カタログ等資料中の旧社名の扱いについて

2010年4月1日を以ってNECエレクトロニクス株式会社及び株式会社ルネサステクノロジが合併し、両社の全ての事業が当社に承継されております。従いまして、本資料中には旧社名での表記が残っておりますが、当社の資料として有効ですので、ご理解の程宜しくお願い申し上げます。

ルネサスエレクトロニクス ホームページ (http://www.renesas.com)

2010 年 4 月 1 日 ルネサスエレクトロニクス株式会社

【発行】ルネサスエレクトロニクス株式会社(http://www.renesas.com)

【問い合わせ先】http://japan.renesas.com/inquiry

ご注意書き

- 1. 本資料に記載されている内容は本資料発行時点のものであり、予告なく変更することがあります。当社製品のご購入およびご使用にあたりましては、事前に当社営業窓口で最新の情報をご確認いただきますとともに、当社ホームページなどを通じて公開される情報に常にご注意ください。
- 2. 本資料に記載された当社製品および技術情報の使用に関連し発生した第三者の特許権、著作権その他の知的 財産権の侵害等に関し、当社は、一切その責任を負いません。当社は、本資料に基づき当社または第三者の 特許権、著作権その他の知的財産権を何ら許諾するものではありません。
- 3. 当社製品を改造、改変、複製等しないでください。
- 4. 本資料に記載された回路、ソフトウェアおよびこれらに関連する情報は、半導体製品の動作例、応用例を説明するものです。お客様の機器の設計において、回路、ソフトウェアおよびこれらに関連する情報を使用する場合には、お客様の責任において行ってください。これらの使用に起因しお客様または第三者に生じた損害に関し、当社は、一切その責任を負いません。
- 5. 輸出に際しては、「外国為替及び外国貿易法」その他輸出関連法令を遵守し、かかる法令の定めるところにより必要な手続を行ってください。本資料に記載されている当社製品および技術を大量破壊兵器の開発等の目的、軍事利用の目的その他軍事用途の目的で使用しないでください。また、当社製品および技術を国内外の法令および規則により製造・使用・販売を禁止されている機器に使用することができません。
- 6. 本資料に記載されている情報は、正確を期すため慎重に作成したものですが、誤りがないことを保証するものではありません。万一、本資料に記載されている情報の誤りに起因する損害がお客様に生じた場合においても、当社は、一切その責任を負いません。
- 7. 当社は、当社製品の品質水準を「標準水準」、「高品質水準」および「特定水準」に分類しております。また、各品質水準は、以下に示す用途に製品が使われることを意図しておりますので、当社製品の品質水準をご確認ください。お客様は、当社の文書による事前の承諾を得ることなく、「特定水準」に分類された用途に当社製品を使用することができません。また、お客様は、当社の文書による事前の承諾を得ることなく、意図されていない用途に当社製品を使用することができません。当社の文書による事前の承諾を得ることなく、「特定水準」に分類された用途または意図されていない用途に当社製品を使用したことによりお客様または第三者に生じた損害等に関し、当社は、一切その責任を負いません。なお、当社製品のデータ・シート、データ・ブック等の資料で特に品質水準の表示がない場合は、標準水準製品であることを表します。

標準水準: コンピュータ、OA 機器、通信機器、計測機器、AV 機器、家電、工作機械、パーソナル機器、産業用ロボット

高品質水準: 輸送機器(自動車、電車、船舶等)、交通用信号機器、防災・防犯装置、各種安全装置、生命 維持を目的として設計されていない医療機器(厚生労働省定義の管理医療機器に相当)

特定水準: 航空機器、航空宇宙機器、海底中継機器、原子力制御システム、生命維持のための医療機器(生命維持装置、人体に埋め込み使用するもの、治療行為(患部切り出し等)を行うもの、その他直接人命に影響を与えるもの)(厚生労働省定義の高度管理医療機器に相当)またはシステム

- 8. 本資料に記載された当社製品のご使用につき、特に、最大定格、動作電源電圧範囲、放熱特性、実装条件その他諸条件につきましては、当社保証範囲内でご使用ください。当社保証範囲を超えて当社製品をご使用された場合の故障および事故につきましては、当社は、一切その責任を負いません。
- 9. 当社は、当社製品の品質および信頼性の向上に努めておりますが、半導体製品はある確率で故障が発生したり、使用条件によっては誤動作したりする場合があります。また、当社製品は耐放射線設計については行っておりません。当社製品の故障または誤動作が生じた場合も、人身事故、火災事故、社会的損害などを生じさせないようお客様の責任において冗長設計、延焼対策設計、誤動作防止設計等の安全設計およびエージング処理等、機器またはシステムとしての出荷保証をお願いいたします。特に、マイコンソフトウェアは、単独での検証は困難なため、お客様が製造された最終の機器・システムとしての安全検証をお願いいたします。
- 10. 当社製品の環境適合性等、詳細につきましては製品個別に必ず当社営業窓口までお問合せください。ご使用に際しては、特定の物質の含有・使用を規制する RoHS 指令等、適用される環境関連法令を十分調査のうえ、かかる法令に適合するようご使用ください。お客様がかかる法令を遵守しないことにより生じた損害に関して、当社は、一切その責任を負いません。
- 11. 本資料の全部または一部を当社の文書による事前の承諾を得ることなく転載または複製することを固くお断りいたします。
- 12. 本資料に関する詳細についてのお問い合わせその他お気付きの点等がございましたら当社営業窓口までご 照会ください。
- 注1. 本資料において使用されている「当社」とは、ルネサスエレクトロニクス株式会社およびルネサスエレクトロニクス株式会社がその総株主の議決権の過半数を直接または間接に保有する会社をいいます。
- 注 2. 本資料において使用されている「当社製品」とは、注 1 において定義された当社の開発、製造製品をいいます。

Renesas Starter Kit for R8C/27

ユーザーズマニュアル ルネサス 16 ビットシングルチップマイクロコンピュータ M16C ファミリ/ R8C/Tiny シリーズ

目次

1. まえがき	1
2. 目的	2
3. 電源	3
3.1. 動作条件	3
3.2. 初期起動動作	3
4. ボードレイアウト	4
4.1. 部品レイアウト	4
4.2. ボード寸法図	5
5. ブロック図	6
6. ユーザI/O	7
6.1. スイッチ	7
6.2. LED	7
6.3. ポテンショメータ	8
6.4. シリアルポート	8
6.5. LCDモジュール	8
6.6. オプションリンク	9
6.7. 発振子	13
6.8. リセット回路	13
6.9. LINインタフェース	14
7. モード	15
7.1. ブートモード	
7.2. シングルチップモード	15
8. プログラミング方法	16
9. ヘッダ	
9.1. マイクロコントローラピンヘッダ	
9.2. アプリケーションヘッダ(拡張基板インタフェース)	
10. コード開発	21
10.1. 概要	21
10.2. モードサポート	21
10.3. ブレークポイントサポート	21
10.4. メモリマップ	22
11. 部品配置図	23
12 追加售報	24

1. まえがき

ご注意

本書の内容の一部または全てを予告無しに変更することがあります。

本書の著作権は(株)ルネサスソリューションズにあります。(株)ルネサスソリューションズの書面での承諾無しに、本書の一部又は全てを複製することを禁じます。

商標

本書で使用する商標名または製品名は、各々の企業、組織の商標または登録商標です。

著作権

© Renesas Solutions Corporation. 2007. 本書の著作権は(株)ルネサスソリューションズにあります。

© Renesas Technology Europe Ltd. 2007. 本書の著作権は Renesas Technology Europe Ltd.にあります。

© Renesas Technology Corporation. 2007. 本書の著作権は(株)ルネサステクノロジにあります。

ウェブサイト: http://japan.renesas.com/ (日本サイト)

http://www.renesas.com/ (グローバルサイト)

用語解説

ADC Analog Digital Converter IRQ Interrupt ReQuest (A/D コンバータ) (割り込み要求) CPU Central Processing Unit LCD Liquid Crystal Display (中央処理装置) (液晶ディスプレイ) DAC Digital Analog Converter LED Light Emitting Diode (DA コンバータ) (発光ダイオード) E8a LIN Local Interconnect Network (E8a オンチップデバッギングエミュレータ) (ローカルインターコネクトネットワーク) HEW High-performance Embedded Workshop MCU Microcontroller (統合開発環境) (マイクロコントローラ)

2. 目的

Renesas Starter Kit はルネサス・マイクロコントローラ用の評価ツールです。

本ツールは、以下の特徴を含みます:

- ルネサス・マイクロコントローラのプログラム作成
- ユーザ・コードのデバッグ
- スイッチ、LED、ポテンショメータ等のユーザ用回路
- ユーザまたはサンプル・アプリケーション
- 周辺機能初期化コードのサンプル

CPU ボードはマイクロコントローラの作動に必要な全ての回路を備えています。

本マニュアルは、Renesas Starter Kit ハードウェアの技術的要素を詳しく解説し、クイックスタートガイドおよびチュートリアルマニュアルでは、ソフトウェアのインストール、デバッグ環境を説明しています。

3. 電源

3.1. 動作条件

本 CPU ボードは3V-5V の電源で作動します。

外部電源を使用時のみ、ダイオードによって極性反転保護機能が働きます。

全てのCPUボードには、E8aデバッガが同梱されています。この製品は最大 300mAの電源をCPUボードに供給可能です。 CPUボードが他のシステムに接続されている場合は、そのシステムからCPUボードに電源を供給して下さい。

全CPUボードに、2.1mmのバレル・パワージャックを使用して、センタープラスの電源を供給する為のオプションコネクタが準備されています。

ご注意:

本 Renesas Starter Kit には、過小電圧及び過電圧保護機能はありません。 必ず、センタープラスの電源コネクタをご使用ください。

3.2. 初期起動動作

Renesas Starter Kit ご購入時、CPU ボードにはルネサス・マイクロコントローラにプログラム済みのサンプル・チュートリアル・コードが書き込まれています。ボードに電源を供給すると、ユーザ LED が点滅し始めます。200 回点滅した後、またはスイッチを押した後、LED はポテンショメータがコントロールするレートで点滅します。

4. ボードレイアウト

4.1. 部品レイアウト

以下にボードの最上部層の部品レイアウトを示します。

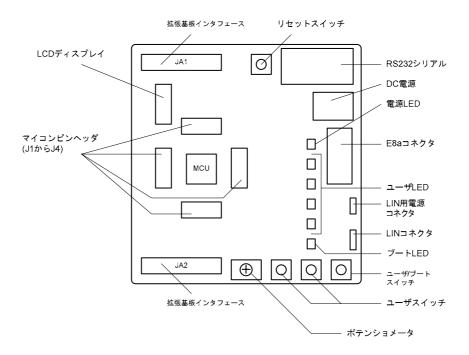


図 4-1: 部品レイアウト

4.2. ボード寸法図

以下の図にボードの寸法およびコネクタの位置を示します。全てのスルーホールコネクタは、インタフェースを簡素化する為に 0.1 インチの共通ピッチとしています。

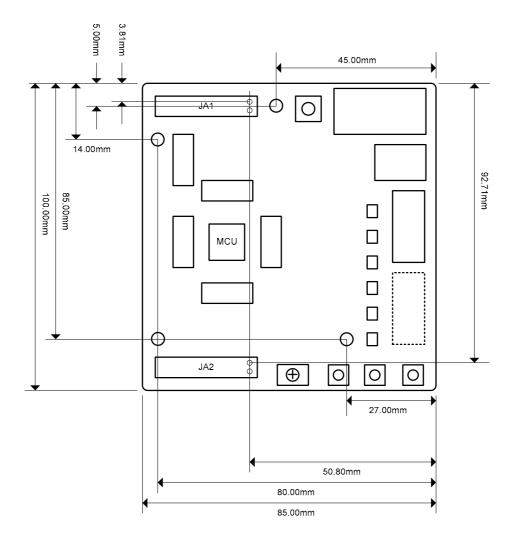


図 4-2:ボード寸法図

5. ブロック図

図 5-1はCPUボードのコンポーネントおよびそれらの接続関係を示すものです。

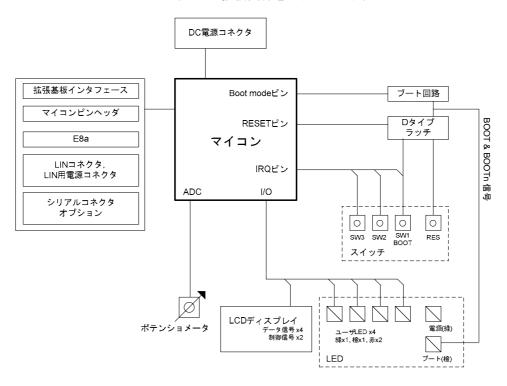


図 5-1: ブロック図

図 5-2はRenesas Starter Kitに必要な接続を示します。

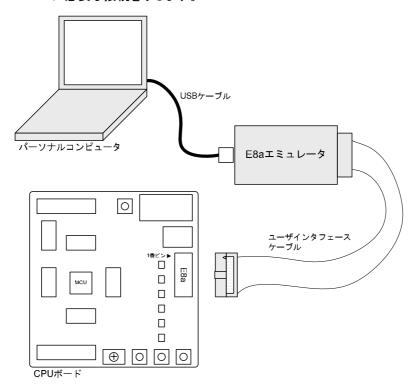


図 5-2: 接続例

6. ユーザ I/O

6.1. スイッチ

CPU ボードには 4 個のスイッチがあります。各スイッチの機能と接続を表 6-1 に示します。

スイッチ	機能	マイクロコントローラ
RES	マイクロコントローラをリセットします。	RESET Pin3
SW1/BOOT*	ユーザ・コントロール用に IRQ に接続。	INT1 Pin10
	RES スイッチと共に使用し、E8a デバッガ未使用時、デバイス	(Port P1_7)
	を BOOT モードにします。	
SW2*	ユーザ・コントロール用に IRQ に接続。	INT3 Pin23
		(Port P3_3)
SW3*	ユーザ・コントロール用にキー入力に接続。	KI0 Pin22
		(Port P1_0)

表 6-1: スイッチ機能

6.2. LED

CPU ボードには 6 個の LED があります。ボードに電源が投入されると、緑の'POWER'LED が点灯します。オレンジの'BOOT'LED は、デバイスがブート・モードであることを示します。その他の 4 個のユーザ LED は、I/O ポートに接続され、対応するポートが low にセットされると点灯します。

表 6-2 に、LED ピン表示およびそれに対応するマイクロコントローラ・ポート端子接続を示します。

LED (色)	マイクロコントローラ・ポート	マイクロコントローラ
	端子機能	端子番 号
LED0 (Green)	Port P0_0	32
LED1 (Orange)	Port P0_1	31
LED2 (Red)	Port P0_2	30
LED3 (Red)	Port P0_3	29

表 6-2: LED ポート

^{*}詳しい接続関係は、回路図を参照して下さい。

6.3. ポテンショメータ

マイクロコントローラの AN11(P1_3)に、単回転ポテンショメータが接続しており、当該端子へのアナログ入力電圧値を VREF と GND 間で変化させる為に使用可能です。

6.4. シリアルポート

マイクロコントローラ・プログラミング・シリアルポート1(CH1)が RS232 トランシーバに接続されています。このシリアルポートは、オプション・レジスタを取付け、D サブコネクタを取付けることで使用できます。接続関係を下の表に示します。

項目	機能	取付 RS232 用
TxD1	プログラミング用 シリアルポート	R43
RxD1	プログラミング用 シリアルポート	R44

他チャネルのシリアルポートがアプリケーション・ヘッダ(拡張基板インタフェース)に接続されています。詳しい接続関係は、回路図を参照して下さい。

表 6-3: シリアルポート設定

6.5. LCD モジュール

J8 コネクタに接続用の LCD モジュールが供給されています。このモジュールは、J1 の上に配置されるよう取付けて下さい。その場合、コネクタの全てのピンが J8 にきちんと収まるようご注意下さい。本 LCD はピン割り当てを削減する為に4 ビットのインタフェースを使用します。コントラスト・コントロールはありません。コントラストは、Renesas Starter Kit に同梱の LCD モジュールの抵抗によって設定されています。

表 6-4 に本コネクタのピン配置および信号名を示します。

Renesas Starter Kit に同梱の LCD モジュールは、5V のみサポートします。

	J8					
ピン	回路ネット名	デバイス・	ピン	回路ネット名	デバイス・	
		ピン			ピン	
1	Ground	_	2	5V Only	_	
3	No Connection	_	4	LCD_RS	14	
5	R/W (Write 側に固定)	_	6	LCD_E	13	
7	No Connection	_	8	No Connection	-	
9	No Connection	_	10	No Connection	_	
11	LCD_D4	28	12	LCD_D5	27	
13	LCD_D6	26	14	LCD_D7	25	

表 6-4: モジュール接続

6.6. オプションリンク

表 6-5 に電源設定に関連するオプション・リンク機能を示します。(初期設定は太字で表示)

	オプション・リンク設定				
参照	機能	取付け時	左記以外(取外し時)	関連	
R16	ボード電源	DC パワージャック(J5)を	接続解除	R18	
		Board_VCC(ボード電源)に接			
		続			
R18	ボード電源	ボード周辺装置へ Board_VCC	ボード周辺装置への供給解除	R16, R17, R19,	
		を供給		R20, R21	
R19	ボード電源	CON_5V(外部 5V)を	接続解除	R18, R20,	
	(外部 5V)	Board_VCC に接続		R21	
R20	ボード電源	CON_3V3(外部 3.3V)を	接続解除	R18, R19,	
	(外部 3.3V)	Board_VCC に接続		R21	
R21	マイコン電源	マイクロコントローラ	電流測定用(低抵抗値の抵抗	R18, R19,	
		VCC(UC_VCC)へ供給	を取付け)	R20	
R28	ユーザ周辺装置用	Board_VCC を SW2、SW3 のプ	接続解除		
	電源	ルアップ電源、LED0~LED3			
		の電源として接続			

表 6-5: 電源設定・オプション・リンク

表 6-6 にクロック設定に関連するオプション・リンク機能を示します。(初期設定は太字で表示)

	オプション・リンク設定				
参照	機能	取付け時	左記以外(取外し時)	関連	
R8	発振子	外部クロックを MCU に接続	メインクロック(X1)またはサブクロッ	R10, R11, R12,	
			ク(X2)を MCU に接続	R13, R14	
R10	発振子	外部クロックを MCU に接続	メインクロック(X1)またはサブクロッ	R8, R11, R12,	
			ク(X2)を MCU に接続	R13, R14	
R11	発振子	サブクロック(X2)を MCU に接	メインクロック(X1)または外部クロ	R8, R10, R12,	
	(サブクロック)	続	ックを MCU に接続	R13, R14, R15	
R12	発振子	サブクロック(X2)を MCU に接	メインクロック(X1)または外部クロ	R8, R10, R11,	
	(サブクロック)	続	ックを MCU に接続	R13, R14, R15	
R13	発振子	メインクロック(X1)を MCU に接	サブクロック(X2)または外部クロッ	R8, R10, R11,	
	(メインクロック)	続	クを MCU に接続	R12, R14	
R14	発振子	メインクロック(X1)を MCU に接	サブクロック(X2)または外部クロッ	R8, R10, R11,	
	(メインクロック)	続	クを MCU に接続	R12, R13	
R15	発振子	サブクロック(X2)用帰還抵抗	接続解除	R11, R12	
	(サブクロック)				

表 6-6: クロック設定・オプション・リンク

表 6-7 にシリアルポート設定に関連するオプション・リンク機能を示します。(初期設定は太字で表示)

	オプション・リンク設定					
参照	機能	取付け時	左記以外(取外し時)	関連		
R42	RS232 シリアル	RS232 トランシーバを無効に	RS232 トランシーバを有効にす	R43, R44		
		する	వ			
R43	プログラミング用	RS232 ポートをプログラミング	接続解除			
	シリアルポート	用シリアルポートに接続				
R44	プログラミング用	RS232 ポートをプログラミング	接続解除			
	シリアルポート	用シリアルポートに接続				

表 6-7: シリアル設定・オプション・リンク

表 6-8 に LIN 設定に関連するオプション・リンク機能を示します。(初期設定は太字で表示)

	オプション・リンク設定				
参照	機能	取付け時	左記以外(取外し時)	関連	
R63	LIN	LIN モードをマスターノードに	LIN モードをスレーブノードに設	R64, R65, R66	
		設定	定		
R64	LIN	LIN-NSLP を MCU 端子	接続解除	R63, R65, R66	
		15(P1_6)に接続			
R65	LIN	LIN-RXD0をMCU 端子	接続解除	R63, R64, R66	
		16(P1_5)に接続			
R66	LIN	LIN-TXD0 を MCU 端子	接続解除	R63, R64, R65	
		17(P1_4)接続			

表 6-8: LIN 設定・オプション・リンク

表 6-9 にアナログ設定に関連するオプション・リンク機能を示します。(初期設定は太字で表示)

	オプション・リンク設定						
参照	参照 機能 取付け時 左記以外(取外し時) 関連						
R6	基準電圧	CON_VREF(基準電圧)をマイ	接続解除	R17			
		クロコントローラに接続					
R17	基準電圧	Board_VCC(ボード電源)を	接続解除	R6			
		CON_VREF に接続					

表 6-9: アナログ設定・オプション・リンク

表 6-10 にマイクロコントローラ端子機能選択に関連するオプション・リンク機能を示します。(初期設定は太字で表示)

	オプション・リンク設定				
参照	機能	取付け時	左記以外(取外し時)	関連	
R46	MCU 端子機能選択	AD3 を MCU 端子 28(P0_4)に 接続	R47 取付時、取外す	R47	
R47	MCU 端子機能選択	IO_4をMCU端子28(P0_4)に接 続	R46 取付時、取外す	R46	
R48	MCU 端子機能選択	AD2 を MCU 端子 27(P0_5)に 接続	R49 取付時、取外す	R49	
R49	MCU 端子機能選択	IO_5をMCU端子27(P0_5)に接 続	R48 取付時、取外す	R48	
R50	MCU 端子機能選択	IRQ1 を MCU 端子 10(P1_7)に 接続	R53 取付時、取外す	R29, R53	
R53	MCU 端子機能選択	TRIGb を MCU 端子 10(P1_7) に接続	R50 取付時、取外す	R29, R50	
R55	MCU 端子機能選択	AD1 を MCU 端子 26(P0_6)に 接続	R56 取付時、取外す	R56	
R56	MCU 端子機能選択	IO_6をMCU端子26(P0_6)に接 続	R55 取付時、取外す	R55	
R57	MCU 端子機能選択	AD0 を MCU 端子 25(P0_7)に 接続	R58 取付時、取外す	R58	
R58	MCU 端子機能選択	IO_7をMCU端子25(P0_7)に接 続	R57 取付時、取外す	R57	
R59	MCU 端子機能選択	IRQ0をMCU端子9(P4_5)に接続	R60 取付時、取外す	R60	
R60	MCU 端子機能選択	TRIGa を MCU 端子 9(P4_5)に 接続	R59 取付時、取外す	R59	

表 6-10: マイクロコントローラ端子機能選択設定・オプション・リンク

表 6-11 にその他の設定に関連するオプション・リンク機能を示します。(初期設定は太字で表示)

	オプション・リンク設定				
参照	機能	取付け時	左記以外(取外し時)	関連	
R29	SW1	SW1 を MCU 端子 10(P1_7)に	接続解除	R50, R53	
		接続			
R45	E8a	E8a 接続を有効にする	オプション・レジスタを取外さな		
			いで下さい		
R54	LCD モジュール	LCD_E を MCU 端子 13(P5_4)	接続解除		
		に接続			

表 6-11: オプション・リンク(その他)

6.7. 発振子

CPUボードには水晶発振子が付いており、ルネサス・マイクロコントローラへのメイン/サブクロック入力を供給します。表 6-12に発振子および本CPUボード上の部品番号を示します。

コンポーネント				
メインクロック (X1)	取付済	20MHz (HC/49U パッケージ)		
サブクロック (X2)	取付済	32.768kHz (90SMX パッケージ)		

表 6-12: 発振子

出荷時、メインクロックX1 がオプション・レジスタを介してマイクロコントローラに接続されています。

6.8. リセット回路

CPUボードには、モード選択とリセット回路をつなぐ簡単なラッチ回路が含まれています。これにより、デバイスのブート・モード、シングルチップ・モード間の変換が簡単に行えます。この回路は、Renesas Starter Kit でのデバイスの動作モード評価を簡素化する為のもので、お客様のボードでは、必要ありません。リセット回路に関する必要事項については、ハードウェア・マニュアルを参照して下さい。

リセット回路はリセット・ボタンを押し、ブート・スイッチの状態をラッチすることで機能します。このコントロールは、その後、MODE 端子の状態を必要に合わせて修正する場合に使用されます。

MODE 端子の状態変更は、デバイスへのダメージの可能性を避ける為、リセット信号がアクティブの場合にのみ行って下さい。

リセットは、抵抗とコンデンサにより一定の期間、アクティブ状態に保持されます。ユーザ・ボードのリセット回路が、リセット・タイミングの必要条件を全て満たすよう、リセット条件をご確認下さい。

6.9. LIN インタフェース

CPU ボードは、ハードウェア LIN インタフェースを持っています。LIN インタフェースはコネクタ J10、LIN 用の電源はコネクタ J9 で利用できます。R8C/27 マイクロコントローラはマスターノードまたはスレーブノードのいずれかで使用できます。なお、R8C/27 マイクロコントローラは、タイマ RA と UARTO によって LIN 通信を実現します。

LIN インタフェースの詳細については、R8C/26 グループ,R8C/27 グループ・ハードウェア・マニュアルを参照して下さい。

7. モード

Renesas Starter Kit はブート・モードおよびシングルチップ・モードをサポートします。

フラッシュ・メモリのプログラム作成については、R8C/26 グループ,R8C/27 グループ・ハードウェア・マニュアルに詳しく記載されています。

7.1. ブートモード

本 Renesas Starter Kit のブート・モード設定を表 7-1 に示します。

MODE	Reset 後の LSI の状態
Low	ブート・モード

表 7-1: ブート・モード端子設定

本 Renesas Starter Kit に同梱のソフトウェアは、E8a または High-performance Embedded Workshop 使用のブート・モードのみサポートしますが、手動でブート・モードに入る為のハードウェアが存在します。この場合、E8a は接続しないで下さい。SW1/BOOT を押し、その状態を保ちます。上記モード端子は、リセットが押され、解除される間、ブート状態に保持されます。ブート・ボタンを解放するとBOOT LED が点灯し、マイクロコントローラがブート・モードの状態にあることを示します。

E8a が取り付けられていない場合またはボードが上記のようなブート・モードに入っていない場合は、MODE 端子は 4.7k の抵抗で high にプルアップされます。

E8a 使用時、上記 MODE 端子は E8a によって制御されます。

7.2. シングルチップモード

E8aが接続されていない場合や、ブート・スイッチが押されていない場合は、MODEが4.7k抵抗によりプルアップされますので、本Renesas Starter Kitは常にシングルチップ・モードで起動するよう設定されています。シングルチップ・モードの詳細は、R8C/26グループ、R8C/27グループ・ハードウェア・マニュアルを参照して下さい。

MODE	Reset 後の LSI の状態
High	シングルチップ・モード

表 7-2: シングルチップ・モード端子設定

8. プログラミング方法

このボードはHigh-performance Embedded Workshopおよび同梱のE8aデバッガと共に使用することを目的としています。 これらのツールを使用せずにマイクロコントローラのプログラムを作成する場合は、詳細についてR8C/26グループ,R8C/27グループ・ハードウェア・マニュアルを参照して下さい。

9. ヘッダ

9.1. マイクロコントローラピンヘッダ

表 9-1 から表 9-4 にマイクロコントローラピンヘッダおよびそれらに対応するマイクロコントローラの接続を示します。ヘッダピンはマイクロコントローラピンに直接接続します。

	J1						
ピン	回路ネット名	デバイス・ピン	ピン	回路ネット名	デバイス・ピン		
1	IIC_SCL	1	2	TMR1	2		
3	RESn	3	4	CON_XOUT	4		
5	Ground (VSS)	5	6	CON_XIN	6		
7	UC_VCC	7	8	MODE_E8B	8		

表 9-1: J1

	J2						
ピン	回路ネット名	デバイス・ピン	ピン	回路ネット名	デバイス・ピン		
1	IRQ0/TRIGa	9	2	IRQ1/TRIGb	10		
3	TRISTn	11	4	MO_UD	12		
5	MO_Wp	13	6	MO_Vp	14		
7	SCIaCK	15	8	SCIaRX	16		

表 9-2: J2

	J3						
ピン	回路ネット名	デバイス・ピン	ピン	回路ネット名	デバイス・ピン		
1	SCIaTX	17	2	AD_POT	18		
3	MO_Up	19	4	P4_2/VREF	20		
5	TMR0	21	6	IRQ3	22		
7	IRQ2	23	8	IIC_SDA	24		

表 9-3: J3

	J4						
ピン	回路ネット名	デバイス・ピン	ピン	回路ネット名	デバイス・ピン		
1	AD0/IO_7	25	2	AD1/IO_6	26		
3	AD2/IO_5	27	4	AD3/IO_4	28		
5	IO_3	29	6	IO_2	30		
7	IO_1	31	8	IO_0	32		

表 9-4: J4

9.2. アプリケーションヘッダ(拡張基板インタフェース)

表 9-5 および表 9-6 に標準アプリケーション・ヘッダ接続を示します。

	JA1								
ピン	^"	ダ名	回路ネット名	デバイス・	ピン	^	ッダ名	回路ネット名	デバイス・
				ピン					ピン
1	Regulated	Supply 1	CON_5V	_	2	Regulat	ted Supply 1	Ground	_
3	Regulated	Supply 2	CON_3V3	_	4	Regulat	ted Supply 2	Ground	-
5	Analogue	Supply	_	_	6	Analogi	ue Supply	-	_
7	Analogue	Reference	CON_VREF	20	8	ADTRO	à	_	_
9	ADC0	IO	AD0*	25	10	ADC1	I1	AD1*	26
11	ADC2	I2	AD2*	27	12	ADC3	13	AD3*	28
13	DAC0		_	_	14	DAC1		_	_
15	IOPort0		IO_0	32	16	IOPort [*]	1	IO_1	31
17	IOPort2		IO_2	30	18	IOPort	3	IO_3	29
19	IOPort4		IO_4*	28	20	IOPort!	5	IO_5*	27
21	IOPort6		IO_6*	26	22	IOPort	7	IO_7*	25
23	Open drain	IRQAEC	IRQ3	22	24	IC Bus	s – (3rd pin)	_	_
25	IC Bus		IIC_SDA	24	26	I ℃ Bus	5	IIC_SCL	1

表 9-5: JA1 標準ヘッダ

^{*} 印の付いたピンは、オプションリンクに依存します。

	JA2						
ピン	ヘッダ名	回路ネット名	デバイス・	ピン	ヘッダ名	回路ネット名	デバイス・
			ピン				ピン
1	Reset	RESn	3	2	External Clock Input	CON_XIN	6
3	Interrupt	_	_	4	Regulated Supply 1	Ground	_
5	WDT overflow	-	_	6	Serial Port	SCIaTX	17
7	Interrupt	IRQ0*	9	8	Serial Port	SCIaRX	16
9	Interrupt	IRQ1*	10	10	Serial Port	SCIaCK	15
11	Motor up/down	MO_UD	12	12	Serial Port Handshake	_	-
13	Motor control	MO_Up	19	14	Motor control	_	-
15	Motor control	MO_Vp	14	16	Motor control	_	_
17	Motor control	MO_Wp	13	18	Motor control	-	-
19	Timer Output	TMR0	21	20	Timer Output	TMR1	2
21	Timer Input	TRIGa*	9	22	Timer Input	TRIGb*	10
23	Interrupt	IRQ2	23	24	Tristate Control	TRISTn	11
25	SPARE	CON_XOUT	4	26	SPARE	AD_POT	18

表 9-6: JA2 標準ヘッダ

^{*} 印の付いたピンは、オプションリンクに依存します。

表 9-7 に LIN ヘッダ接続を示します。

	J9					
ピン	機能	信号名				
1	Power Supply (for LIN module)	VBAT				
2	Ground	Ground				
	J10					
ピン	機能	信号名				
1	Power Supply (for LIN module)	VBAT				
2	LIN Bus Line	LIN				
3	Ground	Ground				

表 9-7: LIN ヘッダ

10. コード開発

10.1. 概要

ご注意: ルネサス・ソフトウェア・ツールを使用してコードをデバッグする場合、CPUボードは必ず E8a 経由で PC の USBポートに接続して下さい。E8a は Renesas Starter Kit に同梱されています。

10.2. モードサポート

High-performance Embedded Workshop は E8a 経由でマイクロコントローラに接続し、プログラムを作成します。お客様はモード・サポートを意識する必要はありません。

10.3. ブレークポイントサポート

High-performance Embedded Workshop は RAM、ROM 共、ユーザ・コードのブレーク・ポイントをサポートします。

コード中のブレーク・ポイント欄をダブル・クリックすることで、ブレーク・ポイントを設定できます。ブレーク・ポイントは再度ダブル・クリックして取外さない限り、残ります。

10.4. メモリマップ

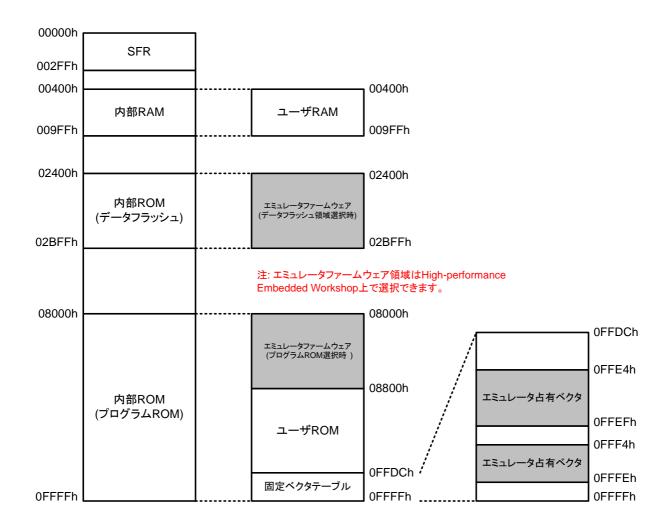


図 10-1: メモリマップ

11. 部品配置図

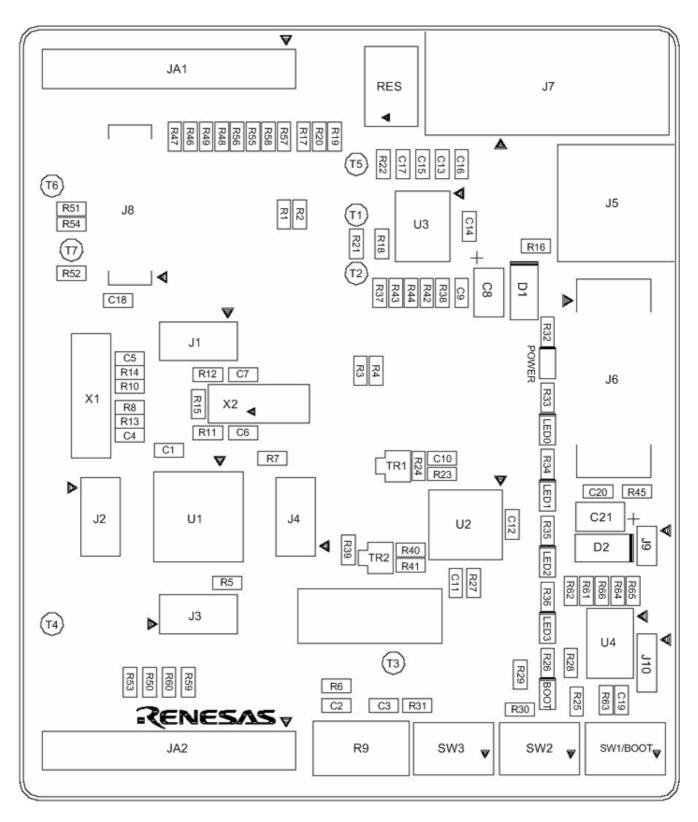


図 11-1: 部品配置図

12. 追加情報

High-performance Embedded Workshop の使用法の詳細は、CD またはウェブサイトに掲載のマニュアルをご覧下さい。

R8C/27 グループのマイクロコントローラに関しては、R8C/26 グループ,R8C/27 グループ・ハードウェア・マニュアルを参照して下さい。

R8C/27アセンブリ言語に関する情報は、R8C/Tinyシリーズ ソフトウェア・プログラミング・マニュアルをご覧下さい。

オンラインの技術サポート、情報等は、以下のルネサスウェブサイトより入手可能です:

http://japan.renesas.com/renesas_starter_kits (日本サイト)

http://www.renesas.com/renesas_starter_kits (グローバルサイト)

技術関連のコンタクトは、以下を通じてお願いいたします。

アメリカ: <u>techsupport.rta@renesas.com</u> ヨーロッパ: <u>tools.support.eu@renesas.com</u>

日本: csc@renesas.com

ルネサスのマイクロコントローラに関する総合情報は、以下のルネサス ウェブサイトより入手可能です:

http://japane.renesas.com/ (日本サイト)

http://www.renesas.com/ (グローバルサイト)

Renesas Starter Kit for R8C/27

ユーザーズマニュアル

発行日 2007 年 8 月 31 日 Rev.3.00

発行 株式会社ルネサスソリューションズ

〒532-0003 大阪市淀川区宮原 4-1-6 アクロス新大阪ビル

©2007 Renesas Solutions Corp., Renesas Technology Europe Ltd. and Renesas Technology Corp., All Rights Reserved.

Renesas Starter Kit for R8C/27 ユーザーズマニュアル

