
Tool News

RENESAS TOOL NEWS on February 01, 2015: 150201/tn5

Note on Using C/C++ Compiler Package for RX Family
(IDE: CubeSuite+) and C/C++ Compiler Package for RX

Family (without IDE)

When using the C/C++ Compiler Package for RX Family (for the CubeSuite+ IDE) and of the
C/C++ Compiler Package for RX Family (without an IDE), take note of the problem regarding
the following points.

Point to note regarding static aggregates and unions within a function having initial values
of address constant expression (RXC#035)
Point to note regarding the use of both judgment of a match and greater or less than for
variables (RXC#036)

Note: The number at the end of the above item is from a consecutive index of problems in the
compiler package for the RX family of MCUs.

1. Static Aggregates and Unions within a Function Having Address Constant
 Expressions as Initial Values (RXC#035)

1.1 Products and Versions Concerned
 - C/C++ Compiler Package for RX Family (IDE: CubeSuite+) V2
 Order type name: RTCRX0000CL02WDR and RTCRX0000CL02WNR
 CC-RX compiler V2.02.00

 - C/C++ Compiler Package for RX Family (without IDE) V2
 Order type name: RTCRX0000CC02WRR and RTCRX0000CC02WNR
 CC-RX compiler V2.02.00

1.2 Description
 The initialization of the variables or arrays which were declared as

 static or as const without extern might not operate correctly.

1.3 Conditions
 This problem arises if the following conditions are all met.
 (1) The program is compiled as a C++ program.
 (2) A function was declared as static and holds automatic variables.
 (3) Variables or arrays were declared as static, or as const without
 extern. In addition, the expressions for initializing these variables
 or arrays include addresses of a function (or functions) satisfying
 condition (2).
 (4) A function was declared as static and does not hold automatic
 variables, and the code within the function refers to a variable or
 array satisfying condition (3).
 (5) A function satisfying condition (2) contains processing which uses an
 automatic variable* mentioned in (2) at one or more places.
 *: The expression "uses an automatic variable" covers the cases of
 initializing the given automatic variable at the same time as it
 is declared and of using the given variable in an expression for
 initializing another variable, as well as reading from or
 writing to the automatic variable, or obtaining its address.
 (6) The functions satisfying conditions (2) and (4) are not referred by
 any functions or variables declared with extern.

 Example of the condition:
 In the case of compiling the following as C++ code: Condition (1)

 static void OtherFunc(void);
 static int LocalFunc(void);
 int (*const sf_Table[])(void) = { // Condition (3)
 LocalFunc, 0, // Condition (3)
 };
 extern int (*const *pFunc)(void);
 static void OtherFunc(void)
 {
 pFunc = sf_Table; // Condition (4)
 }
 static int LocalFunc(void) // Condition (2)
 {
 int ret; // Condition (2)
 return ret; // Condition (5)
 }

1.4 Workaround
 To avoid this problem, do any of the following.

 (1) If you are not using functions peculiar to the C++ programming
 language, compile the program as a C program.
 (2) When calling any of the functions that satisfy condition (2) or (4)
 for the problem to arise, add functions which are not static.
 (3) Delete any of the functions that satisfy condition (2) or (4).
 Note, when deleting a function that satisfies condition (2), the
 initializing expression for a variable or array that satisfies
 condition (3) should not include the address of the function that
 satisfied condition (2).
 (4) Change the qualifier in the declaration of any function that
 satisfies (2) or (4) to extern from static.
 (5) Avoid using automatic variables covered by condition (2).

2. Point to Note Regarding the Use of Both Judgment of a Match and Greater
 or Less Than for Variables (RXC#036)

2.1 Product and Versions Concerned
 - C/C++ Compiler Package for RX Family (IDE: CubeSuite+) V2
 Order type name: RTCRX0000CL02WDR and RTCRX0000CL02WNR
 CC-RX compiler V2.00.00 to 2.02.00

 - C/C++ Compiler Package for RX Family (without IDE)
 Order type name: RTCRX0000CC02WRR and RTCRX0000CC02WNR V2
 CC-RX compiler V2.01.00 to 2.02.00

2.2 Description
 Within a given function, a given if statement or loop might be resolved
 wrongly when the if statement or other loop-control expression includes
 a combination of expressions to compare for a match ("!=" or "==")
 between, and for other types of comparison of a constant and variable.

2.3 Conditions
 This problem arises if the following conditions are all met:
 (1) Any of -optimize=1, 2 or max is designated.
 (2) A comparison expression "!=" or "=="comparing a constant (Note 1)
 and a variable (Note 2) is present.
 Note 1: Includes expressions in which the constant is statically
 known to be a constant.
 Note 2: Includes array variables, structure members, and union
 members.
 (3) An expression that applies "<", ">", "<=", or ">=" to compare the
 constant and variable covered by (2), within a function which
 contains a comparison expression of the type described in (2).
 (4) The variable in (2) is not modified by volatile.
 (5) The comparison expressions covered by (2) and (3) meet any of the

 following conditions.
 (5-1) The comparison expressions covered by (2) and (3) are
 connected by "||" or "&&".
 (5-2) Loops or "if" statements which include the comparison
 expressions covered by (2) and (3) are executed in
 succession.
 (6) There is no another expression between the comparison expressions
 covered by (2) and (3).

 Example of condition:
 --
 int ZZZ[3] = {0x7FFF,0x7FFF,0x7FFF}; // Condition (4)
 void test(void){
 if(((ZZZ[0] <= 180) && // Condition (3),
 // Condition (5-1)
 ((unsigned int)ZZZ[0] != (unsigned int)0x8000U))){
 // Condition (2) (6)
 }

 }
 --

2.4 Workaround
 To avoid this problem, take any of the following steps.
 (1) Designate the -optimize=0 option
 (2) Modify the variable in Condition (2) by declaring it as volatile.
 (3) In the comparisons covered by (2) and (3), refer to the dummy
 volatile variable just before the next expression to be executed.

 Application example of the workaround: case of the workaround (3)
 --
 volatile int dummy; // Declaration of dummy as a
 // volatile variable
 int ZZZ[3] = {0x7FFF,0x7FFF,0x7FFF};
 void test(void){
 if(((ZZZ[0] <= 180) &&
 (dummy,((unsigned int)ZZZ[0] != (unsigned int)0x8000U))))
 { // Workaround (3)
 }

 }
 --

3. Schedule for Fixing the Problem
 - C/C++ Compiler Package for RX Family (IDE: CubeSuite+) and

 C/C++ Compiler Package for RX Family (without IDE)

 This problem will be fixed in V2.03.00 of CC-RX (we intend to release
 it on or soon after February 5).

[Disclaimer]
The past news contents have been based on information at the time of publication. Now changed or invalid information may
be included. The URLs in the Tool News also may be subject to change or become invalid without prior notice.

© 2010-2016 Renesas Electronics Corporation. All rights reserved.

