Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

M32C/85 Group

7-Segment LED Display (Dynamic Lighting Method)

1. Abstract

This application note describes how to use the dynamic lighting method for the 7-segment LED display.

2. Introduction

This application note is applied to the following condition: Applicable MCU:M32C/85 Group

The program on this application note can also be used when operating other microcomputers within the M16C Family, provided they have the same SFR (Special Function Registers) as the M32C/85 Group. However, some functions may have been modified. Refer to each device's hardware manual for details. Use functions covered in this application note only after careful evaluation.

3. Detailed Description

How to display the dynamic lighting LED is as follows:

A) Two ports for DIGIT output and eight ports for SEGMENT output are used.

DIGIT output: low active, P10 to P11 SEGMENT output: low active, P00 to P07

- B) The DIGIT output switches between the active LED1 and LED2, shown in Figure 1 on page 2, every 1 ms. A variable digit controls the DIGIT output. Timer A timer mode is used for 1-ms measurement.
- C) The SEGMENT output controls display patterns on LED1 and LED2. High-order 8 bits of a variable seg_data are output to LED1. Low-order 8 bits are output to LED2. The variable seg_data increments every 1 sec. Timer A0 underflow count is used in Timer A1 event counter mode for 1-sec measurement.

The sample program on page 4 may manipulate bits assigned to unused functions due to SFR configuration. The bit settings must be changed depending on your system.

Table 1 lists the assigned pins.

Table 1. Assigned Pin

Pins	Input/Output	Low Active or High Active	Functions
P10	Output	Low Active	DIGIT Output for LED1
P11	Output	Low Active	DIGIT Output for LED2
P00	Output	Low Active	SEGMENT Output for a
P01	Output	Low Active	SEGMENT Output for b
P02	Output	Low Active	SEGMENT Output for c
P03	Output	Low Active	SEGMENT Output for d
P04	Output	Low Active	SEGMENT Output for e
P05	Output	Low Active	SEGMENT Output for f
P06	Output	Low Active	SEGMENT Output for g
P07	Output	Low Active	SEGMENT Output for h

Figures 1 and 2 show LED block diagrams.

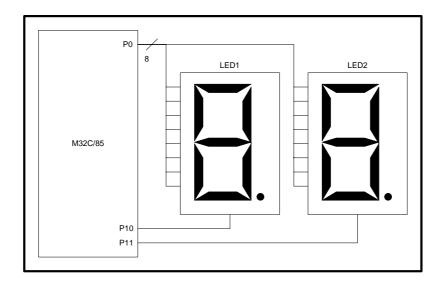


Figure 1. LED Block Diagram (1)

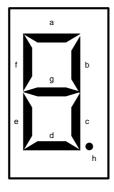


Figure 2. LED Block Diagram (2)

Figure 3 shows a flowchart to configure register settings.

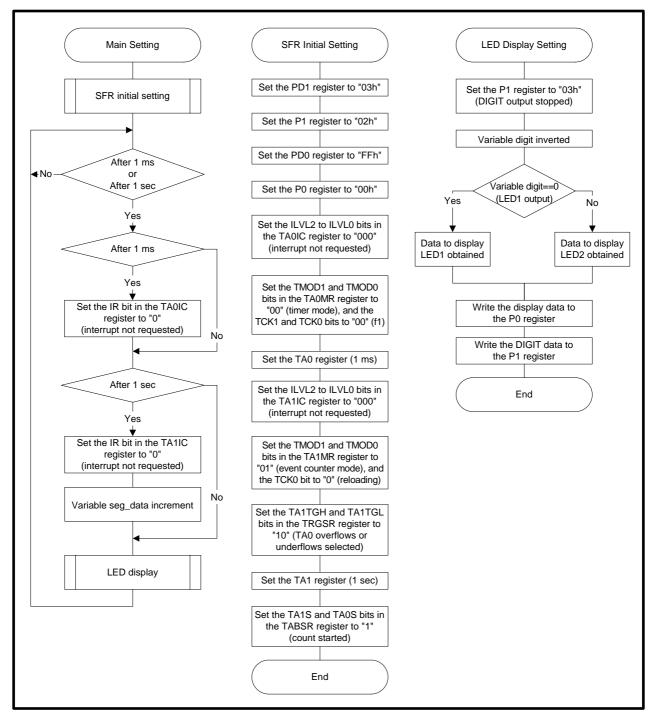


Figure 3. Register Setting Configuration

4. Sample Program

/*""FILE COMMI	ENT""***************	***********	
* System Name	: M32C/85 Program Collect	tion	
* File Name	: rjj05b0720_src.c		
* Version	: 1.00		
* Contents	: 7-segment LED display (Dynamically turn on)	
* Customer	:		
* Model	:		
* Order	:		
* CPU	: M32C/85 Group		
* Compiler	: NC308WA (V.5.20 Release 1)		
* OS	: Nothing		
* Programmer	:		
* Note	:		
*********	**********	**********	
* AND RENESAS ***********			
* History : 200			
*""FILE COMME	:NT END""**********	**************	
/ 			

/* include file	*/ ***********************/		
•	,		
#include "sfr32c8	5.h"		
/***************	***********		
,	,		
/* define	*/ ***********************************		
,	,		
typedef unsigned	char UCHAR;		
/*********	***********		
/* RAM	*/		
	/ ***********/		
,	,	v data */	
UCHAR seg_data	n = 0; /* displa	y data '7	
/*************	***********		
•	f function prototype */		

void main(void);	,		
void sfr_init(void);)·	/* Initial setting of SFR registers */	
void seg_disp(void);		/* LED indication */	
void seg_disp(void	u),	/ LED indication	
/*********	**********		
/* main	*/		
	, ************/		
void main(void) {	I		
sfr_init();		/* Initial setting of SFR registers */	
ы_ши(),		initial setting of 51 K legisters /	


```
/* Main processing
                                                                     */
    while(1){
        while((ir_ta0ic == 0) && (ir_ta1ic == 0)) {
        if (ir_ta0ic == 1) {
            ir_ta0ic = 0;
        if (ir_ta1ic == 1) {
            ir_ta1ic = 0;
            seg_data++;
        }
                               /* LED indication
                                                                     */
        seg_disp();
    }
}
    Initial setting of SFR registers
void sfr_init(void) {
    /* LED port setting */
                                                                     */
    pd1 = 0x03U;
                                 /* Digit port direction output
                                 /* Digit = LED1
                                                                     */
    p1 = 0x02U;
    pd0 = 0xff;
                                  /* Segment port direction output
                                                                    */
                                                                     */
    p0 = 0x00U;
                                  /* Segment initial
    /* Timer setting */
    ta0ic = 0x00;
    /* Interrupt control register
                                                                    */
    /* 0000000B
                                                                    */
    /*
            +++--- (ILVL2-ILVL0):Interrupt priority level
                                                                    */
    /*
                      000:Interrupt disabled
    ta0mr = 0x00;
    /* Timer A0 mode register
                                                                      */
    /* 0000000B
                                                                      */
    /* ||
           ++--- (TMOD1-TMOD0):Operation mode select bit
                                                                     */
    /* | |
                      00: Timer mode
                                                                      */
    /* ++---- (TCK1-TCK0):Count source select bit
                                                                     */
    /*
                     *00:f1
                                                                      */
    /*
                                                                      */
                      01:f8
    /*
                      10:f2n
                                                                      */
                      11:fc32
                                                                      */
    ta0 = 30000U-1U;
                                       /* 1msec @30MHz, f1
                                                                      */
    ta1ic = 0x00;
    ta1mr = 0x01;
    /* Timer A1 mode register
                                                                      */
```



```
/* 0000000B
                                                                     */
       | | | ++--- (TMOD1-TMOD0):Operation mode select bit
                                                                      */
                                                                      */
                      01:Event counter mode
       | | +---- (MR1):Count polarity select bit
                                                                     */
                      0:Counts falling edges of an external signal
       +---- (MR2):Inc/Dec switching cause select bit
                                                                     */
                                                                      */
                      0:Setting of the UDF regster
       +---- (TCK0):Count opration type select bit
                                                                      */
    /*
                                                                     */
                      0:Reloading
    trgsr = 0x02;
    /* Setting trigger select register
                                                                      */
    /* 0000010B
                                                                      */
    /*
            ++---- (TA1TGH-TA1TGL):Timer A1 event/trigger select bit */
    /*
                      10:TA0 underflow is selected
   ta1 = 1000U-1U;
                                     /* 1msec * 1000 = 1sec
    tabsr = 0x03;
    /* Count start flag
    /* 0000011B
    /*
    /*
             | +---- (TA0S):Timer A0 Count start flag
    /*
                      1:Starts counting
                                                                      */
    /*
             +---- (TA1S):Timer A1 Count start flag
                      1:Starts counting
                                                                     */
  LED indication
/*************/
#define seg_a 0xfeU
#define seg_b
               0xfdU
#define seg_c
             0xfbU
#define seg_d
               0xf7U
#define seg_e
               0xefU
#define seg_f
               0xdfU
#define seg_g
               0xbfU
#define seg_h
               0x7fU
void seg_disp(void) {
   static UCHAR digit = 0;
   static const UCHAR digit_data [2] = \{0x02,0x01\};
                                /* digit select data
                                                                    */
```

}


```
static const UCHAR SEGdata_table[16] = {
    0xffU &seg_a &seg_b &seg_c &seg_d &seg_e &seg_f
                                                               , /* "0" */
                  &seg_b &seg_c
                                                              , /* "1" */
    0xffU &seg_a &seg_b
                                 &seg_d &seg_e
                                                        &seg_g , /* "2" */
    0xffU &seg_a &seg_b &seg_c &seg_d
                                                       &seg g, /* "3" */
    0xffU
                  &seg_b &seg_c
                                                &seg_f &seg_g , /* "4" */
                         &seg_c &seg_d
                                                &seg_f &seg_g , /* "5" */
    0xffU &seg a
                         &seg_c &seg_d &seg_e &seg_f &seg_g , /* "6" */
    0xffU &seg_a
    0xffU &seg_a &seg_b &seg_c
                                                &seg_f
                                                              , /* "7" */
    0xffU &seg_a &seg_b &seg_c &seg_d &seg_e &seg_f &seg_g , /* "8" */
    0xffU &seg_a &seg_b &seg_c &seg_d
                                                &seg_f &seg_g , /* "9" */
    0xffU &seg_a &seg_b &seg_c
                                        &seg_e &seg_f &seg_g , /* "A" */
                         &seg_c &seg_d &seg_e &seg_f &seg_g , /* "B" */
    0xffU
                                                              , /* "C" */
    0xffU &seg_a
                                 &seg d &seg e &seg f
    0xffU
                  &seg_b &seg_c &seg_d &seg_e
                                                        &seg_g, /* "D" */
    0xffU &seg_a
                                 &seg_d &seg_e &seg_f &seg_g , /* "E" */
                                        &seg_e &seg_f &seg_g /* "F" */
    0xffU &seg_a
};
UCHAR i;
                                                             */
                             /* Digit output off
p1 = 0x03U;
digit ^= 1U;
                                                             */
if (digit == 0) {
                         /* LED1 output
    i = SEGdata_table[seg_data>>4];
                           /* LED2 output
                                                             */
} else {
    i = SEGdata_table[seg_data & 0x0fU];
}
                            /* output segment ports
p0 = i;
                          /* Digit change
                                                            */
p1 = digit_data[digit];
```

}

5. Reference

Hardware Manual M32C/85 Group Hardware Manual Rev.1.03 (Use the latest version on the home page: http://www.renesas.com/en/m16c)

TECHNICAL UPDATE/TECHNICAL NEWS

(Use the latest information on the home page: http://www.renesas.com/en/m16c)

6. Contact Information

Renesas Technology Corporation Home Page http://www.renesas.com/en/m16c

E-mail Support

E-mail: csc@renesas.com

REVISION HISTORY

Rev.	Date	Description		
		Page	Summary	
1.00	2005.09.16	-	First edition issued	

Keep safety first in your circuit designs!

1. Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party.
- 2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein.
 - The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
 - Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com).
- 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- 5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- 6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials.
- 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
 - Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
- 8. Please contact Renesas Technology Corporation for further details on these materials or the products contained therein.