART2	UART5	UART6	UART7
Clock synchronous serial I/O mode	Avai	lable	Available	Available	Avai	lable
Clock asynchronous serial I/O mode (UART mode)	Avai	lable	Available	Available	Avai	lable
Special mode 1 (I ² C mode)	Avai	lable	Available	Available	Avai	lable
Special mode 2	Avai	lable	Available	Available	Avai	lable
Special mode 3 (IE mode)	Avai	lable	Available	Available	Avai	lable
Special mode 4 (SIM mode)	Not av	ailable	Available	Not available	Not av	ailable
Memory expansion mode or microprocessor mode		(Can be used		Do no	ot use.

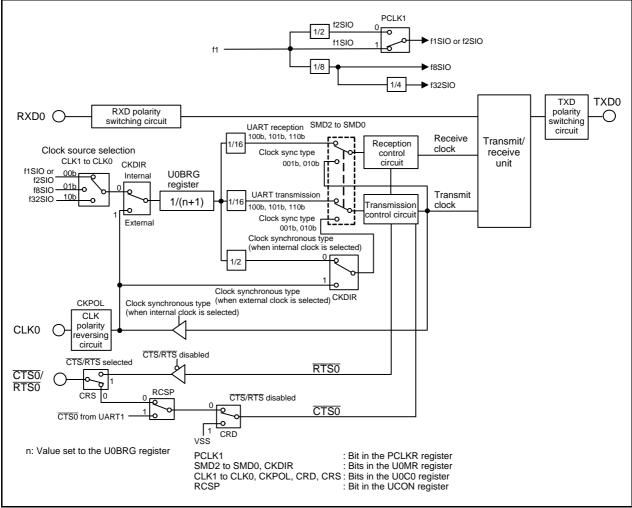


Figure 23.1 UART0 Block Diagram

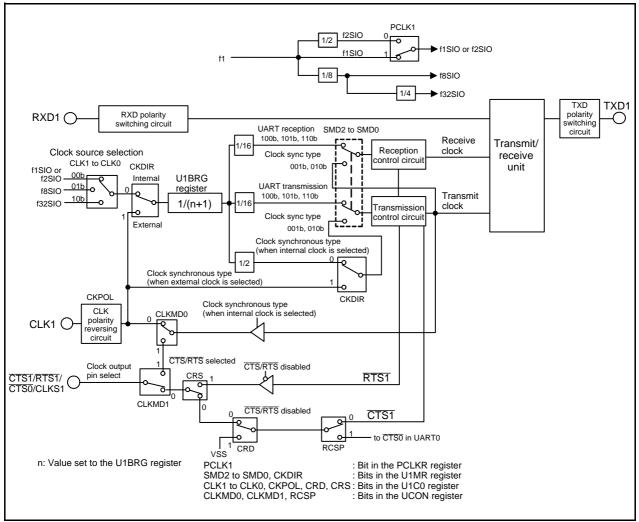


Figure 23.2 UART1 Block Diagram

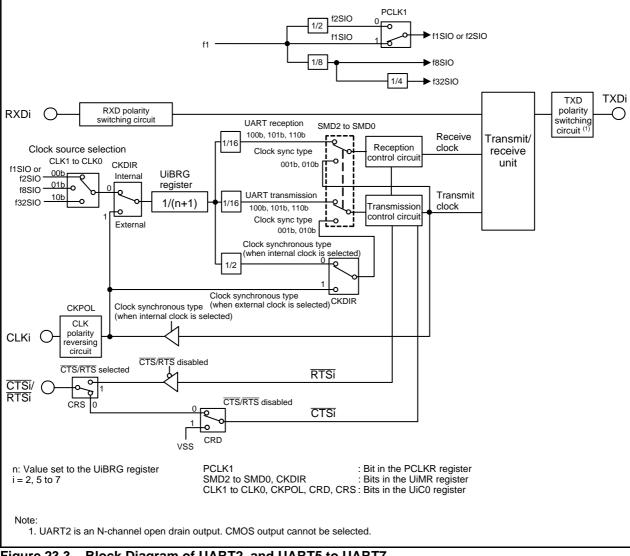


Figure 23.3 Block Diagram of UART2, and UART5 to UART7

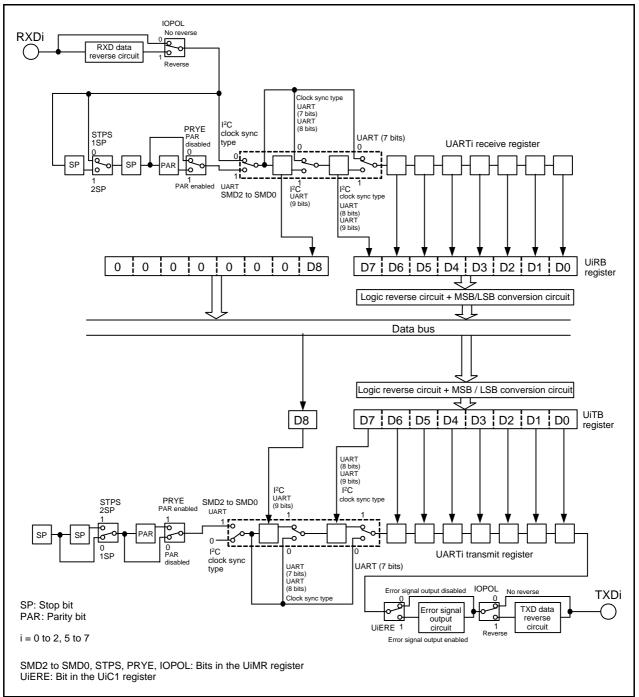


Figure 23.4 UARTi Transmit/Receive Unit Block Diagram

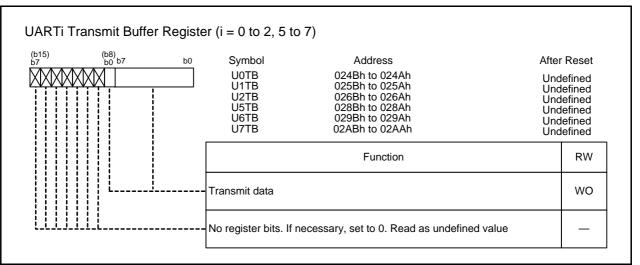
23.2 Registers

Table 23.3 and Table 23.4 list registers associated with UART0 to UART2 and UART5 to UART7. Refer to "Registers Used and Settings" in each mode for the settings of registers and bits.

Address	Register	Symbol	Reset Value
0012h	Peripheral Clock Select Register	PCLKR	0000 0011b
0244h	UART0 Special Mode Register 4	U0SMR4	00h
0245h	UART0 Special Mode Register 3	U0SMR3	000X 0X0Xb
0246h	UART0 Special Mode Register 2	U0SMR2	X000 0000b
0247h	UART0 Special Mode Register	U0SMR	X000 0000b
0248h	UART0 Transmit/Receive Mode Register	U0MR	00h
0249h	UART0 Bit Rate Register	U0BRG	XXh
024Ah 024Bh	UART0 Transmit Buffer Register	UOTB	XXh XXh
024Dh	UART0 Transmit/Receive Control Register 0	U0C0	0000 1000b
0240h	UART0 Transmit/Receive Control Register 1	U0C1	00XX 0010b
024Eh		0001	XXh
024Fh	UART0 Receive Buffer Register	UORB	XXh
0250h	UART Transmit/Receive Control Register 2	UCON	X000 0000b
0254h	UART1 Special Mode Register 4	U1SMR4	00h
0255h	UART1 Special Mode Register 3	U1SMR3	000X 0X0Xb
0256h	UART1 Special Mode Register 2	U1SMR2	X000 0000b
0257h	UART1 Special Mode Register	U1SMR	X000 0000b
0258h	UART1 Transmit/Receive Mode Register	U1MR	00h
0259h	UART1 Bit Rate Register	U1BRG	XXh
025Ah 025Bh	UART1 Transmit Buffer Register	U1TB	XXh XXh
025Ch	UART1 Transmit/Receive Control Register 0	U1C0	0000 1000b
025Dh	UART1 Transmit/Receive Control Register 1	U1C1	00XX 0010b
025Eh 025Fh	UART1 Receive Buffer Register	U1RB	XXh XXh
0264h	UART2 Special Mode Register 4	U2SMR4	00h
0265h	UART2 Special Mode Register 3	U2SMR3	000X 0X0Xb
0266h	UART2 Special Mode Register 2	U2SMR2	X000 0000b
0267h	UART2 Special Mode Register	U2SMR	X000 0000b
0268h	UART2 Transmit/Receive Mode Register	U2MR	00h
0269h	UART2 Bit Rate Register	U2BRG	XXh
026Ah			XXh
026Bh	UART2 Transmit Buffer Register	U2TB	XXh
026Ch	UART2 Transmit/Receive Control Register 0	U2C0	0000 1000b
026Dh	UART2 Transmit/Receive Control Register 1	U2C1	0000 0010b
026Eh	ů – – – – – – – – – – – – – – – – – – –		XXh
026Fh	UART2 Receive Buffer Register	U2RB	XXh
0284h	UART5 Special Mode Register 4	U5SMR4	00h
0285h	UART5 Special Mode Register 3	U5SMR3	000X 0X0Xb

Table 23.3Registers (1/2)

Address	Register	Symbol	Reset Value
0286h	UART5 Special Mode Register 2	U5SMR2	X000 0000b
0287h	UART5 Special Mode Register	U5SMR	X000 0000b
0288h	UART5 Transmit/Receive Mode Register	U5MR	00h
0289h	UART5 Bit Rate Register	U5BRG	XXh
028Ah 028Bh	UART5 Transmit Buffer Register	U5TB	XXh XXh
028Ch	UART5 Transmit/Receive Control Register 0	U5C0	0000 1000b
028Dh	UART5 Transmit/Receive Control Register 1	U5C1	0000 0010b
028Eh 028Fh	UART5 Receive Buffer Register	U5RB	XXh XXh
0294h	UART6 Special Mode Register 4	U6SMR4	00h
0295h	UART6 Special Mode Register 3	U6SMR3	000X 0X0Xb
0296h	UART6 Special Mode Register 2	U6SMR2	X000 0000b
0297h	UART6 Special Mode Register	U6SMR	X000 0000b
0298h	UART6 Transmit/Receive Mode Register	U6MR	00h
0299h	UART6 Bit Rate Register	U6BRG	XXh
029Ah 029Bh	UART6 Transmit Buffer Register	U6TB	XXh XXh
029Ch	UART6 Transmit/Receive Control Register 0	U6C0	0000 1000b
029Dh	UART6 Transmit/Receive Control Register 1	U6C1	0000 0010b
029Eh 029Fh	UART6 Receive Buffer Register	U6RB	XXh XXh
02A4h	UART7 Special Mode Register 4	U7SMR4	00h
02A5h	UART7 Special Mode Register 3	U7SMR3	000X 0X0Xb
02A6h	UART7 Special Mode Register 2	U7SMR2	X000 0000b
02A7h	UART7 Special Mode Register	U7SMR	X000 0000b
02A8h	UART7 Transmit/Receive Mode Register	U7MR	00h
02A9h	UART7 Bit Rate Register	U7BRG	XXh
02AAh 02ABh	UART7 Transmit Buffer Register	U7TB	XXh XXh
02ACh	UART7 Transmit/Receive Control Register 0	U7C0	0000 1000b
02ADh	UART7 Transmit/Receive Control Register 1	U7C1	0000 0010b
02AEh 02AFh	UART7 Receive Buffer Register	U7RB	XXh XXh


Table 23.4Registers (2/2)

23.2.1 Peripheral Clock Select Register (PCLKR)

b7 b6 b5 b4 b3 b2 b1 b0 0 0 0 0 0 0 0	Symbol PCLKR	Addre 0012		After Reset 0000 0011b
	Bit Symbol	Bit Name	Function	RW
	PCLK0	Timers A and B clock select bit (clock source for timers A and B, the dead time timer, and muliti-master I ² C-bus interface)	0: f2TIMAB/f2IIC 1: f1TIMAB/f1IIC	RW
	PCLK1	SI/O clock select bit (clock source for UART0 to UART2, UART5 to UART7, SI/O3, and SI/O4)	0: f2SIO 1: f1SIO	RW
	 (b4-b2)	Reserved bits	Set to 0	RW
 	PCLK5	Clock output function expansion bit (enabled in single-chip mode)	0: Selected by bits CM01 to CM00 in the CM0 register 1: Output f1	RW
<u>i</u>	 (b7-b6)	Reserved bits	Set to 0	RW

Set the PRC0 bit in the PRCR register to 1 (write enabled) before the PCLKR register is rewritten.

23.2.2 UARTi Transmit Buffer Register (UiTB) (i = 0 to 2, 5 to 7)

Use the MOV instruction to write to this register.

When character length is 9 bits long, write to this register in 16-bit units, or in 8-bit units from high-order bytes to low-order bytes.

23.2.3 UARTi Receive Buffer Register (UiRB) (i = 0 to 2, 5 to 7)

5) (b8) b0 b7 b0 (b1) b7 b0	Symb UOR U1R U2R U5R U6R U7R	B 024F B 025F B 026F B 028F B 028F B 029F	ddress h to 024Eh h to 025Eh h to 026Eh h to 028Eh h to 029Eh h to 02AEh	After Reset Undefined Undefined Undefined Undefined Undefined Undefined
	Bit Symbol	Bit Name	Function	RW
· · · · · · · · · · · · · · · · · · ·	 (b7-b0)		Receive data (D7 to D0)	RO
	(b8)		Receive data (D8)	RO
	 (b10-b9)	No register bits. If necessary,	set to 0. Read as undefined value	_
	ABT	Arbitration lost detect flag	0 : Not detected 1 : Detected	RW
	OER	Overrun error flag	0 : No overrun error 1 : Overrun error found	RO
l	FER	Framing error flag	0 : No framing error 1 : Framing error found	RO
	PER	Parity error flag	0 : No parity error 1 : Parity error found	RO
	SUM	Error sum flag	0 : No error 1 : Error found	RO

When bits SMD2 to SMD0 in the UiMR register are 100b, 101b, or 110b, read this register in 16-bit units, or in 8-bit units from high-order bytes to low-order bytes.

Bits FER and PER arranged in the high-order bytes become 0 when the lower bytes of the UiRB register are read.

If an overrun error occurs, the receive data of the UiRB register is undefined.

ABT (Arbitration lost detect flag) (b11)

The ABT bit is set to 0 by a program. (It remains unchanged even if 1 is written.)

OER (Overrun error flag) (b12)

Conditions to become 0:

- Bits SMD2 to SMD0 in the UiMR register are 000b (serial interface disabled).
- The RE bit in the UiC1 register is 0 (reception disabled).

Condition to become 1:

• The RI bit in the UiC1 register is 1 (data present in UiRB register), and the last bit of the next data is received.

FER (Framing error flag) (b13)

The FER bit is disabled when bits SMD2 to SMD0 are set to 001b (clock synchronous serial I/O mode) or to 010b (I²C mode). The read value is undefined.

Condition to become 0:

- Bits SMD2 to SMD0 in the UiMR register are 000b (serial interface disabled).
- The RE bit in the UiC1 register is 0 (reception disabled).
- The lower bytes of the UiRB register are read.

Condition to become 1:

• The set number of stop bits is not detected.

(detected when the received data is transferred from the UARTi receive register to the UiRB register.)

PER (Parity error flag) (b14)

The PER bit is disabled when bits SMD2 to SMD0 are set to 001b (clock synchronous serial I/O mode) or to 010b (I²C mode). The read value is undefined. Conditions to become 0:

• Bits SMD2 to SMD0 in the UiMR register are 000b (serial interface disabled).

- The RE bit in the UiC1 register is 0 (reception disabled).
- The lower bytes of the UiRB register are read.

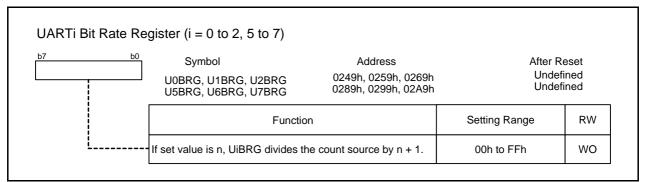
Condition to become 1:

• The number of 1s of the parity bit and character bit do not match the set value of the PRY bit in the UiMR register.

(detected when the received data is transferred from the UARTi receive register to the UiRB register.)

SUM (Error sum flag) (b15)

The SUM bit is disabled when bits SMD2 to SMD0 are set to 001b (clock synchronous serial I/O mode) or to 010b ($I^{2}C$ mode). The read value is undefined.


Conditions to become 0:

- Bits SMD2 to SMD0 in the UiMR register are 000b (serial interface disabled).
- The RE bit in the UiC1 register is 0 (reception disabled).
- Bits PER, FER and OER are all 0 (no error).

Condition to become 1:

• At least two bits out of PER, FER, or OER are 1 (error found).

23.2.4 UARTi Bit Rate Register (UiBRG) (i = 0 to 2, 5 to 7)

Write to the UiBRG register while the serial interface is neither transmitting nor receiving. Use the MOV instruction to write to the UiBRG register.

Write to the UiBRG register after setting bits CLK1 to CLK0 in the UiC0 register.

23.2.5 UARTi Transmit/Receive Mode Register (UiMR) (i = 0 to 2, 5 to 7)

b6 b5 b4 b3 b2 b1 b0	U0MR, U		248h, 0258h, 0268h (r Reset)0h)0h
	Bit Symbol	Bit Name	Function	RW
	SMD0		b2 b1 b0 0 0 0 : Serial interface disabled 0 0 1 : Clock synchronous serial I/O mode	RW
· · · · · · · · · · · · · · · · · · ·	SMD1	Serial I/O mode select bit	0 1 0 : I ² C mode 1 0 0 : UART mode character bit length is 7 b 1 0 1 : UART mode character bit length is 8 b	
	SMD2		1 1 0 : UART mode character bit length is 9 b Only set the values listed above.	
	CKDIR	Internal/external clock select bit	0 : Internal clock 1 : External clock	RW
	STPS	Stop bit length select bit	0 : One stop bit 1 : Two stop bits	RW
	PRY	Odd/even parity select bit	Enabled when PRYE is 1 0 : Odd parity 1 : Even parity	RW
l	PRYE	Parity enable bit	0 : Parity disabled 1 : Parity enabled	RW
	IOPOL	TXD, RXD I/O polarity reverse bit	0 : No reverse 1 : Reverse	RW

23.2.6 UARTi Transmit/Receive Control Register 0 (UiC0) (i = 0 to 2, 5 to 7)

b6 b5 b4 b3 b2 b1 b0	Symbo U0C0, U1 U5C0, U6	C0, U2C0 024Ch	, 025Ch, 026Ch 00	er Reset 00 1000b 00 1000b
	Bit Symbol	Bit Name	Function	RW
	CLK0	UiBRG count source select	b1 b0 0 0 : f1SIO or f2SIO selected 0 1 : f8SIO selected	RW
	CLK1	bit	1 0 : f32SIO selected 1 1 : Do not set	RW
	CRS	CTS/RTS function select bit	Enabled when CRD is 0 0 : CTS function selected 1 : RTS function selected	RW
· · · · · · · · · · · · · · · · · · ·	TXEPT	Transmit register empty flag	 0 : Data present in transmit register (transmission in progress) 1 : No data present in transmit register (transmission completed) 	RO
	CRD	CTS/RTS disable bit	0 : CTS/RTS function enabled 1 : CTS/RTS function disabled	RW
 	NCH	Data output select bit	 Pins TXDi/SDAi and SCLi are CMOS output Pins TXDi/SDAi and SCLi are N-cha open-drain output 	D\//
 	CKPOL	CLK polarity select bit	 0: Transmit data is output at the falling edge of transmit/receive clock and receive data is input at the rising ed 1: Transmit data is output at the rising edge of transmit/receive clock and receive data is input at the falling ec 	RW
	UFORM	Bit order select bit	0 : LSB first 1 : MSB first	RW

CLK1 to CLK0 (UiBRG count source select bit) (b1-b0)

When bits CLK1 to CLK0 are 00b (f1SIO or f2SIO selected), select f1SIO or f2SIO by the PCLK1 bit in the PCLKR register.

Set bits CLK1 to CLK0 after setting the PCLKR register.

If bits CLK1 to CLK0 are changed, set the UiBRG register.

CRS (CTS/RTS function select bit) (b2)

CTS1/RTS1 can be used when the CLKMD1 bit in the UCON register is 0 (CLK output is only from CLK1) and the RCSP bit in the UCON register is 0 (CTS0/RTS0 not separated).

CRD (CTS/RTS disable bit) (b4)

When the CRD bit is 1 (CTS/RTS function disabled), the CTSi/RTSi pin can be used as an I/O port.

NCH (Data output select bit) (b5)

TXD2/SDA2 and SCL2 are N-channel open drain outputs. They cannot be set as CMOS outputs. Nothing is assigned to the NCH bit in the U2C0 register. If necessary, set this bit to 0.

This function is used to set the P-channel transistor of the COMS output buffer always off, but not to change pins TXDi/SDAi and SCLi to open drain output completely.

Check the electrical characteristics for the input voltage range.

UFORM (Bit order select bit) (b7)

The UFORM bit is enabled when bits SMD2 to SMD0 in the UiMR register are 001b (clock synchronous serial I/O mode), or 101b (UART mode, 8-bit character data).

Set the UFORM bit to 1 when bits SMD2 to SMD0 are 010b (I²C mode), and to 0 when bits SMD2 to SMD0 are 100b (UART mode, 7-bit character data) or 110b (UART mode, 9-bit character data).

23.2.7 UARTi Transmit/Receive Control Register 1 (UiC1) (i = 0 to 2, 5 to 7)

	Symbol U0C1, U1C	Addre: 1 024Dh, 0		After Reset 0XX 0010b
	Bit Symbol	Bit Name	Function	RW
	ТЕ	Transmit enable bit	0 : Transmission disabled 1 : Transmission enabled	RW
	ТІ	Transmit buffer empty flag	0 : Data present in UiTB register 1 : No data present in UiTB register	RO
	RE	Receive enable bit	0 : Reception disabled 1 : Reception enabled	RW
	RI	Receive complete flag	0 : No data present in UiRB register 1 : Data present in UiRB register	RO
	 (b5-b4)	No register bits. If necessary, set to 0. Read as undefined value		_
	UiLCH	Data logic select bit	0 : No reverse 1 : Reverse	RW
	UiERE	Error signal output enable bit	0 : Output disabled 1 : Output enabled	RW
	Symbol	e Control Register 1	ss A	After Reset
	Symbol U2C1	Addre 026Df	ss /	After Reset 000 0010b 000 0010b
	Symbol U2C1	Addre 026Dr	ss A	000 0010b
	Symbol U2C1 U5C1, L	Addre: 026DF J6C1, U7C1 028DF	ss 4 0 1, 029Dh, 02ADh 0	000 0010b 000 0010b
	Symbol U2C1 U5C1, U Bit symbol	Addre 026Dr 028Dr Bit Name	ss A 0, 029Dh, 02ADh 0 Function 0 : Transmission disabled	000 0010b 000 0010b RW
	Symbol U2C1 U5C1, U Bit symbol TE	Addre: 026Dr 028Dr Bit Name Transmit enable bit	ss / 0 0, 029Dh, 02ADh 0 Function 0 : Transmission disabled 1 : Transmission enabled 0 : Data present in UiTB register	000 0010b 000 0010b RW RW
	Symbol U2C1 U5C1, U Bit symbol TE TI	Addre: 026Dr 028Dr Bit Name Transmit enable bit Transmit buffer empty flag	ss / 0 , 029Dh, 02ADh 0 Function 0 : Transmission disabled 1 : Transmission enabled 0 : Data present in UiTB register 1 : No data present in UiTB register 0 : Reception disabled	000 0010b 000 0010b RW RW RW
	Symbol U2C1 U5C1, U Bit symbol TE TI RE	Addree 026DF 028DF Bit Name Transmit enable bit Transmit buffer empty flag Receive enable bit	ss / 0 , 029Dh, 02ADh 0 Function 0 : Transmission disabled 1 : Transmission enabled 0 : Data present in UiTB register 1 : No data present in UiTB register 0 : Reception disabled 1 : Reception enabled 0 : No data present in UiRB register	000 0010b RW RW RO RO RW
	Symbol U2C1 U5C1, U Bit symbol TE TI RE RI	Addre: 026Dr 028Dr Bit Name Transmit enable bit Transmit buffer empty flag Receive enable bit Receive complete flag UARTi transmit interrupt	SS A 0 029Dh, 02ADh 0 Function 0 0 : Transmission disabled 1 1 : Transmission enabled 0 0 : Data present in UiTB register 1 1 : No data present in UiTB register 0 0 : Reception disabled 1 1 : Reception enabled 0 0 : No data present in UiRB register 1 1 : Data present in UiRB register 0 0 : No tata present in UiRB register 1 0 : UiTB register empty (TI = 1) 1	000 0010b 000 0010b RW RW RO RO = 1) RW
ARTi Transmi	Symbol U2C1 U5C1, U Bit symbol TE TI RE RI UilRS	Addree 026DF 028DF Bit Name Transmit enable bit Transmit buffer empty flag Receive enable bit Receive complete flag UARTi transmit interrupt source select bit	SS A 0 029Dh, 02ADh 0 Function 0 0 : Transmission disabled 1 1 : Transmission enabled 0 0 : Data present in UiTB register 1 1 : No data present in UiTB register 0 0 : Reception disabled 1 1 : Reception enabled 0 0 : No data present in UiRB register 1 1 : Data present in UiRB register 1 0 : No data present in UiRB register 1 1 : Data present in UiRB register 1 0 : UiTB register empty (TI = 1) 1 1 : Transmission completed (TXEPT = 0 0 : Continuous receive mode disabled 1	000 0010b 000 0010b RW RW RO RO = 1) RW

Bits UiIRS and UiRRM of UART0 and UART1 are bits in the UCON register.

UiLCH (Data logic select bit) (b6)

The UiLCH bit is enabled when bits SMD2 to SMD0 in the UiMR register are 001b (clock synchronous serial I/O mode), 100b (UART mode, 7-bit character data), or 101b (UART mode, 8-bit character data). Set this bit to 0 when bits SMD2 to SMD0 are set to 010b (I²C mode) or 110b (UART mode, 9-bit character data).

23.2.8 UART Transmit/Receive Control Register 2 (UCON)

b5 b4 b3 b2 b1 b0	Symbol UCON	Addre: 0250h		r Reset 0 0000b
	Bit symbol	Bit Name	Function	RW
	U0IRS	UART0 transmit interrupt source select bit	0 : Transmit buffer empty (TI = 1) 1 : Transmission completed (TXEPT = 1)	RW
	U1IRS	UART1 transmit interrupt source select bit	0 : Transmit buffer empty (TI = 1) 1 : Transmission completed (TXEPT = 1)	RW
	U0RRM	UART0 continuous receive mode enable bit	0 : Continuous receive mode disabled 1 : Continuous receive mode enabled	RW
	U1RRM	UART1 continuous receive mode enable bit	0 : Continuous receive mode disabled 1 : Continuous receive mode enabled	RW
	CLKMD0	UART1CLK, CLKS select bit 0	Enabled when CLKMD1 is 1 0 : Clock output from CLK1 1 : Clock output from CLKS1	RW
	CLKMD1	UART1CLK, CLKS select bit 1	0 : CLK output is only from CLK11 : Transmit/receive clock output from multiple-pin output function selected	RW
	RCSP	Separate UART0 CTS/RTS bit	0 : CTS/RTS shared pin 1 : CTS/RTS separated	RW
	(b7)	No register bit. If necessary, s	et to 0. Read as undefined value	_

Bits UIRS and UIRRM of UART2 and UART5 to UART7 are bits in the UiC1 register.

CLKMD1 (UART1CLK, CLKS select bit 1) (b5)

When using multiple transmit/receive clock output pins, make sure that the CKDIR bit in the U1MR register is 0 (internal clock).

23.2.9 UARTi Special Mode Register (UiSMR) (i = 0 to 2, 5 to 7)

b5 b4 b3 b2 b1 b0	,		0247h, 0257h, 0267h X00	er Reset 00 0000b 00 0000b
	Bit Symbol	Bit Name	Function	RW
	IICM	I ² C mode select bit	0 : Other than I²C mode 1 : I²C mode	RW
	ABC	Arbitration lost detect flag control bit	0 : Update every bit 1 : Update every byte	RW
	BBS	Bus busy flag	0 : Stop-condition detected 1 : Start-condition detected (busy)	RW
	 (b3)	Reserved bit	Set to 0	RW
 	ABSCS	Bus collision detect sampling clock select bit	0 : Rising edge of transmit/receive clock 1 : Underflow signal of timer Aj	RW
	ACSE	Auto clear function select bit of transmit enable bit	0 : No auto clear function 1 : Auto clear at bus collision	RW
	SSS	Transmit start condition select bit	0 : Not synchronized to RXDi 1 : Synchronized to RXDi	RW
	(b7)	No register bit. If necessary, s	et to 0. Read as undefined value	_

BBS (Bus busy flag) (b2)

The BBS bit is set to 0 by a program. (It remains unchanged even if 1 is written.)

ABSCS (Bus collision detect sampling clock select bit) (b4)

When the ABSCS bit is 1, the combinations of UARTi and timer Aj are as follows:

UART0, UART6: Underflow signal of timer A3

UART1, UART7: Underflow signal of timer A4

UART2, UART5: Underflow signal of timer A0

SSS (Transmit start condition select bit) (b6)

When a transmission starts, the SSS bit becomes 0 (not synchronized to RXDi).

23.2.10 UARTi Special Mode Register 2 (UiSMR2) (i = 0 to 2, 5 to 7)

b5 b4 b3 b2 b1 b0	Symbol U0SMR2, U1SMR2, U2SMR2 U5SMR2, U6SMR2, U7SMR2		Address 0246h, 0256h, 0266h 0286h, 0296h, 02A6h	After Reset X000 0000b X000 0000b
	Bit Symbol	Bit Name	Function	RW
	- IICM2	I ² C mode select bit 2	See Table 23.18 "I ² C Mode Function	ons" RW
	- csc	Clock synchronization bit	0 : Disabled 1 : Enabled	RW
	- swc	SCL wait output bit	0 : Disabled 1 : Enabled	RW
	- ALS	SDA output stop bit	0 : Disabled 1 : Enabled	RW
	- STAC	UARTi initialization bit	0 : Disabled 1 : Enabled	RW
L	SWC2	SCL wait output bit 2	0: Transmit/receive clock 1: Low-level output	RW
	- SDHI	SDA output disable bit	0: Enabled 1: Disabled (high-impedance)	RW
	(b7)	No register bit. If necessary	, set to 0. Read as undefined value	

23.2.11 UARTi Special Mode Register 3 (UiSMR3) (i = 0 to 2, 5 to 7)

b5 b4 b3 b2 b1 b0	U0SMR3, I	Symbol J1SMR3, U2SMR3 J6SMR3, U7SMR3	0245h, 0255h, 0265h 000	er Reset X 0X0Xb X 0X0Xb
	Bit Symbol	Bit Name	Function	RW
	(b0)	No register bit. If necessa	ry, set to 0. Read as undefined value	_
· · · · · · · · · · · · · · · · · · ·	СКРН	Clock phase set bit	0 : No clock delay 1 : With clock delay	RW
(b2)		No register bit. If necessa	ry, set to 0. Read as undefined value	_
		Clock output select bit	0 : CLKi is CMOS output 1 : CLKi is N-channel open drain output	
	(b4)	No register bit. If necessa	ry, set to 0. Read as undefined value	_
DL0			b7 b6 b5 0 0 0 : No delay 0 0 1 : 1 to 2 cycles of UiBRG count sour	RW
	DL1	SDAi digital delay setup bit	0 1 0:2 to 3 cycles of UiBRG count sou 0 1 1:3 to 4 cycles of UiBRG count sou 1 0 0:4 to 5 cycles of UiBRG count sou	rce rce RW rce
	DL2		1 0 1:5 to 6 cycles of UiBRG count sou 1 0:6 to 7 cycles of UiBRG count sou 1 1 1:7 to 8 cycles of UiBRG count sou	rce DW

NODC (Clock output select bit) (b3)

This function is used to set P-channel transistor of the COMS output buffer always off, but not to change the CLKi pin to open drain output completely.

Check the electrical characteristics for the input voltage range.

DL2-DL0 (SDAi digital delay setup bit) (b7-b5)

Bits DL2 to DL0 are used to generate a digital delay in SDAi output in I²C mode. Except in I²C mode, set these bits to 000b (no delay).

The delay length varies with the load on pins SCLi and SDAi. Also, when using an external clock, the delay length increases by about 100 ns.

23.2.12 UARTi Special Mode Register 4 (UiSMR4) (i = 0 to 2, 5 to 7)

b6 b5 b4 b3 b2 b1 b0	U0SMR4, L	Symbol IISMR4, U2SMR4 IGSMR4, U7SMR4	0244h, 0254h, 0264h	r Reset 00h 00h
	Bit Symbol	Bit Name	Function	RW
L.	STAREQ	Start condition generate bit	0 : Clear 1 : Start	RW
	RSTAREQ	Restart condition generate bit	0 : Clear 1 : Start	RW
	STPREQ	Stop condition generate bit	0 : Clear 1 : Start	RW
	STSPSEL	SCL, SDA output select bit	0 : Start and stop conditions not output 1 : Start and stop conditions output	RW
	ACKD	ACK data bit	0 : ACK 1 : NACK	RW
	АСКС	ACK data output enable bit	0 : Serial interface data output 1 : ACK data output	RW
l	SCLHI	SCL output stop enable bit	0 : Disabled 1 : Enabled	RW
	SWC9	SCL wait bit 3	0 : SCL low hold disabled 1 : SCL low hold enabled	RW

STAREQ (Start condition generate bit) (b0)

The STAREQ bit becomes 0 when the start condition is generated.

RSTAREQ (Restart condition generate bit) (b1)

The RSTAREQ bit becomes 0 when the restart condition is generated.

STPREQ (Stop condition generate bit) (b2)

The STPREQ bit becomes 0 when the stop condition is generated.

23.3 Operations

23.3.1 Clock Synchronous Serial I/O Mode

The clock synchronous serial I/O mode uses a transmit/receive clock to transmit/receive data. Table 23.5 lists the Clock Synchronous Serial I/O Mode Specifications.

Table 23.5	Clock Synchronous Serial I/O Mode Specifications
------------	--

Item	Specification			
Data format	Character length: 8 bits			
Transmit/receive clock	• CKDIR bit in the UiMR register = 0 (internal clock): $\frac{fj}{2(n + 1)}$ fj = f1SIO, f2SIO, f8SIO, f32SIO n = Setting value of UiBRG register 00h to FFh • CKDIR bit = 1 (external clock): Input from CLKi pin			
Transmit/receive control	Selectable from CTS function, RTS function, or CTS/RTS function disabled			
Transmission start conditions	To start transmission, satisfy the following requirements ⁽¹⁾ • The TE bit in the UiC1 register = 1 (transmission enabled) • The TI bit in the UiC1 register = 0 (data present in UiTB register) • If CTS function is selected, input on the CTSi pin is low.			
Reception start conditions	To start reception, satisfy the following requirements ⁽¹⁾ • The RE bit in the UiC1 register = 1 (reception enabled) • The TE bit in the UiC1 register = 1 (transmission enabled) • The TI bit in the UiC1 register = 0 (data present in the UiTB register)			
Interrupt request generation timing	 Transmit interrupt: One of the following can be selected. The UiIRS bit in the UiC1 or UCON register = 0 (transmit buffer empty): When transferring data from the UiTB register to the UARTi transmit register (at start of transmission) The UiIRS bit = 1 (transmission completed): When the serial interface completes sending data from the UARTi transmit register Receive interrupt: When transferring data from the UARTi receive register to the UiRB register (at completion of reception) 			
Error detection	Overrun error ⁽²⁾ This error occurs if the serial interface starts receiving the next unit of data before reading the UiRB register and receiving the seventh bit of the next unit of data			
Selectable functions	 CLK polarity selection Data input/output can be selected to occur synchronously with the rising or falling edge of the transmit/receive clock LSB first, MSB first selection Whether to start sending/receiving data beginning with bit 0 or beginning with bit 7 can be selected Continuous receive mode selection Reception is enabled immediately by reading the UiRB register Switching serial data logic This function reverses the logic value of the transmit/receive data Transmit/receive clock output from multiple pins selection (UART1) The output pin can be selected by a program by setting two UART1 transmit/receive clock pins. Separate CTS/RTS pins (UART0) CTS0 and RTS0 are input/output from separate pins 			

i = 0 to 2, 5 to 7

Notes: 1.

- . When an external clock is selected, either of the following conditions must be met: If the CKPOL bit in the UiC0 register is 0 (transmit data output at the falling edge and the receive data taken in at the rising edge of the transmit/receive clock), the external clock is in the high state; if the CKPOL bit in the UiC0 register is 1 (transmit data output at the rising edge and the receive data taken in at the falling edge of the transmit/receive clock), the external clock is in the low state.
- 2. If an overrun error occurs, the receive data of the UiRB register will be undefined. The IR bit in the SiRIC register remains unchanged.

Table 23.6 lists Pin Functions in Clock Synchronous Serial I/O Mode (Multiple Transmit/Receive Clock Output Pin Function Not Selected). Table 23.7 lists P6_4 Pin Functions in Clock Synchronous Serial I/O Mode.

Note that for a period from when UARTi operating mode is selected to when transmission starts, the TXDi pin outputs a high-level signal. (If N-channel open drain output is selected, this pin is high-impedance.)

Table 23.6	Pin Functions in Clock Synchronous Serial I/O Mode (Multiple Transmit/Receive Clock
	Output Pin Function Not Selected)

Pin Name	I/O	Function	Method of Selection	
TXDi	Output	Serial data output	(Outputs dummy data only when receiving)	
	Input	Serial data input	Set the port direction bits sharing pins to 0.	
RXDi	Input	Input port	Set the port direction bits to 0. (can be used as an input port only when transmitting)	
CLKi	Output Transmit/receive clock output		The CKDIR bit in the UiMR register = 0	
CLRI	Input	Transmit/receive	The CKDIR bit in the UiMR register = 1	
	mput	clock input	Set the port direction bits sharing pins to 0.	
			The CRD bit in the UiC0 register = 0	
	Input	CTS input	The CRS bit in the UiC0 register = 0	
			Set the port direction bits sharing pins to 0.	
CTSi/RTSi	Output		The CRD bit in the UiC0 register = 0	
	Output	tput RTS output	The CRS bit in the UiC0 register = 1	
	Input/ output	I/O port	The CRD bit in the UiC0 register = 1	

i = 0 to 2, 5 to 7

Table 23.7	P6_4 Pin Functions in Clock Synchronous Serial I/O Mode

	Bit Set Value					
Pin Function	U1C0 register		l	JCON registe	PD6 register	
	CRD	CRS	RCSP	CLKMD1	CLKMD0	PD6_4
P6_4	1	-	0	0	-	Input: 0, Output: 1
CTS1	0	0	0	0	-	0
RTS1	0	1	0	0	-	-
CTS0 ⁽¹⁾	0	0	1	0	-	0
CLKS1	-	-	-	1 (2)	1	-

- indicates either 0 or 1

Notes:

1. In addition to these settings, set the CRD bit in the U0C0 register to 0 (CTS0/RTS0 enabled) and the CRS bit in the U0C0 register to 1 (RTS0 selected).

2. When the CLKMD1 bit is 1 and the CLKMD0 bit is 0, the following logic levels are output:

• High if the CLKPOL bit in the U1C0 register is 0

• Low if the CLKPOL bit in the U1C0 register is 1

Table 23.8 and Table 23.9 list the registers used and settings in clock synchronous serial I/O mode.

Register	Bits	Function		
PCLKR	PCLK1	Select the count source for the UiBRG register.		
UiTB	0 to 7	Set transmission data.		
UIID	8	- (does not need to be set) If necessary, set to 0.		
	0 to 7	Reception data can be read.		
UiRB	8, 11, 13 to 15	When read, the read value is undefined.		
	OER	Overrun error flag		
UiBRG	0 to 7	Set bit rate.		
	SMD2 to SMD0	Set to 001b.		
UiMR	CKDIR	Select internal clock or external clock.		
UIIII	4 to 6	Set to 0.		
	IOPOL	Set to 0.		
	CLK1 to CLK0	Select the count source for the UiBRG register.		
	CRS	If CTS or RTS is used, select which function to use.		
	TXEPT	ransmit register empty flag		
UiC0	CRD	Enable or disable the $\overline{\text{CTS}}$ or $\overline{\text{RTS}}$ function.		
	NCH	Select TXDi pin output mode. ⁽²⁾		
	CKPOL	Select the transmit/receive clock polarity.		
	UFORM	Select LSB first or MSB first.		
	TE	Set to 1 to enable transmission/reception.		
	TI	Transmit buffer empty flag		
	RE	Set to 1 to enable reception.		
UiC1	RI	Reception complete flag		
	UjIRS	Select source of UARTj transmit interrupt.		
	UjRRM	Set to 1 to use continuous receive mode.		
	UiLCH	Set to 1 to use inverted data logic.		
	UiERE	Set to 0.		
UiSMR	0 to 7	Set to 0.		
UiSMR2	0 to 7	Set to 0.		
	0 to 2	Set to 0.		
UiSMR3	NODC	Select clock output mode.		
	4 to 7	Set to 0.		
UiSMR4	0 to 7	Set to 0.		

Table 23.8	Registers Used and	I Settings in Clo	ck Synchronous	Serial I/O Mode (1/2) ⁽¹⁾

Notes:

- 1. This table does not describe a procedure.
- 2. The TXD2 pin is N-channel open drain output. Nothing is assigned to the NCH bit in the U2C0 register. If necessary, set it to 0.

Register	Bits	Function
	U0IRS	Select source of UART0 transmit interrupt.
	U1IRS	Select source of UART1 transmit interrupt.
	U0RRM	Set to 1 to use continuous receive mode.
UCON	U1RRM	Set to 1 to use continuous receive mode.
UCON	CLKMD0	Select the transmit/receive clock output pin when CLKMD1 is 1.
	CLKMD1	Set to 1 to output UART1 transmit/receive clock from two pins.
	RCSP	Set to 1 to separate the CTS0/RTS signal of UART0.
	7	Set to 0.

Table 23.9 Registers Used and Settings in Clock Synchronous Serial I/O Mode (2/2) ⁽¹⁾

Note:

1. This table does not describe a procedure.

(1) Example of Transmit Timing (Internal Clock Selected)
TE bit in the 1 I UiC1 register 0 I ISet the data in the UiTB register.
TI bit in the 1 UiC1 register 0
CTSi Low Pulse stors because a high-
CLKi
TXDi XD0XD1XD2XD3XD4XD5XD6XD7 XD0XD1XD2XD3XD4XD5XD6XD7 XD0XD1XD2XD3XD4XD5XD6XD7
TXEPT flag in 1 the UiC0 register 0
IR bit in the 1 SiTIC register 0
i = 0 to 2, 5 to 7 Set to 0 by an interrupt request acknowledgement or by a program.
The above timing diagram applies when the register bits are set as follows: The CKDIR bit in the UiMR register = 0 (internal clock) The CRD bit in the UiC0 register = 0 (CTS/RTS enabled), the CRS bit = 0 (CTS selected) The CKPOL bit in the UiC0 register = 0 (transmit data output at the falling edge and receive data taken in at the rising edge of the transmit/receive clock) The UiIRS bit in the UiC1 or UCON register = 0 (an interrupt request occurs when the UiTB register becomes empty)
(2) Example of Receive Timing (External Clock Selected)
RE bit in the ¹ UiC1 register ₀ —
TE bit in the 1 UiC1 register 0 — Set the dummy data in the UiTB register. —
TI bit in the 1 UiC1 register 0 Data is transferred from the UiTB register to the UARTi transmit register.
CLKi
RXDi
RI bit in the 1 receive register to the UiRB register
IR bit in 1 SiRIC register 0
Set to 0 by an interrupt request acknowledgement or by a program.
OER flag in the 1 UiRB register 0
 i = 0 to 2, 5 to 7 The above timing diagram applies to the case where the register bits are set as follows: The CKDIR bit in the UiMR register = 1 (external clock) The CKDIR bit in the UiMR register = 1 (external clock)
 The CRD bit in the UiC0 register = 0 (CTS/RTS enabled), the CRS bit = 1 (RTS selected) The CKPOL bit in the UiC0 register = 0 (transmit data output at the falling edge and receive data taken in at the rising edge of the transmit/nearline table) Write dummy data to the UiTB register
transmit/receive clock) fEXT: Frequency of the external clock

Figure 23.5 Transmit/Receive Operation during Clock Synchronous Serial I/O Mode

23.3.1.1 Transmit/Receive Circuit Initialization

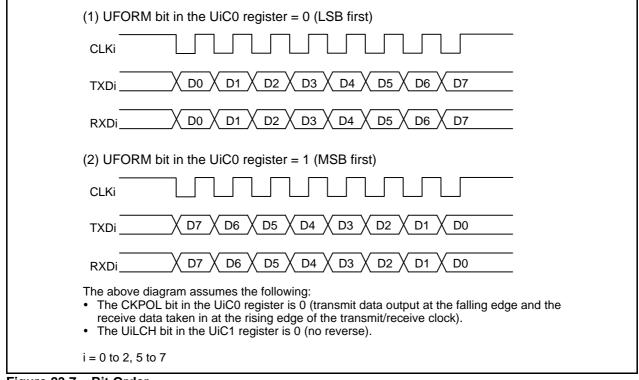
When the transmit/receive circuit needs to be initialized due to an interrupted transmission/reception, follow the procedures below:

- Initializing the UiRB register (i = 0 to 2, 5 to 7)
- (1) Set the RE bit in the UiC1 register to 0 (reception disabled).
- (2) Set bits SMD2 to SMD0 in the UiMR register to 000b (serial interface disabled).
- (3) Set bits SMD2 to SMD0 in the UiMR register to 001b (clock synchronous serial I/O mode).
- (4) Set the RE bit in the UiC1 register to 1 (reception enabled).

• Initializing the UiTB register (i = 0 to 2, 5 to 7)

- (1) Set bits SMD2 to SMD0 in the UiMR register to 000b (serial interface disabled).
- (2) Set bits SMD2 to SMD0 in the UiMR register to 001b (clock synchronous serial I/O mode).
- (3) Set the RE bit in the UiC1 register to 1 (transmission enabled), regardless of the value of the TE bit in the UiCi register.

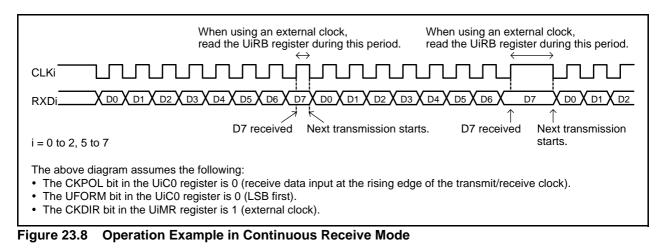
23.3.1.2 CLK Polarity Select Function


Use the CKPOL bit in the UiC0 register (i = 0 to 2, 5 to 7) to select the transmit/receive clock polarity. Figure 23.6 shows the Transmit/Receive Clock Polarity.

(1) CKPOL bit in the UiC0 register = 0 (transmit data output at the falling edge and the
receive data taken in at the rising edge of the transmit/receive clock)
CLKi
pin when there is transmission/reception.
TXDi $DU = D1 = D2 = D3 = D4 = D5 = D6 = D7$
RXDi X D0 X D1 X D2 X D3 X D4 X D5 X D6 X D7
 (2) CKPOL bit = 1 (transmit data output at the rising edge and the receive data taken in at the falling edge of the transmit/receive clock) A low-level signal is output from the CLKi
TXDi X D0 X D1 X D2 X D3 X D4 X D5 X D6 X D7
RXDi X D0 X D1 X D2 X D3 X D4 X D5 X D6 X D7
The above diagram assumes the following:The CKDIR bit in the UiMR register is 0 (internal clock).
 The UFORM bit in the UiC0 register is 0 (LSB first). The UiLCH bit in the UiC1 register is 0 (no reverse).
i = 0 to 2, 5 to 7

23.3.1.3 LSB First/MSB First Select Function

Use the UFORM bit in the UiC0 register (i = 0 to 2, 5 to 7) to select the bit order. Figure 23.7 shows the Bit Order.


Figure 23.7 Bit Order

23.3.1.4 Continuous Receive Mode

In continuous receive mode, receive operation is enabled when the receive buffer register is read. It is not necessary to write dummy data to the transmit buffer register to enable receive operation in this mode. However, a dummy read of the receive buffer register is required when starting the operating mode.

When the UiRRM bit in the UiC1 or UCON register (i = 0 to 2, 5 to 7) is 1 (continuous receive mode), the TI bit in the UiC1 register is set to 0 (data present in the UiTB register) by reading the UiRB register. In this case (UiRRM bit = 1), do not write dummy data to the UiTB register by a program. When using an external clock, read the UiRB register between receiving the eighth bit of data and starting the next transmission.

Figure 23.8 shows Operation Example in Continuous Receive Mode.

23.3.1.5 Serial Data Logic Switching Function

When the UiLCH bit in the UiC1 register (i = 0 to 2, 5 to 7) is 1 (reverse), data written to the UiTB register has its logic reversed before being transmitted. Similarly, the received data has its logic reversed when read from the UiRB register. Figure 23.9 shows Serial Data Logic.

(1) UiLCH bit in the UiC1 register = 0 (no reverse)	
Transmit/receive clock High	
TXDi High <u>X D0 X D1 X D2 X D3 X D4 X D</u> (no reverse) Low	D5 (D6 (D7
(2) UiLCH bit in the UiC1 register = 1 (reverse)	
Transmit/receive clock High	
TXDi High <u>D0 (D1) D2 (D3) D4 (1</u> (reverse) Low	<u>D5 (D6 (D7</u>
 The above diagram assumes the following: The CKPOL bit in the UiC0 register is 0 (transmit data output at receive clock). The UFORM bit in the UiC0 register is 0 (LSB first). 	the falling edge of the transmit/
i = 0 to 2, 5 to 7	

Figure 23.9 Serial Data Logic

23.3.1.6 Transmit/Receive Clock Output from Multiple Pins (UART1)

Use bits CLKMD1 to CLKMD0 in the UCON register to select one of the two transmit/receive clock output pins (see Figure 23.10). This function can be used when the selected transmit/receive clock for UART1 is an internal clock.

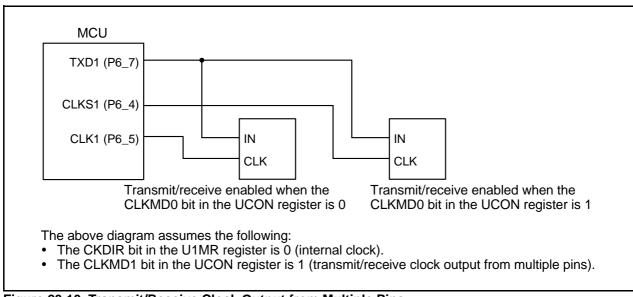


Figure 23.10 Transmit/Receive Clock Output from Multiple Pins

23.3.1.7 CTS/RTS Function

The $\overline{\text{CTS}}$ function is used to start transmit/receive operation when a low-level signal is applied to the $\overline{\text{CTSi}/\text{RTSi}}$ (i = 0 to 2, 5 to 7) pin. Transmit/receive operation begins when input to the $\overline{\text{CTSi}/\text{RTSi}}$ pin becomes low. If the low-level signal is switched to high during a transmit or receive operation, the operation stops before the next data.

For the RTS function, the CTSi/RTSi pin outputs a low-level signal when the MCU is ready to receive. The output level becomes high on the first falling edge of the CLKi pin.

See Table 23.6 "Pin Functions in Clock Synchronous Serial I/O Mode (Multiple Transmit/Receive Clock Output Pin Function Not Selected)".

23.3.1.8 CTS/RTS Separate Function (UART0)

This function separates $\overline{\text{CTS0}/\text{RTS0}}$, outputs $\overline{\text{RTS0}}$ from the P6_0 pin, and inputs $\overline{\text{CTS0}}$ from the P6_4 pin. To use this function, set the register bits as shown below:

- The CRD bit in the U0C0 register= 0 (enable CTS/RTS of UART0)
- The CRS bit in the U0C0 register= 1 (output $\overline{\text{RTS}}$ of UART0)
- The CRD bit in the U1C0 register= 0 (enable CTS/RTS of UART1)
- The CRS bit in the U1C0 register= 0 (input $\overline{\text{CTS}}$ of UART1)
- The RCSP bit in the UCON register= 1 (inputs CTS0 from the P6_4 pin)
- The CLKMD1 bit in the UCON register= 0 (CLKS1 not used)

Note that when using the CTS/RTS separate function, CTS/RTS of UART1 function cannot be used.

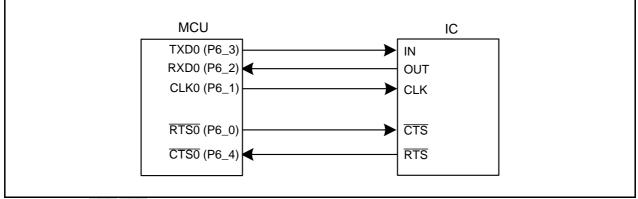


Figure 23.11 CTS/RTS Separate Function

23.3.2 Clock Asynchronous Serial I/O (UART) Mode

The UART mode allows data to be transmitted/received after setting the desired bit rate and bit order. Table 23.10 lists the UART Mode Specifications.

Item	Specification
	Character bits : Selectable from 7, 8, or 9 bits
Data format	Start bit : 1 bit
	Parity bit : Selectable from odd, even, or none
	Stop bit : Selectable from 1 bit or 2 bits
	• The CKDIR bit in the UiMR register = 0 (internal clock):
Transmit/receive	$\frac{fj}{16(n+1)}$ fj = f1SIO, f2SIO, f8SIO, f32SIO n: Setting value of UiBRG register 00h to FFh
clock	• CKDIR bit = 1 (external clock):
	$\frac{fEXT}{16(n+1)}$ fEXT: Input from CLKi pin n: Setting value of UiBRG register 00h to FFh
Transmission and reception control	Selectable from CTS function, RTS function, or CTS/RTS function disabled
	To start transmission, satisfy the following requirements.
Transmission	 The TE bit in the UiC1 register = 1 (transmission enabled)
start conditions	• The TI bit in the UiC1 register = 0 (data present in the UiTB register)
	 If the CTS function is selected, input on the CTSi pin is low.
Popontion start	To start reception, satisfy the following requirements.
Reception start conditions	 The RE bit in the UiC1 register = 1 (reception enabled)
conditions	Start bit detection.
	Transmit interrupt: One of the following can be selected:
	 The UiIRS bit in the UiC1 or UCON register = 0 (transmit buffer empty):
	When transferring data from the UiTB register to the UARTi transmit register (at start of transmission)
Interrupt request	 The UiIRS bit =1 (transmission completed):
generation timing	When the serial interface completes sending data from the UARTi transmit register
	Receive interrupt:
	• When transferring data from the UARTi receive register to the UiRB register (at completion of
	reception)
	• Overrun error ⁽¹⁾
	This error occurs if the serial interface starts receiving the next unit of data before reading the UiRB register and receives the bit before the last stop bit of the next unit of data.
	 Framing error This error occurs when the number of stop bits set is not detected.
Error detection	Parity error
	This error occurs when the number of 1s of the parity bit and character bit do not match the set value of the PRY bit in the UiMR register.
	• Error sum flag
	This flag becomes 1 when an overrun, framing, or parity error occurs.
	LSB first, MSB first selection
Selectable functions	Whether to start sending/receiving data beginning with bit 0 or beginning with bit 7 can be selected
	Serial data logic switch
	This function reverses the logic of the transmit/receive data. The start and stop bits are not reversed.
	• TXD, RXD I/O polarity switch
	This function reverses the polarities of the TXD pin output and RXD pin input. The logic levels of all I/O data are reversed.
	 Separate CTS/RTS pins (UART0)
	CTS0 and RTS0 are input/output from separate pins.

Table 23.10	UART Mod	e Specifications
-------------	----------	------------------

1 = 0.102, 5.00Note:

1. If an overrun error occurs, the receive data of the UiRB register will be undefined. The IR bit in the SiRIC register remains unchanged.

Table 23.11 lists I/O Pin Functions in UART Mode. Table 23.12 lists the P6_4 Pin Functions in UART Mode. Note that for a period from when the UARTi operating mode is selected to when transmission starts, the TXDi pin outputs a high-level signal. (If N-channel open drain output is selected, this pin becomes high-impedance.)

Pin Name	I/O	Function	Method of Selection	
TXDi	Output	Serial data output	(High-level output only when receiving.)	
	Input	Serial data input	Set the port direction bits sharing pins to 0.	
RXDi	Input	Input port	Set the port direction bits sharing pins to 0. (can be used as an input port only when transmitting.)	
Input/ output		Input/output port	The CKDIR bit in the UiMR register = 0	
CLKi	Input	Transmit/receive	The CKDIR bit in the UiMR register = 1	
		clock input	Set the port direction bits sharing pins to 0.	
	Input			The CRD bit in the UiC0 register = 0
		put CTS input	The CRS bit in the UiC0 register = 0	
			Set the port direction bits sharing pins to 0.	
CTSi/RTSi	Output	0.1.1		The CRD bit in the UiC0 register = 0
		RTS output	The CRS bit in the UiC0 register = 1	
	Input/ output	I/O port	The CRD bit in the UiC0 register = 1	

Table 23.11 I/O Pin Functions in UART Mode

i = 0 to 2, 5 to 7

Table 23.12	P6_4 Pin Functions in UART Mode
-------------	---------------------------------

	Bit Set Value				
Pin Function	U1C0 register		UCON register		PD6 register
	CRD	CRS	RCSP	CLKMD1	PD6_4
P6_4	1	-	0	0	Input: 0, Output: 1
CTS1	0	0	0	0	0
RTS1	0	1	0	0	-
CTSO ⁽¹⁾	0	0	1	0	0

- indicates either 0 or1.

Note:

1. In addition to these settings, set the CRD bit in the U0C0 register to 0 (CTS0/RTS0 enabled) and the CRS bit in the U0C0 register to 1 (RTS0 selected).

Table 23.13 Table 23.14 list the registers used and settings in UART mode.

Register	Bits	Function		
PCLKR	PCLK1	Select the count source for the UiBRG register.		
UiTB	0 to 8	Set transmission data. ⁽²⁾		
	0 to 8	Reception data can be read. ^(2, 4)		
UiRB	OER, FER, PER, SUM	Error flag		
	11	When read, the read value is undefined.		
UiBRG	0 to 7	Set bit rate.		
		Set to 100b when character bit length is 7 bits.		
	SMD2 to SMD0	Set to 101b when character bit length is 8 bits.		
		Set to 110b when character bit length is 9 bits.		
UiMR	CKDIR	Select the internal clock or external clock.		
	STPS	Select number of stop bits.		
	PRY, PRYE	Select whether parity is included and whether odd or even.		
	IOPOL	Select the TXD/RXD input/output polarity.		
	CLK0, CLK1	Select the count source for the UiBRG register.		
	CRS	If CTS or RTS is used, select which function to use.		
	TXEPT	Transmit register empty flag		
UiC0	CRD	Enable or disable the CTS or RTS function.		
0100	NCH	Select TXDi pin output mode. ⁽³⁾		
	CKPOL	Set to 0.		
	UFORM	LSB first or MSB first can be selected when character bit length is 8 bits. Set to 0 when character bit length is 7 or 9 bits.		
	TE	Set to 1 to enable transmission.		
	TI	Transmit buffer empty flag		
	RE	Set to 1 to enable reception.		
UiC1	RI	Reception complete flag		
	UjIRS	Select source of UARTj transmit interrupt.		
	UjRRM	Set to 0.		
	UiLCH	Set to 1 to use reversed data logic.		
	UiERE	Set to 0.		
UiSMR	0 to 7	Set to 0.		
UiSMR2	0 to 7	Set to 0.		
UiSMR3	0 to 7	Set to 0.		
UiSMR4	0 to 7	Set to 0.		

Table 23.13 Registers Used and Settings in UART Mode (1/2) ⁽¹⁾

i = 0 to 2, 5 to 7 j = 2, 5 to 7 Notes:

1. This table does not describe a procedure.

- 2. The bits used for transmit/receive data are as follows: Bits 0 to 6 when character bit length is 7 bits; bits 0 to 7 when character bit length is 8 bits; bits 0 to 8 when character bit length is 9 bits.
- 3. The TXD2 pin is an N-channel open drain output. Nothing is assigned to the NCH bit in the U2C0 register. If necessary, set it to 0.
- 4. The values of bits 7 and 8 are undefined when character bit length is 7 bits. The values of bit 8 is undefined when character bit length is 8 bits.

Register	Bits	Function
	U0IRS	Select source of UART0 transmit interrupt.
	U1IRS	Select source of UART1 transmit interrupt.
	U0RRM	Set to 0.
	U1RRM	Set to 0.
UCON	CLKMD0	Invalid because CLKMD1 is 0
	CLKMD1	Set to 0.
	RCSP	Set to 1 to input $\overline{\text{CTSO}}$ signal of UART0 from the P6_4 pin.
	7	Set to 0.

Table 23.14 Registers Used and Settings in UART Mode (2/2) ⁽¹⁾

Note:

1. This table does not describe a procedure.

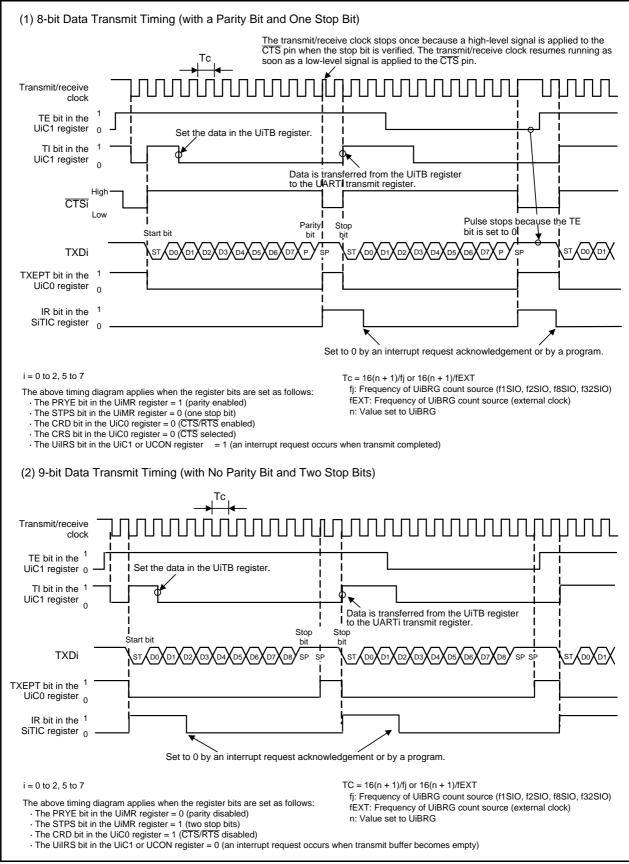


Figure 23.12 Transmit Timing in UART Mode

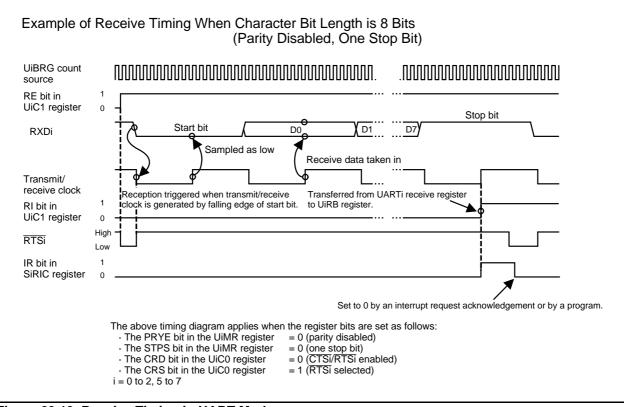


Figure 23.13 Receive Timing in UART Mode

23.3.2.1 Bit Rate

In UART mode, the frequency set by the UiBRG register (i = 0 to 2, 5 to 7) divided by 16 becomes the bit rate.

The setting value (n) of the UiBRG register is calculated by the following formula:

 $n = \frac{fj}{bitrate(bps) \times 16} - 1$ fj = f1SIO, f2SIO, f8SIO, f32SIO

n = 00h to FFh

Table 23.15 lists Example Bit Rates and Settings.

Bit Rate	Count Source	Peripheral Function	Clock f1: 16 MHz	Peripheral Function	Clock f1: 24 MHz
(bps)	of UiBRG	Set value of UiBRG: n	Bit rate (bps)	Set value of UiBRG: n	Bit rate (bps)
1200	f8SIO	103 (67h)	1202	155 (9Bh)	1202
2400	f8SIO	51 (33h)	2404	77 (4Dh)	2404
4800	f8SIO	25 (19h)	4808	38 (26h)	4808
9600	f1SIO	103 (67h)	9615	155 (9Bh)	9615
14400	f1SIO	68 (44h)	14493	103 (67h)	14423
19200	f1SIO	51 (33h)	19231	77 (4Dh)	19231
28800	f1SIO	34 (22h)	28571	51 (33h)	28846
31250	f1SIO	31 (1Fh)	31250	47 (2Fh)	31250
38400	f1SIO	25 (19h)	38462	38 (26h)	38462
51200	f1SIO	19 (13h)	50000	28 (1Ch)	51724

Table 23.15 Example Bit Rates and Settings ⁽¹⁾

23.3.2.2 Transmit/Receive Circuit Initialization

When the transmit/receive circuit needs to be initialized due to an interrupted transmission/reception, follow the procedures below.

- Initializing the UiRB register (i = 0 to 2, 5 to 7)
- (1) Set the RE bit in the UiC1 register to 0 (reception disabled).
- (2) Set the RE bit in the UiC1 register to 1 (reception enabled).
- Initializing the UiTB register
 - (1) Set bits SMD2 to SMD0 in the UiMR register to 000b (serial interface disabled).
 - (2) Reset bits SMD2 to SMD0 in the UiMR register to 001b, 101b, and 110b.
 - (3) Set 1 (transmission enabled), regardless of the set value to the TE bit in the UiC1 register.

23.3.2.3 LSB First/MSB First Select Function

As shown in Figure 23.14, the bit order can be selected by setting the UFORM bit in the UiC0 register. This function is enabled when the character bit length is 8 bits.

(1) UFO	RM bit in the UiC0 register = 0 (LSB first)
– CLKi	
– TXDi	ST / D0 / D1 / D2 / D3 / D4 / D5 / D6 / D7 / P / SP
– RXDi	ST / D0 / D1 / D2 / D3 / D4 / D5 / D6 / D7 / P / SP
(-)	
(2) UFO	RM bit in the UiC0 register = 1 (MSB first)
CLKi	
TXDi –	ST / D7 / D6 / D5 / D4 / D3 / D2 / D1 / D0 / P / SP
RXDi -	ST / D7 / D6 / D5 / D4 / D3 / D2 / D1 / D0 / P / SP
The ab • The recei • The • The	y bit

Figure 23.14 Bit Order

23.3.2.4 Serial Data Logic Switching Function

The logic of the data written to the UiTB register is reversed and then transmitted. Similarly, the reversed logic of the received data is read when the UiRB register is read. Figure 23.15 shows Serial Data Logic.

(1) UiLCH bit ir	n the UiC1 register = 0 (no reverse)
Transmit/ receive clock	
TXDi (no reverse)	High Low ST (D0) D1) D2) D3) D4) D5) D6) D7) P SP
(2) UiLCH bit ir	n the UiC1 register = 1 (reverse)
Transmit/ receive clock	
TXDi (reverse)	High Low ST (D0) D1) D2 (D3) D4 (D5) D6 (D7) P SP
ST : Start P : Parity SP : Stop I i = 0 to 2, 5	/ bit bit
- The Ck the trai - The UF - The ST - The PF	e diagram assumes the following: KPOL bit in the UiC0 register is 0 (transmit data output at the falling edge of nsmit/receive clock). FORM bit in the UiC0 register is 0 (LSB first). FOS bit in the UiMR register is 0 (one stop bit). RYE bit in the UiMR register is 1 (parity enabled). POL bit in the UiMR register is 0 (TXD, RXD I/O not reversed).

Figure 23.15 Serial Data Logic

23.3.2.5 TXD and RXD I/O Polarity Reverse Function

This function reverses the polarities of the TXDi pin output and RXDi pin input. The logic levels of all input/output data (including bits for start, stop, and parity) are reversed. Figure 23.16 shows TXD and RXD I/O Polarity Reversal.

Transmit/receive clock	
TXDi (no reverse)	High ST (D0 (D1) D2 (D3) D4 (D5) D6 (D7) P) SP
RXDi (no reverse)	High
(2) IOPOL bit in the	ne UiMR register = 1 (reverse)
Transmit/receive clock	
TXDi (reverse)	High Low ST (D0) D1) D2) D3 (D4) D5 (D6) D7 (P) SP
RXDi (reverse)	High Low ST (D0) D1 (D2) D3 (D4) D5 (D6) D7 (P) SP
ST: Start bit P :Parity bit	
SP: Stop bit i = 0 to 2, 5 to 7	
	am assumes the following:
	<i>I</i> bit in the UiC0 register is 0 (LSB first). bit in the UiMR register is 0 (one stop bit).
- The PRYE	bit in the UiMR register is 1 (parity enabled). bit in the UiC1 register is 0 (serial data logic not reversed).

Figure 23.16 TXD and RXD I/O Polarity Reversal

23.3.2.6 CTS/RTS Function

The $\overline{\text{CTS}}$ function is used to start transmit operation when a low-level signal is applied to the $\overline{\text{CTSi}/\text{RTSi}}$ (i = 0 to 2, 5 to 7) pin. Transmit operation begins when input to the $\overline{\text{CTSi}/\text{RTSi}}$ pin becomes low. If the low-level signal is switched to high during a transmit operation, the operation stops after the ongoing transmit/receive operation is completed.

When the RTS function is used, the CTSi/RTSi pin outputs a low-level signal when the MCU is ready to receive. The output level becomes high when a start bit is detected.

See Table 23.11 "I/O Pin Functions in UART Mode".

23.3.2.7 CTS/RTS Separate Function (UART0)

This function separates $\overline{\text{CTS0}}$ and $\overline{\text{RTS0}}$, outputs $\overline{\text{RTS0}}$ from the P6_0 pin, and inputs $\overline{\text{CTS0}}$ from the P6_4 pin. To use this function, set the register bits as shown below.

- The CRD bit in the U0C0 register= 0 (enable CTS/RTS of UART0)
- The CRS bit in the U0C0 register= 1 (output TTS of UART0)
- The CRD bit in the U1C0 register= 0 (enable CTS/RTS of UART1)
- The CRS bit in the U1C0 register= 0 (input $\overline{\text{CTS}}$ of UART1)
- The RCSP bit in the UCON register= 1 (inputs $\overline{\text{CTS0}}$ from the P6_4 pin)
- The CLKMD1 bit in the UCON register= 0 (CLKS1 not used)

Note that when using the CTS/RTS separate function, CTS/RTS function of UART1 cannot be used.

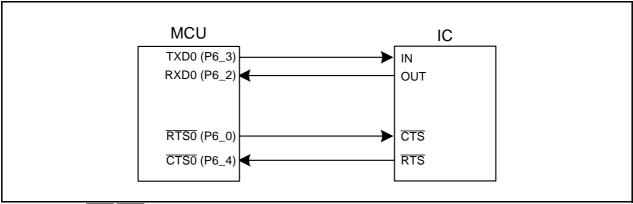


Figure 23.17 CTS/RTS Separate Function

23.3.3 Special Mode 1 (I²C Mode)

I²C mode supports the simplified I²C interface. Table 23.16 lists the specifications of I²C mode. Table 23.18 and Table 23.19 list the registers used in I²C mode and the register settings. Table 23.20 lists the I²C Mode Specifications. Figure 23.18 shows I²C Mode Block Diagram.

As shown in Table 23.20, the MCU is placed in I²C mode by setting bits SMD2 to SMD0 in the UiMR register to 010b and the IICM bit in the UiSMR register to 1. Because SDAi transmit output includes a delay circuit, SDAi output changes states after SCLi becomes low and remains stable.

Item	Specification			
Data format	Character bit length: 8 bits			
	 Master mode CKDIR bit in the UiMR register = 0 (internal clock): 			
Transmit/receive clock	$\frac{fj}{2(n+1)}$ fj = f1SIO, f2SIO, f8SIO, f32SIO			
	n = setting value of the UiBRG register 00h to FFh			
	 Slave mode CKDIR bit = 1 (external clock): Input from the SCLi pin 			
Transmission start	To start transmission, satisfy the following requirements. ⁽¹⁾			
conditions	 The TE bit in the UiC1 register = 1 (transmission enabled) 			
	 The TI bit in the UiC1 register = 0 (data present in UiTB register) 			
	To start reception, satisfy the following requirements. ⁽¹⁾			
Reception start conditions	 The RE bit in the UiC1 register = 1 (reception enabled) 			
	 The TE bit in the UiC1 register = 1 (transmission enabled) 			
	 The TI bit in the UiC1 register = 0 (data present in the UiTB register) 			
	Transmission interrupt			
	 Acknowledge undetected or transmit 			
Interrupt request generation timing	Reception interrupt			
	Acknowledge undetected or receive			
	Start/stop condition detect interrupt			
	Start or stop condition detected			
	Overrun error ⁽²⁾			
Error detection	This error occurs if the serial interface starts receiving the next unit of data			
	before reading the UiRB register and receives the eighth bit of the unit of next data.			
	Arbitration lost			
	Timing that the ABT bit in the UiRB register is updated can be selected.			
	SDAi digital delay			
Selectable functions	No digital delay or a delay of 2 to 8 UiBRG count source clock cycles can			
	be selected.			
	Clock phase setting			
	With or without clock delay can be selected.			
i = 0 to 2 E to 7	· · · · · · · · · · · · · · · · · · ·			

Table 23.16 I²C Mode Specifications

i = 0 to 2, 5 to 7

Notes:

- 1. When an external clock is selected, the conditions must be met while the external clock is in the high state.
- 2. If an overrun error occurs, the received data of the UiRB register will be undefined.

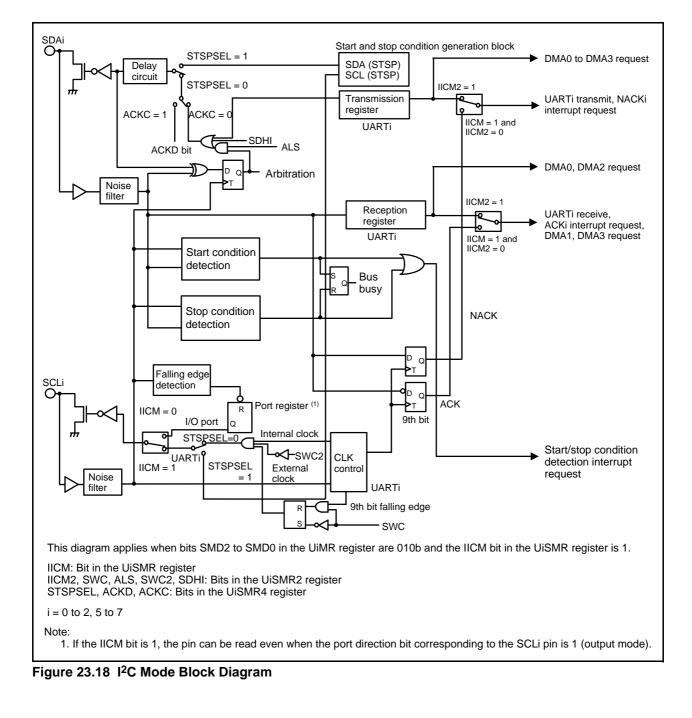


Table 23.17 I/O Pin Functions in I²C Mode

Pin Name I/O		Function	
SCLi ⁽¹⁾ Input/output		Clock input or output	
SDAi ⁽¹⁾ Input/output		Data input or output	

i = 0 to 2, 5 to 7

Note:

1. Pins CLKi and CTSi/RTSi are not used (they can be used as I/O ports).

Pogiator	Bits	Function		
Register	DIIS	Master	Slave	
PCLKR	PCLK1	Select the count source for the UiBRG register.	Select the count source for the UiBRG register.	
	0 to 7	Set transmission data.	Set transmission data.	
UiTB	8	- (does not need to be set)	- (does not need to be set)	
	0 to 7	Reception data can be read.	Reception data can be read.	
	8	ACK or NACK is set in this bit.	ACK or NACK is set in this bit.	
UiRB	ABT	Arbitration lost detection flag	Disabled	
Γ	OER	Overrun error flag	Overrun error flag	
13 to 15		When read, the read value is undefined.	When read, the read value is undefined.	
UiBRG	0 to 7	Set a bit rate.	Disabled	
	SMD2 to SMD0	Set to 010b.	Set to 010b.	
UiMR	CKDIR	Set to 0.	Set to 1.	
	4 to 6	Set to 0.	Set to 0.	
	IOPOL	Set to 0.	Set to 0.	
UiC0	CLK1, CLK0	Select the count source for the UiBRG register.	Disabled	
	CRS	Disabled because CRD is 1	Disabled because CRD is 1	
	TXEPT	Transmit register empty flag	Transmit register empty flag	
	CRD (3)	Set to 1.	Set to 1.	
	NCH	Set to 1. ⁽²⁾	Set to 1. ⁽²⁾	
	CKPOL	Set to 0.	Set to 0.	
	UFORM	Set to 1.	Set to 1.	
	TE	Set to 1 to enable transmission.	Set to 1 to enable transmission.	
UiC1	TI	Transmit buffer empty flag	Transmit buffer empty flag	
	RE	Set to 1 to enable reception.	Set to 1 to enable reception.	
	RI	Reception complete flag	Reception complete flag	
	UjIRS	Set to 1.	Set to 1.	
	UjRRM, UiLCH, UiERE	Set to 0.	Set to 0.	
	IICM	Set to 1.	Set to 1.	
UiSMR	ABC	Select the timing that arbitration lost is detected.	Disabled	
	BBS	Bus busy flag	Bus busy flag	
-	3 to 7	Set to 0.	Set to 0.	

Table 23.18 Registers Used and Settings in I²C Mode (1/2) ⁽¹⁾

Notes:

1. This table does not describe a procedure.

2. The TXD2 pin is N-channel open drain output. Nothing is assigned to the NCH bit in the U2C0 register. If necessary, set it to 0.

3. When using UART1 in I²C mode, to enable the CTS/RTS separate function of UART0, set the CRD bit in the U1C0 register to 0 (CTS/RTS enabled) and the CRS bit to 0 (CTS input).

Degister	Dito	Fu	Function		
Register Bits		Master	Slave		
IICM2		See Table 23.20 "I ² C Mode Functions".	See Table 23.20 "I ² C Mode Functions".		
	CSC	Set to 1 to enable clock synchronization.	Set to 0.		
UiSMR2	SWC	Set to 1 to fix SCLi output to low at the falling edge of the ninth bit of clock.	Set to 1 to fix SCLi output to low at the falling edge of the ninth bit of clock.		
	ALS	Set to 1 to stop SDAi output when arbitration lost is detected.	Set to 0.		
	STAC	Set to 0.	Set to 1 to initialize UARTi at start condition detection.		
	SWC2	Set to 1 to forcibly pull SCLi output low.	Set to 1 to forcibly pull SCLi output low.		
SDHI		Set to 1 to disable SDAi output.	Set to 1 to disable SDAi output.		
	7	Set to 0.	Set to 0.		
	0, 2, 4 NODC	Set to 0.	Set to 0.		
UiSMR3	СКРН	See Table 23.20 "I ² C Mode Functions".	See Table 23.20 "I ² C Mode Functions".		
	DL2 to DL0	Set the amount of SDAi digital delay.	Set the amount of SDAi digital delay.		
	STAREQ	Set to 1 to generate start condition.	Set to 0.		
	RSTAREQ	Set to 1 to generate restart condition.	Set to 0.		
	STPREQ	Set to 1 to generate stop condition.	Set to 0.		
	STSPSEL	Set to 1 to output each condition.	Set to 0.		
UiSMR4	ACKD	Select ACK or NACK.	Select ACK or NACK.		
	ACKC	Set to 1 to output ACK data.	Set to 1 to output ACK data.		
	SCLHI	Set to 1 to stop SCLi output when stop condition is detected.	Set to 0.		
	SWC9	Set to 0.	Set to 1 to set the SCLi to remain low at the falling edge of the ninth bit of clock.		
	U0IRS	Set to 1.	Set to 1.		
	U1IRS	Set to 1.	Set to 1.		
	U0RRM	Set to 0.	Set to 0.		
UCON	U1RRM	Set to 0.	Set to 0.		
UCUN	CLKMD0	Set to 0.	Set to 0.		
	CLKMD1	Set to 0.	Set to 0.		
	RCSP	Set to 0.	Set to 0.		
	7	Set to 0.	Set to 0.		

Table 23.13 Neulsiels Used and Sellings in FC Node (Z/Z) \sim	Table 23.19	Registers Used and Settings in I ² C Mode (2/2) ⁽¹⁾
---	-------------	---

i = 0 to 2, 5 to 7 j = 2, 5 to 7

Note:

1. This table does not describe a procedure.

In I²C mode, functions and timings vary depending on the combination of the IICM2 bit in the UiSMR2 register and CKPH bit in the UiSMR3 register. Figure 23.19 shows Transfer to UiRB Register and Interrupt Timing. See Figure 23.19 for the timing of transferring to the UiRB register, the bit position of the data stored in the UiRB register, types of interrupts, interrupt requests, and DMA request generation timing.

Table 23.20 "I²C Mode Functions" lists comparison of other functions in clock synchronous serial I/O mode with I²C mode.

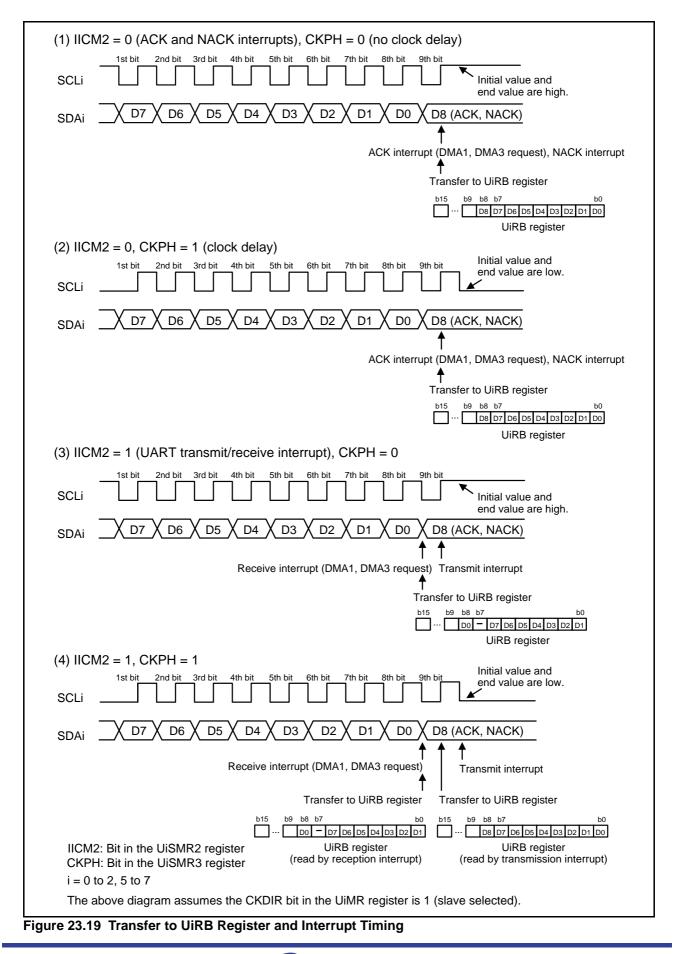

		$I^{2}C$ Mode (SMD2 to SMD0 = 010b, IICM = 1)			
	Clock Synchronous Serial	D2 to SMD0 (NACK/ACK Interrupt) (= 0) CKPH = 0 CKPH = 1 C		IICM2 = 1	
Function	I/O Mode (SMD2 to SMD0			(UART Transmit/Receive Interrupt)	
	= 001b, IICM = 0)			CKPH = 0 (No clock delay)	CKPH = 1 (Clock delay)
Start and stop condition detect interrupts	-	Start condition detection or stop condition det (See Figure 23.21 "STSPSEL Bit Functions")			
Transmission, NACK interrupt ⁽²⁾	UARTi transmission Transmission started or completed (selected by UiIRS)	No acknowledgment detection (NACK) Rising edge of SCLi 9th bit		UARTi transmission Rising edge of SCLi 9th bit	UARTi transmission Falling edge of SCLi next to the 9th bit
Reception, ACK interrupt ⁽²⁾	UARTi reception When 8th bit received CKPOL = 0 (rising edge) CKPOL = 1 (falling edge)	Acknowledgment detection (ACK) Rising edge of SCLi 9th bit		UARTi reception Falling edge of SCLi 9th bit	
Timing for transferring data from UART reception shift register to UiRB register	CKPOL = 0 (rising edge) CKPOL = 1 (falling edge)	Rising edge of SCLi 9th bit		Falling edge of SCLi 9th bit	Falling and rising edges of SCLi 9th bit
UARTi transmission output delay	Not delayed	Delayed			
Noise filter width	15 ns	200 ns			
Read RXDi and SCLi pin levels	Possible when the corresponding port direction bit = 0	Always possible no matter how the correspor		nding port direction bit is set	
Initial value of TXDi and SDAi outputs	CKPOL = 0 (high) CKPOL = 1 (low)	The value set in the port register before settir		ting I ² C mode ⁽¹⁾	
Initial and end values of SCLi	-	High Low		High	Low
DMA1, DMA3 Factor (2)	UARTi reception	Acknowledgment detection (ACK)		UARTi reception Falling edge of SCLi 9th bit	
Read received data	1st to 8th bits of the received data are stored in bits 0 to 7 in the UiRB register.	1st to 8th bits of the received data are stored in bits 7 to 0 in the UiRB register.		1st to 7th bits of the received data are stored in bits 6 to 0 in the UiRB register. 8th bit is stored into bit 8 in the UiRB register.	When reading by reception interrupt, 1st to 7th bits of the received data are stored in bits 6 to 0 in the UiRB register. 8th bit is stored to bit 8 in the UiRB register. When reading by transmission interrupt, 1st to 8th bits are stored to bits 7 to 0 in the UiRB register.

Table 23.20	I ² C Mode Functions
-------------	---------------------------------

i = 0 to 2, 5 to 7

SMD2 to SMD0: Bits in the UiMR register CKPOL: Bit in the UiC0 register IICM: Bit in the UiSMR register IICM2: Bit in the UiSMR2 register CKPH: Bit in the UiSMR3 register Notes:

- 1. Set the initial value of SDAi output while bits SMD2 to SMD0 in the UiMR register are 000b (serial interface disabled).
- 2. See Figure 23.19 "Transfer to UiRB Register and Interrupt Timing".

23.3.3.1 Detecting Start and Stop Conditions

This function determines whether a start or stop condition has been detected.

A start condition detect interrupt request is generated when the SDAi pin changes state from high to low while the SCLi pin is in a high state. A stop condition detect interrupt request is generated when the SDAi pin changes state from low to high while the SCLi pin is in a high state.

Because the start and stop condition detect interrupts share an interrupt control register and vector, check the BBS bit in the UiSMR register to determine which interrupt source is requesting the interrupt.

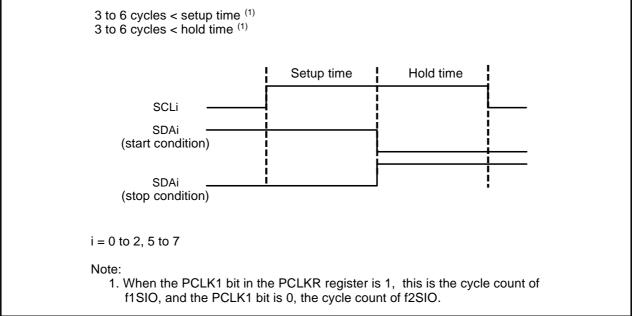


Figure 23.20 Detecting Start and Stop Conditions

23.3.3.2 Outputting Start and Stop Conditions

A start condition is generated by setting the STAREQ bit in the UiSMR4 register (i = 0 to 2, 5 to 7) to 1 (start).

A restart condition is generated by setting the RSTAREQ bit in the UiSMR4 register to 1 (start).

A stop condition is generated by setting the STPREQ bit in the UiSMR4 register to 1 (start). The output procedure is as follows:

- (1) Set the STAREQ bit, RSTAREQ bit, or STPREQ bit to 1 (start).
- (2) Set the STSPSEL bit in the UiSMR4 register to 1 (output).

The functions of the STSPSEL bit are shown in Table 23.21 and Figure 23.21.

Table 23.21 S	TSPSEL Bit Functions
---------------	-----------------------------

Function STSPSEL = 0		STSPSEL = 1	
Output of pins SCLi and SDAi	Output of transmit/receive clock and data Output of start/stop condition is accomplished by a program using ports (not automatically generated in hardware).	Output of a start/stop condition according to bits STAREQ, RSTAREQ, and STPREQ	
Start/stop conditioninterrupt requestgeneration timing		Completion of start/stop condition generation	

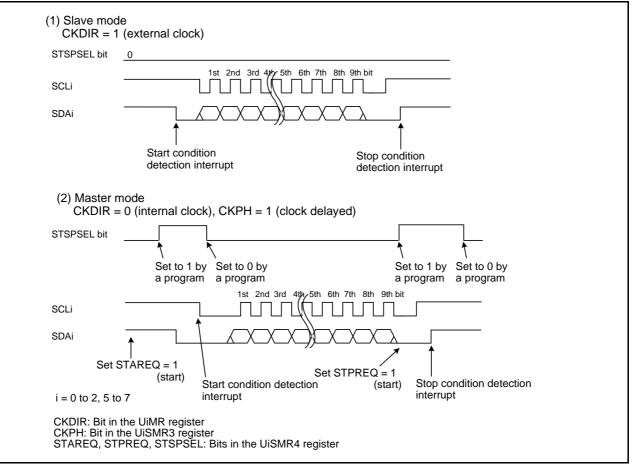


Figure 23.21 STSPSEL Bit Functions

23.3.3.3 Arbitration

Unmatching of the transmit data and SDAi pin input data is checked in synchronization with the rising edge of SCLi. Use the ABC bit in the UiSMR register to select the point at which the ABT bit in the UiRB register is updated. If the ABC bit is 0 (update every bit), the ABT bit becomes 1 (unmatching detected) at the same time unmatching is detected during check, and becomes 0 (undetected) when not detected. When setting the ABC bit to 1, if unmatching is ever detected, the ABT bit becomes 1 at the falling edge of the clock pulse of the ninth bit. If the ABT bit needs to be updated every byte, set the ABT bit to 0 after detecting an acknowledge for the first byte, and before transmitting/receiving the next byte.

Setting the ALS bit in the UiSMR2 register to 1 (SDA output stop enabled) causes an arbitration-lost to occur, in which case the SDAi pin becomes high-impedance at the same time the ABT bit becomes

1.

23.3.3.4 Transmit/Receive Clock

The transmit/receive clock is used to transmit/receive data as is shown in Figure 23.19.

The CSC bit in the UiSMR2 register is used to synchronize an internally generated clock (internal SCLi) and an external clock supplied to the SCLi pin. When setting the CSC bit to 1 (clock synchronization enabled), if a falling edge on the SCLi pin is detected while the internal SCLi is high, the internal SCLi goes low, at which time the value of the UiBRG register is reloaded with and starts counting the low-level intervals. If the internal SCLi changes from low to high while the SCLi pin is low, counting stops, and when the SCLi pin goes high, counting restarts.

In this way, the UARTi transmit/receive clock is equivalent to AND of the internal SCLi and the clock signal applied to the SCLi pin. The transmit/receive clock works from a half cycle before the falling edge of the internal SCLi first bit to the rising edge of the ninth bit. To use this function, select an internal clock for the transmit/receive clock.

The SWC bit in the UiSMR2 register determines whether the SCLi pin is fixed low or released from low-level output at the falling edge of the ninth clock pulse.

When setting the SCLHI bit in the UiSMR4 register to 1 (enabled), SCLi output is turned off (becomes high-impedance) when a stop condition is detected.

When the SWC2 bit in the UiSMR2 register is set to 1 (low output), a low-level signal can be forcibly output from the SCLi pin even while transmitting or receiving data. When setting the SWC2 bit to 0 (transmit/receive clock), a low-level signal output from the SCLi pin is cancelled, and the transmit/receive clock is input and output.

If the SWC9 bit in the UiSMR4 register is set to 1 (SCL hold low enabled) when the CKPH bit in the UiSMR3 register is 1, the SCLi pin is fixed low at the falling edge of the clock pulse next to the ninth. Setting the SWC9 bit to 0 (SCL hold low disabled) frees the SCLi pin from low-level output.

23.3.3.5 SDA Output

The values written to bits 7 to 0 (D7 to D0) in the UiTB register are output in descending order from D7. The ninth bit (D8) is ACK or NACK.

Set the initial value of SDAi transmit output when IICM bit in the UiSMR register is 1 (I²C mode) and bits SMD2 to SMD0 in the UiMR register are 000b (serial interface disabled).

Bits DL2 to DL0 in the UiSMR3 register allow the addition of no delays or a delay of 1 to 8 UiBRG count source clock cycles to the SDAi output.

Setting the SDHI bit in the UiSMR2 register to 1 (SDA output disabled) forces the SDAi pin to become high-impedance. Do not write to the SDHI bit at the rising edge of the UARTi transmit/receive clock as the ABT bit in the UiRB register may inadvertently become 1 (detected).

23.3.3.6 SDA Input

When the IICM2 bit in the UiSMR2 register is 0, the first to eighth bits (D7 to D0) of received data are stored in bits 7 to 0 in the UiRB register. The ninth bit (D8) is ACK or NACK.

When the IICM2 bit is 1, the first to seventh bits (D7 to D1) of received data are stored in bits 6 to 0 in the UiRB register and the eighth bit (D0) is stored in bit 8 in the UiRB register. Even when the IICM2 bit is 1, the same data as when the IICM2 bit is 0 can be read, provided the CKPH bit in the UiSMR3 register is 1. To read the data, read the UiRB register after the rising edge of ninth bit of the clock.

23.3.3.7 ACK and NACK

If the STSPSEL bit in the UiSMR4 register is set to 0 (start and stop conditions not generated) and the ACKC bit in the UiSMR4 register is set to 1 (ACK data output), the value of the ACKD bit in the UiSMR4 register is output from the SDAi pin.

If the IICM2 bit in the UiSMR2 register is 0, a NACK interrupt request is generated if the SDAi pin remains high at the rising edge of the ninth bit of transmit clock pulse. An ACK interrupt request is generated if the SDAi pin is low at the rising edge of the ninth bit of the transmit clock.

If ACKi is selected to generate a DMA1 or DMA3 request source, a DMA transfer can be activated by detecting an acknowledge.

23.3.3.8 Initialization of Transmission/Reception

If a start condition is detected while the STAC bit in the UiSMR2 register is 1 (UARTi initialization enabled), the serial interface operates as described below.

- The transmit shift register is initialized, and the contents of the UiTB register are transferred to the transmit shift register. In this way, the serial interface starts sending data when the next clock pulse is applied. However, the UARTi output value does not change state and remains the same as when a start condition was detected until the first bit of data is output in synchronization with the input clock.
- The receive shift register is initialized, and the serial interface starts receiving data when the next clock pulse is applied.
- The SWC bit in the UiSMR2 register becomes 1 (SCL wait output enabled). Consequently, the SCLi pin is pulled low at the falling edge of the ninth clock pulse.

Note that when UARTi transmission/reception is started using this function, the TI bit in the UiC1 register does not change state. Select the external clock as the transmit/receive clock to start UARTi transmission/reception with this setting.

23.3.4 Special Mode 2

Special mode 2 supports serial communication between one or multiple master devices and multiple slaves devices. The transmit/receive clock polarity and phase are selectable. Table 23.22 lists the Special Mode 2 Specifications.

Item	Specification		
Data format	Character data length: 8 bits		
Transmit/receive clock	 Master mode The CKDIR bit in the UiMR register = 0 (internal clock): ^{fj}/_{2(n + 1)} fj = f1SIO, f2SIO, f8SIO, f32SIO n: Setting value of UiBRG register 00h to FFh Slave mode The CKDIR bit = 1 (external clock selected): Input from the CLKi pin 		
Transmit/receive control	Controlled by I/O ports		
Transmission start Conditions	To start transmission, satisfy the following requirements. (1)• The TE bit in the UiC1 register= 1 (transmission enabled)• The TI bit in the UiC1 register= 0 (data present in UiTB register)		
Reception start Conditions	To start reception, satisfy the following requirements. (1)• The RE bit in the UiC1 register= 1 (reception enabled)• The TE bit= 1 (transmission enabled)• The TI bit= 0 (data present in the UiTB register)		
Interrupt request generation timing	 Transmit interrupt: One of the following can be selected. The UiIRS bit in the UiC1 or UCON register = 0 (transmit buffer empty): When transferring data from the UiTB register to the UARTi transmit register (at start of transmission) The UiIRS bit =1 (transmission completed): When the serial interface completed sending data from the UARTi transmit register Receive interrupt: When transferring data from the UARTi receive register to the UiRB register (at completion of reception) 		
Error detection	Overrun error ⁽²⁾ This error occurs if the serial interface starts receiving the next unit of data before reading the UiRB register and receives the 7th bit of the next unit of data.		
Selectable functions	 CLK polarity selection Data input/output can be chosen to occur synchronously with the rising or the fall edge of the transmit/receive clock. LSB first, MSB first selection Whether to start sending/receiving data beginning with bit 0 or beginning with bit can be selected. Continuous receive mode selection Reception is enabled immediately by reading the UiRB register. Switching serial data logic This function reverses the logic value of the transmit/receive data. Clock phase setting Selectable from four combinations of transmit/receive clock polarities and phase		

Table 23.22 Special Mode 2 Specifications

i = 0 to 2, 5 to 7

Notes:

- 1. When an external clock is selected, either of the following conditions must be met. If the CKPOL bit in the UiC0 register is 0 (transmit data output at the falling edge and the receive data taken in at the rising edge of the transmit/receive clock), the external clock is in high state; if the CKPOL bit is 1 (transmit data output at the rising edge and the receive data taken in at the falling edge of the transmit/receive clock), the external clock is in high state; if the transmit/receive clock), the external clock is in high state; if the transmit/receive clock), the external clock is in low state.
- 2. If an overrun error occurs, the received data of the UiRB register will be undefined. The IR bit in the SiRIC register remains unchanged.

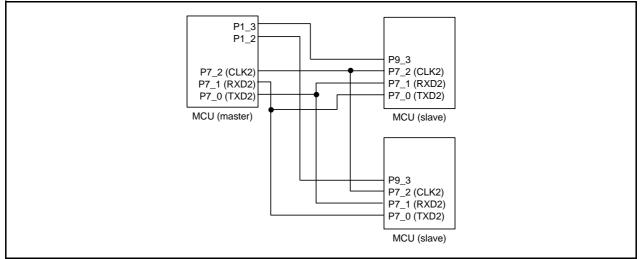


Figure 23.22 Serial Bus Communication Control Example (UART2)

Table 23.23	I/O Pin	Functions in	Special	Mode 2
-------------	---------	---------------------	---------	--------

Pin Name	I/O	Function	Method of Selection
CLKi	Output	Clock output	The CKDIR bit in the UiMR register = 0
	Input	Clock input	The CKDIR bit in the UiMR register = 1
			Set the port direction bits sharing pins to 0.
TXDi	Output	Serial data output (Dummy data is output when performing reception only.)	
RXDi	Input	Serial data input	Set the port direction bits sharing pins to 0.
	Input	Input port	Set the port direction bits sharing pins to 0. (can be used as
			an input port only when transmitting)

i = 0 to 2, 5 to 7

Pins CLKi and CTSi/RTSi are not used. (They can be used as I/O ports.)

Register	Bits	Function		
PCLKR	PCLK1	Select the count source for the UiBRG register.		
	0 to 7	Set transmission data.		
UiTB	8	- (does not need to be set) If necessary, set to 0.		
	0 to 7	Reception data can be read.		
UiRB	OER	Overrun error flag		
	8, 11, 13 to 15	When read, the read value is undefined.		
UiBRG	0 to 7	Set bit rate.		
UiMR	SMD2 to SMD0	Set to 001b.		
	CKDIR	Set to 0 in master mode or 1 in slave mode.		
UIWR	4 to 6	Set to 0.		
	IOPOL	Set to 0.		
	CLK0, CLK1	Select the count source for the UiBRG register.		
UiC0	CRS	Disabled because CRD is 1		
	TXEPT	Transmit register empty flag		
	CRD	Set to 1.		
	NCH	Select TXDi pin output format. ⁽²⁾		
		Clock phases can be set in combination with the CKPH bit in the		
	CKPOL	UiSMR3 register.		
	UFORM	Select the LSB first or MSB first.		
	TE	Set to 1 to enable transmission/reception.		
	TI	Transmit buffer empty flag		
	RE	Set to 1 to enable reception.		
	RI	Reception complete flag		
UiC1	UjIRS	Select UARTj transmit interrupt source.		
	UjRRM	Set to 1 to use continuous receive mode.		
	UiLCH	Set to 1 to use inverted data logic.		
	UiERE	Set to 0.		
UiSMR	0 to 7	Set to 0.		
UiSMR2	0 to 7	Set to 0.		
	СКРН	Clock phases can be set in combination with the CKPOL bit in the		
	СКРП	UiC0 register.		
UiSMR3	NODC	Set to 0.		
	0, 2, 4 to 7	Set to 0.		
UiSMR4	0 to 7	Set to 0.		
	U0IRS	Select UART0 transmit interrupt source.		
	U1IRS	Select UART1 transmit interrupt source.		
UCON	U0RRM	Set to 1 to use continuous receive mode.		
	U1RRM	Set to 1 to use continuous receive mode.		
	CLKMD0	Disabled because CLKMD1 is 0		
	CLKMD1, RCSP, 7	Set to 0.		

Table 23.24 Registers Used and Settings in Special Mode 2 (1)

i = 0 to 2, 5 to 7 j = 2, 5 to 7

Notes:

- 1. This table does not describe a procedure.
- 2. The TXD2 pin is N-channel open drain output. Nothing is assigned to the NCH bit in the U2C0 register. Only write 0 to this bit.

23.3.4.1 Clock Phase Setting Function

One of four combinations of transmit/receive clock phases and polarities can be selected using the CKPH bit in the UiSMR3 register and the CKPOL bit in the UiC0 register.

Make sure the transmit/receive clock polarity and phase are the same for the master and salve devices to be used for communication.

Figure 23.23 shows the Transmit/Receive Timing in Master Mode (Internal Clock).

Figure 23.24 shows the Transmit/Receive Timing (CKPH = 0) in Slave Mode (External Clock) while Figure 23.25 shows the Transmit/Receive Timing (CKPH = 1) in Slave Mode (External Clock).

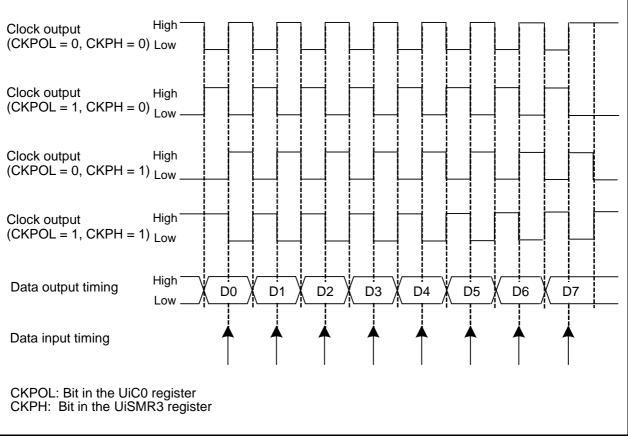


Figure 23.23 Transmit/Receive Timing in Master Mode (Internal Clock)

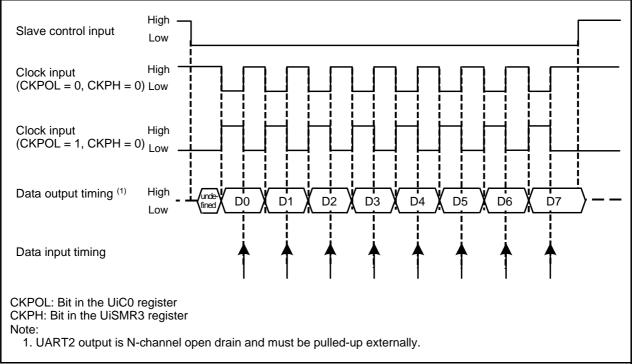


Figure 23.24 Transmit/Receive Timing (CKPH = 0) in Slave Mode (External Clock)

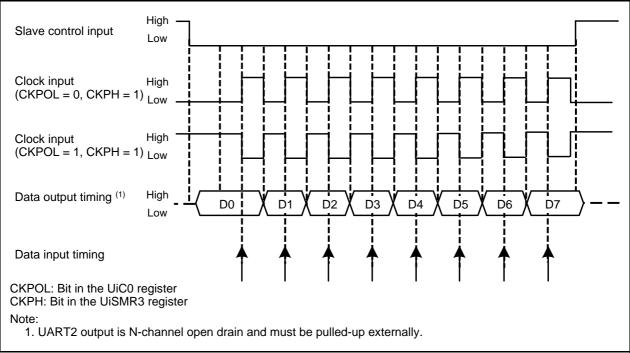


Figure 23.25 Transmit/Receive Timing (CKPH = 1) in Slave Mode (External Clock)

23.3.5 Special Mode 3 (IE Mode)

In this mode, 1 bit of IEBus is approximated by 1 byte of UART mode waveform.

Table 23.25 lists the Registers Used and Settings in IE Mode ⁽¹⁾. Figure 23.26 shows the Bus Collision Detect Function-Related Bits.

If the TXDi pin (i = 0 to 2, 5 to 7) output level and RXDi pin input level do not match, a UARTi bus collision detect interrupt request is generated.

Use bits IFSR26 and IFSR27 in the IFSR2A register to enable the UART0/UART1 bus collision detect function.

Register	Bits	Function	
UiTB	0 to 8	Set transmission data.	
UiRB ⁽⁴⁾	0 to 8	Reception data can be read.	
	OER, FER, PER, SUM	Error flag	
UiBRG	0 to 7	Set bit rate.	
UiMR	SMD2 to SMD0	Set to 110b.	
	CKDIR	Select internal clock or external clock.	
	STPS	Set to 0.	
	PRY	Disabled because PRYE is 0	
	PRYE	Set to 0.	
	IOPOL	Select the TXD and RXD input/output polarity.	
	CLK1, CLK0	Select the count source for the UiBRG register.	
	CRS	Disabled because CRD is 1	
	TXEPT	Transmit register empty flag	
UiC0	CRD	Set to 1.	
	NCH	Select TXDi pin output format. (3)	
	CKPOL	Set to 0.	
	UFORM	Set to 0.	
	TE	Set to 1 to enable transmission.	
	TI	Transmit buffer empty flag	
UiC1	RE	Set to 1 to enable reception.	
UICT	RI	Reception complete flag	
	UjIRS ⁽²⁾	Select the source of UARTj transmit interrupt.	
	UjRRM ⁽²⁾ , UiLCH, UiERE	Set to 0.	
	0 to 3, 7	Set to 0.	
	ABSCS	Select the sampling timing to detect a bus collision.	
UiSMR -	ACSE	Set to 1 to use the auto clear function of transmit enable bit.	
	SSS	Select the transmit start condition.	
UiSMR2	0 to 7	Set to 0.	
UiSMR3	0 to 7	Set to 0.	
UiSMR4	0 to 7	Set to 0.	
	U0IRS, U1IRS	Select the source of UART0/UART1 transmit interrupt.	
UCON	U0RRM, U1RRM	Set to 0.	
	CLKMD0	Disabled because CLKMD1 is 0	
	CLKMD1, RCSP, 7	Set to 0.	

Table 23.25 Registers Used and Settings in IE Mode (1)

i = 0 to 2, 5 to 7

Notes:

- 1. This table does not describe a procedure.
- 2. Set bits 4 and 5 in registers U0C1 and U1C1 to 0. Bits U0IRS, U1IRS, U0RRM, and U1RRM are in the UCON register.
- 3. The TXD2 pin is N-channel open drain output. Nothing is assigned to the NCH bit in the U2C0 register. If necessary, set it to 0.
- 4. Set the bits not listed above to 0 when writing to registers in IE mode.

(1) ABSCS bit in UiSMR register (bus collision detect sampling clock select) (i = 0 to 2, 5 to 7)
When ABSCS is 0, bus collision is determined at the rising edge of the transmit/receive clock.
Transmit/receive clock ST D0 D1 D2 D3 D4 D5 D6 D7 D8 SP
TXDi
RXDi
Timer Aj
When ABSCS is 1, bus collision is determined when timer Aj (one-shot timer mode) underflows.
Timer Aj: Timer A3 in UART0; timer A4 in UART1; timer A0 in UART2 timer A0 in UART5; timer A3 in UART6; timer A4 in UART7
(2) ACSE bit in UiSMR register (auto clear of transmit enable bit)
Transmit/receive clock
TXDiST D0 D1 D2 D3 D4 D5 D6 D7 D8 SP
RXDi
IR bit in registers UiBCNIC and BCNIC
TE bit in the UiC1 (transmission disabled) when the IR bit in the UiBCNIC register is 1 (unmatching detected).
(3) SSS bit in the UiSMR register (transmit start condition select) When the SSS bit is 0, the serial interface starts sending data one transmit/receive clock cycle after the transmission
start condition is met. Transmit/receive clock
ST D0 D1 D2 D3 D4 D5 D6 D7 D8 SP
TXDi
Transmit enable conditions are met.
When the SSS bit is 1, the serial interface starts sending data at the rising edge of RXDi. $^{(1)}$
TXDi (2)
RXDi
Notes: 1. The falling edge of RXDi when the IOPOL bit in the UiMR register is 0; the rising edge of RXDi when the IOPOL bit is 1. 2. The transmit conditions must be met before the falling edge of RXD.
The above diagram applies when IOPOL is 1 (reversed). $i = 0$ to 2, 5 to 7
Figure 23.26 Bus Collision Detect Function-Related Bits

23.3.6 Special Mode 4 (SIM Mode) (UART2)

SIM interface devices can communicate in UART mode. Both direct and inverse formats are available. The TXD2 pin outputs a low-level signal when a parity error is detected. Table 23.26 lists the SIM Mode Specifications. Table 23.27 lists the Registers Used and Settings in

Item	Specification
Data formats	Direct format
Data IOIMAIS	Inverse format
	• The CKDIR bit in the U2MR register = 0 (internal clock): fi/(16(n + 1))
	fi = f1SIO, f2SIO, f8SIO, f32SIO
Transmit/receive clock	n = Setting value of the U2BRG register 00h to FFh
	• The CKDIR bit = 1 (external clock): fEXT/(16(n + 1))
	fEXT = input from the CLK2 pin
	n = Setting value of the U2BRG register 00h to FFh
Transmission start	To start transmission, satisfy the following requirements.
conditions	• The TE bit in the U2C1 register = 1 (transmission enabled)
	• The TI bit in the U2C1 register = 0 (data present in the U2TB register)
Depention start	To start reception, satisfy the following requirements.
Reception start conditions	 The RE bit in the U2C1 register = 1 (reception enabled)
conditions	Start bit detection
	• Transmission
	When the serial interface completed sending data from the UART2 transmit
Interrupt request	register (the U2IRS bit =1)
generation timing ⁽²⁾	• Reception
	When transferring data from the UART2 receive register to the U2RB register (at completion of reception)
	• Overrun error ⁽¹⁾
	This error occurs when the serial interface starts receiving the next unit of data before reading the U2RB register and receives the bit before the last stop bit of
	the next unit of data.
	• Framing error ⁽³⁾
	This error occurs when the number of stop bits set is not detected.
Error detection	• Parity error ⁽³⁾
	During reception, when a parity error is detected, a parity error signal is output
	from the TXD2 pin.
	During transmission, a parity error is detected by the level of input to the RXD2
	pin when a transmission interrupt occurs.
	• Error sum flag
	This flag becomes 1 when an overrun, framing, or parity error occurs.
Notes:	

Table 23.26 SIM Mode Specifications

SIM Mode (1).

- 1. When an overrun error occurs, the received data of the U2RB register will be undefined. The IR bit in the S2RIC register remains unchanged.
- 2. After reset, a transmit interrupt request is generated by setting the U2IRS bit to 1 (transmission completed) and the U2ERE bit to 1 (error signal output) in the U2C1 register. Therefore, when using SIM mode, set the IR bit to 0 (interrupt not requested) after setting the bits.
- 3. The framing error flag and the parity error flag are detected when data is transferred from the UART2 receive register to the U2RB register.

Register	Bits	Function		
U2TB (2)	0 to 7	Set transmission data.		
U2RB ⁽²⁾	0 to 7	Reception data can be read.		
	OER,FER,PER,SUM	Error flag		
U2BRG	0 to 7	Set bit rate.		
	SMD2 to SMD0	Set to 101b.		
	CKDIR	Select the internal clock or external clock.		
U2MR	STPS	Set to 0.		
OZIVIIX	PRY	Set to 1 in direct format or 0 in inverse format.		
	PRYE	Set to 1.		
	IOPOL	Set to 0.		
	CLK0,CLK1	Select the count source for the U2BRG register.		
	CRS	Disabled because CRD is 1		
	TXEPT	Transmit register empty flag		
U2C0	CRD	Set to 1.		
	NCH	Set to 0.		
	CKPOL	Set to 0.		
	UFORM	Set to 0 in direct format or 1 in inverse format.		
	TE	Set to 1 to enable transmission.		
	TI	Transmit buffer empty flag		
	RE	Set to 1 to enable reception.		
U2C1	RI	Reception complete flag		
0201	U2IRS	Set to 1.		
	U2RRM	Set to 0.		
	U2LCH	Set to 0 in direct format or 1 in inverse format.		
	U2ERE	Set to 1.		
U2SMR ⁽²⁾	0 to 3	Set to 0.		
U2SMR2	0 to 7	Set to 0.		
U2SMR3	0 to 7	Set to 0.		
U2SMR4	0 to 7	Set to 0.		

Table 23.27	Registers Used and Settings in SIM Mode (1))

Notes:

1. This table does not describe a procedure.

2. Set the bits not listed above to 0 when writing to registers in SIM mode.

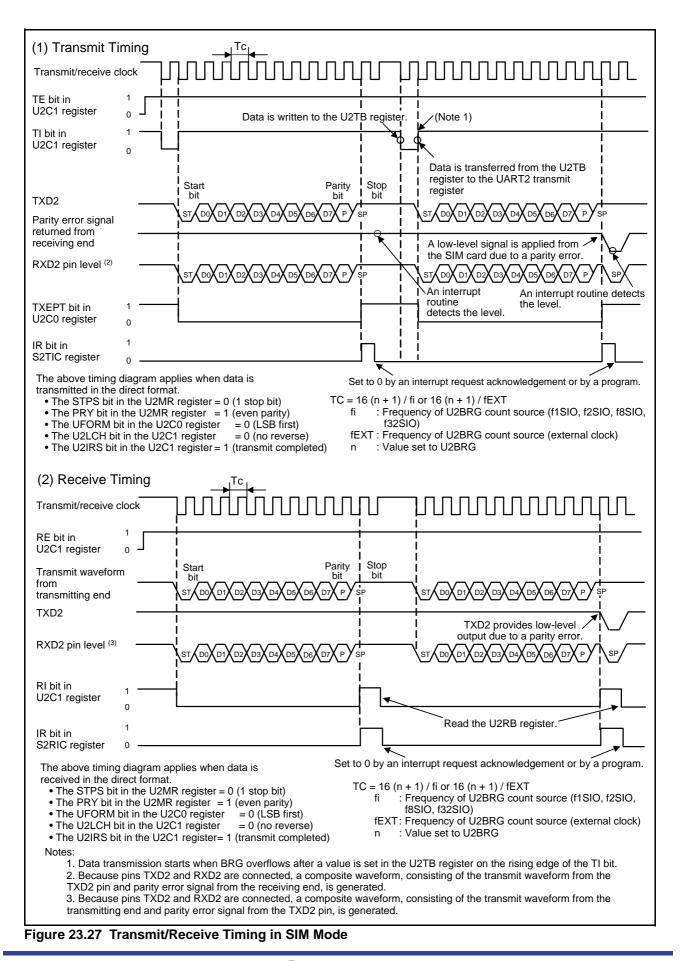


Figure 23.28 shows an Example of SIM Interface Connection. Connect TXD2 and RXD2, and then connect a pull-up resistor.

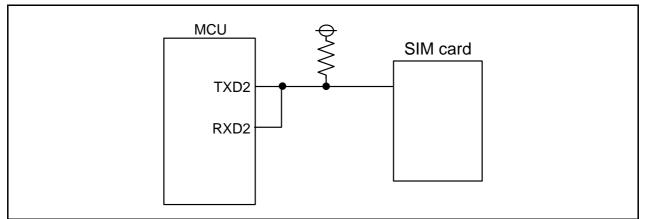


Figure 23.28 Example of SIM Interface Connection

23.3.6.1 Parity Error Signal Output

A parity error signal is enabled by setting the U2ERE bit in the U2C1 register to 1 (error signal output).

The parity error signal is output when a parity error is detected while receiving data. A low-level signal is output from the TXD2 pin in the timing shown in Figure 23.29. If the U2RB register is read while outputting a parity error signal, the PER bit is cleared to 0 (no parity error) and at the same time the TXD2 output again goes high.

When transmitting, a transmission complete interrupt request is generated at the falling edge of the transmit/receive pulse that immediately follows the stop bit. Therefore, whether or not a parity error signal has been returned can be determined by reading the port that shares the RXD2 pin in a transmission complete interrupt routine.

Transmit/receive clock			
RXD2	High ST (D0) D1) D2) D3) D4) D5) D6) D7) Low	P SP	
TXD2	High (NOTE 1) Low		
RI bit in the U2C1 register	1 0 ————————————————————————————————————		
The timing diagram assumes the direct format is implemented. ST : Start bit P : Even parity Note: SP : Stop bit 1. MCU output is high-impedance (pulled up externally).			

23.3.6.2 Format

Two formats are available: direct format and inverse format.

For direct format, set the PRYE bit in the U2MR register to 1 (parity enabled), the PRY bit to 1 (even parity), the UFORM bit in the U2C0 register to 0 (LSB first), and the U2LCH bit in the U2C1 register to 0 (not inverted). When data is transmitted, the contents of the U2TB register are transmitted with the even-numbered parity, starting from D0. When data is received, the received data are stored in the U2RB register, starting from D0. The even-numbered parity is used to determine when a parity error occurs.

For inverse format, set the PRYE bit to 1, the PRY bit to 0 (odd parity), the UFORM bit to 1 (MSB first), and the U2LCH bit to 1 (inverted). When data is transmitted, the contents of the U2TB register are logically inverted and are transmitted with odd-numbered parity, starting from D7. When data is received, the receive data is logically inverted and stored in the U2RB register, starting from D7. The odd-numbered parity is used to determine when a parity error occurs.

Figure 23.30 shows SIM Interface Format.

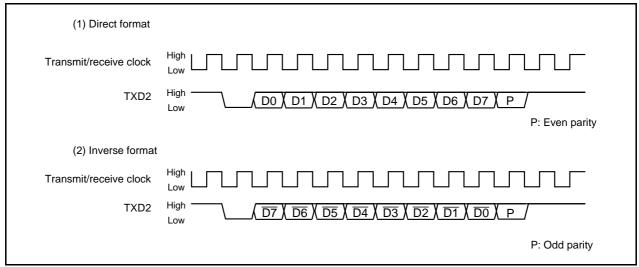


Figure 23.30 SIM Interface Format

23.4 Interrupts

UART0 to UART2 and UART5 to UART7 include interrupts by transmission, reception, ACK, NACK, start/stop condition detection, and bus collision detection.

23.4.1 Interrupt Related Registers

Refer to operation examples in each mode for interrupt sources and interrupt request generation timing. For details of interrupt control, refer to 14.7 "Interrupt Control". Table 23.28 lists UART0 to UART2, UART5 to UART7 Interrupt Related Registers.

Address	Register	Symbol	Reset Value
0046h	UART1 Bus Collision Detection Interrupt Control Register	U1BCNIC	XXXX X000b
0047h	UART0 Bus Collision Detection Interrupt Control Register	UOBCNIC	XXXX X000b
004Ah	UART2 Bus Collision Detection Interrupt Control Register	BCNIC	XXXX X000b
004Fh	UART2 Transmit Interrupt Control Register	S2TIC	XXXX X000b
0050h	UART2 Receive Interrupt Control Register	S2RIC	XXXX X000b
0051h	UART0 Transmit Interrupt Control Register	S0TIC	XXXX X000b
0052h	UART0 Receive Interrupt Control Register	SORIC	XXXX X000b
0053h	UART1 Transmit Interrupt Control Register	S1TIC	XXXX X000b
0054h	UART1 Receive Interrupt Control Register	S1RIC	XXXX X000b
006Bh	UART5 Bus Collision Detection Interrupt Control Register	U5BCNIC	XXXX X000b
006Ch	UART5 Transmit Interrupt Control Register	S5TIC	XXXX X000b
006Dh	UART5 Receive Interrupt Control Register	S5RIC	XXXX X000b
006Eh	UART6 Bus Collision Detection Interrupt Control Register	U6BCNIC	XXXX X000b
006Fh	UART6 Transmit Interrupt Control Register	S6TIC	XXXX X000b
0070h	UART6 Receive Interrupt Control Register	S6RIC	XXXX X000b
0071h	UART7 Bus Collision Detection Interrupt Control Register	U7BCNIC	XXXX X000b
0072h	UART7 Transmit Interrupt Control Register	S7TIC	XXXX X000b
0073h	UART7 Receive Interrupt Control Register	S7RIC	XXXX X000b
0205h	Interrupt Source Select Register 3	IFSR3A	00h
0206h	Interrupt Source Select Register 2	IFSR2A	00h

Table 23.28 UART0 to UART2, UART5 to UART7 Interrupt Related Registers

Some interrupts of UART0 to UART2 and UART5 to UART7 share interrupt vectors and interrupt control registers with other peripheral functions. When using these interrupts, select them by interrupt source select registers. Table 23.29 lists Interrupt Selection in UART0 to UART2 and UART5 to UART7.

Interrupt Source	Interrupt Source Select Register Settings		
	Register	Bit	Setting Value
UART0 start/stop condition detection, bus collision detection	IFSR2A	IFSR26	1
UART1 start/stop condition detection, bus collision detection	IFSR2A	IFSR27	1
UART5 start/stop condition detection, bus collision detection	IFSR3A	IFSR33	0
UART5 transmission, NACK	IFSR3A	IFSR34	0
UART6 start/stop condition detection, bus collision detection	IFSR3A	IFSR35	0
UART6 transmission, NACK	IFSR3A	IFSR36	0
UART7 start/stop condition detection, bus collision detection	IFSR2A	IFSR24	0
UART7 transmission, NACK	IFSR2A	IFSR25	0

In the following mode, an interrupt request can be generated by rewriting bit values:

• Special mode 1 (I²C mode)

Set the IR bit in the interrupt control register of UARTi to 0 (interrupt not requested), when the following bits are changed:

Bits SMD2 to SMD0 in the UiMR register, the IICM bit in the UiSMR register, the IICM2 bit in the UiSMR2 register, the CKPH bit in the UiSMR3 register

• Special mode 4 (SIM mode)

After reset, when bits U2IRS and U2ERE in the U2C1 register are set to 1 (transmission completed) and 1 (interrupt not requested) respectively, a transmission interrupt request is generated. In SIM mode, set these bits first, and then set the IR bit in the S2TIC register to 0 (interrupt not requested).

23.4.2 Reception Interrupt

 The case that bits SMD2 to SMD0 in the UiMR register are not set to 010b (I²C mode) When the RI bit in the UiC1 register is changed from 0 (no data in the UiRB register) to 1 (data present in the UiRB register), the IR bit in the SiRIC register is automatically set to 1 (interrupt requested).

If an overrun error occurs (when the RI bit is 1, the next data is received), the RI bit remains 1, and therefore, the IR bit in the SiRIC register remains unchanged.

 The case that bits SMD2 to SMD0 in the UiMR register are set to 010b (I²C mode) When the RI bit in the UiC1 register is changed from 0 (no data in the UiRB register) to 1 (data present in the UiRB register), the IR bit in the SiRIC register is automatically set to 1 (interrupt requested).

When an overrun error occurs, the IR bit in the SiRIC register also becomes 1.

23.5 Notes on Serial Interface UARTi (i = 0 to 2, 5 to 7)

23.5.1 Common Notes on Multiple Modes

23.5.1.1 Influence of SD

When a low-level signal is applied to the \overline{SD} pin while the IVPCR1 bit in the TB2SC register is 1 (three-phase output forcible cutoff by input on \overline{SD} pin enabled), the following pins become high-impedance:

P7_2/CLK2/TA1OUT/V, P7_3/CTS2/RTS2/TA1IN/V, P7_4/TA2OUT/W, P7_5/TA2IN/W, P8_0/TA4OUT/RXD5/SCL5/U, P8_1/TA4IN/CTS5/RTS5/U

23.5.1.2 CLKi Output

(Technical update number: TN-M16C-A178A/E)

When using the N-channel open drain output as an output mode of the CLKi pin, use following procedure to change the pin function:

When changing the pin function from the port to CLKi.

- (1) Set bits SMD2 to SMD0 in the UiMR register to a value other than 000b to select serial interface mode.
- (2) Set the NODC bit in the UiSMR3 register to 1.

When changing the pin function from CLKi to the port.

- (1) Set the NODC bit to 0.
- (2) Set bits SMD2 to SMD0 to 000b to disable the serial interface.

23.5.2 Clock Synchronous Serial I/O Mode

23.5.2.1 Transmission/Reception

When the $\overline{\text{RTS}}$ function is used with an external clock, the $\overline{\text{RTSi}}$ pin (i = 0 to 2, 5 to 7) outputs a lowlevel signal, which informs the transmitting side that the MCU is ready for a receive operation. The $\overline{\text{RTSi}}$ pin outputs a high-level signal when a receive operation starts. Therefore, transmit timing and receive timing can be synchronized by connecting the $\overline{\text{RTSi}}$ pin to the $\overline{\text{CTSi}}$ pin on the transmitting side. The $\overline{\text{RTS}}$ function is disabled when an internal clock is selected.

23.5.2.2 Transmission

When selecting an external clock, the following conditions must be met while the external clock is held high when the CKPOL bit in the UiC0 register (i = 0 to 2, 5 to 7) is set to 0 (transmit data output at the falling edge and receive data input at the rising edge of the transmit and receive clock), or while the external clock is held low when the CKPOL bit is set to 1 (transmit data output at the rising edge and receive data input at the falling edge of the transmit and receive clock).

- The TE bit in the UiC1 register is 1 (transmission enabled).
- The TI bit in the UiC1 register is 0 (data present in the UiTB register).

• When the $\overline{\text{CTS}}$ function is selected, input on the $\overline{\text{CTSi}}$ pin is low.

23.5.2.3 Reception

In clock synchronous serial I/O mode, a shift clock is generated by activating a transmitter. Set the UARTi-associated registers for a transmit operation even if the MCU is used for a receive operations only. Dummy data is output from the TXDi pin (i = 0 to 2, 5 to 7) while receiving.

When an internal clock is selected, a shift clock is generated by setting the TE bit in the UiC1 register to 1 (transmission enabled) and placing dummy data in the UiTB register. When an external clock is selected, set the TE bit to 1 (transmission enabled), set dummy data in the UiTB register, and input an external clock to the CLKi pin to generate a shift clock.

If data is received consecutively, an overrun error occurs when the RI bit in the UiC1 register is 1 (data present in the UiRB register) and the next receive data is received in the UARTi receive register. Then, the OER bit in the UiRB register becomes 1 (overrun error occurred). At this time, the UiRB register is undefined. When an overrun error occurs, program the transmitting and receiving sides to retransmit the previous data. If an overrun error occurs again, the IR bit in the SiRIC register remains unchanged.

To receive data consecutively, set dummy data in the low-order byte in the UiTB register for each receive operation.

When selecting an external clock, the following conditions must be met while the external clock is held high when the CKPOL bit is 0 (transmit data output at the falling edge and receive data input at the rising edge of the serial clock), or while the external clock is held low when the CKPOL bit is 1 (transmit data output at the rising edge and receive data input at the falling edge of the serial clock).

- The RE bit in the UiC1 register is 1 (reception enabled).
- The TE bit in the UiC1 register is 1 (transmission enabled).
- The TI bit in the UiC1 register is 0 (data present in the UiTB register).

23.5.3 UART (Clock Asynchronous Serial I/O) Mode

23.5.3.1 Transmission/Reception

When the $\overline{\text{RTS}}$ function is used with an external clock, the $\overline{\text{RTSi}}$ pin (i = 0 to 2, 5 to 7) outputs a lowlevel signal, which informs the transmitting side that the MCU is ready for a receive operation. The $\overline{\text{RTSi}}$ pin outputs a high-level signal when a receive operation starts. Therefore, transmit timing and receive timing can be synchronized by connecting the $\overline{\text{RTSi}}$ pin to the $\overline{\text{CTSi}}$ pin on the transmitting side. The $\overline{\text{RTS}}$ function is disabled when an internal clock is selected.

23.5.3.2 Transmission

When an external clock is selected, the following conditions must be met while the external clock is held high when the CKPOL bit in the UiC0 register (i = 0 to 2, 5 to 7) is 0 (transmit data output at the falling edge and receive data input at the rising edge of the transmit and receive clock), or while the external clock is held low when the CKPOL bit is 1 (transmit data output at the rising edge and receive data input at the falling edge of the transmit and receive clock).

- The TE bit in the UiC1 register is 1 (transmission enabled).
- The TI bit in the UiC1 register is 0 (data present in the UiTB register).
- When the $\overline{\text{CTS}}$ function is selected, input on the $\overline{\text{CTSi}}$ pin is low.

23.5.4 Special Mode 1 (I²C Mode)

23.5.4.1 Generating Start and Stop Conditions

When generating start, stop, and restart conditions, set the STSPSEL bit in the UiSMR4 register (i = 0 to 2, 5 to 7) to 0 and wait for more than a half cycle of the transmit/receive clock. Then set each condition generation bit (STAREQ, RSTAREQ, and STPREQ) from 0 to 1.

23.5.4.2 IR Bit

Set the following bits first, and then set the IR bit in the UARTi interrupt control registers to 0 (interrupt not requested).

Bits SMD2 to SMD0 in the UiMR register, the IICM bit in the UiSMR register, the IICM2 bit in the UiSMR2 register, the CKPH bit in the UiSMR3 register

23.5.5 Special Mode 4 (SIM Mode)

After reset, a transmit interrupt request is generated by setting bits U2IRS and U2ERE in the U2C1 register to 1 (transmission completed) and 1 (error signal output), respectively. Therefore, when using SIM mode, make sure to set the IR bit to 0 (interrupt not requested) after setting these bits.