

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics

Corporation took over all the business of both companies. Therefore, although the old company name remains
in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

http://www.renesas.com/�
http://www.renesas.com/�
http://japan.renesas.com/inquiry�

Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein,

please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and

careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed

through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property

rights of third parties by or arising from the use of Renesas Electronics products or technical information described in

this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other

intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or

in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the

operation of semiconductor products and application examples. You are fully responsible for the incorporation of these

circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for

any losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export

control laws and regulations and follow the procedures required by such laws and regulations. You should not use

Renesas Electronics products or the technology described in this document for any purpose relating to military

applications or use by the military, including but not limited to the development of weapons of mass destruction.

Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose

manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas

Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever

for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”,

and “Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality

grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a

particular application. You may not use any Renesas Electronics product for any application categorized as “Specific”

without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product

for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas

Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use

of any Renesas Electronics product for an application categorized as “Specific” or for which the product is not intended

where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas

Electronics product is “Standard” unless otherwise expressly specified in a Renesas Electronics data sheets or data

books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and

visual equipment; home electronic appliances; machine tools; personal electronic equipment; and

industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster

systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life

support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical

equipment or systems for life support (e.g. artificial life support devices or systems), surgical

implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes

that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas

Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage

range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no

liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified

ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products

have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use

conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to

implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire

in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including

but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or

any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please

evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental

compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all

applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation,

the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your

noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of

Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this

document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its

majority-owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

© Renesas Electronics Corporation 2010

Application Note

78K0R/KC3-L, 78K0R/KE3-L
 （On-Chip USB Controller)

μPD78F1022
μPD78F1023
μPD78F1024
μPD78F1025
μPD78F1026

Document No R01AN0003EJ0100(U20312EJ1V0AN00)
Date Published 2010/4/26

16-bit Single-Chip Microcontroller
USB CDC (Communication Device Class) Driver

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 2

 [Memo]

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 3

MINICUBE is a registered trademark of NEC Electronics Corporation

Windows, Windows XP are registered trademarks or trademarks of Microsoft Corporation in the United States and/or

other countries.

PC/AT is a trademark of International Business Machines Corporation.

NOTES FOR CMOS DEVICES

(1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may
cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc.,
the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed,
and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).

(2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is
unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS
devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using
pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility
that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to
related specifications governing the device.

(3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate
oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as
possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a
humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity.
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive
material. All test and measurement tools including work benches and floors should be grounded. The operator should be
grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to
be taken for PW boards with mounted semiconductor devices.

(4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately
after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not
guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received.
A reset operation must be executed immediately after power-on for devices with reset functions.

(5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and
external interface, as a rule, switch on the external power supply after switching on the internal power supply. When
switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of
the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device,
causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power
on/off sequence must be judged separately for each device and according to related specifications governing the device.

(6) INPUT OF SIGNAL DURING POWER OFF STATE : Do not input signals or an I/O pull-up power supply while the device is
not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause
malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements.
Input of signals during the power off state must be judged separately for each device and according to related specifications
governing the device.

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 4

PREFACE

Readers This application note is intended for users, who understand the

features of the 78K0R/KC3-L, KE3-L, and who try to design and

develop the application system and application program using this

product.

Target products are given below.
Generic
Name

Standard product USB controller built-in product

78K0R/KC3-L µPD78F1000, 78F1001, 78F1002,
78F1003

µPD78F1022, 78F1023, 78F1024

78K0R/KE3-L µPD78F1007, 78F1008, 78F1009 µPD78F1025, 78F1026

Purpose This manual is intended to give users an understanding of the

 functions mentioned in following organization.

Organization This application note is broadly divided into the following sections.

o An overview of 78K0R/KC3-L, KE3-L USB function controller
o An overview of the USB standard
o The specifications for the sample driver
o The specifications for the sample application
o Development environment
o How to use the sample driver

How to Read This Manual It is assumed that the readers of this application note have general

knowledge in the fields of electrical engineering, logic circuits, and
microcontrollers.

To learn about the hardware features and electrical specifications of
the 78K0R/KC3-L, KE3-L.
→ See the separately provided 78K0R/KC3-L, KE3-L

Hardware User’s Manual.

 To learn about the instructions of the 78K0R/KC3-L, KE3-L
 → See the separately provided 78K0R Architecture User’s

Manual.

Conventions Data significance: Higher digits on the left and lower digits on

the right
Note: Footnote for item marked with Note in the

text
 Caution: Information requiring particular attention
 Remark: Supplementary information
 Numeric representation: Binary or decimal ... XXXX
 Hexadecimal ... 0xXXXX
 Prefix indicating power of 2 (address space, memory capacity)
 K (kilo): 210 = 1,024

 M (mega): 220 = 1,0242

 G (giga): 230 = 1,0243

 T (tera): 240 = 1,0244

 P (peta): 250 = 1,0245

 E (exa): 260 = 1,0246

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 5

CONTENTS

CHAPTER 1 OVERVIEW.. 7

1. 1 Overview ... 7
1. 1. 1 Features of the USB function controller ... 7
1. 1. 2 Features of the sample driver... 8
1. 1. 3 Files included in the sample driver ... 8

1. 2 Overview of 78K0R/Kx3-L... 9
1. 2. 1 Applicable products .. 9
1. 2. 2 Features ... 10

CHAPTER 2 OVERVIEW OF USB.. 11

2. 1 Transfer Format... 11
2. 2 Endpoints .. 12
2. 3 Device Class ... 12
2. 4 Requests ... 13

2. 4. 1 Types.. 13
2. 4. 2 Format .. 14

2. 5 Descriptor .. 15
2. 5. 1 Types.. 15
2. 5. 2 Format .. 16

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS............. 18

3. 1 Overview ... 18
3. 1. 1 Features ... 18
3. 1. 2 Supported requests .. 18
3. 1. 3 Descriptor settings.. 20

3. 2 Operation of Each Section .. 23
3. 2. 1 CPU Initialization .. 25
3. 2. 2 USB function controller initialization processing... 26
3. 2. 3 INTUSB interrupt process .. 29

3. 3 Function Specifications ... 31
3. 3. 1 Functions.. 31
3. 3. 2 Correlation of the functions .. 32
3. 3. 3 Function features.. 36

CHAPTER 4 SAMPLE APPLICATION SPECIFICATIONS 62

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 6

4. 1 Overview ... 62
4. 2 Operation... 62
4. 3 Using Functions... 63

CHAPTER 5 DEVELOPMENT ENVIRONMENT........................ 65

5. 1 Development environment .. 65
5. 1. 1 Program development .. 65
5. 1. 2 Debugging .. 65

5. 2 Setting up the Environment... 66
5. 2. 1 Preparing the host environment ... 66
5. 2. 2 Setting up the target environment .. 74

5. 3 On-Chip Debugging... 81
5. 3. 1 Generating a load module .. 81
5. 3. 2 Loading and executing the load module... 82

5. 4 Checking the Operation .. 85

CHAPTER 6 USING THE SAMPLE DRIVER............................. 86

6. 1 Overview ... 86
6. 2 Customizing the Sample Driver... 87

6. 2. 1 Application section ... 87
6. 2. 2 Setting up the registers .. 88
6. 2. 3 Descriptor information .. 88
6. 2. 4 Setting up the virtual COM port host driver .. 89

6. 3 Using Functions... 92

CHAPTER 7 STARTER KIT... 94

7. 1 Overview ... 94
7. 1. 1 Features ... 94

7. 2 Specifications .. 95

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 7

CHAPTER 1 OVERVIEW

This application note describes the USB (communication device class) sample driver created for the USB
function controller incorporated in the 78K0R/KC3-L, 78K0R/KE3-L (78K0R/Kx3-L) microcontrollers. This
application note provides the following information:

• The specifications for the sample driver
• Information about the environment used to develop an application program by using the sample driver
• The reference information provided for using the sample driver

This chapter provides an overview of the sample driver and describes the microcontrollers for which the
sample driver can be used.

1. 1 Overview

1. 1. 1 Features of the USB function controller
The USB function controller that is incorporated in the 78K0R/Kx3-L and is to be controlled by the sample
driver has the following features:

• Conforms to the Universal Serial Bus Rev. 2.0 Specification
• Operates as a full-speed (12 Mbps) device.
• Includes the following endpoints:

Table 1-1 Configuration of the Endpoints of the 78K0R/Kx3-L

Endpoint Name FIFO Size (Bytes) Transfer Type Remark
Endpoint0 Read 64 Control transfer (IN) Single buffer

configuration
Endpoint0 Write 64

Control transfer (OUT)
Single buffer
configuration

Endpoint1 64x2
Bulk transfer 1 (IN)

Dual-buffer
configuration

Endpoint2 64x2
Bulk transfer 1 (OUT)

Dual-buffer
configuration

Endpoint3 64x2 Bulk transfer 2 (IN) Dual-buffer
configuration

Endpoint4 64x2
Bulk transfer 2 (OUT)

Dual-buffer
configuration

Endpoint7 64 Interrupt transfer 1 (IN) Single buffer
configuration

Endpoint8 64 Interrupt transfer 2 (IN) Single buffer
configuration

• Automatically responds to standard USB requests (except some requests).
• Can operate as a bus-powered device or self-powered deviceNote 1
• The internal or external clock can be selectedNote 2

Internal clock: 20 MHz External clock divided by 5 internal clock multiplied by 12 internal clock / 16 MHz external clock divided
by 4 internal clock multiplied by 12 internal clock.

12 MHz external clock divided by 2 internal multiplied by 8 internal (48 MHz)

Notes 1. The sample driver selects bus power.

 2. The sample driver selects the internal clock.

CHAPTER 1 OVERVIEW

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 8

1. 1. 2 Features of the sample driver
The USB communication device class sample driver for the 78K0R/Kx3-L has the features below. For

details about the features and operations, see CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS.

• Conforms to the USB communication device class Ver.1.1 Abstract Control Model
• Operates as a virtual COM device
• Exclusively uses the following amounts of memory (excluding the vector table):

• ROM:About 3.0 KB
• RAM:About 0.4 KB

1. 1. 3 Files included in the sample driver
The sample driver includes the following files:

Table 1-2 Files Included in the Sample Driver

Folder File Overview

main.c Main routine, initialization, sample application
usbf78k0r.c USB initialization, endpoint control, bulk transfer, control transfer

src

usbf78k0r_communication.c Communication device class specific processing
main.h main.c function prototype declarations
usbf78k0r.h usbf78k0r. function prototype declarations
usbf78k0r_communication.h usbf78k0r_communication.c function prototype declarations
usbf78k0r_desc.h Descriptor definitions
usbf78k0r_errno.h Error code definitions

include

usbf78k0r_types.h User declarations
Inf file K0R_CDC_XP.inf INF file for Windows XP

Remarks In addition, the project-related files generated when creating a development environment by using the PM+
(an integrated development tool made by NEC Electronics) are also included. For details see 5.2.1 Preparing
the host environment.

CHAPTER 1 OVERVIEW

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 9

1. 2 Overview of 78K0R/Kx3-L

This section describes the 78K0R/KC3-L, KE3-L which are controlled by using the sample driver.
The 78K0R/KC3-L, KE3-L are products in the low-power series of single chip 78K0R microcontroller,
made by NEC Electronics. They use 78K0R CPU core and have peripheral functions such as ROM/RAM，
timers/counters, POC/LVI, a serial interface, A/D converter, DMA controller, USB function controller. For
details, see the 78K0R/KC3-L, KE3-L USB controller built-in products Hardware User’s manual.

1. 2. 1 Applicable products
The sample driver can be used for the following products.

Table 1-2 78K0R/Kx3-L Products

Internal Memory Interrupt Generic Name Part Number
Flash
Memory

RAM
Incorporated USB Function

Internal External

78K0R/KC3-L μ PD78F1022 64 KB 6 KB Function controller 36 7
(48pin) μ PD78F1023 96KB 8 KB Function controller 36 7
 μ PD78F1024 128KB 8 KB Function controller 36 7
78K0R/KE3-L μ PD78F1025 96KB 8 KB Function controller 41 11
(64pin) μ PD78F1026 128KB 8 KB Function controller 41 11

Caution: In this application note, all target microcontrollers are collectively indicated as the 78K0R/Kx3-L,

unless distinguishing between them is necessary.

CHAPTER 1 OVERVIEW

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 10

1. 2. 2 Features
The main features of 78K0R/Kx3-L are as follows. For details, see 78K0R/Kx3-L user’s manual.

Memory space:
• 1M byte linear address space (for programs and data)

Internal memory

• RAM:6K/ 8K byte

• Flash memory : 64K/ 96K/ 128K byte

Multiplication/division function
• 16 bit x16 bit = 32 bit(multiplication)
• 32 bit ÷ 32 bit = 32 bit (division)

Key interrupt
• 4 channels
• 8 channels

DMA controller
• 2 channels

Serial interface
• CSI:1 channel/ UART :1 channel
• CSI:1 channel/UART:1 channel/simple I2C: 1channel
• CSI:1 channel note/UART:1 channel note/simple I2C: 1channel note
• UART(for LIN-bus):1 channel
• I2C:1 channel

USB controller
• USB function (full speed):1 channel

A/D converter
• 10 bit resolution A/D converter(AVREF = 1.8~3.6 V):8 channel

Power supply voltage
• VDD = 1.8~3.6 V(when USB is not used)
• VDD = 3.0~3.6 V(when USB is used)

Clock output/buzzer output
• 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz(peripheral hardware clock:at fMAIN =

20 MHz operation)
• 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz
(Subsystem clock: at fSUB = 32.768 kHz operation)

With built-in on chip debugging function

Note: only 78K0R/KE3-L

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 11

CHAPTER 2 OVERVIEW OF USB

This chapter provides an overview of the USB standard, which the sample driver conforms to.
USB (Universal Serial Bus) is an interface standard for connecting various peripherals to a host computer by
using the same type of connector. The USB interface is more flexible and easier to use than older interfaces
in that it can connect up to 127 devices by adding a branching point known as a hub and supports the
hot-plug feature, which enables devices to be recognized by Plug & Play. The USB interface is provided in
most current computers and has become the standard for connecting peripherals to a computer.

The USB standard is formulated and managed by the USB Implementers Forum (USB-IF). For details
about the USB standard, see the official USB-IF website (www.usb.org).

2. 1 Transfer Format

Four types of transfer formats (control, bulk, interrupt and isochronous) are defined in the USB
standard. Table 2-1 shows the features of each transfer format.

Table 2-1 USB Transfer Format

Transfer Format
Item

Control Transfer Bulk Transfer Interrupt Transfer Isochronous

Transfer
Feature Transfer format used

to exchange
information required
for controlling
peripheral devices

Transfer format used
to aperiodically
handle large
amounts of data

Periodic data
transfer format that
has a low band
width

Transfer format used
for a real-time
transfer

High speed
480 Mbps

64 bytes 512 bytes 1 to 1,024 bytes 1 to 1,024 bytes

Full speed
12 Mbps

8, 16, 32, or 64
bytes

8, 16, 32, or 64
bytes

1 to 64 bytes 1 to 1,023 bytes

Specifiable
packet size

Low speed
1.5 Mbps

8 bytes − 1 to 8 bytes −

Transfer priority 3 3 2 1

http://www.usb.org/�

CHAPTER 2 OVERVIEW OF USB

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 12

2. 2 Endpoints

 An endpoint is an information unit that is used by the host device to specify a communicating device and
is specified using a number from 0 to 15 and a direction (IN or OUT). An endpoint must be provided for
every data communication path that is used for a peripheral device and cannot be shared by multiple
communication pathsNote. For example, a device that can write to and read from an SD card and print
out documents must have a separate endpoint for each purpose. Endpoint 0 is used to control transfers
for any type of device.
 During data communication, the host uses a USB device address, which specifies the device, and an
endpoint (a number and direction) to specify the communication destination in the device.
 Peripheral devices have buffer memory that is a physical circuit to be used for the endpoint and functions
as a FIFO that absorbs the difference in speed of the USB and communication destination (such as
memory).

Note An endpoint can be exclusively switched by using the alternative setting.

2. 3 Device Class

Various device classes, such as the mass storage class (MSC), communication device class (CDC),
and human interface device class (HID) are defined according to the functions of the peripheral devices
connected via USB (the function devices). A common host driver can be used if the connected devices
conform to the standard specifications of the relevant device class, which is defined by a protocol.
The Communication Device Class (CDC) is intended for communication devices connected to hosts,
such as modems, FAX machines and network cards. The class is increasingly used for devices that are
used for USB-to-serial conversion performing UART communication with a computer, because recent
computers do not have an RS-232C interface. Note that a different CDC model is defined depending
on the device to connect. The sample driver uses the Abstract Control Model.

CHAPTER 2 OVERVIEW OF USB

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 13

2. 4 Requests

For the USB standard, communication starts with the host issuing a command, known as a request, to
a function device. A request includes data such as the direction and type of processing and address of
the function device.

2. 4. 1 Types
There are three types of requests: standard requests, class requests and vendor requests.
The sample driver supports the following requests.

Standard requests
Standard requests are used for all USB-compatible devices.

Table 2-2 Standard Requests

Request Name Target Descriptor Overview
GET_STATUS Device Reads the settings of the power supply (self or bus) and

remote wakeup.
 Endpoint Reads the halt status.
CLEAR_FEATURE Device Clears remote wakeup.
 Endpoint Cancels the halt status (DATA PID = 0).
SET_FEATURE Device Specifies remote wakeup or test mode.
 Endpoint

Specifies the halt status.
GET_DESCRIPTOR Device Reads the target descriptor.
 Configuration
 string
SET_DESCRIPTOR Device Changes the target descriptor (optional).
 Configuration
 string
GET_CONFIGURATION Device Reads the currently specified configuration values
SET_CONFIGURATION Device Specifies the configuration values.
GET_INTERFACE Interface Reads the alternatively specified value among the currently

specified values of the target interface.
SET_INTERFACE Interface Specifies the alternatively specified value of the target

interface.
SET_ADDRESS Device Specifies the USB address
SYNCH_FRAME Endpoint Reads frame-synchronous data.

CHAPTER 2 OVERVIEW OF USB

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 14

Class requests
Class requests are unique to device classes. For the sample driver, processing to respond to

class requests that support the CDC Abstract Control Model is implemented. The following
requests can be responded to

• SendEncapsulatedCommand

This request is used to issue commands in the format of the protocol for controlling the
communication class interface.

• GetEncapsulatedResponse

This request is used to request a response in the format of the protocol for controlling the
communication class interface.

• SetLineCoding

This request is used to specify the serial communication format.

• GetLineCoding

This request is used to acquire the communication format settings on the device side.

• SetControlLineState

This request is used for RS-232/V.24 format control signals.

2. 4. 2 Format
USB requests have an 8-byte length and consist of the following fields.

Table 2-3 USB Request Format

Offset Field Description
0 bmRequestType Request attribute
 Bit 7 Data transfer direction
 Bits 6 and 5 Request type
 Bits 4 to 0 Target descriptor

1 bRequest Request code
2 wValue Lower Any value used by the request
3 Higher
4 wIndex Lower
5 Higher

Index or offset used by the request

6 wLength Lower Number of bytes transferred at the data
stage

7 Higher (the data length)

CHAPTER 2 OVERVIEW OF USB

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 15

2. 5 Descriptor

For the USB standard, a descriptor is information that is specific to a function device and is encoded in a
specified format. A function device transmits a descriptor in response to a request transmitted from the
host.

2. 5. 1 Types
The following five types of descriptors are defined.

• Device descriptor
This descriptor exists in every device and includes basic information such as the supported USB
specification version, device class, protocol, maximum packet length that can be used when
transferring data to endpoint 0, vendor ID, and product ID.
This descriptor is transmitted in response to a GET_DESCRIPTOR_Device request.

• Configuration descriptor

At least one configuration descriptor exists in every device and includes information such as the
device attribute (power supply method) and power consumption. This descriptor is transmitted in
response to a GET_DESCRIPTOR_Configuration request.

• Interface descriptor

This descriptor is required for each interface and includes information such as the interface
identification number, interface class, and supported number of endpoints. This descriptor is
transmitted in response to a GET_DESCRIPTOR_Configuration request.

• Endpoint descriptor

This descriptor is required for each endpoint specified for an interface descriptor and defines the
transfer type (direction), maximum packet length that can be used for a transfer, and transfer
interval. However, endpoint 0 does not have this descriptor.
This descriptor is transmitted in response to a GET_DESCRIPTOR_Configuration request.

• String descriptor

This descriptor includes any character string.
This descriptor is transmitted in response to a GET_DESCRIPTOR_String request.

CHAPTER 2 OVERVIEW OF USB

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 16

2. 5. 2 Format
The size and fields of each descriptor type vary as described below.

Remark The data sequence of each field is in little endian format.

Table 2-4 Device Descriptor Format

Field Size
(Bytes)

Description

bLength 1 Descriptor size
bDescriptorType 1 Descriptor type
bcdUSB 2 USB specification release number
bDeviceClass 1 Class code
bDeviceSubClass 1 Subclass code
bDeviceProtocol 1 Protocol code
bMaxPacketSize0 1 Maximum packet size of endpoint 0
idVendor 2 Vendor ID
idProduct 2 Product ID
bcdDevice 2 Device release number
iManufacturer 1 Index to the string descriptor representing the manufacturer
iProduct 1 Index to the string descriptor representing the product
iSerialNumber 1 Index to the string descriptor representing the device production number
bNumConfigurations 1 Number of configurations

Remark Vendor ID: The identification number each company that develops a USB device acquires from
USB-IF
Product ID: The identification number each company assigns to a product after acquiring the
vendor ID

Table 2-5 Configuration Descriptor Format

Field Size
(Bytes)

Description

bLength 1 Descriptor size
bDescriptorType 1 Descriptor type
wTotalLength 2 Total number of bytes of the configuration, interface, and endpoint

descriptors
bNumInterfaces 1 Number of interfaces in this configuration
bConfigurationValue 1 Identification number of this configuration
iConfiguration 1 Index to the string descriptor specifying the source code for this

configuration
bmAttributes 1 Features of this configuration
bMaxPower 1 Maximum current consumed in this configuration (in 2 μA units)

Table 2-6 Interface Descriptor Format

Field Size
(Bytes)

Description

bLength 1 Descriptor size
bDescriptorType 1 Descriptor type
bInterfaceNumber 1 Identification number of this interface
bAlternateSetting 1 Whether the alternative settings are specified for this interface
bNumEndpoints 1 Number of endpoints of this interface
bInterfaceClass 1 Class code
bInterfaceSubClass 1 Subclass code
bInterfaceProtocol 1 Protocol code
iInterface 1 Index to the string descriptor specifying the source code for this interface

CHAPTER 2 OVERVIEW OF USB

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 17

Table 2-7 Endpoint Descriptor Format

Field Size
(Bytes)

Description

bLength 1 Descriptor size
bDescriptorType 1 Descriptor type
bEndpointAddress 1 Transfer direction of this endpoint

Address of this endpoint
bmAttributes 1 Transfer type of this endpoint
wMaxPacketSize 2 Maximum packet size of this transfer
bInterval 1 Polling interval of this endpoint

Table 2-8 String Descriptor Format

Field Size
(Bytes)

Description

bLength 1 Descriptor size

bDescriptorType 1 Descriptor type

bString Any Any data string

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 18

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

This chapter provides details about the features and processing of the USB Communication Device
Class sample driver for the 78K0R/Kx3-L and the specifications of the functions provided in the
78K0R/Kx3-L.

3. 1 Overview

3. 1. 1 Features
The sample driver can perform the following processing.

(1) Initialization

The USB function controller is set up for use by manipulating various registers. This setup
includes specifying settings for the CPU registers of the 78K0R/Kx3-L and specifying settings
for the registers of the USB function controller. For details, see 3. 2. 1 CPU Initialization, 3. 2. 2 3.
2. 2 USB function controller initialization processing

(2) Monitoring endpoints
The status of transfer endpoints in USB function controller is notified from INTUSB interrupt.
There are CPUDEC interrupt expressing the request of decode by FW for the control transfer
endpoint (Endpoint0) and BKO1DT interrupt showing the normal reception of data for bulk-out
transfer (reception) endpoint (Endpoint2). During the processing of Endpoint0, requests are
responded too. For details, see 3.2.3 INTUSB interrupt processing.

(3) Sample application

The data at the endpoint for bulk-out transfer (reception) is read, and then the data is written to
the endpoint for bulk-in transfer (transmission). For details, see CHAPTER 4 SAMPLE
APPLICATION SPECIFICATIONS.

3. 1. 2 Supported requests
This section describes the USB requests supported by the sample driver.

(1) Standard requests
The sample driver returns the following responses for requests to which the 78K0R/Kx3-L
does not automatically respond.

(a) GET_DESCRIPTOR_string
The host issues this request to acquire the string descriptor of the function device. If this
request is received, the sample driver transmits the requested string descriptor to the host
through a control read transfer.

(b) Other requests
The sample driver returns a STALL.

(2) Class requests
The sample driver responds to class requests of the CDC by using the following class
requests.

(a) SendEncapsulatedCommand
This request is used to issue a command in the format of the CDC interface control protocol.
If this request is received, the sample driver retrieves the data related to the request and
then transmits them through bulk-in transfer.

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 19

(b) GetEncapsulatedResponse
This request is used to request a response in the format of the CDC interface control protocol.

Currently, the sample driver does not support this request.

(c) SetLineCoding
This request is used to specify the serial communication format. If this request is received,

the sample driver retrieves the data related to the request to specify settings such as the
communication rate and then transmits a NULL packet through control read transfer.

(d) GetLineCoding
This request is used to acquire the current communication format settings on the device side.

If this request is received, the sample driver reads settings such as the communication rate
and then transmits them through control read transfer.

(e) SetControlLineState
This request is used for RS-232/V.24 format control signals. If this request is received the

sample driver transmits a NULL packet through control read transfer.

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 20

3. 1. 3 Descriptor settings
The settings of each descriptor specified by the sample driver are shown below. These settings are
included in header file "usbf78k0r_desc.h".

(1) Device descriptor

 This descriptor is transmitted in response to a GET_DESCRIPTOR_device request.
The settings are stored in the UF0DDn registers (where n = 0 to 17) when the USBF is initialized,
because the hardware automatically responds to a GET_DESCRIPTOR_device request.

Table 3-1 Device Descriptor Settings

Field Size
(Bytes)

Specified
Value

Description

bLength 1 0x12 Descriptor size: 18 bytes
bDescriptorType 1 0x01 Descriptor type: device
bcdUSB 2 0x0200 USB specification release number: USB 2.0
bDeviceClass 1 0x02 Class code: CDC
bDeviceSubClass 1 0x00 Subclass code: none
bDeviceProtocol 1 0x00 Protocol code: No unique protocol is used
bMaxPacketSize0 1 0x40 Maximum packet size of endpoint 0: 64
idVendor 2 0x0409 Vendor ID:NEC
idProduct 2 0x01CD Product ID:78K0R /Kx3-L
bcdDevice 2 0x0001 Device release number:1st version
iManufacturer 1 0x01 Index to the string descriptor representing the manufacturer: 1
iProduct 1 0x02 Index to the string descriptor representing the product: 2
iSerialNumber 1 0x03 Index to the string descriptor representing the device production number:3
bNumConfigurations 1 0x01 Number of configurations:1

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 21

(2) Configuration descriptor
 This descriptor is transmitted in response to a GET_DESCRIPTOR_configuration request.

The settings are stored in the UF0CIEn registers (where n = 0 to 255) when the USB function
controller is initialized, because the hardware automatically responds to a
GET_DESCRIPTOR_configuration request.

Table 3-2 Configuration Descriptor Settings

Field Size
(Bytes)

Specified
Value

Description

bLength 1 0x09 Descriptor size: 9 bytes
bDescriptorType 1 0x02 Descriptor type: configuration
wTotalLength 2 0x0030 Total number of bytes of the configuration, interface, and endpoint

descriptors: 48 bytes
bNumInterfaces 1 0x02 Number of interfaces in this configuration: 2
bConfigurationValue 1 0x01 Identification number of this configuration:1
iConfiguration 1 0x00 Index to the string descriptor specifying the source code for this

configuration:0
bmAttributes 1 0x80 Features of this configuration: bus-powered, no remote wakeup
bMaxPower 1 0x1B Maximum current consumed in this configuration: 54 mA

(3) Interface descriptor
This descriptor is transmitted in response to a GET_DESCRIPTOR_configuration request.
The settings are stored in the UF0CIEn registers (where n = 0 to 255) when the USB function
controller is initialized, because the hardware automatically responds to a
GET_DESCRIPTOR_configuration request.
Two types of descriptors are set up because the sample driver uses two interfaces.

Table 3-3 Interface Descriptor Settings for Interface 0

Field Size
(Bytes)

Specified
Value

Description

bLength 1 0x09 Descriptor size: 9 bytes
bDescriptorType 1 0x04 Descriptor type: interface
bInterfaceNumber 1 0x00 Identification number of this interface: 0
bAlternateSetting 1 0x00 Whether the alternative settings are specified for this interface: no
bNumEndpoints 1 0x01 Number of endpoints of this interface: 1
bInterfaceClass 1 0x02 Class code: communications interface class
bInterfaceSubClass 1 0x02 Subclass code: Abstract Control Model
bInterfaceProtocol 1 0x00 Protocol code: No unique protocol is used.
iInterface 1 0x00 Index to the string descriptor specifying the source code for this interface:

0

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 22

Table 3-4 Interface Descriptor Settings for Interface 1

Field Size
(Bytes)

Specified
Value

Description

bLength 1 0x09 Descriptor size: 9 bytes
bDescriptorType 1 0x04 Descriptor type: interface
bInterfaceNumber 1 0x01 Identification number of this interface: 1
bAlternateSetting 1 0x00 Whether the alternative settings are specified for this interface: no
bNumEndpoints 1 0x02 Number of endpoints of this interface: 2
bInterfaceClass 1 0x0A Class code: communications interface class
bInterfaceSubClass 1 0x00 Subclass code: Abstract Control Model
bInterfaceProtocol 1 0x00 Protocol code: No unique protocol is used.
iInterface 1 0x00 Index to the string descriptor specifying the source code for this interface:

0

(4) Endpoint descriptor
This descriptor is transmitted in response to a GET_DESCRIPTOR_configuration request.
The settings are stored in the UF0CIEn registers (where n = 0 to 255) when the USB function
controller is initialized, because the hardware automatically responds to a
GET_DESCRIPTOR_configuration request. Three descriptor types are specified because the
sample driver uses three endpoints.

Table 3-5 Endpoint Descriptor Settings for Endpoint 7

Field Size
(Bytes)

Specified
Value

Description

bLength 1 0x07 Descriptor size: 7 bytes
bDescriptorType 1 0x05 Descriptor type: endpoint
bEndpointAddress 1 0x87 Transfer direction of this endpoint: IN

Address of this endpoint: 7
bmAttributes 1 0x03 Transfer type of this endpoint: interrupt
wMaxPacketSize 2 0x0008 Maximum packet size of this transfer: 8 bytes
bInterval 1 0x0A Polling interval of this endpoint: 10 ms

Table 3-6 Endpoint Descriptor Settings for Endpoint 1

Field Size
(Bytes)

Specified
Value

Description

bLength 1 0x07 Descriptor size: 7 bytes
bDescriptorType 1 0x05 Descriptor type: endpoint
bEndpointAddress 1 0x81 Transfer direction of this endpoint: OUT

Address of this endpoint: 2
bmAttributes 1 0x02 Transfer type of this endpoint: bulk
wMaxPacketSize 2 0x0040 Maximum packet size of this transfer: 64 bytes
bInterval 1 0x00 Polling interval of this endpoint: 0 ms

Table 3-7 Endpoint Descriptor Settings for Endpoint 2

Field Size
(Bytes)

Specified
Value

Description

bLength 1 0x07 Descriptor size: 7 bytes
bDescriptorType 1 0x05 Descriptor type: endpoint
bEndpointAddress 1 0x02 Transfer direction of this endpoint: IN

Address of this endpoint: 2
bmAttributes 1 0x02 Transfer type of this endpoint: bulk
wMaxPacketSize 2 0x0040 Maximum packet size of this transfer: 64 bytes
bInterval 1 0x00 Polling interval of this endpoint: 0 ms

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 23

(5) String descriptor
This descriptor is transmitted in response to a GET_DESCRIPTOR_string request.
If a GET_DESCRIPTOR_string request is received, the sample driver stores the settings of this
descriptor into the UF0E0W register of the USB function controller.

Table 3-8 String Descriptor Settings

(a)String 0

Field Size
(Bytes)

Specified
Value

Description

bLength 1 0x04 Descriptor size: 4 bytes
bDescriptorType 1 0x03 Descriptor type: string
bString 2 0x09, 0x04 Language code: English (U.S.)

(b)String 1

Field Size
(Bytes)

Specified
Value

Description

bLength Note1 1 0x2A Descriptor size: 42 bytes

bDescriptorType 1 0x03 Descriptor type: string

bString Note 2 40 - Vendor: NEC Electronics Corporation

Notes 1. The specified value depends on the size of the bString field.
 2. The vendor can freely set up the size and specified value of this field.

(c)String 2

Field Size
(Bytes)

Specified
Value

Description

bLength Note1 1 0x0E Descriptor size: 14 bytes
bDescriptorType 1 0x03 Descriptor type: string
bString Note 2 12 - Product type: CDCDrv (CDC driver)

Notes 1. The specified value depends on the size of the bString field.
 2. The vendor can freely set up the size and specified value of this field.

(d)String 3

Field Size
(Bytes)

Specified
Value

Description

bLength Note1 1 0x16 Descriptor size: 22 bytes
bDescriptorType 1 0x03 Descriptor type: string
bString Note2 20 - Serial number: 0_98765432

Notes1. The specified value depends on the size of the bString field
 2. The vendor can freely set up the size and specified value of this field.

3. 2 Operation of Each Section

The processing sequence below is performed when the sample driver is executed. This section
describes each processing. For details about the sample application, see CHAPTER 4 SAMPLE
APPLICATION SPECIFICATIONS.

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 24

Figure 3-1 Sample Driver Processing Flowchart

Start

Initializing the CPU

Initializing the USB function controller

Executing the sample application

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 25

3. 2. 1 CPU Initialization
The settings necessary to use the USB function controller are specified.

Figure 3-2 CPU Initialization Flowchart

(1) Clock generation settings

Operation of internal clock of CPU is set.
Here, five registers are set.

(a) “0x41” is written to CMC register to specify X1 oscillation mode, 10MHz < fMX <= 20MHz.
(b) “0” is written to the MSTOP bit of CSC register to start the operation of X1 oscillation circuit.
(c) Oscillation stability time is verified according to OSTC register.
(d) “0x01” is written in PLLC register to stop the PLL operation.
(e) “0x38” is written to the CKC register to specify CPU/peripheral hardware clock to main system

clock (fMAIN), main system clock to high speed system clock (fMX) and ratio of dividing frequency to
fMX .

(f) “1” is written to the HIPSTOP bit of CSC register to stop high speed built-in oscillation circuit.
(g) “1” is written to PLLM bit of PLLC register to multiply the frequency of the clock provided to PLL by

12.
(h) “0” is written to PLLSTOP bit of PLLC register to stat the operation of PLL.

Start of CPU

Setting clock generation

End of CPU

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 26

3. 2. 2 USB function controller initialization processing
The settings necessary to use the USB function controller are specified.

Figure 3-3USB function controller Initialization Processing Flowchart

(1) USB clock supply
“0x80” is set in UCKC register so that USB clock is supplied to USB function controller.

(2) D+ Signal no-connection settings

”0x02” is set to UF0GPR register in order to avoid being detected by the host.

Setting up interrupt mask register

Start of USBF

USB clock supply

D+ signal noconnection settings

Setting USB buffer as invalid/ floating

NAK settings of control endpoints

Initialization of request data register area

Settings up interface and endpoints

Cancellation of control endpoints NAK settings

Setting D+ signal pulling up

Initialization of driver internal flag

End of USB

Setting USB buffer as valid/floating measures

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 27

(3) Invalidate USB buffer as and validate the floating measures

“0x00” is set to UF0BC register to disable the operations of USB function controller set as valid USB
buffer and invalid floating measures.

(4) NAK settings of control endpoints
In order to avoide the unintended response before registering the data which are used for automatic
respose by the hardware. 1 is written to the EP0NKA bit of the UF0E0NA register so that the hardware
responds to all requests, including requests that are automatically responded to, with a NAK.

(5) Initializing the request data register area
The descriptor data transmitted in auto response to a GET_DESCRIPTOR request is added to the
following registers.

(a) 0x00 is written to the UF0DSTL register to disable remote wakeup and operate the USB function

controller as a bus-powered device.
(b) 0x00 is written to the UF0EnSL registers (where n = 0 to 2) to indicate that endpoint n operates

normally.
(c) The total data length (number of bytes) of the required descriptor is written to the UF0DSCL

register to determine the range of the UF0CIEn registers (where n = 0 to 255).
(d) The device descriptor data is written to the UF0DDn registers (where n = 0 to 7).
(e) The data of the configuration, interface, and endpoint descriptors is written to the UF0CIEn
 registers (where n = 0 to 255).
(f) 0x00 is written to the UF0MODC register to enable automatic responses to
 GET_DESCRIPTOR_configuration requests.

(6) NAK settings of interface and endpoints
Information such as the number of supported interfaces, whether the alternative setting is used, and
the relationship between the interfaces and endpoints are specified for various registers. The
following registers are accessed.

(a) 0x80 is written to the UF0AIFN register to enable two interfaces.
(b) 0x00 is written to the UF0AAS register to disable the alternative setting.
(c) 0x40 is written to the UF0E1IM register to link endpoint 1 to interface 1.
(d) 0x40 is written to the UF0E2IM register to link endpoint 2 to interface 1.
(e) 0x20 is written to the UF0E7IM register to link endpoint 7 to interface 0.

(7) Disabling NAK settings of control endpoints

The NAK response operations for all requests are cancelled. 0 is written to the EP0NKA bit of the
UF0E0NA register to restart responses corresponding to each request, including requests that are
automatically responded to.

(8) Setting up the interrupt mask registers

Masking is specified for each USB function controller interrupt source. The following registers are
accessed:

(a) 0x00 is written to the UF0Icn registers (where n = 0 to 7) to clear all interrupt sources.
(b) 0x00 is written to the UF0FICn registers (where n = 0 and 1) to clear all transfer FIFOs.
(c) 0x7B is written to the UF0IM0 register to mask all interrupt sources other than BUSRST interrupt

and SETRQ interrupt from the interrupt sources indicated by the UF0IS0 register.
(d) 0x7E is written to the UF0IM1 register to mask all interrupt sources other than CPUDEC interrupt

from the interrupt sources indicated by the UF0IS1 register.
(e) 0xF3 is written to the UF0IM2 register to mask all interrupt sources indicated by the UF0IS2

register.
(f) 0xFE is written to the UF0IM3 register to mask interrupt sources indicated by the UF0IS3 register

other than those of the BKO1DT interrupt.
(g) 0xFF is written to the UF0IM4 register to mask all interrupt sources indicated by the UF0IS4

register.
(h) “0” is written to the USBIF bit of CPU to clear INTUSB interrupt.
(i) “0” is written to the USBMK bit of CPU to disable mask of INTUSB interrupt.

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 28

(9) Initialization of driver internal flag

A high level signal is output from the D+ pin to report to the host that a device has been connected. For
the sample driver, the connections shown in Figure 3-4 are assumed and the following registers are
accessed.

(10) USB buffer enabled/ floating measures disabled

“0x03” is set to UF0BC register to enable USB buffer, to disable floating measures and to enable USB

function controller operations.

(11) Pulling up the D+ signal

“0x02” is set to UF0GPR register to report to the host that a device has been connected.

Figure 3-4 USB function controller Connection Example

27 Ω±5％

27 Ω±5％

USBP

USBPUC

UF0GPR

CONNECT

USBM

EVDD

1.5 kΩ±5％

D＋�

D－�

IC

K0R/KC3-H
K0R/KE3-H

50 kΩ以上
（フローティング防止）

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 29

3. 2. 3 INTUSB interrupt process
Interrupt request (INTUSB) from USB function controller reports only about the interrupts which are

masked. Disable mask at the initialization for the necessary interrupts. Respective necessary processes

are executed for the reported interrupts.

Figure 3-5 Process flow of Endpoint0 monitoring

(1) BUSRST interrupt process

It is reports when Bus Reset is generated.

Process is executed in the following order.

(a) “0x7F” is written to the UF0IC0 to clear BUSRST interrupt.
(b) “1” is written to usbf78k0r_busrst_flg flag.
(c) usbf78k0r_buff_init () function is called.

(2) SETRQ interrupt process

SET_XXXX request for auto process is received and it is reported at auto processing.

Process is executed in the following order.

(a) “0xFB” is written to the UF0IC0 to clear SETRQ interrupt.
(b) Both SETCON bit of UF0SET register and CONF bit of UF0MODS register are set to “1” is verified.

“1” is set to CONFIGURATION by the SET_CONFIGURATION request is indicated.
(c) “0” is written to the usbf78k0r_busrst_flg flag to report that it is switched from reset state to normal

state.

(3) CPUDEC interrupt process

It is reported when FW process request is received.

Process is executed in the following order.

Start of INTUSB interrupt

BUSRST interrupt process

SETRQ interrupt process

CPUDEC interrupt process

BKO1DT interrupt process

End of NTUSB interrupt process

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 30

(a) “0xFD” is written to UF0IC1 register to clear PROT interrupt.
(b) UF0E0ST register is read for 8 times then request data is acquired and decoded.
(c) If request is class request, usbf78k0r_classreq () function is called and class request process is

executed.
(d) If request is not class request, usbf78k0r_standardreq () function is called and standard request

process is executed.

(4) BKO1DT interrupt process

It is reported when data is received in UF0BO1 register normally.

Process is executed in the following order.

(a) “0xFE” is written to the UF0IC3 register to clear BKO1DT interrupt.
(b) “1” is set to (usbf78k0r_rdata_flg) flag indicating existence of received data to indicate that there is

received data in bulk out endpoint in the drive. This flag is originally defined by the sample driver.

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 31

3. 3 Function Specifications

This section describes the functions implemented in the sample driver.

3. 3. 1 Functions
The functions of each source file included in the sample driver are described below.

Table 3-9 Functions in the Sample Driver

Source File Function Name Description

cpu_init Initializes the CPU. main.c

main Main routine

usbf78k0r_init Initializes the USB function controller

usbf78k0r_intusbf0 Processing INTUSB interrupt

usbf78k0r_standardreq Processes standard requests.

usbf78k0r_getdesc Processes GET_DESCRIPTOR(String)

usbf78k0r_send_EP0 Transmits Endpoint0

usbf78k0r_receive_EP0 Receives Endpoint0

usbf78k0r_sendnullEP0 Transmits a NULL packet for endpoint 0.

usbf78k0r_sendstallEP0 Transmit a STALL for endpoint 0.

usbf78k0r_ep_status Notifies FIFO status of bulk/interrupt Inn end point

usbf78k0r_send_null Transmits a NULL packet of bulk/interrupt inn endpoint

usbf78k0r_data_send Transmits bulk/interrupt Inn end point

usbf78k0r_rdata_length Acquires the bulk out endpoint received data length

usbf78k0r_data_receive Receives bulk out endpoint

usbf78k0r.c

usbf78k0r_fifo_clear
Clears bulk/interrupt Inn end point and bulk out endpoint

FIFO

usbf78k0r_classreq Processes CDC class/request

usbf78k0r_send_encapsulated_command Processes SendEncapsulatedCommand requests

usbf78k0r_get_encapsulated_response Processes Get Encapsulated Response requests

usbf78k0r_set_line_coding Processes SetLineCoding requests.

usbf78k0r_get_line_coding Processes GetLineCoding requests.

usbf78k0r_set_control_line_state Processes SetControlLineState requests.

usbf78k0r_buff_init Clears FIFO of endpoint for CDC data transfer

usbf78k0r_get_bufinit_flg Notifies execution state of FIFO initialization process

usbf78k0r_send_buf Transmits CDC data

usbf78k0r_communication.c

usbf78k0r_recv_buf Receives CDC data

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 32

3. 3. 2 Correlation of the functions
Some functions call other functions during the processing. The following figures show the correlation

of the functions.

Figure 3-6 Calling Functions in the Main Routine

main

usbf78k0r recv buf

usbf78k0r data receive

usbf78k0r rdata length usbf78k0r send buf

usbf78k0r send null

usbf78k0r ep status

usbf78k0r data send

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 33

Figure 3-7 Calling Functions during the Processing for the USB function controller

usbf78k0r intusb

usbf78k0r buff init

usbf78k0r fifo clear

usbf78k0r sendstallEP0

usbf78k0r send encapsulated command

usbf78k0r classreq

usbf78k0r get encapsulated response

usbf78k0r set line coding

usbf78k0r set line coding

usbf78k0r standardreq

usbf78k0r sendstallEP0

usbf78k0r getdesc

usbf78k0r send EP0

usbf78k0r sendstallEP0

usbf78k0r sendstallEP0

usbf78k0r get line coding

usbf78k0r set control line state

usbf78k0r sendstallEP0

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 34

Figure 3-8 Calling Functions during the Processing for the USB Communication Class (1)

usbf78k0r send encapsulated command

usbf78k0r classreq

usbf78k0r get encapsulated response

usbf78k0r set line coding

usbf78k0r get line coding

usbf78k0r set control line state

usbf78k0r sendstallEP0

usbf78k0r sendstallEP0

usbf78k0r receive EP0

usbf78k0r data send

usbf78k0r receive EP0

usbf78k0r buff init

usbf78k0r sendnullEP0

usbf78k0r send EP0

usbf78k0r sendnullEP0

usbf78k0r sendstallEP0

usbf78k0r sendstallEP0

usbf78k0r fifo clear

usbf78k0r sendnullEP0

usbf78k0r sendnullEP0

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 35

Figure 3-9 Calling Functions during the Processing for the USB Communication Class (2)

usbf78k0r send buf

usbf78k0r send null

usbf78k0r ep status

usbf78k0r data send

usbf78k0r recv buf

usbf78k0r ep status

usbf78k0r data receive

usbf78k0r rdata length

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 36

3. 3. 3 Function features
This section describes the features of the functions implemented in the sample driver.

(1) Function description format
The functions are described in the following format.

Function name

[Overview]
 An overview of the function is provided

[C description format]
 The format in which the function is written in C is provided.

[Parameters]
 The parameters (arguments) of the function are described.

Parameter Description

Parameter type and
name

Parameter summary

[Return values]
 The values returned by the function are described.

Symbol Description

Return value type
and name

Return value summary

[Description]
 The feature of the function is described

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 37

Functions for the main routine

main

[Overview]
 Main processing

[C description format]
 void main(void)

[Parameters]
 None

[Return value]
 None

[Description]
 This function is called first when the sample driver is executed. This function calls the

initialization function of CPU, initialization function of USB function controller and then the
sample application processing function sequentially.

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 38

cpu_init

[Overview]
 Initializes the CPU.

[C description format]
 void cpu_init(void)

[Parameters]
 None

[Return value]
 None

[Description]
 This function is called in the main processing.

The settings those are necessary to use the USB function controller in the 78K0R/Kx3, such
as the clock frequency, and operation mode.

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 39

Functions for the USB function controller

usbf78k0r_init

[Overview]
 Initializes the USB function controller

[C description format]
 void usbf78k0r_init(void)

[Parameters]
 None

[Return value]
 None

[Description]
 This function is called during initialization processing.

This function specifies the settings required for using the USBF, such as allocating and

specifying the data area and masking interrupt requests.

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 40

usbf78k0r_intusbf0

[Overview]
 INTUSB interrupt processing

[C description format]
 __interrupt void usbf78k0r_intusbf0 (void)

[Parameters]
 None

[Return value]
 None

[Description]
 This function is an interrupt service routine called from INTUSBF0 interrupt.

Generated interrupt processing is done while verifying about the interrupt requests about

the interrupt which are not masked of USB function controller.

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 41

usbf78k0r_standardreq

[Overview]
 Processes standard requests to which the USB function controller does not automatically

respond

[C description format]
 void usbf78k0r_standardreq (USB_SETUP *req_data)

[Parameters]

Parameter Description

USB_SETUP *req_data Request data storage pointer address
[Return value]
 None

[Description]
 This function is called from the CPUDEC interrupt cause process of INTUSB interrupt

process.

If a GET_DESCRIPTOR request is decoded, this function calls the GET_DESCRIPTOR

request processing function (usbf78k0r_getdesc). For other requests, this function calls

the function for returning STALL responses for endpoint 0 (usbf78k0r_sendstallEP0).

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 42

usbf78k0r_getdesc

[Overview]
 Processes GET_DESCRIPTOR requests

[C description format]
 void usbf78k0r_getdesc (USB_SETUP *req_data)

[Parameters]

Parameter Description

USB_SETUP *req_data Request data storage pointer address
[Return value]
 None

[Description]
 This function is called during the processing of standard requests to which the USB

function controller does not automatically respond. If a decoded request requests a string

descriptor, this function calls the USB data transmission function (usbf78k0r_send_EP0)

for endpoint 0 and transmits a string descriptor from endpoint 0. If a decoded request

requests any other descriptor, this function calls the function for processing STALL

responses (usbf78k0r_sendstallEP0) for endpoint 0.

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 43

usbf78k0r_send_EP0

[Overview]
 Transmits USB data for Endpoint0

[C description format]
 INT32 usbf78k0r_send_EP0(UINT8* data, INT32 len)

[Parameters]

Parameter Description

UINT8* data Transmission data buffer pointer

INT32 len Transmission data length
[Return value]

 Symbol Description

DEV_OK Normal completion

DEV_ERROR Abnormal termination
[Description]
 This function stores the data stored in the transmission data buffer into the FIFO for the

specified Endpoint0, byte by byte.

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 44

usbf78k0r_receive_EP0

[Overview]
 Receives USB data for Endpoint0

[C description format]
 INT32 usbf78k0r_receive_EP0(UINT8* data, INT32 len)

[Parameters]

Parameter Description

UINT8* data Reception data buffer pointer

INT32 len Reception data length
[Return value]

 Symbol Description

DEV_OK Normal completion

DEV_ERROR Abnormal termination
[Description]
 This function reads data from the FIFO for the specified endpoint byte by byte and stores

the data into the reception data buffer.

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 45

usbf78k0r_sendnullEP0

[Overview]
 Transmits a NULL packet for endpoint 0

[C description format]
 void usbf78k0r_sendnullEP0(void)

[Parameters]
 None

[Return value]
 None

[Description]
 This function clears the FIFO for endpoint 0 and transmits a NULL packet from the USBF

by setting the bit that indicates the end of data to 1.

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 46

usbf78k0r_sendstallEP0

[Overview]
 Returns a STALL for endpoint 0

[C description format]
 void usbf78k0r_sendstallEP0(void)

[Parameters]
 None

[Return value]
 None

[Description]
 This function makes the USBF return a STALL by setting the bit that indicates the use of

STALL for Endpoint 0 to 1.

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 47

usbf78k0r_ep_status

[Overview]
 Notifies FIFO status for bulk/interrupt inn endpoint

[C description format]
 INT32 usbf78k0r_ep_status(INT8 ep)

[Parameters]

Parameter Description

INT8 ep Data transmission endpoint number
[Return value]

 Symbol Description

DEV_OK Normal completion (FIFO empty)

DEV_ERROR Abnormal termination (FIFO full)

DEV_RESET During Bus Reset processing
[Description]
 This function notifies the FIFO status of specified endpoint (for transmission).

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 48

usbf78k0r_send_null

[Overview]
 Transmits a NULL packet for bulk/interrupt inn endpoint

[C description format]
 INT32 usbf78k0r_send_null(INT8 ep)

[Parameters]

Parameter Description

INT8 ep Data transmission end point number
[Return value]

 Symbol Description

DEV_OK Normal completion

DEV_ERROR Abnormal termination
[Description]
 This function transmits a NULL packet from USB function controller by clearing the FIFO

of specified Endpoint (for transmission) and setting the bit that indicates the end of data

to 1.

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 49

usbf78k0r_data _send

[Overview]
 Transmits USB data for bulk/interrupt Inn end point

[C description format]
 INT32 usbf78k0r_data_send(UINT8* data, INT32 len, INT8 ep)

[Parameters]

Parameter Description

UINT8* data Transmission data buffer pointer

INT32 len Transmission data length

INT8 ep Data transmission end point number
[Return value]

 Symbol Description

len (>= 0) Normal transmission data size

DEV_ERROR Abnormal termination
[Description]
 This function stores the data stored in the transmission data buffer into the FIFO for the

specified endpoint, byte by byte.

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 50

usbf78k0r_rdata _length

[Overview]
 Acquires the USB reception data length

[C description format]
 void usbf78k0r_rdata_length(INT32 *len , INT8 ep)

[Parameters]

Parameter Description

INT32* len Pointer to the storage address of the received data

length

INT8 ep Data reception endpoint number
[Return value]
 None

[Description]
 This function reads the received data length of the specified endpoint. (For reception).

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 51

usbf78k0r_data _receive

[Overview]
 Receives USB data for bulk end point

[C description format]
 INT32 usbf78k0r_data_receive(UINT8* data, INT32 len, INT8 ep)

[Parameters]

Parameter Description

UINT8* data Reception data buffer pointer

INT32 len Reception data length

INT8 ep Data reception endpoint number
[Return value]

 Symbol Description

len (>= 0) Normal transmission data size

DEV_ERROR Abnormal termination
[Description]
 This function reads data from the FIFO for the specified endpoint byte by byte and stores

the data into the reception data buffer.

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 52

usbf78k0r_fifo_clear

[Overview]
 Clears the FIFO for bulk/interrupt Endpoint

[C description format]
 void usbf78k0r_fifo_clear(INT8 in_ep, INT8 out_ep)

[Parameters]

Parameter Description

INT8 in_ep Data transmission end point number

INT8 out_ep Data reception end point number
[Return value]
 None

[Description]
 This function clears the FIFO of Endpoint specified in bulk/interrupt Endpoint and clears (0)

data reception flag (usbf78k0r_rdata_flg).

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 53

Functions for USB communication device class processing

usbf78k0r_classreq

[Overview]
 Processes class request

[C description format]
 void usbf78k0r_classreq(USB_SETUP *req_data)

[Parameters]

Parameter Description

USB_SETUP *req_data Request data storage pointer address
[Return value]
 None

[Description]
 This function is called from the CPUDEC interrupt cause process of INTUSB interrupt

process.
If a decoded request is communication class request, this function calls the each request
processing function. For other requests, this function calls the function for returning a STALL
for Endpoint0 (usbf78k0r_sendstallEP0).

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 54

usbf78k0r_send_encapsulated_command

[Overview]
 Processes SendEncapsulatedCommand requests

[C description format]
 void usbf78k0r_send_encapsulated_command(USB_SETUP *req_data)

[Parameters]

Parameter Description

USB_SETUP *req_data Request data storage pointer address
[Return value]
 None

[Description]
 If request decoded in the class request process is Send Encapsulated Command, this

function is called. This function calls the data reception function (usbf78k0r_receive_EP0) to

retrieve the data received at endpoint 0, and then calls the data transmission function

(usbf78k0r_data_send) to transmit data from endpoint 2 via bulk-in transfer (transmission)

and calls the NULL packet transmission function (usbf78k0r_sendnullEP0) for Endpoint0.

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 55

usbf78k0r_set_line_coding

[Overview]
 Processes SetLineCoding requests

[C description format]
 void usbf78k0r_set_line_coding(USB_SETUP *req_data)

[Parameters]

Parameter Description

USB_SETUP *req_data Request data storage pointer address

[Return value]
 None

[Description]
 This function is called if request decoded at class request process is Set Line Coding. This

function calls the data reception function (usbf78k0r_receive_EP0) to retrieve the data

received at endpoint 0, and then writes the data to the UART_MODE_INFO structure. This

function calls the FIFO initialization function (usbf78k0r_buff_init) for user data and then

calls the NULL packet transmission function for endpoint 0 (usbf78k0r_sendnullEP0).

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 56

usbf78k0r_get_control_line_coding

[Overview]
 Processes GetLineCoding requests

[C description format]
 void usbf78k0r_get_line_coding(USB_SETUP *req_data)

[Parameters]

Parameter Description

USB_SETUP *req_data Request data storage pointer address
[Return value]
 None

[Description]
 This function is called if request decoded at class request process is Get Line Coding.

This function transmits the UART_MODE_INFO structure value from Endpoint0 by calling

USB data transmission function (usbf78k0r_send_EP0) for Endpoint0.

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 57

usbf78k0r_set_control_line_state

[Overview]
 Processes SetControlLineState requests.

[C description format]
 void usbf78k0r_set_control_line_state(USB_SETUP *req_data)

[Parameters]

Parameter Description

USB_SETUP *req_data Request data storage pointer address
[Return value]
 None

[Description]
 This function is called if request decoded in the class request process is “Set Control Line

State”. This function calls the NULL packet transmission function for endpoint 0

(usbf78k0r_sendnullEP0).

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 58

usbf78k0r_buff_init

[Overview]
 Initializes the FIFO for user data

[C description format]
 void usbf78k0r_buff_init(void)

[Parameters]
 None

[Return value]
 None

[Description]
 This function initializes the FIFO for communication class user data by calling FIFO clear

function (usbf78k0r_fifo_clear) for bulk/interrupt Endpoint and sets the flag
(usbf78k0r_bufinit_flg) that indicates transmission packet size of internal driver as clear (0)
and FIFO initialization to 1.

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 59

usbf78k0r_get_bufinit_flg

[Overview]
 Notifies FIFO status for user data

[C description format]
 INT32 usbf78k0r_get_bufinit_flg(void)

[Parameters]
 None

[Return value]

 Symbol Description

DEV_OK Normal status

DEV_ERROR FIFO initialization status
[Description]
 This function notifies the internal driver flag (usbf78k0r_bufinit_flg) status that indicates

the initialization of FIFO. If flag is set as 1, it indicates that FIFO is initialized and then it

notifies the initialization status and clears flag to 0.

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 60

usbf78k0r_send_buf

[Overview]
 Transmits user data for communication class

[C description format]
 INT32 usbf78k0r_send_buf(UINT8* data, INT32 len)

[Parameters]

Parameter Description

UINT8* data Transmission data buffer pointer

INT32 len Transmission data length
[Return value]

 Symbol Description

len (>= 0) Normal transmission data length

DEV_ERROR Abnormal termination
[Description]
 This function transmits NULL packet that calls the NULL packet transmission function

(usbf78k0r_send_null) for bulk/interrupt inn Endpoint, if transmission data size

(Parameter:len) is 0 and size of the packet transmitted earlier (g_send_size) is Max

Packet Size. If transmission data size (Parameter:len) is greater than 0 and transmission

FIFO has null status (return value of usbf78k0r_ep_status is DEV_OK), this function calls

the USB data transmission function (usbf78k0r_data_send). If data transmission is

completed normally, it stores the size of the data transmitted to transmission completion

packet size (g_send_size) defined in the driver.

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 61

usbf78k0r_recv_buf

[Overview]
 Receives user data for communication class

[C description format]
 INT32 usbf78k0r_recv_buf(UINT8* data, INT32 len)

[Parameters]

Parameter Description

UINT8* data Reception data buffer pointer

INT32 len Reception data length
[Return value]

 Symbol Description

len (>= 0) Normal transmission data length

DEV_ERROR Abnormal termination
[Description]
 This function calls USB data reception function (usbf78k0r_data_receive).

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 62

CHAPTER 4 SAMPLE APPLICATION SPECIFICATIONS

This chapter describes the sample application included with the sample driver.

4. 1 Overview

The sample application is provided as a simple example of using the USB communication device class

driver and is incorporated in the main routine of the sample driver.

The sample application reads the data received by the USB function controller and then transmits the

read data. Various functions of the sample driver are used during this processing.

4. 2 Operation

The sample application performs the processing shown in the following flowchart.

Figure 4-1 Flowchart for the Sample Application Processing

Start of sample application processing

Initialization of FIFO?

Reception process of user data for communication class

Transmission process of user data for communication

Normal termination of

Normal termination

Clearing transmitted/received

YES

YES

YES

NO

NO

NO

CHAPTER 4 SAMPLE APPLICATION SPECIFICATIONS

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 63

(1) Verifying FIFO initialization for user data

FIFO status notification function (usbf78k0r_get_bufinit_flg) for user data is called and if it is in

normal state, verification process of transmission processing result is executed and if it is in the

initialization state, transmission/reception result clear process (clearing transmission/reception

process result of user data for communication class to 0) is executed.

(2) Verifying transmission process result of user data for communication class

If transmission process result of user data for communication class is Normal completion (and initial

state), control shifts over to reception process of user data for communication class and if it is

abnormal termination state, shifts to reception process result confirmation process.

(3) Reception process of user data for communication class

Buffer address, buffer size storing reception data is specified and reception function

(usbf78k0r_recv_buf) of user data for communication class is called.

(4) Verifying reception process result of user data for communication class

If reception process result of user data for communication class is Normal completion (and initial

state), control shifts over to transmission process of user data for communication class and if it is

abnormal termination state, shifts to FIFO initialization confirmation process for user data.

(5) Transmission process of user data for communication class

Buffer size where data to be transmitted is stored and transmission data size are specified and

transmission function (usbf78k0r_send_buf) of user data for communication class is called.

4. 3 Using Functions

The main.c source file that includes this sample application is coded as follows in order to call sample
driver functions. For details about the functions, see 3. 3 Specifications of Functions.

(1) Definitions and declarations

2 header files “usbf78k0r.h” and “usbf78k0r_communication.h” are included in order to use the

sample driver functions. User buffer (UserBuf) of size sufficient to process the 1 packet data for user

data is set. (Maximum packet size of bulk endpoint in Full Speed USB is set to 64Byte)

(2) Initialization processing of CPU

Initialization processing of CPU function (cpu_init) is called.

(3) Initialization process of USB function controller

USB function controller initialization function (usbf78k0r_init) is called.

(4) Verification of FIFO status for user data

FIFO state notification function (usbf78k0r_get_bufinit_flg) for user data is called and FIFO status

is verified.

CHAPTER 4 SAMPLE APPLICATION SPECIFICATIONS

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 64

(5) Reception process of user data

User data reception function (usbf78k0r_recv_buf) for communication class is called and result is

stored.

(6) Transmitting user data

User data transmission function (usbf78k0r_send_buf) for communication class is called and result

is stored.

(7) Clearing process of transmission/reception process result

If FIFO for user data is initialized, transmission/reception process result stored in (5), (6) is cleared

to 0.

List 4-1 Sample Application Code (Portion)

void main(void)
 {
 INT32 rcv_ret = 0;
 INT32 snd_ret = 0;

 cpu_init();

 DI();
 usbf78k0r_init(); /* initial setting of the USB Function */
 EI();

 while(1)
 {
 if (usbf78k0r_get_bufinit_flg() != DEV_ERROR) {
 if (snd_ret >= 0) {
 rcv_ret = usbf78k0r_recv_buf(&UserBuf[0], USERBUF_SIZE);
 }
 if (rcv_ret >= 0) {
 snd_ret = usbf78k0r_send_buf(&UserBuf[0], rcv_ret);
 }
 }
 else {
 snd_ret = 0;
 rcv_ret = 0;
 }
 }
 }

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 65

CHAPTER 5 DEVELOPMENT ENVIRONMENT

This chapter provides an example of creating an environment for developing an application program that
uses the USB communication device class sample driver for the 78K0R/Kx3-L and the procedure for
debugging the application.

5. 1 Development environment

This section describes the used hardware and software tool products.

5. 1. 1 Program development
The following hardware and software are necessary to develop a system that uses the sample driver.

Table 5-1 Example of the Components Used in a Program Development Environment

Components Product Example Remark

Hardware Host machine - PC/AT compatible computer (OS : Windows

XP)

Integrated development tool PM+ V6.31

Compiler CC78K0R W2.12

Software

Assembler RA78K0R W1.33

5. 1. 2 Debugging
The following hardware and software are necessary to debug a system that uses the sample driver.

Table 5-2 Example of the Components Used in a Debugging Environment

Components Product Example Remark

Host machine - PC/AT compatible computer (OS :

Windows XP)

Target device TK-78K0R/KE3L+USB

Inn circuit emulator MINICUBE2

Hardware

USB cables - miniB-to-A connector cable

Integrated development tool PM+ V6.31 Software

Debugger ID78K0R-QB V3.60

Device file DF78102664.78K For the 78K0R/Kx3-L Files

Project files - Note1
Notes 1.For details about products and how to obtain them, contact NEC Electronics.
 2. A file that is used when creating a system using PM+ is included with the sample driver.

CHAPTER 5 DEVELOPMENT ENVIRONMENT

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 66

5. 2 Setting up the Environment

This section describes the preparations required for developing and debugging a system by using the
products described in 5. 1 Development environment.

5. 2. 1 Preparing the host environment
Create a dedicated workspace on the host for debugging.

Installing an integrated development tool
Install PM+. For details, see the PM+ User’s Manual.

Downloading drivers
Store the set of files provided with the sample driver in any directory without changing the folder
structure.

Store the device driver in any directory.

Figure 5-1 Folder Structure of the Sample Driver

IFolder containing INF files

Folder containing include files・

Folder containing NEC compiler projects

Folder containing source files・

NEC_project

src

Any folder iinclude

Inf file

CHAPTER 5 DEVELOPMENT ENVIRONMENT

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 67

Setting up the workspace
The procedure for using project files included with the sample driver is described below.

<1> Start PM+, and then select “Open Workspace” in the “File” menu.

<2> In the Open Workspace dialog box, specify the workspace file in the NEC_project folder,

which is the sample driver installation directory.

CHAPTER 5 DEVELOPMENT ENVIRONMENT

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 68

Installing a device file
The procedure for using a device file for the 78K0R/Kx3-L is described below.

<1> Select Project Settings in the PM+ Project menu.

<2> In the Project Settings dialog box, click the Device Install button on the Project

Information tab to start the Device File Installer.

CHAPTER 5 DEVELOPMENT ENVIRONMENT

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 69

<3> In the Device File Installer dialog box, click the Install button to start the installation wizard.

<4> In the Install Information File dialog box, click the Browse button.

CHAPTER 5 DEVELOPMENT ENVIRONMENT

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 70

<5> In the Open dialog box, open the directory in which the device file was stored, select
"NECSETUP.INI", file and then click the Open button.

<6> In the message about usage permission, click the Next button.
<7> In the File type selection dialog box, click of Next button after selecting relevant device

files.

 Since screen is under development it can differ with the actuals

CHAPTER 5 DEVELOPMENT ENVIRONMENT

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 71

<8> 「In the Install Directory dialog box, confirm that a path is displayed, and then click the Next
button.

<9> In the Installation Start dialog box, click the Next button.

 Since screen is under development it can differ with the actuals.

CHAPTER 5 DEVELOPMENT ENVIRONMENT

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 72

<10> The device file is installed to the project. This might take a while depending on the
environment.

<11> In the Installation Finished dialog box, click the Finish button.

Setting up the building tool

The procedure for using the CC78K0R、RA78K0R as the building tool and ID78K0R-QB as the

debugging tool is described below.

<1> Select Project Settings in the PM+ Project menu.

CHAPTER 5 DEVELOPMENT ENVIRONMENT

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 73

<2> In the Project Settings dialog box, click the Detail Setting button on the Tool Version
Settings tab.

<3> In the Tool Version Detail Setting dialog box, select the compiler version to use in the

“CC78K0R” “RA78K0R” columns and the debugger version to use in the “ID78K0R-QB”
column and press “OK” button.

CHAPTER 5 DEVELOPMENT ENVIRONMENT

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 74

5. 2. 2 Setting up the target environment
Connect the target device to use for debugging.

(1) Connecting the target device
Connect the two USB ports on the TK-78K0R/KE3L+USB to the USB ports of the host by using

USB cables.

Figure 5-2 Connecting the TK-78K0R/KE3L+USB

Remark For a drawing and details about the ports of the TK-78K0R/KE3L+USB, see APPENDIX A STARTER
KIT.

Installing the host driver
The procedure for using the virtual COM port host driver included with the sample driver is

described below.

Remark One of the two USB ports on the 78K0R/KE3-L is a debugging port that requires a

separate host driver. For details about the files to use and how to obtain them, contact
NEC Electronics.

USB1: 78K0R USB port
USB2: Debugging port

CHAPTER 5 DEVELOPMENT ENVIRONMENT

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 75

<1> When the connections of the TK-78K0R/KE3L+USB are recognized by the host, the “Found
New Hardware “message is displayed, and then the Found New Hardware Wizard starts.

<2> 「On the first page of the Found New Hardware Wizard dialog box, select No, not this
time, and then click the Next button.

<3> On the next page, select Install from a list or specific location (Advanced) and then click
the Next button.

<4> On the next page, select Don’t search. I will choose the driver to install and then click the
Next button.

CHAPTER 5 DEVELOPMENT ENVIRONMENT

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 76

<5> On the next page, click the Have Disk button.

CHAPTER 5 DEVELOPMENT ENVIRONMENT

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 77

<6> In the Install From Disk dialog box, click the Browse button to display the inf file folder in
the directory in which the sample driver was stored.

<7> Select the inf file in the XP folder according to the OS used on the host, and then click the
Open button

CHAPTER 5 DEVELOPMENT ENVIRONMENT

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 78

<8> In the Install From Disk dialog box, confirm that the path under Copy manufacturer’s
files from: is correct, and then click the OK button.

<9> In the Found New Hardware Wizard dialog box, select NEC Electronics K0R Virtual
UART, and then click the Next button

CHAPTER 5 DEVELOPMENT ENVIRONMENT

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 79

<10> The driver installation starts.

<11> In the Hardware Installation dialog box, click the Continue Anyway button.

CHAPTER 5 DEVELOPMENT ENVIRONMENT

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 80

<12> The driver is installed. This might take a while depending on the environment.

<13> On the next page, click the Finish button.

CHAPTER 5 DEVELOPMENT ENVIRONMENT

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 81

Checking the device assignment
Open the Windows Device Manager window. In the Ports category, make sure that NEC

Electronics K0R Virtual UART is displayed and check the assigned COM port number

Remark Device names and port numbers can be changed. For details, see 6.2 Customizing the
Sample Driver.

5. 3 On-Chip Debugging

This section describes the procedure for debugging an application program that was developed
using the workspace described in 5.2 Setting Up the Environment.

For the 78K0R/Kx3-L, a program can be written to its internal flash memory and the program
operation can be checked by directly executing the program by using a debugger (on-chip debugging).

5. 3. 1 Generating a load module
To write a program to the target device, use a C compiler to generate a load module by converting a

file written in C or assembly language.

CHAPTER 5 DEVELOPMENT ENVIRONMENT

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 82

For PM+, generate a load module by selecting Rebuild in the Build menu.

5. 3. 2 Loading and executing the load module
Execute the generated load module by writing (loading) it to the target.

(2) Writing the load module
The procedure for writing the load module to the TK-78K0R/KE3L+USB by using PM+ is

described below.

<1> Start the ID78K0R-QB by selecting Debug in the Build menu

CHAPTER 5 DEVELOPMENT ENVIRONMENT

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 83

<2> In the Configuration dialog box, click on “OK” button.

<3> If a project file included with the sample driver is used, the following dialog box is displayed.

Click the Yes button to start writing the load module file.

CHAPTER 5 DEVELOPMENT ENVIRONMENT

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 84

Executing the program

Click the button in the ID78K0R-QB window or select Run Without Debugging in the Run
menu.

CHAPTER 5 DEVELOPMENT ENVIRONMENT

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 85

5. 4 Checking the Operation

If the target device that has loaded the sample driver is connected to the host via USB, the result of
executing the sample application in the driver can be checked.
Start terminal software (such as Tera Term) on the host, enter the following characters, and then check

how they are displayed.

Remark For details of sample application, see Chapter 4 Sample application specifications.

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 86

CHAPTER 6 USING THE SAMPLE DRIVER

This chapter describes information that you should know when using the USB Communication Device
Class sample driver for the 78K0R/Kx3-L.

6. 1 Overview

The sample software can be used in the following two ways.
(1) Customizing the sample driver

Rewrite the following sections of the sample driver as required.

. The sample application section in “main.c”
. The values specified for the various registers in “usbf78k0r.h” file
. The descriptor information in “usbf78k0r_desc.h” file
. Device names and provider information included in the virtual COM port host driver (inf file)

Remark: For the list of files included in the sample driver, see 1.1.3 Files included in the sample

driver.

(2) Using functions

Call functions from within the application program as required. For details about the provided
functions see 3.3 Function Specifications.

CHAPTER 6 USING THE SAMPLE DRIVER

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 87

6. 2 Customizing the Sample Driver

This section describes the sections to rewrite as required when using the sample driver.

6. 2. 1 Application section
The code in main.c file below includes a simple example of processing using the sample driver. The

initialization before and after the processing and endpoint monitoring can be used by including the

processing to actually use for the application in this section.

 List 6-1 Sample Application Code

1 /*==
2 Main function
3 void main(void)
4
5 Arguments:
6 N/A
7 Return values:
8 N/A
9 Overview:
10 main routine.
11 ==*/
12 void main(void)
13 {
14 INT32 rcv_ret = 0;
15 INT32 snd_ret = 0;
16
17 cpu_init();
18
19 DI();
20
21 usbf78k0r_init(); /* initial setting of the USB Function */
22
23 EI();
24
25 while(1)
26 {
27 if (usbf78k0r_get_bufinit_flg() != DEV_ERROR) {
28 if (snd_ret >= 0) {
29 rcv_ret = usbf78k0r_recv_buf(&UserBuf[0], USERBUF_SIZE);
30 }
31 if (rcv_ret >= 0) {
32 snd_ret = usbf78k0r_send_buf(&UserBuf[0], rcv_ret);
33 }
34 }
35 else {
36 snd_ret = 0;
37 rcv_ret = 0;
38 }
39 }
40 }

CHAPTER 6 USING THE SAMPLE DRIVER

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 88

6. 2. 2 Setting up the registers
The registers the sample driver uses (writes to) and the values specified for them are defined in

“usbf78k0r.h” file. By rewriting the values in this file according to the actual use for the application, the

operation of the target device can be specified by using the sample driver.

6. 2. 3 Descriptor information
The data the sample driver adds to the USBF during initialization processing (described in 3.1.3

Descriptor settings) is defined in "usbf78k0r_desc.h" file. Information such as the attributes of the target

device can be specified by using the sample driver by rewriting the values in this file according to the use

in an actual application.

If the vendor ID and product ID of the device descriptor are rewritten, the vendor ID and product ID

must also be rewritten in the host driver to install (the INF file) when connecting the target device. (For

details, see 6.2.4 (3) Changing the vendor and product IDs).

Any information can be specified for the string descriptor. The sample driver defines manufacturer and

product information, so rewrite the information as required.

CHAPTER 6 USING THE SAMPLE DRIVER

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 89

6. 2. 4 Setting up the virtual COM port host driver
The driver that was installed in 5.2.2 Preparing the environment can be customized as follows.

Changing the COM port number
When the connection of a USB device is recognized by the host, the host automatically assigns

the COM port number of the device, but the number can be changed to any number. To change the
COM port number by using the host, perform the following procedure.

<1> Open the Device Manager Windows and display the “Port” tree in the device list display.

CHAPTER 6 USING THE SAMPLE DRIVER

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 90

<2> Select “NEC Electronics Jx3H Virtual UART (COMn)” (where n is a number assigned by
the host) to display its properties.

<3> Click the “Advanced” button on the “Port Settings” tab.

<4> In the “Advanced Settings for COMn” dialog box (where n is a number assigned by the

host), select any port number from the “COM Port Number” drop-down list.

Remarks 1.Make sure not to select a port number that is used for a different device.
 2. Immediately after applying this change, the new port number becomes valid but might

not be reflected immediately in the Device Manager.

Changing properties
Some information, such as the attributes of the device used by the Windows Device Manager,

CHAPTER 6 USING THE SAMPLE DRIVER

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 91

can be changed. The information that can be changed is shown below.

(a) The device name (in the list of devices)

(b) The device name, manufacturer name, and version (in the device properties)

<１>

<１>

<2>

<3>

CHAPTER 6 USING THE SAMPLE DRIVER

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 92

Because this information is displayed based on the information included in the host driver (the
INF file), it can be changed by rewriting the INF file. The sections in the INF file, which correspond
to the numbers in the example on the previous page, are shown below.

List 6-2INF file "K0R_CDC_XP.inf" code

1 ; .inf file (Win2000,XP):
2 [Version]
3 Signature="$Windows NT$"
4 Class=Ports
5 ClassGuid={4D36E978-E325-11CE-BFC1-08002BE10318}
6
7 Provider=%NEC%
8 LayoutFile=layout.inf
9 DriverVer=10/15/1999,5.0.2153.1 <3>
10
11 [Manufacturer]
12 %NEC%=NEC
13
14 [NEC]
15 %NEC78K0RKx3L%=Reader, USB¥VID_0409&PID_01D0
16
17 [Reader_Install.NTx86]
18 ;Windows2000
19
20 [DestinationDirs]
21 DefaultDestDir=12
22 Reader.NT.Copy=12
23
24 [Reader.NT]
25 CopyFiles=Reader.NT.Copy
26 AddReg=Reader.NT.AddReg
27
28 [Reader.NT.Copy]
29 usbser.sys
30
31 [Reader.NT.AddReg]
32 HKR,,DevLoader,,*ntkern
33 HKR,,NTMPDriver,,usbser.sys
34 HKR,,EnumPropPages32,,"MsPorts.dll,SerialPortPropPageProvider"
35
36 [Reader.NT.Services]
37 AddService = usbser, 0x00000002, Service_Inst
38
39 [Service_Inst]
40 DisplayName = %Serial.SvcDesc%
41 ServiceType = 1 ; SERVICE_KERNEL_DRIVER
42 StartType = 3 ; SERVICE_DEMAND_START
43 ErrorControl = 1 ; SERVICE_ERROR_NORMAL
44 ServiceBinary = %12%¥usbser.sys
45 LoadOrderGroup = Base
46
47 [Strings]
48 NEC = "NEC Electronics Corporation" <2>
49 NEC78K0RKx3L = "NEC Electronics K0R Virtual UART" <1>
50 Serial.SvcDesc = "USB Serial emulation driver"

Changing the vendor and product IDs
If the vendor and product IDs in the device descriptor are changed, the same changes must be

specified in the host driver (the INF file).
Include the vendor and product IDs in the INF file as shown on line 15 in List 6-2.

Vendor ID: Represented by four digits in hexadecimal format following “VID_”
Product ID: Represented by four digits in hexadecimal format following “PID_”

6. 3 Using Functions

The code for applications can be simplified and the code size can be reduced because frequently used

and versatile types of processing are provided as defined functions. For details about each function, see

CHAPTER 6 USING THE SAMPLE DRIVER

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 93

3.3 Function Specifications. The following sections of the sample application shown in List can be

reused as application examples for various types of defined processing.

(1) Verifying FIFO state for user data

FIFO state notification function (usbf78k0r_get_bufinit_flg) for user data is called and FIFO

initialization flag “usbf78k0r_bufinit_flg” for user data is monitored on line 27. This flag is uniquely

defined by the sample driver and if FIFO is initialized in the Bus Reset process reported by sample

driver INTUSB interrupt and Set Line Coding request process of class request, “1” is set.

“0” is set to clear the error state of transmission/reception process of user data at the FIFO

initialization in the sample application.

(2) User data reception processing

For the sample driver, separate functions that define retrieval processing for the received data, one for

acquiring the data length and another for copying the data, are provided.

Received data size can be verified before the reception process by calling the acquisition function

(usbf78k0r_rdata_length) of reception data length at the reception process based on length of the

actually received data. Reception process can also be called on the basis of buffer size when buffer

size for user data is determined. However, take care that maximum data length for one time reception

should be less than the data size that is received in 1 packet.

In the sample application, data received from used endpoint at the received data in the user data

reception function (usbf78k0r_recv_buf) on the line 29 is read as a usage example when buffer size is

determined.

(3) User data transmission processing

Used endpoint FIFO state is verified at the transmitted data in the user data transmission function

(usbf78k0r_send_buf) on line 32 and if it is FIFO Empty, data is written. In case of FIFO Full, it is error

end. When size of the data of the packet transmitted at the earlier and not the transmitted data is Max

Packet Size, NULL packet is transmitted. Since this is characteristic of communication device class,

NULL packet is transmitted to report that it is last data to host when last packet of data is Max Packet

Size.

In the sample application, when process is terminated with the generation of error, reception process

is stopped and transmission process is repeated until the normal termination of writing of transmission

wait data to FIFO. Initialization of FIFO for user data is the only exception. Transmitted/received data

and transmission wait data in FIFO are discarded when FIFO is initialized by the request from user or

host.

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 94

CHAPTER 7 STARTER KIT

This chapter describes the TK-78K0R/KE3L+USB starter kit for the 78K0R/Kx3-L, made by Tessera
Technology, Inc.

7. 1 Overview

TK-78K0R/KE3L+USB is a kit to develop applications that use the 78K0R/KE3-L. The entire
development sequence from creating a program to building, debugging, and checking operation can be
performed simply by installing development tools and USB drivers and then connecting either board to
the host. This kit uses a monitoring program that enables debugging without connecting an emulator
(on-chip debugging).

Figure 7-1Connections of TK-78K0R/KE3L+USB

7. 1. 1 Features
TK-78K0R/KE3L + USB has the following features.

• A USB miniB connector for the internal USBF
• As small as a business card
• Efficient development by using the board with the integrated development environment

(PM+)

USB1:78K0RUSB port
USB2:Debugging port

CHAPTER 7 STARTER KIT

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 95

7. 2 Specifications

The main specifications of the TK-78K0R/KE3L＋USB are as follows.

CPU μPD78F1026(78K0R/KE3-L)
Operating frequency 20 MHz (USB:48 MHz)
Interface USB connector (miniB) x 2

 MINICUBE2 connector
 Peripheral board connector x 2 (only the pad)

Supported platform Host: DOS/V computer that has a USB interface
 OS:Windows XP

Operating voltage 5.0 V(internal operation at 3.3 V)
Package dimensions W89 x D52(mm)

Application note R01AN0003EJ0100(U20312EJ1V0AN00) 96

[Memo]

Published by: NEC Electronics Corporation (http://www.necel.com/)

Contact: http://www.necel.com/support/

	CHAPTER 1 OVERVIEW
	1. 1 Overview
	1. 1. 1 Features of the USB function controller
	1. 1. 2 Features of the sample driver
	1. 1. 3 Files included in the sample driver

	1. 2 Overview of 78K0R/Kx3-L
	1. 2. 1 Applicable products
	1. 2. 2 Features

	CHAPTER 2 OVERVIEW OF USB
	2. 1 Transfer Format
	2. 2 Endpoints
	2. 3 Device Class
	2. 4 Requests
	2. 4. 1 Types
	2. 4. 2 Format

	2. 5 Descriptor
	2. 5. 1 Types
	2. 5. 2 Format

	CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS
	3. 1 Overview
	3. 1. 1 Features
	3. 1. 2 Supported requests
	3. 1. 3 Descriptor settings

	3. 2 Operation of Each Section
	3. 2. 1 CPU Initialization
	3. 2. 2 USB function controller initialization processing
	3. 2. 3 INTUSB interrupt process

	3. 3 Function Specifications
	3. 3. 1 Functions
	3. 3. 2 Correlation of the functions
	3. 3. 3 Function features

	CHAPTER 4 SAMPLE APPLICATION SPECIFICATIONS
	4. 1 Overview
	4. 2 Operation
	4. 3 Using Functions

	CHAPTER 5 DEVELOPMENT ENVIRONMENT
	5. 1 Development environment
	5. 1. 1 Program development
	5. 1. 2 Debugging

	5. 2 Setting up the Environment
	5. 2. 1 Preparing the host environment
	5. 2. 2 Setting up the target environment

	5. 3 On-Chip Debugging
	5. 3. 1 Generating a load module
	5. 3. 2 Loading and executing the load module

	5. 4 Checking the Operation

	CHAPTER 6 USING THE SAMPLE DRIVER
	6. 1 Overview
	6. 2 Customizing the Sample Driver
	6. 2. 1 Application section
	6. 2. 2 Setting up the registers
	6. 2. 3 Descriptor information
	6. 2. 4 Setting up the virtual COM port host driver

	6. 3 Using Functions

	CHAPTER 7 STARTER KIT
	7. 1 Overview
	7. 1. 1 Features

	7. 2 Specifications

