To our customers,

Old Company Name in Catalogs and Other Documents

On April 1%, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESANS

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sal es office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

Y ou should not ater, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. Y ou are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. 'Y ou should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific’. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “ Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as“ Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is“ Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home el ectronic appliances, machine tools; persona electronic equipment; and industria robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific™: Aircraft; agrospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or heathcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

Y ou should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especialy with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics’ as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

RENESANS APPLICATION NOTE

R8C Family
How to Compute MR8C/4 User Stack and System Stack

Introduction

Computing the required stack size is a critical step for embedded developers to avoid wasting any additional,
unnecessary memory and ensuring stack overflows does not occur. Deciding how much memory to allocate for the
stack has been a trial and error process.

This document explains the method of computing the user/task stack and system stack for application written in either C
or assembly language.

Target Device
Applicable MCU: R8C Family

Contents
1. Guide in using thiS DOCUMENToiiiiiiie ittt e e et e e e e st e e e e nnreeeeenees 2
2. Introduction t0 MR8BC/4 STACKccoiuiiiiiiiiiii et 3
3. Settings for STK VIeWer ULIIITYouviiiiiiiii e e e e e e e e e 6
4. Computing USEIr STACK SIZE ...cceieeiiiiiiiiiie ettt et e e s e e et e e s ente e e e enteeeeenees 6
5. Computing SyStem STACK SIZE..........eiiiiiiii s 10
6. ReferenCe DOCUMENTS........oiiiiiiiii ittt sb e s 17
7. Appendix I: Listing of Stack Sizes used by Service Calls Issued from Task (Bytes).............c....... 18

8. Appendix llI: Listing of System Stack Sizes used by Service Calls Issued from Handlers (Bytes). 18

9. Appendix lll; Listing of Stack Sizes used by Service Calls that can be Issued either from Tasks or
HANAIETS (BYLES) ... tiiiiiiiiiiie ettt ettt et e e ettt e e ettt e e s asteeeeeanteeeeesnteeaeesnteeeeesnseeeeesbeeeeeanneeasanes 18

RES05B0009-0100/Rev.1.00 January 2010 Page 1 of 20

LENESANS

R8C Family

How to Compute MR8C/4 User Stack and System Stack

1. Guide in using this Document

This document aims to equip users with the technique of determining the required user/task stack and system stack for

MR8C/4.
Table 1 Explanation of Document Topics
Topic Objective Pre-requisite

Introduction to MR8C/4

Provides explanation of user and
system stack

Knowledge in MR8C/4

Settings for STK Viewer Utility

Explains the settings for STK viewer

Knowledge in STK viewer utility

Computing User Stack Size

Explains methods of computing user
stack size to be allocated

Knowledge in MR8C/4

Computing System Stack
Size

Explains methods of computing
system stack size to be allocated

Knowledge in MR8C/4

Reference Documents

Listing of documents that equip users
with knowledge in the pre-requisite

requirements

None

RES05B0009-0100/Rev.1.00

January 2010

Page 2 of 20

z R8C Family
u E N ESAS How to Compute MR8C/4 User Stack and System Stack

2. Introduction to MR8C/4 Stack
The MR8C/4 provides two kinds of stacks: the user stack and the system stack.

User stack refers to the memory block assigned for each single task. This block of memory denotes the worst-case
memory consumption of the individual task during run-time. The allocation of the user stack size can be done in the
configurator file as shown in Figure 1.

[Setting User Stack | [Settin System Stack |
~ 4
//Task Definition) 4 .)
J// System Deflpition
task[1] { systemd
nEme I Taskl Main: ¥ .
- = stack size = 300;
entry addr = Main Taski(): LT
— — priority = 255;
stack size = 80;

e system IPL = 4;
priority =6 tie nu.r_ne = 1;
initial start = CH; A :

| — tic deno = 1:
exint = 0Ox0: -

v Y

Figure 1 Setting User Stack and System Stack

System stack refers to the memory block assigned for MR8C/4 during execution of the service call. It denotes the
worst-case memory consumption of MR8C/4 during execution of the handler. Size allocation of system stack is also
done in the configurator file shown in Figure 1.

Caution will need to be exercised when allocating the sizes of the user stack and system stack. Allocating too much
memory will result in wasting of memory. Allocating too less will result in stack overflows, which can corrupt other
memory areas and typically trigger a program crash.

Both the user stack and system stack reside in the STACK section within the internal RAM segment of the device.
Refer to Figure 2 for the stacks layout in the R8C/23 device. Figure 3 provides an example of the user stack and system
stack layout using Map Viewer utility.

00000k
SFR
(Special Function
Regisiers)
(02FFh - 00600k Swiom Stack
wiem Sjstem Stack = 1024bytes
anAnth A 00400k User Stuck of
Internal EAM ' Task ID Io. 1 Task [Stack = 80bytes
0050k
O0FFFh . User Stack of
01300k % Task ID Mo, 2 Task 2 Stack = 128mvtes
W
oopy | Resemedamea | - COARER, |
02400k ', l |
Internal ROM 3 User Stack of
(data flash) ' Task ID No. n
(ZBFFh
020000
Imternal ROM
(Program RON)
FFFFh
Internal ROM
(Program ROM)
153FFFh
Expanding area
FFFFFL

Figure 2 User Stack and System Stack Layout

RES05B0009-0100/Rev.1.00 January 2010 Page 3 of 20

z R8C Family
u E N ESAS How to Compute MR8C/4 User Stack and System Stack

Address{size) Section
ABAABA{ BAALAR)
000400{080068d) ([D] HR_RAH DBG
A80LAd{ BAAAAT)
00040e{000682) [D] HR_RAH
000490{080034)>>[D] bss HE - |[D] stack [G] BBB5ch:_ STK_TASK1
a884ch(8862c?) |[D] stack [G] @885ch: Sys Sp
000786(00287a) [G] BBB5F6:__ STK_TASKZ
8838006(085 880) 1 [G] B8B65a:_ STH_TASK3
gag@vo{veacs2) |[C] MR _HKERHEL 1 [G] 88B6be: STK_TASKY
ga8c82(0A88054) [R] KR _ROM [G] @B6722: STK_TASKS
8088cd6(080080aB) |[C] program i -~
BBBd76(BAGFBaA) -
00Ffd00{0861680) ([C] INTERRUPT UECTOR
B8Fedd{ BAA1dc)
B8ffdc{8AAA24) [[C] FIX_IHTERRUPT UECTOR
010000(Be FFfFf)
BFFFFF

Figure 3 A Snapshot Example of User Stack and System Stack Layout using Map Viewer Utility

The stack size calculation method differs between the stacks and the language an application is written in. It can be
summarized as shown in Figures 4 and 5.

Computing User
Stack

Application in C #ﬂalzmglr; in
language et
User stack size of|
User size in task IS User size in task i sarvice call in
area task

Figure 4 Components in User Stack Computation

RES05B0009-0100/Rev.1.00 January 2010 Page 4 of 20

LENESANS

R8C Family
How to Compute MR8C/4 User Stack and System Stack

Application in C
language

Computing
System Stack
Ri ol
Application in
Application in C Application in C
language mg language

Stack size of 05

dependent
interrupt handler

stem stack s m stack si
User size in Context storage of service call in User size in non- Context storage e Context storage of service call in
kernel interrupt G kernel interrupt kemel interrupt e system clock i system clock
handler O handler interrupt handler interrupt handler
Figure 5 Components in System Stack Computation
RES05B0009-0100/Rev.1.00 January 2010 Page 5 of 20

z R8C Family
u E N ESAS How to Compute MR8C/4 User Stack and System Stack

3. Settings for STK Viewer Utility

STK Viewer utility is required for the computation of stack size for program written in C language. The utility analyzes
the inspector information added to the absolute module file (“mot”) and calculates the stack size needed for each task
and the relationship of function calls.

To generate the inspector information in the absolute module file, specific compiler options will need to be enabled in
the HEW environment. Figure 6 illustrates the steps to set the compiler options.

|Step1: O pen Toolchain Window |

Renesas M1 6C Stand e e

Step6: Select "Object" [

© Aszembly l Link oo AR s i

Renesas M16C Stand e ma e oie WE|

Step3: Select "Object” |
/ C lAssemny] Link! O e
Cateqgary : ;

L=

. - Tall . : :
‘ Stap2: Switch to 'C’ Pandl |, [[-c] Relocatable file (130] =] ‘ Stopb: Switch to "Assembly” Panel l:a' symbial information be output
Debug options : ;
[w|[-finfo] Outputs information needed for Inspector, Stk Vier A 4 [:finflg% geper?tzs -ESDE.CW. i?form?tionf d i
[iga] Outputs debugging information. Therefore you can pe = s L e

uggers and third-party debuggers

[I"&bool_to_char] Outputs debugging information of _Bool 5 S 3
i : . ™ [N]Wyzables output of macro command ling infarmation

[1[-glnter] Always outputs an enter instuction when calling

[[-grd reg] Suppresses the output of debugging informati [[-P] Procis stuctured description

1l-nil titrn b dsbnianinn infarratine for ald wersinn dehb

< | e
[4i5{ Step4: Bnable O ption ED: [-D]Qut| Step7: Enable O ption L
$CONFIGDTR] Modify... |$[EDNFIGDIF|] Modify...
Options C : Options Assembly :

-O__E8 -0 wWORK_RAM__=0x100 -c -finfa -dir finfo -0"$[COMFIGDIR)" -LM -D__REC__=1 -REC

"$[CONFIGDIR)" -REC

Figure 6 Setting Compiler Options

4. Computing User Stack Size

The computation methods for user stack size differ between an application written in C language and assembly
language.

4.1 Application written in C Language
The formula for the computation is as shown in Figure 7.

User Stack Size = ™*="User Size + M=Z/Context Storage Area

Nofe 1 5um of sfack size shown in STE Vewer
Nofe 2 Fixed slze of 20 byfes

Figure 7 Formula for User Stack Size Computation for Application in C Language

In addition, 5 bytes must be added to the above sum if any of the following service calls is used in the task: “get_tid”
and “pol_flg”.

411 User Size

To calculate the user size for individual task, use the STK Viewer utility to tabulate the total stack size of all the
functions in the specific task. If an unknown, recursive or indirect function exist within the task, user will need to define
the stack size for the function and add it manually to the task stack size (for more information, refer to STK Viewer
manual). Figure 8 illustrates the method of retrieving the task stack size using STK Viewer.

RES05B0009-0100/Rev.1.00 January 2010 Page 6 of 20

z R8C Family
u EN ESAS How to Compute MR8C/4 User Stack and System Stack

£ Stk Viewer
Filz Edit Action Help

|B‘IE|$|E€‘||E|CaIc|ReseE]?I

= W watch_RSEREC_DemoOS (CdorkSpacetateh_RSKE

5 M HANDLER

=M INTERRUPT Function Mame : Main_Task

=18 TASK (Necessary 10 add the contest slorage area alg
Starttlarm_Task {_Starttlam_Task) [CVorkSg
ModeFunc_Task {_ModeFunc_Task [Civorksn File : CaarkBpaceivalch_RSKRESC_DeamoDSivateiy
UpdateStop_Task (_UpdateStop_Task) [CAAfork
Updateslarm_Task {_Updatelarm_Task) [Civul
UpdateWWatch_Task {_UpdsteWWateh_Task) [Cv Type - Mornal
S p . 5

] in_Task _Main_Task) 1C:ANorkSpaceiatoh =
& lNormﬁlFunc u{n-“ S Watgh [Size : . Contest Size Bytes

@Selected task to view stack size y .: 2 User stack size of
1 selected task = 58 bytes

[ESR eSS R RSP

| Functionmame | Label | Source Flle |Line M

A |

Unknown | Recyrsive | Indirect |

3 Ensure no unkown, recursive or
indirect function within selected task

Figure 8 Reading Task Stack Size of “Main_Task” using STK Viewer

4.1.2 Context Storage Area

Prior to executing a service call, context of the task will be saved in the user stack area. The registers within the context
to be saved are shown in Figure 9. When an application is written in C language, all registers (R0, R1, R2, R3, A0 A1,
SB & FB) are to be saved. Thus the context storage area is fixed at 20 bytes with inclusion of program counter and flag
registers.

Context Storage Area = (N0f€ T)gjze of Register Used + 4(PC+FLG) bytes

Maote 1: In application written in C language, fixed number of registers is used. Thus, size is fixed at 16
bytes

'y RO
Rl
R2
E3
AD 20 bytes
Al
5B
¥ FB

PC
FLG ¥

16 bytes

Figure 9 Context Storage Area Calculation

41.3 Example
With reference to the task “Main_Task” in Figure 8,

User stack size
= User size + context storage area
= 58 bytes + 20 bytes
=78 bytes
Therefore, task “Main_Task” should be allocated a minimum stack size of 78 bytes (refer to Figure 10).

RES05B0009-0100/Rev.1.00 January 2010 Page 7 of 20

z R8C Family
u E N ESAS How to Compute MR8C/4 User Stack and System Stack

"’;,-’Task Definition)
task[1]4

natme = ID Taskl Main:
entry address = Main Task():
stack size = 7&;
priority = A;
initial start = (CI;
exint = 0Ox0o;

G’ ,

Figure 10 Stack Size Allocation of Task “Main_Task”

4.2 Application written in Assembly Language
When an application is written in assembly language, the formula for the computation is shown in Figure 11.

User Stack Size = ™+*= !/ Jser Size +
etz 2)Context Storage Area +
ivefe 2l Jger Stack of Service Call

Note 7 Stack size Lused in subroutine call and variable declaration within the task
Note 2: Dependent on registers selected In configurator file
Note 30 Maximum stack size required by one of service calls within the task

Figure 11 Formula of Computing User Stack Size for Application Written in Assembly Language

4.21 User Size

Incorporating function/subroutine calls in a Task section is an almost indispensable need. The total stack size required
by the subroutine calls is defined as the “User Size”.

422 Context Storage Area

When an application is written in assembly language, user is able to define the registers to be used in a task (refer to
Figure 12). If the context is not defined, all the registers (RO, R1, R2, R3, A0 Al, SB & FB) are used. Thus, context
storage area is a summation of the stack size required by the registers used, the program counter and flag registers. In
Figure 12, total context storage area required for ID_TASK1 is 12 bytes (R0=R1=R2=A0=2 bytes) including program
counter and flag registers.

task[1]{
name = ID TASKI;
entry_address = Taskl1(); Define only RO, RY, R2

and Afl regisiers are
used in ID TASKI

Figure 12 Task Definition in Configurator File

423 User Stack of Service Call
The “User Stack of Service Call” refers to the maximum user stack size that required by one of the service calls that can
be issued from task or handlers (refer to Appendix IlI).

With reference to Appendix I11, if both or either of the service calls “sns_ctx” and “sns_loc” is/are issued from the task,
“User Stack of Service Call” will be 10 bytes.

RES05B0009-0100/Rev.1.00 January 2010 Page 8 of 20

z R8C Family
u E N ESAS How to Compute MR8C/4 User Stack and System Stack

4.2.4 Example
Figure 13 illustrates an example of calculating the required user stack size for a task with the following characteristics:

o Consist of a function call
e A2 bytes variable declared inside the task
e Service calls “sta_tsk”, “sns_ctx” and “sns_loc” are issued from the task

Context Storage Avea (14 hytes)
>

F 3

I hytes
-

js1 func

sta_tsk 0 hyte

10 hytes

F
¥

Task sns_ctx
“Main_Task”

10 hytes

F
¥

sns_loc

- -
i User Stack Size = 27 hyies
1
Context Storage Avea
= gize of regizier used (assume RO,E1E2,RE3, Al) + 4PC+FLG)byies
=10+4
= 14 hytes

Figure 13 An Example of Calculating User Stack Size for an Application written in Assembly
Language

RES05B0009-0100/Rev.1.00 January 2010 Page 9 of 20

z R8C Family
u E N ESAS How to Compute MR8C/4 User Stack and System Stack

5. Computing System Stack Size

The formula for the computation is as shown in Figure 14.

Figure 14 Formula for System Stack Size Computation

The system stack size computation for nested interrupts is illustrated in Figure 15.

o' The maximum system stack size among the serviee calls to be used.

. & . 1 The system stack size to be used by the imterrupt handler.
T -
21
SN E >
Interrupt B2
F o\ € >
Interrupt
_______ En
< >
i
]
]
:
i
]
: The necessary system stack '
€ >!

Figure 15 System Stack Computation for Nested Interrupts

RES05B0009-0100/Rev.1.00 January 2010 Page 10 of 20

z R8C Family
u E N ESAS How to Compute MR8C/4 User Stack and System Stack

5.1 Computing a

The method for computing @ is the same for program written in C or assembly language. O denotes the maximum
system stack size required by one of the service calls issued in the Task. Figure 16 illustrates an example of the
computation.

@ Azsume only 2 tasks created in application.

woid Taskl (VFP_INT stacd)

{ ercd = ata_tsk(ID_TaskZ):
ercd = slp tsk():

ioid TaskZ (VP_INT stacd)

{ ercd = sig_sem(ID Seml):

ercd = wup tsk(ID _TASK1):
ercd = sta_alm(IDl Alml,0);
grcd = ata_tsk(ID Taskl):

With reference to the table below, systern stack required for all the service calls
1szued within the application can be identified,

Senvice Call Stack Size Senvice Call Stack Size
User Stack | System Stack User Stack | System Stack
sta_tsk 1] wrai_flg A} 2
ext_tsk] 1] pal_fly T0(8) 1]
ter_tzk 1] 4 shd_dtg 1] 4
cho_ph 1] 4 pend_dtg 1] 2
slp_tsk 1] row_dtn a) 2
sk 1] prov_dig a) 2
Can_wup 10 1] dis_dsp 4 1]
rel_wai 1] 4 sta_oye 10 1]
sUs_tsk 1] 2 sth_oye 10 1]
rsm_tsk 0 2 sta_alm 10 e
div_tsk 1] 4 sth_alm 10 1]
sig_sern 0 [et tid 10{5) 0
WaAI_SEm 1] 2 loc_cpu 4 1]
pol_sem 10 1] unl_cpu 1] 1]
set_fin 0 f ref_wver 12 1]
clr_fln 10 1] ena_dsp 1] 1]

@ “aig semn”, “wup_tsk”, “slp tsk” and “sta tsk” required the largest system
stack (Zbytes), thus o for application 15 2 bytes

Figure 16 An Example of Computing a

5.2 Computing [i

The stack size used by an interrupt handler that is invoked during a service call is calculated differently for applications
written in C or assembly language.

5.21 Application written in C Language

To calculate Bi for an application written in C language, use the STK Viewer utility to tabulate the total stack size of all
the interrupts (Kernel) and handlers (Non-kernel) within the application. Figure 17 illustrates an example of the
computation.

RES05B0009-0100/Rev.1.00 January 2010 Page 11 of 20

z R8C Family
u E N ESAS How to Compute MR8C/4 User Stack and System Stack

Addup the stack size of all interrupts to
arrive at Bi (exclude system clock
interrupt handlers. i.e. cyclic, alarm)

[=3 Stk Viewer,
File Edit Action Help

ﬁ’v|n‘$“@‘03|c|ﬁieset|

=M test (CitesttestiDebug)
EI---I_ HARDLER

-8 AlarmFlash_Alm2 (_AlarmFlash_alm32) [Cotesttesttimepf] : 23 bytes Function Matme : Intint(
AlarmSetup_Alm1 (_AlarmSetup_Alm1) [Citesttesttinggr.c] : 23 bytes
LEDFlicker_Cycd (_LEDFlicker_Cyc4) [Citestitestitirger.c]: 10 byvtes
AlarmUpdate_Cye2 (AlarmUpdate_Cye2) [Ciltestifsttimere] : 23 btes File : C:hiorkSpacet
-8 WatchUpdate_Cyel (CWatchUpdate_Cyet) [Cteftitestitimer.c] : 23 byvtes
-8 StopyatchCount_Cye3 (StopwWatchCount_Cyg®) [Ctesttesttimer.c] : 23 bytes
=M INTERRUPT
Intkey {_Intkey) [Cltestitestinterrupts.q] : 38 bytes
Intintd _Intlnt0) [Cotesttestinterruptsq] @ 38 yvtes
-8 Intlnt! (_Intintly [Citesttestinterrupts.d] © 38 bvtes
- TASK (Mecessan to add the context storag
-M Mormal Functions

Type : Mormal

Sizae :

| Function Name | Lahel Source File |Ling No.
. |2
w Indirect
Bi=38+38+38
= 114 bytes

Figure 17 An Example of Computing Bi for Application Written in C Language

5.2.2 Application written in Assembly Language
To calculate Bi for an application written in assembly language, it is required to identify interrupts that are Kernel and
Non-kernel. The formulae for computing Bi are illustrated in Figure 18.

Bi = Stack Size of Kernel Interrupt Handler +
@ Stack Size of Non-Kernel Interrupt Handler

Stack size of Kernel Interrupt Handler
@ = Context Storage Area +
User Size +
System Stack Size of Service Call

Stack size of Non-Kernel Interrupt Handler
@ = Context Storage Area +
User Size

Figure 18 Formula of computing 3i for Application Written in Assembly Language

Context storage area can be computed as defined in section 4.2.2. It is a summation of the size of registers defined in
configurator file, program counter and flag registers. “User Size” refers to the stack size required by subroutine calls
and variable declarations in the interrupt handler (refer to section 4.2.1). “System Stack Size of Service Call” refers to
the maximum system stack size of the service calls issued within the kernel (OS-dependent) interrupt handler. The stack
size of individual service calls issued from handlers can be found in the table in APPENDIX I1.

Figure 19 illustrates an example of calculating the stack size for a kernel interrupt handler.

RES05B0009-0100/Rev.1.00 January 2010 Page 12 of 20

z R8C Family
u E N ESAS How to Compute MR8C/4 User Stack and System Stack

% Context Storage Area (12 hytes)
o BE—

3bytes q
Interrupt mtempt_v?ctnr[_IS]{ .
“IntKev” . i os_int = YES;
¥ jsr func 16h yies eniry_address = ImiKey();
pragma_swiich = E;
“ > .
iwup_tsk i
18 hytes
ipsnd_dtq
1
1
1
[}
1
[}
1
[}
1
1
i
‘ 1
- b 1
i fi =33 hyies :

Context Storage Area

= size of register used (assume ROR1, R2, AD) +4(PC+FL G)b yies
=8 +4

=12 hytes

Figure 19 An Example of Calculating i for an kernel Interrupt Handler

RES05B0009-0100/Rev.1.00 January 2010 Page 13 of 20

z R8C Family
u E N ESAS How to Compute MR8C/4 User Stack and System Stack

5.3 Computing v

v denotes the system stack size used by system clock interrupt handler. A system timer is not used when cyclic handler,
alarm handler and none of the service calls under Time Management Function (i.e. isig_tim) is used. In the case where a
system timer is not used, system stack size is equivalent to zero. The computation methods can be summarized in Figure
20.

Scenario 7 (Bytes)
Titme Management Function senice
call, eyclic handler and alamm handler 1]
naot used
Titme Management Function senice 14

calls used only

24 + maximum size of oyclic
handler or alamm handler
fwehichewver is larger)

Cyclic handler andfar alamm handler
uzed

Figure 20 Summary of Computation Method for y

5.3.1 Application written in C Language

In the computation of system stack for system clock interrupt handlers; use the STK Viewer utility to display the system
stack size required by the individual handlers. To compute v, identify the maximum stack required among the handlers
and add 24 bytes to the stack size (refer to Figure 21).

Choose the maximum system stack required
among the cyclic and alarm handlers. In this case,
43 bytes is the maximum system stack used

4 Stk Viewer FEX

File Edit Action Help

= | = | | Calo | Reset | 7
E|---I_ test (ChtestitestDebun) ‘ :
=M HANDLER ,
c- AlarmFlash_Alm2 (AlarmFlash_Alm2) [Citesttesttimpr.c] 7 vtes Function

---I AlarmSetup_Alm1 CAlarmSetup_Alm1) [Chitesttestdimgr.c] - 43 vtes
---I LEDFlicker_Cycd (_LEDFlicker_Cycd) [C:Hesttestitimenc] : 10 tytes
- AlarmUpdate_Cye2 (_AlarmUpdate_Cye2) [Coitestitestfmer.c]: 23 bytes File:
---I WatchlUpdate_Cyel (WatchUpdate_Cyc1) [Citesttestltimer.c] : 21 vtes

- StopWatchCount_Cyed ¢ Stop¥atchCount_ Cyed) [Cotadsttesttimer.c] : 23 hytes)

=M INTERRUPT Type:
M TASK (Mecessary to add the context storage area also)
M Marmal Functions

Size ; |_

| Function Mame | Lahbel | Source File

LInkrion |Recursive] Indirect]

v = 24 + maximum system stack size of handler
=24+43
=67

Figure 21 An Example of Computing y for Application Written in C Language

RES05B0009-0100/Rev.1.00 January 2010 Page 14 of 20

z R8C Family
u E N ESAS How to Compute MR8C/4 User Stack and System Stack

5.3.2 Application written in Assembly Language
The formula for the computation of y for an application written in assembly language is shown in Figure 22.

Figure 22 Formula of computing y for Application Written in Assembly Language

“User Size” refers to the stack size required by subroutine calls and variable declarations in the system clock interrupt
handler. Context storage area refers to the summation of the size of registers defined in configurator file, program
counter and flag registers. “System Stack Size of Service Call” refers to the maximum system stack size of the service
calls issued within the system clock interrupt handler. The system stack size of individual service calls issued from
handlers can be found in the table in APPENDIX II.

Figure 23 illustrates an example of calculating the stack size for the system stack size used by the system clock interrupt
handler.

RES05B0009-0100/Rev.1.00 January 2010 Page 15 of 20

z R8C Family
u E N ESAS How to Compute MR8C/4 User Stack and System Stack

/cyc]ic_ha.nﬂ[l]{ \\

% Context Storage Area (16 hytes) eniry_address = Cyclicl();
name = Cyclicl;
ot b 3hytes exnf =0x0;
Interrupt start = OFF;
13 : " - ;
Cyclicl jsr func]i?nhtse::rra]._c::ll:li,r= Ox3e8;
phs_counter = 0x0;
14 bytes L
. —
ista_tsk \ /
16 hytes
. . ™ tl
isig_sem
I
I
I
I
I
I
I
I
I
I
I
|
| >
! of = 35 hytes i

Context Storage Area
= gize of register used (assume RO R1,R2,R3,A0,41) + 4(PC+FL G)hyies

=12+4
=16 hytes
% Context Storage Area (16 hytes) alarm_hand[1]{ didre 1
BRITY_a 55 = Alarml();
» » name = Alarml;
Ihytes . _ T
Interrupt y miblt =l
@ .] R | 1
Alarml jsr func
14 bytes
ista_tsk
1
[}
1
1
1
1
1
1
[}
1
|
|- >
! =233 hytes !

Context Sitorage Area

= gize of register used (assume ROR1,R2,R3 A0, A1)+ 4(PCHFL G)hyies
=12+4

=16 hyies

Assuming only one alarm handler (Alarm1) and one cyclic handler (Cyclic1)
are being used in the application. As shown above, y of Cyclic1 is greater
than that of Alarm1, so the overall system stack size y is 35bytes

Figure 23 An Example of Computing y for Application Written in Assembly Language

RES05B0009-0100/Rev.1.00 January 2010 Page 16 of 20

z R8C Family
u E N ESAS How to Compute MR8C/4 User Stack and System Stack

6. Reference Documents

User’s Manual

¢ MR8C/4 V1.00 User’s Manual
e STK Viewer User’s Manual
e R8C Family Software Manual

The latest version can be downloaded from the Renesas Technology website

RES05B0009-0100/Rev.1.00 January 2010 Page 17 of 20

z R8C Family
u E N ESAS How to Compute MR8C/4 User Stack and System Stack

7. Appendix I: Listing of Stack Sizes used by Service Calls Issued from Task

(Bytes)

Service call Stack size Service call Stack size
User stack System Uszer stack System
stack stack

sta_tsk 0 2 sta_cyc 10 0
ext tsk 0 0 stp_cve 10]
ter_tsk 0 4 sta_alm 10 0
chg pn 0 4 stp alm 10]
slp tsk 0 2 get tid 10(5) 0
wup_tsk 0 2 loc_cpu 4 0
can_wup 10 0 unl _cpu 0 0
rel wai 0 4 ref ver 12]
sus tsk 0 2 dis dsp 4 0
rsm_tsk 0 2 ena dsp 0 0
dlv tsk 0 4 snd dig 0 4
512 SEMm 0 2 psnd_dtg 0 2
wai_sem 0 2 rcv_dtg (5) 2
pol sem 10 0 prev_dtg (5) 2
set_flg 0 6

clr flg 10 0

wai flgo (3) 2

pol flg 10(5) 0

(): Stack sizes used by service call in C programs.

Handlers (Bytes)

8. Appendix lI: Listing of System Stack Sizes used by Service Calls Issued from

Service call Stack size Service call Stack size
mwup tsk 14 1iset flg 22
el wai 1 ipsnd _dig 6
1512 sem 4 ret int 10
1sta tsk 14

(): Stack sizes used by service call in C programs.

9. Appendix lll: Listing of Stack Sizes used by Service Calls that can be issued
either from Tasks or Handlers (Bytes)

Service call Stack size Service call Stack size
sns Cfx 10 sns loc 10
sns_dsp 10

RES05B0009-0100/Rev.1.00 January 2010 Page 18 of 20

z R8C Family
u E N ESAS How to Compute MR8C/4 User Stack and System Stack

Website and Support

Renesas Technology Website
http://www.renesas.com/

Inquiries
http://www.renesas.com/inquiry
csc@renesas.com

Revision Record

Description

Rev. Date Page Summary

1.00 Jan.01.10 — First edition issued

All trademarks and registered trademarks are the property of their respective owners.

RES05B0009-0100/Rev.1.00 January 2010 Page 19 of 20

http://www.renesas.com/
http://www.renesas.com/inquiry
mailto:csc@renesas.com

z R8C Family
u EN ESAS How to Compute MR8C/4 User Stack and System Stack

Notes regarding these materials

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate
Renesas products for their use. Renesas neither makes warranties or representations with respect to the
accuracy or completeness of the information contained in this document nor grants any license to any intellectual
property rights or any other rights of Renesas or any third party with respect to the information in this document.

2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out
of the use of any information in this document, including, but not limited to, product data, diagrams, charts,
programs, algorithms, and application circuit examples.

3. You should not use the products or the technology described in this document for the purpose of military
applications such as the development of weapons of mass destruction or for the purpose of any other military
use. When exporting the products or technology described herein, you should follow the applicable export
control laws and regulations, and procedures required by such laws and regulations.

4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and
application circuit examples, is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas products listed in this
document, please confirm the latest product information with a Renesas sales office. Also, please pay regular
and careful attention to additional and different information to be disclosed by Renesas such as that disclosed
through our website. (http://www.renesas.com)

5. Renesas has used reasonable care in compiling the information included in this document, but Renesas
assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information
included in this document.

6. When using or otherwise relying on the information in this document, you should evaluate the information in light
of the total system before deciding about the applicability of such information to the intended application.
Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any
particular application and specifically disclaims any liability arising out of the application and use of the
information in this document or Renesas products.

7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products
are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of
which may cause a direct threat to human life or create a risk of human injury or which require especially high
quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare,
combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you
are considering the use of our products for such purposes, please contact a Renesas sales office beforehand.
Renesas shall have no liability for damages arising out of the uses set forth above.

8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:

(1) artificial life support devices or systems

(2) surgical implantations

(3) healthcare intervention (e.g., excision, administration of medication, etc.)

(4) any other purposes that pose a direct threat to human life
Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who
elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas
Technology Corp., its affiliated companies and their officers, directors, and employees against any and all
damages arising out of such applications.

9. You should use the products described herein within the range specified by Renesas, especially with respect to
the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or
damages arising out of the use of Renesas products beyond such specified ranges.

10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific
characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions.
Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or
damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and
software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment
for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer
software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

11. In case Renesas products listed in this document are detached from the products to which the Renesas products
are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You
should implement safety measures so that Renesas products may not be easily detached from your products.
Renesas shall have no liability for damages arising out of such detachment.

12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written
approval from Renesas.

13. Please contact a Renesas sales office if you have any questions regarding the information contained in this
document, Renesas semiconductor products, or if you have any other inquiries.

© 2010. Renesas Technology Corp., All rights reserved.

RES05B0009-0100/Rev.1.00 January 2010 Page 20 of 20

	1. Guide in using this Document
	2. Introduction to MR8C/4 Stack
	3. Settings for STK Viewer Utility
	4. Computing User Stack Size
	4.1 Application written in C Language
	4.1.1 User Size
	4.1.2 Context Storage Area
	4.1.3 Example

	4.2 Application written in Assembly Language
	4.2.1 User Size
	4.2.2 Context Storage Area
	4.2.3 User Stack of Service Call
	4.2.4 Example

	5. Computing System Stack Size
	5.1 Computing α
	5.2 Computing βi
	5.2.1 Application written in C Language
	5.2.2 Application written in Assembly Language

	5.3 Computing γ
	5.3.1 Application written in C Language
	5.3.2 Application written in Assembly Language

	6. Reference Documents
	7. Appendix I: Listing of Stack Sizes used by Service Calls Issued from Task (Bytes)
	8. Appendix II: Listing of System Stack Sizes used by Service Calls Issued from Handlers (Bytes)
	9. Appendix III: Listing of Stack Sizes used by Service Calls that can be issued either from Tasks or Handlers (Bytes)

