

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

 APPLICATION NOTE

REU05B0044-0101Z Sept 2004 Page 1 of 16

M16C/26
Implementing Real Time Clock and WAIT Mode

1.0 Abstract
The following article describes the implementation of a low-power, real time clock using the sub-clock circuit with

a 32.768 kHz crystal and Wait mode of the M16C/26 microcontroller (MCU).

2.0 Introduction
This article shows how to use the M16C/26 MCU’s WAIT mode and implement a real time clock function on the

M16C/26 MCU using a 32.768KHz crystal on the sub-clock circuit.

The Renesas M16C/26 is a 16-bit MCU based on the M16C/60 CPU core. It has multiple peripherals such as

10-bit A/D, UARTs, clock circuits, etc.

There are three oscillator circuits in the M16C/26, which includes a main clock circuit, a sub-clock circuit, and an

on-chip oscillator. After a reset, the MCU always starts running from the main clock, which is usually used in

normal operation. The on-chip oscillator is an internal oscillator, which can be used in case the main clock stops.

The sub-clock, which needs to be enabled after reset, is a low frequency clock, that is useful for power reduction

and as a low speed clock source for timers and other peripherals. Using a 32.768KHz crystal in the sub-clock

circuit, a one-second timer can be generated and a real time clock (RTC) function is easily implemented.

The M16C/26 has two low power modes of operation, STOP mode and WAIT mode. When placed in STOP

mode all oscillation circuits are stopped and the MCU remains in the STOP state until an external interrupt or

Reset occurs. In WAIT mode, the clock that drives the MCU core logic, BCLK, is switched from the main clock to

the sub-clock circuit to lower power consumption. The peripheral clocks can be stopped, but not the sub-clock

oscillator divided by 32 (fc32), to further lower power consumption. Similar to STOP mode, an interrupt or a reset

is required to exit from WAIT mode.

A demo program for the MSV30262-SKP was developed to show the RTC-WAIT implementation.

3.0 Real-Time Clock Setup and Implementation

3.1 Sub-Clock Block and Hardware
Figure 1 shows the block diagram of the M16C/26 clock generating circuit. Figure 2 shows examples on how to

wire the sub-clock pins to a crystal or an oscillator. The sub-clock circuit generates two signals internally, fc and

fc32 (fc/32), and can be used as a clock source for the different M16C/26 MCU peripherals. A 32.768KHz crystal

is connected to the sub-clock pins on the MSV30262 Board.

M16C/26
Implementing Real Time Clock and WAIT Mode

REU05B0044-0101Z Sept 2004 Page 2 of 16

Figure 1 M16C/26 Clock Circuit Block Diagram

Figure 2 Connecting to Sub-clock Pins

M16C/26
Implementing Real Time Clock and WAIT Mode

REU05B0044-0101Z Sept 2004 Page 3 of 16

3.2 Enabling the Sub-clock Circuit
As mentioned earlier, the sub-clock oscillation circuit is disabled after reset. To be able to use the sub-clock

circuit, it needs to be enabled. The steps necessary to enable the sub-clock circuit are listed below and followed

by sample code listing used in the demo.

1. Change Ports 8_6 (XCin) and 8_7 to inputs.

 // Start the 32Khz crystal sub clock
 pd8_7 = 0; // setting GPIO to inputs (XCin/XCout)
 pd8_6 = 0;

2. Disable protection of clock control register.

 prc0 = 1; /* Unlock CM0 and CM1 */

3. Enable sub-clock circuit.

 cm04 = 1; // Start the 32KHz crystal

4. Enable protection of clock control register.

 prc0 = 0; // Lock the System Clock Control Register

3.3 Setting up the Real Time Clock Timer
Now that we have enabled the sub-clock circuit, we need to setup the second timer that will run the real-time

clock function. As mentioned above, the sub-clock circuit generates fc and fc32. fc is the frequency of the crystal

or oscillator connected to the sub-clock pins. On the other hand, fc32 is fc divided by 32. On the MSV30262

Board, a 32.768 KHz crystal is connected between Xcin and Xcout, making fc equal to 32.768KHz. The

frequency fc32 then becomes, 1.024KHz.

A sample code, used in the demo, on setting up a timer (i.e. Timer B1) on the M16C/26 as the real-time clock

timer is shown below.

 /* Configure Timer B1 - RTC (second) timer*/

 tb1mr = 0xc0; // Timer mode, fc32 (32.768KHz/32 = 1024Hz)

 tb1 = 1023; // Set the counter to interrupt every second (1s = 1024 (0-1023) count).

Timer B1 is used in timer mode with fc32 as the clock source. In Timer mode the timer will count down every fc32

from a preset value (tb1) until it underflows. When the timer underflows it will generate an interrupt request and

reload the preset value into the count register. It will then begin counting down again.

M16C/26
Implementing Real Time Clock and WAIT Mode

REU05B0044-0101Z Sept 2004 Page 4 of 16

To generate a 1-second timer, Timer B1 count (tb1) must be set to count 1024 (1 second x fc32). But since the

counter goes to 0, setting tb1 to 1023 will generate a 1024 count. The demo uses a 1 second timer but it can be

setup as a 1-minute timer by setting tb1 to 61440 (60 seconds x fc32).

Once the timer is setup, setting the start flag (i.e. tb1s) to 1 will start the timer running. For the demo, the timer

was not started until the clock has been preset.

3.4 The Real-time Clock Interrupt Routine
An interrupt is generated, every second, every time our timer underflows. And so, time must be calculated every

time this interrupt routine is called. A sample code that calculates time in military time format is shown below.

/***

Name: rtc_int

Parameters: None

Returns: None

Description: This is the RTC timer, Timer B1, interrupt routine. It is called

 every second.

***/

void rtc_int(void)

{

 unsigned int i;

 /* time calculation (in military time mode) */

 if (++second >= 60){

 second = 0;

 if (++minute >= 60){

 minute = 0;

 ++hour;

 if (hour > 23)

 hour = 0;

 }

 }

To tell the C compiler that the routine is an interrupt routine, a ‘# pragma interrupt /B irq_rtn’ must be defined

and where irq_rtn is the routine to be processed when the interrupt is generated. A sample definition used in the

demo, and can be found in rtc.c, is shown below.

/* interrupt routine used for rtc - vectors modified in sect30_rtc.inc */
#pragma INTERRUPT /B rtc_int

To be able to jump to this rtc_int routine, the M16C/26 MCU needs to know its vector address. The vector is set

in an include file, sect30.inc (in the demo, sect30_rtc.inc). Please see sample snippet below used in

sect30_rtc.inc on how to setup the interrupt vector for our real time clock timer.

M16C/26
Implementing Real Time Clock and WAIT Mode

REU05B0044-0101Z Sept 2004 Page 5 of 16

 .lword dummy_int ; TIMER A0 (for user)
 .lword dummy_int ; TIMER A1 (for user)
 .lword dummy_int ; TIMER A2 (for user)
 .lword dummy_int ; TIMER A3 (for user)
 .lword dummy_int ; TIMER A4 (for user) (vector 25)
 .lword dummy_int ; TIMER B0 (for user) (vector 26)
 .glb _rtc_int
 .lword _rtc_int ; TIMER B1 (for user) (vector 27)
 .lword dummy_int ; TIMER B2 (for user) (vector 28)
 .lword dummy_int ; INT0 (for user) (vector 29)

Start rtc_int()

Calculate
Time

brd_mode =
RUNNING

Sequential LED
display count

Decrement
on_time counter

on_time <=
0 (zero)

Demo Heartbeat
Blink Red LED*
(every second)

brd_mode =
GO_TO_WAIT

Return from Irq

Y

Y

N

NOTE:
1. Functions called are in blue letters. See rtc.c for details.
2. Board mode are shown in red letters.
3. Blinking Red LED is to show that a program is running.

N (brd_mode = WAIT)

Figure 3 Real-time clock timer (Timer B1) interrupt routine, rtc_int(), flowchart

M16C/26
Implementing Real Time Clock and WAIT Mode

REU05B0044-0101Z Sept 2004 Page 6 of 16

3.5 WAIT Mode and Real-time Clock
In many applications the real-time clock is required to operate under very low power conditions. This can be

accomplished by using a timer and the fc32 clock as the count source. The fc32 clock allows very low power

operation by allowing the MCU to operate in WAIT mode with all peripherals except those supplied with the fc32

clock to be disabled.

In the demo, the real-time clock timer B1 is used in Timer mode to generate an interrupt every second. After the

interrupt routine is serviced, the M16C/26 goes into WAIT mode. Every second, the real-time clock timer B1

interrupt occurs and triggers the M16C/26 out of WAIT mode, the timer B1 interrupt routine is serviced, and then,

the M16C/26 goes back to WAIT mode. As a note, an interrupt (or a reset) is required to bring the M16C/26 back

from a WAIT mode and so ensure that interrupts are enabled and the interrupt routine is set.

3.6 Entering WAIT Mode
When the WAIT instruction is executed, the BCLK stops and the M16C/26 go into WAIT mode. If the WAIT

Peripheral Function Clock Stop bit, CM02, is set the peripheral device clocks are also stopped. The oscillation

circuits continue to operate in WAIT mode. To minimize power requirements, the sub-clock can be selected as

the system clock and the main clock oscillation circuit is stopped. When the sub-clock is selected as the system

clock, the Peripheral Function Clock Stop bit should not be set to 1. The basic steps to enter WAIT mode are

shown below.

1. Disable protection of the clock control registers. prc0 = 1;

2. Switch the system clock to the sub-clock. cm07 = 1;

3. To reduce the power requirement, stop the main clock. cm05 = 1;

4. Enable protection of the clock control registers. prc0 = 0;

5. Call the WAIT instruction. asm (“wait”);

In the demo, the wait_setup() function routine, shown below, makes the preparation for WAIT mode but does

NOT execute the WAIT instruction. The WAIT instruction is executed in the main() loop List 1. For demo

purposes, aside from the real-time clock timer interrupt, another interrupt (a key input interrupt) was added to

allow the M16C/26 to exit WAIT mode. Pressing one of the three user pushbuttons S2, S3, or S4 on the

MSV30262 Board generates a key input interrupt. The key input interrupt routine (wakeup_int()) must also be

defined similar to the real-time clock timer B1 interrupt routine.

M16C/26
Implementing Real Time Clock and WAIT Mode

REU05B0044-0101Z Sept 2004 Page 7 of 16

/***
Name: wait_setup
Parameters: None
Returns: None
Description: This prepares the MCU to enter wait mode. The application/demo runs
 and after a preset period, goes into wait mode.

 Aside from the real-time clock timer B1, the MCU can come out of
 wait mode by user intervention: pressing one of the three user
 pushbuttons S2-S4 (key input irq).

 The key input irq to wake MCU must be set prior to wait mode so
 it can be used to wakeup the MCU. This is disabled in the wakeup
 interrupt routine.
 ***/
void wait_setup(void)
{
 /* save power */
 ALL_LED_OFF; // all LEDs off
 disp_ctrlw(LCD_CLEAR); // clear LCD

 /* enable key input irq */
 asm("FCLR I"); // disable interrupts
 kupic = 6; // enable key-input irq
 asm("FSET I"); // enable interrupts

 /* Switch to XCin and then turn Xin off before going to wait mode */
 prc0 = 1; // unlock CM0
 cm07 = 1; // Switch from Xin to XCin
 cm05 = 1; // Stop Xin
 prc0 = 0; // lock CM0

 /* set our board mode to wait */
 brd_mode = WAIT;
}

WARNING: The WAIT instruction should never be called from within an interrupt handler. Calling a WAIT

instruction within an interrupt routine may cause unexpected clock or MCU behavior. Ensure that the interrupt

that will allow the M16C/26 MCU to exit is enabled. Otherwise, the MCU will be stuck in WAIT mode.

 while(1){ // infinite loop

 if (brd_mode == RUNNING){ // in RUNNING mode?
 led_display(disp_count); // display current count
 if (temp_sec != second){ // LCD is to be updated every second
only
 display(0, "RTC Time"); // RTC Header
 disp_time(2); // current time
 temp_sec = second;
 }

M16C/26
Implementing Real Time Clock and WAIT Mode

REU05B0044-0101Z Sept 2004 Page 8 of 16

 }
 else if (brd_mode == GO_TO_WAIT) // time to go wait mode?
 wait_setup(); // yes, let's prepare for wait mode

 else{ // let's wait here (brd_mode =
WAIT)
 asm("WAIT"); // in wait mode
 asm("NOP"); // 4 NOPs required after wait
instruction
 asm("NOP"); // due to prefetch queue
 asm("NOP");
 asm("NOP");
 }
 }

List 1 Executing a Wait Instruction

3.7 Exiting WAIT mode
The MCU will exit WAIT mode when an interrupt or a reset occurs. After exiting WAIT mode the MCU will enter

the interrupt service routine for that interrupt. After completion of the service routine the MCU will return to the

instruction following the WAIT instruction.

In the demo, there are two interrupts that will allow us to exit WAIT mode. One is the RTC interrupt service

routine which occurs every second. The second is using a key-input interrupt by pressing one of the three user

pushbuttons. The RTC interrupt is enabled during initialization and always remain enable. The key-input interrupt

is enabled in the wait_setup() routine before the WAIT instruction is executed.

4.0 The RTC (and Wait) Demo Program
The RTC-Wait demo program implemented all the topics discussed earlier. For demo purposes, the MSV30262

Board was used. Like any other clock, the current time must be preset before running the clock. The clock is

displayed on the LCD and the LED’s are blinking sequentially. After 10s, the LCD and LED’s are switched off to

lower power consumption. Every second, as the real-time clock timer B1 interrupt is generated, the Red LED is

blinked so that it’s visible that a program is running. Pressing one of the user pushbuttons S2, S3, or S4, will

display the current time on the LCD and blink the LED’s sequentially for 10s.

4.1 Setting Initial Time
After the RTC-Wait program has been downloaded, run the program. Banners are displayed and then Set Hour

will be displayed on the LCD. Pressing S2 will increment the hour while pressing S3 will decrement the hour.

After the hour has been set, press S4 to set the minutes. Similar to setting the hour, pressing S2 will increment

minutes and pressing S3 decrements minutes. After minutes have been set, pressing S4 will start the clock.

Preset time is displayed on the LCD and the LED’s will be blinking sequentially. After 10s, LCD will be blank and

the heartbeat Red LED blinks every second.

M16C/26
Implementing Real Time Clock and WAIT Mode

REU05B0044-0101Z Sept 2004 Page 9 of 16

Start

Initialize Sub-clock &
Real-Time Clock Timer

rtc_init()

Initalize brd_mode to
RUNNING

brd_mode =
GO_TO_WAIT

Preset Clock
set_time()

Start Real-time Clock
Timer

MCU in WAIT mode

brd_mode =
RUNNING

brd_mode = WAIT

Display
Current Time
disp_time()

Prepare for
WAIT mode
(switch to
sub-clock)

wait_setup()

Y

Y

N

N

NOTE:
1. Functions called are in blue letters. See rtc.c for details.
2. Board mode are shown in red letters.

Figure 4 RTC-Wait Demo Program Flowchart

M16C/26
Implementing Real Time Clock and WAIT Mode

REU05B0044-0101Z Sept 2004 Page 10 of 16

4.2 Displaying Current Time on LCD
Pressing any of the user pushbuttons S2, S3, or S4, will display the current time on the LCD and cause the

sequential blinking of the three LED’s for 10s.

5.0 Conclusion
Real-time clock function is easily implemented in the M16C/26 MCU using any of its eight 16-bit timers. Some

real-time clock function requires power conservation and can also be accomplished with the M16C/26 MCU by

using WAIT mode.

6.0 Reference

Renesas Technology Corporation Semiconductor Home Page

http://www.renesas.com

E-mail Support

support_apl@renesas.com

Data Sheets

• M16C/26 datasheets, M30262eds.pdf

User’s Manual

• M16C/20/60 C Language Programming Manual, 6020c.pdf

• M16C/20/60 Software Manual, 6020software.pdf

• Interrupt Handler App Note, M16C26_Interrupt_Handlers_in_C.doc

• MSV30262-SKP Users Manual, Users_Manual_MSV30262.pdf

M16C/26
Implementing Real Time Clock and WAIT Mode

REU05B0044-0101Z Sept 2004 Page 11 of 16

7.0 Software Code
The rtc.c code used in the demo program is shown below. The whole source code/TM project for the RTC-WAIT

demo can be requested from the your Renesas representative.

/**

*

* File Name: rtc.c

*

* Content: Real Time Clock (RTC) functions for M16C that includes setting

* initial time, displaying time, RTC, and wakeup interrupt routines.

*

* Revision 1.1 2003-02-21

***/

#include "..\common\sfr262.h" // M16C/26 special function register definitions

#include "..\common\skp26.h" // MSV30262-SKP function definitions

#include "rtc.h" // RTC function definitions

/* interrupt routine used for rtc - vectors modified in sect30_rtc.inc */

#pragma INTERRUPT rtc_int

#pragma INTERRUPT wakeup_int

#define RUN_TIME 10 // preset demo run time before going into wait mode -

in seconds

int hour, minute, second; // clock variables

char on_time; // demo run time and sleep time

char brd_mode; // Mode:

 // Running - RTC displayed on LCD, LEDs flashing sequentially

 // Go to Wait - Preparation for wait mode

 // Wait - No LCD and LEDs, RTC Running

const char num_to_char[10] = {'0','1','2','3','4','5','6','7','8','9'};

extern char disp_count;

/***

Name: init_rtc

Parameters: none

Returns: none

Description: Initialize the real-time clock (RTC).

***/

void init_rtc(void){

 /* Change XCin and XCout to inputs and start the 32Khz crystal sub clock */

 pd8_7 = 0; // setting GPIO to inputs (XCin/XCout)

 pd8_6 = 0;

 prc0 = 1; // Unlock CM0 and CM1

 cm04 = 1; // Start the 32KHz crystal

 prc0 = 0; // Lock the System Clock Control Register

M16C/26
Implementing Real Time Clock and WAIT Mode

REU05B0044-0101Z Sept 2004 Page 12 of 16

 /* Configure Timer B1 - RTC (second) timer*/

 tb1mr = 0xc0; // Timer mode, fc32 (32.768KHz/32 = 1024Hz)

 tb1 = 1023; // Set the counter to interrupt every second (1s = 1024 (0-1023) count).

}

/***

Name: set_time

Parameters: none

Returns: none

Description: Presets clock and starts clock (RTC).

***/

void set_time(void){

 char set_flag = 1; // variable to go to next setting by pressing S4

 // 1 - set hour, 2 - set minute, 3 - run RTC

 /* initialize clock variables */

 hour = 0;

 minute = 0;

 second = 0;

 while (set_flag < 3) {

 /* set Hour */

 if (set_flag == 1){

 if(!S_S2){ // incrementing variable everytime S2 is pressed

 while(!S_S2); // wait for S2 to go back up

 if (++hour > 23) // max hour 12 (12 PM)

 hour = 0;

 disp_time(2);

 }

 if(!S_S3){ // decrement variable everytime S3 is pressed

 while(!S_S3); // wait for S3 to go back up

 if (--hour < 0) // min hour 0 (0 AM)

 hour = 23;

 disp_time(2);

 }

 if (!S_S4){ // move to next setting (minutes) if S4 is pressed

 while(!S_S4); // wait for S4 to go back up

 set_flag = 2; // set minutes

 }

 }

 /* set Minutes */

 if (set_flag == 2){

 display(0, "Set Min "); // display Set Minute

 if(!S_S2){ // incrementing variable everytime S2 is pressed

 while(!S_S2); // wait for S2 to go back up

 if (++minute > 59) // max minute 59

 minute = 0;

 disp_time(2);

 }

M16C/26
Implementing Real Time Clock and WAIT Mode

REU05B0044-0101Z Sept 2004 Page 13 of 16

 if(!S_S3){ // decrement variable everytime S3 is pressed

 while(!S_S3); // wait for S3 to go back up

 if (--minute < 0) // min minute 0

 minute = 59;

 disp_time(2);

 }

 if (!S_S4){ // move to next setting (run RTC) if S4 is pressed

 while(!S_S4); // wait for S4 to go back up

 set_flag = 3; // run RTC

 }

 }

 }

 /* clock has been preset, start RTC */

 tb1s = 1;

 /* set on_time */

 on_time = RUN_TIME;

}

/***

Name: disp_time

Parameters: LCD_Line

 1 - display on Line 1 (top)

 2 - display on Line 2 (bottom)

Returns: none

Description: Displays time on LCD.

***/

void disp_time(char LCD_Line){

 unsigned char hr1_LCD, hr2_LCD, min1_LCD, min2_LCD, sec1_LCD, sec2_LCD; //

characters for display

 unsigned int clk_var;

 /* get hour to display */

 clk_var = (unsigned int) hour/10;

 hr1_LCD = num_to_char[clk_var];

 hr2_LCD = num_to_char[(unsigned int) hour - (clk_var) * 10];

 /* get minutes to display */

 clk_var = (unsigned int) minute/10;

 min1_LCD = num_to_char[clk_var];

 min2_LCD = num_to_char[(unsigned int) minute - (clk_var) * 10];

 /* get seconds to display */

 clk_var = (unsigned int) second/10;

 sec1_LCD = num_to_char[clk_var];

 sec2_LCD = num_to_char[(unsigned int) second - (clk_var) * 10];

 /* display time on LCD */

 if (LCD_Line == 1)

 disp_ctrlw(0x80); // top line of LCD, first char

 else

 disp_ctrlw(0xC0); // bottom line of LCD, first char

M16C/26
Implementing Real Time Clock and WAIT Mode

REU05B0044-0101Z Sept 2004 Page 14 of 16

 disp_dataw(hr1_LCD);

 disp_dataw(hr2_LCD);

 disp_dataw(':');

 disp_dataw(min1_LCD);

 disp_dataw(min2_LCD);

 disp_dataw(':');

 disp_dataw(sec1_LCD);

 disp_dataw(sec2_LCD);

}

/***

Name: rtc_int

Parameters: None

Returns: None

Description: This is the RTC timer, Timer B1, interrupt routine. It is called

 every second.

***/

void rtc_int(void)

{

 unsigned int i;

 /* time calculation (in military time mode) */

 if (++second >= 60){

 second = 0;

 if (++minute >= 60){

 minute = 0;

 ++hour;

 if (hour > 23)

 hour = 0;

 }

 }

 if (brd_mode == RUNNING){ // in running mode?

 ++disp_count; // increment display counter

 if (disp_count > 4)

 disp_count = 1;

 --on_time; // decrement our on_time

 if (on_time <= 0) // time to go to wait mode?

 brd_mode = GO_TO_WAIT; // if so, let's prepare for it

 }

 /* Make a heartbeat LED so it's visible that the program is running. */

 /* This is only for demo purposes. For actual applications, you can */

 /* omit this routine.

 */

 else{ // in wait mode

 RED_LED = 0; // Flash Red LED

 for (i = 0xFF; i > 0; i--); // add some delay

 RED_LED = 1; // turn off Red LED

M16C/26
Implementing Real Time Clock and WAIT Mode

REU05B0044-0101Z Sept 2004 Page 15 of 16

 }

}

/***

Name: wakeup_int

Parameters: None

Returns: None

Description: This interrupt routine will wake us up from wait mode due to user

 intervention by pressing any of the three user pushbuttons, S2-S4.

***/

void wakeup_int(void)

{

 unsigned int i;

 /* wakeup from wait mode - turn Xin back-on*/

 prc0 = 1; // unlock CM0

 cm05 = 0; // Enable Xin

 for (i = 0; i <= 0x0F; ++i) // delay routine to allow Xin oscillator to stabilize

 asm ("NOP");

 cm06 = 0; // No div - need to be set again - goes back to div by 8 in wait mode

 cm07 = 0; // Switch from XCin to Xin

 prc0 = 0; // lock CM0

 /* disable key-input irq */

 asm("FCLR I"); // disable interrupts

 kupic = 0; // disable key input irq

 asm("FSET I"); // enable interrupts

 /* switch brd_mode to RUNNING */

 brd_mode = RUNNING;

 /* reset our demo run time every time we wake up */

 on_time = RUN_TIME;

}

/***

Name: wait_setup

Parameters: None

Returns: None

Description: This prepares the MCU to enter wait mode. The application/demo runs

 and after a preset period, goes into wait mode.

 Aside from the real-time clock timer B1, the MCU can come out of

 wait mode by user intervention: pressing one of the three user

 pushbuttons S2-S4 (key input irq).

 The key input irq to wake MCU must be set prior to wait mode so

 it can be used to wakeup the MCU. This is disabled in the wakeup

 interrupt routine.

 ***/

void wait_setup(void)

{

 /* save power */

M16C/26
Implementing Real Time Clock and WAIT Mode

REU05B0044-0101Z Sept 2004 Page 16 of 16

 ALL_LED_OFF; // all LEDs off

 disp_ctrlw(LCD_CLEAR); // clear LCD

 /* enable key input irq */

 asm("FCLR I"); // disable interrupts

 kupic = 6; // enable key-input irq

 asm("FSET I"); // enable interrupts

 /* Switch to XCin and then turn Xin off before going to wait mode */

 prc0 = 1; // unlock CM0

 cm07 = 1; // Switch from Xin to XCin

 cm05 = 1; // Stop Xin

 prc0 = 0; // lock CM0

 /* set our board mode to wait */

 brd_mode = WAIT;

}

Keep safety first in your circuit designs!

• Renesas Technology Corporation puts the maximum effort into making semiconductor products

better and more reliable, but there is always the possibility that trouble may occur with them. Trouble
with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Notes regarding these materials

• These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corporation product best suited to the customer's application; they do not convey any
license under any intellectual property rights, or any other rights, belonging to Renesas Technology
Corporation or a third party.

• Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms,
or circuit application examples contained in these materials.

• All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corporation without notice due to product improvements
or other reasons. It is therefore recommended that customers contact Renesas Technology
Corporation or an authorized Renesas Technology Corporation product distributor for the latest
product information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corporation by various
means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

• When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products. Renesas
Technology Corporation assumes no responsibility for any damage, liability or other loss resulting
from the information contained herein.

• Renesas Technology Corporation semiconductors are not designed or manufactured for use in a
device or system that is used under circumstances in which human life is potentially at stake. Please
contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product
distributor when considering the use of a product contained herein for any specific purposes, such as
apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea
repeater use.

• The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in
whole or in part these materials.

• If these products or technologies are subject to the Japanese export control restrictions, they must be
exported under a license from the Japanese government and cannot be imported into a country other
than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

• Please contact Renesas Technology Corporation for further details on these materials or the
products contained therein.

