
APPLICATION NOTE

R01AN0043EJ0100 Rev.1.00 Page 1 of 19
Nov. 30, 2010

1. Abstract
This document describes the source files created when a new workspace is created by the High-performance
Embedded Workshop (HEW).

2. Introduction
The application example described in this document applies to the following microcomputer (MCU) and parameters:

• MCU: M16C/64 Group
• HEW version: Version 4.07
• C Compiler Package for M16C Series and R8C Family [M3T-NC30WA]: V. 5.45 Release 01

This application note can be used with other M16C Family MCUs which have the same special function registers
(SFRs) as the above group. Check the user’s manual for any modifications to functions. Careful evaluation is
recommended before using the program described in this application note.

R01AN0043EJ0100
Rev.1.00

Nov. 30, 2010

M16C/64 Group
High-performance Embedded Workshop Start-up Program in C

M16C/64 Group

R01AN0043EJ0100 Rev.1.00 Page 2 of 19
Nov. 30, 2010

High-performance Embedded Workshop Start-up Program in C

3. Outline
This application note describes source files created when “C source startup Application” is selected and a new
workspace is created by HEW.

3.1 Source Files Created by HEW
Table 3.1 lists the C Source Files Created by HEW, and Table 3.2 lists the Header Files Created by HEW.

Note:
1. Insert user project name for project_name.

Note:
1. XX indicates the MCU group.

Table 3.1 C Source Files Created by HEW
Source File Name Outline Content
project_name.c (1) Main file Source file for main function
firm.c Definition file for firmware

Maintains program and workspace areas for FoUSB/E8
firmware when the OnChipDebugger is selected.firm_ram.c RAM definition file for

firmware

fvector.c Definition file for fixed
vector table

Defines fixed vector tables.
Sets OFS1 address and ID code.
Modify fixed vector tables when performing non-maskable
interrupt handling.

heap.c Definition file for heap
area

Defines the heap area used. The heap size value set
(__HEAPSIZE__) when a project is created is defined in
cstartdef.h. Modify the value of __HEAPSIZE__ when
changing the heap size.

initsct.c Initialize RAM file Describes the RAM initial setting. When the user wants to
initialize added areas, add the areas to be initialized.

intprg.c Definition file for variable
vector table

Defines relocatable vector tables and interrupt functions
(empty functions).
When maskable interrupts are used, add processes in
interrupt functions.

resetprg.c C source start-up
program file

Executes the initialization processes before the main
function is executed.
When using the user boot function, set the user boot area
in this file.

Table 3.2 Header Files Created by HEW
Header File Name Outline Content

cstartdef.h Definition header file
for stack size

Defines stack size and heap size.
Select either enable/disable for the watchdog timer auto
start after reset.

initsct.h Macro definition header
file to initialize sections Defines the macro used in initsct.c.

resetprg.h Header file for
Initialization settings

Initializes the stack size, CPU register setting, and heap
area.

sfrXX.h (1) SFR register header file Defines the SFR registers used for the MCU.

typedefine.h Definition header file for
data style Defines data styles.

M16C/64 Group

R01AN0043EJ0100 Rev.1.00 Page 3 of 19
Nov. 30, 2010

High-performance Embedded Workshop Start-up Program in C

4. Settings of Source Files Created by HEW

4.1 Fixed Vector Table Setting
Fixed vector tables are defined in the fvector.c file. The program is executed from the address set in the reset vector
of the fixed vector table after reset start. The address of the start function is set in the reset vector of the file created.
Other non-maskable interrupts can be set in the same file.
Figure 4.1 shows the Fixed Vector Table Setting.

Figure 4.1 Fixed Vector Table Setting

Refer to User’s Manual: Hardware for details on
individual interrupt sources.

Reset vector

#pragma sectaddress fvector,ROMDATA 0xfffdc
//
#pragma interrupt/v _dummy_int //udi
#pragma interrupt/v _dummy_int //over_flow
#pragma interrupt/v _dummy_int //brki
#pragma interrupt/v _dummy_int //address_match
#pragma interrupt/v _dummy_int //single_step
#pragma interrupt/v _dummy_int //wdt
#pragma interrupt/v _dummy_int //dbc
#pragma interrupt/v _dummy_int //nmi
#pragma interrupt/v start

#if __WATCH_DOG__ != 0
_asm(" .ofsreg 0FEH");
#else
_asm(" .ofsreg 0FFH");
#endif

_asm(" .id ""¥"#FFFFFFFFFFFFFF¥"");

#pragma interrupt _dummy_int()
void _dummy_int(void);
void _dummy_int(void){}

extern void wdt_int_func(void);
#pragma interrupt/v wdt_int_func //wdt

Example of modifying watchdog timer interrupt

Dummy function definition

Refer to “4.10 ID Code Writing” for details.

Refer to “4.9 Optional Function Select Address 1 (OFS1) Setting” for details.

Optional function select address 1 (OFS1) setting

ID code setting

Fixed vector tables

M16C/64 Group

R01AN0043EJ0100 Rev.1.00 Page 4 of 19
Nov. 30, 2010

High-performance Embedded Workshop Start-up Program in C

4.2 cstartdef.h
When changing the project generator wizard setting values, modify them in the cstartdef.h file.
Figure 4.2 shows the cstartdef.h.

Figure 4.2 cstartdef.h

#define __STACKSIZE__ 0x300
#define __ISTACKSIZE__ 0x300
#define __HEAPSIZE__ 0x00
#define __STANDARD_IO__ 0
#define __WATCH_DOG__ 0

Set to 0 if not used.
Stack size of user stack

Always set to a value other than 0.
Stack size of interrupt stack

Set to 0 if not used.
Heap area size

When used: 1
When not used: 0

Standard I/O library flag

When using this function: 1
When not using this function: 0

Flag for automatically starting watchdog timer after reset

M16C/64 Group

R01AN0043EJ0100 Rev.1.00 Page 5 of 19
Nov. 30, 2010

High-performance Embedded Workshop Start-up Program in C

4.3 start Function Setting
The start function is created in the resetprg.c file.
Figure 4.3 shows the start Function Setting.

Figure 4.3 start Function Setting

Interrupt stack pointer setting

void start(void)

Single-chip mode setting

Flag register setting

Static base register setting

main()

exit()

Frame base register setting

Main function is in project_name.c. (1)

Infinite loop

User stack pointer setting

Relocatable vector address setting

__F_value__ is defined in resetprg.h.

__STACKSIZE__ is defined in cstartdef.h.

heap_init() is in heap.c.
__HEAPSIZE__ is defined in cstartdef.h.

__STANDARD_IO__ is defined in cstartdef.h.
_init()

heap_init()
Heap area setting

Main function

initsct() initsct() is in initsct.c.RAM initial setting

Standard I/O library initial
setting

Note:
1. Insert user project name for project_name.

M16C/64 Group

R01AN0043EJ0100 Rev.1.00 Page 6 of 19
Nov. 30, 2010

High-performance Embedded Workshop Start-up Program in C

4.4 RAM Initial Setting
The RAM initial setting process is created in the initsct.c file. The initsct.c file sets zero-clear to RAM. The initial
values in ROM are transferred to RAM.
Figure 4.4 shows an Example of Initializing Added Area Using initsct.c.

Figure 4.4 Example of Initializing Added Area Using initsct.c

4.5 Heap Area Setting
Processing to allocate the heap area is created in the heap.c file.
Figure 4.5 shows the Heap Area Setting.

Figure 4.5 Heap Area Setting

4.6 Main Function Setting
The main function is created in project_name.c file. Add programming in this file.

4.7 Interrupt Function Setting
Relocatable vector tables are created in the intprg.c file. Add interrupt handling to the intprg.c file if needed.

sclear("bss_SE","data","align");
sclear("bss_SO","data","noalign");
sclear("bss_NE","data","align");
sclear("bss_NO","data","noalign");
sclear_f("bss_FE","data","align");
sclear_f("bss_FO","data","noalign");
// add new sections
// bss_clear("new section name");

scopy("data_SE","data","align");
scopy("data_SO","data","noalign");
scopy("data_NE","data","align");
scopy("data_NO","data","noalign");
scopy_f("data_FE","data","align");
scopy_f("data_FO","data","noalign");

Additional area is initialized using initsct.c.sclear("test_bss_NE","data","align");
sclear("test_bss_NO","data","noalign");

When the test_bss_NE and test_bss_NO sections are added,
add two lines if initsct.c is used for initialization.

#pragma SECTION bss heap

_UBYTE heap_area[__HEAPSIZE__];

Variables without initial values described after this
definition are assigned to the heap section.

Heap area is allocated.

M16C/64 Group

R01AN0043EJ0100 Rev.1.00 Page 7 of 19
Nov. 30, 2010

High-performance Embedded Workshop Start-up Program in C

4.8 User Boot Function Setting
The user boot function setting is created in the resetprg.c file. Addresses 13FF0h to 13FFFh are the user boot area. If
“UserBoot” in ASCII code is set to these addresses, the user boot function is enabled. Refer to User’s Manual:
Hardware when using the user boot function.
Figure 4.6 shows the User Boot Function Setting.

Figure 4.6 User Boot Function Setting

4.8.1 When Not Using the User Boot Function
When the user boot function is not used, delete or comment out the coding area written in Figure 4.6. Addresses
13FF0h to 13FFFh are used for the user boot area. Do not assign programs to these addresses.

_UB_section is assigned to 13FF0h.
#pragma sectaddress _UB_section_FE,ROMDATA 0x13FF0
#pragma section rom _UB_section
struct _UB_struct {

unsigned char code[8];
unsigned char _near *addr;
unsigned char bit;
unsigned char level;
unsigned char reserved[4];

} const _far _UB_data = {
{0xffU,0xffU,0xffU,0xffU,0xffU,0xffU,0xffU,0xffU},
(unsigned char _near *)0xffffU,
0xffU,
0xffU,
{0xffU,0xffU,0xffU,0xffU}

};
#pragma section rom rom

Characters described after this definition are
assigned to _UB_section.

Characters described after this are assigned to the
rom section.

User boot code area is defined.

ASCII code setting

Port information setting for entry

Reserved area

M16C/64 Group

R01AN0043EJ0100 Rev.1.00 Page 8 of 19
Nov. 30, 2010

High-performance Embedded Workshop Start-up Program in C

4.9 Optional Function Select Address 1 (OFS1) Setting
Optional function select address 1 (OFS1) setting is created in the fvector.c file.
Figure 4.7 shows the Optional Function Select Address 1 (OFS1) Setting.
The default value is FFh. When changing the OFS1 address, modify the value below.

Figure 4.7 Optional Function Select Address 1 (OFS1) Setting

4.10 ID Code Writing
ID code writing process is created in the fvector.c file.
Figure 4.8 shows the ID Code Writing Process.
The default value is FFFFFFFFFFFFFFh. When changing the ID code setting, modify the value below.

Figure 4.8 ID Code Writing Process

Set FFh to the OFS1 address._asm(" .ofsreg 0FFH");

Set the ID code._asm(" .id ""¥"#FFFFFFFFFFFFFF¥"");

M16C/64 Group

R01AN0043EJ0100 Rev.1.00 Page 9 of 19
Nov. 30, 2010

High-performance Embedded Workshop Start-up Program in C

5. Other Settings

5.1 Watchdog Timer Setting
The watchdog timer setting is created in the cstartdef.h file. Set __WATCH_DOG__ to select watchdog timer status
after reset.
When using the watchdog timer in the source files created by HEW, note the following restrictions.

• The CPU clock must be set to 125 kHz on-chip oscillator divided-by-8 or higher.
• Do not use the watchdog timer count source protection mode.

When restrictions above will be problems, modify the program that the refresh process of watchdog timer in the
initsct.h file start before watchdog timer reset occurs.

Figure 5.1 shows the Flag for Automatically Starting Watchdog Timer After Reset.

Figure 5.1 Flag for Automatically Starting Watchdog Timer After Reset

#define __WATCH_DOG__ 0
Function used: 1
Function not used: 0

Flag for automatically starting watchdog timer after reset

M16C/64 Group

R01AN0043EJ0100 Rev.1.00 Page 10 of 19
Nov. 30, 2010

High-performance Embedded Workshop Start-up Program in C

5.2 Section Setting
This section shows the section setting method by HEW. Usually, the section location is set in order of “Build” →
“Renesas M16C Standard Toolchain...” → “Link” → “Category” in HEW, but this application note shows an
example using the map window.
“C source startup Application” must be selected for the project type to use map window when a new project is
created.
The following describes how to add the test_bss_NO and test_bss_NE sections, and set reset_times. Figure 5.3 to
Figure 5.12 show the Added Sections.

(1) Show map window. Select “Map...” from the “View” menu.

Figure 5.2 Added Section (1/9)

M16C/64 Group

R01AN0043EJ0100 Rev.1.00 Page 11 of 19
Nov. 30, 2010

High-performance Embedded Workshop Start-up Program in C

(2) Select “Map Section Information” from “Map”.
 Use the same procedure to select “Map Symbol Information”.

Figure 5.3 Added Section (2/9)

(3) Click the “Edit Mode” button, and edit the section name.

Figure 5.4 Added Section (3/9)

Edit Mode

M16C/64 Group

R01AN0043EJ0100 Rev.1.00 Page 12 of 19
Nov. 30, 2010

High-performance Embedded Workshop Start-up Program in C

(4) Click the “Add Section...” button and add test_bss_NO.

Figure 5.5 Added Section (4/9)

Add Section...

M16C/64 Group

R01AN0043EJ0100 Rev.1.00 Page 13 of 19
Nov. 30, 2010

High-performance Embedded Workshop Start-up Program in C

(5) Add test_bss_NE using same method in step (4).

Figure 5.6 Added Section (5/9)

Add Section...

M16C/64 Group

R01AN0043EJ0100 Rev.1.00 Page 14 of 19
Nov. 30, 2010

High-performance Embedded Workshop Start-up Program in C

(6) Click the “Edit Mode” button, and confirm the changed linker section information.

Figure 5.7 Added Section (6/9)

Edit Mode

M16C/64 Group

R01AN0043EJ0100 Rev.1.00 Page 15 of 19
Nov. 30, 2010

High-performance Embedded Workshop Start-up Program in C

(7) The test_bss_NE and test_bss_NO sections are assigned.

Figure 5.8 Added Section (7/9)

M16C/64 Group

R01AN0043EJ0100 Rev.1.00 Page 16 of 19
Nov. 30, 2010

High-performance Embedded Workshop Start-up Program in C

(8) Assign variable reset_times to the test_bss section by a program.

Figure 5.9 Method of Setting Variable to test_bss Section

Variables without default values after the #pragma SECTION declaration are assigned to the test_bss section.

Figure 5.10 Section Assignment Based on Variable Declaration Placement

Figure 5.11 Added Section (8/9)

#pragma SECTION bss test_bss
unsigned char reset_times;

int i;

#pragma SECTION bss test_bss

int j;
int k = 10;

It is assigned to the bss section.

Variables without default values described after this are
assigned to the test_bss section.

It is assigned to the test_bss section.

Variables that have initial values are assigned to the data
section.

M16C/64 Group

R01AN0043EJ0100 Rev.1.00 Page 17 of 19
Nov. 30, 2010

High-performance Embedded Workshop Start-up Program in C

(9) When executing “Build”, variable reset_times is assigned to the test_bss_NO section.

Figure 5.12 Added Section (9/9)

M16C/64 Group

R01AN0043EJ0100 Rev.1.00 Page 18 of 19
Nov. 30, 2010

High-performance Embedded Workshop Start-up Program in C

5.3 Using Standard I/O Functions in the Standard Library
The standard I/O functions (1) in the standard library used in the M16C Series have the following restrictions:

• The Address of the U1TB register is defined as 3AAh in the standard I/O functions of the nc30lib.lib.
Therefore, the MCUs (M16C/64, 65, etc.) which the address of that are defined as 25Ah are not supported.

• The size which read the receiving buffer register is defined wrongly in the low-level functions for the standard
I/O functions (scanf, etc.).

To withdraw the above restrictions, compile the device.c file found in the sample code with the user program, and
then link them. (2)

Notes:
1. Standard I/O functions indicate the following the standard input functions and standard output functions:

 Standard input functions: fgetc, getc, getchar, fgets, gets, fread, scanf, fscanf
 Standard output functions: fputc, putc, putchar, fputs, puts, fwrite, printf, fprintf, vfprintf, vprintf

2. Register the device.c file to the project when using the High-performance Embedded Workshop. Replace
the device.c file, if it has already existed.

M16C/64 Group

R01AN0043EJ0100 Rev.1.00 Page 19 of 19
Nov. 30, 2010

High-performance Embedded Workshop Start-up Program in C

6. Reference Documents
Technical Update/Technical News
The latest information can be downloaded from the Renesas Electronics website.

C Compiler User's Manual
M16C Series, R8C Family C Compiler Package V.5.45
C Compiler User's Manual Rev.2.00
The latest version can be downloaded from the Renesas Electronics website.

 Website and Support
Renesas Electronics website
http://www.renesas.com/

Inquiries
http://www.renesas.com/inquiry

http://japan.renesas.com/
http://japan.renesas.com/inquiry

A - 1

Revision History
M16C/64 Group

 High-performance Embedded Workshop Start-up Program
in C

Rev. Date
Description

Page Summary
1.00 Nov. 30, 2010 — First edition issued

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes
on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under
General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each
other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins
Handle unused pins in accord with the directions given under Handling of Unused Pins in the
manual.
 The input pins of CMOS products are generally in the high-impedance state. In operation

with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the
vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur
due to the false recognition of the pin state as an input signal become possible. Unused
pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
 The states of internal circuits in the LSI are indeterminate and the states of register

settings and pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states
of pins are not guaranteed from the moment when power is supplied until the reset
process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset
function are not guaranteed from the moment when power is supplied until the power
reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
 The reserved addresses are provided for the possible future expansion of functions. Do

not access these addresses; the correct operation of LSI is not guaranteed if they are
accessed.

4. Clock Signals
After applying a reset, only release the reset line after the operating clock signal has become
stable. When switching the clock signal during program execution, wait until the target clock
signal has stabilized.
 When the clock signal is generated with an external resonator (or from an external

oscillator) during a reset, ensure that the reset line is only released after full stabilization of
the clock signal. Moreover, when switching to a clock signal produced with an external
resonator (or by an external oscillator) while program execution is in progress, wait until
the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to one with a different part number, confirm
that the change will not lead to problems.
 The characteristics of MPU/MCU in the same group but having different part numbers may

differ because of the differences in internal memory capacity and layout pattern. When
changing to products of different part numbers, implement a system-evaluation test for
each of the products.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas

Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to

be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and

regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to

the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product

depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas

Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for

which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the

use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics.

The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools;

 personal electronic equipment; and industrial robots.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically

 designed for life support.

 "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical

 implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
7F, No. 363 Fu Shing North Road Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2010 Renesas Electronics Corporation. All rights reserved.

Colophon 1.0

	1. Abstract
	2. Introduction
	3. Outline
	3.1 Source Files Created by HEW

	4. Settings of Source Files Created by HEW
	4.1 Fixed Vector Table Setting
	4.2 cstartdef.h
	4.3 start Function Setting
	4.4 RAM Initial Setting
	4.5 Heap Area Setting
	4.6 Main Function Setting
	4.7 Interrupt Function Setting
	4.8 User Boot Function Setting
	4.8.1 When Not Using the User Boot Function

	4.9 Optional Function Select Address 1 (OFS1) Setting
	4.10 ID Code Writing

	5. Other Settings
	5.1 Watchdog Timer Setting
	5.2 Section Setting
	5.3 Using Standard I/O Functions in the Standard Library

	6. Reference Documents
	Website and Support
	Revision History

