Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

M32C/85 Groups

Intelligent I/O - Use of 2 Channels for Clock Synchronous Serial Communication and 4 Channels for PWM Output (Fixed PWM Cycle)

1. Abstract

This application note describes a procedure to use 2 channels for clock synchronous serial communication and 4 channels for PWM output (fixed PWM cycle).

Introduction

The explanation of this issue is applied to the following condition:

Applicable MCU: M32C/85 Groups, 144-pin package

(In a 100-pin package, eight intelligent I/O waveform output ports and five out of six intelligent I/O serial communication ports are shared)

System clock: 30MHz

The program on this application note can also be used when operating other microcomputers within the M16C Family, provided they have the same SFRs (Special Function Registers) as the M32C/85 Groups. However, some functions may have been modified. Refer to each device's hardware manual for details. Use functions covered in this application note only after careful evaluation.

3. Detailed Description

The intelligent I/O includes followings.

- 16-bit base timer register for free-running operation x 1
- 16-bit register for time measurement or waveform generation x 8
- A set of two 8-bit shift registers for communication x 2

The OUTC1j (j = 4 to 7) pin outputs PWM waveform signal with fixed cycle and variable duty ratio. The transmit data for the clock synchronous serial communication is output from the ISTxDi (i = 0,1) pin and

the transfer clock is output from the ISCLKi pin while the received data is input to the ISRxDi pin.

Table 1 lists pin settings for a sample program in this application note.

Figure 1. Pin Settings

Category	Pin No.	Pin Name	Port No.
	34	ISTxD1	P73
Serial Communication Channel 1	33	ISCLK1	P74
	32	ISRxD1	P75
Serial Communication Channel 0	31	ISTxD0	P76
	30	ISCLK0	P77
	29	ISRxD0	P80
Fixed PWM Cycle Output	14	OUTC14	P140
	13	OUTC15	P141
	12	OUTC16	P142
	11	OUTC17	P143

Table 2 to Table 4 list selectable functions. The sample program is for when the checked functions are selected in these tables.

Table 2. PWM Output Channel j (j = 4 to 7) Selectable Functions in Single Waveform Output Mode

Item	Settings	√
Default Output	"L" output as default	\checkmark
	"H" output as default	
Inverse Output Level	Output level is not inversed	\checkmark
	Output level is inversed	

Table 3. Selectable Functions in Communication 0 Clock Synchronous Serial Interface Mode

Item	Settings	$\sqrt{}$
Count Source		Cannot be selected
Divide Ratio of Count Source		Cannot be selected
Transfer Clock	Internal clock	\checkmark
	External clock	
Transfer Clock Setting	f8	
	f2n (n = 15)	√
	Input from ISCLK0	
Transfer Format	LSB first	\checkmark
	MSB first	
ISRxD, ISTxD Polarity Inverse	No inverse	\checkmark
	Inverse	
T ::::::::::::::::::::::::::::::::::::	No data in the G0TB register	
Transmit Interrupt Cause	Transmission is completed	√

Item	Settings	\checkmark
	Stop clock	
Count Source	Apply two-phase pulse	
	f1	√
Divide Ratio of Count Source	Divide-by-2	
	:	
	Divide-by-64	
	No division	\checkmark
Transfer Clock	Internal clock	\checkmark
	External clock	
	Generate in channel 3 phase-delayed waveform	
	output mode	V
Transfer Clock Setting	f8	
	f2n	
	Input from ISCLK0	
Transfer Format	LSB first	√
	MSB first	
ISRxD, ISTxD Polarity Inverse	No inverse	√
	Inversed	
Transmit Interrupt Cause	No data in the G1TB register	
Transmit Interrupt Cause	Transmission is completed	\checkmark

Table 4. Selectable Functions in Communication Unit 1 Clock Synchronous Serial I/O Mode

(1) Settings for PWM Cycle by Channel 0 and Transfer Speed of Communication Unit 1

Set the PWM cycle and transfer clock cycle for communication unit 1 by channel 0. (the PWM cycle and the transfer clock cycle are synchronized in the following program)

Set the FSC0 bit in the G1FS register to 0 (selects the waveform generating function).

Set bits MOD 2 to 0 in the G1POCRj (j=0 to 7) to 111b (use communication function output).

Data output for communication unit 1 is automatically selected as to the ISTxD1 pin.

Set the RST1 bit in the G1BCR1 register to 1 (the base timer is reset by matching with the G1PO0 register).

When fBT1 is the count source of base timer and n is a setting value of the G1PO0 register, PWM cycle and transfer speed of communication unit 1 (transfer clock cycle) can be calculated by following equations.

PWM cycle:
$$\frac{n+2}{\text{fBT1}}$$

Transfer speed:
$$\frac{\text{fBT1}}{2(n+2)}$$

(2) Output Setting for the ISCLK1 Pin

Set the FSC1 bit in the G1FS register to 0 (selects the waveform generating function).

Set bits MOD 2 to 0 in the G1POCRj (j = 0 to 7) register to 111b.

Clock output for communication unit 1 is automatically selected as to the ISCLK1 pin.

(3) Transfer Clock Generation by Channel 3 (Communication Unit 1)

The transfer clock is generated in phase-delayed waveform output mode of the channel 3 waveform generating function. In the sample program, the transfer clock is generated as soon as the base timer starts counting, when the G1PO3 register is set to 0001h.

(4) Low-level ("L") Width Setting of PWM Pulse by Channel j (j = 4 to 7)

Set the "L" width of PWM output waveform in single-phase waveform output mode of channel j waveform generating function.

The "L" width can be calculated from the following equation when m is the setting value of the G1POj register.

"L" width:
$$\frac{m}{\text{fBT1}}$$

(5) "L" Width of PWM Pulse

When the G1POj register value is rewritten in the channel 0 waveform generating interrupt mode, the "L" width of PWM waveform is changed.

4. Settings for Sample Program

- Channel j(j=4 to 7)PWM cycle: 100 µs
- Communication unit 1 bit rate: 5000 bps
- Communication unit 1 bit rate: 1 Mbps

Sample program has the definition values as listed in Table 5. The "H" width ratio of channel j (j = 4 to 7) PWM output is increased in the sample program. When the frequency of duty ratio change reaches the set value ("3" for an example in Table 5), the ratio is back to the default. This routine is repeated.

Table 5. Definition Value of Sample Program

Items	Definition Value	Setting Ranges
PWM cycle based on fBT1		
(number of communication unit 1 transfer clock cycle	3000	100 to 65500 (hector-unit)
divided by 2)		
Initial ratio of "H" width (channel 4 PWM output) (%)	60	0 to 100
Initial ratio of "H" width (channel 5 PWM output) (%)	50	"
Initial ratio of "H" width (channel 6 PWM output) (%)	40	"
Default ratio of "H" width (channel 7 PWM output) (%)	30	"
"H" width increment ratio (%)	10	0 to (no more than the "H" width ratio of 100%)
Frequency of duty ratio change	3	0 to (no more than the "H" width ratio of 100%)

Figure 1 to Figure 3 show timing diagrams of the sample program

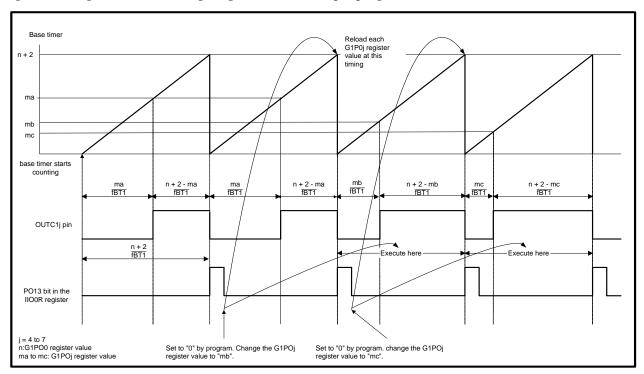


Figure 1. PWM Waveform Timing Diagram

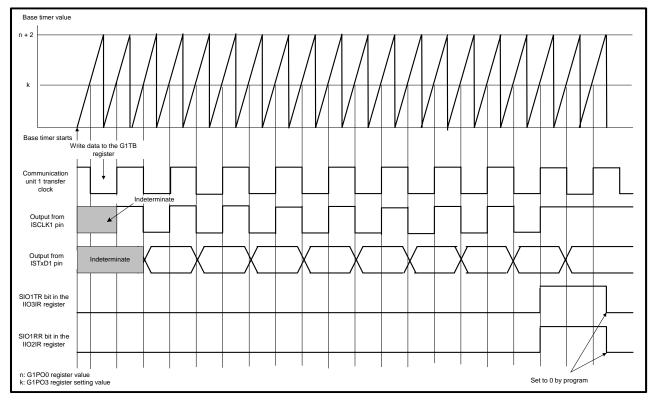


Figure 2. Transfer/Receive Timing Diagram of Communication Unit 1

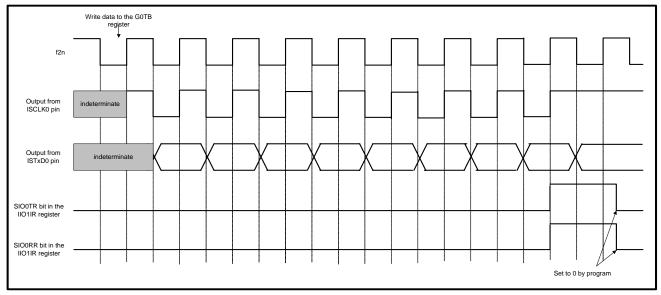


Figure 3. Transfer/Receive Timing Diagram of Communication Unit 0

Figure 4 to Figure 6 show flow charts of register settings.

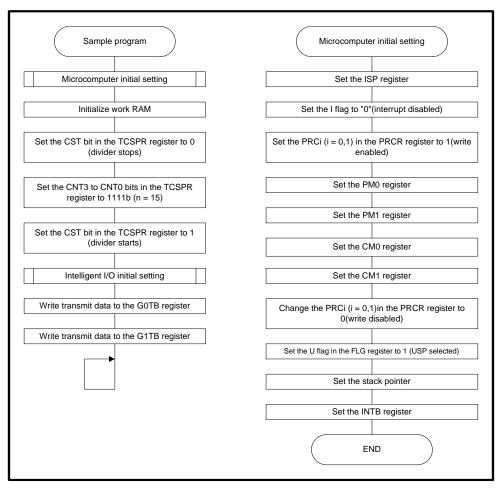


Figure 4. Register Setting (1)

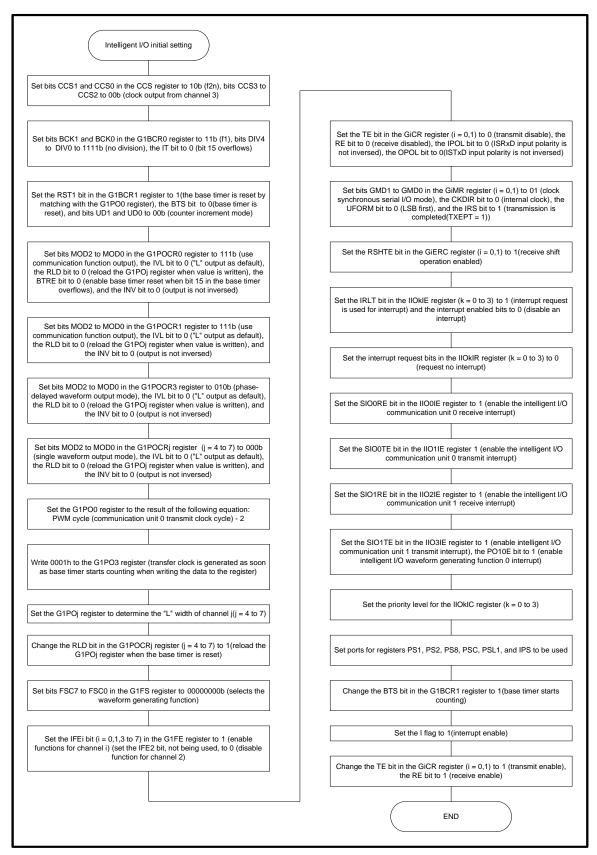


Figure 5. Register Settings (2)

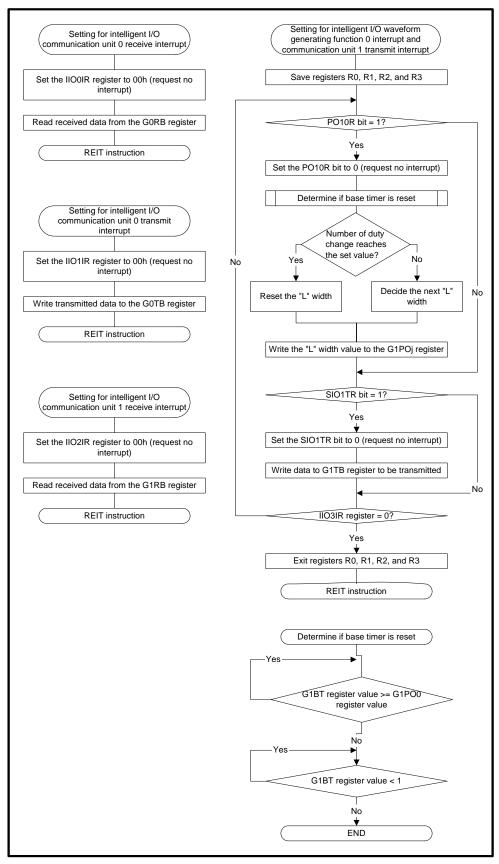


Figure 6. Register Settings (3)

5. Reference Program

Please find the reference program from the Renesas Technology Web site. Click Application Note in the left menu of the M32C/80 Series top page.

6. Reference Documents

Hardware manual
M32C/85 Group Hardware Manual
(Use the most recent version of the document on the Renesas Technology Web site.)

Technical news/Technical update (Use the most recent version of the document on the Renesas Technology Web site.)

Web site and Support

Renesas Technology Web site http://www.renesas.com/

Inquiries http://www.renesas.com/inquiry csc@renesas.com

REVISION HISTORY

Rev. Date	Description		
	Date	Page	Summary
1.00	2006.03.15	-	First edition issued

Keep safety first in your circuit designs!

 Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.
 Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party.
- 2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein.
 - The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
 - Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com).
- 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- 5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- 6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials.
- 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
 - Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
- 8. Please contact Renesas Technology Corporation for further details on these materials or the products contained therein.