

RX140 Group, RX210 Group

Differences Between the RX140 Group and the RX210 Group

Introduction

This application note is intended as a reference to points of difference between the peripheral functions, I/O registers, and pin functions of the RX140 Group and RX210 Group, as well as a guide to key points to consider when migrating between the two groups.

Unless specifically otherwise noted, the information in this application note applies to the 80-pin package version of the RX140 Group and the 145-pin package version of the RX210 Group (chip version B) as the maximum specifications. To confirm details of differences in the specifications of the electrical characteristics, usage notes, and setting procedures, refer to the User's Manual: Hardware of the products in question.

Target Devices

RX140 Group and RX210 Group

Contents

1.	Comparison of Built-In Functions of RX140 Group and RX210 Group	4
2.	Comparative Overview of Specifications	6
2.1	CPU	6
2.2	Operating Modes	7
2.3	Address Space	8
2.4	Resets	9
2.5	Option-Setting Memory	10
2.6	Voltage Detection Circuit	12
2.7	Clock Generation Circuit	18
2.8	Clock Frequency Accuracy Measurement Circuit	22
2.9	Low Power Consumption	25
2.10	Register Write Protection Function	33
2.11	Exception Handling	34
2.12	Interrupt Controller	35
2.13	Buses	37
2.14	Data Transfer Controller	39
2.15	Event Link Controller	42
2.16	I/O Ports	45
2.17	Multi-Function Pin Controller	49
2.18	Port Output Enable 2	70
2.19	Compare Match Timer	71
2.20	Realtime Clock	72
2.21	Independent Watchdog Timer	75
2.22	Serial Communications Interface	78
2.23	I ² C Bus Interface	86
2.24	Serial Peripheral Interface	87
2.25	12-Bit A/D Converter	90
2.26	D/A Converter	96
2.27	Temperature Sensor	97
2.28	Comparator B	98
2.29	RAM	100
2.30	Flash Memory	101
2.31	Packages	105
3.	Comparison of Pin Functions	106
3.1	80-Pin Package	106
3.2	64-Pin Package	109
3.3	48-Pin Package	112
4.	Important Information when Migrating Between MCUs	114

4.1	Notes on Functional Design	114
4.1.1	VCL Pin (External Capacitor)	114
4.1.2	Transition to Boot Mode (FINE Interface)	114
4.1.3	Mode Setting Pins	114
4.1.4	User Boot Mode	114
4.1.5	Clock Frequency Settings	114
4.1.6	PLL Circuit	114
4.1.7	All-Module Clock Stop Mode	114
4.1.8	Exception Vector Table	115
4.1.9	Endian Settings	115
4.1.10	Restrictions on Compare Function	115
4.1.11	Eliminating I ² C Bus Interface Noise	115
4.1.12	MOSCWTCR Register	115
4.1.13	Initialization of Port Direction Register (PDR)	115
4.1.14	Scan Conversion Time of 12-Bit A/D Converter	115
4.1.15	Note on Operating Frequency and Voltage Ranges in Operating Power Control Modes	116
4.1.16	Differences Among Chip Versions	117
5. F	Reference Documents	118
Revis	ion History	120

1. Comparison of Built-In Functions of RX140 Group and RX210 Group

A comparison of the built-in functions of the RX140 Group and RX210 Group is provided below. For details of the functions, see section 2, Comparative Overview of Specifications and section 5, Reference Documents.

Table 1.1 is a comparison of built-in functions of RX140 Group and RX210 Group.

Table 1.1 Comparison of Built-In Functions of RX140 Group and RX210 Group

Function	RX210	RX140
<u>CPU</u>		
Operating modes		
Address space		
Resets		
Option-setting memory (OFSM)	4	
Voltage detection circuit (LVDAa): RX210, (LVDAb): RX140		<i>I</i> 🛕
Clock generation circuit		1
Clock frequency accuracy measurement circuit		1
Low power consumption		/_
Register write protection function		1 📥
Exception handling		
Interrupt controller (ICUb)		/
Buses		/
DMA controller (DMACA)	0	X
Data transfer controller (DTCa): RX210, (DTCb): RX140		
Event link controller (ELC)		
I/O ports		/ <u></u>
Multi-function pin controller (MPC)		
Multi-function timer pulse unit 2 (MTU2a)		\supset
Port output enable 2 (POE2a)		
16-bit timer pulse unit (TPUa)	0	X
8-bit timer (TMR): RX210, (TMRa): RX140		
Compare match timer (CMT)		
Realtime clock (RTCB): RX140, (RTCb): RX210		
Low-power timer (LPTa)	X	0
Watchdog timer (WDTA)	×	X
Independent watchdog timer (IWDTa)		
Serial communications interface (SGIg, SCIk, SCIh): RX140, (SCIc, SCId): RX210		/ <u></u>
I ² C bus interface (RIICa): RX140, (RIIC): RX210		
CAN module (RSCAN)	X	0
Serial peripheral interface (RSPIc): RX140, (RSPI): RX210		/ <u></u>
CRC calculator (CRC)	()
Capacitive touch sensing unit (CTSU2SL, CTSU2L)	X	0
AESA	X	0
RNGA	X	0
12-bit A/D converter (S12ADE): RX140, (S12ADb): RX210		1
D/A converter (DAa): RX140, (DA): RX210		1
Temperature sensor (TEMPSA): RX140, (TEMPSa): RX210		
Comparator A (CMPA)	0	X
Comparator B (CMPBa): RX140, (CMPB): RX210		
Data operation circuit (DOC))
RAM		

Function	RX210	RX140
E2 DataFlash (flash memory for data storage) (RX210)		<u> </u>
ROM (flash memory for code storage) (RX210)		
Flash memory (FLASH) (RX140)		
<u>Packages</u>		<u> </u>

○: Available, ×: Unavailable, •: Differs due to added functionality,

▲: Differs due to change in functionality, ■: Differs due to removed functionality.

2. Comparative Overview of Specifications

This section presents a comparative overview of specifications, including registers.

In the comparative overview, red text indicates functions which are included only in one of the MCU groups and also functions for which the specifications differ between the two groups.

In the register comparison, red text indicates differences in specifications for registers that are included in both groups and **black text** indicates registers which are included only in one of the MCU groups. Differences in register specifications are not listed.

2.1 CPU

Table 2.1 is a comparative overview of CPU.

Table 2.1 Comparative Overview of CPU

Item	RX210	RX140
CPU	 Maximum operating frequency: 50 MHz 32-bit RX CPU Minimum instruction execution time: One instruction per clock cycle Address space: 4 GB, linear Register set of the CPU — General purpose: Sixteen 32-bit registers — Control: Eight 32-bit registers — Accumulator: One 64-bit register Basic instructions: 73 	 Maximum operating frequency: 48 MHz 32-bit RX CPU (RXv2) Minimum instruction execution time: One instruction per clock cycle Address space: 4 GB, linear Register set of the CPU — General purpose: Sixteen 32-bit registers — Control: Ten 32-bit registers — Accumulator: Two 72-bit registers Basic instructions: 75, variable-length instruction format Floating point instructions: 11
FPU	 DSP instructions: 9 Addressing modes: 10 Data arrangement — Instructions: Little endian — Data: Selectable between little endian or big endian On-chip 32-bit multiplier: 32 × 32 → 64 bits On-chip divider: 32 / 32 → 32 bits Barrel shifter: 32 bits 	 DSP instructions: 23 Addressing modes: 11 Data arrangement — Instructions: Little endian — Data: Selectable between little endian or big endian On-chip 32-bit multiplier: 32 × 32 → 64 bits On-chip divider: 32 / 32 → 32 bits Barrel shifter: 32 bits Single-precision floating-point (32 bits)
		Data types and floating-point exceptions conform to IEEE 754 standard

2.2 Operating Modes

Table 2.2 is a comparative overview of operating modes, and Table 2.3 is a comparison of operating mode registers.

Table 2.2 Comparative Overview of Operating Modes

Item	RX210	RX140
Operating modes specified by	Single-chip mode	Single-chip mode
mode setting pins	Boot mode	Boot mode (SCI interface)
		Boot mode (FINE interface)
	User boot mode	_
Operating modes selected by	Single-chip mode	_
register settings	On-chip ROM disabled extended mode	_
	On-chip ROM enabled extended mode	_

Table 2.3 Comparison of Operating Mode Registers

Register	Bit	RX210	RX140
MDSR		Mode status register	_
SYSCR0		System control register 0	_

2.3 Address Space

Figure 2.1 is a comparative memory map of single-chip mode.

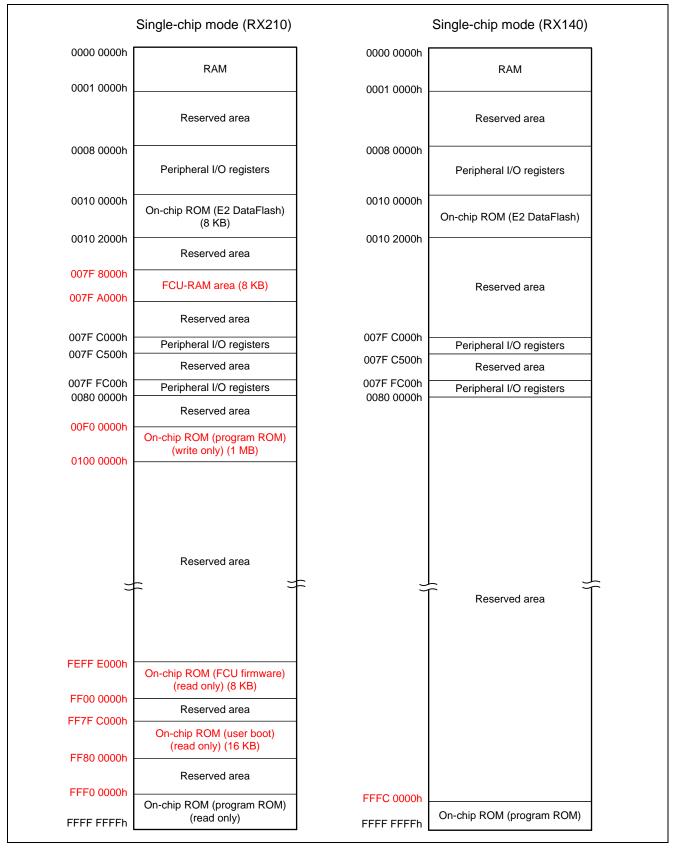


Figure 2.1 Comparative Memory Map of Single-Chip Mode

2.4 Resets

Table 2.4 is a comparative overview of resets, and Table 2.5 is a comparison of reset-related registers.

Table 2.4 Comparative Overview of Resets

Item	RX210	RX140	
RES# pin reset	Voltage input to the RES# pin is driven low.	Voltage input to the RES# pin is driven low.	
Power-on reset	VCC rises (voltage detection: VPOR).	VCC rises (voltage detection: VPOR).	
Voltage monitoring 0 reset	VCC falls (voltage detection: Vdet0).	VCC falls (voltage detection: Vdet0).	
Voltage monitoring 1 reset	VCC falls (voltage detection: Vdet1).	VCC falls (voltage detection: Vdet1).	
Voltage monitoring 2 reset	VCC falls (voltage detection: Vdet2).	VCC falls (voltage detection: Vdet2).	
Deep software standby reset	Deep software standby mode is canceled by an interrupt.	_	
Independent watchdog timer reset	The independent watchdog timer underflows or a refresh error occurs.	The independent watchdog timer underflows or a refresh error occurs.	
Watchdog timer reset	Watchdog timer underflow, or refresh error	_	
Software reset	Register setting	Register setting	

Table 2.5 Comparison of Reset-Related Registers

Register	Bit	RX210	RX140
RSTSR0	DPSRSTF	Deep software standby reset detect flag	
RSTSR2	WDTRF	Watchdog timer reset detect flag	_

2.5 Option-Setting Memory

Figure 2.2 is a comparison of option-setting memory areas, and Table 2.6 is a comparison of option-setting memory registers.

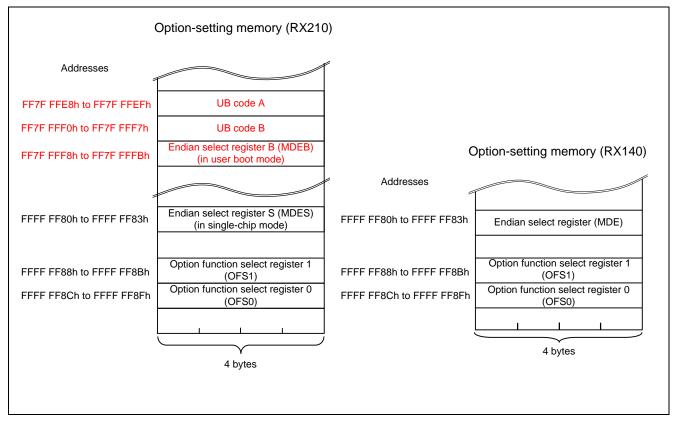


Figure 2.2 Comparison of Option-Setting Memory Areas

Table 2.6 Comparison of Option-Setting Memory Registers

Register	Bit	RX210 (OFSM)	RX140 (OFSM)
OFS0	IWDTTOPS[1:0]	IWDT timeout period select bits	IWDT timeout period select bits
		b3 b2	b3 b2
		0 0: 1,024 cycles (03FFh)	0 0: 128 cycles (007Fh)
		0 1: 4,096 cycles (0FFFh)	0 1: 512 cycles (01FFh)
		1 0: 8,192 cycles (1FFFh)	1 0: 1,024 cycles (03FFh)
		1 1: 16,384 cycles (3FFFh)	1 1: 2,048 cycles (07FFh)
	IWDTSLCSTP	IWDT sleep mode count stop	IWDT sleep mode count stop
		control bit	control bit
		0: Counting stop is disabled.	0: Counting stop is disabled.
		1: Counting stop is enabled when	1: Counting stop is enabled when
		entering sleep, software standby, deep software standby, or all-	entering sleep, software standby, or deep sleep mode.
		module clock stop mode.	or deep sleep mode.
	WDTSTRT	WDT start mode select bit	
	WDTTOPS[1:0]	WDT timeout period select bits	
	WDTCKS[3:0]	WDT clock frequency division ratio	
	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	select bits	
	WDTRPES[1:0]	WDT window end position select	_
		bits	
	WDTRPSS[1:0]	WDT window start position select	_
		bits	
	WDTRSTIRQS	WDT reset interrupt request select	_
		bit	
OFS1	VDSEL[1:0]	Voltage detection 0 level select bits	Voltage detection 0 level select bits
		b1 b0	b1 b0
		0 0: 3.80 V is selected	0 0: 3.85 V is selected
		0 1: 2.80 V is selected	0 1: 2.85 V is selected
		1 0: 1.90 V is selected	1 0: 2.53 V is selected
	EACTOT: 15	1 1: 1.72 V is selected	1 1: 1.90 V is selected
	FASTSTUP	_	Power-on fast startup time bit
MDED	HOCOFRQ[1:0]	—	HOCO frequency selection bits
MDEB	_	Endian select register B	Endian select register
MDES		Endian select register S	
(RX210)			
MDE (DV4.40)			
(RX140)			

2.6 Voltage Detection Circuit

Table 2.7 is a comparative overview of the voltage detection circuits, and Table 2.8 is a comparison of voltage detection circuit registers.

Table 2.7 Comparative Overview of Voltage Detection Circuits

		RX210 (LVDA	vp)		RX140 (LVDA	(b)	
Item		Voltage Monitoring 0	Voltage Monitoring 1	Voltage Monitoring 2	Voltage Monitoring 0	Voltage Monitoring 1	Voltage Monitoring 2
VCC monitoring	Monitored voltage	Vdet0	Vdet1	Vdet2	Vdet0	Vdet1	Vdet2
	Detection target	When voltage drops below Vdet0	When voltage rises above or drops past Vdet1	When voltage rises above or drops past Vdet2 Switching between VCC and the voltage input on the CMPA2 pin can be accomplished using the LVCMPCR.E XVCCINP2 bit.	When voltage drops below Vdet0	When voltage rises above or drops past Vdet1	When voltage rises above or drops past Vdet2 Switching between VCC and the voltage input on the CMPA2 pin can be accomplished using the LVCMPCR.E XVCCINP2 bit.
	Detection voltage	Selectable from four levels using the OFS1 register	Selectable from 16 levels using LVDLVLR.L VD1LVL[3:0] bits	Varies according to whether VCC or the CMPA2 pin input voltage is selected. Selectable from 16 levels using LVDLVLR.LV D2LVL[3:0] bits	Selectable from four levels using the OFS1 register	Selectable from 14 levels using LVDLVLR.L VD1LVL[3:0] bits	Selectable from four levels using LVDLVLR.LV D2LVL[1:0] bits
	Monitoring flags	_	LVD1SR.LV D1MON flag: Monitors whether voltage is higher or lower than Vdet1	LVD2SR.LVD 2MON flag: Monitors whether voltage is higher or lower than Vdet2	_	LVD1SR.LV D1MON flag: Monitors whether voltage is higher or lower than Vdet1	LVD2SR.LVD 2MON flag: Monitors whether voltage is higher or lower than Vdet2
			LVD1SR.LV D1DET flag: Vdet1 passage detection	LVD2SR.LVD 2DET flag: Vdet2 passage detection		LVD1SR.LV D1DET flag: Vdet1 passage detection	LVD2SR.LVD 2DET flag: Vdet2 passage detection

		RX210 (LVDA	(b)		RX140 (LVDAb)		
Item		Voltage Monitoring 0	Voltage Monitoring 1	Voltage Monitoring 2	Voltage Monitoring 0	Voltage Monitoring 1	Voltage Monitoring 2
Voltage detection processing	Reset	Voltage monitoring 0 reset Reset when	Voltage monitoring 1 reset	Voltage monitoring 2 reset Reset when	Voltage monitoring 0 reset Reset when	Voltage monitoring 1 reset	Voltage monitoring 2 reset Reset when
		Vdet0 > VCC: CPU restart timing after specified time with VCC > Vdet0	Vdet1 > VCC: CPU restart timing selectable between after specified time with VCC > Vdet1 or Vdet1 > VCC	Vdet2 > VCC: CPU restart timing selectable between after specified time with VCC > Vdet2 or Vdet2 > VCC	Vdet0 > VCC: CPU restart timing after specified time with VCC > Vdet0	Vdet1 > VCC: CPU restart timing selectable between after specified time with VCC > Vdet1 or Vdet1 > VCC	Vdet2 > VCC or CMPA2 pin: CPU restart timing selectable among after specified time with VCC or CMPA2 pin > Vdet2 or after specified time with Vdet2 > VCC or CMPA2 pin
	Interrupts	_	Voltage monitoring 1 interrupt Selectable between non- maskable or maskable interrupt	Voltage monitoring 2 interrupt Selectable between non- maskable or maskable interrupt		Voltage monitoring 1 interrupt Selectable between non- maskable or maskable interrupt	Voltage monitoring 2 interrupt Selectable between non- maskable or maskable interrupt
			Interrupt request issued when Vdet1 > VCC, VCC > Vdet1, or both	Interrupt request issued when Vdet2 > VCC, VCC > Vdet2, or both		Interrupt request issued when Vdet1 > VCC, VCC > Vdet1, or both	Interrupt request issued when Vdet2 > VCC or CMPA2 pin, VCC or CMPA2 pin > Vdet2, or both
Digital filter	Enable/ disable switching	Digital filter function not available.	Available	Available	_	_	_
	Sampling time	_	1/n LOCO frequency × 2 (n: 1, 2, 4, 8)	1/n LOCO frequency × 2 (n: 1, 2, 4, 8)	_	_	
Event link function			Available: Event output at Vdet1 passage detection	Available: Event output at Vdet1 passage detection		Available: Event output at Vdet1 passage detection	

Table 2.8 Comparison of Voltage Detection Circuit Registers

Register	Bit	RX210 (LVDAb)	RX140 (LVDAb)
LVD1CR1	_	Voltage monitoring 1 circuit/	Voltage monitoring 1 circuit control
		comparator A1 control register 1	register 1
LVD1SR	_	Voltage monitoring 1 circuit/	Voltage monitoring 1 circuit status
		comparator A1 status register	register
LVD2CR1	_	Voltage monitoring 2 circuit/	Voltage monitoring 2 circuit control
		comparator A2 control register 1	register 1
LVD2SR		Voltage monitoring 2 circuit/	Voltage monitoring 2 circuit status
		comparator A2 status register	register
LVCMPCR		Voltage monitoring circuit/	Voltage monitoring circuit control
		comparator A control register	register
	EXVREFINP1	Comparator A1 reference voltage	_
		external input select bit	
	EXVCCINP1	Comparator A1 comparison voltage	_
		external input select bit	
	EXVREFINP2	Comparator A2 reference voltage	_
		external input select bit	
	EXVCCINP2	Comparator A2 comparison voltage	Voltage detection 2 comparison
		external input select bit	voltage external input select bit
	LVD1E	Voltage detection 1/comparator A1 enable bit	Voltage detection 1 enable bit
		0: Voltage detection 1/comparator A1 circuit disabled	0: Voltage detection 1 circuit disabled
		1: Voltage detection 1/comparator A1 circuit enabled	1: Voltage detection 1 circuit enabled
	LVD2E	Voltage detection 2/comparator A2 enable bit	Voltage detection 2 enable bit
		0: Voltage detection 2/comparator	0: Voltage detection 2 circuit
		A2 circuit disabled	disabled
		1: Voltage detection 2/comparator A2 circuit enabled	1: Voltage detection 2 circuit enabled

Register	Bit	RX210 (LVDAb)	RX140 (LVDAb)
LVDLVLR	LVD1LVL[3:0]	Voltage detection 1 level select bits (Standard voltage during drop in voltage)	Voltage detection 1 level select bits (Standard voltage during drop in voltage)
		b3 b0 0 0 0 0: 4.15 V 0 0 0 1: 4.00 V 0 0 1 0: 3.85 V 0 0 1 1: 3.70 V 0 1 0 0: 3.55 V 0 1 0 1: 3.40 V 0 1 1 0: 3.25 V 0 1 1 1: 3.10 V 1 0 0 0: 2.95 V 1 0 1 0: 2.65 V 1 0 1 1: 2.50 V 1 1 0 0: 2.35 V	b3 b0 0 0 0 0: 4.29 V 0 0 0 1: 4.16 V 0 0 1 0: 4.03 V 0 0 1 1: 3.86 V 0 1 0 0: 3.10 V 0 1 0 1: 3.00 V 0 1 1 0: 2.90 V 0 1 1 1: 2.80 V 1 0 0 0: 2.68 V 1 0 0 1: 2.59 V 1 0 1 0: 2.48 V 1 0 1 1: 2.20 V 1 1 0 0: 1.96 V
		1 1 0 1: 2.20 V 1 1 1 0: 2.05 V 1 1 1 1: 1.90 V Settings other than the above are prohibited.	1 1 0 1: 1.86 V Settings other than the above are prohibited.

Register	Bit	RX210 (LVDAb)	RX140 (LVDAb)
LVDLVLR	LVD2LVL[3:0] (RX210) LVD2LVL[1:0] (RX140)	Voltage detection 2 level select bits (Standard voltage during drop in voltage) (b7 to b4)	Voltage detection 2 level select bits (Standard voltage during drop in voltage) (b5, b4)
		(When LVCMPCR.EXVCCINP2 = 0 (VCC selected))	
		b7 b4	b5 b4
		0 0 0 0: 4.15 V 0 0 0 1: 4.00 V	0 0: 4.32 V 0 1: 4.17 V
		0 0 1 1. 4.00 V 0 0 1 0: 3.85 V	1 0: 4.03 V
		0 0 1 0: 3:83 V 0 0 1 1: 3.70 V	1 1: 3.84 V
		0 1 0 0: 3.55 V	11.0.01
		0 1 0 1: 3.40 V	
		0 1 1 0: 3.25 V	
		0 1 1 1: 3.10 V	
		1 0 0 0: 2.95 V	
		1 0 0 1: 2.80 V	
		1 0 1 0: 2.65 V	
		1 0 1 1: 2.50 V	
		1 1 0 0: 2.35 V	
		1 1 0 1: 2.20 V	
		1 1 1 0: 2.05 V 1 1 1 1: 1.90 V	
		1 1 1 1. 1.90 V	
		(When LVCMPCR.EXVCCINP2 = 1 (CMPA2 selected))	
		b7 b4	
		0 0 0 1: 1.33 V	
		Settings other than the above are prohibited.	
LVD1CR0	_	Voltage monitoring 1 circuit/ comparator A1 control register 0	Voltage monitoring 1 circuit control register 0
	LVD1RIE	Voltage monitoring 1/comparator A1 interrupt/reset enable bit	Voltage monitoring 1 interrupt/reset enable bit
	LVD1DFDIS	Voltage monitoring 1/comparator A1 digital filter disable mode select bit	_
	LVD1CMPE	Voltage monitoring 1 circuit/ comparator A1 comparison result output enable bit	Voltage monitoring 1 circuit comparison result output enable bit
	LVD1FSAMP [1:0]	Sampling clock select bits	_
	LVD1RI	Voltage monitoring 1 circuit/ comparator A1 mode select bit	Voltage monitoring 1 circuit mode select bit
	LVD1RN	Voltage monitoring 1/comparator A1 reset negation select bit	Voltage monitoring 1 reset negation select bit

Register	Bit	RX210 (LVDAb)	RX140 (LVDAb)
LVD2CR0	_	Voltage monitoring 2 circuit/ comparator A2 control register 0	Voltage monitoring 2 circuit control register 0
	LVD2RIE	Voltage monitoring 2/comparator A2 interrupt/reset enable bit	Voltage monitoring 2 interrupt/reset enable bit
	LVD2DFDIS	Voltage monitoring 2/comparator A2 digital filter disable mode select bit	
	LVD2CMPE	Voltage monitoring 2 circuit/ comparator A2 comparison result output enable bit	Voltage monitoring 2 circuit comparison result output enable bit
	LVD2FSAMP [1:0]	Sampling clock select bits	_
LVD2CR0	LVD2RI	Voltage monitoring 2 circuit/ comparator A2 mode select bit	Voltage monitoring 2 circuit mode select bit
	LVD2RN	Voltage monitoring 2/comparator A2 reset negation select bit	Voltage monitoring 2 reset negation select bit

2.7 Clock Generation Circuit

Table 2.9 is a comparative overview of the clock generation circuits, and Table 2.10 is a comparison of clock generation circuit registers.

Table 2.9 Comparative Overview of Clock Generation Circuits

Item	RX210	RX140
Use	 Generates the system clock (ICLK) to be supplied to the CPU, DMAC, DTC, ROM, and RAM. 	Generates the system clock (ICLK) to be supplied to the CPU, DTC, ROM, and RAM.
	Of the peripheral module clocks (PCLKB and PCLKD) supplied to the peripheral modules, PCLKD is the operating clock for the S12AD, and PCLKB is the operating clock for modules other than S12AD.	Of the peripheral module clocks (PCLKB and PCLKD) supplied to the peripheral modules, PCLKD is the operating clock for the S12AD, and PCLKB is the operating clock for modules other than S12AD.
	Generates the FlashIF clock (FCLK) to be supplied to the FlashIF.	Generates the FlashIF clock (FCLK) to be supplied to the FlashIF.
	 Generates the external bus clock (BCLK) to be supplied to the external bus. 	
	Generates the CAC clock (CACCLK) to be supplied to the CAC.	 Generates the CAC clock (CACCLK) to be supplied to the CAC. Generates the CAN clock (CANMCLK) to be supplied to the CAN.
	 Generates the RTC-dedicated sub- clock (RTCSCLK) to be supplied to the RTC. 	Generates the RTC-dedicated sub- clock (RTCSCLK) to be supplied to the RTC.
	Generates the IWDT-dedicated clock (IWDTCLK) to be supplied to the IWDT.	 Generates the IWDT-dedicated clock (IWDTCLK) to be supplied to the IWDT Generates the LPT clock (LPTCLK) to be supplied to the LPT.
Operating	ICLK: 50 MHz (max.)	ICLK: 48 MHz (max.)
frequency	PCLKB: 32 MHz (max.)	PCLKB: 32 MHz (max.)
	PCLKD: 54 MHz (max.)FCLK:	PCLKD: 48 MHz (max.) FCLK:
	— 4 MHz to 32 MHz (for programming and erasing the ROM and E2 DataFlash)	MHz to 48 MHz (for programming and erasing the ROM and E2 DataFlash)
	 — 32 MHz (max.) (for reading from the E2 DataFlash) BCLK: 25 MHz (max.) 	 48 MHz (max.) (for reading from the E2 DataFlash)
	BCLK pin output: 12.5 MHz (max.)	
	CACCLK: Same as clock from respective oscillators	CACCLK: Same as clock from respective oscillators
	DT000114 00 T05 111	CANMCLK: 20 MHz (max.) TOOLUGE 20 TOOLUGE
	• RTCSCLK: 32.768 kHz	RTCSCLK: 32.768 kHz NADTOLK: 45 kHz
	IWDTCLK: 125 kHz	IWDTCLK: 15 kHz LPTCLK: Same as clock from selected oscillator

Item	RX210	RX140
Main clock oscillator	 Resonator frequency: 1 MHz to 20 MHz External clock input frequency: 20 MHz (max.) Connectable resonator or additional circuit: ceramic resonator, crystal Connection pins: EXTAL, XTAL Oscillation stop detection function:	Resonator frequency: 1 MHz to 20 MHz External clock input frequency: 20 MHz (max.) Connectable resonator or additional circuit: ceramic resonator, crystal Connection pins: EXTAL, XTAL Oscillation stop detection function: When a main clock oscillation stop is detected, the system clock source is switched to LOCO and MTU pin can be forcedly driven to high-impedance.
Sub-clock oscillator PLL circuit	 Drive capacity switching function Resonator frequency: 32.768 kHz Connectable resonator or additional circuit: crystal Connection pin: XCIN, XCOUT Drive capacity switching function Input clock source: Main clock Input pulse frequency division ratio: Selectable from 1, 2, and 4 Input frequency: 4 MHz to 12.5 MHz Frequency multiplication ratio: Selectable from 8, 10, 12, 16, 20, 24, and 25 VCO oscillation frequency: 50 MHz to 100 MHz 	 Drive capacity switching function Resonator frequency: 32.768 kHz Connectable resonator or additional circuit: crystal Connection pins: XCIN and XCOUT Drive capacity switching function Input clock source: Main clock Input pulse frequency division ratio: Selectable from 1, 2, and 4 Input frequency: 4 MHz to 12 MHz Frequency multiplication ratio: Selectable from 4 to 12 (increments of 0.5) Oscillation frequency: 24 MHz to 48 MHz
High-speed on- chip oscillator (HOCO) Low-speed on- chip oscillator (LOCO)	 Oscillation frequency: 32 MHz/36.864 MHz/40 MHz/50 MHz HOCO power supply control Oscillation frequency: 125 kHz 	Oscillation frequency: 24 MHz, 32 MHz, 48 MHz Oscillation frequency: 4 MHz
IWDT-dedicated on-chip oscillator BCLK pin output control function	 Oscillation frequency: 125 kHz Selectable between BCLK clock output or high-level output. Output clock selectable between BCLK or BCLK/2. 	Oscillation frequency: 15 kHz

Table 2.10 Comparison of Clock Generation Circuit Registers

Register	Bit	RX210	RX140
SCKCR	BCK[3:0]	External bus clock (BCLK) select	_
		bits	
	PSTOP1	BCLK pin output control bit	_
SCKCR3	CKSEL[2:0]	Clock source select bits	Clock source select bits
		[Chip version A]	
		b10 b8	
		0 0 0: LOCO	
		0 0 1: HOCO	
		0 1 1: Sub-clock oscillator	
		1 0 0: PLL circuit	
		[Chip versions B and C]	
		b10 b8	b10 b8
		0 0 0: LOCO	0 0 0: LOCO
		0 0 1: HOCO	0 0 1: HOCO
		0 1 0: Main clock oscillator	0 1 0: Main clock oscillator
		0 1 1: Sub-clock oscillator	0 1 1: Sub-clock oscillator
		1 0 0: PLL circuit	1 0 0: PLL circuit
		Settings other than above are	Settings other than above are
		prohibited.	prohibited.
VRCR		Voltage regulator control register	_
PLLCR	STC[4:0]	Frequency multiplication factor	Frequency multiplication factor
	(RX210)	select bits	select bits
	STC[5:0]	b12 b8	b13 b8
	(RX140)	0 0 1 1 1: ×8	0 0 0 1 1 1: ×4
			0 0 1 0 0 0: ×4.5
		0 1 0 0 1: ×10	0 0 1 0 0 1: ×5
			0 0 1 0 1 0: ×5.5
		0 1 0 1 1: ×12	0 0 1 0 1 1: ×6
			0 0 1 1 0 0: ×6.5
			0 0 1 1 0 1: ×7
		0.4.4.4.4.40	0 0 1 1 1 0: ×7.5
		0 1 1 1 1: ×16	0 0 1 1 1 1: ×8
			0 1 0 0 0 0: ×8.5
			010001:×9
		4.0.0.4.420	0 1 0 0 1 0: ×9.5
		1 0 0 1 1: ×20	010011:×10
			0 1 0 1 0 0: ×10.5
			010101:×11
		40444.04	0 1 0 1 1 0: ×11.5
		1 0 1 1 1: ×24	0 1 0 1 1 1: ×12
		1 1 0 0 0: ×25	Settings other than above are
		Settings other than above are prohibited.	prohibited.
BCKCR	_	External bus clock control register	_

Register	Bit	RX210	RX140
SOSCCR	SOSTP	Sub-clock oscillator stop bit	Sub-clock oscillator stop bit
			This bit is not initialized by reset
			sources other than a power-on reset.
		Initial value after a reset differs.	TCGCt.
HOCOCR2	_	High-speed on-chip oscillator control register 2	_
OSCOVFSR	_	—	Oscillation stabilization flag register
MOSCWTCR		_	Main clock oscillator wait control register
LOFCR	_	_	Low-speed on-chip oscillator forced oscillation control register
CKOCR	_	—	CLKOUT output control register
MOFCR	MODRV[2:0]	Main clock oscillator drive capability switch bits	_
	MODRV21		Main clock oscillator drive capability switch bit
	MODRV2 [1:0]	Main clock oscillator drive capability switch 2 bits	_
LOCOTRR2	_	_	Low-speed on-chip oscillator trimming register 2
ILOCOTRR	_	_	IWDT-dedicated on-chip oscillator trimming register
HOCOPCR	_	High-speed on-chip oscillator power supply control register	_
HOCOTRRn		High-speed on-chip oscillator trimming register n (n = 0 to 3)	High-speed on-chip oscillator trimming register n (n = 0)
PLLPCR		PLL power control register	_
SOMCR			Sub-clock oscillator mode control register

2.8 Clock Frequency Accuracy Measurement Circuit

Table 2.11 is a comparative overview of clock frequency accuracy measurement circuits, and Table 2.12 is a comparison of clock frequency accuracy measurement circuit registers.

Table 2.11 Comparative Overview of Clock Frequency Accuracy Measurement Circuits

Item	RX210 (CAC)	RX140 (CAC)
Measurement target clocks	The frequency of the following clocks can be measured.	The frequency of the following clocks can be measured.
	Clock output from main clock oscillator (main clock)	Main clock
	Clock output from sub-clock oscillator (sub-clock)	Sub-clock
	Clock output from high-speed on- chip oscillator (HOCO clock)	HOCO clock
	Clock output from low-speed on-chip oscillator (LOCO clock)	LOCO clock
	Clock output from IWDT-dedicated on-chip oscillator (IWDTCLK clock)	IWDT-dedicated clock
		Peripheral module clock B (PCLKB)
Measurement	_	External clock input on CACREF pin
reference clocks		Main clock
		Sub-clock
		HOCO clock
		LOCO clock
		 IWDT-dedicated clock (IWDTCLK)
		Peripheral module clock B (PCLKB)
Selectable function	Digital filter function	Digital filter function
Interrupt sources	Measurement end interrupt	Measurement end interrupt
	Frequency error interrupt	Frequency error interrupt
	Overflow interrupt	Overflow interrupt
Low power consumption function	Ability to specify module stop state	Ability to transition to module stop state

Table 2.12 Comparison of Clock Frequency Accuracy Measurement Circuit Registers

Register	Bit	RX210 (CAC)	RX140 (CAC)
CACR1	FMCS[2:0]	Frequency measurement clock select bits	Measurement target clock select bits
		[Chip version A]	
		b3 b1	
		0 0 1: Clock output from sub-clock oscillator	
		0 1 0: Clock output from high-speed on-chip oscillator	
		0 1 1: Clock output from low-speed on-chip oscillator	
		1 0 0: Clock output from IWDT- dedicated on-chip oscillator	
		[Chip versions B and C]	
		b3 b1	b3 b1
		0 0 0: Clock output from main clock oscillator	0 0 0: Main clock
		0 0 1: Clock output from sub-clock oscillator	0 0 1: Sub-clock
		0 1 0: Clock output from high-speed on-chip oscillator	0 1 0: HOCO clock
		0 1 1: Clock output from low-speed on-chip oscillator	0 1 1: LOCO clock
		1 0 0: Clock output from IWDT- dedicated on-chip oscillator	1 0 0: IWDT-dedicated clock (IWDTCLK)
		Settings other than the above are prohibited.	1 0 1: Peripheral module clock B (PCLKB)
			Settings other than the above are
			prohibited.

Register	Bit	RX210 (CAC)	RX140 (CAC)
CACR2	RSCS[2:0]	Reference signal generation clock select bits	Measurement reference clock select bits
		[Chip version A] b3 b1 0 0 1: Clock output from sub-clock oscillator 0 1 0: Clock output from high-speed on-chip oscillator 0 1 1: Clock output from low-speed on-chip oscillator 1 0 0: Clock output from IWDT-	
		dedicated on-chip oscillator [Chip versions B and C] b3 b1	b3 b1
		0 0 0: Clock output from main clock oscillator	0 0 0: Main clock
		0 0 1: Clock output from sub-clock oscillator	0 0 1: Sub-clock
		0 1 0: Clock output from high-speed on-chip oscillator	0 1 0: HOCO clock
		0 1 1: Clock output from low-speed on-chip oscillator	0 1 1: LOCO clock
		1 0 0: Clock output from IWDT- dedicated on-chip oscillator	1 0 0: IWDT-dedicated clock (IWDTCLK)
		Settings other than the above are prohibited.	1 0 1: Peripheral module clock B (PCLKB)
			Settings other than the above are prohibited.

2.9 Low Power Consumption

Table 2.13 is a comparative overview of the low power consumption functions, Table 2.14 is a comparison of procedures for entering and exiting low power consumption modes and operating states in each mode, and Table 2.15 is a comparison of low power consumption registers.

Table 2.13 Comparative Overview of Low Power Consumption Functions

Item	RX210	RX140
Reducing power consumption by switching clock signals	The frequency division ratio can be set independently for the system clock (ICLK), peripheral module clock (PCLKB), S12AD clock (PCLKD), external bus clock (BCLK), and FlashIF clock (FCLK).	The frequency division ratio can be set independently for the system clock (ICLK), peripheral module clock (PCLKB), S12AD clock (PCLKD), and FlashIF clock (FCLK).
BCLK output control function	BCLK output or high-level output can be selected.	_
Module stop function	Each peripheral module can be stopped independently by the module stop control register.	Each peripheral module can be stopped independently by the module stop control register.
Function for transition to low power consumption mode	Transition to a low power consumption mode in which the CPU, peripheral modules, or oscillators are stopped is enabled.	Transition to a low power consumption mode in which the CPU, peripheral modules, or oscillators are stopped is enabled.
Low power	Sleep mode	Sleep mode
consumption modes		Deep sleep mode
modes	All-module clock stop modeSoftware standby modeDeep software standby mode	Software standby mode
		Snooze mode
Function for lower operating power consumption	Power consumption can be reduced in normal operation, sleep mode, and deep sleep mode by selecting an appropriate operating power control mode according to the operating frequency and operating voltage.	Power consumption can be reduced in normal operation, sleep mode, deep sleep mode, and snooze mode by selecting an appropriate operating power control mode according to the operating frequency and operating voltage.
	 [Chip versions A and C] Five operating power control modes are available High-speed operating mode Middle-speed operating mode 1A Middle-speed operating mode 1B Low-speed operating mode 1 Low-speed operating mode 2 [Chip version B] 	
	 Seven operating power control modes are available High-speed operating mode Middle-speed operating mode 1A Middle-speed operating mode 1B 	 Four operating power control modes are available High-speed operating mode Middle-speed operating mode
	 Middle-speed operating mode 2A Middle-speed operating mode 2B Low-speed operating mode 1 Low-speed operating mode 2 	Middle-speed operating mode 2 Low-speed operating mode

Table 2.14 Comparison of Procedures for Entering and Exiting Low Power Consumption Modes and Operating States in Each Mode

	Entering and Exiting Low Power Consumption Modes and		
Mode	Operating States	RX210	RX140
Sleep mode	Transition method	Control register +	Control register +
		instruction	instruction
	Method of cancellation other than reset	Interrupt	Interrupt
	State after cancellation	Program execution state	Program execution state
		(interrupt processing)	(interrupt processing)
	Main clock oscillator	Operation possible	Operation possible
	Sub-clock oscillator	Operation possible	Operation possible
	High-speed on-chip oscillator	Operation possible	Operation possible
	Low-speed on-chip oscillator	Operation possible	Operation possible
	IWDT-dedicated on-chip oscillator	Operation possible	Operation possible
	PLL	Operation possible	Operation possible
	USB-dedicated PLL	Operation possible	_
	CPU	Stopped (retained)	Stopped (retained)
	RAM0 (0000 0000h to 0000 FFFFh) RAM1	Operation possible (retained)	Operation possible (retained)
	(0001 0000h to 0001 7FFFh): RX210		
	DTC	<u> </u>	Operation possible
	Flash memory	Operation	Operation
	Watchdog timer (WDT)	Stopped (retained)	_
	Independent watchdog timer (IWDT)	Operation possible	Operation possible
	Realtime clock (RTC)	Operation possible	Operation possible
	8-bit timer (unit 0, unit 1) (TMR)	Operation possible	
	Low-power timer (LPT)		Operation possible
	Voltage detection circuit (LVD)	Operation possible	Operation possible
	Power-on reset circuit	Operation	Operation
	Peripheral modules	Operation possible	Operation possible
	I/O ports	Operation	Operation
	RTCOUT output	_	Operation possible
	CLKOUT output	_	Operation possible
	Comparator B	_	Operation possible
All-module clock stop	Transition method	Control register + instruction	_
mode	Method of cancellation other than reset	Interrupt	_
	State after cancellation	Program execution state	_
		(interrupt processing)	
	Main clock oscillator	Operation possible	_
	Sub-clock oscillator	Operation possible	_
	High-speed on-chip oscillator	Operation possible	_
	Low-speed on-chip oscillator	Operation possible	
	IWDT-dedicated on-chip oscillator	Operation possible	_
	PLL	Operation possible	
	CPU	Stopped (retained)	
	GFU	Stopped (retained)	

Mada	Entering and Exiting Low Power Consumption Modes and	DV040	BY440
Mode All-module	Operating States RAM0	RX210	RX140
clock stop mode	(0000 0000h to 0000 FFFFh) RAM1 (0001 0000h to 0001 7FFFh):	Stopped (retained)	
	Flash memory	Stopped (retained)	_
	Watchdog timer (WDT)	Stopped (retained)	_
	Independent watchdog timer (IWDT)	Operation possible	_
	Realtime clock (RTC)	Operation possible	_
	8-bit timer (unit 0, unit 1) (TMR)	Operation possible	_
	Voltage detection circuit (LVD)	Operation possible	_
	Power-on reset circuit	Operation	_
	Peripheral modules	Stopped (retained)	_
	I/O ports	Retained	_
Deep sleep mode	Transition method	_	Control register + instruction
	Method of cancellation other than reset	_	Interrupt
	State after cancellation	_	Program execution state
	Main clock oscillator		(interrupt processing)
		_	Operation possible
	Sub-clock oscillator	_	Operation possible
	High-speed on-chip oscillator	_	Operation possible
	Low-speed on-chip oscillator	_	Operation possible
	IWDT-dedicated on-chip oscillator	_	Operation possible
	PLL	-	Operation possible
	CPU	_	Stopped (retained)
	RAM0 (0000 0000h to 0000 FFFFh)	_	Stopped (retained)
	DTC	_	Stopped (retained)
	Flash memory	_	Stopped (retained)
	Independent watchdog timer (IWDT)	_	Operation possible
	Realtime clock (RTC)	_	Operation possible
	Low-power timer (LPT)	_	Operation possible
	Voltage detection circuit (LVD)	_	Operation possible
	Power-on reset circuit	_	Operation
	Peripheral modules	_	Operation possible
	I/O ports	_	Operation
	RTCOUT output	_	Operation possible
	CLKOUT output	_	Operation possible
	Comparator B	_	Operation possible
Software standby mode	Transition method	Control register + instruction	Control register + instruction
	Method of cancellation other than reset	Interrupt	Interrupt
	State after cancellation	Program execution state	Program execution state
		(interrupt processing)	(interrupt processing)

	Entering and Exiting Low Power Consumption Modes and		
Mode	Operating States	RX210	RX140
Software	Main clock oscillator	Stopped	Stopped
standby mode	Sub-clock oscillator	Operation possible	Operation possible
	High-speed on-chip oscillator	Stopped	Stopped
	Low-speed on-chip oscillator	Stopped	Operation possible
	IWDT-dedicated on-chip oscillator	Operation possible	Operation possible
	PLL	Stopped	Stopped
	CPU	Stopped (retained)	Stopped (retained)
	RAM0 (0000 0000h to 0000 FFFFh) RAM1 (0001 0000h to 0001 7FFFh): RX210	Stopped (retained)	Stopped (retained)
	DTC		Stopped (retained)
	Flash memory	Stopped (retained)	Stopped (retained)
	Watchdog timer (WDT)	Stopped (retained)	
	Independent watchdog timer (IWDT)	Operation possible	Operation possible
	Realtime clock (RTC)	Operation possible	Operation possible
	Low-power timer (LPT)		Operation possible
	8-bit timer (unit 0, unit 1) (TMR)	Stopped (retained)	
	Voltage detection circuit (LVD)	Operation possible	Operation possible
	Power-on reset circuit	Operation	Operation
	Peripheral modules	Stopped (retained)	Stopped (retained)
	I/O ports	Retained	Retained
	RTCOUT output	retained	Operation possible
	CLKOUT output		Operation possible
	Comparator B		Operation possible
Snooze mode	Transition method	_	When snooze transition conditions are met while in software standby mode
	Method of cancellation other than reset	_	Interrupt or occurrence of snooze end condition
	State after cancellation	_	Program execution state (interrupt processing) or software standby mode
	Main clock oscillator		Operation possible
	Sub-clock oscillator		Operation possible
	High-speed on-chip oscillator		Operation possible
	Low-speed on-chip oscillator	_	Operation possible
	IWDT-dedicated on-chip oscillator		Operation possible
	PLL		Operation possible
	CPU		Stopped (retained)
	RAM0 (0000 0000h to 0000 FFFFh)		Operation possible (retained)

Mode	Entering and Exiting Low Power Consumption Modes and Operating States	RX210	RX140
Snooze mode	DTC	_	Operation possible
	Flash memory	_	Stopped (retained)
	Independent watchdog timer (IWDT)	_	Operation possible
	Realtime clock (RTC)	_	Operation possible
	Low-power timer (LPT)	_	Operation possible
	Voltage detection circuit (LVD)	_	Operation possible
	Power-on reset circuit	_	Operation
	Peripheral modules	_	Operation possible
	I/O ports	_	Operation
	RTCOUT output	_	Operation possible
	CLKOUT output	_	Operation possible
	Comparator B	_	Operation possible
Deep software standby mode	Transition method	Control register + instruction	_
	Method of cancellation other than reset	Interrupt	_
	State after cancellation	Program execution state (reset processing)	
	Main clock oscillator	Stopped	
	Sub-clock oscillator	Operation possible	
	High-speed on-chip oscillator	Stopped	
	Low-speed on-chip oscillator	Stopped	
	IWDT-dedicated on-chip oscillator	Stopped (undefined)	
	PLL	Stopped (dridelined)	
	CPU	Stopped (undefined)	
	RAM0 (0000 0000h to 0000 FFFFh) RAM1 (0001 0000h to 0001 7FFFh): RX210	Stopped (undefined)	_
	Flash memory	Stopped (retained)	_
	Watchdog timer (WDT)	Stopped (undefined)	_
	Independent watchdog timer (IWDT)	Stopped (undefined)	_
	Realtime clock (RTC)	Operation possible	_
	8-bit timer (unit 0, unit 1) (TMR)	Stopped (undefined)	_
	Voltage detection circuit (LVD)	Operation possible	_
	Power-on reset circuit	Operation	_
	Peripheral modules	Stopped (undefined)	_
	I/O ports	Retained	_

Note: "Operation possible" means that whether the state is operating or stopped is controlled by the control register setting.

[&]quot;Stopped (retained)" means that internal register values are retained and internal operations are suspended.

[&]quot;Stopped (undefined)" means that internal register values are undefined and power is not supplied to the internal circuit.

 Table 2.15
 Comparison of Low Power Consumption Registers

Register	Bit	RX210	RX140
SBYCR		Standby control register	Standby control register
		Initial value after a reset differs.	
	OPE	Output port enable bit	_
MSTPCRA	MSTPA13	16-bit timer pulse unit module stop bit	_
	MSTPA14	Compare match timer (unit 1) module stop bit	_
	MSTPA24	Module stop A24 bit	_
	MSTPA27	Module stop A27 bit	_
	MSTPA28	DMA controller/data transfer controller module stop bit	Data transfer controller module stop bit
		Target module: DMAC/DTC	Target module: DTC
	MSTPA29	Module stop A29 bit	_
	ACSE	All-module clock stop mode enable bit	_
MSTPCRB	MSTPB0	_	CAN module module stop bit
	MSTPB8	Temperature sensor module stop bit	_
	MSTPB24	Serial communication interface 7 module stop bit	_
	MSTPB27	Serial communication interface 4 module stop bit	_
	MSTPB28	Serial communication interface 3 module stop bit	_
	MSTPB29	Serial communication interface 2 module stop bit	_
	MSTPB31	Serial communication interface 0 module stop bit	_
MSTPCRC	MSTPC1	RAM1 module stop bit	_
	MSTPC24	Serial communication interface 11 module stop bit	_
	MSTPC25	Serial communication interface 10 module stop bit	_
	DSLPE	_	Deep sleep mode enable bit
MSTPCRD		_	Module stop control register D

Register	Bit	RX210	RX140
OPCCR	OPCM	Operating power control mode	Operating power control mode
	[2:0]	select bits	select bits
	[2:0]	[Chip versions A and C] b2 b0 0 0 0: High-speed operating mode 0 1 0: Middle-speed operating mode 1A 0 1 1: Middle-speed operating mode 1B 1 1 0: Low-speed operating mode 1 1 1 1: Low-speed operating mode 2 [Chip version B] b2 b0 0 0 0: High-speed operating mode 0 1 0: Middle-speed operating mode 1A 0 1 1: Middle-speed operating mode 1B 1 0 0: Middle-speed operating mode 2A 1 0 1: Middle-speed operating mode 2B 1 1 0: Low-speed operating mode 1	b2 b0 0 0 0: High-speed operating mode 0 1 0: Middle-speed operating mode 1 0 0: Middle-speed operating mode 2 Settings other than the above are prohibited.
		1 1 0: Low-speed operating mode 1 1 1 1: Low-speed operating mode 2	
		Settings other than the above are prohibited.	
SOPCCR	_	_	Sub operating power control register
RSTCKCR	RSTCKSEL [2:0]	Sleep mode return clock source select bits	Sleep mode return clock source select bits
		[Chip version A] b2 b0 0 0 1: HOCO is selected.	
		[Chip versions B and C] b2 b0	b2 b0 0 0 0: LOCO is selected.
		0 0 1: HOCO is selected. 0 1 0: Main clock oscillator is selected.	0 0 1: HOCO is selected.*1 0 1 0: Main clock oscillator is selected.
		Settings other than above are prohibited while the RSTCKEN bit is set to 1.	Settings other than above are prohibited while the RSTCKEN bit is set to 1.
SNZCR		_	Snooze control register
SNZCR2		_	Snooze control register 2
MOSCWTCR		Main clock oscillator wait control register	
SOSCWTCR	_	Sub-clock oscillator wait control register	_
PLLWTCR		PLL wait control register	_

Register	Bit	RX210	RX140
HOCOWTCR2		HOCO wait control register 2	_
DPSBYCR		Deep standby control register	_
DPSIER0		Deep standby interrupt enable register 0	_
DPSIER2		Deep standby interrupt enable register 2	_
DPSIFR0		Deep standby interrupt flag register 0	_
DPSIFR2		Deep standby interrupt flag register 2	_
DPSIEGR0		Deep standby interrupt edge register 0	_
DPSIEGR2		Deep standby interrupt edge register 2	_
FHSSBYCR		Flash HOCO software standby control register	_
DPSBKRy	_	Deep standby backup register (y = 0 to 31)	_

Note: 1. Set the PRCR.PRC1 bit to 1 (write enabled) before rewriting this register.

2.10 Register Write Protection Function

Table 2.16 is a comparative overview of the register write protection functions, and Table 2.17 is a comparison of register write protection function registers.

Table 2.16 Comparative Overview of Register Write Protection Functions

Item	RX210	RX140
PRC0 bit	Registers related to the clock generation circuit: SCKCR, SCKCR3, PLLCR, PLLCR2, BCKCR, MOSCCR, SOSCCR, LOCOCR, ILOCOCR, HOCOCR, OSTDCR, OSTDSR, HOCOCR2 HOCOTRR0, HOCOTRR1, HOCOTRR2, HOCOTRR3	Registers related to the clock generation circuit: SCKCR, SCKCR3, PLLCR, PLLCR2, MOSCCR, SOSCCR, LOCOCR, ILOCOCR, HOCOCR, LOFCR, OSTDCR, OSTDSR, CKOCR, LOCOTRR2, ILOCOTRR2, HOCOTRR0,SOMCR
PRC1 bit	 Register related to the operating modes: SYSCR0, SYSCR1 Registers related to the low power consumption functions: SBYCR, MSTPCRA, MSTPCRB, MSTPCRC, OPCCR, RSTCKCR, MOSCWTCR, SOSCWTCR, PLLWTCR, DPSBYCR, DPSIER0, DPSIER2, DPSIFR0, DPSIER2, DPSIEGR0, DPSIEGR2, HSSYCR, HOCOWTCR2 Registers related to the clock generation circuit: MOFCR, HOCOPCR, PLLPCR (Chip version B) 	Register related to the operating modes: SYSCR1 Registers related to the low power consumption functions: SBYCR, MSTPCRA, MSTPCRB, MSTPCRC, MSTPCRD, OPCCR, RSTCKCR, SOPCCR, SNZCR, SNZCR2 Registers related to the clock generation circuit: MOFCR, MOSCWTCR
PRC2 bit	Software reset register: SWRR VRCR register	Software reset register: SWRR Registers related to the low power timer: LPTCR1, LPTCR2, LPTCR3, LPTPRD, LPCMR0, LPCMR1, LPWUCR
PRC3 bit	Registers related to LVD: LVCMPCR, LVDLVLR, LVD1CR0, LVD1CR1, LVD1SR, LVD2CR0, LVD2CR1, LVD2SR	Registers related to LVD: LVCMPCR, LVDLVLR, LVD1CR0, LVD1CR1, LVD1SR, LVD2CR0, LVD2CR1, LVD2SR

Table 2.17 Comparison of Register Write Protection Function Registers

Register	Bit	RX210	RX140
PRCR	PRC1	Protect bit 1	Protect bit 1
		Enables writing to the registers related to operating modes, low power consumption functions, and software reset.	Enables writing to the registers related to operating modes, low power consumption functions, the clock generation circuit, and software reset.
	PRC2	Protect bit 2	Protect bit 2
		Enables writing to the VRCR register.	Enables writing to the registers related to the low-power timer.

2.11 Exception Handling

Table 2.18 is a comparative overview of exception handling, Table 2.19 is a comparative listing of vectors, and Table 2.20 is a comparative listing of instructions for returning from exception handling routines.

Table 2.18 Comparative Overview of Exception Handling

Item	RX210	RX140
Exception events	Undefined instruction exception	Undefined instruction exception
	 Privileged instruction exception 	 Privileged instruction exception
		 Floating-point exception
	Reset	Reset
	 Non-maskable interrupt 	Non-maskable interrupt
	Interrupt	Interrupt
	Unconditional trap	Unconditional trap

Table 2.19 Comparative Listing of Vectors

Item		RX210	RX140
Undefined	instruction exception	Fixed vector table	Exception vector table (EXTB)
Privileged	instruction exception	Fixed vector table	Exception vector table (EXTB)
Floating-po	oint exception	_	Exception vector table (EXTB)
Reset		Fixed vector table	Exception vector table (EXTB)
Non-maska	able interrupt	Fixed vector table	Exception vector table (EXTB)
Interrupt	Fast interrupt	FINTV	FINTV
Other than fast interrupt		Relocatable vector table (INTB)	Relocatable vector table (INTB)
Unconditio	nal trap	Relocatable vector table (INTB)	Relocatable vector table (INTB)

Table 2.20 Comparative Listing of Instructions for Returning from Exception Handling Routines

Item		RX210	RX140
Undefined i	nstruction exception	RTE	RTE
Privileged in	nstruction exception	RTE	RTE
Floating-po	int exception	_	RTE
Reset		Return not possible	Return not possible
Non-maska	ble interrupt	Return not possible	Prohibited
Interrupt	Fast interrupt	RTFI	RTFI
Other than fast interrupt		RTE	RTE
Uncondition	nal trap	RTE	RTE

2.12 Interrupt Controller

Table 2.21 is a comparative overview of the interrupt controllers, and Table 2.22 is a comparison of interrupt controller registers.

Table 2.21 Comparative Overview of Interrupt Controllers

Item		RX210 (ICUb)	RX140 (ICUb)
Interrupts	Peripheral function interrupts	Interrupts from peripheral modules Interrupt detection: Edge detection/level detection The detection method is fixed for each connected peripheral module source.	Interrupts from peripheral modules Interrupt detection: Edge detection/level detection The detection method is fixed for each connected peripheral module source.
	External pin interrupts	 Interrupts from pins IRQ0 to IRQ7 Number of sources: 8 Interrupt detection: Ability to set as source detection of low level, falling edge, rising edge, or rising and falling edges Digital filter function: Supported 	 Interrupts from pins IRQ0 to IRQ7 Number of sources: 8 Interrupt detection: Ability to set as source detection of low level, falling edge, rising edge, or rising and falling edges Digital filter function: Supported
	Software interrupts	Interrupt generated by writing to a registerNumber of sources: 1	Interrupt generated by writing to a registerNumber of sources: 1
	Event link interrupts	An ELSR18I or ELSR19I interrupt can be generated by an ELC event.	An ELSR8I or ELSR18I interrupt can be generated by an ELC event.
	Interrupt priority	Specified by registers.	Specified by registers.
	Fast interrupt function	Faster interrupt handling by the CPU can be specified for a single interrupt source only.	Faster interrupt handling by the CPU can be specified for a single interrupt source only.
	DTC and DMAC control (RX210) DTC control (RX140)	The DTC and DMAC can be activated by an interrupt source.	The DTC can be activated by an interrupt source.
Non- maskable interrupts	NMI pin interrupt	 Interrupt from the NMI pin Interrupt detection: Falling edge or rising edge Digital filter function: Supported 	 Interrupt from the NMI pin Interrupt detection: Falling edge or rising edge Digital filter function: Supported
	Oscillation stop detection interrupt	Interrupt on detection of oscillation having stopped	Interrupt on detection of oscillation having stopped
	WDT underflow/ refresh error interrupt	Interrupt on an underflow of the down counter or occurrence of a refresh error	
	IWDT underflow/ refresh error interrupt	Interrupt on an underflow of the down counter or occurrence of a refresh error	Interrupt on an underflow of the down counter or occurrence of a refresh error
	Voltage monitoring 1 interrupt	Voltage monitoring interrupt of voltage monitoring circuit 1 (LVD1)	Voltage monitoring interrupt of voltage monitoring circuit 1 (LVD1)

Item		RX210 (ICUb)	RX140 (ICUb)
Non-	Voltage	Voltage monitoring interrupt of	Voltage monitoring interrupt of
maskable interrupts	monitoring 2 interrupt	voltage monitoring circuit 2 (LVD2)	voltage monitoring circuit 2 (LVD2)
Return from consumptio	low power	 Sleep mode: Return is initiated by a non-maskable interrupt or any other interrupt source. All-module clock stop mode: Return is initiated by non-maskable interrupts, IRQ0 to IRQ7 interrupts, TMR interrupts, or RTC alarm/periodic interrupts. Software standby mode: Return is initiated by a non-maskable interrupt, interrupt IRQ0 to IRQ7, or an RTC alarm or periodic interrupt. 	Sleep mode and deep sleep mode: Return is initiated by a non-maskable interrupt or any other interrupt source. Software standby mode: Return is initiated by non-maskable interrupts (excluding oscillation stop detection interrupts), external pin interrupts (IRQ0 to IRQ7), peripheral interrupts (voltage monitoring 1, voltage monitoring 2, RTC alarm/periodic), or the ELSR8I interrupt (LPT dedicated interrupt). Snooze mode: Return is initiated by non-maskable interrupts (excluding oscillation stop detection interrupts), external pin interrupts (IRQ0 to IRQ7), peripheral interrupts (voltage monitoring 1, voltage monitoring 2, RTC alarm/periodic), or the SNZI interrupt (snooze release interrupt).

Table 2.22 Comparison of Interrupt Controller Registers

Register	Bit	RX210 (ICUb)	RX140 (ICUb)
DTCERn	DTCE	DTC activation enable bit	DTC transfer request enable bit
		0: DTC activation is disabled.	0: Source of interrupt to CPU selected.
		1: DTC activation is enabled.	1: DTC activation source selected.
DMRSRm	_	DMAC activation request select	_
		register m (DMRSRm)	
		(m = DMAC channel number)	
NMISR	WDTST	WDT underflow/refresh error status	_
		flag	
NMIER	WDTEN	WDT underflow/refresh error enable	_
		bit	
NMICLR	WDTCLR	WDT clear bit	_

2.13 Buses

Table 2.23 is a comparative overview of the buses, and Table 2.24 is a comparison of bus registers.

Table 2.23 Comparative Overview of Buses

Bus Type		RX210	RX140
CPU buses	Instruction bus	 Connected to the CPU (for instructions) Connected to on-chip memory (RAM, ROM) Operates in synchronization 	 Connected to the CPU (for instructions) Connected to on-chip memory (RAM, ROM) Operates in synchronization
	Operand bus	with the system clock (ICLK) Connected to the CPU (for operands) Connected to on-chip memory (RAM, ROM)	with the system clock (ICLK) Connected to the CPU (for operands) Connected to on-chip memory (RAM, ROM)
Memory buses	Memory bus	Operates in synchronization with the system clock (ICLK) Connected to RAM	Operates in synchronization with the system clock (ICLK) Connected to RAM
	1 Memory bus 2	Connected to ROM	Connected to ROM
Internal main buses	Internal main bus 1	 Connected to the CPU Operates in synchronization with the system clock (ICLK) 	Connected to the CPU Operates in synchronization with the system clock (ICLK)
	Internal main bus 2	 Connected to the DTC and DMAC Connected to on-chip memory (RAM, ROM) Operates in synchronization with the system clock (ICLK) 	 Connected to the DTC Connected to on-chip memory (RAM, ROM) Operates in synchronization with the system clock (ICLK)
Internal peripheral buses	Internal peripheral bus 1	 Connected to peripheral modules (DTC, DMAC, interrupt controller, and bus error monitoring section) Operates in synchronization with the system clock (ICLK) 	Connected to peripheral modules (DTC, interrupt controller, and bus error monitoring section) Operates in synchronization with the system clock (ICLK)
	Internal peripheral bus 2	Connected to peripheral modules (modules other than those connected to internal peripheral bus 1) Operates in synchronization with the peripheral-module clock (PCLKB, PCLKD)	 Connected to peripheral modules Operates in synchronization with the peripheral-module clock (PCLKB, PCLKD)
	Internal peripheral bus 3		 Connected to peripheral modules (CTSU, RSCAN) Operates in synchronization with the peripheral-module clock (PCLKB)
	Internal peripheral bus 6	 Connected to ROM (P/E) and E2 DataFlash Operates in synchronization with the FlashIF clock (FCLK) 	 Connected to ROM (P/E) and E2 DataFlash Operates in synchronization with the FlashIF clock (FCLK)

Bus Type		RX210	RX140
External bus	CS area	 Connected to the external devices Operates in synchronization with the external-bus clock (BCLK) 	

Table 2.24 Comparison of Bus Registers

Register	Bit	RX210	RX140
CSnCR	_	CSn control register (n = 0 to 3)	_
CSnREC	_	CSn recovery cycle register	_
		(n = 0 to 3)	
CSRECEN		CS recovery cycle insertion enable	_
		register	
CSnMOD		CSn mode register	_
		(n = 0 to 3)	
CSnWCR1	_	CSn wait control register 1	_
		(n = 0 to 3)	
CSnWCR2	_	CSn wait control register 2	_
		(n = 0 to 3)	
BERSR1	MST[2:0]	Bus master code bits	Bus master code bits
		b6 b4	b6 b4
		0 0 0: CPU	0 0 0: CPU
		0 0 1: Reserved	0 0 1: Reserved
		0 1 0: Reserved	0 1 0: Reserved
		0 1 1: DTC/DMAC	0 1 1: DTC
		1 0 0: Reserved	1 0 0: Reserved
		1 0 1: Reserved	1 0 1: Reserved
		1 1 0: Reserved	1 1 0: Reserved
		1 1 1: Reserved	1 1 1: Reserved
BUSPRI	BPEB[1:0]	External bus priority control bits	_

2.14 Data Transfer Controller

Table 2.25 is a comparative overview of the data transfer controllers, and Table 2.26 is a comparison of data transfer controller registers.

Table 2.25 Comparative Overview of Data Transfer Controllers

Item	RX210 (DTCa)	RX140 (DTCb)
Number of	_	Equal to number of all interrupt sources
transfer channels		that can start a DTC transfer.
Transfer modes	Normal transfer mode A single activation leads to a single data transfer.	Normal transfer mode A single activation leads to a single data transfer.
	Repeat transfer mode A single activation leads to a single data transfer.	Repeat transfer mode A single activation leads to a single data transfer.
	 The transfer address returns to the transfer start address when the number of data transfers equals the repeat size. 	 The transfer address returns to the transfer start address when the number of data transfers equals the repeat size.
	The maximum repeat size is 256 data units.	 The maximum number of repeat transfers is 256, and the maximum data transfer size is 256 × 32 bits, or 1,024 bytes.
	Block transfer mode	Block transfer mode
	 — A single activation leads to the transfer of a single block of data. — The maximum block size is 256 	A single activation leads to the transfer of a single block of data. The maximum block size is
	data units.	$256 \times 32 \text{ bits} = 1,024 \text{ bytes}.$
Transfer channels	Channel transfer corresponding to the interrupt source is possible (transferred by DTC activation request from the ICU).	_
Chain transfer function	 Multiple data transfer types can be executed sequentially in response to a single transfer request. Either "performed only when the transfer counter becomes 0" or "every time" can be selected for chain transfer. 	 Multiple data transfer types can be executed sequentially in response to a single transfer request. Either "performed only when the transfer counter reaches 0" or "every time" can be selected.
Sequence transfer	_	A complex series of transfers can be registered as a sequence. Any sequence can be selected by the transfer data and executed.
		 Only one sequence transfer trigger source can be selected at a time. Up to 256 sequences can correspond
		 to a single trigger source. The data that is initially transferred in response to a transfer request determines the sequence.
		The entire sequence can be executed on a single request, or the sequence can be suspended in the middle and resumed on the next transfer request (sequence division).

Item	RX210 (DTCa)	RX140 (DTCb)
Transfer space	 16 MB in short-address mode (within 0000 0000h to 007F FFFFh or FF80 0000h to FFFF FFFFh, excluding reserved areas) 4 GB in full-address mode (within 0000 0000h to FFFF FFFFh, excluding reserved areas) 	 16 MB in short-address mode (within 0000 0000h to 007F FFFFh or FF80 0000h to FFFF FFFFh, excluding reserved areas) 4 GB in full-address mode (within 0000 0000h to FFFF FFFFh, excluding reserved areas)
Data transfer units	 Single data unit: 8 bits, 16 bits, or 32 bits Single block size: 1 to 256 data units 	 Single data unit: 1 byte (8 bits), 1 word (16 bits), or 1 longword (32 bits) Single block size: 1 to 256 data units
CPU interrupt requests	 An interrupt request to the CPU can be generated by a DTC activation interrupt. An interrupt request to the CPU can be generated after a single data transfer. An interrupt request to the CPU can be generated after transfer of the specified number of data units. 	 An interrupt request to the CPU can be generated by a DTC activation interrupt. An interrupt request to the CPU can be generated after a single data transfer. An interrupt request to the CPU can be generated after transfer of the specified number of data units.
Event link function	An event link request is generated after one data transfer (for block transfers, after one block).	An event link request is generated after one data transfer (for block transfers, after one block).
Read skip	Transfer data read skip can be specified.	Reading of the transfer information can be skipped when the same transfer is repeated.
Write-back skip	Writeback skip can be enabled when "fixed" is selected for the transfer source address and/or transfer destination address.	Write-back of transferred data that is not updated can be skipped when the address of the transfer source or destination is fixed.
Write-back disable		Ability to disable write-back of transfer information
Displacement addition	_	Ability to add displacement to the transfer source address (selectable by each transfer information)
Low power consumption function	Ability to transition to module stop state	Ability to transition to module stop state

Table 2.26 Comparison of Data Transfer Controller Registers

Register	Bit	RX210 (DTCa)	RX140 (DTCb)
MRA	WBDIS	_	Write-back disable bit*1
MRB	SQEND	_	Sequence transfer end bit
	INDX	_	Index table reference bit
	DISEL	DTC interrupt select bit	DTC interrupt select bit
		0: An interrupt request to the CPU is generated when the specified data transfer is completed.	O: An interrupt request to the CPU is generated on completion of the specified number of data transfers.
		1: An interrupt request to the CPU is generated each time DTC data transfer is performed.	An interrupt request to the CPU is generated for each data transfer.
	CHNS	DTC chain transfer select bit	DTC chain transfer select bit
		Chain transfer is performed continuously. Chain transfer is performed when the transfer counter changes from 1 to 0 or from 1 to CRAH.	O: Chain transfer is performed on completion of each transfer. 1: Chain transfer is performed when the transfer counter changes from 1 to 0 or from 1 to CRAH.
MRC	<u> </u>	_	DTC mode register C
DTCIBR	_	-	DTC index table base register
DTCOR	_	-	DTC operation register
DTCSQE			DTC sequence transfer enable register
DTCDISP		_	DTC address displacement register

Note: 1. Transfer information is usually allocated to a RAM area, but it can be allocated to a ROM area by setting the MRA.WBDIS bit to 1 (no write-back).

2.15 Event Link Controller

Table 2.27 is a comparative overview of the event link controllers, Table 2.28 is a comparison of event link controller registers, Table 2.29 lists correspondences between values set in ELSRn.ELS[7:0] and event signal names and numbers.

Table 2.27 Comparative Overview of Event Link Controllers

Item	RX210 (ELC)	RX140 (ELC)
Event link function	59 types of event signals can be directly connected to peripheral modules.	48 types of event signals can be directly connected to peripheral modules.
	The operation of peripheral timer modules at event input is selectable.	 The operation of peripheral timer modules at event signal input is selectable.
	 Event link operation is possible for port B and port E. 	Event link operation on port B is supported.
	 Single port: Event link operation can be enabled for a single specified port. 	 Single port: Event link operation can be enabled for a single specified port.
	 Port group: Event link operation can be enabled for a group of specified bits within an 8-bit port. 	 Port group: Event link operation can be enabled for multiple specified ports within a group of up to eight ports.
Low power consumption function	Ability to transition to module stop state	Ability to transition to module stop state

Table 2.28 Comparison of Event Link Controller Registers

Register	Bit	RX210 (ELC)	RX140 (ELC)
ELSRn	_	Event link setting register n (n = 1 to 4, 7, 10, 12, 15, 16, 18 to 29)	Event link setting register n (n = 1 to 4, 7, 8, 10, 12, 14 to 16, 18, 20, 22, 24, 25)
ELOPC	LPTMD[1:0]	_	LPT operation select bits
PGRn (RX210) PGR1 (RX140)	_	Port group setting register n (n = 1, 2)	Port group setting register 1
PGCn (RX210) PGC1 (RX140)	_	Port group control register n (n = 1, 2)	Port group control register 1
PDBFn (RX210) PDBF1 (RX140)	_	Port buffer register n (n = 1, 2)	Port buffer register 1
PELm		Event link port setting register m (m = 0 to 3)	Event link port setting register m (m = 0, 1)
	PSP[1:0]	b4 b3 0 0: Setting disabled. 0 1: Port B (corresponding to PGR1)	Port number specification bits b4 b3 0 0: Setting disabled. 0 1: Port B (corresponding to PGR1)
		1 0: Port E (corresponding to PGR2) 1 1: Setting prohibited.	1 0: Setting prohibited. 1 1: Setting prohibited.

Table 2.29 Correspondences between Values Set in ELSRn.ELS[7:0] and Event Signal Names and Numbers

Value of ELS[7:0]			
Bits	Peripheral Module	RX210 (ELC)	RX140 (ELC)
08h	Multi-function timer pulse	MTU1 compare match 1A	MTU1 compare match 1A
09h	unit 2	MTU1 compare match 1B	MTU1 compare match 1B
0Ah		MTU1 overflow	MTU1 overflow
0Bh		MTU1 underflow	MTU1 underflow
0Ch		MTU2 compare match 2A	MTU2 compare match 2A
0Dh		MTU2 compare match 2B	MTU2 compare match 2B
0Eh	7	MTU2 overflow	MTU2 overflow
0Fh	7	MTU2 underflow	MTU2 underflow
10h		MTU3 compare match 3A	MTU3 compare match 3A
11h	7	MTU3 compare match 3B	MTU3 compare match 3B
12h		MTU3 compare match 3C	MTU3 compare match 3C
13h		MTU3 compare match 3D	MTU3 compare match 3D
14h		MTU3 overflow	MTU3 overflow
15h	7	MTU4 compare match 4A	MTU4 compare match 4A
16h		MTU4 compare match 4B	MTU4 compare match 4B
17h		MTU4 compare match 4C	MTU4 compare match 4C
18h		MTU4 compare match 4D	MTU4 compare match 4D
19h		MTU4 overflow	MTU4 overflow
1Ah		MTU4 underflow	MTU4 underflow
1Fh	Compare match timer	CMT1 compare match 1	CMT1 compare match 1
22h	8-bit timer	TMR0 compare match A0	TMR0 compare match A0
23h	7	TMR0 compare match B0	TMR0 compare match B0
24h		TMR0 overflow	TMR0 overflow
28h	7	TMR2 compare match A2	TMR2 compare match A2
29h		TMR2 compare match B2	TMR2 compare match B2
2Ah	7	TMR2 overflow	TMR2 overflow
2Eh		RTC periodic	_
31h	_	IWDT underflow or refresh	_
32h	Low-power timer	_	LPT compare match 0
33h	· · · · · · · · · · · · · · · · ·		LPT compare match 1
34h	12-bit A/D converter	_	S12AD comparison conditions are met
35h		_	S12AD comparison conditions are not met
3Ah	Serial communications interface	SCI5 error (receive error or error signal detection)	SCI5 error (receive error or error signal detection)
3Bh	-	SCI5 receive data full	SCI5 receive data full
3Ch	1	SCI5 transmit data empty	SCI5 transmit data empty
3Dh	1	SCI5 transmit end	SCI5 transmit end
4Eh	I ² C bus interface	RIIC0 communication error or event generation	RIIC0 communication error or event generation
4Fh	-	RIIC0 receive data full	RIIC0 receive data full
50h	-	RIIC0 transmit data empty	RIIC0 transmit data empty
	-		
51h		RIIC0 transmit end	RIIC0 transmit end

Value of			
ELS[7:0]			
Bits	Peripheral Module	RX210 (ELC)	RX140 (ELC)
52h	Serial peripheral interface	RSPI0 error (mode fault,	
		overrun, or parity error)	
53h		RSPI0 idle	_
54h		RSPI0 receive data full	<u> </u>
55h		RSPI0 transmit data empty	_
56h		RSPI0 transmit end (except	_
		during clock synchronous	
	10.1.11.1.15	operation in slave mode)	0.404.0.4.70
58h	12-bit A/D converter	A/D conversion end signal of 12-bit A/D converter	S12AD A/D conversion end
59h	Comparator B0	Comparator B0 comparison	Comparator B0 comparison
		result change	result change
5Ah	Comparator B0 and B1	Comparator B0/B1 common	Comparator B0/B1 common
		comparison result change	comparison result change
5Bh	Voltage detection circuit	LVD1 voltage detection	LVD1 voltage detection
5Ch		LVD2 voltage detection	_
5Dh	DMA controller	DMAC0 transfer end	<u> </u>
5Eh		DMAC1 transfer end	_
5Fh		DMAC2 transfer end	_
60h		DMAC3 transfer end	_
61h	Data transfer controller	DTC transfer end	DTC transfer end
62h	Clock generation circuit	Clock generation circuit oscillation stop detection	
63h	I/O ports	Input port group 1 input edge detection	Input port group 1 input edge detection
64h		Input port group 2 input edge detection	_
65h		Single input port 0 input edge detection	Single input port 0 input edge detection
66h		Single input port 1 input edge detection	Single input port 1 input edge detection
67h		Single input port 2 input edge detection	_
68h		Single input port 3 input edge detection	
69h	Event link controller	Software event	Software event
6Ah	Data operation circuit	_	DOC data operation condition met
Settings oth	er than the above are prohib	ited.	

2.16 I/O Ports

Table 2.30 to Table 2.32 are comparative overviews of the I/O ports, Table 2.33 is a comparison of I/O port functions, and Table 2.34 is a comparison of I/O port registers.

Table 2.30 Comparative Overview of I/O Ports (80-Pin)

Port Symbol	RX210 (80-Pin)	RX140 (80-Pin)
PORT0	P03, P05, P07	P03 to P07
PORT1	P12 to P17	P12 to P17
PORT2	P20, P21, P26, P27	P20, P21, P26, P27
PORT3	P30 to P32, P34 to P37	P30 to P32, P34 to P37
PORT4	P40 to P47	P40 to P47
PORT5	P54, P55	P54, P55
PORTA	PA0 to PA6	PA0 to PA6
PORTB	PB0 to PB7	PB0 to PB7
PORTC	PC2 to PC7	PC0 to PC7
PORTD	PD0 to PD2	PD0 to PD2
PORTE	PE0 to PE5	PE0 to PE5
PORTG	_	PG7
PORTH	PH0 to PH3	PH0 to PH3, PH6, PH7
PORTJ	PJ1	PJ1, PJ6, PJ7

Table 2.31 Comparative Overview of I/O Ports (64-Pin)

Port Symbol	RX210 (64- and 69-Pin)	RX140 (64-Pin)
PORT0	P03, P05	P03, P05
PORT1	P14 to P17	P14 to P17
PORT2	P26, P27	P26, P27
PORT3	P30 to P32, P35 to P37	P30 to P32, P35 to P37
PORT4	P40 to P44, P46	P40 to P47
PORT5	P54, P55	P54, P55
PORTA	PA0, PA1, PA3, PA4, PA6	PA0, PA1, PA3, PA4, PA6
PORTB	PB0, PB1, PB3, PB5 to PB7	PB0, PB1, PB3, PB5 to PB7
PORTC	PC2 to PC7	PC0 to PC7
PORTD	_	_
PORTE	PE0 to PE5	PE0 to PE5
PORTG	_	PG7
PORTH	PH0 to PH3	PH0 to PH3, PH6*1, PH7*1
PORTJ	_	PJ6, PJ7

Note: 1. A product with a ROM capacity of 64 KB is not equipped with this pin.

Table 2.32 Comparative Overview of I/O Ports (48-Pin)

Port Symbol	RX210 (48-Pin)	RX140 (48-Pin)
PORT0	_	_
PORT1	P14 to P17	P14 to P17
PORT2	P26, P27	P26, P27
PORT3	P30, P31, P35 to P37	P30, P31, P35 to P37
PORT4	P40 to P42, P46	P40 to P42, P45 to P47
PORTA	PA1, PA3, PA4, PA6	PA1, PA3, PA4, PA6
PORTB	PB0, PB1, PB3, PB5	PB0, PB1, PB3, PB5
PORTC	PC4 to PC7	PC0 to PC7
PORTE	PE1 to PE4	PE1 to PE4
PORTG	_	PG7
PORTH	PH0 to PH3	PH0 to PH3
PORTJ	_	PJ6, PJ7

Table 2.33 Comparison of I/O Port Functions

Item	Port Symbol	RX210	RX140
Input pull-up function	PORT0	P00 to P03, P05, P07	P03 to P07
	PORT1	P12 to P17	P12 to P17
	PORT2	P20 to P27	P20, P21, P26, P27
	PORT3	P30 to P34, P36, P37	P30 to P32, P34, P36, P37
	PORT4	P40 to P47	P40 to P47
	PORT5	P50 to P56	P54, P55
	PORT6	P60 to P67	_
	PORT7	P70 to P77	_
	PORT8	P80 to P83, P86, P87	_
	PORT9	P90 to P93	_
	PORTA	PA0 to PA7	PA0 to PA6
	PORTB	PB0 to PB7	PB0 to PB7
	PORTC	PC0 to PC7	PC2 to PC7
	PORTD	PD0 to PD7	PD0 to PD2
	PORTE	PE0 to PE7	PE0 to PE5
	PORTF	PF5	_
	PORTG	_	PG7
	PORTH	PH0 to PH3	PH0 to PH3
	PORTJ	PJ1, PJ3, PJ5	PJ1, PJ6, PJ7
	PORTK	PK2 to PK5	_
	PORTL	PL0, PL1	_
Open drain output	PORT0	P00 to P02	_
function	PORT1	P12 to P17	P12 to P17
	PORT2	P20 to P27	P20, P21, P26, P27
	PORT3	P30 to P34, P36, P37	P30 to P32, P34, P36, P37
	PORT5	P50 to P52, P54	_
	PORT6	P60, P61	_
	PORT7	P70, P74 to P77	_
	PORT8	P80 to P83	_
	PORT9	P90 to P93	_
	PORTA	PA0 to PA7	PA0 to PA6
	PORTB	PB0 to PB7	PB0 to PB7
	PORTC	PC0 to PC7	PC2 to PC7
	PORTD	_	PD0 to PD2

Item	Port Symbol	RX210	RX140
Open drain output	PORTE	PE0 to PE7	PE0 to PE3
function	PORTG		PG7
	PORTK	PK2 to PK5	
Drive capacity	PORT0	P00 to P03, P05, P07	
switching function	PORT1	P12 to P17	_
	PORT2	P20 to P27	_
	PORT3	P30 to P34, P36, P37	_
	PORT4	P40 to P47	_
	PORT5	P50 to P56	_
	PORT6	P60 to P67	_
	PORT7	P70, P71 to P77	_
	PORT8	P80 to P83, P86, P87	_
	PORT9	P90 to P93	_
	PORTA	PA0 to PA7	_
	PORTB	PB0 to PB7	_
	PORTC	PC0 to PC7	_
	PORTD	PD0 to PD7	_
	PORTE	PE0 to PE7	_
	PORTF	PF5	_
	PORTH	PH0 to PH3	_
	PORTJ	PJ1, PJ3, PJ5	_
	PORTK	PK2 to PK5	_
	PORTL	PL0, PL1	_
5 V tolerant	PORT1	P12, P13, P16, P17	P12, P13, P16, P17

Table 2.34 Comparison of I/O Port Registers

Register	Bit	RX210	RX140
PDR	B0 to B7	Pm0 to Pm7 I/O select bits	Pm0 to Pm7 I/O select bits
		(m = 0 to 9, A to F, H, J to L)	(m = 0 to 5, A to E, G, H, J)
PODR	B0 to B7	Pm0 to Pm7 output data store bits	Pm0 to Pm7 output data store bits
		(m = 0 to 9, A to F, H, J to L)	(m = 0 to 5, A to E, G, H, J)
PIDR	B0 to B7	Pm0 to Pm7 bits	Pm0 to Pm7 bits
		(m = 0 to 9, A to F, H, J to L)	(m = 0 to 5, A to E, G, H, J)
PMR	B0 to B7	Pm0 pin mode control bits	Pm0 to Pm7 pin mode control bits
		(m = 0 to 9, A to F, H, J to L)	(m = 0 to 5, A to E, G, H, J)
		O: Use pin as general I/O port. 1: Use pin as I/O port for peripheral function.	O: Use pin as general I/O port. 1: Use pin as I/O port for peripheral function.
			PG7 only 0: Use pin as general I/O port. 1: Use pin as I/O port for MD function (initial value).

Dogistor	Bit	RX210	RX140
Register			
ODR0	B2, B3	Pm1 output type select bits	Pm1 output type select bits
		(m = 0 to 3, 6 to 9, A to C, E, K)	(m = 1 to 3, A to E, J)
		 P01, P21, P31, P51, P61, P81, P91, PA1, PB1, and PC1 b2 0: CMOS output 1: N-channel open-drain b3 This bit is read as 0. The write 	• P21, P31, PA1, PB1, and PD1 b2 0: CMOS output 1: N-channel open-drain b3 This bit is read as 0. The write
		value should be 0.	value should be 0.
		• PE1	• PE1
		b3 b2	b3 b2
		0 0: CMOS output	0 0: CMOS output
		0 1: N-channel open-drain	0 1: N-channel open-drain
		1 0: P-channel open-drain	1 0: P-channel open-drain
		1 1: Hi-Z	1 1: Hi-Z
ODR1	B0, B2, B4, B6	Pm4, Pm5, Pm6, and Pm7 output type select bits	Pm4, Pm5, Pm6, and Pm7 output type select bits
		$(m = 1 \text{ to } 3, \frac{5}{7}, A \text{ to } C, E, K)$	(m =1 to 3, A to C, G)
PCR	B0 to B7	Pm0 to Pm7 input pull-up resistor control bits	Pm0 to Pm7 input pull-up resistor control bits
		(m = 0 to 9, A to F, H, J to L)	(m = 0 to 5, A to E, G, H, J)
DSCR	_	Drive capacity control register	_
PSRA	_		Port switching register A
PSRB	_	_	Port switching register B
PRWCNTR		_	Port read wait control register

2.17 Multi-Function Pin Controller

Table 2.35 is a comparison of the assignments of multiplexed pins, and Table 2.36 to Table 2.54 are comparisons of multi-function pin controller registers.

In the following comparison of the assignments of multiplexed pins, blue text designates pins that exist on the RX140 Group only and orange text pins that exist on the RX210 Group only. A circle (\bigcirc) indicates that a function is assigned, a cross (\times) that the pin does not exist or that no function is assigned, and grayed out items mean that the function is not implemented.

Table 2.35 Comparison of Multiplexed Pin Assignments

Module/		Port	RX210			RX140		
Function	Pin Function	Allocation	80-Pin	64-Pin	48-Pin	80-Pin	64-Pin	48-Pin
Interrupt	NMI (input)	P35	0	0	0	0	0	0
	IRQ0-DS (input)	P30	0	0	0			
	IRQ0 (input)	P30	X	×	×	0	0	0
		PD0	0	×	X	0	×	X
		PH1	0	0	0	0	0	0
	IRQ1-DS (input)	P31	0	0	0			
	IRQ1 (input)	P31	×	X	×	0	0	0
		PD1	0	X	X	0	X	X
		PH2	0	0	0	0	0	0
	IRQ2-DS (input)	P32	0	0	X			
	IRQ2 (input)	P12	0	X	X	0	×	X
		P32	X	X	X	0	0	×
		P36	X	X	X	0	0	0
		PD2	0	X	X	0	×	X
	IRQ3 (input)	P13	0	X	X	0	×	X
	IRQ4-DS (input)	PB1	0	0	0			
	IRQ4 (input)	P14	0	0	0	0	0	0
		P34	0	×	×	0	×	×
		P37	X	X	X	0	0	0
		PB1	X	X	X	0	0	0
	IRQ5-DS (input)	PA4	0	0	0			
	IRQ5 (input)	P15	0	0	0	0	0	0
		PA4	X	X	X	0	0	0
		PE5	0	0	X	0	0	X
	IRQ6-DS (input)	PA3	0	0	0			
	IRQ6 (input)	P16	0	0	0	0	0	0
		PA3	X	×	×	0	0	0
	IRQ7-DS (input)	PE2	0	0	0			
	IRQ7 (input)	P17	0	0	0	0	0	0
		PE2	X	X	X	0	0	0
Multi-function	MTIOC0A	P34	0	×	×	0	×	X
timer unit 2	(input/output)	PB3	0	0	0	0	0	0
		PC4	X	×	×	0	0	0
	MTIOC0B	P13	0	×	×	0	×	×
	(input/output)	P15	0	0	0	0	0	0
		PA1	0	0	0	0	0	0
	MTIOC0C	P32	0	0	×	0	0	×
	(input/output)	PB1	0	0	0	0	0	0
		PC5	X	×	×	0	0	0

Module/		Port	RX210			RX140		
Function	Pin Function	Allocation	80-Pin	64-Pin	48-Pin	80-Pin	64-Pin	48-Pin
Multi-function	MTIOC0D	PA3	0	0	0	0	0	0
timer unit 2	(input/output)							
	MTIOC1A	P20	0	X	X	0	×	X
	(input/output)	PE4	0	0	0	0	0	0
	MTIOC1B	P21	0	X	×	0	X	X
	(input/output)	PB5	0	0	0	0	0	0
		PE3	X	X	×	0	0	0
Multi-function	MTIOC2A	P26	0	0	0	0	0	0
	(input/output)	PB5	0	0	0	0	0	0
	MTIOC2B	P27	0	0	0	0	0	0
	(input/output)	PE5	0	0	X	0	0	X
	MTIOC3A	P14	0	0	0	0	0	0
	(input/output)	P17	0	0	0	0	0	0
		PC7	0	0	0	0	0	0
		PJ1	0	X	X	0	X	X
	MTIOC3B	P17	0	0	0	0	0	0
	(input/output)	PA1	X	X	×	0	0	0
		PB7	0	0	×	0	0	X
		PC5	0	0	0	0	0	0
		PH0	X	X	X	0	0	0
	MTIOC3C	P16	0	0	0	0	0	0
	(input/output)	PC6	0	0	0	0	0	0
	MTIOC3D	P16	0	0	0	0	0	0
	(input/output)	PA6	×	X	X	0	0	0
		PB0	X	X	X	0	0	0
		PB6	0	0	X	0	0	×
		PC4	0	0	0	0	0	0
		PH1	×	×	X	0	0	0
	MTIOC4A	P55	X	X	X	O	0	X
	(input/output)	PA0	0	0	X	0	0	×
		PB3	Ō	Ō	0	Ō	Ō	0
		PE2	Ō	Ō	Ō	Ō	Ō	0
		PE4	X	×	X	O	O	0
	MTIOC4B	P30	0	0	0	0	0	0
	(input/output)	P54	Ō	Ō	X	Ō	Ō	×
		PC2	Ō	Ō	X	Ö	Ö	×
		PD1	Ō	×	X	Ö	×	×
		PE3	Ö	Ô	Ô	Ö	Ô	0
	MTIOC4C	PA4	×	×	×	0	0	O
	(input/output)	PB1	Ô	Ô	Ô	0	Ö	0
		PE1	0	0	0	0	0	0
		PE5	0	0	X	0	0	×
		PH2	×	×	X	0	0	Ô
	MTIOC4D	P31	Ô	Ô	Ô	0	0	0
	(input/output)	P55	0	0	×	0	0	×
	(PA3	X	X	×	0	0	Ô
		PC3	0	Ô	X	0	0	×
		PD2	0	X	X	0	X	×
		PE4	0	0	0	0	0	0
			_			0	0	0
		PH3	×	×	×			

Module/		Port	RX210			RX140		
Function	Pin Function	Allocation	80-Pin	64-Pin	48-Pin	80-Pin	64-Pin	48-Pin
Multi-function	MTIC5U (input)	PA4	0	0	0	0	0	0
timer unit 2	MTIC5V (input)	PA6	0	0	0	0	0	0
	MTIC5V (input)	PA3	×	X	X	0	0	0
	MTIC5W (input)	PB0	0	0	0	0	0	0
	MTCLKA (input)	P14	0	0	0	0	0	0
		PA4	0	0	0	0	0	0
		PC6	0	0	0	0	0	0
	MTCLKB (input)	P15	0	0	0	0	0	0
		PA6	0	0	0	0	0	0
		PC7	Ō	Ō	Ö	Ö	Ō	Ō
	MTCLKC (input)	PA1	0	Ō	Ö	Ö	Ö	Ō
	6	PC4	Ö	Ö	0	Ö	Ö	Ö
	MTCLKD (input)	PA3	Ö	Ö	Ö	Ö	Ö	Ö
	6	PC5	Ö	Ö	0	Ö	Ö	Ö
Port output	POE0# (input)	PC4	Ö	Ö	0	0	Ö	Ö
enable 2	POE1# (input)	PB5	0	Ö	0	0	Ö	0
	POE2# (input)	P34	0	X	×	0	X	X
	1 OLLI (IIIput)	PA6	0	Ô	Ô	0	Ô	Ô
	POE3# (input)	PB3	0	0	0	0	0	Ö
	POE8# (input)	P17	0	0	0	0	0	0
	1 OLO# (Iliput)	P30	0	0	0	0	0	0
		PE3	0	0	0	0	0	0
8-bit timer	TMO0 (output)	PB3	0	0	0	0	0	0
0-bit timei	Two (output)	PH1	0	0	0	0	0	0
	TMCI0 (input)	P21	0	×	×	0	×	X
	TWOIO (mpat)	PB1	0	Ô	Ô	0	ô	ô
		PH3	0	0	0	0	0	0
	TMRI0 (input)	P20	0	×	X	0	×	X
	TWINIO (IIIput)	PA4	0	Ô	Ô	0	Ô	Ô
		PH2	0	0	0	0	0	0
	TMO1 (output)	P17	0	0	0	0	0	0
	TMO1 (output)	P26	0	0	0	0	0	0
	TMCI1 (input)	P12	0			0	_	
	TWCTT (Input)	P12	0	X	X	0	X	X
			0	0	X	0	0	X
	TMDIA (in mush)	PC4	0	_	_	_	0	0
	TMRI1 (input)	PB5		0	0	0		0
	TMO2 (output)	P16	0		0	0	0	
	T14010 (; ()	PC7	0	0	0	0	0	0
	TMCI2 (input)	P15	0	0	0	0	0	0
		P31	0	0	0	0	0	0
	TAIDIO (; ()	PC6	0	0	0	0	0	0
	TMRI2 (input)	P14	0	0	0	0	0	0
	THOS () : "	PC5	0	0	0	0	0	0
	TMO3 (output)	P13	0	X	X	0	X	X
		P32	0	0	X	0	0	X
		P55	0	0	X	0	0	X
	TMCI3 (input)	P27	0	0	0	0	0	0
		P34	0	X	X	0	X	X
		PA6	0	0	0	0	0	0
	TMRI3 (input)	P30	0	0	0	0	0	0

Module/		Port	RX210			RX140		
Function	Pin Function	Allocation	80-Pin	64-Pin	48-Pin	80-Pin	64-Pin	48-Pin
Serial	RXD0 (input) /	P21	O*2	X	×			
communications	SMISO0							
interface	(input/output) / SSCL0							
	(input/output)							
	TXD0 (output) /	P20	O*1	X	×			
	SMOSI0							
	(input/output) / SSDA0							
	(input/output)							
	RXD1 (input) /	P15	0	0	0	0	0	0
	SMISO1	P30	0	0	0	0	0	0
	(input/output) /							
	SSCL1 (input/output)							
	TXD1 (output) /	P16	0	0	0	0	0	0
	SMOSI1	P26	0	0	Ö	Ö	0	0
	(input/output) /							
	SSDA1							
	(input/output) SCK1	P17	0	0	0	0	0	0
	(input/output)	P27	0	0	0	0	0	0
	CTS1# (input) /	P14	0	0	0	Ö	0	Ö
	RTS1# (output) /	P31	Ö	Ō	Ö	Ō	Ö	Ö
	SS1# (input)					_		
	RXD5 (input) /	PA2	0	X	X	0	X	X
	SMISO5 (input/output) /	PA3	0	0	0	0	0	0
	SSCL5	PC2	0	0	×	0	0	X
	(input/output)							
	TXD5 (output) /	PA4	0	0	0	0	0	0
	SMOSI5 (input/output) /	PC3	0	0	×	0	0	×
	SSDA5							
	(input/output)							
	SCK5	PA1	0	0	0	0	0	0
	(input/output)	PC4	0	0	0	0	0	0
	CTS5# (input) /	PA6	0	0	0	0	0	0
	RTS5# (output) / SS5# (input)							
	RXD6 (input) /	PB0	0	0	0	0	0	0
	SMISO6	PD1	X	×	×	O	×	X
	(input/output) /							
	SSCL6 (input/output)							
	TXD6 (output) /	P32	0	0	X	0	0	×
	SMOSI6	PB1	0	0	Ô	0	0	Ô
	(input/output) /	PD0	×	×	X	0	×	X
	SSDA6							
	(input/output) SCK6	P34	0	_	_	0	_	_
	(input/output)	PB3	0	X	X	0	X	X
	(b aarbar)	PD2	×	X	×	0	×	X
	l	. 52		1 / \	1 / \			/ \

Module/		Port	RX210			RX140		
Function	Pin Function	Allocation	80-Pin	64-Pin	48-Pin	80-Pin	64-Pin	48-Pin
Serial	CTS6# (input) /	PB2	0	X	X	0	X	X
communications	RTS6# (output) /							
interface	SS6# (input)							
	RXD8 (input) /	PC6	0	0	0	0	0	0
	SMISO8							
	(input/output) /							
	SSCL8 (input/output)							
	TXD8 (output) /	PC7	0	0	0	0	0	0
	SMOSI8	107						
	(input/output) /							
	SSDA8							
	(input/output)							
	SCK8	PC5	0	0	0	0	0	0
	(input/output)							
	CTS8# (input) /	PC4	0	0	0	0	0	0
	RTS8# (output) /							
	SS8# (input) RXD9 (input) /	PB6	0	0	×	0	0	×
	SMISO9	100			^			^
	(input/output) /							
	SSCL9							
	(input/output)							
	TXD9 (output) /	PB7	0	0	×	0	0	×
	SMOSI9							
	(input/output) / SSDA9							
	(input/output)							
	SCK9	PB5	0	0	X	0	0	X
	(input/output)	50						
	CTS9# (input) /	PB4	0	×	×	0	0	X
	RTS9# (output) /							
	SS9# (input)							
	RXD12 (input) /	PE2	0	0	O *3	0	0	O *3
	SMISO12							
	(input/output) / SSCL12							
	(input/output) /							
	RXDX12 (input)							
	TXD12 (output) /	PE1	0	0	O*4	0	0	X*4
	SMOSI12							
	(input/output) /							
	SSDA12							
	(input/output) / TXDX12							
	(output) /							
	SIOX12							
	(input/output)			<u> </u>	<u> </u>	<u> </u>	<u> </u>	
	SCK12	PE0	0	0	×	0	0	×
	(input/output)							
	CTS12# (input) /	PE3	0	0	O *5	0	0	O*5
	RTS12# (output) /							
	SS12# (input)							
L	JO 1217 (IIIPUL)	1	<u> </u>		<u> </u>	<u> </u>	<u> </u>	

Module/		Port	RX210			RX140		
Function	Pin Function	Allocation	80-Pin	64-Pin	48-Pin	80-Pin	64-Pin	48-Pin
I ² C bus	SCL-DS	P16	0	04-1111	0	00-1 111	04-1111	40-1 111
interface	(input/output)							
	SCL	P12	0	×	×			
	(input/output)							
	SDA-DS	P17	0	0	0			
	(input/output)							
	SDA	P13	0	×	×			
	(input/output)							
	SCL0	P12				0	X	X
	(input/output)	P16				0	0	0
	SDA0	P13				0	X	X
	(input/output)	P17				0	0	0
Serial	RSPCKA	PA5	0	X	X	0	X	X
peripheral interface	(input/output)	PB0	0	0	0	0	0	0
interrace	140014	PC5	0	0	0	0	0	00
	MOSIA	P16	0	0	0	0	0	00
	(input/output)	PA6	0	0	0	0	0	00
	MICOA	PC6	0	0	0	0	0	0
	MISOA	P17	0	0	0	0	0	0
	(input/output)	PC7	0	0	0	0	0	0
	SSLA0	PA4	0	0	0	0	0	0
	(input/output)	PC4	0	0	0	0	0	0
	SSLA1 (output)	PA0	0	0	X	0	0	X
	SSLA2 (output)	PA1	0	0	0	0	0	0
	SSLA3 (output)	PA2	0	X	X	0	X	X
5 10 1 1	DTOOLIT (, , ,)	PC2	0	0	X	0	0	X
Realtime clock	RTCOUT (output)	P16	0	0	X	0	0	0
	DT0100 (' 1) #6	P32	0	0	X	0	0	X
	RTCIC0 (input)*6	P30	0	0	X			
	RTCIC1 (input)*6	P31	0	0	X			
40 1:1 4/5	RTCIC2 (input)*6	P32	0	0	×			
12-bit A/D	AN000 (input)*6	P40	0	0	0	0	0	0
converter	AN001 (input)*6	P41	0	0	0	0	0	00
	AN002 (input)*6	P42	0	0	0	0	_	0
	AN003 (input)*6	P43	0	0	X	0	0	X
	AN004 (input)*6	P44	0		X	0		X
	AN005 (input)*6	P45	0	X	X	0	0	0
	AN006 (input)*6 AN007 (input)*6	P46 P47	0	X	X	0	0	0
	` ' '		0	0	X		U	O
	AN008 (input)*6 AN009 (input)*6	PE0	_					
	AN010 (input)*6	PE1 PE2	0	0	0			
	AN010 (input)*6	PE3	0	0	0			
	AN011 (input)*6	PE3	0	0	0			
	AN012 (input)*6 AN013 (input)*6	PE5	0	0	X			
	(1 /				X			<u> </u>
	AN016 (input) AN017 (input)	PE0 PE1				0	0	X
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					0	0	0
	AN018 (input) AN019 (input)	PE2 PE3				0	0	0
	AN020 (input)	PE3 PE4				0	0	0
	ANUZU (IIIPUL)	FE4				\cup	\cup	\cup

84 - 4-1-7		D1	RX210			RX140		
Module/ Function	Din Function	Port Allocation	80-Pin	C4 Dim	40 Din		C4 Din	48-Pin
12-bit A/D	Pin Function	PE5	80-Pin	64-Pin	48-Pin	80-Pin	64-Pin	-
converter	AN021 (input)	PD0				0	X	X
Conventer	AN024 (input)	PD0 PD1				0	X	×
	AN025 (input)					0	X	×
	AN026 (input)	PD2		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	_		
	ADTRG0# (input)	P07	0	X	X	0	X	X
D/A	DAG / 1 1)#6	P16	0	0	0	0	_	_
D/A converter	DA0 (output)*6	P03	0	0	X	0	0	X
01 1 6	DA1 (output)*6	P05	0	0	X	0	0	X
Clock frequency	CACREF (input)	PA0	0	0	X	0	0	X
accuracy measurement		PC7	0	0	0	0	0	0
circuit		PH0	0	0	0	0	0	0
Clock	CLKOUT (output)	PE3				0	0	0
generation		PE4				Ō	Ō	Ō
circuit								
Comparator A	CMPA1 (input)*6	PE3	0	0	0			
'	CMPA2 (input)*6	PE4	O	Ō	Ō			
	CVREFA (input)*6	PA1	Ō	Ō	Ō			
	CMPB0 (input)*6	PE1	0	0	0	0	0	0
	CVREFB0	PE2	Ō	Ō	Ö	Ō	Ō	Ō
	(input)*6	- ==						
	CMPOB0 (output)	PE5				0	0	X
	CMPB1 (input)*6	PA3	0	0	0	0	0	0
	CVREFB1	PA4				O	0	O
	(input)*6							
	CMPOB1 (output)	PB1				0	0	0
Low-power	LPTO (output)	P26				Ō	O	Ō
timer	(1 /	PB3				Ō	O	Ō
		PC7				0	Ō	0
CAN module	CTXD0 (output)	P14				Ō	Ö	Ō
	Cirizo (carpai)	P54				Ō	Ö	×
	CRXD0 (input)	P15				Ö	Ö	Ô
	or babo (inipat)	P55				Ö	Ö	×
LVD voltage	CMPA2 (input)	PE4				0	0	0
detection input	OWN 712 (Impat)							
CTSU	TS0	P32				0	0	X
	(input/output)							,
	TS1	P31				0	0	0
	(input/output)							
	TS2	P30				0	0	0
	(input/output)							
	TS3	P27				0	0	0
	(input/output)							
	TS4	P26				0	0	0
	(input/output)							
	TS5	P15				0	0	0
	(input/output)							
	TS6	P14				0	0	0
	(input/output)	Bus						
	TS7	PH3				0	0	0
	(input/output)							

Module/		Port	RX210			RX140		
Function	Pin Function	Allocation	80-Pin	64-Pin	48-Pin	80-Pin	64-Pin	48-Pin
CTSU	TS8	PH2				0	0	0
	(input/output)							
	TS9	PH1				0	0	0
	(input/output)	5110						
	TS10 (input/output)	PH0				0	0	0
	TS11	P55				0	0	×
	(input/output)	1 33						
	TS12	P54				0	0	X
	(input/output)							
	TS13	PC7				0	0	0
	(input/output) TS14	DOC						
	(input/output)	PC6				0	0	0
	TS15	PC5				0	0	0
	(input/output)							
	TS16	PC3				0	0	×
	(input/output)							
	TS17	PC2				0	0	×
	(input/output) TS18	PB7				0	0	×
	(input/output)	FB/						^
	TS19	PB6				0	0	X
	(input/output)							
	TS20	PB5				0	0	0
	(input/output)	DD 4						
	TS21 (input/output)	PB4				0	X	×
	TS22	PB3				0	0	0
	(input/output)	1. 50						Ŭ
	TS23	PB2				0	×	X
	(input/output)							
	TS24	PB1				O	O	0
	(input/output) TS25	PB0				0	0	0
	(input/output)	FBU						
	TS26	PA6				0	0	0
	(input/output)							
	TS27	PA5				0	×	×
	(input/output)	DA 4						
	TS28 (input/output)	PA4				0	0	0
	TS29	PA3				0	0	0
	(input/output)					~		
	TS30	PA2				0	×	X
	(input/output)							
	TS31	PA1				0	0	0
	(input/output) TS32	PA0				0	0	X
	(input/output)	FAU						^
	TS33	PE4				0	0	0
	(input/output)						_	_

Module/		Port	RX210			RX140		
Function	Pin Function	Allocation	80-Pin	64-Pin	48-Pin	80-Pin	64-Pin	48-Pin
CTSU	TS34 (input/output)	PE3				0	0	0
	TS35 (input/output)	PE2				0	0	0
	TSCAP (—)	PC4				0	0	0

Notes: 1. SMOSI0 function not implemented.

- 2. SMISO0 function not implemented.
- 3. SMISO12 function not implemented.
- 4. SMOSI12 function not implemented.
- 5. SS12# function not implemented.
- 6. Select general input for the relevant pin if this pin function is to be used.

Table 2.36 Comparison of P0n Pin Function Control Register (P0nPFS)

Register	Bit	RX210 (n = 0 to 3, 5, 7)	RX140 (n = 3, 5, 7)
P00PFS		P00 pin function control register	_
P01PFS		P01 pin function control register	_
P02PFS	_	P02 pin function control register	

Table 2.37 Comparison of P1n Pin Function Control Register (P1nPFS)

Register	Bit	RX210 (n = 2 to 7)	RX140 (n = 2 to 7)
P12PFS	PSEL[3:0] (RX210)	Pin function select bits	Pin function select bits
	PSEL[4:0]	0000b: Hi-Z	00000b: Hi-Z
	(RX140)	0101b: TMCL1	00101b: TMCL1
		1010b: RXD2/SMISO2/SSCL2	
		1111b: SCL	01111b: SCL
P13PFS	PSEL[3:0] (RX210)	Pin function select bits	Pin function select bits
	PSEL[4:0]	0000b: Hi-Z	00000b: Hi-Z
	(RX140)	0001b: MTIOC0B	00001b: MTIOC0B
		0011b: TIOCA5	
		0101b: TMO3	00101b: TMO3
		1010b: TXD2/SMOSI2/SSDA2	
		1111b: SDA	01111b: SDA
P14PFS	PSEL[3:0] (RX210)	Pin function select bits	Pin function select bits
	PSEL[4:0]	0000b: Hi-Z	00000b: Hi-Z
	(RX140)	0001b: MTIOC3A	00001b: MTIOC3A
		0010b: MTCLKA	00010b: MTCLKA
		0011b: TIOCB5	
		0100b: TCLKA	
		0101b: TMRI2	00101b: TMRI2
		1011b: CTS1#/RTS1#/SS1#	01011b: CTS1#/RTS1#/SS1#
			10000b: CTXD0
			11001b: TS6
P15PFS	PSEL[3:0] (RX210)	Pin function select bits	Pin function select bits
	PSEL[4:0]	0000b: Hi-Z	00000b: Hi-Z
	(RX140)	0001b: MTIOC0B	00001b: MTIOC0B
		0010b: MTCLKB	00010b: MTCLKB
		0011b: TIOCB2	
		0100b: TCLKB	
		0101b: TMCl2	00101b: TMCl2
		1010b: RXD1/SMISO1/SSCL1 1011b: SCK3	01010b: RXD1/SMISO1/SSCL1
			10000b: CRXD0
			11001b: TS5

Register	Bit	RX210 (n = 2 to 7)	RX140 (n = 2 to 7)
P16PFS	PSEL[3:0]	Pin function select bits	Pin function select bits
	(RX210)		
	PSEL[4:0]	0000b: Hi-Z	00000b: Hi-Z
	(RX140)	0001b: MTIOC3C	00001b: MTIOC3C
		0010b: MTIOC3D	00010b: MTIOC3D
		0011b: TIOCB1	
		0100b: TCLKC	
		0101b: TMO2	00101b: TMO2
		0111b: RTCOUT	00111b: RTCOUT
		1001b: ADTRG0#	01001b: ADTRG0#
		1010b: TXD1/SMOSI1/SSDA1	01010b: TXD1/SMOSI1/SSDA1
		1011b: RXD3/SMISO3/SSCL3	
		1101b: MOSIA	01101b: MOSIA
		1111b: SCL-DS	01111b: SCL
P17PFS	PSEL[3:0]	Pin function select bits	Pin function select bits
	(RX210)		
	PSEL[4:0]	0000b: Hi-Z	00000b: Hi-Z
	(RX140)	0001b: MTIOC3A	00001b: MTIOC3A
		0010b: MTIOC3B	00010b: MTIOC3B
		0011b: TIOCB0	
		0100b: TCLKD	
		0101b: TMO1	00101b: TMO1
		0111b: POE8#	00111b: POE8#
		1010b: SCK1	01010b: SCK1
		1011b: TXD3/SMOSI3/SSDA3	
		1101b: MISOA	01101b: MISOA
		1111b: SDA-DS	01111b: SDA

Table 2.38 Comparison of P2n Pin Function Control Register (P2nPFS)

Register	Bit	RX210 (n = 0 to 7)	RX140 (n = 0, 1, 6, 7)
P20PFS	PSEL[3:0]	Pin function select bits	Pin function select bits
	(RX210)		
	PSEL[4:0]	0000b: Hi-Z	00000b: Hi-Z
	(RX140)	0001b: MTIOC1A	00001b: MTIOC1A
		0011b: TIOCB3	
		0101b: TMRI0	00101b: TMRI0
		1010b: TXD0/SMOSI0/SSDA0	
P21PFS	PSEL[3:0]	Pin function select bits	Pin function select bits
	(RX210)		
	PSEL[4:0]	0000b: Hi-Z	00000b: Hi-Z
	(RX140)	0001b: MTIOC1B	00001b: MTIOC1B
		0011b: TIOCA3	
		0101b: TMCI0	00101b: TMCI0
		1010b: RXD0/SMISO0/SSCL0	
P22PFS		P22 pin function control register	_
P23PFS		P23 pin function control register	_
P24PFS		P24 pin function control register	_
P25PFS		P25 pin function control register	

Register	Bit	RX210 (n = 0 to 7)	RX140 (n = 0, 1, 6, 7)
P26PFS	PSEL[3:0]	Pin function select bits	Pin function select bits
	(RX210)		
	PSEL[4:0]	0000b: Hi-Z	00000b: Hi-Z
	(RX140)	0001b: MTIOC2A	00001b: MTIOC2A
		0101b: TMO1	00101b: TMO1
		1010b: TXD1/SMOSI1/SSDA1	01010b: TXD1/SMOSI1/SSDA1
		1011b: CTS3#/RTS3#/SS3#	
			11001b: TS4
			11011b: LPTO
P27PFS	PSEL[3:0]	Pin function select bits	Pin function select bits
	(RX210)		
	PSEL[4:0]	0000b: Hi-Z	00000b: Hi-Z
	(RX140)	0001b: MTIOC2A	00001b: MTIOC2B
		0101b: TMO1	00101b: TMCI3
		1010b: SCK1	01010b: SCK1
			11001b: TS3

Table 2.39 Comparison of P3n Pin Function Control Register (P3nPFS)

Register	Bit	RX210 (n = 0 to 4)	RX140 (n = 0 to 2, 4, 6, 7)
P30PFS	PSEL[3:0]	Pin function select bits	Pin function select bits
	(RX210)		
	PSEL[4:0]	0000b: Hi-Z	00000b: Hi-Z
	(RX140)	0001b: MTIOC4B	00001b: MTIOC4B
		0101b: TMRI3	00101b: TMRI3
		0111b: POE8#	00111b: POE8#
		1010b: RXD1/SMISO1/SSCL1	01010b: RXD1/SMISO1/SSCL1
			11001b: TS2
P31PFS	PSEL[3:0]	Pin function select bits	Pin function select bits
	(RX210)		
	PSEL[4:0]	0000b: Hi-Z	00000b: Hi-Z
	(RX140)	0001b: MTIOC4D	00001b: MTIOC4D
		0101b: TMCl2	00101b: TMCl2
			01010b: RXD1/SMISO1/SSCL1
		1011b: CTS1#/RTS1#/SS1#	
			11001b: TS1
P32PFS	PSEL[3:0] (RX210)	Pin function select bits	Pin function select bits
	PSEL[4:0]	0000b: Hi-Z	00000b: Hi-Z
	(RX140)	0001b: MTIOC0C	00001b: MTIOC0C
		0011b: TIOCC0	
		0101b: TMO3	00101b: TMO3
			00111b: RTCOUT
		1010b: TXD0/SMOSI0/SSDA0	
		1011b: TXD6/SMOSI6/SSDA6	01011b: TXD6/SMOSI6/SSDA6
			11001b: TS0
P33PFS		P33 pin function control register	_

Register	Bit	RX210 (n = 0 to 4)	RX140 (n = 0 to 2, 4, 6, 7)
P34PFS	PSEL[3:0] (RX210)	Pin function select bits	Pin function select bits
	PSEL[4:0]	0000b: Hi-Z	00000b: Hi-Z
	(RX140)	0001b: MTIOC0A	00001b: MTIOC0A
		0101b: TMCl3	00101b: TMCI2
		0111b: POE2#	00111b: POE2#
		1010b: SCK0	
		1011b: SCK6	01011b: SCK6
P3nPFS	ISEL	Interrupt input function select bit	Interrupt input function select bit
		0: Not used as IRQn input pin	0: Not used as IRQn input pin
		1: Used as IRQn input pin	1: Used as IRQn input pin
		P30: IRQ0-DS (145/144/100/80/69/64/48-pin)	P30: IRQ0 (80/64/48/32-pin)
		P31: IRQ1-DS (145/144/100/80/69/64/48-pin)	P31: IRQ1 (80/64/48/32-pin)
		P32: IRQ2-DS (145/144/100/80/69/64-pin)	P32: IRQ2 (80/64-pin)
		P33: IRQ3-DS (145/144/100-pin)	
		P34: IRQ4 (145/144/100/80-pin)	P34: IRQ4 (80-pin)
			P36: IRQ2 (80/64/48/32-pin)
			P37: IRQ4 (80/64/48-pin)

Table 2.40 Comparison of P5n Pin Function Control Register (P5nPFS)

Register	Bit	RX210 (n = 0 to 2, 4 to 6)	RX140 (n = 4, 5)
P50PFS		P50 pin function control register	_
P51PFS		P51 pin function control register	_
P52PFS	_	P52 pin function control register	_
P53PFS		P53 pin function control register	—
P54PFS	PSEL[3:0] (RX210)	Pin function select bits	Pin function select bits
	PSEL[4:0]	0000b: Hi-Z	00000b: Hi-Z
	(RX140)	0001b: MTIOC4B	00001b: MTIOC4B
		0101b: TMCI1	00101b: TMCI1
		1011b: CTS2#/RTS2#/SS2#	
			10000b: CTXD0
			11001b: TS12
P55PFS	PSEL[3:0] (RX210)	Pin function select bits	Pin function select bits
	PSEL[4:0]	0000b: Hi-Z	00000b: Hi-Z
	(RX140)		00001b: MTIOC4D
		0101b: TMO3	00101b: TMO3
			10000b: CRXD0
			11001b: TS11

Table 2.41 Comparison of P6n Pin Function Control Register (P6nPFS)

Register	Bit	RX210 (n = 0, 1)	RX140
P6nPFS	—	P6n pin function control register	—

Table 2.42 Comparison of P7n Pin Function Control Register (P7nPFS)

Register	Bit	RX210 (n = 0, 4 to 7)	RX140
P7nPFS		P7n pin function control register	_

Table 2.43 Comparison of P8n Pin Function Control Register (P8nPFS)

Register	Bit	RX210 (n = 0 to 3, 6, 7)	RX140
P8nPFS		P8n pin function control register	_

Table 2.44 Comparison of P9n Pin Function Control Register (P9nPFS)

Register	Bit	RX210 (n = 0 to 3)	RX140
P9nPFS	_	P9n pin function control register	_

Table 2.45 Comparison of PAn Pin Function Control Register (PAnPFS)

Register	Bit	RX210 (n = 0 to 7)	RX140 (n = 0 to 6)
PA0PFS	PSEL[3:0]	Pin function select bits	Pin function select bits
	(RX210)		
	PSEL[4:0]	0000b: Hi-Z	00000b: Hi-Z
	(RX140)	0001b: MTIOC4A	00001b: MTIOC4A
		0011b: TIOCA0	
		0111b: CACREF	00111b: CACREF
		1101b: SSLA1	01101b: SSLA1
			11001b: TS32
PA1PFS	PSEL[3:0]	Pin function select bits	Pin function select bits
	(RX210)		
	PSEL[4:0]	0000b: Hi-Z	00000b: Hi-Z
	(RX140)	0001b: MTIOC0B	00001b: MTIOC0B
		0010b: MTCLKC	00010b: MTCLKC
		0011b: TIOCB0	00011b: MTIOC3B
		1010b: SCK5	01010b: SCK5
		1101b: SSLA2	01101b: SSLA2
			11001b: TS31
PA2PFS	PSEL[3:0] (RX210)	Pin function select bits	Pin function select bits
	PSEL[4:0]	0000b: Hi-Z	00000b: Hi-Z
	(RX140)	1010b: RXD5/SMISO5/SSCL5	01010b: RXD5/SMISO5/SSCL5
		1101b: SSLA3	01101b: SSLA3
			11001b: TS30
PA3PFS	PSEL[3:0]	Pin function select bits	Pin function select bits
	(RX210)		
	PSEL[4:0]	0000b: Hi-Z	00000b: Hi-Z
	(RX140)	0001b: MTIOC0D	00001b: MTIOC0D
		0010b: MTCLKD	00010b: MTCLKD
		0011b: TIOCD0	00011b: MTIOC4D
		0100b: TCLKB	00100b: MTIC5V
		1010b: RXD5/SMISO5/SSCL5	01010b: RXD5/SMISO5/SSCL5
			11001b: TS29

Register	Bit	RX210 (n = 0 to 7)	RX140 (n = 0 to 6)
PA4PFS	PSEL[3:0] (RX210)	Pin function select bits	Pin function select bits
	PSEL[4:0]	0000b: Hi-Z	00000b: Hi-Z
	(RX140)	0001b: MTIC5U	00001b: MTIC5U
		0010b: MTCLKA	00010b: MTCLKA
		0011b: TIOCA1	00011b: MTIOC4C
		0101b: TMRI0	00101b: TMRI0
		1010b: TXD5/SMOSI5/SSDA5	01010b: TXD5/SMOSI5/SSDA5
		1101b: SSLA0	01101b: SSLA0
			11001b: TS28
PA5PFS	PSEL[3:0] (RX210)	Pin function select bits	Pin function select bits
	PSEL[4:0]	0000b: Hi-Z	00000b: Hi-Z
	(RX140)	0011b: TIOCB1	
		1101b: RSPCKA	01101b: RSPCKA
			11001b: TS27
PA6PFS	PSEL[3:0] (RX210)	Pin function select bits	Pin function select bits
	PSEL[4:0]	0000b: Hi-Z	00000b: Hi-Z
	(RX140)	0001b: MTIC5V	00001b: MTIC5V
		0010b: MTCLKB	00010b: MTCLKB
		0011b: TIOCA2	00011b: MTIOC3D
		0101b: TMCl3	00101b: TMCI3
		0111b: POE2#	00111b: POE2#
		1011b: CTS5#/RTS5#/SS5#	01011b: CTS5#/RTS5#/SS5#
		1101b: MOSIA	01101b: MOSIA
			11001b: TS26
PA7PFS	_	PA7 pin function control register	_

Table 2.46 Comparison of PBn Pin Function Control Register (PBnPFS)

Register	Bit	RX210 (n = 0 to 7)	RX140 (n = 0 to 7)
PB0PFS	PSEL[3:0] (RX210)	Pin function select bits	Pin function select bits
	PSEL[4:0]	0000b: Hi-Z	00000b: Hi-Z
	(RX140)	0001b: MTIC5W	00001b: MTIC5W
			00010b: MTIOC3D
		0011b: TIOCA3	
		1010b: RXD4/SMISO4/SSCL4	
		1011b: RXD6/SMISO6/SSCL6	01011b: RXD6/SMISO6/SSCL6
		1101b: RSPCKA	01101b: RSPCKA
			11001b: TS25
PB1PFS	PSEL[3:0] (RX210)	Pin function select bits	Pin function select bits
	PSEL[4:0]	0000b: Hi-Z	00000b: Hi-Z
	(RX140)	0001b: MTIOC0C	00001b: MTIOC0C
		0010b: MTIOC4C	00010b: MTIOC4C
		0011b: TIOCB3	
		0101b: TMCI0	00101b: TMCI0
		1010b: TXD4/SMOSI4/SSDA4	
		1011b: TXD6/SMOSI6/SSDA6	01011b: TXD6/SMOSI6/SSDA6
			10000b: CMPOB1
			11001b: TS24

Register	Bit	RX210 (n = 0 to 7)	RX140 (n = 0 to 7)
PB2PFS	PSEL[3:0]	Pin function select bits	Pin function select bits
	(RX210)	00001 11: 7	000001 11: 7
	PSEL[4:0] (RX140)	0000b: Hi-Z	00000b: Hi-Z
	(KX140)	0011b: TIOCC3	
		0100b: TCLKC 1011b: CTS4#/RTS4#/SS4#	
		1011b: CTS4#/KTS4#/SS4#	01011b: CTS6#/RTS6#/SS6#
		10115. 0100#/1100#/000#	11001b: TS23
PB3PFS	PSEL[3:0]	Pin function select bits	Pin function select bits
	(RX210)		
	PSEL[4:0]	0000b: Hi-Z	00000b: Hi-Z
	(RX140)	0001b: MTIOC0A	00001b: MTIOC0A
		0010b: MTIOC4A	00010b: MTIOC4A
		0011b: TIOCD3	
		0100b: TCLKD	
		0101b: TMO0	00101b: TMO0
		0111b: POE3#	00111b: POE3#
		1010b: SCK4	0.004
		1011b: SCK6	01011b: SCK6
			11001b: TS22
DD 4DE0	DOEL to 01	Die Coeffee voller (12)	11011b: LPTO
PB4PFS	PSEL[3:0] (RX210)	Pin function select bits	Pin function select bits
	PSEL[4:0]	0000b: Hi-Z	00000b: Hi-Z
	(RX140)	0011b: TIOCA4	
		1011b: CTS9#/RTS9#/SS9#	01011b: CTS9#/RTS9#/SS9#
			11001b: TS21
PB5PFS	PSEL[3:0] (RX210)	Pin function select bits	Pin function select bits
	PSEL[4:0]	0000b: Hi-Z	00000b: Hi-Z
	(RX140)	0001b: MTIOC2A	00001b: MTIOC2A
		0010b: MTIOC1B	00010b: MTIOC1B
		0011b: TIOCB4	
		0101b: TMRI1	00101b: TMRI1
		0111b: POE1#	00111b: POE1#
		1010b: SCK9	01010b: SCK9
DDCDEO	DOEL to or	Direction colors 1/2	11011b: TS20
PB6PFS	PSEL[3:0] (RX210)	Pin function select bits	Pin function select bits
	PSEL[4:0]	0000b: Hi-Z	00000b: Hi-Z
	(RX140)	0001b: MTIOC3D	00001b: MTIOC3D
		0011b: TIOCA5	
		1010b: RXD9/SMISO9/SSCL9	01010b: RXD9/SMISO9/SSCL9
DD7D50	DOEL 12 27	B. C. S. L. C. S.	11001b: TS19
PB7PFS	PSEL[3:0] (RX210)	Pin function select bits	Pin function select bits
	PSEL[4:0]	0000b: Hi-Z	00000b: Hi-Z
	(RX140)	0001b: MTIOC3B	00001b: MTIOC3B
		0011b: TIOCB5	
		1010b: TXD9/SMOSI9/SSDA9	01010b: TXD9/SMOSI9/SSDA9 11001b: TS18

Table 2.47 Comparison of PCn Pin Function Control Register (PCnPFS)

Register	Bit	RX210 (n = 0 to 7)	RX140 (n = 2 to 7)
PC0PFS		PC0 pin function select register	_
PC1PFS		PC1 pin function select register	_
PC2PFS	PSEL[3:0] (RX210)	Pin function select bits	Pin function select bits
	PSEL[4:0]	0000b: Hi-Z	00000b: Hi-Z
	(RX140)	0001b: MTIOC4B	00001b: MTIOC4B
		0011b: TCLKA	
		1010b: RXD5/SMISO5/SSCL5	01010b: RXD5/SMISO5/SSCL5
		1101b: SSLA3	01101b: SSLA3
			11001b: TS17
PC3PFS	PSEL[3:0] (RX210)	Pin function select bits	Pin function select bits
	PSEL[4:0]	0000b: Hi-Z	00000b: Hi-Z
	(RX140)	0001b: MTIOC4D 0011b: TCLKB	00001b: MTIOC4D
		1010b: TXD5/SMOSI5/SSDA5	01010b: TXD5/SMOSI5/SSDA5
			11001b: TS16
PC4PFS	PSEL[3:0] (RX210)	Pin function select bits	Pin function select bits
	PSEL[4:0]	0000b: Hi-Z	00000b: Hi-Z
	(RX140)	0001b: MTIOC3D	00001b: MTIOC3D
		0010b: MTCLKC	00010b: MTCLKC
			00011b: MTIOC0A
		0101b: TMCI1	00101b: TMCI1
		0111b: POE0#	00111b: POE0#
		1010b: SCK5	01010b: SCK5
		1011b: CTS8#/RTS8#/SS8#	01011b: CTS8#/RTS8#/SS8#
		1101b: SSLA0	01101b: SSLA0
	D05170.01		11001b: TSCAP
PC5PFS	PSEL[3:0] (RX210)	Pin function select bits	Pin function select bits
	PSEL[4:0]	0000b: Hi-Z	00000b: Hi-Z
	(RX140)	0001b: MTIOC3B	00001b: MTIOC3B
		0010b: MTCLKD	00010b: MTCLKD
			00011b: MTIOC0C
		0101b: TMRI2	00101b: TMRI2
		1010b: SCK8	01010b: SCK8
		1101b: RSPCKA	01101b: RSPCKA 11001b: TS15
PC6PFS	PSEL[3:0]	Pin function select bits	Pin function select bits
· · •	(RX210)		
	PSEL[4:0]	0000b: Hi-Z	00000b: Hi-Z
	(RX140)	0001b: MTIOC3C	00001b: MTIOC3C
		0010b: MTCLKA	00010b: MTCLKA
		0101b: TMCI2	00101b: TMCl2
		1010b: RXD8/SMISO8/SSCL8	01010b: RXD8/SMISO8/SSCL8
		1101b: MOSIA	01101b: MOSIA
			11001b: TS14

Register	Bit	RX210 (n = 0 to 7)	RX140 (n = 2 to 7)
PC7PFS	PSEL[3:0]	Pin function select bits	Pin function select bits
	(RX210)		
	PSEL[4:0]	0000b: Hi-Z	00000b: Hi-Z
	(RX140)	0001b: MTIOC3A	00001b: MTIOC3A
		0010b: MTCLKB	00010b: MTCLKB
		0101b: TMO2	00101b: TMO2
		0111b: CACREF	00111b: CACREF
		1010b: TXD8/SMOSI8/SSDA8	01010b: TXD8/SMOSI8/SSDA8
		1101b: MISOA	01101b: MISOA
			11001b: TS13
			11011b: LPTO

Table 2.48 Comparison of PDn Pin Function Control Register (PDnPFS)

Register	Bit	RX210 (n = 0 to 7)	RX140 (n = 0 to 2)
PD0PFS	PSEL[3:0] (RX210) PSEL[4:0] (RX140)	_	PD0 pin function select register
PD1PFS	PSEL[3:0] (RX210) PSEL[4:0] (RX140)	Pin function select bits 0000b: Hi-Z 0001b: MTIOC4B	Pin function select bits 00000b: Hi-Z 01011b: TXD6/SMOSI6/SSDA6
PD2PFS	PSEL[3:0] (RX210) PSEL[4:0] (RX140)	Pin function select bits 00000b: Hi-Z 00001b: MTIOC4D	Pin function select bits 00000b: Hi-Z 00001b: MTIOC4D 01011b: SCK6
PD3PFS		PD3 pin function select register	<u> </u>
PD4PFS		PD4 pin function select register	<u> </u>
PD5PFS		PD5 pin function select register	<u> </u>
PD6PFS	_	PD6 pin function select register	<u> </u>
PD7PFS	_	PD7 pin function select register	<u> </u>
PDnPFS	ISEL	O: Not used as IRQn input pin 1: Used as IRQn input pin PD0: IRQ0 (145/144/100/80-pin) PD1: IRQ1 (145/144/100/80-pin) PD2: IRQ2 (145/144/100/80-pin) PD3: IRQ3 (145/144/100-pin) PD4: IRQ4 (145/144/100-pin) PD5: IRQ5 (145/144/100-pin) PD6: IRQ6 (145/144/100-pin) PD7: IRQ7 (145/144/100-pin)	Interrupt input function select bit 0: Not used as IRQn input pin 1: Used as IRQn input pin PD0: IRQ0 (80-pin) PD1: IRQ1 (80-pin) PD2: IRQ2 (80-pin)
PDnPFS	ASEL	_	Analog function select bit

Table 2.49 Comparison of PEn Pin Function Control Register (PEnPFS)

Register	Bit	RX210 (n = 0 to 7)	RX140 (n = 0 to 5)
PE3PFS	PSEL[3:0] (RX210)	Pin function select bits	Pin function select bits
	PSEL[4:0]	0000b: Hi-Z	00000b: Hi-Z
	(RX140)	0001b: MTIOC4B	00001b: MTIOC4B
			00010b: MTIOC1B
		0111b: POE8#	00111b: POE8#
			01001b: CLKOUT
		1100b: CTS12#/RTS12#/SS12#	01100b: CTS12#/RTS12#/SS12#
			11001b: TS34
PE4PFS	PSEL[3:0] (RX210)	Pin function select bits	Pin function select bits
	PSEL[4:0]	0000b: Hi-Z	00000b: Hi-Z
	(RX140)	0001b: MTIOC4D	00001b: MTIOC4D
		0010b: MTIOC1A	00010b: MTIOC1A
			00011b: MTIOC4A
			01001b: CLKOUT
			11001b: TS33
PE5PFS	PSEL[3:0] (RX210)	Pin function select bits	Pin function select bits
	PSEL[4:0]	0000b: Hi-Z	00000b: Hi-Z
	(RX140)	0001b: MTIOC4C	00001b: MTIOC4C
		0010b: MTIOC2B	00010b: MTIOC2B
			10000b: CMPOB0
PE6PFS	—	PE6 pin function control register	_
PEnPFS	ISEL	Interrupt input function select bit	Interrupt input function select bit
		0: Not used as IRQn input pin	0: Not used as IRQn input pin
		1: Used as IRQn input pin	1: Used as IRQn input pin
		PE2: IRQ7-DS	PE2: IRQ7 (80/64/48/32-pin)
		(145/144/100/80/69/64/48-pin)	
		PE5: IRQ5	PE5: IRQ5 (80/64-pin)
		(145/144/100/80/69/64-pin)	
		PE6: IRQ6 (145/144/100-pin)	
		PE7: IRQ7 (145/144/100-pin)	

Register	Bit	RX210 (n = 0 to 7)	RX140 (n = 0 to 5)
PEnPFS	ASEL	Analog function select bit	Analog function select bit
		0: Used as other than as analog pin	0: Used as other than as analog pin
		1: Used as analog pin	1: Used as analog pin
		PE0: AN008	PE0: AN <mark>016</mark> (80/64-pin)
		(145/144/100/80/69/64-pin)	
		PE1: AN009, CMPB0	PE1: AN <mark>017</mark> , CMPB0
		(145/144/100/80/69/64/48-pin)	(80/64/48/32-pin)
		PE2: AN010, CVREFB0	PE2: AN018, CVREFB0
		(145/144/100/80/69/64/48-pin)	(80/64/48/32-pin)
		PE3: AN011, CMPA1	PE3: AN019
		(145/144/100/80/69/64/48-pin)	(80/64/48/32-pin)
		PE4: AN012, CMPA2	PE4: AN <mark>020</mark> , CMPA2
		(145/144/100/80/69/64/48-pin)	(80/64/48/32-pin)
		PE5: AN013	PE5: AN <mark>021</mark>
		(145/144/100/80/69/64-pin)	(80/64-pin)
		PE6: AN014 (145/144/100-pin)	
		PE7: AN015 (145/144/100-pin)	

Table 2.50 Comparison of PF5 Pin Function Control Register (PFnPFS)

Register	Bit	RX210 (n = 0 to 3)	RX140
PF5PFS		PF5 pin function control register	

Table 2.51 Comparison of PHn Pin Function Control Register (PHnPFS)

Register	Bit	RX210 (n = 0 to 3)	RX140 (n = 0 to 3)
PH0PFS	PSEL[3:0]	Pin function select bits	Pin function select bits
	(RX210)		
	PSEL[4:0]	0000b: Hi-Z	00000b: Hi-Z
	(RX140)		00001b: MTIOC3B
		0111b: CACREF	00111b: CACREF
			11001b: TS10
PH1PFS	PSEL[3:0]	Pin function select bits	Pin function select bits
	(RX210)		
	PSEL[4:0]	0000b: Hi-Z	00000b: Hi-Z
	(RX140)		00001b: MTIOC3D
		0101b: TMO0	00101b: TMO0
			11001b: TS9
PH2PFS	PSEL[3:0]	Pin function select bits	Pin function select bits
	(RX210)		
	PSEL[4:0]	0000b: Hi-Z	00000b: Hi-Z
	(RX140)		00001b: MTIOC4C
		0101b: TMRI0	00101b: TMRI0
			11001b: TS8
PH3PFS	PSEL[3:0]	Pin function select bits	Pin function select bits
	(RX210)		
	PSEL[4:0]	0000b: Hi-Z	00000b: Hi-Z
	(RX140)		00001b: MTIOC4D
		0101b: TMCI0	00101b: TMCI0
			11001b: TS7

Table 2.52 Comparison of PJn Pin Function Control Register (PJnPFS)

Register	Bit	RX210 (n = 1, 3)	RX140 (n = 1, 6, 7)
PJ3PFS		PJ3 pin function control register	_
PJ3PFS	ASEL		Analog function select bit

Table 2.53 Comparison of PKn Pin Function Control Register (PKnPFS)

Register	Bit	RX210 (n = 1, 3)	RX140 (n = 1, 6, 7)
PKnPFS		PKn pin function control register	_

Table 2.54 Comparisons of Multi-Function Pin Controller Registers

Register	Bit	RX210	RX140
PFCSE	—	CS output enable register	_
PFAOE0		Address output enable register 0	_
PFAOE1		Address output enable register 1	_
PFBCR0		External bus control register 0	_
PFBCR1		External bus control register 1	_

2.18 Port Output Enable 2

Table 2.55 is a comparative overview of the port output enable 2 modules.

Table 2.55 Comparative Overview of Port Output Enable 2 Modules

Item	RX210 (POE2a)	RX140 (POE2a)
High-impedance control by input level detection	 Ability to specify falling-edge detection or sampling of the low level 16 times at PCLK/8, PCLK/16, or PCLK/128 clock cycles for each of the POE0# to POE3# and POE8# input pins Ability to put pins for complementary PWM output from the MTU in the high-impedance state on detection of falling edges or sampling of the low level on the POE0# to POE3# pins Ability to put pins for output from MTU0 in the high-impedance state on detection of falling edges or sampling of the low level on the POE8# pin. 	 Ability to specify falling-edge detection or sampling of the low level 16 times at PCLK/8, PCLK/16, or PCLK/128 clock cycles for each of the POE0# to POE3#, and POE8# input pins Ability to put pins for complementary PWM output from the MTU in the high-impedance state on detection of falling edges or sampling of the low level on the POE0# to POE3# pins Ability to put pins for output from MTU0 in the high-impedance state on detection of falling edges or sampling of the low level on the POE8# pin.
High-impedance control by output level comparison	Ability to compare levels output on pins for complementary PWM output from the MTU and put them in the high-impedance state when simultaneous output of the active level continues for one or more cycles of the PCLK clock	Ability to compare levels output on pins for complementary PWM output from the MTU and put them in the high-impedance state when simultaneous output of the active level continues for one or more cycles of the PCLK clock
High-impedance control by oscillation stop detection	Ability to put pins for complementary PWM output from the MTU and output pins for MTU0 in the high-impedance state when oscillation by the clock generation circuit stops	Ability to put pins for complementary PWM output from the MTU and output pins for MTU0 in the high-impedance state when oscillation by the clock generation circuit stops
High-impedance control by software (registers)	Ability to put pins for complementary PWM output from the MTU and output pins for MTU0 in the high-impedance state by writing to the POE registers	Ability to put pins for complementary PWM output from the MTU and output pins for MTU0 in the high-impedance state by writing to the POE registers
High-impedance control by event signals	Ability to put pins for complementary PWM output from the MTU and output pins for MTU0 in the high-impedance state in response to an event signal from the event link controller (ELC)	
Interrupts	Ability to generate interrupts in response to the results of POE0# to POE3# and POE8# input-level detection or MTU complementary PWM output-level comparison	Ability to generate interrupts in response to the results of POE0# to POE3#, and POE8# input-level detection or MTU complementary PWM output-level comparison

2.19 Compare Match Timer

Table 2.56 is a comparative overview of the compare match timers, and Table 2.57 is a comparison of compare match timer registers.

Table 2.56 Comparative Overview of Compare Match Timers

Item	RX210 (CMT)	RX140 (CMT)
Number of channels	4 channels	2 channels
Count clocks	Four frequency-divided clocks: One clock from among PCLK/8, PCLK/32, PCLK/128, and PCLK/512 can be selected individually for each channel.	Four frequency-divided clocks: One clock from among PCLK/8, PCLK/32, PCLK/128, and PCLK/512 can be selected individually for each channel.
Interrupt	A compare match interrupt can be requested for each channel.	A compare match interrupt can be requested for each channel.
Event link function (output)	Event signal output at CMT1 compare match	Event signal output at CMT1 compare match
Event link function (input)	 Support for linked operation of specified module Support for CMT1 counter start, event counter, and count restart 	 Support for linked operation of specified module Support for CMT1 counter start, event counter, and count restart
Low power consumption function	Ability to specify module stop state for each unit	Ability to specify module stop state for each unit

Table 2.57 Comparison of Compare Match Timer Registers

Register	Bit	RX210 (CMT)	RX140 (CMT)
CMSTR1		Compare match timer start register 1	_

2.20 Realtime Clock

Table 2.58 is a comparative overview of realtime clocks, and Table 2.59 is a comparison of realtime clock registers.

Table 2.58 Comparative Overview of Realtime Clocks

Item	RX210 (RTCb)	RX140 (RTCB)
Count modes	Calendar count mode	Calendar count mode/binary count mode
Count source	Sub-clock (XCIN)	Sub-clock (XCIN)
Clock and calendar functions	 Year, month, date, day-of-week, hour, minute, second are counted, BCD display Indicates the state of the subseconds range as 1 Hz, 2 Hz, 4 Hz, 8 Hz, 16 Hz, 32 Hz, or 64 Hz in binary. 12 hours/24 hours mode switching function Start/stop function 30-second adjustment function (Fewer than 30 seconds is rounded down to 00 seconds, and 30 seconds or more is rounded up to one minute.) Automatic leap year adjustment function 1 Hz clock output Time error adjustment function 	 Calendar count mode Year, month, date, day-of-week, hour, minute, second are counted, BCD display 12 hours/24 hours mode switching function 30 seconds adjustment function (a number less than 30 is rounded down to 00 seconds, and 30 seconds or more are rounded up to one minute) Automatic adjustment function for leap years Binary count mode Count seconds in 32 bits, binary display Common to both modes Start/stop function The sub-second digit is displayed in binary units (1 Hz, 2 Hz, 4 Hz, 8 Hz, 16 Hz, 32 Hz, or 64 Hz). Clock error correction function Clock (1 Hz/64 Hz) output
Interrupts	 Alarm interrupt (ALM) Comparison with year, month, date, day of the week, hour, minute, or second can be selected as the condition for the alarm interrupt. Periodic interrupt (PRD) 2 seconds, 1 second, 1/2 second, 1/4 second, 1/8 second, 1/16 second, 1/32 second, 1/64 second, or 1/256 second can be selected as an interrupt period. 	 Alarm interrupt (ALM) As an alarm interrupt condition, selectable which of the below is compared with: — Calendar count mode: Year, month, date, day-of-week, hour, minute, or second can be selected — Binary count mode: Each bit of the 32-bit binary counter Periodic interrupt (PRD) 2 seconds, 1 second, 1/2 second, 1/4 second, 1/8 second, or 1/32 second, 1/64 second, or 1/256 second can be selected as an interrupt period.

Item	RX210 (RTCb)	RX140 (RTCB)
Interrupts	Carry interrupt (CUP) Indicates occurrence of a carry to the seconds counter or a carry to the 64 Hz counter during reading of the 64 Hz counter.	Carry interrupt (CUP) An interrupt is generated at either of the following timings: — When a carry from the 64 Hz counter to the second counter is generated. — When the 64-Hz counter is
	Recovery from software standby mode or deep software standby mode can be performed by an alarm interrupt or periodic interrupt.	changed and the R64CNT register is read at the same time. Recovery from software standby mode can be performed by an alarm interrupt or periodic interrupt
Time-capture	The times when any of three event	_
function	signals are input can be captured. The month, date, hour, minute, and second are captured for each event.	
Event link function	Periodic event output	_

Table 2.59 Comparison of Realtime Clock Registers

Register	Bit	RX210 (RTCe)	RX140 (RTCc)
RSECCNT/	<u> </u>	Second counter	Second counter/binary counter 0
BCNT0			
RMINCNT/	_	Minute counter	Minute counter/binary counter 1
BCNT1			
RHRCNT/		Hour counter	Hour counter/binary counter 2
BCNT2			
RWKCNT/		Day-of-week counter	Day-of-week counter/binary counter
BCNT3			3
RSECAR/	<u> </u>	Second alarm register	Second alarm register/binary
BCNT0AR			counter 0 alarm register
RMINAR/	<u> </u>	Minute alarm register	Minute alarm register/binary counter
BCNT1AR			1 alarm register
RHRAR/	_	Hour alarm register	Hour alarm register/binary counter 2
BCNT2AR			alarm register
RWKAR/	<u> </u>	Day-of-week alarm register	Day-of-week alarm register/binary
BCNT3AR			counter 3 alarm register
RDAYAR/	_	Date alarm register	Date alarm register/binary counter 0
BCNT0AER			alarm enable register
RMONAR/	<u> </u>	Month alarm register	Month alarm register/binary counter
BCNT1AER			1 alarm enable register
RYRAR/		Year alarm register	Year alarm register/binary counter 2
BCNT2AER			alarm enable register
RYRAREN/	_	Year alarm enable register	Year alarm enable register/binary
BCNT3AER			counter 3 alarm enable register
RCR2	CNTMD	_	Count mode select bit
RCR3		RTC control register 3	_
RTCCRy	_	Time capture control register y	_
		(y = 0 to 2)	
RSECCPy		Second capture register y	_
		(y = 0 to 2)	
RMINCPy	<u> </u>	Minute capture register y ($y = 0$ to 2)	_
RHRCPy	<u> </u>	Hour capture register y ($y = 0$ to 2)	_
RDAYCPy		Date capture register y (y = 0 to 2)	_
RMONCPy		Month capture register y $(y = 0 \text{ to } 2)$	_

2.21 Independent Watchdog Timer

Table 2.60 is a comparative overview of the independent watchdog timers, and Table 2.61 is a comparison of independent watchdog timer registers.

Table 2.60 Comparative Overview of Independent Watchdog Timers

Item	RX210 (IWDTa)	RX140 (IWDTa)
Count source	IWDT-dedicated clock (IWDTCLK)	IWDT-dedicated clock (IWDTCLK)
Clock division ratio	Divide by1, 16, 32, 64, 128, or 256	Divide by 1, 16, 32, 64, 128, or 256
Counter operation	Counting down using a 14-bit down-counter	Counting down using a 14-bit down-counter
Conditions for starting the counter	 Counting automatically starts after a reset (auto-start mode) Counting is started (register start mode) by refreshing the counter (writing 00h and then FFh to the IWDTRR register). 	 Auto-start mode: Counting starts automatically after a reset. Register start mode: Counting is started by refreshing the counter (writing 00h and then FFh to the IWDTRR register).
Conditions for stopping the counter	 Reset (the down-counter and other registers return to their initial values) A counter underflows or a refresh error is generated Counting restarts (in auto-start mode, counting automatically restarts after a reset or after a non-maskable interrupt request is output. In register start mode, counting restarts after refreshing.) 	 Reset (the down-counter and other registers return to their initial values) Low power consumption state (by means of register setting) Underflow or refresh error (register start mode only)
Window function	Window start and end positions can be specified (refresh-permitted and refresh-prohibited periods)	Window start and end positions can be specified (refresh-permitted and refresh-prohibited periods)
Reset output	Down-counter underflows	Down-counter underflows
sources	Refreshing outside the refresh- permitted period (refresh error)	Refreshing outside the refresh- permitted period (refresh error)
Non-maskable interrupt sources	 A non-maskable interrupt (WUNI) is generated when the down-counter underflows. When refreshing is done outside the refresh-permitted period (refresh error) 	 Down-counter underflows When refreshing is done outside the refresh-permitted period (refresh error)
Reading the counter value	The down-counter value can be read by the IWDTSR register.	The down-counter value can be read by the IWDTSR register.
Event link function (output)	Down-counter underflow event outputRefresh error event output	_
Output signals	Reset output	Reset output
(internal signals)	Interrupt request outputSleep mode count stop control output	Interrupt request outputSleep mode count stop control output

Item	RX210 (IWDTa)	RX140 (IWDTa)
Auto-start mode (controlled by option function select register 0 (OFS0))	 Selecting the clock frequency division ratio after a reset (OFS0.IWDTCKS[3:0] bits) Selecting the timeout period of the watchdog timer (OFS0.IWDTTOPS[1:0] bits) Selecting the window start position in the watchdog timer (OFS0.IWDTRPSS[1:0]bits) Selecting the window end position in the watchdog timer (OFS0.IWDTRPES[1:0]bits) Selecting the reset output or interrupt request output (OFS0.IWDTRSTIRQS bit) Selecting the down-count stop function at transition to sleep mode, software standby mode, deep software standby mode, or all-module clock stop mode 	 Selecting the clock frequency division ratio after a reset (OFS0.IWDTCKS[3:0] bits) Selecting the timeout period of the independent watchdog timer (OFS0.IWDTTOPS[1:0] bits) Selecting the window start position in the independent watchdog timer (OFS0.IWDTRPSS[1:0]bits) Selecting the window end position in the independent watchdog timer (OFS0.IWDTRPES[1:0]bits) Selecting the window end position in the independent watchdog timer (OFS0.IWDTRPES[1:0]bits) Selecting the reset output or interrupt request output (OFS0.IWDTRSTIRQS bit) Selecting the down-count stop function at transition to sleep mode, software standby mode, or deep sleep mode (OFS0.IWDTSLCSTP bit)
Register start mode (controlled by the IWDT registers)	 (OFS0.IWDTSLCSTP bit) Selecting the clock frequency division ratio after refreshing (IWDTCR.CKS[3:0] bits) Selecting the timeout period of the watchdog timer (IWDTCR.TOPS[1:0] bits) Selecting the window start position in the watchdog timer (IWDTCR.RPSS[1:0] bits) Selecting the window end position in the watchdog timer (IWDTCR.RPES[1:0] bits) Selecting the reset output or interrupt request output (IWDTRCR.RSTIRQS bit) Selecting the down-count stop function at transition to sleep mode, software standby mode, deep software standby mode, or all-module clock stop mode (IWDTCSTPR.SLCSTP bit) 	Selecting the clock frequency division ratio after refreshing (IWDTCR.CKS[3:0] bits) Selecting the timeout period of the independent watchdog timer (IWDTCR.TOPS[1:0] bits) Selecting the window start position in the independent watchdog timer (IWDTCR.RPSS[1:0] bits) Selecting the window end position in the independent watchdog timer (IWDTCR.RPES[1:0] bits) Selecting the window end position in the independent watchdog timer (IWDTCR.RPES[1:0] bits) Selecting the reset output or interrupt request output (IWDTRCR.RSTIRQS bit) Selecting the down-count stop function at transition to sleep mode, software standby mode, or deep sleep mode (IWDTCSTPR.SLCSTP bit)

Table 2.61 Comparison of Independent Watchdog Timer Registers

Register	Bit	RX210 (IWDTCR)	RX140 (IWDTCR)
IWDTCR	TOPS[1:0]	Time-out period selection bits	Time-out period selection bits
		b1 b0	b1 b0
		0 0: 1,024 cycles (03FFh)	0 0: 128 cycles (007Fh)
		0 1: 4,096 cycles (0FFFh)	0 1: 512 cycles (01FFh)
		1 0: 8,192 cycles (1FFFh)	1 0: 1,024 cycles (03FFh)
		1 1: 16,384 cycles (3FFFh)	1 1: 2,048 cycles (07FFh)
IWDTCSTPR	SLCSTP	Sleep mode count stop control bit	Sleep mode count stop control bit
		0: Count stop is disabled.	0: Count stop is disabled.
		1: Counting is stopped at a transition to sleep mode, software standby mode, deep software standby mode, or all-module clock stop mode.	Counting is stopped at a transition to sleep mode, software standby mode, or deep sleep mode.

RENESAS

2.22 Serial Communications Interface

Table 2.62 is a comparative overview of the serial communications interfaces, and Table 2.63 is a comparison of serial communications interface channel specifications, and Table 2.64 is a comparison of serial communications interface registers.

Table 2.62 Comparative Overview of Serial Communications Interfaces

Item		RX210 (SCIc, SCId)	RX140 (SCIg, SCIk, SCIh)
Number of channels		SCIc: 12 channels	SClg: 3 channels
			SClk: 2 channels
		SCld: 1 channel	SCIh: 1 channel
Serial communi	cations modes	Asynchronous	Asynchronous
		Clock synchronous	Clock synchronous
		Smart card interface	Smart card interface
		Simple I ² C bus	Simple I ² C bus
		Simple SPI bus	Simple SPI bus
Transfer speed		Bit rate specifiable by on-chip	Bit rate specifiable by on-chip
		baud rate generator.	baud rate generator.
Full-duplex communication		 Transmitter: Continuous transmission possible using double-buffer structure. Receiver: Continuous reception possible using double-buffer structure. 	 Transmitter: Continuous transmission possible using double-buffer structure. Receiver: Continuous reception possible using double-buffer structure.
Data transfer		Selectable as LSB first or MSB	Selectable as LSB first or MSB
		first transfer.	first transfer.
I/O signal level	inversion		The levels of input and output signals can be inverted independently (SCI1 and SCI5).
Interrupt source	es	Transmit end, transmit data	Transmit end, transmit data
		empty, receive data full, and	empty, receive data full, receive
		receive error, completion of	error, and data match (SCI1 and
		generation of a start condition,	SCI5), completion of generation
		restart condition, or stop condition (for simple I ² C mode)	of a start condition, restart condition, or stop condition (for simple I ² C mode)
Low power cons	sumption function	Individual channels can be	Individual channels can be
Zen pener concumpuon ancien		transitioned to the module stop state.	transitioned to the module stop state.
Asynchronous	Data length	7 or 8 bits	7, 8, or 9 bits
mode	Transmission	1 or 2 bits	1 or 2 bits
	stop bits		
	Parity	Even parity, odd parity, or no	Even parity, odd parity, or no
		parity	parity
	Receive error	Parity, overrun, and framing	Parity, overrun, and framing
	detection	errors	errors
	function		
	Hardware flow	CTSn and RTSn pins can be	CTSn# and RTSn# pins can be
	control	used in controlling	used in controlling
		transmission/reception.	transmission/reception.

Item		RX210 (SCIc, SCId)	RX140 (SCIg, SCIk, SCIh)
Asynchronous mode	Data match detection		Compares receive data and comparison data, and generates interrupt when they are matched (SCI1 and SCI5)
	Start-bit detection	_	Low level or falling edge is selectable.
	Receive data sampling timing adjustment		The receive data sampling point can be shifted from the center of the data forward or backward to a base point (SCI1 and SCI5).
	Transmit signal change timing adjustment	_	Either the falling or rising edge of the transmit data can be delayed (SCI1 and SCI5).
	Break detection	When a framing error occurs, a break can be detected by reading the RXDn pin level directly.	When a framing error occurs, a break can be detected by reading the RXDn pin level directly or by reading the SPTR.RXDMON flag (SCI1 or SCI5).
	Clock source	An internal or external clock can be selected.	An internal or external clock can be selected.
		 Transfer rate clock input from the TMR can be used (SCI5, SCI6, and SCI12). 	 Transfer rate clock input from the TMR can be used (SCI5, SCI6, and SCI12).
	Double-speed mode	_	Baud rate generator double- speed mode is selectable.
	Multi-processor communications function	Serial communication among multiple processors	Serial communication among multiple processors
	Noise cancellation	The signal paths from input on the RXDn pins incorporate digital noise filters.	The signal paths from input on the RXDn pins incorporate digital noise filters.
Clock	Data length	8 bits	8 bits
synchronous mode	Receive error detection	Overrun error	Overrun error
	Hardware flow control	CTSn and RTSn pins can be used in controlling transmission/ reception.	CTSn# and RTSn# pins can be used in controlling transmission/ reception.
Smart card interface mode	Error processing	 An error signal can be automatically transmitted when detecting a parity error during reception Data can be automatically retransmitted when receiving an error signal during transmission 	 An error signal can be automatically transmitted when detecting a parity error during reception Data can be automatically retransmitted when receiving an error signal during transmission
	Data type	Both direct convention and inverse convention are supported.	Both direct convention and inverse convention are supported.

Item		RX210 (SCIc, SCId)	RX140 (SCIg, SCIk, SCIh)
Simple I ² C mode	Communication format	I ² C bus format (MSB-first transfer only)	I ² C bus format
	Operating mode	Master (single-master operation only)	Master (single-master operation only)
	Transfer rate	Up to 384 kbps	Fast mode is supported.
	Noise cancellation	The signal paths from input on the SSCLn and SSDAn pins incorporate digital noise filters, and the interval for noise cancellation is adjustable.	The signal paths from input on the SSCLn and SSDAn pins incorporate digital noise filters, and the interval for noise cancellation is adjustable.
Simple SPI	Data length	8 bits	8 bits
mode	Detection of errors	Overrun error	Overrun error
	SS input pin function	Applying the high level to the SSn# pin can cause the output pins to enter the high-impedance state.	Applying the high level to the SSn# pin can cause the output pins to enter the high-impedance state.
	Clock settings	Four kinds of settings for clock phase and clock polarity are selectable.	Four kinds of settings for clock phase and clock polarity are selectable.
Extended serial mode (supported by SCI12 only)	Start frame transmission	 Break field low width output and generation of interrupt on completion Detection of bus collision and generation of interrupt on detection 	 Break field low width output and generation of interrupt on completion Detection of bus collision and generation of interrupt on detection
	Start frame reception	 Detection of break field low width and generation of interrupt on detection Data comparison of control fields 0 and 1 and generation of interrupt when they match Ability to specify two kinds of data for comparison (primary and secondary) in control field 1 Ability to specify priority interrupt bit in control field 1 Support for start frames that do not include a break field Support for start frames that do not include a control field 0 Function for measuring bit rates 	 Detection of break field low width and generation of interrupt on detection Data comparison of control fields 0 and 1 and generation of interrupt when they match Ability to specify two kinds of data for comparison (primary and secondary) in control field 1 Ability to specify priority interrupt bit in control field 1 Support for start frames that do not include a break field Support for start frames that do not include a control field 0 Function for measuring bit rates

Item		RX210 (SCIc, SCId)	RX140 (SCIg, SCIk, SCIh)
Extended serial mode (supported by SCI12 only)	I/O control function	 Ability to select polarity or TXDX12 and RXDX12 signals Ability to specify digital filtering of RXDX12 signal Half-duplex operation employing RXDX12 and TXDX12 signals multiplexed on the same pin Ability to select receive data sampling timing of RXDX12 pin Signals received on RXDX12 can be passed through to SCIc when the extended serial mode control section is turned off. 	 Ability to select polarity or TXDX12 and RXDX12 signals Ability to specify digital filtering of RXDX12 signal Half-duplex operation employing RXDX12 and TXDX12 signals multiplexed on the same pin Ability to select receive data sampling timing of RXDX12 pin
	Timer function	Usable as reloading timer	Usable as reloading timer
Bit rate modulation function			Correction of outputs from the on-chip baud rate generator can reduce errors.
Event link function (supported by SCI5 only)		 Error (receive error or error signal detection) event output Receive data full event output Transmit data empty event output Transmit end event output 	 Error (receive error or error signal detection) event output Receive data full event output Transmit data empty event output Transmit end event output

Table 2.63 Comparison of Serial Communications Interface Channel Specifications

Item	RX210 (SCIc, SCId)	RX140 (SCIg, SCIk, SCIh)
Synchronous mode	SCI0, SCI1, SCI2, SCI3, SCI4, SCI5, SCI6, SCI7, SCI8, SCI9, SCI10, SCI11, SCI12	SCI1, SCI5, SCI6, SCI8, SCI9, SCI12
Clock synchronous mode	SCI0, SCI1, SCI2, SCI3, SCI4, SCI5, SCI6, SCI7, SCI8, SCI9, SCI10, SCI11, SCI12	SCI1, SCI5, SCI6, SCI8, SCI9, SCI12
Smart card interface mode	SCI0, SCI1, SCI2, SCI3, SCI4, SCI5, SCI6, SCI7, SCI8, SCI9, SCI10, SCI11, SCI12	SCI1, SCI5, SCI6, SCI8, SCI9, SCI12
Simple I ² C mode	SCI0, SCI1, SCI2, SCI3, SCI4, SCI5, SCI6, SCI7, SCI8, SCI9, SCI10, SCI11, SCI12	SCI1, SCI5, SCI6, SCI8, SCI9, SCI12
Simple SPI mode	SCI0, SCI1, SCI2, SCI3, SCI4, SCI5, SCI6, SCI7, SCI8, SCI9, SCI10, SCI11, SCI12	SCI1, SCI5, SCI6, SCI8, SCI9, SCI12
Data match detection	_	SCI1, SCI5
Extended serial mode	SCI12	SCI12
TMR clock input	SCI5, SCI6, SCI12	SCI5, SCI6, SCI12
Event link function	SCI5	SCI5
Peripheral module clock	PCLKB: SCI0, SCI1, SCI2, SCI3, SCI4, SCI5, SCI6, SCI7, SCI8, SCI9, SCI10, SCI11, SCI12	PCLKB: SCI1, SCI5, SCI6, SCI8, SCI9, SCI12

Table 2.64 Comparison of Serial Communications Interface Registers

Register	Bit	RX210 (SCIc, SCId)	RX140 (SCIg, SCIk, SCIh)
RDRH, RDRL, RDRHL	_		Receive data registers H, L, and HL
TDRH, TDRL, TDRHL	_		Transmit data registers H, L, and HL
SMR	CHR	Character length bit	Character length bit
		(Valid only in asynchronous mode.)	(Valid only in asynchronous mode.) Selects in combination with the SCMR.CHR1 bit.
			CHR1 CHR
		0: Transmit/receive in 8-bit data length	0 0: Transmit/receive in 9-bit data length
		1: Transmit/receive in 7-bit data length	0 1: Transmit/receive in 9-bit data length
			1 0: Transmit/receive in 8-bit data length (initial value)
			1 1: Transmit/receive in 7-bit data length
	СМ	Communications mode bit	Communications mode bit
		0: Asynchronous mode	0: Asynchronous mode or simple I ² C mode
		1: Clock synchronous mode	1: Clock synchronous mode or simple SPI mode

Register	Bit	RX210 (SCIc, SCId)	RX140 (SCIg, SCIk, SCIh)
SCR	CKE[1:0]	Clock enable bits	Clock enable bits
		 (Asynchronous mode) b1 b0 0 0: On-chip baud rate generator The SCKn pin is available for use as an I/O port in accord with the I/O port settings. 0 1: On-chip baud rate generator A clock with the same frequency as the bit rate is output on the SCKn pin. 1 x: External clock or TMR clock*1 When using an external clock, input a clock with a frequency 16 times the bit rate on the SCKn pin. When the SEMR.ABCS bit is set to 1, input a clock with a frequency eight times the bit rate. The TMR clock may be used. 	 (Asynchronous mode) b1 b0 0 0: On-chip baud rate generator The SCKn pin is in the high-impedance state. 0 1: On-chip baud rate generator A clock with the same frequency as the bit rate is output on the SCKn pin. 1 x: External clock or TMR clock*1 When using an external clock, input a clock with a frequency 16 times the bit rate on the SCKn pin. When the SEMR.ABCS bit is set to 1, input a clock with a frequency eight times the bit rate. When using the TMR clock, the SCKn pin is in the high-impedance state.
		(Clock synchronous mode) b1 b0 0 x: Internal clock: The SCKn pin functions as the clock output pin. 1 x: External clock: The SCKn pin functions as the clock input pin.	(Clock synchronous mode) b1 b0 0 x: Internal clock: The SCKn pin functions as the clock output pin. 1 x: External clock: The SCKn pin functions as the clock input pin.
	MPIE	Multi-processor interrupt enable bit (Valid in asynchronous mode when the SMR.MP bit is set to 1.) 0: Normal reception 1: When data with the multi-processor bit set to 0 is received, the data is not read, and setting the status flags ORER and FER in SSR to 1 is disabled. When data with the multiprocessor bit set to 1 is received, the MPIE bit is automatically cleared to 0, and normal reception resumes.	Multi-processor interrupt enable bit (Valid in asynchronous mode when the SMR.MP bit is set to 1.) 0: Normal reception 1: When data with the multi-processor bit set to 0 is received, the data is not read, and setting the status flags RDRF, ORER, and FER in the SSR register to 1 is disabled. When data with the multi-processor bit set to 1 is received, the MPIE bit is automatically cleared to 0, and normal reception resumes.
SCMR	CHR1		Character length bit 1
MDDR	_	_	Modulation duty register

Register	Bit	RX210 (SCIc, SCId)	RX140 (SCIg, SCIk, SCIh)
SEMR	ACS0	Asynchronous mode clock source select bit	Asynchronous mode clock source select bit
		(Valid only in asynchronous mode.)	(Valid only in asynchronous mode.)
		O: External clock input 1: TMR clock input (valid only for SCI5, SCI6, and SCI12)	O: External clock input 1: Logical AND of two compare matches output from TMR (valid for SCI5, SCI6, and SCI12 only) Available compare match output varies per SCI channel.
	ITE	_	Immediate transmission enable bit
	BRME		Bit rate modulation enable bit
	ABCSE		Asynchronous mode base clock select extended bit
	BGDM		Baud rate generator double-speed mode select bit
	RXDESEL		Asynchronous start bit edge detection select bit
SIMR1	IICM	Simple I ² C mode select bit	Simple I ² C mode select bit
		SMIF IICM	SMIF IICM
		0 0: Serial interface mode	0 0: Asynchronous mode, multi-
		(in asynchronous, synchronous, or simple SPI mode)	processor mode, or clock synchronous mode (in asynchronous, synchronous, or simple SPI mode)
		0 1: Simple I ² C mode	0 1: Simple I ² C mode
		1 0: Smart card interface mode	1 0: Smart card interface mode
		1 1: Setting prohibited.	1 1: Setting prohibited.
SPMR	MSS	Master slave select bit	Master slave select bit
		TXDn pin: transmission, RXDn pin: reception (master mode) TXDn pin: reception, RXDn pin:	SMOSIn pin: transmission, SMISOn pin: reception (master mode) SMOSIn pin: reception, SMISOn
		transmission (slave mode)	pin: transmission (slave mode)
CDR		_	Comparison data register
DCCR	_	_	Data comparison control register
SPTR	<u> </u>	_	Serial port register
TMGR	_	_	Transmit/receive timing select register

Register	Bit	RX210 (SCIc, SCId)	RX140 (SCIg, SCIk, SCIh)
CR2	BCCS [1:0]	Bus collision detection clock select bits	Bus collision detection clock select bits
			 When SEMR.BGDM = 0, or SEMR.BGDM = 1 and SMR.CKS[1:0] = other than 00b
		b5 b4	b5 b4
		0 0: SCI Base clock	0 0: Base clock
		0 1: SCI Base clock frequency divided by 2	0 1: Base clock frequency divided by 2
		1 0: SCI Base clock frequency divided by 4	1 0: Base clock frequency divided by 4
		1 1: Setting prohibited.	1 1: Setting prohibited.
			When SEMR.BGDM = 1 and SMR.CKS[1:0] = 00b
			b5 b4
			0 0: Base clock frequency divided by 2
			0 1: Base clock frequency divided by 4
			1 0: Setting prohibited.
			1 1: Setting prohibited.

Note: 1. Selectable on SCI5, SCI6, and SCI12 only.

2.23 I²C Bus Interface

Table 2.65 is a comparison of I²C bus interface registers.

Table 2.65 Comparison of I²C Bus Interface Registers

Register	Bit	RX210 (RIIC)	RX140 (RIICa)
ICMR2	TMWE	Timeout internal counter write enable bit	_
TMOCNT		Timeout internal counter	—

2.24 Serial Peripheral Interface

Table 2.66 is a comparative overview of serial peripheral interfaces, and Table 2.67 is a comparison of serial peripheral interface registers.

Table 2.66 Comparative Overview of Serial Peripheral Interfaces

Item	RX210 (RSPI)	RX140 (RSPIc)
Number of channels	1 channel	1 channel
RSPI transfer functions	 Use of MOSI (master out/slave in), MISO (master in/slave out), SSL (slave select), and RSPCK (RSPI clock) signals allows serial communications through SPI operation (4-wire method) or clock synchronous operation (3-wire method). Transmit-only operation is available. Capable of serial communication in master/slave mode. 	Use of MOSI (master out/slave in), MISO (master in/slave out), SSL (slave select), and RSPCK (RSPI clock) signals allows serial communications through SPI operation (4-wire method) or clock synchronous operation (3-wire method).
	Capable of switching the polarity of the serial transfer clock.	 Communication mode: Full-duplex or transmit-only can be selected. Switching of the polarity of RSPCK
	Capable of switching the phase of the serial transfer clock.	Switching of the phase of RSPCK
Data format	MSB first/LSB first selectable	MSB first/LSB first selectable
	• Transfer bit length is selectable as 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 24, or 32 bits.	 Transfer bit length is selectable as 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 24, or 32 bits.
	 128-bit transmit/receive buffers Up to four frames can be transferred in one round of transmission/reception (each frame consisting of up to 32 bits). 	 128-bit transmit/receive buffers Up to four frames can be transferred in one round of transmission/reception (each frame consisting of up to 32 bits).
		Byte swapping of transmit and receive data is selectable
Bit rate	 In master mode, the on-chip baud rate generator generates RSPCK by frequency-dividing PCLK (the maximum divisor is 4096). 	 In master mode, the on-chip baud rate generator generates RSPCK by frequency-dividing PCLK (the division ratio ranges from divided by 2 to divided by 4096).
	 In slave mode, the externally input clock is used as the serial clock (the maximum frequency is that of PCLK divided by 8). 	 In slave mode, the minimum PCLK clock divided by 4 can be input as RSPCK (the maximum frequency of RSPCK is that of PCLK divided by 4).
	Width at high level: 4 cycles of PCLK Width at low level: 4 cycles of PCLK	Width at high level: 2 cycles of PCLK Width at low level: 2 cycles of PCLK
Buffer configuration	Double buffer configuration for the transmit/receive buffers	Double buffer configuration for the transmit/receive buffers
		 128 bits for the transmit/receive buffers

Item	RX210 (RSPI)	RX140 (RSPIc)
Error detection	Mode fault error detection	Mode fault error detection
	Overrun error detection	Overrun error detection
	Parity error detection	Parity error detection
		Underrun error detection
SSL control function	Four SSL pins (SSLA0 to SSLA3) for each channel	Four SSL pins (SSLA0 to SSLA3) for each channel
	 In single-master mode, SSLA0 to SSLA3 pins are output. 	 In single-master mode, SSLA0 to SSLA3 pins are output.
	In multi-master mode: SSLA0 pin for input, and SSLA1 to SSLA3 pins for either output or unused.	In multi-master mode: SSLA0 pin for input, and SSLA1 to SSLA3 pins for either output or unused.
	In slave mode: SSLA0 pin for input, and SSLA1 to SSLA3 pins for unused.	In slave mode: SSLA0 pin for input, and SSLA1 to SSLA3 pins for unused.
	Controllable delay from SSL output assertion to RSPCK operation (RSPCK delay)	Controllable delay from SSL output assertion to RSPCK operation (RSPCK delay)
	 Range: 1 to 8 RSPCK cycles (set in RSPCK-cycle units) 	 Range: 1 to 8 RSPCK cycles (set in RSPCK-cycle units)
	Controllable delay from RSPCK stop to SSL output negation (SSL negation delay)	Controllable delay from RSPCK stop to SSL output negation (SSL negation delay)
	 Range: 1 to 8 RSPCK cycles (set in RSPCK-cycle units) 	 Range: 1 to 8 RSPCK cycles (set in RSPCK-cycle units)
	Controllable wait for next-access SSL output assertion (next-access delay)	Controllable wait for next-access SSL output assertion (next-access delay)
	 Range:1 to 8 RSPCK cycles (set in RSPCK-cycle units) 	 Range:1 to 8 RSPCK cycles (set in RSPCK-cycle units)
	Function for changing SSL polarity	Function for changing SSL polarity
Control in master transfer	A transfer of up to eight commands can be executed sequentially in looped execution.	A transfer of up to eight commands can be executed sequentially in looped execution.
	For each command, the following	For each command, the following
	can be set: SSL signal value, bit rate, RSPCK polarity/phase, transfer data length, MSB/LSB first, burst, RSPCK delay, SSL negation delay, and next-access delay	can be set: SSL signal value, bit rate, RSPCK polarity/phase, transfer data length, MSB/LSB first, burst, RSPCK delay, SSL negation delay, and next-access delay
	A transfer can be initiated by writing to the transmit buffer.	A transfer can be initiated by writing to the transmit buffer.
	MOSI signal value specifiable in SSL negation	MOSI signal value specifiable in SSL negation
latamin ()	DOD!	RSPCK auto-stop function
Interrupt sources	RSPI receive interrupt (receive buffer	Receive buffer full interrupt
	full) RSPI transmit interrupt (transmit buffer empty)	Transmit buffer empty interrupt
	RSPI error interrupt (mode fault, overrun, or parity error)	Error interrupt (mode fault, overrun, underrun, or parity error)
	RSPI idle interrupt (RSPI idle)	Idle interrupt
	1	i i i i i i i i i i i i i i i i i i i

Item	RX210 (RSPI)	RX140 (RSPIc)
Event link function (output)	The following five types of events can be output to the event link controller. Reception buffer full event output Transmission buffer empty event output Mode fault, overrun, or parity error event output RSPI idle event output Transmission-completed event output	
Other functions	 Function for switching between CMOS output and open-drain output Function for initializing the RSPI Loopback mode 	Function for initializing the RSPI Loopback mode
Low power consumption function	Ability to specify module stop state	Ability to specify module stop state

Table 2.67 Comparison of Serial Peripheral Interface Registers

Register	Bit	RX210 (RSPI)	RX140 (RSPIc)
SPSR	UDRF	_	Underrun error flag
SPDCR	SPBYT	_	RSPI byte access specification bit
SPCR2	SPPE	Parity enable bit	Parity enable bit
		0: A parity bit is not added to transmit data, and no parity checking of receive data is performed. 1: A parity bit is added to transmit data, and parity checking of receive data is performed (when SPCR.TXMD = 0). A parity bit is added to transmit data, but no parity checking of receive data is performed (when SPCR.TXMD = 1).	O: A parity bit is not added to transmit data, and no parity checking of receive data is performed. 1: A parity bit is added to transmit data, and parity checking of receive data is performed.
	SCKASE	_	RSPCK auto-stop function enable
SPDCR2		_	RSPI data control register 2

2.25 12-Bit A/D Converter

Table 2.68 is a comparative overview of the 12-bit A/D converters, and Table 2.69 is a comparison of 12-bit A/D converter registers.

Table 2.68 Comparative Overview of 12-Bit A/D Converters

Item	RX210 (S12ADb)	RX140 (S12ADE)	
Number of units	1 unit	1 unit	
Input channels	16 channels	18 channels	
Extended	Temperature sensor output, internal	Temperature sensor output, internal	
analog function	reference voltage	reference voltage	
A/D conversion method	Successive approximation method	Successive approximation method	
Resolution	12 bits	12 bits	
Conversion time	1.0 µs per channel (when A/D conversion clock ADCLK = 50 MHz)	0.88 µs per channel (ADCCR.CCS bit = 0), 0.67 µs per channel (ADCCR.CCS bit = 1) (when A/D conversion clock ADCLK = 48 MHz)	
A/D conversion clock	Peripheral module clock PCLK and A/D conversion clock ADCLK can be set so that the frequency division ratio should be one of the following. PCLK to ADCLK frequency division ratio = 1:1, 1:2, 1:4, 1:8, 2:1, 4:1 ADCLK is set using the clock generation circuit.	Peripheral module clock PCLKB and A/D conversion clock ADCLK can be set so that the frequency ratio should be one of the following. PCLKB to ADCLK frequency ratio = 1:1, 1:2, 2:1, 4:1, 8:1 ADCLK is set using the clock generation circuit.	
Data registers	 16 registers for analog input and one for A/D-converted data duplication in double trigger mode One register for temperature sensor output One register for internal reference The results of A/D conversion are stored in 12-bit A/D data registers. In addition mode, A/D conversion results are added and stored in A/D data registers as 14-bit data. Duplication of A/D conversion data A/D conversion data of one selected analog input channel is stored in A/D data register y when conversion is started by the first trigger and in the duplication register when started by the second trigger. Duplication is available only when double trigger mode is selected in single scan mode or group scan mode. 	 18 registers for analog input, one for A/D-converted data duplication in double trigger mode One register for temperature sensor output One register for internal reference One register for self-diagnosis The results of A/D conversion are stored in 12-bit A/D data registers. 12-bit accuracy output for the results of A/D conversion The value obtained by adding up A/D-converted results is stored as a value in the number of bit for conversion accuracy + 2 bits/4 bits in the A/D data registers in A/D-converted value addition mode. Double trigger mode (selectable in single scan and group scan modes): The first piece of A/D-converted analog-input data on one selected channel is stored in the data register for the channel, and the second piece is stored in the duplication register. 	

Item	RX210 (S12ADb)	RX140 (S12ADE)
Operating modes	 Single scan mode: A/D conversion is performed only once on the analog inputs of up to 16 channels arbitrarily selected. A/D conversion is performed only once on the temperature sensor output. A/D conversion is performed only once on the internal reference voltage. Continuous scan mode: A/D conversion is performed repeatedly on the analog inputs of up to 16 channels arbitrarily selected. Group scan mode: Analog inputs of up to 24 arbitrarily selected channels are divided into group A and group B, and A/D conversion of the analog inputs selected on a group basis is performed only once. Conversion start conditions (synchronous trigger) can be selected independently for group A and group B, allowing A/D conversion of the groups to start at different times. 	 Single scan mode: A/D conversion is performed only once on the analog inputs of up to 18 channels arbitrarily selected. A/D conversion is performed only once on the temperature sensor output. A/D conversion is performed only once on the internal reference voltage. Continuous scan mode: A/D conversion is performed repeatedly on the analog inputs of up to 18 channels arbitrarily selected. Group scan mode: Analog inputs of up to 18 arbitrarily selected channels are divided into group A and group B, and A/D conversion of the analog inputs selected on a group basis is performed only once. Conversion start conditions (synchronous trigger) can be selected independently for group A and group B, allowing A/D conversion of the groups to start at different times. Group scan mode (when group A is given priority):
Conditions for A/D conversion start	 Software trigger Synchronous trigger Trigger by MTU, ELC or temperature sensor. Asynchronous trigger A/D conversion can be triggered by the ADTRG0# pin. 	 Software trigger Synchronous trigger Trigger by the multi-function timer pulse unit (MTU) or event link controller (ELC) Asynchronous trigger A/D conversion can be triggered by the external trigger ADTRG0# pin.

Item	RX210 (S12ADb)	RX140 (S12ADE)
Functions	 Sample-and-hold function Channel-dedicated sample-and-hold function (0.25 V ≤ analog voltage input ≤ AVCC0 to 0.25 V) Variable sampling state count Self-diagnosis of 12-bit A/D converter A/D-converted value addition mode Analog input disconnection detection 	 Variable sampling state count Self-diagnosis of 12-bit A/D converter Selectable A/D-converted value addition mode or average mode Analog input disconnection detection
	 Double trigger mode (duplication of A/D conversion data) 	function (discharge function/precharge function) Double trigger mode (duplication of A/D conversion data) Automatic clear function of A/D data registers Compare function (window A and window B) 16 ring buffers when the compare
Interrupt sources	 In the modes except double trigger mode and group scan mode, A/D scan end interrupt request (S12ADI0) can be generated on completion of single scan. In double trigger mode, A/D scan end interrupt request (S12ADI0) can be generated on completion of double scan. In group scan mode, an A/D scan end interrupt request (S12ADI0) can be generated on completion of group A scan, whereas an A/D scan end interrupt request (GBADI) for group B can be generated on completion of group B scan. When double trigger mode is selected in group scan mode, A/D scan end interrupt request (S12ADI0) can be generated on completion of double scan of group A, whereas A/D scan end interrupt request (GBADI) specially for group B can be generated on completion of group B scan. The S12ADI0 or GBADI interrupts can activate the DMA controller (DMAC) or 	 In the modes except double trigger mode and group scan mode, A/D scan end interrupt request (S12ADI0) can be generated on completion of single scan. In double trigger mode, A/D scan end interrupt request (S12ADI0) can be generated on completion of double scan. In group scan mode, an A/D scan end interrupt request (S12ADI0) can be generated on completion of group A scan, whereas an A/D scan end interrupt request (GBADI) for group B can be generated on completion of group B scan. When double trigger mode is selected in group scan mode, A/D scan end interrupt request (S12ADI0) can be generated on completion of double scan of group A, whereas A/D scan end interrupt request (S12ADI0) can be generated on completion of double scan of group A, whereas A/D scan end interrupt request (GBADI) specially for group B can be generated on completion of group B scan. The S12ADI0 and GBADI interrupts can activate the data transfer controller

Item	RX210 (S12ADb)	RX140 (S12ADE)
Event link function	An ELC event can be generated on completion of scans other than group B scan in group scan mode.	 An ELC event is generated on completion of scans other than group B scan in group scan mode. An ELC event is generated on completion of group B scan in group scan mode.
		An ELC event is generated on completion of all scans.
	 A/D conversion can be started by a trigger from the ELC. 	 Scan can be started by a trigger output by the ELC. An ELC event is generated according to the event conditions of the window compare function in single scan mode.
Low power consumption function	Ability to specify module stop state	Ability to specify module stop state

Table 2.69 Comparison of 12-Bit A/D Converter Registers

Register	Bit	RX210 (S12ADb)	RX140 (S12ADE)
ADDRy	_	A/D data register y	A/D data register y
		(y = 0 to 15)	(y = 0 to 8, 16 to 21, 24 to 26)
ADRD	DIAGST[1:0]	Self-diagnosis status bits	_
ADCSR	ADHSC	_	A/D conversion select bit
ADANSA	_	A/D channel select register A	_
ADANSA0	_		A/D channel select register A0
ADANSA1	_		A/D channel select register A1
ADANSB	_	A/D channel select register B	_
ADANSB0	_	_	A/D channel select register B0
ADANSB1	_		A/D channel select register B1
ADADS	_	A/D-converted value addition mode select register	_
ADADS0			A/D-converted value addition/
, ibi ib co			average function select register 0
ADADS1		_	A/D-converted value addition/
			average function select register 1
ADADC	ADC[1:0] (RX210)	Addition count select bits	Addition count select bits
	ADC[2:0]	b1 b0	b2 b0
	(RX140)	0 0: 1-time conversion	0 0 0: 1-time conversion
	(10(140)	(no addition, same as normal	(no addition, same as
		conversion)	normal conversion)
		0 1: 2-time conversion	0 0 1: 2-time conversion
		(addition once)	(addition once)
		1 0: 3-time conversion	0 1 0: 3-time conversion
		(addition twice)	(addition twice)
		1 1: 4-time conversion	0 1 1: 4-time conversion
		(addition 3 times)	(addition three times)
			1 0 1: 16-time conversion
			(addition 15 times)
			Settings other than the above are prohibited.
	AVEE	_	Average mode enable bit

Register	Bit	RX210 (S12ADb)	RX140 (S12ADE)
ADSTRGR	TRSB[3:0]	A/D conversion start trigger select	A/D conversion start trigger select
	(RX210)	for group B bits	for group B bits
	TRSB[5:0]		-
	(RX140)		
	TRSA[3:0]	A/D conversion start trigger select	A/D conversion start trigger select
	(RX210)	bits	bits
	TRSA[5:0]		
	(RX140)		
ADEXICR	TSSAD	_	Temperature sensor output A/D
			converted value addition/
			average mode select bit
	OCSAD	Internal reference voltage A/D-	Internal reference voltage A/D-
		converted value addition mode	converted value addition/
		select bit	average mode select bit
		0: Internal reference voltage A/D-	0: Internal reference voltage A/D-
		converted value addition mode	converted value addition/
		is not selected.	average mode is not selected.
		1: Internal reference voltage A/D-	1: Internal reference voltage A/D-
		converted value addition mode	converted value addition/
		is selected.	average mode is selected.
	TSS(RX210)	Temperature sensor output A/D	Temperature sensor output A/D
	TSSA(RX140)	conversion select bits	conversion select bits
	OCS(RX210)	Internal reference voltage A/D	Internal reference voltage A/D
	OCSA(RX140)	conversion select bits	conversion select bits
ADSSTRn	_	A/D sampling state register n	A/D sampling state register n
7.20011411		(n = 0 to 7, L, T, O)	(n = 0 to 8, L, T, O)
ADSHCR	_	A/D sample and hold circuit	_
		control register	
ADELCCR		_	A/D event link control register
ADGSPCR	_	_	A/D group scan priority control
			register
ADCMPCR	_	_	A/D compare function control
			register
ADCMPANSR0	_	_	A/D compare function window A
			channel select register 0
ADCMPANSR1			A/D compare function window A
			channel select register 1
ADCMPANSER	_	_	A/D compare function window A
			extended input select register
ADCMPLR0	_	_	A/D compare function window A
			comparison condition setting
			register 0
ADCMPLR1		_	A/D compare function window A
			comparison condition setting
			register 1
ADCMPLER	_	_	A/D compare function window A
			extended input comparison
			condition setting register
ADCMPDR0	_	_	A/D compare function window A
			lower-side level setting register
ADCMPDR1	_	_	A/D compare function window A
			upper-side level setting register
	I .		

Register	Bit	RX210 (S12ADb)	RX140 (S12ADE)
ADCMPSR0	_	_	A/D compare function window A
			channel status register 0
ADCMPSR1	_		A/D compare function window A
			channel status register 1
ADCMPSER	 -	_	A/D compare function window A
			extended input channel status
			register
ADHVREFCNT		-	A/D high-potential/low-potential
			reference voltage control register
ADWINMON	 —	_	A/D compare function window A/B
			status monitor register
ADCMPBNSR	_	_	A/D compare function window B
			channel select register
ADWINLLB		_	A/D compare function window B
			lower-side level setting register
ADWINULB	_	_	A/D compare function window B
			upper-side level setting register
ADCMPBSR	_	_	A/D compare function window B
			channel status register
ADBUFn	_		A/D data storage buffer register n
			(n = 0 to 15)
ADBUFEN	_	_	A/D data storage buffer enable
			register
ADBUFPTR	_	_	A/D data storage buffer pointer
			register
ADCCR	_	_	A/D convert cycle control register

2.26 D/A Converter

Table 2.70 is a comparative overview of the D/A converters, and Table 2.71 is a comparison of D/A converter registers.

Table 2.70 Comparative Overview of D/A Converters

Item	RX210 (DA)	RX140 (DAa)
Resolution	10 bits	8 bits
Output channels	2 channels	2 channels
Measure against interference between analog modules		Measure against interference between D/A and A/D converters: D/A converted data update timing is controlled by the 12-bit A/D converter synchronous D/A conversion enable signal output by the 12-bit A/D converter. This reduces degradation of A/D conversion accuracy due to interference by controlling the timing of the 8-bit D/A converter inrush current with the enable signal.
Low power consumption function	Ability to transition to module stop state	Ability to transition to module stop state
Event link function (input)	Ability to start D/A conversion on channel 0 when an event signal is input	Ability to start D/A conversion on channel 0 when an event signal is input

Table 2.71 Comparison of D/A Converter Registers

Register	Bit	RX210 (DA)	RX140 (DAa)
DACR	DAE	D/A enable bit	_
DAADSCR		_	D/A A/D synchronous start control
			register

2.27 Temperature Sensor

Table 2.72 is a comparative overview of temperature sensor, and Table 2.73 is a comparison of temperature sensor registers.

Table 2.72 Comparative Overview of Temperature Sensor

Item	RX210 (TEMPSa)	RX140 (TEMPSA)
Temperature sensor voltage output	Temperature sensor outputs a voltage to the 12-bit A/D converter via a programmable gain amplifier (PGA).	The temperature sensor voltage is output to the 12-bit A/D converter.
Low power consumption function	Ability to specify module stop state	

Table 2.73 Comparison of Temperature Sensor Registers

Register	Bit	RX210 (TEMPSa)	RX140 (TEMPSA)
TSCR		Temperature sensor control register	_
TSCDR		_	Temperature sensor calibration data register

2.28 Comparator B

Table 2.74 is a comparative overview of the comparator B modules, and Table 2.75 is a comparison of comparator B registers.

Table 2.74 Comparative Overview of Comparator B Modules

Item	RX210 (CMPB)	RX140 (CMPBa)
Analog input voltage	Voltage input to CMPBn pin (n = 0 or 1)	Voltage input to CMPBn pin
Reference input voltage	Voltage input to CVREFBn pin (n = 0 or 1)	Voltage input to CVREFBn pin or internal reference voltage
Comparison result	Read from the CPBFLG.CPBnOUT flag (n = 0 or 1)	 Read from the CPBFLG.CPBnOUT flag Ability to output comparison result to CMPOBn pin.
Interrupt request generation timing	 When comparator B0 comparison result changes When comparator B1 comparison result changes 	 When comparator B0 comparison result changes When comparator B1 comparison result changes
Timing of event generation to ELC	When comparator B0 comparison result changes When comparator B0 or comparator B1 comparison result changes	When comparator B0 comparison result changes When comparator B0 or comparator B1 comparison result changes
Selectable functions	Digital filter function Ability to specify whether or not the digital filter is applied and to select the sampling frequency	 Digital filter function Ability to specify whether or not the digital filter is applied and to select the sampling frequency Window function Ability to specify whether or the window function is enabled or disabled (VRFL < CMPBn (n = 0 or 1) < VRFH) Reference input voltage Ability to select CVREFBn pin (n = 0 or 1) input or internal reference voltage (generated internally) Comparator B response speed Ability to select high-speed or low-speed mode
Low power consumption function	Ability to specify module stop state	Ability to transition to module stop state

Table 2.75 Comparison of Comparator B Registers

Register	Bit	RX210 (CMPBa)	RX140 (CMPBa)
CPB1CNT2	—	_	Comparator B1 control register 2
CPBFLG	CPB0OUT	0: CMPB0 < CVREFB0	Comparator B0 monitor flag
		1: CMPB0 > CVREFB0	(When the window function is disabled) 0: CMPB0 < CVREFB0, CMPB0 < internal reference voltage, or comparator B0 operation disabled 1: CMPB0 > CVREFB0, or CMPB0 > internal reference voltage (When the window function is enabled) 0: CMPB0 < VRFL, CMPB0 > VRFH, or comparator B0 operation disabled
	CPB1OUT	Comparator B1 monitor flag	1: VRFL < CMPB0 < VRFH Comparator B1 monitor flag
		0: CMPB1 < CVREFB1 1: CMPB1 > CVREFB1	(When the window function is disabled) 0: CMPB1 < CVREFB1, CMPB1 < internal reference voltage, or
			comparator B1 operation disabled 1: CMPB1 > CVREFB1, or CMPB1 > internal reference voltage
			(When the window function is enabled)0: CMPB1 < VRFL, CMPB1 > VRFH, or comparator B1 operation disabled1: VRFL < CMPB1 < VRFH
CPBMD		_	Comparator B1 mode select register
CPBREF		_	Comparator B reference input voltage select register
CPBOCR		_	Comparator B output control register

2.29 RAM

Table 2.76 is a comparative overview of RAM.

Table 2.76 Comparative Overview of RAM

Item	RX210	RX140
RAM capacity	Max. 96 KB (RAM0: 64 KB, RAM1: 32 KB)	Max. 64 KB
RAM address	 RAM capacity 96 KB RAM0: 0000 0000h to 0000 FFFFh RAM1: 0001 0000h to 0001 7FFFh RAM capacity 64 KB RAM0: 0000 0000h to 0000 FFFFh RAM capacity 32 KB RAM0: 0000 0000h to 0000 7FFFh RAM capacity 20 KB RAM0: 0000 0000h to 0000 4FFFh RAM capacity 16 KB RAM0: 0000 0000h to 0000 3FFFh RAM capacity 12 KB RAM0: 0000 0000h to 0000 2FFFh 	 RAM capacity 64 KB RAM0: 0000 0000h to 0000 FFFFh RAM capacity 32 KB RAM0: 0000 0000h to 0000 7FFFh RAM capacity 16 KB RAM0: 0000 0000h to 0000 3FFFh
Access	 Single-cycle access is possible for both reading and writing. RAM can be enabled or disabled. 	Single-cycle access is possible for both reading and writing.RAM can be enabled or disabled.
Low power consumption function	Ability to specify module stop state independently for RAM0 and RAM1.	Ability to specify module stop state

2.30 Flash Memory

Table 2.77 is a comparative overview of flash memory, and Table 2.78 is a comparison of flash memory registers.

Table 2.77 Comparative Overview of Flash Memory

Item	RX210	RX140 (FLASH)
Memory capacity	 User area: Up to 1 MB Data area: 8 KB User boot area: 16 KB 	 User area: Up to 256 KB Data area: Up to 8 KB Extra area: Stores the start-up area information, access window information, and unique ID
Addresses	 Products with capacity of 1 MB FFF0 0000h to FFFF FFFFh Products with capacity of 768 KB FFF4 0000h to FFFF FFFFh Products with capacity of 512 KB FFF8 0000h to FFFF FFFFh Products with capacity of 384 KB FFFA 0000h to FFFF FFFFh Products with capacity of 256 KB FFFC 0000h to FFFF FFFFh Products with capacity of 128 KB FFFE 0000h to FFFF FFFFh Products with capacity of 96 KB FFFE 8000h to FFFF FFFFh Products with capacity of 64 KB 	 Products with capacity of 256 KB FFFC 0000h to FFFF FFFFh Products with capacity of 128 KB FFFE 0000h to FFFF FFFFh Products with capacity of 64 KB
FCU commands (RX210) Software commands (RX140)	FFFF 0000h to FFFF FFFFh The following FCU commands are implemented P/E normal mode transition, status read mode transition, lock bit read mode transition (lock bit read 1), peripheral clock notification, programming, block erase, P/E suspend, P/E resume, status register clear, lock bit read 2/blank check	The following software commands are implemented: Program, blank check, block erase, and all-block erase The following commands are implemented for programming the
		extra area: Start-up area information program, access window protect, and access window information program
Value after erasure	ROM: FFh E2 DataFlash: undefined	ROM: FFh E2 DataFlash: FFh
Interrupt	An interrupt (FRDYI) is generated upon completion of FCU command execution.	An interrupt (FRDYI) is generated upon completion of software command processing or forced stop processing.

Item		RX210	RX140 (FLASH)
On-board programming		 Programming in boot mode The clock synchronous serial interface (SCI1) is used. The communication speed is adjusted automatically. The user boot area is also programmable. 	 Boot mode (SCI interface) Channel 1 of the serial communications interface (SCI1) is used for asynchronous communication. The user area and data area can be programmed. Boot mode (FINE interface) The FINE interface is used. The user area and data area can be programmed.
		 Programming in user boot mode A user-specific boot program can be created. Programming using a ROM programming routine in a user program The ROM/E2 DataFlash can be programmed without resetting the system. 	Self-programming (single-chip mode) The user area and data area can be programmed using a flash programming routine in a user program.
Off-board p	rogramming	A PROM programmer can be used to program the user area and user boot area.	The user area and data area can be programmed using a flash programmer compatible with the MCU.
ID codes protection		 Connection with a serial programmer can be controlled using ID codes in boot mode. Connection with an on-chip debugging emulator can be controlled using ID codes. 	 Connection with a serial programmer can be controlled using ID codes in boot mode. Connection with an on-chip debugging emulator can be controlled using ID codes.
Protection functions	Software- controlled protection function	The FENTRYR.FENTRYD bit, FWEPROR.FLWE[1:0] bits, lock bits, and DFLRE0 and DFLWE0 registers can be used to prevent unintentional programming. Protection with the DFLRE0 and DFLWE0 registers is applied in 2 KB units.	The DFLCTL.DFLEN bit and FENTRYR.FENTRY0 bit can be used to prevent unintentional programming.
	Command- locked state	This function disables further programming or erasure when an abnormal operation is detected during programming or erasure.	
	Boot program protection	Programming or erasure of the user boot area is only possible in boot mode.	
	Start-up program protection function		This function is used to safely program blocks 0 to 7.
	Area protection		During self-programming, this function enables programming only of specified blocks in the user area and disables programming of the other blocks.

Item	RX210	RX140 (FLASH)
Background operation (BGO) function	 Programs in the ROM area can run while the E2 DataFlash is being programmed or erased. The CPU can run programs in areas other than the ROM or E2 DataFlash while the ROM is being programmed or erased. 	Programs in the ROM can run while the E2 DataFlash is being programmed.

Table 2.78 Comparison of Flash Memory Registers

Register	Bit	RX210	RX140 (FLASH)
DFLCTL		_	E2 DataFlash control register
MEMWAITR	_	_	Memory wait cycle setting register
FENTRYR	FENTRY1	ROM P/E mode entry 1 bit	_
DFLWAITR	_	_	Data flash wait cycle setting register
FPR		_	Protection unlock register
FPSR		_	Protection unlock status register
FPMCR	_	_	Flash P/E mode control register
FISR		_	Flash initial setting register
FRESETR	_	Flash reset register	Flash reset register
		FRESETR is a 16-bit register.	FRESETR is an 8-bit register.
	FRKEY[7:0]	Key code bits	
FASR		_	Flash area select register
FCR	_	_	Flash control register
FEXCR		_	Flash extra area control register
FSARH	_	_	Flash processing start address register H
FSARL	_	_	Flash processing start address register L
FEARH		_	Flash processing end address register H
FEARL	_	_	Flash processing end address register L
FWBn	_	_	Flash write buffer register n (n = 0 to 3)
FSTATR0	ERSERR (RX210) ERERR (140)	Erasure error bit (b5)	Erase error flag (b0)
	PRGERR	Programming error bit (b4)	Program error flag (b1)
	BCERR	_	Blank check error flag
	ILGLERR	Illegal command error bit (b6)	Illegal command error flag (b4)
	EILGLERR	_	Extra area illegal command error flag
	PRGSPD	Programming suspend status bit	_
	ERSSPD	Erasure suspend status bit	_
	SUSRDY	Suspend ready bit	_
	FRDY	Flash ready bit	_

Register	Bit	RX210	RX140 (FLASH)
FSTATR1	FRDY	_	Flash ready flag
	EXRDY	_	Extra area ready flag
	FLOCKST	Lock bit status bit	_
	FCUERR	FCU error bit	_
FEAMH	_	_	Flash error address monitor register
			Н
FEAML	—	_	Flash error address monitor register
			L
FSCMR		_	Flash start-up setting monitor
			register
FAWSMR	_	_	Flash access window start address
EAVAGENTE			monitor register
FAWEMR			Flash access window end address
LUDDa			monitor register
UIDRn	-	Flock write erose protection register	Unique ID register n (n = 0 to 3)
FWEPROR		Flash write erase protection register	
FMODR	_	Flash mode register	_
FASTAT		Flash access status register	_
FAEINT		Flash access error interrupt enable register	_
FCURAME	_	FCU RAM enable register	_
FRDYIE	_	Flash ready interrupt enable register	_
FPROTR	_	Flash protection register	_
FCMDR	_	FCU command register	_
FCPSR	_	FCU processing switching register	_
FPESTAT	_	Flash P/E status register	_
PCKAR		Peripheral clock notification register	_
FMODR		Flash mode register	_
FASTAT	_	Flash access status register	_
FAEINT	_	Flash access error interrupt enable	_
		register	
DFLRE0		E2 DataFlash read enable register 0	_
DFLWE0	_	E2 DataFlash programming/erasure	_
		enable register 0	
DFLBCCNT	_	E2 DataFlash blank check control	_
		register	
DFLBCSTAT	_	E2 DataFlash blank check status	_
		register	

2.31 Packages

As indicated in Table 2.79, there are discrepancies in the package drawing codes and availability of some package types, and this should be borne in mind at the board design stage.

Table 2.79 Packages

	Renesas Code			
	RX210			RX140
Package Type	Chip Version A	Chip Version B	Chip Version C	_
145-pin TFLGA	X	0	X	X
144-pin LQFP	X	0	X	X
100-pin TFLGA	PTLG0100JA-A	PTLG0100JA-A PTLG0100KA-A	PTLG0100JA-A	×
100-pin LQFP	PLQP0100KB-A	PLQP0100KB-A	PLQP0100KB-A	X
80-pin LFQFP	X	X	X	0
80-pin LQFP	PLQP0080KB-A	PLQP0080KB-A PLQP0080JA-A	PLQP0080KB-A PLQP0080JA-A	×
69-pin WLBGA	X	0	X	X
64-pin TFLGA	X	0	X	X
64-pin LFQFP	X	X	X	0
64-pin LQFP	PLQP0064KB-A	PLQP0064KB-A PLQP0064GA-A	PLQP0064KB-A PLQP0064GA-A	PLQP0064GA-A
48-pin LQFP	X	0	X	X
48-pin LFQFP	X	X	X	0
48-pin HWQFN	X	X	X	0
32 -pin LQFP	X	X	X	0
32-pin HWQFN	X	X	X	0

O: Package available (Renesas code omitted); X: Package not available

3. Comparison of Pin Functions

This section presents a comparative description of pin functions as well as a comparison of the pins for the power supply, clocks, and system control. Items that exist only on one group are indicated by **blue text**. Items that exists on both groups with different specifications are indicated by **red text**. **Black text** indicates there is no differences in the item's specifications between groups.

3.1 80-Pin Package

Table 3.1 is a comparative listing of the pin functions of 80-pin package products.

Table 3.1 Comparative Listing of 80-Pin Package Pin Functions

80-Pin LFQFP/		
LQFP	RX210	RX140
1	VREFH	P06*1
2	P03/DA0	P03*1/DA0
3	VREFL	P04*1
4	VCL	VCL
5	PJ1/MTIOC3A	PJ1/MTIOC3A
6	MD/FINED	MD/PG7/FINED
7	XCIN	XCIN/PH7
8	XCOUT	XCOUT/PH6
9	RES#	RES#
10	XTAL/P37	XTAL/P37/IRQ4
11	VSS	VSS
12	EXTAL/P36	EXTAL/P36/IRQ2
13	VCC	VCC
14	P35/NMI	P35/NMI
15	P34/MTIOC0A/TMCI3/POE2#/SCK6/IRQ4	P34/MTIOC0A/TMCI3/POE2#/SCK6/IRQ4
16	P32/MTIOC0C/TMO3/TXD6/SMOSI6/SSDA6/	P32/MTIOC0C/TMO3/TXD6/SMOSI6/SSDA6/
	IRQ2-DS/RTCOUT/RTCIC2	TS0/IRQ2/RTCOUT
17	P31/MTIOC4D/TMCI2/CTS1#/RTS1#/SS1#/	P31/MTIOC4D/TMCI2/CTS1#/RTS1#/SS1#/
	IRQ1-DS/RTCIC1	TS1/IRQ1
18	P30/MTIOC4B/TMRI3/POE8#/RXD1/	P30/MTIOC4B/TMRI3/POE8#/RXD1/
	SMISO1/SSCL1/IRQ0-DS/RTCIC0	SMISO1/SSCL1/TS2/IRQ0
19	P27/MTIOC2B/TMCI3/SCK1	P27/MTIOC2B/TMCI3/SCK1/TS3
20	P26/MTIOC2A/TMO1/TXD1/SMOSI1/SSDA1	P26/MTIOC2A/TMO1/LPTO/TXD1/SMOSI1/ SSDA1/TS4
21	P21/MTIOC1B/TMCI0/RXD0/SSCL0	P21/MTIOC1B/TMCI0
22	P20/MTIOC1A/TMRI0/TXD0/SSDA0	P20/MTIOC1A/TMRI0
23	P17/MTIOC3A/MTIOC3B/TMO1/POE8#/	P17/MTIOC3A/MTIOC3B/TMO1/POE8#/
	SCK1/MISOA/SDA-DS/IRQ7	SCK1/MISOA/SDA0/IRQ7
24	P16/MTIOC3C/MTIOC3D/TMO2/TXD1/	P16/MTIOC3C/MTIOC3D/TMO2/TXD1/
	SMOSI1/SSDA1/MOSIA/SCL-DS/IRQ6/	SMOSI1/SSDA1/MOSIA/SCL0/IRQ6/
	RTCOUT/ADTRG0#	RTCOUT/ADTRG0#
25	P15/MTIOC0B/MTCLKB/TMCI2/RXD1/	P15/MTIOC0B/MTCLKB/TMCI2/RXD1/
	SMISO1/SSCL1/IRQ5	SMISO1/SSCL1/CRXD0/TS5/IRQ5
26	P14/MTIOC3A/MTCLKA/TMRI2/CTS1#/	P14/MTIOC3A/MTCLKA/TMRI2/CTS1#/
07	RTS1#/SS1#/IRQ4	RTS1#/SS1#/CTXD0/TS6/IRQ4
27	P13/MTIOC0B/TMO3/SDA/IRQ3	P13/MTIOC0B/TMO3/SDA0/IRQ3
28	P12/TMCI1/SCL/IRQ2	P12/TMCI1/SCL0/IRQ2
29	PH3/TMCI0	PH3/MTIOC4D/TMCI0/TS7

80-Pin		
LFQFP/ LQFP	RX210	RX140
30	PH2/TMRI0/IRQ1	PH2/MTIOC4C/TMRI0/TS8/IRQ1
31	PH1/TMO0/IRQ0	PH1/MTIOC3D/TMO0/TS9/IRQ0
32	PH0/CACREF	PH0/MTIOC3B/TS10/CACREF
33	P55/MTIOC4D/TMO3	P55/MTIOC4A/MTIOC4D/TMO3/CRXD0/
		TS11
34	P54/MTIOC4B/TMCI1	P54/MTIOC4B/TMCI1/CTXD0/TS12
35	PC7/MTIOC3A/TMO2/MTCLKB/TXD8/ SMOSI8/SSDA8/MISOA/CACREF	PC7/MTCLKB/MTIOC3A/TMO2/LPTO/ MISOA/TXD8/SMOSI8/SSDA8/TS13/ CACREF
36	PC6/MTIOC3C/MTCLKA/TMCI2/RXD8/ SMISO8/SSCL8/MOSIA	PC6/MTIOC3C/MTCLKA/TMCI2/MOSIA/ RXD8/SMISO8/SSCL8/TS14
37	PC5/MTIOC3B/MTCLKD/TMRI2/SCK8/ RSPCKA	PC5/MTIOC0C/MTIOC3B/MTCLKD/TMRI2/ RSPCKA/SCK8/TS15
38	PC4/MTIOC3D/MTCLKC/TMCI1/POE0#/ SCK5/CTS8#/RTS8#/SS8#/SSLA0	PC4/MTIOC0A/MTIOC3D/MTCLKC/TMCI1/ POE0#/SCK5/CTS8#/RTS8#/SS8#/SSLA0/ TSCAP
39	PC3/MTIOC4D/TXD5/SMOSI5/SSDA5	PC3/MTIOC4D/TXD5/SMOSI5/SSDA5/TS16
40	PC2/MTIOC4B/RXD5/SMISO5/SSCL5/ SSLA3	PC2/MTIOC4B/RXD5/SMISO5/SSCL5/ SSLA3/TS17
41	PB7/MTIOC3B/TXD9/SMOSI9/SSDA9	PB7/PC1*2/MTIOC3B/TXD9/SMOSI9/ SSDA9/TS18
42	PB6/MTIOC3D/RXD9/SMISO9/SSCL9	PB6/PC0*2/MTIOC3D/RXD9/SMISO9/ SSCL9/TS19
43	PB5/MTIOC2A/MTIOC1B/TMRI1/POE1#/ SCK9	PB5/MTIOC2A/MTIOC1B/TMRI1/POE1#/ SCK9/TS20
44	PB4/CTS9#/RTS9#/SS9#	PB4/CTS9#/RTS9#/SS9#/TS21
45	PB3/MTIOC0A/MTIOC4A/TMO0/POE3#/ SCK6	PB3/MTIOC0A/MTIOC4A/TMO0/POE3#/ LPTO/SCK6/TS22
46	PB2/CTS6#/RTS6#/SS6#	PB2/CTS6#/RTS6#/SS6#/TS23
47	PB1/MTIOC0C/MTIOC4C/TMCI0/TXD6/ SMOSI6/SSDA6/IRQ4-DS	PB1/MTIOC0C/MTIOC4C/TMCI0/TXD6/ SMOSI6/SSDA6/TS24/IRQ4/CMPOB1
48	VCC	VCC
49	PB0/MTIC5W/RXD6/SMISO6/SSCL6/ RSPCKA	PB0/MTIOC3D/MTIC5W/RXD6/SMISO6/ SSCL6/RSPCKA/TS25
50	VSS	VSS
51	PA6/MTIC5V/MTCLKB/TMCI3/POE2#/ CTS5#/RTS5#/SS5#/MOSIA	PA6/MTIOC3D/MTIC5V/MTCLKB/TMCI3/ POE2#/CTS5#/RTS5#/SS5#/MOSIA/TS26
52	PA5/RSPCKA	PA5/RSPCKA/TS27
53	PA4/MTIC5U/MTCLKA/TMRI0/TXD5/ SMOSI5/SSDA5/SSLA0/IRQ5-DS/CVREFB1	PA4/MTIOC4C/MTIC5U/MTCLKA/TMRI0/ TXD5/SMOSI5/SSDA5/SSLA0/TS28/IRQ5/ CVREFB1
54	PA3/MTIOC0D/MTCLKD/RXD5/SMISO5/ SSCL5/IRQ6-DS/CMPB1	PA3/MTIOC0D/MTIOC4D/MTIC5V/MTCLKD/ RXD5/SMISO5/SSCL5/TS29/IRQ6/CMPB1
55	PA2/RXD5/SMISO5/SSCL5/SSLA3	PA2/RXD5/SMISO5/SSCL5/SSLA3/TS30
56	PA1/MTIOC0B/MTCLKC/SCK5/SSLA2/ CVREFA	PA1/MTIOC0B/MTIOC3B/MTCLKC/SCK5/ SSLA2/TS31
57	PA0/MTIOC4A/SSLA1/CACREF	PA0/MTIOC4A/SSLA1/TS32/CACREF
58	PE5/MTIOC4C/MTIOC2B/IRQ5/AN013	PE5/MTIOC4C/MTIOC2B/IRQ5/AN021/ CMPOB0
59	PE4/MTIOC4D/MTIOC1A/AN012/CMPA2	PE4/MTIOC4D/MTIOC1A/MTIOC4A/TS33/ AN020/CMPA2/CLKOUT

80-Pin		
LFQFP/ LQFP	RX210	RX140
60	PE3/MTIOC4B/POE8#/CTS12#/RTS12#/ SS12#/AN011/CMPA1	PE3/MTIOC1B/MTIOC4B/POE8#/CTS12#/ RTS12#/SS12#/TS34/AN019/CLKOUT
61	PE2/MTIOC4A/RXD12/RXDX12/SMISO12/ SSCL12/IRQ7-DS/AN010/CVREFB0	PE2/MTIOC4A/RXD12/RXDX12/SMISO12/ SSCL12/TS35/IRQ7/AN018/CVREFB0
62	PE1/MTIOC4C/TXD12/TXDX12/SIOX12/ SMOSI12/SSDA12/AN009/CMPB0	PE1/MTIOC4C/TXD12/TXDX12/SIOX12/ SMOSI12/SSDA12/AN017/CMPB0
63	PE0/SCK12/AN008	PE0/SCK12/AN016
64	PD2/MTIOC4D/IRQ2	PD2/MTIOC4D/SCK6/IRQ2/AN026
65	PD1/MTIOC4B/IRQ1	PD1/MTIOC4B/RXD6/SMISO6/SSCL6/IRQ1/ AN025
66	PD0/IRQ0	PD0/TXD6/SMOSI6/SSDA6/IRQ0/AN024
67	P47/AN007	P47*1/AN007
68	P46/AN006	P46*1/AN006
69	P45/AN005	P45*1/AN005
70	P44/AN004	P44*1/AN004
71	P43/AN003	P43*1/AN003
72	P42/AN002	P42*1/AN002
73	P41/AN001	P41*1/AN001
74	VREFL0	VREFL0/PJ7*1
75	P40/AN000	P40*1/AN000
76	VREFH0	VREFH0/PJ6*1
77	AVCC0	AVCC0
78	P07/ADTRG0#	P07*1/ADTRG0#
79	AVSS0	AVSS0
80	P05/DA1	P05*1/DA1

Notes: 1. The power supply of the I/O buffer for these pins is AVCCO.

2. PC0 and PC1 are valid only when the port switching function is selected.

3.2 64-Pin Package

Table 3.2 is a comparative listing of the pin functions of 64-pin package products.

Table 3.2 Comparative Listing of 64-Pin Package Pin Functions

64-Pin LFQFP/				
LQFP	RX210	RX140		
1	P03/DA0	P03*1/DA0		
2	VCL	VCL		
3	MD/FINED	MD/PG7/FINED		
4	XCIN	XCIN/PH7*3		
5	XCOUT	XCOUT/PH6*3		
6	RES#	RES#		
7	XTAL/P37	XTAL/P37/IRQ4		
8	VSS	VSS		
9	EXTAL/P36	EXTAL/P36/IRQ2		
10	VCC	VCC		
11	P35/NMI	P35/NMI		
12	P32/MTIOC0C/TMO3/TXD6/SMOSI6/SSDA6/	P32/MTIOC0C/TMO3/TXD6*3/SMOSI6*3/		
	IRQ2-DS/RTCOUT/RTCIC2	SSDA6*3/TS0*3/IRQ2/RTCOUT		
13	P31/MTIOC4D/TMCI2/CTS1#/RTS1#/SS1#/	P31/MTIOC4D/TMCI2/CTS1#/RTS1#/SS1#/		
	IRQ1-DS/RTCIC1	TS1*3/IRQ1		
14	P30/MTIOC4B/TMRI3/POE8#/RXD1/	P30/MTIOC4B/TMRI3/POE8#/RXD1/		
	SMISO1/SSCL1/IRQ0-DS/RTCIC0	SMISO1/SSCL1/TS2*3/IRQ0		
15	P27/MTIOC2B/TMCI3/SCK1	P27/MTIOC2B/TMCI3/SCK1/TS3		
16	P26/MTIOC2A/TMO1/TXD1/SMOSI1/SSDA1	P26/MTIOC2A/TMO1/LPTO/TXD1/SMOSI1/ SSDA1/TS4		
17	P17/MTIOC3A/MTIOC3B/TMO1/POE8#/	P17/MTIOC3A/MTIOC3B/TMO1/POE8#/		
	SCK1/MISOA/SDA-DS/IRQ7	SCK1/MISOA/SDA0/IRQ7		
18	P16/MTIOC3C/MTIOC3D/TMO2/TXD1/	P16/MTIOC3C/MTIOC3D/TMO2/TXD1/		
	SMOSI1/SSDA1/MOSIA/SCL-DS/IRQ6/	SMOSI1/SSDA1/MOSIA/SCL0/IRQ6/		
	RTCOUT/ADTRG0#	RTCOUT/ADTRG0#		
19	P15/MTIOC0B/MTCLKB/TMCI2/RXD1/	P15/MTIOC0B/MTCLKB/TMCI2/RXD1/		
20	SMISO1/SSCL1/IRQ5 P14/MTIOC3A/MTCLKA/TMRI2/CTS1#/	SMISO1/SSCL1/CRXD0/TS5*3/IRQ5 P14/MTIOC3A/MTCLKA/TMRI2/CTS1#/		
20	RTS1#/SS1#/IRQ4	RTS1#/SS1#/CTXD0/TS6*3/IRQ4		
21	PH3/TMCI0	PH3/MTIOC4D/TMCI0/TS7*3		
22	PH2/TMRI0/IRQ1	PH2/MTIOC4C/TMRI0/TS8*3/IRQ1		
23	PH1/TMO0/IRQ0	PH1/MTIOC3D/TMO0/TS9*3/IRQ0		
24	PH0/CACREF	PH0/MTIOC3B/TS10*3/CACREF		
25	P55/MTIOC4D/TMO3	P55/MTIOC4A/MTIOC4D/TMO3/CRXD0/		
		TS11* ³		
26	P54/MTIOC4B/TMCI1	P54/MTIOC4B/TMCI1/CTXD0/TS12*3		
27	PC7/MTIOC3A/TMO2/MTCLKB/TXD8/ SMOSI8/SSDA8/MISOA/CACREF	PC7/MTIOC3A/MTCLKB/TMO2/LPTO/ TXD8*3/SMOSI8*3/SSDA8*3/MISOA/TS13/ CACREF		
28	PC6/MTIOC3C/MTCLKA/TMCI2/RXD8/ SMISO8/SSCL8/MOSIA	PC6/MTIOC3C/MTCLKA/TMCI2/RXD8*3/ SMISO8*3/SSCL8*3/MOSIA/TS14		
29	PC5/MTIOC3B/MTCLKD/TMRI2/SCK8/ RSPCKA	PC5/MTIOC0C/MTIOC3B/MTCLKD/TMRI2/ SCK8*3/RSPCKA/TS15		

64-Pin LFQFP/				
LPGFP	RX210	RX140		
30	PC4/MTIOC3D/MTCLKC/TMCI1/POE0#/ SCK5/CTS8#/RTS8#/SS8#/SSLA0	PC4/MTIOC0A/MTIOC3D/MTCLKC/TMCI1/ POE0#/SCK5/CTS8#* ³ /RTS8#* ³ /SS8#* ³ / SSLA0/TSCAP		
31	PC3/MTIOC4D/TXD5/SMOSI5/SSDA5	PC3/MTIOC4D/TXD5/SMOSI5/SSDA5/ TS16*3		
32	PC2/MTIOC4B/RXD5/SMISO5/SSCL5/ SSLA3	PC2/MTIOC4B/RXD5/SMISO5/SSCL5/ SSLA3/TS17*3		
33	PB7/MTIOC3B/TXD9/SMOSI9/SSDA9	PB7/PC1*2/MTIOC3B/TXD9*3/SMOSI9*3/ SSDA9*3/TS18*3		
34	PB6/MTIOC3D/RXD9/SMISO9/SSCL9	PB6/PC0*2/MTIOC3D/RXD9*3/SMISO9*3/ SSCL9*3/TS19*3		
35	PB5/MTIOC2A/MTIOC1B/TMRI1/POE1#/ SCK9	PB5/MTIOC2A/MTIOC1B/TMRI1/POE1#/ SCK9*3/TS20*3		
36	PB3/MTIOC0A/MTIOC4A/TMO0/POE3#/ SCK6	PB3/MTIOC0A/MTIOC4A/TMO0/POE3#/ LPTO/SCK6*3/TS22*3		
37	PB1/MTIOC0C/MTIOC4C/TMCI0/TXD6/ SMOSI6/SSDA6/IRQ4-DS	PB1/MTIOC0C/MTIOC4C/TMCI0/TXD6*3/ SMOSI6*3/SSDA6*3/TS24*3/IRQ4/CMPOB1		
38	VCC	VCC		
39	PB0/MTIC5W/RXD6/SMISO6/SSCL6/ RSPCKA	PB0/MTIOC3D/MTIC5W/RXD6*3/SMISO6*3/ SSCL6*3/RSPCKA/TS25		
40	VSS	VSS		
41	PA6/MTIC5V/MTCLKB/TMCI3/POE2#/ CTS5#/RTS5#/SS5#/MOSIA	PA6/MTIOC3D/MTIC5V/MTCLKB/TMCI3/ POE2#/CTS5#/RTS5#/SS5#/MOSIA/TS26*3		
42	PA4/MTIC5U/MTCLKA/TMRI0/TXD5/ SMOSI5/SSDA5/SSLA0/IRQ5-DS/CVREFB1	PA4/MTIOC4C/MTIC5U/MTCLKA/TMRI0/ TXD5/SMOSI5/SSDA5/SSLA0/TS28/IRQ5/ CVREFB1		
43	PA3/MTIOC0D/MTCLKD/RXD5/SMISO5/ SSCL5/IRQ6-DS/CMPB1	PA3/MTIOC0D/MTIOC4D/MTIC5V/MTCLKD/ RXD5/SMISO5/SSCL5/TS29/IRQ6/CMPB1		
44	PA1/MTIOC0B/MTCLKC/SCK5/SSLA2/ CVREFA	PA1/MTIOC0B/MTIOC3B/MTCLKC/SCK5/ SSLA2/TS31		
45	PA0/MTIOC4A/SSLA1/CACREF	PA0/MTIOC4A/SSLA1/TS32*3/CACREF		
46	PE5/MTIOC4C/MTIOC2B/IRQ5/AN013	PE5/MTIOC4C/MTIOC2B/IRQ5/AN021/ CMPOB0		
47	PE4/MTIOC4D/MTIOC1A/AN012/CMPA2	PE4/MTIOC4D/MTIOC1A/MTIOC4A/TS33/ AN020/CMPA2/CLKOUT		
48	PE3/MTIOC4B/POE8#/CTS12#/RTS12#/ SS12#/AN011/CMPA1	PE3/MTIOC1B/MTIOC4B/POE8#/CTS12#/ RTS12#/SS12#/TS34/AN019/CLKOUT		
49	PE2/MTIOC4A/RXD12/RXDX12/SMISO12/ SSCL12/IRQ7-DS/AN010/CVREFB0	PE2/MTIOC4A/RXD12/RXDX12/SMISO12/ SSCL12/TS35/IRQ7/AN018/CVREFB0		
50	PE1/MTIOC4C/TXD12/TXDX12/SIOX12/ SMOSI12/SSDA12/AN009/CMPB0	PE1/MTIOC4C/TXD12/TXDX12/SIOX12/ SMOSI12/SSDA12/AN017/CMPB0		
51	PE0/SCK12/AN008	PE0/SCK12/AN016		
52	VREFL	P47*1/AN007		
53	P46/AN006	P46*1AN006		
54	VREFH	P45*1/AN005		
55	P44/AN004	P44*1/AN004		
56	P43/AN003	P43*1/AN003		
57	P42/AN002	P42*1/AN002		
58	P41/AN001	P41*1/AN001		
59	VREFL0	VREFL0/PJ7*1		
60	P40/AN000	P40*1/AN000		

64-Pin LFQFP/ LQFP	RX210	RX140
61	VREFH0	VREFH0/PJ6*1
62	AVCC0	AVCC0
63	P05/DA1	P05*1/DA1
64	AVSS0	AVSS0

Notes: 1. The power supply of the I/O buffer for these pins is AVCCO.

- 2. PC0 and PC1 are valid only when the port switching function is selected.
- 3. Not implemented on products with a ROM capacity of 64 KB.

3.3 48-Pin Package

Table 3.3 is a comparative listing of the pin functions of 48-pin package products.

Table 3.3 Comparative Listing of 48-Pin Package Pin Functions

48-Pin				
LFQFP/ HWQFN	RX210	RX140		
1	VCL	VCL		
2	MD/FINED	MD/PG7/FINED		
3	RES#	RES#		
4	XTAL/P37	XTAL/P37/IRQ4		
5	VSS	VSS		
6	EXTAL/P36	EXTAL/P36/IRQ2		
7	VCC	VCC		
8	P35/NMI	P35/NMI		
9	P31/MTIOC4D/TMCI2/CTS1#/RTS1#/SS1#/	P31/MTIOC4D/TMCI2/CTS1#/RTS1#/SS1#/		
	IRQ1-DS	TS1*3/IRQ1		
10	P30/MTIOC4B/TMRI3/POE8#/RXD1/	P30/MTIOC4B/TMRI3/POE8#/RXD1/		
	SMISO1/SSCL1/IRQ0-DS	SMISO1/SSCL1/TS2*3/IRQ0		
11	P27/MTIOC2B/TMCI3/SCK1	P27/MTIOC2B/TMCI3/SCK1/TS3		
12	P26/MTIOC2A/TMO1/TXD1/SMOSI1/SSDA1	P26/MTIOC2A/TMO1/LPTO/TXD1/SMOSI1/ SSDA1/TS4		
13	P17/MTIOC3A/MTIOC3B/TMO1/POE8#/ SCK1/MISOA/SDA-DS/IRQ7	P17/MTIOC3A/MTIOC3B/TMO1/POE8#/ SCK1/MISOA/SDA0/IRQ7		
14	P16/MTIOC3C/MTIOC3D/TMO2/TXD1/ SMOSI1/SSDA1/MOSIA/SCL-DS/IRQ6/ ADTRG0#	P16/MTIOC3C/MTIOC3D/TMO2/TXD1/ SMOSI1/SSDA1/MOSIA/SCL0/IRQ6/ ADTRG0#/RTCOUT		
15	P15/MTIOC0B/MTCLKB/TMCI2/RXD1/ SMISO1/SSCL1/IRQ5	P15/MTIOC0B/MTCLKB/TMCI2/RXD1/ SMISO1/SSCL1/CRXD0/TS5*3/IRQ5		
16	P14/MTIOC3A/MTCLKA/TMRI2/CTS1#/ RTS1#/SS1#/IRQ4	P14/MTIOC3A/MTCLKA/TMRI2/CTS1#/ RTS1#/SS1#/CTXD0/TS6*3/IRQ4		
17	PH3/TMCI0	PH3/MTIOC4D/TMCI0/TS7*3		
18	PH2/TMRI0/IRQ1	PH2/MTIOC4C/TMRI0/TS8*3/IRQ1		
19	PH1/TMO0/IRQ0	PH1/MTIOC3D/TMO0/TS9*3/IRQ0		
20	PH0/CACREF	PH0/MTIOC3B/TS10*3/CACREF		
21	PC7/MTIOC3A/TMO2/MTCLKB/TXD8/ SMOSI8/SSDA8/MISOA/CACREF	PC7/MTIOC3A/TMO2/MTCLKB/LPTO/ TXD8*3/SMOSI8*3/SSDA8*3/MISOA/TS13/ CACREF		
22	PC6/MTIOC3C/MTCLKA/TMCI2/RXD8/ SMISO8/SSCL8/MOSIA	PC6/MTIOC3C/MTCLKA/TMCI2/RXD8*3/ SMISO8*3/SSCL8*3/MOSIA/TS14		
23	PC5/MTIOC3B/MTCLKD/TMRI2/SCK8/ RSPCKA	PC5/MTIOC0C/MTIOC3B/MTCLKD/TMRI2/ SCK8*3/RSPCKA/TS15		
24	PC4/MTIOC3D/MTCLKC/TMCI1/POE0#/ SCK5/CTS8#/RTS8#/SS8#/SSLA0	PC4/MTIOC0A/MTIOC3D/MTCLKC/TMCI1/ POE0#/SCK5/CTS8#*3/RTS8#*3/SS8#*3/ SSLA0/TSCAP		
25	PB5/MTIOC2A/MTIOC1B/TMRI1/POE1#	PB5/PC3*1/MTIOC2A/MTIOC1B/TMRI1/ POE1#/TS20*3		
26	PB3/MTIOC0A/MTIOC4A/TMO0/POE3#/ SCK6	PB3/PC2*1/MTIOC0A/MTIOC4A/TMO0/ POE3#/LPTO/SCK6*3/TS22*3		
27	PB1/MTIOC0C/MTIOC4C/TMCI0/TXD6/ SMOSI6/SSDA6/IRQ4-DS	PB1/PC1*1/MTIOC0C/MTIOC4C/TMCI0/ TXD6*3/SMOSI6*3/SSDA6*3/TS24*3/IRQ4/ CMPOB1		
28	VCC	VCC		

48-Pin		
LFQFP/		
HWQFN	RX210	RX140
29	PB0/MTIC5W/RXD6/SMISO6/SSCL6/	PB0/PC0*1/MTIOC3D/MTIC5W/RXD6*3/
	RSPCKA	SMISO6*3/SSCL6*3/RSPCKA/TS25
30	VSS	VSS
31	PA6/MTIC5V/MTCLKB/TMCI3/POE2#/	PA6/MTIOC3D/MTIC5V/MTCLKB/TMCI3/
	CTS5#/RTS5#/SS5#/MOSIA	POE2#/CTS5#/RTS5#/SS5#/MOSIA/TS26*3
32	PA4/MTIC5U/MTCLKA/TMRI0/TXD5/	PA4/MTIOC4C/MTIC5U/MTCLKA/TMRI0/
	SMOSI5/SSDA5/SSLA0/IRQ5-DS/CVREFB1	TXD5/SMOSI5/SSDA5/SSLA0/TS28/IRQ5/
		CVREFB1
33	PA3/MTIOC0D/MTCLKD/RXD5/SMISO5/	PA3/MTIOC0D/MTIOC4D/MTIC5V/MTCLKD/
	SSCL5/IRQ6-DS/CMPB1	RXD5/SMISO5/SSCL5/TS29/IRQ6/CMPB1
34	PA1/MTIOC0B/MTCLKC/SCK5/SSLA2	PA1/MTIOC0B/MTIOC3B/MTCLKC/SCK5/
	CVREFA	SSLA2/TS31
35	PE4/MTIOC4D/MTIOC1A/AN012/CMPA2	PE4/MTIOC4D/MTIOC1A/MTIOC4A/TS33/
	DE0/14TH004D/D050W0T040WDT040W	AN020/CMPA2/CLKOUT
36	PE3/MTIOC4B/POE8#/CTS12#/RTS12#/	PE3/MTIOC1B/MTIOC4B/POE8#/CTS12#/
07	AN011/CMPA1	RTS12#/TS34/AN019/CLKOUT
37	PE2/MTIOC4A/RXD12/RXDX12/SSCL12/	PE2/MTIOC4A/RXD12/RXDX12/SSCL12/
20	IRQ7-DS/AN010/CVREFB0	TS35/IRQ7/AN018/CVREFB0
38	PE1/MTIOC4C/TXD12/TXDX12/SIOX12/ SSDA12/AN009/CMPB0	PE1/MTIOC4C/TXD12/TXDX12/SIOX12/ SSDA12/AN017/CMPB0
20	VREFL	P47*2/AN007
39	*****	P46*²/AN006
40	P46/AN006	
41	VREFH	P45*2/AN005
42	P42/AN002	P42*2/AN002
43	P41/AN001	P41*2/AN001
44	VREFL0	VREFL0/PJ7*2
45	P40/AN000	P40*2/AN000
46	VREFH0	VREFH0/PJ6*2
47	AVCC0	AVCC0
48	AVSS0	AVSS0

Notes: 1. PC0 to PC3 are valid only when the port switching function is selected.

- 2. The power supply of the I/O buffer for these pins is AVCC0.
- 3. Not implemented on products with a ROM capacity of 64 KB.

4. Important Information when Migrating Between MCUs

This section presents important information on differences between the RX140 Group and the RX210 Group. 4.1, Notes on Functional Design, presents information regarding the software.

4.1 Notes on Functional Design

Some software that runs on the RX210 Group is compatible with the RX140 Group. Nevertheless, appropriate caution must be exercised due to differences in aspects such as operation timing and electrical characteristics.

Software-related considerations regarding function settings that differ between the RX140 Group and RX210 Group are as follows:

For differences between modules and functions, refer to 2, Comparative Overview of Specifications. For further information, refer to the User's Manual: Hardware of each MCU group, listed in 5, Reference Documents.

4.1.1 VCL Pin (External Capacitor)

Connect a smoothing capacitor rated at $4.7~\mu F$ to the VCL pin of the RX140 Group for stabilization of the internal power supply.

4.1.2 Transition to Boot Mode (FINE Interface)

On the RX140 Group a transition to boot mode (FINE interface) occurs when the MD pin is low-level at the time of release from a reset and is then switched to high-level within 20 to 100 msec. For details on operating modes, refer to RX140 Group User's Manual: Hardware, listed in section 5, Reference Documents.

4.1.3 Mode Setting Pins

The mode setting pins after reset cancellation are the MD pin only on the RX140 Group and the MD pin and PC7 pin on the RX210 Group.

4.1.4 User Boot Mode

UB code A, UB code B, and user boot mode are implemented on the RX210 Group but not on the RX140 Group. When using the start-up program protection function on the RX140 Group, it is possible to use any interface to program and erase the user area in flash memory as an alternative to user boot mode. For details, refer to 41.5, Start-Up Program Protection, in RX140 Group User's Manual: Hardware, listed in section 5, Reference Documents.

4.1.5 Clock Frequency Settings

On the RX210 Group it is necessary to make frequency settings for the system clock (ICLK) and external bus clock (BCLK) such that ICLK ≥ BCLK. On the RX140 Group it is necessary to make frequency settings for the system clock (ICLK), peripheral module clocks B and D (PCLKB and PCLKD), and the FlashIF clock (FCLK) such that ICLK:FCLK and PCLKB and PCLKD = 1:N (where N is an integer value).

4.1.6 PLL Circuit

The frequency multiplication factor of the PLL circuit can be set to $\times 8$ to $\times 25$ on the RX210 Group and to $\times 4$ or $\times 12$ (in $\times 0.5$ increments) on the RX140 Group. To use the PLL circuit, change the setting of the PLLCR.STC bits to an appropriate value.

4.1.7 All-Module Clock Stop Mode

The RX140 Group does not have an all-module clock stop mode.

4.1.8 Exception Vector Table

The address of the vector table is fixed on the RX210 Group, but on the RX140 Group the vector table is relocatable using the value set in the exception table register (EXTB) as the start address.

4.1.9 Endian Settings

On the RX210 Group the endian setting is configured in the MDES or MDEB register, according to the operating mode, but on the RX140 Group the endian settings is configured in the MDE register, regardless of the operating mode.

4.1.10 Restrictions on Compare Function

The compare function of the 12-bit A/D converter on the RX140 Group is subject to the following restrictions.

- 1. The compare function cannot be used together with the self-diagnosis function or double trigger mode. (The compare function is not available for the ADRD and ADDBLDR registers.)
- 2. It is necessary to specify single scan mode when using match or mismatch event outputs.
- 3. When the temperature sensor or internal reference voltage is selected for window A, window B operations are disabled.
- 4. When the temperature sensor or internal reference voltage is selected for window B, window A operations are disabled.
- 5. It is not possible to set the same channel for window A and window B.
- 6. It is necessary to specify single scan mode when using the buffer function. (Also, it is not possible to use double trigger mode together with the compare function.)
- 7. It is necessary to set the reference voltage values such that the high-side reference voltage value is equal to or larger than the low-side reference voltage value.

4.1.11 Eliminating I²C Bus Interface Noise

The RX210 Group has integrated analog noise filters on the SCL and SDA lines, but the RX140 Group has no integrated analog noise filters.

4.1.12 MOSCWTCR Register

On the RX210 Group this register counts cycles of the main clock, but on the RX140 Group it counts cycles of the LOCO clock.

4.1.13 Initialization of Port Direction Register (PDR)

The method of initializing the PDR register differs between the RX210 Group and RX140 Group, even on products with the same pin count.

4.1.14 Scan Conversion Time of 12-Bit A/D Converter

The scan conversion time differs between the RX210 Group and RX140 Group. The scan conversion time (t_{SCAN}) for each group of a single scan where the number of selected channels is n is expressed by the equations below. For details, refer to the description of the 12-bit A/D converter analog input sampling time and scan conversion time in the User's Manual: Hardware of the RX210 Group and RX140 Group, listed in section 5, Reference Documents.

RX210: $t_{SCAN} = t_D + t_{SH} + (t_{DIS} \times n) + t_{DIAG} + (t_{CONV} \times n) + t_{ED}$ RX140: $t_{SCAN} = t_D + (t_{DIS} \times n) + t_{DIAG} + (t_{CONV} \times n) + t_{ED}$

t_D Start-of-scanning-delay time

tsh Channel-dedicated sample-and-hold circuit sampling time

tspl Sampling time

t_{DIS} Disconnection detection assist processing time t_{DIAG} Self-diagnosis A/D conversion processing time

t_{CONV} A/D conversion processing time t_{ED} End-of-scanning-delay time

4.1.15 Note on Operating Frequency and Voltage Ranges in Operating Power Control Modes

The maximum operating frequencies during flash memory read operations in each of the operating power control modes differ between the RX210 Group and RX140 Group. Refer to the table below for details.

Operating Frequency and Voltage Ranges in Operating Power Control Modes

		Operating Frequency Range					
Operating Power	Operating Voltage	Flash Memo	ory Read				Flash Memory Programming/ Erasure
Control Mode	Range	ICLK	FCLK	PCLKD	PCLKB	BCLK	FCLK
High-speed operating mode (RX140)	1.8 to 5.5 V	Up to 48 MHz	Up to 48 MHz	Up to 48 MHz	Up to 32 MHz	_	1 MHz to 48 MHz
High-speed operating mode (RX210)	3.6 to 5.5 V 2.7 to 3.6 V	50 MHz max.	32 MHz max.	50 MHz max.	32 MHz max.	25 MHz max.	4 MHz to 32 MHz 4 MHz to 32 MHz
	1.8 to 2.7 V						
	1.62 to 1.8 V						_
Middle-speed operating mode (RX140)	1.8 to 5.5 V	Up to 24 MHz	Up to 24 MHz	Up to 24 MHz	Up to 24 MHz	_	1 MHz to 24 MHz
Middle-speed operating	3.6 to 5.5 V	32 MHz max.	32 MHz max.	32 MHz max.	32 MHz max.	25 MHz max.	4 MHz to 32 MHz
mode 1A (RX210)	2.7 to 3.6 V						4 MHz to 32 MHz
	1.8 to 2.7 V]					_
	1.62 to 1.8 V	20 MHz max.	20 MHz max.	20 MHz max.	20 MHz max.	20 MHz max.	_
Middle-speed	3.6 to 5.5 V	32 MHz	32 MHz	32 MHz	32 MHz	25 MHz	_
operating mode 1B	2.7 to 3.6 V	max.	max.	max.	max.	max.	4 MHz to 32 MHz
(RX210)	1.8 to 2.7 V						4 MHz to 32 MHz
	1.62 to 1.8 V	20 MHz max.	20 MHz max.	20 MHz max.	20 MHz max.	20 MHz max.	4 MHz to 32 MHz
Middle-speed operating mode 2 (RX140)	1.8 to 5.5 V	Up to 1 MHz	Up to 1 MHz	Up to 1 MHz	Up to 1 MHz	_	1 MHz
Low-speed	3.6 to 5.5 V	1 MHz max.	1 MHz max.	1 MHz max.	1 MHz max.	1 MHz max.	_
operating	2.7 to 3.6 V						_
mode 1	1.8 to 2.7 V						_
(RX210)	1.62 to 1.8 V						_
Low-speed operating mode (RX140)	1.8 to 5.5 V	Up to 32.768 kHz	Up to 32.768 kHz	Up to 32.768 kHz	Up to 32.768 kHz	_	_
Low-speed	3.6 to 5.5 V	32.768 kHz	32.768 kHz	32.768 kHz	32.768 kHz	32.768 kHz	_
operating	2.7 to 3.6 V	max.	max.	max.	max.	max.	_
mode 2	1.8 to 2.7 V						_
(RX210)	1.62 to 1.8 V						_

4.1.16 Differences Among Chip Versions

There are differences in functionality among the different chip versions of RX210 Group MCUs. Refer to the table below for details.

		Specification Differences			
Section		Chip Version A	Chip Version C	Chip Version B	
9. Clock Generation Circuit Generation Circuit Generation Control Register 3 (SCKCR3)		The main clock oscillator cannot be selected as the clock source.	The main clock oscillator can be selected as the clock source.	← (Same as at left)	
	9.2.17 PLL Power Control Register (PLLPCR)	There is no PLLPCR register. Therefore, there is no functionality for powering off the PLL to reduce power consumption.	← (Same as at left)	The PLLPCR register has been added. This provides functionality to power off the PLL to reduce power consumption when the PLL will not be used.	
10. Clock Frequency Accuracy Measurement Circuit (CAC)	10.2.2 CAC Control Register 1 (CACR1)	The output clock of the main clock oscillator cannot be selected as the frequency measurement clock.	The output clock of the main clock oscillator can be selected as the frequency measurement clock.	← (Same as at left)	
	10.2.3 CAC Control Register 2 (CACR2)	The output clock of the main clock oscillator cannot be selected as the reference signal generation clock.	The output clock of the main clock oscillator can be selected as the reference signal generation clock.	← (Same as at left)	
11. Low Power Consumption	11.2.5 Operating Power Control Register (OPCCR)	Middle-speed operating modes 2A and 2B are not implemented.	← (Same as at left)	Middle-speed operating modes 2A and 2B have been added to reduce current consumption during operation.	
	11.2.6 Sleep Mode Return Clock Source Switching Register (RSTCKCR)	The main clock oscillator cannot be selected as the sleep mode return clock source.	The main clock oscillator can be selected as the sleep mode return clock source.	← (Same as at left)	
	11.2.18 Flash HOCO Software Standby Control Register (FHSSBYCR)	It is necessary to control the power supply for the flash memory in software standby mode.	← (Same as at left)	It is not necessary to control the power supply for the flash memory in software standby mode.	
19. I/O Ports	Table 19.2 Port Functions	Port 17 is not 5 V tolerant.	Port 17 is 5 V tolerant.	← (Same as at left)	

5. Reference Documents

User's Manual: Hardware

RX210 Group User's Manual: Hardware Rev.1.50 (R01UH0037EJ0150)

(The latest version can be downloaded from the Renesas Electronics website.)

RX140 Group User's Manual: Hardware Rev.1.10 (R01UH0905EJ0110)

(The latest version can be downloaded from the Renesas Electronics website.)

Technical Update/Technical News

(The latest information can be downloaded from the Renesas Electronics website.)

Related Technical Updates

This module reflects the content of the following technical updates:

TN-RX*-A035B/E

TN-RX*-A080A/E

TN-RX*-A087A/E

TN-RX*-A094A/E

TN-RX*-A096A/E

TN-RX*-A097A/E

111-1031A/L

TN-RX*-A099A/E

TN-RX*-A107A/E

TN-RX*-A118A/E

TN-RX*-A138A/E

TN-RX*-A141A/E

TN-RX*-A147A/E

TN-RX*-A151A/E

TN-RX*-A177A/E

TN-RX*-A188A/E

TN-RX*-A193A/E

TN-RX*-A0147B/E

TN-RX*-A0231A/E

TN-RX*-A0224B/E

TN-RX*-A0239B/E

TN-RX*-A0258A/E

Revision History

		Description	
Rev.	Date	Page	Summary
1.00	Jan. 31, 2022	_	First edition issued
		21	Corrected: Table 2.10 Comparison of Clock Generation Circuit Registers
		45	Revised: Table 2.30 Comparative Overview of I/O Ports (80-Pin) Revised: Table 2.31 Comparative Overview of I/O Ports (64-Pin)
		106	Revised: Table 3.1 Comparative Listing of 80-Pin Package Pin Functions
		109	Revised: Table 3.2 Comparative Listing of 64-Pin Package Pin Functions

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

- 6. Voltage application waveform at input pin
 - Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).
- 7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not quaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
- 5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 6. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
- 8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/.