

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

 APPLICATION NOTE

REU05B0037-0100Z June 2003 Page 1 of 19

M16C/26
Interfacing with 1-Wire™ Devices

1.0 Abstract
The following article introduces and shows an example of how to interface Renesas’ 16-bit microcontrollers

(MCU) to a 1-wire device. A demo program developed for the Mini 26 board is available.

2.0 Introduction
This article describes the hardware connectivity and software used in this demo for interfacing Renesas’

M16C/26 Flash MCU to a 1-wire device, the DS1822 temperature sensor.

3.0 1-Wire Interface
A 1-wire interface is a ‘bus’ that requires only one data line not including ground. An MCU or a microprocessor

communicates with a 1-wire device using this line. If the device supports “parasite power”, the 1-wire device can

be powered with the same data line. Hence, it became known as 1-wire bus (not including ground).

The 1-wire bus can support multiple devices because of its open drain output configuration. Having multiple

devices on one bus requires some form of identification for each device. This comes in the form of a unique

64-bit ROM code (which translates to 264 devices can be connected to the bus) that the bus master uses to

communicate or address a specific device on the bus.

As 1-wire devices are mostly passive, a bus master is required for control. And having only one signal line, the

bus master initiates all half-duplex communications, i.e. only one device can ‘talk’ at a time. For the demo, the

bus master is the Renesas M16C/26 MCU on the Mini 26 board.

3.1 Hardware
This section describes how to connect a 1-wire device to the M16C/26 MCU and how it was connected for the

demo on the Mini 26 board.

3.1.1 1-Wire Device Power
As mentioned earlier, the 1-wire interface uses only one data line. This assumes, however, that the 1-wire device

can get its power from this data line. If the device does not support this feature, an external power must be

supplied to the device through another line.

The 1-wire device, DS1822, used in this demo can be powered either through the data line (“parasite power”) or

externally using its Vdd pin. How the DS1822 was connected in this demo is shown on Figure 1. Power is

provided externally to the Vdd pin of the DS1822 using a port pin of the MCU. With a 5mA rating, the M16C/26

I/O port can adequately supply power to the DS1822, which can draw current up to 1.5mA (during temperature

conversion).

M16C/26
Interfacing with 1-Wire™ Devices

REU05B0037-0100Z June 2003 Page 2 of 19

Please see DS1822 datasheet on how to connect hardware in parasite power mode.

1-Wire
Device

(DS1822)

M16C/26
MCU

(Bus Master)

VDD

DQ

GND

Vcc

(M16C/26
Internal
Pull-up)

VCC (J2-19)

P8_3 (J2-17)

GND
(J2-20)

Note: The 1-wire device was mounted on the Mini 26's J2 connector.

Figure 1 DS1822 Connection to an M16C/26 MCU (on the Mini 26 Board)

3.1.2 Data/Signal Line
The data line of the 1-wire device is an open drain output. A pull-up resistor is required to bring the bus high,

which is the default signal level when the bus is not used. A typical connection of an open drain pin to an output

pin using a N-FET is shown on Figure 2. This kind of connectivity, however, will require two port pins: one for

input and one for output to drive the N-FET.

1-Wire
Device

(e.g.
DS1822)

MCU
(Bus Master)VDD

DQ

GND

Vcc

10K

PIO0

GND

PIO1

4.7K

Figure 2 A Typical Open Drain Output MCU Connection using an N-FET

The M16C/26 MCU has two open drain output port pin and can be used when sending data to the 1-wire device.

No external FET necessary (but an external pull-up will be required). To be able to use only one pin, the

M16C/26
Interfacing with 1-Wire™ Devices

REU05B0037-0100Z June 2003 Page 3 of 19

M16C/26 firmware controls whether the pin is an input or an output. This can be done easily by controlling the

M16C/26 I/O port direction register. To emulate an open drain connection, the firmware sets this pin as an input,

which is also the default state. When the MCU needs to communicate to the 1-wire device, the pin direction is

set to an output. After writing data to the bus, the firmware changes the port direction back to an input.

For the Mini 26 demo, port 8_3 is used with an internal pull-up. The open drain output was not used because an

LED is connected to the port pin.

3.2 Software
This section describes how the 1-wire interface was implemented using the M16C/26 MCU. The whole project

can be requested from your Renesas representative.

3.2.1 1-Wire Transactions
Communications on the 1-wire bus are handled in the form of transactions, which are initiated by the bus master

(M16C/26). A transaction for the DS1822 consists of three steps:

• Initialization Sequence

• ROM Command

• Function Command

3.2.1.1 Initialization Sequence
All transactions start with an initialization. An initialization sequence consists of a reset signal and a presence

signal. A reset signal brings all 1-wire devices to attention and that the bus master wants to talk. As an

acknowledgement to this, 1-wire devices send a presence signal.

The reset signal for the DS1822 should be at least 480us long. The M16C/26 MCU firmware changes the port

direction to an output, brings the data line down for 480us, and then changes port direction back to an input. The

data line is pulled high through the resistor after changing the port back to an input.

As a response, the DS1822 will send a presence pulse by bringing the data line low for 60-240us after a timeout

period of 15-60us max that started when bus master released the bus (brought data line high). After this low

pulse, the DS1822 releases the bus, which brings the data line high. The bus master reads this presence pulse

as an indication that a 1-wire device exists and ready to operate.

The initialization sequence for the DS1822 takes at least 960us (480us for reset and 480us for presence pulse

plus timeout period). The initialization sequence routine on the one_wire.c program is shown below. The routine

returns 0 if it does not detect the presence pulse (no 1-wire device exists) and 1 if it detected one. If a 0 is

returned at the time the 64-bit ROM code is being retrieved, future 1-wire bus processing will be stopped since

there are 1-wire devices on the bus.

M16C/26
Interfacing with 1-Wire™ Devices

REU05B0037-0100Z June 2003 Page 4 of 19

/***

Name: init_trans_1wire

Parameters:

Returns: one_wire_exist (0 – no device, 1 – device present)

Description: Initializes communications with 1-wire device. All transactions for

 1-wire communications starts with an initialization sequence so the

 bus master(MCU) knows all slave devices are ready to operate.

***/

char init_trans_1wire(void){

 int wait_time;

 // initialization routine starts with a master reset pulse:

 // 1-wire bus pulled low for at least 480us

 one_wr_dir = wrt_dir; // 1-wire port - output

 one_wr_port = 0; // bring 1-wire bus low

 wait_time = 480; // 480us min reset pulse

 usec_cntr(wait_time);

 one_wr_dir = rd_dir; // 1-wire port back to an input

 wait_time = 30; // wait period for 1-wire device to send

usec_cntr(wait_time); // presence pulse - 15-60us

 if (!one_wr_port) // read presence pulse - if low then

 one_wire_exist = 1; // 1-wire device exists

 wait_time = 450; // timeout required :

usec_cntr(wait_time); // 480us (reqd) - 30 (wait period) = 450

 return one_wire_exist;

}

List 1 1-Wire Transaction Initialization Sequence

3.2.1.2 ROM Command
The bus master issues ROM commands to inform 1-wire devices what it wants to do. A list of the ROM

commands, hexadecimal code, and brief description pertinent to the DS1822 are shown on the table below. For

details about ROM commands, please see the DS1822 datasheet.

M16C/26
Interfacing with 1-Wire™ Devices

REU05B0037-0100Z June 2003 Page 5 of 19

Table 1 DS1822 ROM Commands

ROM Command Hex Code Description

Search ROM F0H Command used to identify 64-bit ROM code when there are multiple 1-wire
devices on the bus.

Read ROM 33H Command used to identify 64-bit ROM code when only one 1-wire device on the
bus.

Match ROM 55H Command used to address a specific 1-wire device on the bus using a 64-bit ROM
code.

Skip ROM CCH Command used to address all 1-wire devices on the bus (no 64-bit ROM
required).

Alarm Search ECH Command used to search for all 1-wire devices with alarm set. Similar to Search
ROM command but only 1-wire devices that an alarm is set will respond.

Depending on the ROM command used, a data exchange may follow. For example, when the M16C/26 bus

master issues a Read ROM command, the single 1-wire device will respond by sending it’s unique 64-bit ROM

code. ID. However, when a Skip ROM command is used, no data exchange will occur as the command is for all

the 1-wire devices on the bus.

The two ROM commands used for the demo is the Read ROM and Match ROM commands. Read ROM

command is used to read the 64-bit ROM code and scratch data of the DS1822. The Match ROM command is

used to address the DS1822. However, a commented out routine when reading the DS1822 scratchpad using

Skip ROM command can also be found in the source code. The two routines using ROM commands are shown

below.

/***

Name: get_1wire_addr

Parameters:

Returns: 0 - no device, 1 - 1-wire exist and address read

Description: Called by main to get 1-wire device address ROM code using READ ROM

 command if device exists. Address ROM code is stored in addr_1wire array.

 If device does not exist, returns and stops future 1-wire processing.

***/

int get_1wire_addr(void){

 unsigned char data_cnt = 0;

 /* Initialize 1-wire port */

 one_wr_dir = rd_dir; // set to read direction

 pu20 = 1; // P8_3-0 internal pull-up enabled - 1-wire must pull

// data port high

 if (!(init_trans_1wire())) // 1-wire bus initialization transaction and

 return 0; // check if 1-wire device exists; if not return

 write_byte(rom_cmds[rdrom_cmd]); // send READ ROM command

M16C/26
Interfacing with 1-Wire™ Devices

REU05B0037-0100Z June 2003 Page 6 of 19

 while(data_cnt != 8){ // we need to read 8 bytes from ds1822 scratchpad

 addr_1wire[data_cnt] = read_byte(); // read byte from ds1822

 ++data_cnt; // increment data counter

 }

 return 1;

}

List 2 Read ROM Command in get_1wire_addr Routine to Get 64-bit ROM Code

// Match ROM Command Routine

 if (!t_conv_flg){ // send temp conversion command - conv_t

 write_byte(rom_cmds[mtch_cmd]); // send Match ROM command

 send_dev_addr(); // send 1-wire device ROM code

 write_byte(rom_cmds[conv_cmd]); // send convert T function command

 t_conv_flg = 1; // set conversion flag for temp reading next second

 return;

 }

 else{ // read temp. measurement

 write_byte(rom_cmds[mtch_cmd]); // send Match ROM command

 send_dev_addr(); // send 1-wire device ROM code

 write_byte(rom_cmds[rd_cmd]); // send Read Scratchpad command

 while(data_cnt != 9){ // read 9 bytes from ds1822 scratchpad

 scratch_data[data_cnt] = read_byte(); // store read byte to memory

 ++data_cnt; // increment data counter

 }

 t_conv_flg = 0; // data read - next second do temp conversion

}

List 3 Match ROM Command Routine to Address A Specific 1-Wire Device

3.2.1.3 Function Commands
After ROM commands, the M16C/26 bus master instructs the device what to do next using device-specific

commands, which are called Function Commands. A list of function commands for the DS1822 is shown on the

table below.

Table 2 DS1822 Function Commands

Function Command Hex Code Description

Convert T 44H Command used to initiate temperature conversion.

Write Scratchpad 4EH Command used to write 2-bytes temperature data to the scratchpad memory.

Read Scratchpad BEH Command used to read the 9-byte scratchpad memory.

Copy Scratchpad 48H Command used to copy 2-bytes of data to the EEPROM memory.

Recall E2 B8H Command used to recall 2-bytes of data from EEPROM memory.

Read Power Supply B4H Command used to determine if the device is externally powered or in ‘parasite’
power mode.

M16C/26
Interfacing with 1-Wire™ Devices

REU05B0037-0100Z June 2003 Page 7 of 19

The function commands used in this demo are Convert T and Read Scratchpad commands and are highlighted

in blue on the previous code listing, List 3.

As temperature conversion takes about 750ms, the newly converted temperature data is read on the next

interrupt. What the routine will do during one interrupt is based on the value of t_conv_flag. If the t_conv_flag is 0,

the M16C/26 bus master will issue a Convert T command and a Read Scratchpad command when the flag is set

to 1. The initial value of t_conv_flag is 0.

3.2.2 Miscellaneous 1-Wire Firmware Routines
This section describes the other routines used to communicate with a 1-wire device.

3.2.2.1 Write_byte
The write_byte routine is used when the bus master needs to send data to DS1822. The M16C/26 bus master

issues commands, whether ROM commands or function commands, in byte units. The command is the input

parameter or argument of this routine.

Since the 1-wire bus is actually a serial bus, a byte-to-bit conversion is required. To send a byte, this routine gets

the bit data that needs to be sent, and then calls write_bit function to send the bit information. LSB (least

significant bit) is sent first.

/***
Name: write_byte
Parameters: send data (byte)
Returns:
Description: Converts byte data to bit format before writing to 1-wire bus.
 LSB first format.
***/
void write_byte(unsigned char byte_data){

 unsigned char wr_byte = byte_data;
 unsigned char bit_cntr = 1;

 while (bit_cntr <= 8){ // we need to send 8 bits
 write_bit((wr_byte & 0x01)); // write bit data LSB first
 wr_byte >>= 1; // shift right one bit to get next bit
 ++bit_cntr; // decrement bit counter
 }
}

List 4 write_byte Routine to Send Commands to 1-Wire Bus

M16C/26
Interfacing with 1-Wire™ Devices

REU05B0037-0100Z June 2003 Page 8 of 19

3.2.2.2 Write_bit
The write_bit routine is used to ‘serially’ send bit information, which are called write time slots. Write time slots

should be at least 60us in width and in intervals of at least 1us to allow the DS1822 to recover. Bit data is the

input parameter or argument of this routine.

The routine determines whether a ‘0’ or ‘1’ will be sent and executes a write ‘0’ or ‘1’ slot. The difference between

these two slots is the time the bus is released (brought back to a high level) by changing the 1-wire data port from

an output to an input.

For a write ‘0’ slot, the 1-wire bus is held low for the whole time slot and released only after timing out. For a write

‘1’ slot, the 1-wire bus must be released within a 1us-15us range. The timing to release the 1-wire bus will

depend on how fast the 1-wire bus goes to a high level. This may require some hardware evaluation and

tweaking.

/***
Name: write_bit
Parameters: bit data
Returns:
Description: Writes bit data to 1-wire bus. Write time slots are 60us in
 width and written with 1us intervals.

***/
void write_bit(unsigned char bit_data){

 int wait_time = 1;
 usec_cntr(wait_time); // 1us interval between writes

/* to write a 1: low pulse (> 1us) + high pulse (60us - low pulse (in us) */
/* to write a 0: low pulse for 60us */

 if (!bit_data){ // bit data == 0
 one_wr_dir = wrt_dir; // 1-wire port - output
 one_wr_port = 0; // bring port low
 wait_time = 60; // wait for 60us
 usec_cntr(wait_time);
 one_wr_dir = rd_dir; // 1-wire port - input
 }
 else{ // bit data == 1
 one_wr_dir = wrt_dir; // 1-wire port - output
 one_wr_port = 0; // bring port low
 wait_time = 5; // wait for > 1us
 usec_cntr(wait_time);
 one_wr_dir = rd_dir; // 1-wire port - input
 wait_time = 55; // wait for 55us (= 60us - 5us)
 usec_cntr(wait_time);
 }
}

List 5 write_bit Routine

M16C/26
Interfacing with 1-Wire™ Devices

REU05B0037-0100Z June 2003 Page 9 of 19

3.2.2.3 Read_byte
This routine is used by the M16C/26 (bus master) to read data from the DS1822. The routine returns a byte data

to the calling routine after converting the bit data to a byte. LSB is bit received first. In addition, whether the bit

data is a ‘0’ or a ‘1’ is determined in this routine.

/***
Name: read_byte
Parameters:
Returns: received byte
Description: Converts bit data read from 1-wire bus to byte format. Data from
 DS1822 comes LSB first so some bit manipulation is required.
***/
unsigned char read_byte(void){

 unsigned char rd_byte = 0;
 unsigned char i;

 for (i = 1; i <= 8; i++){ // we need to read 8 bits
 if (read_bit()) // read bit data
 rd_byte |= 0x80; // change MSB from 1 to 0
 if (i < 8) // only shift 7 times
 rd_byte >>= 1; // shift right one bit to get next bit
 }
 return(rd_byte);
}

List 6 read_byte Routine to Read Data from 1-Wire Device

3.2.2.4 Read_bit
This routine is used to read/sample bit data from the 1-wire bus. It returns bit data to the read_byte routine. The

routine samples the 1-wire bus within a read time slot. Like write time slots, the width of a read time slot should be

at least 60us and in 1us (min) intervals.

To get a bit sample, the 1-wire bus is brought low for at least 1us to inform the 1-wire device that the M16C/26

bus master is ready to read bit data. The bus is then released (change from output back to input) and the routine

waits a several us (15us max) before sampling the 1-wire bus. The sample is then sent back to read_byte

routine.

/***
Name: read_bit
Parameters:
Returns: bit data
Description: Reads bit data from 1-wire bus. Read time slots are 60us in
 width and written with 1us intervals.

 Master must read bit within 15us after bringing port low.

***/

M16C/26
Interfacing with 1-Wire™ Devices

REU05B0037-0100Z June 2003 Page 10 of 19

unsigned char read_bit(void){

 int wait_time = 1;
 unsigned char bit_data = 0; // bit data initialize to 0

 usec_cntr(wait_time); // 1us interval between reads

/* To read bit data from DS1822, a low pulse (> 1us) is required to initiate process.
The bit is read within a 15us window. */

 one_wr_dir = wrt_dir; // 1-wire port - output
 one_wr_port = 0; // bring port low
 wait_time = 1; // wait for 1us
 usec_cntr(wait_time);
 one_wr_dir = rd_dir; // 1-wire port - input

 wait_time = 1; // wait for > 1us but < 15us
 usec_cntr(wait_time);

 // read bit data from 1-wire bus
 if (one_wr_port) // if a 1, change bit variable to 1
 bit_data = 1;

 wait_time = 58; // wait for 58us (= 60us - 1us - 1us)
 usec_cntr(wait_time);

 return(bit_data); // return bit data
}

List 7 read_bit Routine

3.2.2.5 Send_dev_addr
This routine is used to send the 64-bit ROM code of a 1-wire device. The M16C/26 bus master addresses a

specific 1-wire device by sending the 64-bit ROM code of the 1-wire device. The 64-bit code, read in the

get_1wire_addr routine, is stored in an array. This routine reads the 64-bit (8-byte) code from the array and

sends it in byte increments.

/***
Name: send_dev_addr
Parameters:
Returns:
Description: Sends the 64-bit ROM code of the 1-wire device.

***/
void send_dev_addr(void){

 int data_cnt = 0;

 while (data_cnt != 8){ // there are 8 bytes (64 bits) to send

M16C/26
Interfacing with 1-Wire™ Devices

REU05B0037-0100Z June 2003 Page 11 of 19

 write_byte(addr_1wire[data_cnt]); // bring 1-wire bus low
 ++data_cnt;
 }
}

List 8 send_dev_addr Routine

3.2.2.6 Usec_cntr
The timing parameters for handling transactions or sending/reading from the 1-wire bus are in microseconds (us).

This routine is given the amount of time (in microseconds, us) to count and returns to calling routine after counter

expires. Timer A1, configured as a 1us timer in timer mode, start and stop are controlled inside this routine.

Timer A1 is configured in mcu_init routine of main.c.

/***
Name: usec_cntr
Parameters: time period - no. of us
Returns:
Description: usec counter function. Calling routine provides the amount of time,
 in usec. no_of_usec is multiplied by 16 because the clock source for
 timer A1 is 16MHz and not 1MHz.

**/
void usec_cntr(int no_of_usec){

 ta1 = no_of_usec * 16; // no. of us * 16 because timer A1 clock is 16MHz
 ta1s = 1; // start timer A1
 while (!ir_ta1ic){} // wait for Timer A1 to expire
 ta1s = 0; // stop Timer A1
 ir_ta1ic = 0; // reset Timer A1 irq flag to 0

}

List 9 usec_cntr Routine

 /* Configure Timer A1 - us (microsecond) counter */
 ta1mr = 0x00; // Timer mode, f1
 ta1 = 0x0; // initial value - set by usec_cntr function

 ta1s = 0; // timer A1 will be started/stopped by usec_cntr function

List 10 Timer A1 Initialization Snippet from mcu_init Routine in main.c

4.0 Conclusions
1-wire devices provide flexibility in various applications using very few signal lines. Connecting these 1-wire

devices and implementing the interface for reading data and control are easily accomplished using the Renesas

M16C/26 MCU.

M16C/26
Interfacing with 1-Wire™ Devices

REU05B0037-0100Z June 2003 Page 12 of 19

5.0 Reference

Renesas Technology Corporation Semiconductor Home Page
http://www.renesas.com

E-mail Support
support_apl@renesas.com

Data Sheets

• M16C/26 datasheets, M30262eds.pdf

User’s Manual

• M16C/20/60 C Language Programming Manual, 6020c.pdf

• M16C/20/60 Software Manual, 6020software.pdf

• Interrupt Handler App Note, M16C26_Interrupt_Handlers_in_C.doc

• Mini 26 Users Manual, Users_Manual_Mini26B.pdf

For more information on 1-Wire devices, device datasheets, application notes, please visit:

http://www.maxim-ic.com/1-Wire.cfm

6.0 Software Code
The 1-wire routines for this demo can be found on one_wire.c, which is listed below. The project, written for the

Mini 26 Board, can be requested from your Renesas representative.

/***

*

* File Name: one_wire.c

*

* Content: Code for interfacing with a 1-wire device. The MCU is the

* bus master and all 1-wire devices connected to it are slaves.

*

* Copyright (c) 2003 Renesas Technology America, Inc.

* All rights reserved

*

*===

* $Log:$

===/

#include "..\common\sfr262.h"

#include "one_wire.h"

M16C/26
Interfacing with 1-Wire™ Devices

REU05B0037-0100Z June 2003 Page 13 of 19

int get_1wire_addr(void);

void get_1wire_samp(void);

char init_trans_1wire(void);

void send_dev_addr(void);

void usec_cntr(unsigned int);

unsigned char read_byte(void);

unsigned char read_bit(void);

void write_byte(unsigned char);

void write_bit(unsigned char);

unsigned char rom_cmds[] = { // ROM Commands to 1-wire device

 0x00,

 0x44, // Convert T - initiates temp conversion

 0xBE, // Read scratchpad including CRC

 0x4E, // Write scratchpad bytes 2 and 3 - Th and Tl

 0x48, // Copy Th and Tl from scratchpad to EEPROM

 0xB8, // Recall Th and Tl from EEPROM to scratchpad

 0xB4, // Read Power Supply Mode of 1-Wire device

 0xF0, // Search/identify ROM codes of all slave devices

 0x33, // Read ROM - if only one slave device

 0x55, // Match ROM - identify which slave device to address

 0xCC, // Skip ROM - address all slave device w/o ROM code

 0xEC // Alarm Search - identify slave with alarm flag set

};

char one_wire_exist = 0; // 0 - no 1-wire device, 1 - 1-wire device exists

char t_conv_flg = 0; // 0 - temp conversion, 1 - read temp - due to 750ms

time for temp conversion

unsigned char scratch_data[9] = { 0, 0, 0, 0, 0, 0, 0, 0, 0}; // array to store ds1822

 // scratchpad

unsigned char addr_1wire[8] = { 0, 0, 0, 0, 0, 0, 0, 0}; // array for 64-bit ROM code

 // address of 1-wire device

unsigned temp_data; // C to F converted temperature data

/***

Name: get_1wire_addr

Parameters:

Returns: 0 - no device, 1 - 1-wire exist and address read

Description: Called by main to get 1-wire device address ROM code using READ ROM

 command if device exists. Address ROM code is stored in addr_1wire array.

 If device does not exist, returns and stops future 1-wire processing.

***/

M16C/26
Interfacing with 1-Wire™ Devices

REU05B0037-0100Z June 2003 Page 14 of 19

int get_1wire_addr(void){

 unsigned char data_cnt = 0;

 /* Initialize 1-wire port */

 one_wr_dir = rd_dir; // set to read direction

 pu20 = 1; // P8_3-0 internal pull-up enabled - 1-wire must pull data port high

 if (!(init_trans_1wire())) // 1-wire bus initialization transaction and check if

 return 0; // 1-wire device exists; if not return

 write_byte(rom_cmds[rdrom_cmd]); // send READ ROM command

 while(data_cnt != 8){ // we need to read 8 bytes from ds1822 scratchpad

 addr_1wire[data_cnt] = read_byte(); // read byte from ds1822

 ++data_cnt; // increment data counter

 }

 return 1;

}

/***

Name: get_1wire_samp

Parameters:

Returns:

Description: Called by main to get temp sample from the 1-wire device, ds1822.

 Bus transaction sequence always consists of:

 a. Initialization

 b. ROM Command and any required data exchange

 c. 1-Wire Function Command

 Doing temp conversion ds1822 takes 750ms so we break it into two steps:

 1. Send a temp conversion command.

 2. Read temp (/scratch) data

 Which step gets executed depends on the t_conv_flag:

 t_conv_flag = 0: temp conversion

 t_conv_flag = 1: read temp data

***/

void get_1wire_samp(void){

 unsigned char data_cnt = 0;

 unsigned int temp_var;

 float temp_value;

 init_trans_1wire(); // 1-wire bus initialization transaction

// Skip ROM Command Routine

/* write_byte(rom_cmds[skip_cmd]); // send Skip ROM command

 write_byte(rom_cmds[rd_cmd]); // send Read Scratchpad command

 while(data_cnt != 9){ // we need to read 9 bytes from ds1822 scratchpad

 scratch_data[data_cnt] = read_byte(); // read byte from ds1822

 ++data_cnt; // increment data counter

 }

*/

M16C/26
Interfacing with 1-Wire™ Devices

REU05B0037-0100Z June 2003 Page 15 of 19

// Match ROM Command Routine

 if (!t_conv_flg){ // send temp conversion command - conv_t

 write_byte(rom_cmds[mtch_cmd]); // send Match ROM command

 send_dev_addr(); // send 1-wire device ROM code

 write_byte(rom_cmds[conv_cmd]); // send convert T function command

 t_conv_flg = 1; // set conversion flag for temp reading next second

 return;

 }

 else{ // read temp. measurement

 write_byte(rom_cmds[mtch_cmd]); // send Match ROM command

 send_dev_addr(); // send 1-wire device ROM code

 write_byte(rom_cmds[rd_cmd]); // send Read Scratchpad command

 while(data_cnt != 9){ // read 9 bytes from ds1822 scratchpad

 scratch_data[data_cnt] = read_byte(); // store read byte to memory

 ++data_cnt; // increment data counter

 }

 t_conv_flg = 0; // data read - next second do temp conversion

 }

 if (scratch_data[1] & 0xF0){ // negative temp ?

temp_var = ((unsigned int) scratch_data[1]) << 8; // get MSB temp data and

// shift 8 bits to the left

 temp_var &= 0xFF00; // zero out lower 8 bits

 temp_var |= (unsigned int) scratch_data[0]; // get LSB temp data ORed with

 // MSB data

 temp_var = (0xFFFF - temp_var) >> 3; // shift left 3x after reading negative

// temp

 temp_var &= 0xFF; // get temp data in 8 bit form

 }

 else{

 temp_var = ((unsigned int) scratch_data[1]) << 8; // get MSB temp data and

/ /shift 8 bits to the left

 temp_var &= 0xFF00; // zero out lower 8 bits

 temp_var = (temp_var | (unsigned int) scratch_data[0]) >> 3; // get LSB temp

// data ORed with MSB data and then shift left 3x

 temp_var &= 0xFF; // get temp data in 8 bit form

 }

 temp_var /= 2; // calculate temp

 temp_var = ((temp_var * 9) / 5) + 32; // convert C to F

 temp_data = temp_var;

}

M16C/26
Interfacing with 1-Wire™ Devices

REU05B0037-0100Z June 2003 Page 16 of 19

/***

Name: init_trans_1wire

Parameters:

Returns:

Description: Initializes communications with 1-wire device. All transactions for

 1-wire communications starts with an initialization sequence so the

 bus master(MCU) knows all slave devices are ready to operate.

***/

char init_trans_1wire(void){

 unsigned int wait_time;

 // initialization routine starts with a master reset pulse:

 // 1-wire bus pulled low for at least 480us

 one_wr_dir = wrt_dir; // 1-wire port - output

 one_wr_port = 0; // bring 1-wire bus low

 wait_time = 480; // 480us min reset pulse

 usec_cntr(wait_time);

 one_wr_dir = rd_dir; // 1-wire port - input

 wait_time = 30; // wait period for 1-wire device to send

 usec_cntr(wait_time); // presence pulse - 15-60us

 if (!one_wr_port) // read presence pulse - if low then

 one_wire_exist = 1; // 1-wire device exists

 wait_time = 450; // timeout required: 480us(reqd)-30(wait period)=450

 usec_cntr (wait_time);

 return one_wire_exist;

}

/***

Name: send_dev_addr

Parameters:

Returns:

Description: Sends the 64-bit ROM code of the 1-wire device.

***/

void send_dev_addr(void){

 int data_cnt = 0;

 while (data_cnt != 8){ // there are 8 bytes (64 bits) to send

 write_byte(addr_1wire[data_cnt]); // bring 1-wire bus low

 ++data_cnt;

 }

}

M16C/26
Interfacing with 1-Wire™ Devices

REU05B0037-0100Z June 2003 Page 17 of 19

/***

Name: usec_cntr

Parameters: time period - no. of us

Returns:

Description: usec counter function. Calling routine provides the amount of time,

 in usec. no_of_usec is multiplied by 20 because the clock source for

 timer A1 is 20MHz.

**/

void usec_cntr(unsigned int no_of_usec){

 ta1 = no_of_usec * 20; // no. of us * 20 because timer A1 clock is 20MHz

 ta1s = 1; // start timer A1

 while (!ir_ta1ic){} // wait for Timer A1 to expire

 ta1s = 0; // stop Timer A1

 ir_ta1ic = 0; // reset Timer A1 irq flag to 0

}

/***

Name: read_byte

Parameters:

Returns: received byte

Description: Converts bit data read from 1-wire bus to byte format. Data from

 ds1822 comes LSB first so some bit manipulation is required.

***/

unsigned char read_byte(void){

 unsigned char rd_byte = 0;

 unsigned char i;

 for (i = 1; i <= 8; i++){ // we need to read 8 bits

 if (read_bit()) // read bit data

 rd_byte |= 0x80; // change MSB from 1 to 0

 if (i < 8) // only shift 7 times

 rd_byte >>= 1; // shift right one bit to get next data bit

 }

 return(rd_byte);

}

/***

Name: read_bit

Parameters:

Returns: bit data

Description: Reads bit data from 1-wire bus. Read time slots are 60us in

 width and written with 1us intervals.

 Master must read bit within 15us after bringing port low.

***/

unsigned char read_bit(void){

 int wait_time = 1;

 unsigned char bit_data = 0; // bit data initialize to 0

 usec_cntr(wait_time); // 1us interval between reads

/* To read bit data from DS1822, a low pulse (> 1us) is required to initiate process. */

M16C/26
Interfacing with 1-Wire™ Devices

REU05B0037-0100Z June 2003 Page 18 of 19

/* The bit is read within a 15us window. */

 one_wr_dir = wrt_dir; // 1-wire port - output

 one_wr_port = 0; // bring port low

 wait_time = 1; // wait for 1us

 usec_cntr(wait_time);

 one_wr_dir = rd_dir; // 1-wire port - input

 wait_time = 1; // wait for > 1us but < 15us

 usec_cntr(wait_time);

 // read bit data from 1-wire bus

 if (one_wr_port) // is it a 1, then change bit variable to 1

 bit_data = 1;

 wait_time = 58; // wait for 58us (= 60us - 1us - 10us)

 usec_cntr(wait_time);

 return(bit_data); // return bit data

}

/***

Name: write_byte

Parameters: send data (byte)

Returns:

Description: Converts byte data to bit format before writing to 1-wire bus.

 LSB first format.

***/

void write_byte(unsigned char byte_data){

 unsigned char wr_byte = byte_data;

 unsigned char bit_cntr = 1;

 while (bit_cntr <= 8){ // we need to send 8 bits

 write_bit((wr_byte & 0x01)); // write bit data LSB first

 wr_byte >>= 1; // shift right one bit to get next data bit

 ++bit_cntr; // decrement bit counter

 }

}

/***

Name: write_bit

Parameters: bit data

Returns:

Description: Writes bit data to 1-wire bus. Write time slots are 60us in

 width and written with 1us intervals.

***/

void write_bit(unsigned char bit_data){

 int wait_time = 1;

 usec_cntr(wait_time); // 1us interval between writes

/* to write a 1: low pulse (> 1us) + high pulse (60us - low pulse (in us) */

/* to write a 0: low pulse for 60us */

M16C/26
Interfacing with 1-Wire™ Devices

REU05B0037-0100Z June 2003 Page 19 of 19

 if (!bit_data){ // bit data == 0

 one_wr_dir = wrt_dir; // 1-wire port - output

 one_wr_port = 0; // bring port low

 wait_time = 60; // wait for 60us

 usec_cntr(wait_time);

 one_wr_dir = rd_dir; // 1-wire port - input

 }

 else{ // bit data == 1

 one_wr_dir = wrt_dir; // 1-wire port - output

 one_wr_port = 0; // bring port low

 wait_time = 5; // wait for > 1us

 usec_cntr(wait_time);

 one_wr_dir = rd_dir; // 1-wire port - input

 wait_time = 55; // wait for 55us (= 60us - 5us)

 usec_cntr(wait_time);

 }

}

Keep safety first in your circuit designs!

• Renesas Technology Corporation puts the maximum effort into making semiconductor products

better and more reliable, but there is always the possibility that trouble may occur with them. Trouble
with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Notes regarding these materials

• These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corporation product best suited to the customer's application; they do not convey any
license under any intellectual property rights, or any other rights, belonging to Renesas Technology
Corporation or a third party.

• Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms,
or circuit application examples contained in these materials.

• All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corporation without notice due to product improvements
or other reasons. It is therefore recommended that customers contact Renesas Technology
Corporation or an authorized Renesas Technology Corporation product distributor for the latest
product information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corporation by various
means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

• When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products. Renesas
Technology Corporation assumes no responsibility for any damage, liability or other loss resulting
from the information contained herein.

• Renesas Technology Corporation semiconductors are not designed or manufactured for use in a
device or system that is used under circumstances in which human life is potentially at stake. Please
contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product
distributor when considering the use of a product contained herein for any specific purposes, such as
apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea
repeater use.

• The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in
whole or in part these materials.

• If these products or technologies are subject to the Japanese export control restrictions, they must be
exported under a license from the Japanese government and cannot be imported into a country other
than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

• Please contact Renesas Technology Corporation for further details on these materials or the
products contained therein.

