発行日: 2024年11月8日

RENESAS TECHNICAL UPDATE

〒135-0061 東京都江東区豊洲 3-2-24 豊洲フォレシア ルネサス エレクトロニクス株式会社

問合せ窓口 http://japan.renesas.com/contact/

E-mail: csc@renesas.com

製	品分類	MPU & MCU	発行番号	TN-RL*-A0137A/J		Rev.	第1版	
題名	静電容量センサユニット(CTSU2La) 電源リップルノイズによる静電容量減少特性			情報分類	技術情報			
適			対象ロット等					
用製品	RL78/G22 グループ	ALL	関連資料	RL78/G22 ユーザーズマニュアル ハードウェア編 Rev.1.10 R01UH0978JJ0110 (Jun.2024)				

1. 電源リップルノイズによる計測静電容量の減少特性について

VDD 電源にリップルノイズが重畳した場合、リップルノイズの周波数帯域によっては、制御電流が減り、TSm 端子に接続された静電容量の測定値が減少する特性が発生します。本特性を参考値として提示しますので、VDD 電源に給電する外部電源回路の設計に留意してください。

図 1 計測部回路

なお、リップルノイズが重畳された場合の、CTSU2La の計測静電容量値の算出方法は、"静電容量タッチリップル対策ガイド(R30AN0453)"の "3.4 タッチパラメータ調整 (2) RL78/G22 の容量計測値換算式" および "3.4.2 タッチ誤判定対策事例" を参照してください。

2. 特性データ

表 1. 静電容量センサユニット (CTSU2La) 特性 VDD 電源リップルノイズによる計測静電容量の減少特性(参考値) (TA = - 40~+105°C, 2.4 V≦VDD≦5.5 V, Vss = 0 V, Cp = 20pF)

項目	略号	条件		Min.	Тур.	Max.	単位
		リップルノイズ周波数 < 20kHz	リップルノイズ振幅 100 mVpp	1	-	0.02	
計測静電		20kHz ≦リップル ノイズ 周波数 ≦ 2MHz	リップルノイズ振幅 40 mVpp	1	-	0.06	
容量減少 特性 ^注	Cdown		リップルノイズ振幅 60 mVpp	-	-	0.10	pF
行[土 ^一			リップルノイズ振幅 100 mVpp	-	-	0.33	
		2MHz < リップルノイズ周波数	リップルノイズ振幅 100 mVpp	_	_	0.01	

注. 下記条件の場合の値です。

- ・自己容量方式 (CTSUCRAL.MD1 = 0) 使用時。
- ・電流計測レンジ 40uA (CTSUCRAL.ATUNE1 = 1, CTSUCRAH.ATUNE2 = 0) 設定時。電流計測レンジについては、"アプリケーションノート 静電容量センサ MCU 静電容量タッチ導入ガイド (R30AN0424)" 2.2 自己容量方式の 2.2.2 計測 範囲 を参照してください。
- ・オフセット調整の目標値を 37.5%に設定。オフセット調整の概要については、アプリケーションノート 静電容量センサ MCU 静電容量タッチ導入ガイド (R30AN0424) の "2. 静電容量の検出" および "7.1 QE for Capacitive Touch を使用 した自動チューニング" を参照してください。

備考. Cp: 寄生容量

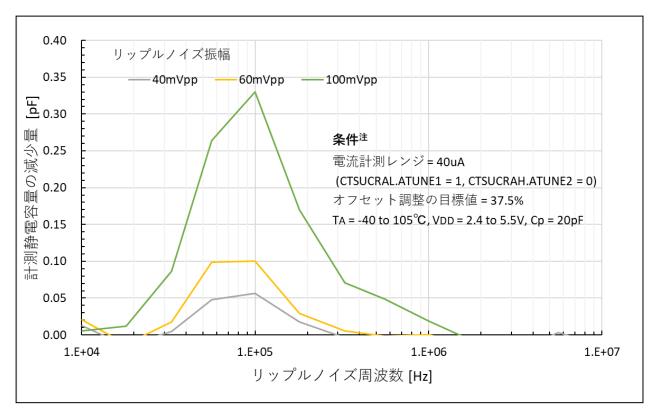


図2 計測静電容量の減少量

注. 条件の詳細は、アプリケーションノート 静電容量センサマイコン QE for Capacitive Touch アドバンスドモード (高度な設定) パラメータガイド (R30AN0428) を参照してください。

発行日:2024年11月8日

RENESAS TECHNICAL UPDATE TN-RL*-A0137A/J

	ドキュメント改善計画 次回ユーザーズマニュアル改版時に、 <u>2. 特性データ</u> の内容を、第 34 章 電気的特性 "34.6 アナログ特性"に記載いたします。
以上	<u>-</u>

発行日:2024年11月8日