
User Manual

DA14585 Serial Port Service
Reference Application

UM-B-088

Abstract

This document describes the architecture and the implementation details of the Serial Port Service
application running on the SmartBond™ DA14585 development kit.

UM-B-088

DA14585 Serial Port Service Reference Application

User manual Revision 1.1 25-Jan-2022

CFR0012-00 Rev 3 2 of 41 © 2022 Renesas Electronics

Contents

Abstract .. 1

Contents ... 2

Figures .. 4

Tables ... 4

1 Terms and definitions ... 6

2 References ... 6

3 Introduction.. 7

4 Software features .. 8

4.1 Bluetooth ... 8

4.2 UART... 8

4.3 System .. 8

5 Software architecture .. 9

5.1 Software features .. 9

5.1.1 GAP roles .. 9

5.1.2 Serial Port Service ... 9

5.1.3 UART driver for the interrupt driven project ... 10

5.1.4 Data scheduling and flow control for the interrupt driven project 11

5.1.5 UART driver for the DMA driven project .. 11

5.1.6 Data scheduling and flow control for the DMA driven project.............................. 12

5.2 Source files ... 13

5.3 Header files ... 14

6 Code overview and state machines .. 16

6.1 Application task state machine ... 16

6.1.1 Peripheral state machine ... 16

6.1.2 Central state machine .. 17

6.2 Application callback functions ... 18

6.2.1 user_on_connection() .. 18

6.2.2 user_on_disconnect() .. 18

6.2.3 user_on_set_dev_config_complete() (Central only) .. 18

6.2.4 user_on_scanning_completed() (Central only) ... 18

6.2.5 user_on_adv_report_ind() (Central only) ... 18

6.2.6 user_on_connect_failed() (Central Only) ... 18

6.3 Main loop callback functions ... 19

6.3.1 user_on_init() ... 19

6.3.2 user_on_db_init_complete() .. 19

6.3.3 user_on_system_powered() .. 19

6.3.4 user_before_sleep() ... 19

6.4 Other application functions ... 19

6.4.1 user_scan_start() (Central only) .. 19

6.4.2 user_gapm_cancel() (Central only) ... 19

6.4.3 user_gattc_exc_mtu_cmd() ... 19

6.4.4 user_spsc_process_handler() (Central only) .. 19

6.4.5 user_process_catch() .. 19

6.4.6 user_gapc_param_update_req_ind_handler() (Central only) 20

UM-B-088

DA14585 Serial Port Service Reference Application

User manual Revision 1.1 25-Jan-2022

CFR0012-00 Rev 3 3 of 41 © 2022 Renesas Electronics

6.5 Data management and flow control for interrupt driven project (user_sps_scheduler) 20

6.5.1 user_scheduler_init() ... 20

6.5.2 user_scheduler_reinit() .. 20

6.5.3 user_ble_pull() ... 20

6.5.4 user_ble_push() ... 20

6.5.5 user_periph_pull() .. 21

6.5.6 user_periph_push() .. 21

6.5.7 uart_rx_callback() .. 21

6.5.8 uart_tx_callback() .. 21

6.5.9 uart_flow_control_callback() .. 21

6.5.10 user_override_ble_xon() .. 21

6.5.11 user_rwip_sleep_check() ... 21

6.5.12 user_sps_sleep_check() .. 21

6.5.13 user_sps_sleep_restore() .. 21

6.6 Cyclic buffer for interrupt driven project (user_buffer) .. 22

6.6.1 user_buffer_create() .. 22

6.6.2 user_buffer_write_items() and user_buffer_read_items() 22

6.6.3 user_buffer_read_address() and user_buffer_release_items() 22

6.6.4 user_buffer_write_check() and user_buffer_cfm_write() 22

6.6.5 user_buffer_item_count()... 22

6.6.6 user_check_buffer_almost_full() and user_check_buffer_almost_empty() 22

6.7 Data management and flow control for DMA driven project
(user_sps_schedule_dma.c) ... 22

6.7.1 user_dma_sps_sleep_check() ... 22

6.7.2 user_check_dma_uart_rx_to() .. 22

6.7.3 user_check_set_flow_off() .. 23

6.7.4 bool user_check_set_flow_on() .. 23

6.8 Linked Lists for DMA driven project (user_sps_buffer_dma.c) ... 23

6.8.1 user_init_queues() ... 23

6.8.2 user_ble_to_dma_uart() .. 23

6.8.3 user_dma_uart_to_ble() .. 23

6.8.4 user_dma_uart_to_ble_confirm() .. 23

6.9 Application task interface to Serial Port Service ... 23

6.9.1 user_spss_create_db() / user_spsc_create_db() .. 23

6.9.2 user_spss_enable() / user_spsc_enable() .. 23

6.9.3 user_send_ble_data() .. 23

6.9.4 user_send_ble_flow_ctrl().. 24

6.9.5 user_sps_server_enable_cfm_handler() and
user_sps_client_enable_cfm_handler() ... 24

6.9.6 user_sps_server_data_tx_cfm_handler() and
user_sps_client_data_tx_cfm_handler() .. 24

6.9.7 user_sps_server_data_write_ind_handler() and
user_sps_client_data_rx_ind_handler() .. 24

6.9.8 user_sps_server_tx_flow_ctrl_ind_handler() and
user_sps_client_tx_flow_ctrl_ind_handler() .. 24

6.9.9 user_sps_server_error_ind_handler() (Peripheral Only) 24

6.10 Serial Port Service .. 25

6.11 Sequence diagrams .. 26

UM-B-088

DA14585 Serial Port Service Reference Application

User manual Revision 1.1 25-Jan-2022

CFR0012-00 Rev 3 4 of 41 © 2022 Renesas Electronics

7 DSPS Android and iOS application ... 30

7.1 Overview ... 30

7.2 Installation ... 31

7.2.1 Android application .. 31

7.2.2 iOS application ... 31

7.3 Device list .. 32

7.4 Functionality tabs .. 33

7.4.1 Console Mode .. 33

7.4.2 Read/Transfer Mode .. 33

7.4.3 Data File Streaming Mode ... 34

7.5 Information and Disclaimer Screens ... 34

8 Instructions for setting up a demonstration ... 35

8.1 Hardware setup for Basic DK .. 35

8.2 Hardware setup for PRO DK ... 35

8.3 DK to DK connection setup ... 36

8.4 Android / iOS application to DK connection setup .. 37

8.5 Run DA14585 application with SmartSnippets ... 37

9 SPS performance .. 37

Revision history ... 40

Figures

Figure 1: DSPS 585 Data and flow control for interrupt driver operation .. 11
Figure 2: DSPS 585 Data and flow control for DMA driver operation ... 12
Figure 3: SRS application project overview... 13
Figure 4: Peripheral application FSM .. 16
Figure 4: Central application FSM ... 17
Figure 5: UART to BLE data transfer sequence diagram. Interrupt driven UART. 26
Figure 6: BLE to UART data transfer sequence diagram. Interrupt driven UART. 27
Figure 7: UART to BLE data transfer sequence diagram. DMA driven UART. 28
Figure 8: BLE to UART data transfer sequence diagram. DMA driven UART. 29
Figure 9: DSPS icon – Android – iOS ... 30
Figure 10: DSPS on Play Store ... 31
Figure 11: Installing the DSPS application .. 31
Figure 12: DSPS on App Store ... 32
Figure 13: Scan Device Screen ... 32
Figure 14: Select Operation Mode .. 33
Figure 15: Application main screens ... 33
Figure 16: Information & Disclaimer Screens .. 34
Figure 17: Basic DK pins that should be connected ... 35
Figure 18: UART with HW flow control on PRO kit ... 36
Figure 19: Performance results, DLE Devices. DMA driven projects.. 39

Tables

Table 1: SPS Project Paths ... 9
Table 2: Device services/characteristics ... 9
Table 3: Server Service API messages ... 10
Table 4: Client Service API messages .. 10
Table 6: SPS application files .. 13
Table 7: Header files of the SPS application ... 14
Table 8: Peripheral application task: FSM states .. 16
Table 9: State transition table of the peripheral application task FSM .. 17
Table 10: Central application task: FSM states ... 17
Table 11: State transition table of the central application task FSM ... 18
Table 12: Performance results, DLE Devices. Interrupt driven projects. .. 38

UM-B-088

DA14585 Serial Port Service Reference Application

User manual Revision 1.1 25-Jan-2022

CFR0012-00 Rev 3 5 of 41 © 2022 Renesas Electronics

Table 13: Performance results, non DLE Devices. Interrupt driven projects. 38

UM-B-088

DA14585 Serial Port Service Reference Application

User manual Revision 1.1 25-Jan-2022

CFR0012-00 Rev 3 6 of 41 © 2022 Renesas Electronics

1 Terms and definitions

BLE Bluetooth Low Energy

DK Development Kit

DSPS Dialog Serial Port Service

FSM Finite State Machine

GAP Generic Access Profile

GAPC Generic Access Profile Controller

GAPM Generic Access Profile Manager

GATT Generic ATTribute profile

HWM High Watermark

LWM Low Watermark

MTU Maximum Transmission Unit

SPS Serial Port Service

UART Universal Asynchronous Receiver/Transmitter

2 References

[1] UM-B-080, DA14585 Software Developer’s Guide, User manual, Dialog Semiconductor.

[2] UM-B-079, DA14585 Software Platform Reference, User manual, Dialog Semiconductor.

[3] RW-BLE-GAP-IS, GAP Interface Specification, Riviera Waves.

[4] UM-B-048, Getting Started with the DA1458x Development Kit – Basic, User manual, Dialog
Semiconductor.

[5] UM-B-049, Getting Started with the DA1458x Development Kit – Pro, User Manual, Dialog
Semiconductor.

[6] FT_000054, TTL-232R TTL to USB Serial Converter Range of Cables, Datasheet, Future
Technology Devices International Ltd.

[7] https://www.bluetooth.com/specifications/assigned-numbers/generic-access-profile

https://www.bluetooth.com/specifications/assigned-numbers/generic-access-profile

UM-B-088

DA14585 Serial Port Service Reference Application

User manual Revision 1.1 25-Jan-2022

CFR0012-00 Rev 3 7 of 41 © 2022 Renesas Electronics

3 Introduction

The Serial Port Service (SPS) emulates a serial cable communication. It provides a simple substitute
for RS-232 connections, including the familiar software flow control logic via Bluetooth

®
 Low Energy.

The SPS software distribution includes the application and profile source codes.

Software has been developed for the DA14585 Development Kit (DK) – PRO and DA14585
Development Kit (DK) – Basic. It is also developed for Android and iOS tablets and mobile phones,
allowing a serial port to be emulated when using two DA14585 DKs, or a DA14585 DK and an
Android or iOS device. The DA14585 DK can either function in the GAP central role, or the peripheral
role. The Android or iOS device only functions in the GAP central role.

The application on the central device automatically starts scanning and connects to the first
discovered peripheral device supporting the serial port service. The Central device also handles
situations of connection loss by stopping the flow of data and automatically trying to re-establish a
connection. Both central and peripheral devices can operate either in active mode or extended sleep
mode.

There are four projects provided. Two projects (central and peripheral) uses interrupt driven UART
operations recommended for UART baud rates lower or equal to 115200 that uses hardware or
software flow control. The other two projects uses DMA driven UART operation for baud rates up to
921600, using hardware flow control only optimized for DLE operation and high speeds.

To get familiar with the DA14585’s software and hardware, read any of the following:

● DA14585 Software Development Guide [1],

● DA14585 Platform Reference [1],

● Smart Development Kit – Basic user guide [4]

● Smart Development Kit – PRO user guide [5] documents.

The Android or iOS application, which is described in detail later in this document (see Section 0),
scans for BLE peripheral devices that are advertising and displays them in a scan list. The user can
select the peripheral device to connect the Android or iOS device.

UM-B-088

DA14585 Serial Port Service Reference Application

User manual Revision 1.1 25-Jan-2022

CFR0012-00 Rev 3 8 of 41 © 2022 Renesas Electronics

4 Software features

This section explains the more advanced software features of the Dialog SPS reference application.

4.1 Bluetooth

● GAP Central/Peripheral roles

● GATT-based bidirectional serial link

● Write without Response/Notification methods for data streaming.

● Bluetooth flow control supported.

● Single point-to-point connection

● Automatic reconnection (Note 1) in case of link loss

Note 1 In case of connection loss during data transfer, data loss is possible due to remaining data in the BLE
buffers.

4.2 UART

● Hardware and Software (Note 2) flow control are supported for the interrupt driven project

● Hardware flow control only for the DMA driven project

● Binary data transfer supported in hardware flow control mode

● UART baud rates: 9600 to 115200 for the interrupt driven project

● UART baud rates up to 921600 for the DMA driven project

Note 2 Software flow control is partially supported in extended sleep mode. Only incoming serial data can be
controlled by DA14585 device. Any incoming XON/XOFF will be ignored during sleep time. On the
contrary, software flow control is fully supported in Active mode. Also upon the reception of a flow off
signal (0x19) an amount of up to 16 bytes can be transmitted by the DA14585 until transmission stops.

4.3 System

● iOS or Android application.

● Extended sleep mode

● Transfer rates up to 80kbps with 115200 baud rate (Interrupt Driven).

● Transfer rates up to 640 kbps for 921600 baud rate (DMA Driven).

● Memory Size of application image: 18K Code/ 16K Ram for the DMA driven project, 19K
Code/12K Ram for the interrupt driven project.

UM-B-088

DA14585 Serial Port Service Reference Application

User manual Revision 1.1 25-Jan-2022

CFR0012-00 Rev 3 9 of 41 © 2022 Renesas Electronics

5 Software architecture

5.1 Software features

5.1.1 GAP roles

The DA14585 SPS application supports both GAP central and peripheral roles.

Table 1: SPS Project Paths

Role Keil UV4 Project Path (Note 3)

Device,
Interrupt Driven

\projects\target_apps\dsps\dsps_device\Keil_5\dsps_device.uvprojx

Device, DMA \projects\target_apps\dsps\dsps_device_dma\Keil_5\dsps_device_dma.uvprojx

Central,
Interrupt Driven

\target_apps\dsps\dsps_host\Keil_5\dsps_host.uvprojx

Central, DMA \target_apps\dsps\dsps_host_dma\Keil_5\dsps_host_dma.uvprojx

The GAP central role application operates as a Serial Port Service client and the GAP peripheral role
application as a Serial Port Service server.

Note 3 All projects have been compiled and tested with Keil uVision V5.23.0.0

5.1.2 Serial Port Service

The proprietary Dialog Serial Port Service (DSPS) is used to send and receive data and software
flow control signals through a BLE connection. The BLE database is kept in the server’s profile and it
has two 250-byte characteristics for data transmission and reception and a one byte characteristic for
the flow control; 128-bit UUIDs are used for the service and the characteristics.

The Serial Port Service uses a ‘Write with no response’ method for transmission of data from the
GATT client to the GATT server and ‘Notify’ for the reverse path.

The details of the SP service and its characteristics are outlined in Table 2.

Table 2: Device services/characteristics

Service/

Characteristic

UUID Properties Size
(B)

SPS 0x0783b03e8535b5a07140a304d2495c
b7

ATT_CHAR_PROP_RD -

SPS_SERVER_TX 0x0783b03e8535b5a07140a304d2495c
b8

ATT_CHAR_PROP_NTF 250

SPS_SERVER_RX 0x0783b03e8535b5a07140a304d2495c
ba

ATT_CHAR_PROP_WR_NO_RES
P

250

SPS_FLOW_CTRL 0x0783b03e8535b5a07140a304d2495c
b9

ATT_CHAR_PROP_WR_NO_RES
P| ATT_CHAR_PROP_NTF

1

In the following tables the API messages are outlined, that are used for the communication of the
DA14585 application task with the SPS server and client task.

UM-B-088

DA14585 Serial Port Service Reference Application

User manual Revision 1.1 25-Jan-2022

CFR0012-00 Rev 3 10 of 41 © 2022 Renesas Electronics

Table 3: Server Service API messages

Message Direction Description

SPS_SERVER_ENABLE_REQ IN Enables the server service. Sent by the application
task at connection establishment.

SPS_SERVER_ENABLE_CFM OUT Confirmation of the server service enable message.
Sent by the profile to the application at completion of
the server service enable task.

SPS_SERVER_DATA_TX_REQ IN Sends data to peer device. Sent by application when
data is available to transmit.

SPS_SERVER_DATA_TX_CFM OUT Confirms that data is put into the BLE TX buffer. This
is sent by the profile to inform the application that data
is put to send.

SPS_SERVER_DATA_WRITE_IND OUT Indication that data has been received. This is sent by
the profile to the application including the data that
was received.

SPS_SERVER_RX_FLOW_CTRL_REQ OUT Sends a flow control BLE byte to the connected client.
This is sent by the application when there is a state
change or when it is requested.

SPS_SERVER_TX_FLOW_CTRL_IND IN Indication of a client request to update the flow control
state by sending the device’s current BLE TX state.

SPS_SERVER_ERROR_IND OUT Indication that an error has occurred.

Table 4: Client Service API messages

Message Direction Description

SPS_CLIENT_ENABLE_REQ IN Enables the client service. This is sent by the
application task when connection is established.

SPS_CLIENT_ENABLE_CFM OUT Confirmation of the client service enable message.
Sent by the profile to the application at completion of
client service enable task.

SPS_CLIENT_DATA_TX_REQ IN Sends data to a peer device. This is sent by the
application when there is data available to transmit.

SPS_CLIENT_DATA_TX_CFM OUT Confirms that data have been put in the BLE TX
buffer. Sent by the profile to inform the application
that data has been put to send.

SPS_CLIENT_DATA_RX_IND OUT Indication that data has been received. Sent by the
profile to the application including the data that have
been received.

SPS_CLIENT_RX_FLOW_CTRL_REQ OUT Sends a flow control BLE byte to the connected client.
Sent by the application when there is a state change
or when it is requested.

SPS_CLIENT_TX_FLOW_CTRL_IND IN Indication of the server request to update the flow
control state by the sending device’s current BLE TX
state.

5.1.3 UART driver for the interrupt driven project

The UART driver controls the UART peripheral module of the DA14585 and manages the serial
connection between the DA14585 and the external host device. It uses an interrupt based
transmission and reception scheme requiring low CPU resources. It provides both software
(XON/XOFF) and hardware (RTS/CTS) flow control schemes, respectively selected by the

CFG_UART_SW_FLOW_CTRL and CFG_UART_HW_FLOW_CTRL definitions in the user_periph_setup.h

configuration file. Selecting the UART baud rate is done by the setting the value of BAUDRATE_CONFIG

UM-B-088

DA14585 Serial Port Service Reference Application

User manual Revision 1.1 25-Jan-2022

CFR0012-00 Rev 3 11 of 41 © 2022 Renesas Electronics

(1-5) in the same file. Both baud rate and flow control methods can be set by the configuration

wizard tab that is activated when user_periph_setup.h is opened.

5.1.4 Data scheduling and flow control for the interrupt driven project

The data scheduling and part of the flow control mechanism (flow control signals generated from the
cyclic buffer) are implemented in the application task layer. On the other hand, incoming flow control
signal management is implemented in the BLE SPS profile and UART driver accordingly.

Figure 1: DSPS 585 Data and flow control for interrupt driver operation

Two cyclic FIFOs are allocated at system start-up. The UART driver pushes the data received from

the UART interface into the periph_to_ble_buffer, while the Serial Port Service pushes the data

received via the BLE interface into the ble_to_periph_buffer. Data transmission scheduling is done

using the following methods:

● For the data received over the UART interface, an asynchronous process checks the presence of

pending data in the periph_to_ble_buffer. If no data is being transferred, transfer is initiated. It

schedules data transmission at the head of the FIFO to the BLE interface, via a data streaming
mechanism and the corresponding SPS characteristic. Then a completion event scheme in the
application task is used to schedule the next data transmission.

● The scheduling of data transmission to the UART is initiated in the process of pushing the data

into the ble_to_periph_buffer, performed by the SPS profile. If the UART interface path is

already busy, a check for pending data in the FIFO is done again after the active UART transmit
process.

The DA14585 SPS application uses both UART flow control methods: software (XON/XOFF) flow
control and hardware (RTS/CTS) flow control. For the BLE interface, a similar flow control
mechanism has been developed in SPS using the SPS_FLOW_CTRL characteristic.

High watermark (HWM) and low watermark (LWM) values are defined for each FIFO. This is done to
set the buffer utilization level at which a flow off or flow on signal is sent to the corresponding
interface. Flow control signaling on the BLE interface is also triggered when the corresponding flow
control signal is received from the UART interface.

5.1.5 UART driver for the DMA driven project

The UART driver controls the UART peripheral module of the DA14585 and manages the serial
connection between the DA14585 and the external host device. It uses a DMA based transmission
and reception scheme requiring minimal CPU resources. It provides hardware (RTS/CTS) flow
control scheme only. The selection of the UART baud rate is done by the setting the value of

UM-B-088

DA14585 Serial Port Service Reference Application

User manual Revision 1.1 25-Jan-2022

CFR0012-00 Rev 3 12 of 41 © 2022 Renesas Electronics

BAUDRATE_CONFIG (1-8) in the user_periph_setup.h. Both baud can be set by the configuration

wizard tab that is activated when user_periph_setup.h is opened.

Figure 2: DSPS 585 Data and flow control for DMA driver operation

5.1.6 Data scheduling and flow control for the DMA driven project

The data scheduling and part of the flow control mechanism (flow control signals generated from the
cyclic buffer) are implemented in the application task layer. Incoming flow control signal management
is implemented in the BLE SPS profile and UART driver accordingly.

Two linked lists with zero members are allocated on startup. The dma_uart.rx_list_ready holds

buffers received by the UART and waiting to be transmitted by the BLE interface.

The dma_uart.tx_list_ready holds buffers received via the BLE interface waiting to be transmitted

by the UART. The scheduling of data transmission is performed using the following methods:

In order to minimize data copying and the allocation of heap memory a buffer optimization scheme

has been used. The buffers used in DMA UART receive are type of gattc_write_cmd (central) or

gattc_send_evt_cmd (peripheral) and are placed in dma_uart.rx_list_ready. When scheduling is

performed they are detached from the linked list and they are forwarded from the user space to

profile for transmission. For the opposite direction, the buffers received by the BLE gattc_event_ind

(central) or gattc_write_req_ind (peripheral) are placed in dma_uart.tx_list_ready. When

scheduling is performed they are detached from the linked list and they are forwarded from the user
space to DMA for transmission over UART.

For the data received over the UART interface, an asynchronous process (user_uart_to_ble)

checks the presence of pending buffers in the dma_uart.rx_list_ready and when there is no data

transfer ongoing it initiates a transfer by sending SPS_CLIENT_DATA_TX_REQ (central) or

SPS_SERVER_DATA_TX_REQ (peripheral). For the opposite direction, an asynchronous process

(dma_uart_tx_async) checks the presence of pending buffers (dma_uart.tx_list_ready) and when

there is no data transfer ongoing it initiates a transfer by calling dma_uart_write.

When the transfer of buffers over DMA is complete two callbacks are used. On the UART DMA

receive path the dma_uart_rx_callback places the new buffer at the end of

dma_uart.rx_list_ready and if the flow of data is not disabled reinitiates the read of UART via

DMA. On the UART DMA transmit path the dma_uart_tx_callback is called when the transmission

of a buffer over UART is complete. This function checks if more buffers exist in

dma_uart.tx_list_ready and reinitiates the transfer by calling dma_uart_write using a detached

buffer from dma_uart.tx_list_ready.

UM-B-088

DA14585 Serial Port Service Reference Application

User manual Revision 1.1 25-Jan-2022

CFR0012-00 Rev 3 13 of 41 © 2022 Renesas Electronics

High watermark (HWM) and low watermark (LWM) values are defined for each linked list to set a
buffer utilization level at which a flow off or flow on signal is sent to the corresponding interface.

Regarding the DMA UART TX interface the TX_FLOW_OFF_LVL and TX_FLOW_ON_LVL applied on

dma_uart.tx_list_ready define when the FLOW_ON and FLOW_OFF will be send to the peer device.

For the DMA UART RX interface the RX_FLOW_ON_LVL and RX_FLOW_OFF_LVL applied on

dma_uart.rx_list_ready define when the RTS will be asserted or de-asserted.

The values of TX_FLOW_OFF_LVL, TX_FLOW_ON_LVL, RX_FLOW_ON_LVL, RX_FLOW_OFF_LVL can be

trimmed from dma_uart_sps.h.

Flow control signaling on the BLE interface is also triggered when the corresponding flow control

signal is received from the UART interface. The dma_uart_gpio_callback is triggered when the host

CTS signal is toggled. This function sends FLOW_ON or FLOW_OFF over BLE to the peer device in

order to block the flow of more data.

5.2 Source files

Figure 3: SRS application project overview

The main files of the SPS application project are listed in Table 5.

Table 5: SPS application files

File name (Note 4) Description

.\dsps_device\src\user_sps_device.c

.\dsps_host\src\user_sps_host.c

.\dsps_device_dma\src\user_sps_device_dma.c

.\dsps_host_dma\src\user_sps_host_dma.c

Application main functions and system callbacks.

.\dsps_device\src\user_spss.c

.\dsps_device\src\user_spss_task.c

.\dsps_device_dma\src\user_spss.c

.\dsps_device_dma\src\user_spss_task.c

Application profile specific functions (Peripheral role).

SDK_585

sdk

projects

target_apps

dsps

common

src

driver profiles

spsc

spss

dsps_device

src

config

platform

dsps_host

src

config

platform

dsps_device_dma

src

config

platform

dsps_host_dma

src

config

platform

UM-B-088

DA14585 Serial Port Service Reference Application

User manual Revision 1.1 25-Jan-2022

CFR0012-00 Rev 3 14 of 41 © 2022 Renesas Electronics

File name (Note 4) Description

.\dsps_host\src\user_spsc.c

.\dsps_host\src\user_spsc_task.c

.\dsps_host_dma\src\user_spsc.c

.\dsps_host_dma\src\user_spsc_task.c

Application profile specific functions (Central role).

.\dsps_device\src\platform\user_periph_setup.c

.\dsps_host\src\platform\user_periph_setup.c

.\dsps_device_dma\src\platform\user_periph_setup.c

.\dsps_host_dma\src\platform\user_periph_setup.c

Peripheral modules initialization, GPIO pins assignment.

.\common\src\user_scheduler.c Application level UART control, FIFOs management,
application level data transfer. Interrupt driven UART.

.\common\src\user_buffer.c FIFO management functions. Interrupt driven UART.

.\common\src\user_sps_utils.c Utilities used by the DSPS project header file

.\common\src\driver\uart_sps.c Custom UART driver with hardware/software flow
control. Interrupt driven UART.

.\common\src\user_sps_buffer_dma.c Application level, linked list management and data
transfer. DMA driven UART.

.\common\src\user_sps_schedule_dma.c Sleep scheduling, asynchronous RX/TX operations and
flow control check. DMA driven UART.

.\common\src\driver\dma_uart_sps.c Custom DMA UART driver with hardware flow control.

.\common\src\profiles\spsc\sps_client.c

.\common\src\profiles\spsc\sps_client_task.c

Serial Port Service, GATT client role.

.\common\src\profiles\spss\sps_server.c

.\common\src\profiles\spss\sps_server_task.c

Serial Port Service, GATT server role.

Note 4 SPS files are in folder ‘projects\target_apps\dsps’ and all displayed paths are relative to this folder.

5.3 Header files

The application’s header files and their purpose are listed in Table 6.

Table 6: Header files of the SPS application

File name (Note 5) Purpose

.\dsps_device\src\config\da1458x_config_advanced.h

.\dsps_host\src\config\da1458x_config_advanced.h

.\dsps_device_dma\src\config\da1458x_config_advanced.h

.\dsps_host_dma\src\config\da1458x_config_advanced.h

Advanced compile configuration files.

.\dsps_device\src\config\da1458x_config_basic.h

.\dsps_host\src\config\da1458x_config_basic.h

.\dsps_device_dma\src\config\da1458x_config_basic.h

.\dsps_host_dma\src\config\da1458x_config_basic.h

Basic compile configuration files.

.\dsps_device\src\config\user_callback_config.h

.\dsps_host\src\config\user_callback_config.h

.\dsps_device_dma\src\config\user_callback_config.h

.\dsps_host_dma\src\config\user_callback_config.h

Callback functions configuration files.

.\dsps_device\src\config\user_config.h

.\dsps_host\src\config\user_config.h

.\dsps_device_dma\src\config\user_config.h

.\dsps_host_dma\src\config\user_config.h

User configuration files.

UM-B-088

DA14585 Serial Port Service Reference Application

User manual Revision 1.1 25-Jan-2022

CFR0012-00 Rev 3 15 of 41 © 2022 Renesas Electronics

File name (Note 5) Purpose

.\dsps_device\src\config\user_modules_config.h

.\dsps_host\src\config\user_modules_config.h

dsps_device_dma\src\config\user_modules_config.h

.\dsps_host_dma\src\config\user_modules_config.h

User modules configuration files.

.\dsps_device\src\config\user_periph_setup.h

.\dsps_host\src\config\user_periph_setup.h

.\dsps_device_dma\src\config\user_periph_setup.h

.\dsps_host_dma\src\config\user_periph_setup.h

Peripherals setup header files.

.\dsps_device\src\config\user_profiles_config.h

.\dsps_host\src\config\user_profiles_config.h

.\dsps_device_dma\src\config\user_profiles_config.h

.\dsps_host_dma\src\config\user_profiles_config.h

Configuration files for the profiles used in the
application.

.\dsps_device\src\user_sps_device.h

.\dsps_host\src\user_sps_host.h

.\dsps_device_dma\src\user_sps_device.h

.\dsps_host_dma\src\user_sps_host.h

Application main functions and system callbacks
header files.

.\dsps_device\src\user_spss.h

.\dsps_device\src\user_spss_task.h

.\dsps_device_dma\src\user_spss.h

.\dsps_device_dma\src\user_spss_task.h

Application profile specific functions (Peripheral
role) header files.

.\sps_host\src\user_spsc.h

.\sps_host\src\user_spsc_task.h

.\sps_host_dma\src\user_spsc.h

.\sps_host_dma\src\user_spsc_task.h

Application profile specific functions (Central
role) header files.

.\common\src\user_scheduler.h Scheduler header file. Interrupt driven project.

.\common\src\user_schedule_dma.h Scheduler header file. DMA driven project.

.\common\src\user_buffer.h FIFO management functions header file.
Interrupt driven project.

.\common\src\user_sps_buffer_dma.h Linked list management functions header file.
DMA driven project.

.\common\src\user_sps_utils.h Utilities used by the DSPS project header file

.\common\src\driver\uart_sps.h Custom UART driver header file. Interrupt driven
project.

.\common\src\driver\dma_uart_sps.h Custom DMA UART driver header file. DMA
UART driven project.

.\common\src\profiles\spsc\sps_client.h

.\common\src\profiles\spsc\sps_client_task.h

Serial Port Service header file, GATT client role.

.\common\src\profiles\spss\sps_server.h

.\common\src\profiles\spss\sps_server_task.h

Serial Port Service header file, GATT server
role.

Note 5 SPS files are in folder ‘projects\target_apps\dsps’ and all displayed paths are relative to this folder.

UM-B-088

DA14585 Serial Port Service Reference Application

User manual Revision 1.1 25-Jan-2022

CFR0012-00 Rev 3 16 of 41 © 2022 Renesas Electronics

6 Code overview and state machines

This section provides information about important functions of the application and a detailed
description of the Finite State Machines used.

6.1 Application task state machine

6.1.1 Peripheral state machine

The FSM of the peripheral SPS application consists of the following states:

Table 7: Peripheral application task: FSM states

State Status

APP_DISABLED Server disabled, database not created

APP_DB_INIT Database initialization in progress

APP_CONNECTABLE Advertising

APP_CONNECTED Connected to central

Figure 4 shows the FSM of the peripheral application.

APP_
CONNECTED

Connection Request

APP_DISABLEDAPP_DISABLED

APP_
CONNECTABLE

GAPM Device Ready Indication

Disconnection
or Connection

Request Failure

Parameter Update

APP_
DB_INIT

DB initialized

Figure 4: Peripheral application FSM

UM-B-088

DA14585 Serial Port Service Reference Application

User manual Revision 1.1 25-Jan-2022

CFR0012-00 Rev 3 17 of 41 © 2022 Renesas Electronics

Table 8: State transition table of the peripheral application task FSM

State transition Event

From >>> To Action

APP_DISABLED Reception of GAPM configuration completion indication.

APP_DB_INIT Start database initialization of profile.

APP_DB_INIT Database initialization procedure is completed.

APP_CONNECTABLE Start server service.

APP_CONNECTABLE Central initiates connection. Reception of
GAPC_CONNECTION_REQ_IND message.

APP_CONNECTED Start server profile.

APP_CONNECTED Disconnect indication received (GAPC_DISCONNECT_IND).

APP_CONNECTABLE Start advertising.

APP_CONNECTED Parameter update request.

APP_CONNECTED Update connection parameters

6.1.2 Central state machine

The FSM of the central SPS application consists of the following states:

Table 9: Central application task: FSM states

State Status

APP_DISABLED Client disabled, database not created

APP_DB_INIT Database initialization in progress

APP_CONNECTABLE Scanning

APP_CONNECTED Connected to peripheral

Figure 5 shows the FSM of the central application.

APP_
CONNECTED

Connection Request

APP_DISABLEDAPP_DISABLED

APP_
CONNECTABLE

(Scanning)

GAPM Device Ready Indication

Disconnection
or Connection

Request Failure

Parameter Update

Scan Completion

Figure 5: Central application FSM

UM-B-088

DA14585 Serial Port Service Reference Application

User manual Revision 1.1 25-Jan-2022

CFR0012-00 Rev 3 18 of 41 © 2022 Renesas Electronics

Table 10: State transition table of the central application task FSM

State transition Event

From >>> To Action

APP_DISABLED Reception of GAPM device ready indication.

APP_CONNECTABLE Start client service.

APP_CONNECTABLE Appropriate peripheral found. Reception of
GAPC_CONNECTION_REQ_IND message.

APP_CONNECTED Start server profile.

APP_CONNECTABLE Scan procedure completed.

APP_CONNECTABLE Restart scanning.

APP_CONNECTED Disconnect indication received (GAPC_DISCONNECT_IND).

APP_CONNECTABLE Start scanning.

APP_CONNECTED Parameter update request.

APP_CONNECTED Update connection parameters

6.2 Application callback functions

6.2.1 user_on_connection()

This function is called when a connection request (GAPC_CONNECTION_REQ_IND) is received from the

GAPC. The peripheral application enables the profiles and services (default_app_on_connection()

[2]). It also initializes an MTU exchange procedure and a parameter update. The central application
disables connection timer, enables profiles and services and initializes an MTU exchange procedure.

6.2.2 user_on_disconnect()

This function is called when a disconnect indication (GAPC_DISCONNECT_IND) is received from the

GAPC. The peripheral application restarts advertising (default_app_on_disconnect() [2]). The

central application restarts scanning.

6.2.3 user_on_set_dev_config_complete() (Central only)

This function is called when the device configuration is complete (GAPM_SET_DEV_CONFIG) and starts

scanning.

6.2.4 user_on_scanning_completed() (Central only)

This function is called when a scan completion event (GAPM_SCAN_ACTIVE, GAPM_SCAN_PASSIVE) is

received from the GAPM. Depending on the reason of completion, it either initiates a connection to a
peripheral device and starts connection timer (if scan was cancelled by application) or it restarts
scanning.

6.2.5 user_on_adv_report_ind() (Central only)

This function is called when an advertising report (GAPM_ADV_REPORT_IND) is received. When the

advertising peripheral device supports the DSPS profile (by containing the DSPS profile UUID in the
advertise data) it sets connection parameters and cancels scan operation. Details of the Advertise
Data structure can be found in paragraph 4.7.3 of [3] and [7].

6.2.6 user_on_connect_failed() (Central Only)

This function is called when a connection procedure fails to complete (GAPM_CONNECTION_DIRECT).

The central application asserts a warning in debug mode and stops the connection timer.

UM-B-088

DA14585 Serial Port Service Reference Application

User manual Revision 1.1 25-Jan-2022

CFR0012-00 Rev 3 19 of 41 © 2022 Renesas Electronics

6.3 Main loop callback functions

6.3.1 user_on_init()

This function is called once, during system initialization.

6.3.2 user_on_db_init_complete()

 This function is called once on database initialization. For the interrupt driven project the ring buffers
and the scheduler are initialized. The UART and its callbacks are initialized and set to the desired
modes of operation. For the DMA driven project the linked lists are initialized.

6.3.3 user_on_system_powered()

This function is called periodically upon scheduling pending BLE events after device wake up. For

the interrupt driven project It calls user_ble_pull() (section 6.5.3) to send data to the BLE interface

if available and if extended sleep mode is used, it restores UART flow control state.

 For the DMA driven project this function keeps the control state (dma_uart.power_on_state) of

operation. On wakeup it initializes the flow control signals and the DMA and on the subsequent runs
it asynchronously triggers transmit operations to BLE or UART DMA.

6.3.4 user_before_sleep()

This function is called periodically upon disable of interrupts and before system prepares for sleep. If
extended sleep mode is used, it goes through a series of checks in order to decide if the system can

go to sleep or not. It runs part of rwip_sleep() and also checks if cyclic buffers or linked lists and

UART buffers are empty.

6.4 Other application functions

6.4.1 user_scan_start() (Central only)

This function allocates and sends a GAPM_START_SCAN_CMD message to initiate a scan operation. It is

called in several cases when scanning is needed to start (sections 6.2.2, 6.2.3, 6.2.4).

6.4.2 user_gapm_cancel() (Central only)

This function allocates and sends a GAPM_CANCEL_CMD message to either cancel the connection

request when it times out (section 6.2.4) or to cancel the ongoing scan procedure when a device
supporting the DSPS profile has been found (section 6.2.5).

6.4.3 user_gattc_exc_mtu_cmd()

This function allocates and sends a GATTC_EXC_MTU_CMD message to initiate an MTU exchange

between peer devices. It is called by user_on_connection() callback function on both GAP roles.

6.4.4 user_spsc_process_handler() (Central only)

This function is a wrapper for the app_std_process_event() to be called by the

user_process_catch() (section 6.4.5) function which handles incoming application events.

6.4.5 user_process_catch()

This function handles all the messages unhandled by the SDK task handlers. The peripheral
application handles only the DSPS profile application tasks. The central application handles the
DSPS profile application tasks and also the main application tasks.

UM-B-088

DA14585 Serial Port Service Reference Application

User manual Revision 1.1 25-Jan-2022

CFR0012-00 Rev 3 20 of 41 © 2022 Renesas Electronics

6.4.6 user_gapc_param_update_req_ind_handler() (Central only)

This function is called by the main application task handler on reception of

GAPC_PARAM_UPDATE_REQ_IND and sends a parameter update confirmation message

(GAPC_PARAM_UPDATE_CFM) with the new connection parameters.

6.5 Data management and flow control for interrupt driven project
(user_sps_scheduler)

6.5.1 user_scheduler_init()

This function is called by user_on_db_init_complete() (section 6.3.1) callback and it allocates the

cyclic buffers (section 6.6.1), it registers UART callbacks (sections 6.5.7, 6.5.9) and sets the UART
flow control state.

6.5.2 user_scheduler_reinit()

This function is called by periph_init(), which is called periodically, every time the system wakes

up. It is used to register UART callbacks (sections 6.5.7, 6.5.9).

6.5.3 user_ble_pull()

This function is called periodically by the user_on_system_powered() (section 6.3.3) to initiate a BLE

transmission and by the user_sps_server_data_tx_cfm_handler() (section 6.9.6) (peripheral role)

or the user_sps_client_data_tx_cfm_handler() (section 6.9.6) (central role) to continue

transmission. It is also called by the user_sps_server_enable_cfm_handler() (section 6.9.5)

(peripheral role) or the user_sps_client_enable_cfm_handler() (section 6.9.5) (central role) to

initialize TX state.

● When called by user_on_system_powered(), it checks if a transmission is ongoing by checking

the flow state tx_flow_en and the tx_busy_flag. If flow is on and there is no ongoing procedure,

then it checks cyclic buffer for data. If there is data available, it sends it to BLE interface only if

available data is more than TX_WAIT_LEVEL or if buffer has been polled for more than

TX_WAIT_ROUNDS times.

● When called by the user_sps_server_data_tx_cfm_handler() or the

user_sps_client_data_tx_cfm_handler(), it initially checks to confirm that data has

successfully been sent and if true then it frees it from cyclic buffer. It clears the tx_busy_flag and

checks if tx_flow_en is true and that the available data in cyclic buffer is more than

TX_WAIT_LEVEL. If it is, it sends the available data to the BLE interface and sets the

tx_busy_flag.

● When called by the user_sps_server_enable_cfm_handler() or the

user_sps_client_enable_cfm_handler() it behaves as an unsuccessful transmission and it

clears the tx_busy_flag.

In all cases it checks if a flow on control signal should be send to the UART interface and sends it.

In order to maximize throughput, data should be sent after a certain amount has been collected. Two

parameters are introduced to support this scheme, tx_wait_level and TX_WAIT_ROUNDS. There is a

trade-off between throughput and responsiveness of the application which depends on the values of

these parameters. tx_wait_level is calculated to be the ¾ of the MTU as exchanged with the

central device and acquired from gattc_mtu_changed_ind_handler. TX_WAIT_ROUNDS should have a

value that does not significantly deteriorate the responsiveness.

6.5.4 user_ble_push()

This function is called by the user_sps_server_data_rx_ind_handler() (section 6.9.7) (peripheral

role) or the user_sps_client_data_rx_ind_handler() (section 6.9.7) (central role) when there is

available data in the BLE interface. It pushes data in the ble_to_periph_buffer cyclic buffer and

UM-B-088

DA14585 Serial Port Service Reference Application

User manual Revision 1.1 25-Jan-2022

CFR0012-00 Rev 3 21 of 41 © 2022 Renesas Electronics

checks whether the buffer level gets above the high watermark to send a flow off signal to the peer
device.

6.5.5 user_periph_pull()

This function is called from the uart_tx_callback() (section 6.5.8) function which is called upon the

end of the transmission of the previously sent data to the UART or by any function that needs to send

data to the UART. It frees previously sent data from the ble_to_periph_buffer cyclic buffer and

returns available data to send to the UART. It also checks whether the buffer level gets below the low
watermark to send a flow on signal to the peer device.

6.5.6 user_periph_push()

This function is called from the uart_rx_callback() (section 6.5.7) function which is called upon

reception of data from the UART. It confirms the amount of data that have been written into the

periph_to_ble_buffer cyclic buffer and returns to the caller the data amount available and the

pointer to the first element. It also checks whether the buffer level gets above the high watermark to
send a flow off signal to the UART.

6.5.7 uart_rx_callback()

This function is the callback that handles the UART data reception. It always reinitiates a read

procedure by calling the uart_sps_read() function. It is initially called by the

user_scheduler_init() (section 6.5.1) function at system power up and user_scheduler_reinit()

(section 6.5.2) function every time the system wakes up.

6.5.8 uart_tx_callback()

This function is the callback that handles the UART data transmission completion by sending the

available data in cyclic buffer calling the user_periph_pull() (section 6.5.5). It also initiates a write

procedure when called by user_ble_push() (section 6.5.4).

6.5.9 uart_flow_control_callback()

This function is the callback that handles the UART flow control reception by calling either

user_override_ble_xon() (section 6.5.10) or by issuing a flow off signal to peer device using

user_send_ble_flow_ctrl (section 6.9.4).

6.5.10 user_override_ble_xon()

This function sets UART flow control flags, checks the ble_to_periph_buffer level and sends a flow

on signal to the connected BLE peer device. It overrides the automatic level detection and is called
by the UART flow control callback (section 6.5.9).

6.5.11 user_rwip_sleep_check()

This function performs some of the pre-sleep checks in order to provide feedback if application will

be able to enter extended sleep. It is called by the user_sps_sleep_check() (section 6.5.12) in a

series of buffer and FIFO checks.

6.5.12 user_sps_sleep_check()

This function is performing a series of pre-sleep checks in order to determine if system is able to
enter extended sleep. It checks cyclic buffers (section 6.6.5), UART FIFOs and also if a data stream
is currently transferred through UART while trying to flow off it.

6.5.13 user_sps_sleep_restore()

This function restores UART RX flow control state to the previous state before sleep. It is necessary,

as user_sps_sleep_check()(section 6.5.12) disables data flow before entering sleep state.

UM-B-088

DA14585 Serial Port Service Reference Application

User manual Revision 1.1 25-Jan-2022

CFR0012-00 Rev 3 22 of 41 © 2022 Renesas Electronics

6.6 Cyclic buffer for interrupt driven project (user_buffer)

6.6.1 user_buffer_create()

This function allocates and initializes a cyclic buffer and sets the high and low watermark levels.

6.6.2 user_buffer_write_items() and user_buffer_read_items()

These functions push and pop the specified amount of data, if possible. When the available space is
insufficient, data is written until the buffer is full. When the requested data is not available, only the
available data is read.

6.6.3 user_buffer_read_address() and user_buffer_release_items()

As a pair, they are equivalent to the user_buffer_read_items() function with the difference that

accessing and releasing of the slots of the buffer happen at a different time.

user_buffer_read_address() returns a pointer to buffer data and user_buffer_release_items()

frees the requested memory space.

6.6.4 user_buffer_write_check() and user_buffer_cfm_write()

As a pair, they are equivalent to the user_buffer_write_items() with one difference. The

user_buffer_write_check() returns an available space that is not fragmented, so that another

function can write directly to the buffer, without the risk of overwriting data. After the write is

complete, user_buffer_cfm_write() must be used to confirm the exact amount of data that have

been written.

6.6.5 user_buffer_item_count()

This function returns the number of items in the provided cyclic buffer. It is called by various functions
(sections 6.5.3, 6.5.12) to check the data level in a certain buffer.

6.6.6 user_check_buffer_almost_full() and user_check_buffer_almost_empty()

These functions check the provided buffer’s level against the high watermark and low watermark
respectively return true only when certain level is reached once thus implementing a kind of
hysteresis loop.

6.7 Data management and flow control for DMA driven project
(user_sps_schedule_dma.c)

6.7.1 user_dma_sps_sleep_check()

This function is performing a series of pre-sleep checks in order to determine if system is able to
enter extended sleep. It checks linked lists length, receive data timeout and transmit activity. If all
conditions are met, then it deasserts RTS, waits for a character length interval and checks if a
character has arrived. This is because reception of a character might have started just before the
deassertion of the RTS signal. If the DMA UART Rx channel is empty the system is allowed to enter
extended sleep.

6.7.2 user_check_dma_uart_rx_to()

This function is called asynchronously to check if there is UART DMA Rx timeout. Each time it runs

the counters rx_to_cnt (counts rx inactivity) or rx_zero_data_cnt (counts empty buffer runs) are

incremented or zeroed in order to signal DMA timeout handling. Specifically if rx_to_cnt exceeds

DMA_UART_RX_TO_ROUNDS the dma_uart_timeout runs in order the receive buffer to be attached to

dma_uart.rx_list_ready and the UART DMA Rx channel to be reinitialized with a newly allocated

buffer.

UM-B-088

DA14585 Serial Port Service Reference Application

User manual Revision 1.1 25-Jan-2022

CFR0012-00 Rev 3 23 of 41 © 2022 Renesas Electronics

6.7.3 user_check_set_flow_off()

This function checks if the receive list queue has exceeded the limit RX_FLOW_OFF_LVL in order to

deassert RTS.

6.7.4 bool user_check_set_flow_on()

This function checks if the receive list queue is bellow limit RX_FLOW_ON_LVL in order to assert RTS.

6.8 Linked Lists for DMA driven project (user_sps_buffer_dma.c)

6.8.1 user_init_queues()

This function initializes dma_uart. The dma_uart structure is the core container of system data that

includes the linked lists heads and operation variables

6.8.2 user_ble_to_dma_uart()

Places a buffer from BLE to DMA UART TX queue (dma_uart.tx_list_ready).

6.8.3 user_dma_uart_to_ble()

This function is called to initiate the transmission of data over BLE. It checks the size of

dma_uart.rx_list_ready and if it is not empty it detaches a buffer marked with

dma_uart.p_rx_ready_active and forwarded to profile task.

6.8.4 user_dma_uart_to_ble_confirm()

On successful placement of a data buffer to BLE stack a confirmation message is send to user

profile. This message is SPS_CLIENT_DATA_TX_CFM (central) or SPS_SERVER_DATA_TX_CFM (device)

that also holds the confirmation of success or failure of the operation. On success the

user_dma_uart_to_ble_confirm is triggered in order to send the next buffer by calling

user_dma_uart_to_ble (section 6.8.3). When failure the dma_uart.p_rx_ready_active is resend

for transmission.

6.9 Application task interface to Serial Port Service

6.9.1 user_spss_create_db() / user_spsc_create_db()

This function creates and sends an GAPM_PROFILE_TASK_ADD_CMD message to the GAP Manager

(GAPM) to initialize the SPS server task TASK_ID_SPS_SERVER or the SPS client task
TASK_ID_SPS_CLIENT.

6.9.2 user_spss_enable() / user_spsc_enable()

This function allocates and sends a SPS_SERVER_ENABLE_REQ (peripheral role) or a

SPS_CLIENT_ENABLE_REQ (central role) message to the TASK_ID_SPS_SERVER or TASK_ID_SPS_CLIENT

respectfully. It is registered as a callback in the prf_funcs structure and it is called by the SDK to

enable the services.

6.9.3 user_send_ble_data()

It is used only in interrupt driven project. This function allocates and sends a

SPS_SERVER_DATA_TX_REQ (peripheral role) or a SPS_CLIENT_DATA_TX_REQ (central role) message to

the TASK_ID_SPS_SERVER or TASK_ID_SPS_CLIENT respectfully. It is called by the user_ble_pull()

(section 6.5.3) to send data to the BLE interface and consequently to the peer device.

UM-B-088

DA14585 Serial Port Service Reference Application

User manual Revision 1.1 25-Jan-2022

CFR0012-00 Rev 3 24 of 41 © 2022 Renesas Electronics

6.9.4 user_send_ble_flow_ctrl()

This function sends a SPS_SERVER_RX_FLOW_CTRL_REQ message (peripheral role) or a

SPS_CLIENT_RX_FLOW_CTRL_REQ message (central role) to the TASK_ID_SPS_SERVER or

TASK_ID_SPS_CLIENT respectfully, in order to transmit the selected flow control state to the peer

device.

6.9.5 user_sps_server_enable_cfm_handler() and
user_sps_client_enable_cfm_handler()

These functions handle the SPS_SERVER_ENABLE_CFM (peripheral role) or the SPS_CLIENT_ENABLE_CFM

(central role) message which confirms that profile has been enabled. It calls the user_ble_pull()

(interrupt driven project, section 6.5.3) function or the user_dma_uart_to_ble() (section 6.8.3)

function (DMA driven project) to initialize the TX state.

6.9.6 user_sps_server_data_tx_cfm_handler() and
user_sps_client_data_tx_cfm_handler()

These functions handle the SPS_SERVER_DATA_TX_CFM (peripheral role) or the

SPS_CLIENT_DATA_TX_CFM (central role) message which confirms whether data transmission is

successful or not. When used in interrupt driven project It calls user_ble_pull() (section 6.5.3)

function with proper arguments. When used in DMA driven project it calls

user_dma_uart_to_ble_confirm() (section 6.8.4) function with proper arguments.

6.9.7 user_sps_server_data_write_ind_handler() and
user_sps_client_data_rx_ind_handler()

These functions handle the SPS_SERVER_DATA_WRITE_IND (peripheral role) or the

SPS_CLIENT_DATA_RX_IND (central role) message which indicates that data have been received by

the BLE interface. For the interrupt driven project It calls user_ble_push() (section 6.5.4) to pass the

data that were received. For the DMA driven project it calls user_ble_to_dma_uart() to place a

buffer at the end of dma_uart.tx_list_ready.

6.9.8 user_sps_server_tx_flow_ctrl_ind_handler() and
user_sps_client_tx_flow_ctrl_ind_handler()

These functions handle the SPS_SERVER_TX_FLOW_CTRL_IND (peripheral role) or the
SPS_CLIENT_TX_FLOW_CTRL_IND (central role) message which indicates that a flow control

signal has been received by the peer device. It is mainly used for debug since sps_env->tx_flow_en

that holds the flow control state is set on the reception of GATT message inside

gattc_write_req_ind_handler (device) or gattc_event_ind_handler (host).

6.9.9 user_sps_server_error_ind_handler() (Peripheral Only)

This function handles the SPS_SERVER_ERROR_IND message that indicates an error in the SPS
server profile. It asserts a warning if the debug mode is enabled.

UM-B-088

DA14585 Serial Port Service Reference Application

User manual Revision 1.1 25-Jan-2022

CFR0012-00 Rev 3 25 of 41 © 2022 Renesas Electronics

6.10 Serial Port Service

The Serial Port Service consists of two parts: a server (peripheral device) and a client (central or host
device). It exposes three characteristics as displayed in Table 2.

Server TX Data and Server RX Data characteristics are used to transfer data between the two
connected devices (device - host). From the server’s perspective, the Server TX Data is used for
outgoing data by notifying the client whenever there is data available. The Server RX Data is used by
the client to write data to the device’s database by using the GATT ‘write no response’ method.

The Flow control characteristic is used by both sides to control the flow of data in both directions. The
server notifies the client for the Server RX channel and the client writes flow control characters
controlling the Server TX channel. The value 0x01 is considered as a ‘flow on’ signal and the value
0x02 as a ‘flow off’ signal.

Both profile roles have a common way to transmit data. Data transmission is invoked by reception of

a SPS_SERVER_DATA_TX_REQ message from the application layer when a GAP peripheral role is

selected, or the reception of SPS_CLIENT_DATA_TX_REQ when in GAP central role. This happens only

when there is no ongoing transmission, verified by checking the state of the tx_busy_flag or the

state of dma_uart.p_rx_ready_active for the DMA driven project.

The profile sends data only if the TX flow control flag is enabled, otherwise the data is stored until TX
data flow control is re-enabled. After reception of confirmation that data have been put to send, a

SPS_SERVER_DATA_TX_CFM (peripheral role) or a SPS_CLIENT_DATA_TX_CFM (central role) message is

sent to the TASK_APP informing about the status of the request, so that a new data transmission is

scheduled (section 6.9.6).

Transmission occurs either by using the function sps_server_send_data() at the server side or the

sps_client_gatt_write_data_tx() function at the client side.

A ‘normalization’ of the size to be sent is proposed at the application level to increase throughput.

The requested size tx_size is calculated based on the MTU size as acquired by

gattc_mtu_changed_ind_handler() and the tx_wait_level is calculated at the ¾ of the tx_size.

For the interrupt driven project the following mechanism applies. After the initial transmission, when a
completion of the transmission arrives, a new transmission is scheduled depending on the amount of

data in the periph_to_ble_buffer. A low limit check is performed with the tx_wait_level and the

procedure is repeated. When the criteria are not met, no transmission is scheduled and the
application has to reinitiate a transmission when there are data available.

Upon the reception of data, the GATTC message handler allocates and sends a

SPS_SERVER_DATA_WRITE_IND (peripheral role) or a SPS_CLIENT_DATA_RX_IND (central role) to the

TASK_APP, which inserts data in the ble_to_periph_buffer, updates the BLE flow control flags and

initiates the UART TX.

For the DMA driven project the following mechanism applies. After the initial transmission, when a
completion of the transmission arrives, a new transmission is scheduled depending on the existence

of ready buffers in the dma_uart.rx_list_ready.

Upon the reception of data, the GATTC message handler allocates and sends a

SPS_SERVER_DATA_WRITE_IND (peripheral role) or a SPS_CLIENT_DATA_RX_IND (central role) to the

TASK_APP, which inserts the buffer in the dma_uart.tx_list_ready and triggers a DMA UART

transmit if the UART TX is inactive by calling dma_uart_tx_async().

When a flow control signal is received by the GATTC (from the gattc_write_req_ind_handler()

function of the server or from the gattc_event_ind_handler() of the client) it updates the profile TX

flow control flag and also informs the application by sending the SPS_SERVER_TX_FLOW_CTRL_IND

(peripheral role) or SPS_CLIENT_TX_FLOW_CTRL_IND (central role) message to the TASK_APP.

UM-B-088

DA14585 Serial Port Service Reference Application

User manual Revision 1.1 25-Jan-2022

CFR0012-00 Rev 3 26 of 41 © 2022 Renesas Electronics

6.11 Sequence diagrams

In the sequence diagrams of this section the function call sequence for transferring data received on
UART interface to BLE and vice versa.

Figure 6: UART to BLE data transfer sequence diagram. Interrupt driven UART.

UM-B-088

DA14585 Serial Port Service Reference Application

User manual Revision 1.1 25-Jan-2022

CFR0012-00 Rev 3 27 of 41 © 2022 Renesas Electronics

Figure 7: BLE to UART data transfer sequence diagram. Interrupt driven UART.

UM-B-088

DA14585 Serial Port Service Reference Application

User manual Revision 1.1 25-Jan-2022

CFR0012-00 Rev 3 28 of 41 © 2022 Renesas Electronics

Figure 8: UART to BLE data transfer sequence diagram. DMA driven UART.

UM-B-088

DA14585 Serial Port Service Reference Application

User manual Revision 1.1 25-Jan-2022

CFR0012-00 Rev 3 29 of 41 © 2022 Renesas Electronics

Figure 9: BLE to UART data transfer sequence diagram. DMA driven UART.

UM-B-088

DA14585 Serial Port Service Reference Application

User manual Revision 1.1 25-Jan-2022

CFR0012-00 Rev 3 30 of 41 © 2022 Renesas Electronics

7 DSPS Android and iOS application

7.1 Overview

The Dialog Serial Port Service (DSPS) reference application comes with an SPS demo application
for Android and iOS systems. The DSPS application can discover, connect and exchange data with
SPS enabled devices within the Bluetooth RF range of the mobile device.

Features

■ Device discovery

■ Connection to a discovered device

■ Reception of data (ASCII or HEX) from a peer device with flow control

■ Transmission of data to a peer device, either once or repeatedly

■ Transmission of file to a peer device with flow control

Figure 10: DSPS icon – Android – iOS

UM-B-088

DA14585 Serial Port Service Reference Application

User manual Revision 1.1 25-Jan-2022

CFR0012-00 Rev 3 31 of 41 © 2022 Renesas Electronics

7.2 Installation

7.2.1 Android application

The Android application can be found in Google’s ‘Play Store’ and easily installed from there as any
other android application. To find the application, user can search for ‘Dialog DSPS’ (Figure 11).
Then user has to open the applications description and press the ‘Install’ button. During installation
the permission to access device resources will be requested as shown in Figure 12. The permission
should be granted. After installation is complete, application can be open either from the ‘Open’
button of the ‘Play store’ or from the Android application drawer.

Figure 11: DSPS on Play Store

Figure 12: Installing the DSPS application

7.2.2 iOS application

The iOS application can be found in Apple’s ‘App Store’ and easily installed from there like any other
iOS application. To find the application, the user can search for ‘DSPS’ or ‘Dialog DSPS’. Then the
user has to open the applications description and press the cloud button (Figure 13) to download and

UM-B-088

DA14585 Serial Port Service Reference Application

User manual Revision 1.1 25-Jan-2022

CFR0012-00 Rev 3 32 of 41 © 2022 Renesas Electronics

install it. After installation is complete, the application can be opened either using the ‘Open’ button of
the ‘App store’ or from the iOS desktop.

Figure 13: DSPS on App Store

7.3 Device list

The user must click on the DSPS icon to start the application. The scan screen will be shown (Figure
14) and the user has to press the SCAN button. While scanning, all devices found are displayed
(device name and Bluetooth address). The complete list of all discovered devices is listed on the
screen when the search has finished. To refresh the list of devices found, the user can press the
button SCAN again. The user must click on the name of the desired device to connect to it.

Figure 14: Scan Device Screen

UM-B-088

DA14585 Serial Port Service Reference Application

User manual Revision 1.1 25-Jan-2022

CFR0012-00 Rev 3 33 of 41 © 2022 Renesas Electronics

7.4 Functionality tabs

When connected to a device, a side menu environment is shown to the user when the List Menu
button is pressed, providing the functionality of the application. After connection the user may
navigate to three operating mode screens, an Information screen and a Disclaimer screen that will be
explained in the following paragraphs.

Figure 15: Select Operation Mode

Figure 16: Application main screens

7.4.1 Console Mode

The console mode is a serial port console emulation mode. Any character that is entered on the
keyboard is immediately sent to the peer device and any character received is displayed in the
reception display box.

7.4.2 Read/Transfer Mode

The Read/Transfer mode allows the user to send data to and receive data from the peer device.
Initially, the reception display box is shown, where received data can be displayed in ASCII or HEX

UM-B-088

DA14585 Serial Port Service Reference Application

User manual Revision 1.1 25-Jan-2022

CFR0012-00 Rev 3 34 of 41 © 2022 Renesas Electronics

format. Also, the user can clear the received data, enable or disable the incoming flow by pressing
the ‘Start’ or ‘Stop’ button respectively.

For the TX part, a text box is shown where data can be entered via the keyboard or pasted by long
pressing the field and selecting ‘paste’. Pressing the ‘Send’ button will send the displayed data once
or repeatedly (depending on the state of the ‘cyclic sending’ toggle switch) with the chosen interval.

7.4.3 Data File Streaming Mode

The user has also the ability to send a file instead of individual strings of characters. This function
can be accessed in the ‘Data File Streaming’ screen, where the user can browse the device’s file
system to find the file to be transmitted.

7.5 Information and Disclaimer Screens

The ‘Information’ screen displays contact information and the version of the application. See Figure
17. The Disclaimer screen contains the disclaimer notes.

Figure 17: Information & Disclaimer Screens

UM-B-088

DA14585 Serial Port Service Reference Application

User manual Revision 1.1 25-Jan-2022

CFR0012-00 Rev 3 35 of 41 © 2022 Renesas Electronics

8 Instructions for setting up a demonstration

The DA14585 pins that are used for serial communication are defined in user_periph_setup.h and

may be changed according to user needs. If the user needs to get printed additional debug

information from UART2 (CFG_PRINTF is defined in da1458x_config_basic.h) then the pins 0.1 (TX)

and 0.2(RX) exposed to connectors J4 and J5 of Basic and Pro DK’s respectively can be utilized by
connecting a USB to Serial converter.

8.1 Hardware setup for Basic DK

In order to setup the Basic DK board there is an extra step that needs to be followed. Due to the lack
of any flow control method on the Segger J-Link driver an external Serial to USB converter can be
used, The instructions to use the FTDI TTL-232R TTL to USB Serial Converter cable [6] are
described in this section. Connect the TTL-232R cable to Basic DK with the layout as shown Figure
18.

Figure 18: Basic DK pins that should be connected

Connect the:

● FTDI GND (black) to J4_2 (GND)

● FTDI TX (orange) to J4_13 (P0_5 - DA14585 RX)

● FTDI RX (yellow) to J4_11(P0_4 - DA14585 TX)

● FTDI CTS (brown) to J4_15 (P0_6 - DA14585 RTS)

● FTDI RTS (green) to J4_17(P0_7 - DA14585 CTS)

8.2 Hardware setup for PRO DK

The Pro DK board has an integrated FTDI chip with hardware flow control enabled. In order to use
the feature the connections for J5 are indicated on the silkscreen next to J5 and should be applied as
shown in Figure 19. For more information about the PRO DK, please refer to [5], section 3.7.2.

UM-B-088

DA14585 Serial Port Service Reference Application

User manual Revision 1.1 25-Jan-2022

CFR0012-00 Rev 3 36 of 41 © 2022 Renesas Electronics

Figure 19: UART with HW flow control on PRO kit

8.3 DK to DK connection setup

1. Extract the DSPS reference application zip file.

2. Open projects\target_apps\dsps\dsps_device\Keil_5\dsps_device.uvprojx with Keil

UVision.

3. Build project by pressing ‘F7’.

4. Select target device by pressing ‘Alt + F7’ then ‘Settings’ from the ‘Debug’ tab. Select appropriate
SN and then ‘SW’ in the ‘Port’ field. Press ‘Ok’ to save and exit settings.

5. Start debugging session by pressing ‘Ctrl + F5’, run program with ‘F5’ and exit debugger mode by
pressing ‘Ctrl + F5’ again.

6. Repeat the steps above for a second device with

…\projects\target_apps\dsps\dsps_host\Keil_5\dsps_host.uvprojx, this time selecting the

second device’s SN. Upon completion, the host device should have discovered and connected to
the peripheral.

7. Any serial console application (e.g. RealTerm or Tera Term) can be used to transfer data to and
from the DKs. Connect to the first of the two FTDI serial ports having set the correct settings:

a. When TeraTerm is used on initialization the correct COM port should be chosen. If more than
one com ports are active then the Windows Device Manager can be used to find the correct
port numbers.

b. From ‘Setup->Serial Port’ the COM port can be changed and set ‘Baud rate’ and ‘Flow
control’ to the selected flow control method and baud rate as chosen in the

user_periph_setup.h header file. In case of using the Basic DK, select the COM port of

TTL-232R instead of the Segger’s COM port.

c. Finally, press ‘Ok’ to accept the values and to continue.

8. Repeat the above steps for the second device. Upon completion, data can be transferred
bidirectionally by either sending single characters or by using the ‘File->Send file’ function.

UM-B-088

DA14585 Serial Port Service Reference Application

User manual Revision 1.1 25-Jan-2022

CFR0012-00 Rev 3 37 of 41 © 2022 Renesas Electronics

8.4 Android / iOS application to DK connection setup

1. As described in the steps to set up a DK to DK connection (see Section 8.3), extract, build and

download the dsps_device.uvprojx project to the DK, using the debugger.

2. Open the UART connection from a console application, having set the correct parameters.

3. Install and open the ‘DSPS’ Android / iOS application, as described in the application’s user
guide.

4. Scan for and connect to the device named ‘DA1458x’.

Upon connection, the transmission and reception of characters can be performed from the console
and the application.

8.5 Run DA14585 application with SmartSnippets

1. Build DSPS project using the instructions above (Section 8.3, up to step 3).

2. Open SmartSnippets and connect to the device using UART/SPI mode or UART mode.

3. Open the ‘Booter’ tab and click ‘Browse’

4. Using the dialog box find the produced *.hex file in directory

…\projects\target_apps\dsps\dsps_device\Keil_5\out_585\ for the peripheral device and

…\projects\target_apps\dsps\dsps_host\Keil_5\out_585\ for the central device.

5. Open it and then click ‘Download’ to download firmware to the connected device following the
instructions in the ‘Log’ area.

6. Then repeat steps for secondary device

7. Close SmartSnippets and start a serial console application for each device as described
previously.

9 SPS performance

The SPS performance analysis gives the following results regarding the service’s throughput. The
results depend heavily on the existence of DLE capability, the MTU and connection interval
negotiated during the connection phase. The Android application’s connect event length depends on
the device running the application and thus the number of packets per connection event may differ
substantially, giving different results.

 Two groups of tests were performed, one group with DLE supporting devices and one group with
DLE not supporting devices. For DLE the Android device used for the test is an LG Nexus phone with
Android version 6.0.1 with 123 bytes payload size. The iOS device is an iPhone 7 Plus v11.0 with
251 bytes payload size. The devices not supporting DLE are an Android 4.4.4 ASUS Nexus tablet
and an iPad with iOS 10.3.3. The UART baud rate 115200 bit/s was used for all performance
measurements of the interrupt driven project. The UART baud rate 921600 bit/s was used for all
performance measurements of the DMA driven project. When lower baud rates are used, the
maximum throughput is limited by the selected baud rate.

UM-B-088

DA14585 Serial Port Service Reference Application

User manual Revision 1.1 25-Jan-2022

CFR0012-00 Rev 3 38 of 41 © 2022 Renesas Electronics

Table 11: Performance results, DLE Devices. Interrupt driven projects.

Host Android iOS DA14585

C
o

n
n

e
c

ti
o

n

p
a

ra
m

e
te

rs

MTU octets >130 >130 >130

Connection Interval ms 12.5 30 12.5

Host max. write command size B 128 128 231

T
h

ro
u

g
h

p
u

t
m

e
a
s

u
re

m
e
n

ts

Half Duplex

Central Tx

packets/conn event 2 4 2

kB/s 11.0 11.6 11.2

kbit/s 88.0 92.8 89.6

Peripheral Tx

packets/conn event 2 5 2

kB/s 11.5 10.0 11.2

kbit/s 92.0 80.3 89.6

Full Duplex

Central Tx

packets/conn event 3 2 3

kB/s 10.9 7.1 11.2

kbit/s 87.4 56.8 89.6

Peripheral Tx

packets/conn event 3 2 3

kB/s 11.5 9.5 11.2

kbit/s 92.0 76.0 89.6

Table 12: Performance results, non DLE Devices. Interrupt driven projects.

Host Android iOS

C
o

n
n

e
c

ti
o

n

p
a

ra
m

e
te

rs

MTU octets >130 >130

Connection Interval ms 12.5 30

Host max. write command size B 128 128

T
h

ro
u

g
h

p
u

t
m

e
a
s

u
re

m
e
n

ts

Half Duplex

Central Tx

packets/conn event 5 4

kB/s 7.7 5.9

kbit/s 61.6 47.2

Peripheral Tx

packets/conn event 5 5

kB/s 10.0 5.9

kbit/s 80.0 47.2

Full Duplex

Central Tx

packets/conn event 5 2

kB/s 6.25 4.6

kbit/s 50.0 36.8

Peripheral Tx

packets/conn event 5 2

kB/s 9.8 5.9

kbit/s 78.4 47.2

UM-B-088

DA14585 Serial Port Service Reference Application

User manual Revision 1.1 25-Jan-2022

CFR0012-00 Rev 3 39 of 41 © 2022 Renesas Electronics

Figure 20: Performance results, DLE Devices. DMA driven projects.

Host Android iOS DA14585

C
o

n
n

e
c

ti
o

n

p
a

ra
m

e
te

rs

MTU octets 247 >130 >130

Connection Interval ms 30 30 30

Host max. write command size B 128 128 244

T
h

ro
u

g
h

p
u

t
m

e
a
s

u
re

m
e
n

ts

Half Duplex

Central Tx

packets/conn event 6 3 10

kB/s 16.1 11.8 80.3

kbit/s 129.0 94.3 642.4

Peripheral Tx

packets/conn event 26 3 10

kB/s 33.8 21.3 80.3

kbit/s 270.3 170.2 642.4

Full Duplex

Central Tx

packets/conn event 16 2 6

kB/s 15.9 6.3 46.1

kbit/s 127.2 50.8 368.7

Peripheral Tx

packets/conn event 16 2 6

kB/s 23.5 13.9 46.1

kbit/s 188 111.1 368.7

UM-B-088

DA14585 Serial Port Service Reference Application

User manual Revision 1.1 25-Jan-2022

CFR0012-00 Rev 3 40 of 41 © 2022 Renesas Electronics

Revision history

Revision Date Description

1.0 24-Nov-2017 Initial version.

1.1 25-Jan-2022 Updated logo, disclaimer, copyright.

UM-B-088

DA14585 Serial Port Service Reference Application

Revision 1.1 25-Jan-2022

CFR0012-00 Rev 3 41 of 41 © 2022 Renesas Electronics

Status definitions

Status Definition

DRAFT The content of this document is under review and subject to formal approval, which may result in

modifications or additions.

APPROVED

or unmarked

The content of this document has been approved for publication.

 User manual

RoHS Compliance

Dialog Semiconductor’s suppliers certify that its products are in compliance with the requirements of Directive 2011/65/EU of the European
Parliament on the restriction of the use of certain hazardous substances in electrical and electronic equipment. RoHS certificates from our
suppliers are available on request.

	Abstract
	Contents
	Figures
	Tables
	1 Terms and definitions
	2 References
	3 Introduction
	4 Software features
	4.1 Bluetooth
	4.2 UART
	4.3 System

	5 Software architecture
	5.1 Software features
	5.1.1 GAP roles
	5.1.2 Serial Port Service
	5.1.3 UART driver for the interrupt driven project
	1.1.1
	5.1.4 Data scheduling and flow control for the interrupt driven project
	1.1.1
	5.1.5 UART driver for the DMA driven project
	5.1.6 Data scheduling and flow control for the DMA driven project

	1.1
	1.1
	1.1
	1.1
	5.2 Source files
	5.3 Header files

	6 Code overview and state machines
	6.1 Application task state machine
	6.1.1 Peripheral state machine
	6.1.2 Central state machine

	6.2 Application callback functions
	6.2.1 user_on_connection()
	6.2.2 user_on_disconnect()
	1.1.1
	6.2.3 user_on_set_dev_config_complete() (Central only)
	6.2.4 user_on_scanning_completed() (Central only)
	6.2.5 user_on_adv_report_ind() (Central only)
	6.2.6 user_on_connect_failed() (Central Only)

	6.3 Main loop callback functions
	6.3.1 user_on_init()
	6.3.2 user_on_db_init_complete()
	6.3.3 user_on_system_powered()
	6.3.4 user_before_sleep()

	6.4 Other application functions
	6.4.1 user_scan_start() (Central only)
	6.4.2 user_gapm_cancel() (Central only)
	6.4.3 user_gattc_exc_mtu_cmd()
	6.4.4 user_spsc_process_handler() (Central only)
	6.4.5 user_process_catch()
	6.4.6 user_gapc_param_update_req_ind_handler() (Central only)

	6.5 Data management and flow control for interrupt driven project (user_sps_scheduler)
	6.5.1 user_scheduler_init()
	6.5.2 user_scheduler_reinit()
	6.5.3 user_ble_pull()
	6.5.4 user_ble_push()
	6.5.5 user_periph_pull()
	6.5.6 user_periph_push()
	6.5.7 uart_rx_callback()
	6.5.8 uart_tx_callback()
	6.5.9 uart_flow_control_callback()
	1.1.1
	1.1.1
	1.1.1
	6.5.10 user_override_ble_xon()
	6.5.11 user_rwip_sleep_check()
	6.5.12 user_sps_sleep_check()
	6.5.13 user_sps_sleep_restore()

	6.6 Cyclic buffer for interrupt driven project (user_buffer)
	6.6.1 user_buffer_create()
	6.6.2 user_buffer_write_items() and user_buffer_read_items()
	6.6.3 user_buffer_read_address() and user_buffer_release_items()
	6.6.4 user_buffer_write_check() and user_buffer_cfm_write()
	6.6.5 user_buffer_item_count()
	6.6.6 user_check_buffer_almost_full() and user_check_buffer_almost_empty()

	6.7 Data management and flow control for DMA driven project (user_sps_schedule_dma.c)
	6.7.1 user_dma_sps_sleep_check()
	6.7.2 user_check_dma_uart_rx_to()
	6.7.3 user_check_set_flow_off()
	6.7.4 bool user_check_set_flow_on()

	6.8 Linked Lists for DMA driven project (user_sps_buffer_dma.c)
	6.8.1 user_init_queues()
	6.8.2 user_ble_to_dma_uart()
	6.8.3 user_dma_uart_to_ble()
	6.8.4 user_dma_uart_to_ble_confirm()

	1.1
	6.9 Application task interface to Serial Port Service
	6.9.1 user_spss_create_db() / user_spsc_create_db()
	6.9.2 user_spss_enable() / user_spsc_enable()
	6.9.3 user_send_ble_data()
	6.9.4 user_send_ble_flow_ctrl()
	1.1.1
	1.1.1
	6.9.5 user_sps_server_enable_cfm_handler() and user_sps_client_enable_cfm_handler()
	6.9.6 user_sps_server_data_tx_cfm_handler() and user_sps_client_data_tx_cfm_handler()
	6.9.7 user_sps_server_data_write_ind_handler() and user_sps_client_data_rx_ind_handler()
	6.9.8 user_sps_server_tx_flow_ctrl_ind_handler() and user_sps_client_tx_flow_ctrl_ind_handler()
	6.9.9 user_sps_server_error_ind_handler() (Peripheral Only)

	6.10 Serial Port Service
	6.11 Sequence diagrams

	7 DSPS Android and iOS application
	7.1 Overview
	Features

	7.2 Installation
	7.2.1 Android application
	7.2.2 iOS application

	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	7.3 Device list
	7.4 Functionality tabs
	7.4.1 Console Mode
	7.4.2 Read/Transfer Mode
	7.4.3 Data File Streaming Mode

	7.5 Information and Disclaimer Screens

	8 Instructions for setting up a demonstration
	8.1 Hardware setup for Basic DK
	8.2 Hardware setup for PRO DK
	1.1
	8.3 DK to DK connection setup
	8.4 Android / iOS application to DK connection setup
	8.5 Run DA14585 application with SmartSnippets

	9 SPS performance
	Revision history

