

ZUD-CD-06-0036-1 Page 2/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

ごあいさつ

QB-V850ESHG2-TBをお買い求めいただき、誠にありがとうございます。

本製品は、NECエレクトロニクス社製のプログラミング機能付きオン

チップ･デバッグ･エミュレータ MINICUBE2を使用して、マイコンを実際

に試すためのターゲット･ボードです。

クイック･スタート･ガイドでは、開発環境のご紹介と、使い方をサン

プル･プログラムを用いて説明しています。本製品をご使用になる前に、

ご一読ください。

本製品に関する最新情報、必要な開発ツール、およびサンプル･プロ
グラム(順次拡充予定)は、弊社WEBページにて提供しています。

http://www.necel.com/micro/ja/development/asia/minicube2/minicube2.html

【本クイック･スタート・ガイドの構成について】
本ガイドは4つの章から構成されています。

ターゲット･ボードの特徴など本ガイドをお使いいただく際に必
要な基本的な事柄について説明します。

ターゲット･ボードの仕様やシステム構成図、開発ツールのイン
ストールについて説明します。

簡単なアプリケーション･プログラムの作成を通して、
開発ツールの使い方について説明します。

ターゲット･システムの作成例を2種類ご紹介します。

ターゲット･ボード回路図

はじめに

はじめに

準備

体験

応用

付録

Page 2～4

Page 5～11

Page 12～60

Page 61～81

http://www.necel.com/micro/ja/development/asia/minicube2/minicube2.html

ZUD-CD-06-0036-1 Page 3/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

はじめに

ターゲット･ボードについて (その1)

V850ES/HG2ターゲット･ボード(QB-V850ESHG2-TB)の特徴
●V850ES/HG2(μPD70F3707GC)搭載
●システム･クロック20MHz(5MHz発振子を搭載)で高速動作可能(3.5V～5.5V供給時)
●フラッシュメモリ:256KB、RAM:12KBを内蔵
●最大で84本のI/Oポートを装備
●プログラミング、オンチップ･デバッグ(SIB0,SOB0,SCKB0,PCM0端子使用)に両対応
●LED2個、SW1個を搭載しており簡単なテストが可能
●ユニバーサル･エリア(2.54mmピッチ)を搭載
●マイコンの端子を周辺ボード･コネクタに配置した高拡張性
●鉛(Pb)フリー対応品

Y2:サブクロック用32.768KHz発振子(XT1,XT2へ接続)

Y1:メイン･クロック用5MHz発振子(X1,X2へ接続)

最大20MHz

(ボード上に発振子5MHz搭載)

32.768KHz

(ボード上に搭載)

メイン･クロック

動作周波数

評価用LED:黄x2(LED1はPCM3,LED2はPCM2へ接続)

Power LED:赤x1(LED3)

評価用SW:SW1(INTP0へ接続)

FP1:16pinコネクタ(MINICUBE2接続用)

サブクロック

周波数

3.5V～5.5V動作電圧

CN1,CN2:周辺ボードコネクタ(2.54mmピッチ)

50pinソケットx2(パッドのみ)

搭載部品

CPU

μPD70F3707GC

V850ES/HG2ターゲット･ボード(QB-V850ESHG2-TB)のハードウエア仕様

ワンポイント

マイコンについて

ここで使うマイコンとはマイクロコントローラ(マイクロコンピュータ)の意味です。現在のマイコ

ンはROM,RAM,I/OだけでなくA/D,D/A,UART,I2C,LIN,CAN,LCD制御,USB,DMAなど様々な機能をもった

デバイスもあります。また、性能も数MIPS～数百MIPSまで揃っています。

ZUD-CD-06-0036-1 Page 4/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

V850ES
HG2

1

2

49

50

50

49

2

1

1

15

NEC
QB-V850ESHG2-TB
SS-77025

F
P1

Y1

Y2

LED3
SW1

LED1

LED2

CN1/CN2: デバイスの端子へ接続されています
LED3(PowerLED)：電源が入った時に赤色に発光します
評価用LED1: ポートPCM3がLOWで黄色に発光します
評価用LED2: ポートPCM2がLOWで黄色に発光します
評価用SW1： INTP0に接続されています
FP1(16pinｺﾈｸﾀ)：オンチップ･デバッグや書き込み時に使用します
Y1(ﾒｲﾝ･ｸﾛｯｸ): 5MHz発振子を搭載しています
Y2(ｻﾌﾞｸﾛｯｸ): 32.768KHz発振子を搭載しています
ﾕﾆﾊﾞｰｻﾙ･ｴﾘｱ： ユーザーが部品を載せられるエリアです

はじめに

ターゲット･ボードについて (その2)

CN2

16pinコネクタ

評価用 LED

上:LED2

下:LED1

ターゲット･ボード表

ターゲット･ボード裏

・基板上のパターン について

パターンをカットすることで、その回路はオープンとなります。

再度接続させたい場合は半田ショートしてください。

PCM2,PCM3を使用する場合はLEDの左隣のショートパッドをパターンカットしてください。

評価用 SW

Power LED

ユニバーサル･エリア

CN2

CN1

メイン･クロックサブクロック

GND,VDD
端子

PCM2

PCM3

CN1

ZUD-CD-06-0036-1 Page 5/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

ターゲット･ボード仕様 (その1)

16pinヘッダピンアサイン(デバッグ時に扱う信号)

信号
ピン
番号

信号
ピン
番号

R.F.U.16RESET_IN15

FLMD014R.F.U.13

R.F.U.12------11

R.F.U.10R.F.U.9

H/S8SCK7

R.F.U.6SO5

VDD4SI3

RESET_OUT2GND1

1

15

※R.F.U.は予約端子のためターゲット･ボード側
でオープンになっています

16pinヘッダピンアサイン(プログラミング時に扱う信号)

信号
ピン
番号

信号
ピン
番号

R.F.U.16R.F.U.15

FLMD014R.F.U.13

R.F.U.12------11

R.F.U.10R.F.U.9

H/S8SCK7

R.F.U.6SO5

VDD4SI3

RESET_OUT2GND1

※R.F.U.は予約端子のためターゲット･ボード側
でオープンになっています

1

15

NEC
QB-78K0KF2-TB
SS-77029

NEC
QB-78K0KF2-TB
SS-77029

NEC
QB-78K0KF2-TB
SS-77029

準備

ZUD-CD-06-0036-1 Page 6/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

ターゲット･ボード仕様 (その2)

CN1(※詳細は付録の回路図を参照してください)

P53/TIQ04/TOQ04

/KR3/DDO
40

P52/TIQ03/TOQ03

/KR2/DDI

39

P51/TIQ02/TOQ02

/KR1
38

P50/TIQ01/TOQ01

/KR0

37

P39/RXDA2/INTP836P38/TXDA235

EVDD34GND33

P3732P3631

P35/TIP11/TOP1130P34/TIP10/TOP1029

P97/TIP20/TOP20

/SIB1

P95/TIQ10/TOQ10

P93/TIQ12/TOQ12

P91/RXDA1/KR7

P55/KR5/DMS

P33/TIP01/TOP01

P31/INTP7/RXDA0

P42/SCKB0

P40/SIB0

P05/INTP2/DRST

P03/INTPQ/ADTRG

NC

T_RESET

NC

NC

FLMD0

P00/TIP31/TOP31

P11/INTP10

GND

接続先

CPU端子

P96/TIP21/TOP21

P94/TIQ13/TOQ13

P92/TIQ11/TOQ11

P90/TXDA1/KR6

P54/KR4/DCK

P32/ASCK0/TIP00

/TOP00/TOP01

P30/TXDA0

P41/SOB0

P06/INTP3

P04/INTP1

P02/NMI

NC

NC

GND

VDD

P01/TIP30/TOP30

EVDD

P10/INTP9

AVREF0

接続先

CPU端子

28
27

2625

16pinｺﾈｸﾀ7へ接続2416pinｺﾈｸﾀ3へ接続23

1211

109

16pinｺﾈｸﾀ14へ接続87

65

43

16pinｺﾈｸﾀ5へ接続2221

10KΩでプルダウン2019

SW1にも接続1817

1615

16pinｺﾈｸﾀ15へ接続1413

4645

4847

備考ピン

番号

備考ピン

番号

50
49

4443

4241

21

準備

ZUD-CD-06-0036-1 Page 7/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

ターゲット･ボード仕様 (その3)

CN2(※詳細は付録の回路図を参照してください)

P710/ANI1040P711/ANI1139

P712/ANI1238P713/ANI1337

P714/ANI1436P715/ANI1535

PDL1334PDL1233

PDL1132PDL1031

PDL930PDL829

P70/ANI0

P72/ANI2

P74/ANI4

P76/ANI6

P78/ANI8

PDL7

PDL5/FLMD1

PDL3

PDL1

BVDD

PCT6

PCT1

PCM3

PCM1/CLKOUT

PCS1

P915/INTP6

P913/INTP4/PCL

P911

P99/SCKB1

接続先

CPU端子

P71/ANI1

P73/ANI3

P75/ANI5

P77/ANI7

P79/ANI9

PDL6

PDL4

PDL2

PDL0

GND

PCT4

PCT0

PCM2

PCM0

PCS0

P914/INTP5

P912

P910

P98/SOB1

接続先

CPU端子

2827

16pinｺﾈｸﾀ12へ接続2625

2423

1216pinｺﾈｸﾀ8へ接続11

109

87

65

43

2221

2019

1817

1615

LED1へ接続14LED2へ接続13

4645

4847

備考ピン

番号

備考ピン

番号

5049

4443

4241

21

準備

ZUD-CD-06-0036-1 Page 8/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

システム構成図1プログラム開発時（シミュレータ使用時）

プログラム開発時（シミュレータ使用時）
ハードウエアを必要としない構成です

ホストコンピュータ

V850ES/Hx2シリーズ用開発ツール[注1]

-ｺﾝﾊﾟｲﾗ (CA850)

-PM+
-ｼｽﾃﾑ･ｼﾐｭﾚｰﾀ (SM+ for V850ES/Hx2)
-ﾃﾞﾊﾞｲｽ･ﾌｧｲﾙ (DF703712)
-ﾃﾞﾊﾞｲｽ･ﾄﾞﾗｲﾊﾞ･ｺﾝﾌｨｷﾞｭﾚｰﾀ(Applilet)

ダウンロード
/インストール

[注1]プログラム開発に必要な開発ツールは、弊社webサイトから無償でダウンロードできます。
http://www.necel.com/micro/jpn/v850/product/v850eshx2/v850eshx2-freesoft.html

ﾃﾞﾊﾞｲｽ･ﾄﾞﾗｲﾊﾞ･
ｺﾝﾌｨｷﾞｭﾚｰﾀ
Applilet

統合開発環境 PM+

ｺﾝﾊﾟｲﾗ
CA850

ﾕｰｻﾞ
ﾌﾟﾛｸﾞﾗﾑ

Applilet：GUIを使った簡単な操作で、
マイコンの内蔵周辺機能を動作させる
ソースコードを自動生成します。

PM+：ソースコードのビルド、エディタ
やシミュレータの起動などプログラム
開発で必要な一連の操作をまとめて行
うためのツールです。

ﾃﾞﾊﾞｲｽ
ﾌｧｲﾙ

ﾃﾞﾊﾞｲｽ･ﾌｧｲﾙ：マイコンの品種依存情
報ファイルです。PM+が参照します。

ｼｽﾃﾑ･ｼﾐｭﾚｰﾀ
SM+ for V850ES/Hx2

SM+ for V850ES/Hx2：マイコンの動作
をシミュレーションします。ハードウ
エアを使わずにプログラム動作の確認
ができます。

準備

http://www.necel.com/micro/jpn/v850/product/v850eshx2/v850eshx2-freesoft.html

ZUD-CD-06-0036-1 Page 9/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

システム構成図2 プログラム開発時（MINICUBE2使用時）
プログラム開発時（MINICUBE2使用時）
MINICUBE2とターゲット･ボードを組み合わせた構成です。赤点線で囲んだ部分は、本製品です。

Applilet

統合開発環境 PM+

CA850 ﾕｰｻﾞ･
ﾌﾟﾛｸﾞﾗﾑ

ﾃﾞﾊﾞｲｽ
ﾌｧｲﾙ

総合ﾃﾞﾊﾞｯｶﾞ
ID850QB

ID850QB：マイコンの動作をオンチッ
プ･デバッグします。実機を使ってプロ
グラム動作の確認ができます。

ﾀｰｹﾞｯﾄ･ﾎﾞｰﾄﾞ
QB-V850ESHG2-TB

QB-V850ESHG2-TB：本製品です。
V850ES/HG2を搭載しています。

V850ES/Hx2シリーズ用開発ツール

-ｺﾝﾊﾟｲﾗ (CA850)

-PM+
-ﾃﾞﾊﾞｯｶﾞ (ID850QB)
-ﾃﾞﾊﾞｲｽ･ﾌｧｲﾙ (DF703712)
-ﾃﾞﾊﾞｲｽ･ﾄﾞﾗｲﾊﾞ･ｺﾝﾌｨｷﾞｭﾚｰﾀ(Applilet)

ダウンロード
/インストール

MINICUBE2

16pinﾀｰｹﾞｯﾄ･ｹｰﾌﾞﾙ
ﾀｰｹﾞｯﾄ･ﾎﾞｰﾄﾞ:
V850ES/HG2を搭載

ホストコンピュータ

ｵﾝﾁｯﾌﾟ･ﾃﾞﾊﾞｯｸﾞ･ｴﾐｭﾚｰﾀ
MINICUBE2

MINICUBE2(QB-MINI2)：プログラミング
機能付きオンチップ･デバッグ･エミュ
レータです。

準備

ZUD-CD-06-0036-1 Page 10/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

システム構成図3 プログラム書き込み時
プログラム書き込み時
MINICUBE2とテストボードを組み合わせた構成です。点線で囲んだ部分は、本製品です。

ホストコンピュータ
V850ES/Hx2シリーズ用開発ツール

-ﾌﾟﾛｸﾞﾗﾐﾝｸﾞGUI(QB-Programmer)

-V850ES/Hx2用ﾊﾟﾗﾒｰﾀ･ﾌｧｲﾙ

(PRM70F3712)

ダウンロード
/インストール

ﾌﾟﾛｸﾞﾗﾐﾝｸﾞGUI
QB-Programmer

ﾊﾟﾗﾒｰﾀ
ﾌｧｲﾙ

ﾕｰｻﾞ
ﾌﾟﾛｸﾞﾗﾑ

ﾌﾟﾛｸﾞﾗﾐﾝｸﾞGUI：MINICUBE2を使ってデバイス
へプログラミングするためのGUIソフトです。

ﾊﾟﾗﾒｰﾀ･ﾌｧｲﾙ：フラッシュ･メモリの書き換え時
に使用する品種依存情報ファイルです。

ﾕｰｻﾞ･ﾌﾟﾛｸﾞﾗﾑ：統合環境PM+で生成されたROM化
対応したオブジェクト･ファイルを使います。

ﾀｰｹﾞｯﾄ･ﾎﾞｰﾄﾞ
QB-V850ESHG2-TB

QB-V850ESHG2-TB：本製品です。
V850ES/HG2を搭載しています。

MINICUBE2

16pinﾀｰｹﾞｯﾄ･ｹｰﾌﾞﾙ

ワンポイント

プログラミングについて

通常プログラミングと言えばプログラムを作成することを示しますが、もう1つの意味があります。

半導体デバイス(マイコン、各種ROMなど)へ書き込みを行う場合も「プログラミング」と呼びます。

ｵﾝﾁｯﾌﾟ･ﾃﾞﾊﾞｯｸﾞ･ｴﾐｭﾚｰﾀ
MINICUBE2

MINICUBE2(QB-MINI2)： プログラミン
グ機能付きオンチップ･デバッグ･エミ
ュレータです。

準備

ﾀｰｹﾞｯﾄ･ﾎﾞｰﾄﾞ:
V850ES/HG2を搭載

ZUD-CD-06-0036-1 Page 11/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

開発ツールのダウンロード

“V850ES/Hx2シリーズ用開発ツール”のインストール方法：

 プログラミングGUI(QB-Programmer)、V850ES/Hx2用Applilet
自己解凍形式のファイルを実行すると、フォルダが作成されます。
setup.exeを実行してインストールを行ってください。Appliletのバージョ
ンは1.70以上を使用してください。

 SM+ for V850ES/Hx2、CA850
自己解凍形式のファイルを実行すると、自動的にインストールが始まります。
画面の指示に従ってインストールを行ってください。

 V850ES/Hx2用デバイス･ファイル
専用のインストーラでインストールします。解凍したフォルダにあるユーザ

ーズ･マニュアルを参照して、インストールを行ってください。

 V850ES/Hx2用パラメータ･ファイル
任意のフォルダに解凍してください。

本製品を使うために必要な開発ツールは、弊社WEBページにて提供しています。

http://www.necel.com/micro/ja/promotion/v850eskx2/

http://www.necel.com/micro/ja/development/asia/applilet/

http://www.necel.com/micro/ja/development/asia/minicube2/minicube2.html

準備

V850ES/Hx2用フリー･ツールへ

をクリック!!

http://www.necel.com/micro/ja/promotion/v850eskx2/
http://www.necel.com/micro/ja/development/asia/applilet/
http://www.necel.com/micro/ja/development/asia/minicube2/minicube2.html

ZUD-CD-06-0036-1 Page 12/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

1.システム･シミュレータ(SM+)体験編

マイコン開発

体験

この章ではMINICUBE2、ターゲット･ボード、開発ツールを使用して、

プログラムの作成から動作確認、デバッグ方法、マイコンへ書き込むま

での一連の開発手順をシステム構成別について説明します。

2.ターゲット･ボード体験編

3.マイコン･プログラミング体験編

ハードウエアを必要としない、無償ダウン
ロードツールだけで動作します。
サンプルとしてタイマ割り込みを使用して2
個のLEDを点灯させるプログラム作成します。
30分程の時間で一通り体験できます。

MINICUBE2、ターゲット･ボード、フリー･ツ

ールを使用します。MINICUBE2を使って実際

にマイコンを動作させます。また、統合デバ

ッガID850QBの基本的な使い方を学びます。

2.ターゲット･ボード体験編で作成したプロ
グラムをマイコンへ書き込みます。

V850ES
HG2

NEC
QB-
V850ESHG2-TB
SS-77025

F
P1

CN1

CN2

ワンポイント

サンプル･プログラムについて

ここで作成するサンプル･プログラムはSWを1つ、LEDを2つ使います。交互に点滅を繰り返すLEDを

SWを押下によって点滅のスピードを変化させる簡単なプログラムです。ターゲット･ボード上には

SW、LEDが搭載されているので作成したプログラムが実際に試せます。

LEDが交互に点滅しています SWを押下すると LEDの点滅速度が変化します

ZUD-CD-06-0036-1 Page 13/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

システム･シミュレータ(SM+)体験編

体験

SM+編ではフリー･ツールを使用したソフトウエア構成でのプログラムの作
成手順を説明します。

ﾃﾞﾊﾞｲｽ･ﾄﾞﾗｲﾊﾞ･
ｺﾝﾌｨｷﾞｭﾚｰﾀ
Applilet

統合開発環境 PM+

ｺﾝﾊﾟｲﾗ
CA850

ｻﾝﾌﾟﾙ
ﾌﾟﾛｸﾞﾗﾑ

ﾃﾞﾊﾞｲｽ
ﾌｧｲﾙ

ｼｽﾃﾑ･ｼﾐｭﾚｰﾀ
SM+ for V850ES/Hx2

Step1
Appliletを使い統合開発環境 PM+で読み
込み可能なプロジェクトファイルを作成
します。

Step3
統合開発環境 PM+でコンパイル/リンクを
実行して、システムシミュレータ SM+
for V850ES/Hx2で実行可能なオブジェク
トファイルを作成します。

Step4
Step3で作成したオブジェクトファイルを
システム･シミュレータで実行します。

Step2
統合開発環境 PM+内のエディタを使いユ
ーザ･プログラムを作成します。

次ページよりStep1～Step4で作成手順を説明します。

ZUD-CD-06-0036-1 Page 14/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

a. Appliletを起動します。

[スタート]→[プログラム(P)]→[NEC Electronics Tools]→

[Appliletfor V850ESHX2]→[Vx.xx]→[Applilet for V850ESHX2 Vx.xx]

b. Applilet設定用ファイルを新規に作成します。

メニュー・バーの[ファイル(F)]→[新規作成(N)...]を選択します。

『新規プロジェクト』ダイアログで、<プロジェクト名>と<チップ・シリーズ>を
設定してください。

体験

Step1 Appliletを使い統合開発環境 PM+で読み込み可能なプロジェクトファ
イルを作成します。

<プロジェクト名>

mdt→ sample に変更

<チップ・シリーズ>

シリーズ名： V850ESHG2 を選択

チップ名： uPD70F3707 を選択

OKをクリックすると周辺機器メニュー
が表示されます

システム･シミュレータ(SM+)体験編 (Step1-1)

ZUD-CD-06-0036-1 Page 15/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

体験

c. サンプル･プログラムで使用する周辺機器を設定します。その1

システム設定

[基本設定]タブ
サブ･クロック設定エリアの”使用しない”にチェック
ウォッチドッグ･タイマ2機能エリアの”使用しない”にチェック
内蔵発振器使用設定エリアの”禁止”にチェック

[起動設定]タブ
CPUクロック選択”20(fxx)”を選択

システム･シミュレータ(SM+)体験編 (Step1-2)

ワンポイント

メイン･クロック、サブクロックの設定を行います。ここで指定したクロック値は、タイマ･モジュー

ルのコンペア･レジスタ値の計算やシリアル･モジュールのボーレートに影響を与えます。

ウォッチドッグタイマとはプログラムの暴走を検出するための機構です。プログラム暴走と検出され

た場合は内部リセット信号が発生されデバイスはリセットされます。より信頼性の高いプログラムに

するためにはウォッチドッグタイマを使用します。

システム設定

ZUD-CD-06-0036-1 Page 16/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

体験

d. サンプル･プログラムで使用する周辺機器を設定します。その2

システム･シミュレータ(SM+)体験編 (Step1-3)

タイマ設定
[タイマP0]タブ
タイマP0機能エリアのインターバル･タイマにチェック。
詳細をクリックし次設定へ。

設定単位を”msec”へ変更し、
インターバル時間を”10”と
します。割り込み設定で
“TMP0とCCR0の一致で割り込
み発生”にチェックします。
この設定でタイマ00は10msec
毎に割り込みルーチンが呼ば
れる設定になります。設定で
きるインターバル時間は以下
の通りです。(メイン･クロッ
ク5Mhz, PLL動作時)
・msec:1～419
・usec:1～419424
・nsec:1～419424000

割り込み設定

[外部割込み設定]タブ”INTP0許可”にチェック

ZUD-CD-06-0036-1 Page 17/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

体験

e. サンプル･プログラムで使用する周辺機器を設定します。その3

システム･シミュレータ(SM+)体験編 (Step1-4)

ポート設定
[ポート0]タブ

P03のPU(プルアップ)にチェック
P03はINTP0と兼用端子です。そのた

め先に割り込み設定を行うとP03の「入力、出力、1」のチェックBOXは使
用不可のアイコンになっています。INTP0は外部割込み端子です。LOWの時
に割り込みが発生するように設定するので、ここではPull-upします。

[ポートCM]タブ

PCM2、PCM3の「出力、1」にチェック
LED1、LED2はそれぞれPCM3、PCM2のポートに接続されています。LEDはLOW
出力によって点灯するので初期値をHIGHにします。

ワンポイント

外部端子割り込み、キー割り込みの設定を行います。サンプルプログラムではINTP0の外部端子にSW
が接続されています。

タイマにはインターバル･タイマの他にも様々な機能があります。
外部イベント･カウンタ（外部から入力される信号のパルス数を測定できます）、方形波出力（任意
の周波数の方形波出力が可能です）、PPG出力（周波数と出力パルス幅を任意に設定できる矩形波を
出力できます）、ワンショット・パルス出力（出力パルス幅を任意に設定できるワンショット・パル
スを出力できます）、パルス幅測定（外部から入力される信号のパルス幅を測定できます）、PWM出
力などがあります。

各ポートの設定を行います。各ポートは入力/出力、内蔵プルアップ抵抗(Pull-up)、初期値の設定が
可能です。ポートは他の周辺I/Oと兼用端子になっている場合が殆どです。サンプルプログラムでは
P03/INTP0が兼用端子のためINTP0を設定した後ではP03の設定はPull-upのみとなっています。

タイマ設定

ポート設定

割り込み設定

設定すると、表示が変化します。
アイコン→黄色
タイトル→青色

ZUD-CD-06-0036-1 Page 18/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

体験

e. ソースコードを自動生成します。

コンパイラを C:¥Program Files¥NEC Electronics Tools¥CA850以外の場所に
インストールしている場合は、メニュー･バーの [オプション(O)]→[コンパイ
ラ選択]→[パス設定...] でコンパイラのパスを設定してください。

e-1) コンパイラ(CA850)のパスを設定します。

e-2) [GO]ボタンを押してください。

e-3) <ドライブとフォルダ選択> でコード生成するフォルダを確認して、

[コード生成]ボタンを押してください。

システム･シミュレータ(SM+)体験編 (Step1-5)

ZUD-CD-06-0036-1 Page 19/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

体験

e-4) [コード生成]が完了し、ダイアログが表示されます。

ワンポイント

コード生成について

すでにソースファイルが存在していた場合は、

右図のダイアログが表示されます。

ファイルをそのまま残すにチェックしても

「main.c」,「xxxx_user.c」以外のファイル

は必ず上書きされますので注意してください。

ユーザープログラムを作成する場合、編集す

るソースファイルは「main.c」,

「xxxx_user.c」を推奨しています。

Appliletで設定した値
-メイン･システムクロック 20MHz
-ウォッチドッグタイマ2は使用しない
-サブ･クロック使用しない
-内蔵発振器使用禁止
-INTP0割り込み許可
-PMC2,PMC3を出力ポートにて、初期値を1とする
-タイマP0をインターバル･タイマに使用して、10msec毎に割り込みを行う

システム･シミュレータ(SM+)体験編 (Step1-6)

ZUD-CD-06-0036-1 Page 20/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

体験

Step2 統合開発環境 PM+内のエディタを使い、サンプル･プログラムを作成
します。

a. PM+ を起動します。
–[スタート]→[プログラム(P)]→[NEC Electronics Tools]→PM+ x.xx

b. ワークスペース(sample.prw)を開きます。
– メニューの[ファイル(F)]→[ワークスペースを開く(W)...]を選択します。
– 『ワークスペースを開く』ダイアログで、システム･シミュレータ(SM+)体験
編(Step1-5)で指定したフォルダの“sample.prw”を指定して、[開く(O)] ボ
タンを押してください。

システム･シミュレータ(SM+)体験編 (Step2-1)

b-1)お使いのツールのバージョンによって、ワークスペースを開いた時に際に下図の
メッセージが表示される事があります。

ZUD-CD-06-0036-1 Page 21/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

体験

システム･シミュレータ(SM+)体験編 (Step2-2)

b-2)ツールを選択し直してください。ツールバージョン設定を行うには、「詳細設定」
を押下します。

b-3)未使用にチェックされている項目のツールを選択し直してください。
CA850,LDG,ID850QB,SM+ for V850ES/Hx2を必ずチェックしてください。
OKを押下してPM+に戻ります。

ワンポイント

ツールのバージョンについて

ここで表示しているツールのバージョンは開発中の場合がありますので実際のバージョン表示と異

なる場合があります。最新バージョンにつきましてはMINICUBE2のWEBページ、もしくは対象デバイ

スのWEBページを参照してください

ZUD-CD-06-0036-1 Page 22/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

体験

c. LED2個を一定間隔で点灯させ、外部SWによってその間隔を制御するプログ
ラムを作成します。

c-1)PM+ の ProjectWindow で main.c をダブルクリックしてエディタを起動します。
main関数にタイマをスタートさせる『TMP0_Start();』の呼び出しを追加します。
また、グローバル変数の初期化も追加します。

c-2) 同様にint_user.cをダブルクリックしてエディタを起動します。
外部SWが押された場合に呼ばれる割り込み関数MD_INTP0()へ処理を追加します。

extern UCHAR g_interval_sw;
extern UINT g_interval_count;

void main(void)
{

g_interval_sw= 0;
g_interval_count= 1;
TMP0_Start();/*Function MD_INTTP0CC0() is called by every 10msec*/
__EI();
while(1){

;
}

}

UCHAR g_interval_sw;

__interrupt void MD_INTP0(void)
{

/* TODO. Add user defined interrupt service routine */
g_interval_sw++;
g_interval_sw= g_interval_sw& 7;

}

システム･シミュレータ(SM+)体験編 (Step2-3)

下記に示す青色の付いた部分のコードを追加してください。

下記に示す青色の付いた部分のコードを追加してください。

ZUD-CD-06-0036-1 Page 23/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

体験

c-3) 同様にtimer_user.cをダブルクリックしてエディタを起動します。
10msec毎に呼ばれる関数MD_INTTP0CC0()へ処理を追加します。

extern UCHAR g_interval_sw;
UINT g_interval_count;
UCHAR g_counter_data[8] = { 1, 3, 7, 15, 31, 47, 63, 127 };

__interrupt void MD_INTTP0CC0()
{

/* TODO. Add user defined interrupt service routine */
UCHAR inreg, outreg;
if (g_interval_count== 0)
{

g_interval_count= g_counter_data[g_interval_sw];
inreg= PCM.2;
outreg= inreg^ 1;
PCM.2 = outreg;
PCM.3 = inreg;

}
g_interval_count--;

}

処理の説明
10msec毎に呼ばれる関数内でg_interval_countを-1して、それが0になった場合にLEDを
点滅させる処理をしています。最初はg_interval_countが1なので2回に1回LEDが点滅し
ます。するとPCM2,PCM3に接続されたLEDが20msec毎に交互に点滅します。はじめは
20msec毎ですが、外部SWを押下することによって点滅速度が遅くなります。点滅速度は
20msec, 40msec, 80msec, 160msec, 320msec, 480msec, 640msec, 1280msecを繰り返し
ます。
g_interval_swはSWを押下すると外部割り込み関数 MD_INTP0()が呼ばれ +1されます。
g_interval_swは0～7の値になります。g_interval_countは10msec毎に呼ばれる関数
MD_INTTP0CC0()で -1されます。g_interval_countが0の場合にPCM2,PCM3に接続された
LEDを交互に点灯させます。

グローバル変数の説明
g_interval_sw: 外部SWを押下すると変化する。0～7の値になる。
g_interval_count: 10msec毎に -1されるカウンタ。0の時にLED点灯を変更します。
g_counter_data[8]: 点灯速度を決めるデータ。8段階のスピードを設定します。

システム･シミュレータ(SM+)体験編 (Step2-4)

下記に示す青色の付いた部分のコードを追加してください。

ZUD-CD-06-0036-1 Page 24/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

体験

d. サンプル･プログラムの流れ図を示します。

リセット

SystemInit()

ハードウエアの初期化を行います。
クロック、ポート、外部割り込み、タイマについて初期化を
行います。 (ソースファイル systeminit.c)

グローバル変数初期化
グローバル変数 g_interval_sw, g_interval_countを初期化
します。

タイマP0開始
タイマP0の処理を開始します。

while(1){ }
処理はタイマP0、外部割り込みで行われるのでメインは無限
ループになります。

MD_INTP0()

g_interval_sw++;
g_interval_sw=
g_interval_sw& 7;

グローバル変数 g_interval_swを+1し、値が 0 ～ 7 になる
ようにします。

外部割り込みが発生した場合の処理です。P03がLOWになると
外部割り込みが発生し、この関数が呼ばれます。
(ソースファイル int_user.c)

メイン処理を開始します。(ソースファイル main.c)

システム･シミュレータ(SM+)体験編 (Step2-5)

ZUD-CD-06-0036-1 Page 25/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

体験

MD_INTTP0CC0()

次の点灯時間を決めます。点灯時間は外部割
り込みSW(g_interval_sw)の値を元に
g_counter_dataから参照します。

10msec毎に発生するインターバル･タイマです。10msec毎に、
この関数が呼ばれます。(ソースファイル timer_user.c)

g_interval_count
== 0

Yes

No

g_interval_count=
g_counter_data[g_interval_sw& 7]

g_interval_countをチェックする。

inreg= PCM.2;
内部変数 inregにLED2(ポートPCMのbit2接
続)の値を読み込みます。

outreg= inreg^ 1;
内部変数 outregにinregを反転(xor)させた
値を設定します。

PCM.2 = outreg;

PCM.3 = inreg;

g_interval_count--;

LED点灯処理を開始します。

LED2(ポートPCMのbit2接続)に outregの値を
入れます。

LED1(ポートPCMのbit3接続)に inregの値を
入れます。

g_interval_countの値を減らします。

ワンポイント

ポートの設定について

ポートの設定はbit単位で行うことができます。例えばポート5のbit1を1にするには P5.1 = 1;の

ように記述します。注意しなければならないのは、bit単位で指定するときの値は必ず1か0です。

ポート5のbit7を1にするのは P5.7 = 0x80; ではなく P5.7 = 1; になります。

システム･シミュレータ(SM+)体験編 (Step2-6)

ZUD-CD-06-0036-1 Page 26/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

体験

a. [ビルド]ボタン を押すか、ビルドメニューよりビルドを選択してくださ
い。記述したソースに誤りが無ければ下図のダイアログが表示されます

Step3PM+でサンプル･プログラムのビルド(コンパイル/リンク)を行います。

b. PM+ から連携起動するシミュレータを設定します。
メニュー・バーの[ﾂｰﾙ(T)]→[ﾃﾞｨﾊﾞｯｶﾞの設定(D)...]を選択します。『ﾃﾞｨﾊﾞｯ
ｶﾞの設定』ダイアログのプルダウンメニューで、選択ﾃﾞｨﾊﾞｯｶﾞに“SM+ for
V850ES/Hx2 Wx.xxｼｽﾃﾑ･ｼﾐｭﾚｰﾀ”を設定します。

ワンポイント

ソースの記述について
ソースファイル中にコメントを漢字で記述することができます。またコメントの記述として // を
使用が可能です。
メニューの[ツール(T)]→[コンパイラオプションの設定(C)]を選択します。[ﾌﾟﾘﾌﾟﾛｾｯｻ]タブを選
択すると下図のダイアログが開きます。

C++コメントの使用を許可する[-Xcxxcom](C)にチェックしてください。

システム･シミュレータ(SM+)体験編 (Step3)

ZUD-CD-06-0036-1 Page 27/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

体験

Step4シミュレータ(SM+ for V850ES/Hx2)でプログラムの動作を確認します。

a. PM+ から SM+ for V850ES/Hx2 を起動します。

[ﾃﾞｨﾊﾞｸﾞ]ボタン を押して、SM+ for V850ES/Hx2 の 『Configuration』ダ
イアログを表示します。Oscillation Frequency の値を 20.00 MHz に設定して、
[OK] ボタンを押してください。

ダウンロード確認のダイアログが表示されま
すので、[OK]ボタンを押してください。

ワンポイント

Configurationについて

Oscillation Frequency の値はAppliletのシステム設定[起動設定]タブのCPUクロック選択

(MHz)(メイン･クロック)と同じ値を設定してください。この値はシリアルのボーレートに影響しま

すので正しい値を設定してください。

ChipはAppliletで指定した名前が自動的に選択されます。

フリー･ツールの場合、Internal ROMで指定できる大きさは最大128K Byteになります。

システム･シミュレータ(SM+)体験編 (Step4-1)

ZUD-CD-06-0036-1 Page 28/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

体験

b. LEDが正しく点灯しているかを、シミュレータ(SM+ for V850ES/Hx2)の入
出力パネルに擬似ターゲット･システム(LED,SW)を構築して確認します。

b-1) [入出力パネル]ボタン を押すか [シミュレータ(S)]→[入出力ﾊﾟﾈﾙ(P)]を
選択して『入出力パネル１』を表示します。

b-2) 『入出力パネル１』をアクティブにした状態で[LED作成]ボタン を押すか
[部品(P)]→[LED(E)]を選択して、『入出力パネル１』に任意の大きさのLED2
個を貼り付けます。

b-3) 同様に[ボタン作成]ボタン を押すか[部品(P)]→[ﾎﾞﾀﾝ(B)]を選択して
『入出力パネル１』に任意の大きさのボタンを貼り付けます。

b-4) 左LED部品の上で右クリック→[ﾌﾟﾛﾊﾟﾃｨ(R)]を選択して表示される
『Parts Led(Button) Properties』ダイアログで、端子等を設定します。

ﾗﾍﾞﾙをLED1、接続端子をPCM3に設定
し、ｱｸﾃｨﾌﾞﾚﾍﾞﾙLOWへチェックしま
す。
これで1つのLEDが接続できました。

システム･シミュレータ(SM+)体験編 (Step4-2)

ZUD-CD-06-0036-1 Page 29/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

体験

b-5) 同様に右LED部品の上で右クリック→[ﾌﾟﾛﾊﾟﾃｨ(R)]を選択して表示される
『Parts Led(Button) Properties』ダイアログで、端子等を設定します。

ﾗﾍﾞﾙをLED2、接続端子をPCM2に設定し、ｱｸﾃｨﾌﾞ
ﾚﾍﾞﾙLOWへチェックします。これでLEDが2個設
定できました。

ﾗﾍﾞﾙのフォントを変更する場合
[図形(F)]→[ﾌｫﾝﾄの指定(O)...]を選択します。
フォント名、色、スタイル、サイズが変更可能
です。右図は色を「赤」、スタイル「太字」に
変更した場合です。

b-6) SW部品の上で右クリック→[ﾌﾟﾛﾊﾟﾃｨ(R)]を選択して表示される
『Parts Led(Button) Properties』ダイアログで、端子等を設定します。

ﾗﾍﾞﾙをSW、接続端子をP03に設定し、ｱｸﾃｨﾌﾞﾚﾍﾞﾙLOWへチェックします。また
保有時間を100msecに設定します。フォントも「太字」へ変更します。

設定後

ワンポイント

部品の編集を行うときは[選択(S)]、シミュレーションを実行するときは[入力シミュレーション

(I)]をチェックしてください。

システム･シミュレータ(SM+)体験編 (Step4-3)

ZUD-CD-06-0036-1 Page 30/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

体験

c. [Restart]ボタン を押して、シミュレーションを実行します。
シミュレーション中は、ステータス･バーが赤く表示されます。

Restart(F4)ボタン

ステータス･バー

c-1) LEDの点灯を確認します。

交互に高速(シミュレ
ータ上20msec毎)に点
滅します。実際には
PCの速度に依存する
ので20msec毎の表示
にはなりません。c-2) SWを押下します。

SWを押下すると、一瞬ボタンが押されLEDの点滅
速度が遅くなります。押下する毎に点滅速度が
低下します。8回押下すると高速点滅に戻ります。

ワンポイント

SM+ の設定保存について

プロジェクト･ファイルの保存確認ダイアログが開くので、通常は[はい]を選択してください。ブ

レーク･ポイントの設定や、入出力パネルの設定内容等が保存されます。作成した「入出力パネル

1」はSM+ の情報保存時に名前が変更され「samplep0」になります。保存した内容は次回PM+ から

SM+ を起動した際に自動的に読み込まれます。

システム･シミュレータ(SM+)体験編 (Step4-4)

ZUD-CD-06-0036-1 Page 31/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

体験

d. SM+ の基本的な使い方について(ブレークポイントの設定)

d-1) ブレークポイントを設定し、任意の場所でプログラムの実行を停止させます。
[ﾌｧｲﾙ(F)]→[開く(O)...]を選択し「timer_user.c」を開きます。

timer_user.cを開きます

d-2) 「timer_user.c」を開いたら64行の左をクリックしてブレークポイントを設定
します。設定した行は赤い反転表示になります。

ここをクリックすると”B”
と表示されます

ブレークポイントを設定した行が
反転表示されます

ワンポイント

イベントについて

イベントとは、「アドレス0x1000 番地をフェッチした」、「アドレス0x2000 番地にデータを書き

込んだ」などのデバッグにおけるターゲット･システムの特定の状態を指しています。イベントを

ブレークポイントの設定や、トレース等の各デバッグ機能のアクション･トリガとして利用してい

ます。ここで設定した”B”はブレーク･イベントです。イベントの種類は他に「トレース･イベン

ト」、「タイマ･イベント」、「スタブ･イベント」、「スナップショット･イベント」があります。

システム･シミュレータ(SM+)体験編 (Step4-5)

ZUD-CD-06-0036-1 Page 32/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

体験

d-3) [Restart]ボタン を押して、シミュレーションを実行します。
すぐにプログラムはブレーク･ポイントで停止します。

初期値を設定していますので
両方のLED共に消灯しています

この行でプログラムが停止
しています

d-4) この状態でF10を押下してステップ動作させます。68行までステップ動作させ
ると PCM.2 = outreg; が実行されLED2が点灯します

F10を押下してステップ動作させます。
直前の行まで実行されています
(この場合 PCM.2 = outreg; まで)

システム･シミュレータ(SM+)体験編 (Step4-6)

PCM.2 = outreg; が実行
されLED2が点灯しました

ZUD-CD-06-0036-1 Page 33/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

体験

e. SM+ の基本的な使い方について(ウォッチの登録)

e-1) 表示させたい変数をマウスでドラッグして選択し、右クリックで
「ウォッチ登録」を選択します。

e-2) [Add Watch]ダイアログで表示方法を設定します。10進表示を行うときはDecを
チェックします

[表示(V)]→[ｳｫｯﾁ登録(W)...]でも同様です。 [表示
(V)]→[ｳｫｯﾁ追加(I)]の場合はすぐにWatchウインドウ
へデフォルトの表示方法で追加されます。

マウスでドラッグし、右クリック
します。 メニューより「ウォッチ
登録...」を選択します。

10進表記に設定します

e-3) Watchウィンドウが開き、変数が表示されます。

g_interval_swは10進表示、
g_interval_countは16進表示
に設定した例です

システム･シミュレータ(SM+)体験編 (Step4-7)

1

2

ZUD-CD-06-0036-1 Page 34/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

体験

e-4) [Restart]ボタン を押して、シミュレーションを実行します。

g_interval_swはSWを押下時、
g_interval_countは
シミュレーション実行中に
値が変化します

ワンポイント

シミュレーション中のWatchウインドウ更新について

Watchウィンドウ内の表示はデフォルトで500msec毎に更新されます。この値を変えるには[ｵﾌﾟｼｮﾝ

(O)]→[拡張ｵﾌﾟｼｮﾝ(X)...]を選択し、「Extended Option」ダイアログを表示します。

Internal RAM Monitor Redrawの値で

表示を更新する時間が指定できます。

時間は100msec単位で 0 ～ 65500ま

で指定できます。0、または空欄を

指定した場合はリアルタイム表示を

行いません。

ここで設定した値で必ず表示更新されるとは限りません。ホストマシンの速度や実行中のプログラ

ムに影響されるので実動作は遅くなる場合があります。しかしシミュレータ内部の動作としては正

しい時間で動作しています。

システム･シミュレータ(SM+)体験編 (Step4-8)

ZUD-CD-06-0036-1 Page 35/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

体験

システム･シミュレータ(SM+)体験編 (おわり)

システム･シミュレータ(SM+)体験編は以上です。まだまだシステム･シミュレータ
(SM+)には様々な機能があります。
・シリアル信号入出力の確認ができる「シリアル」
・ポートの波形を表示する「タイミングチャート」
・ポートの値を変更する「信号データエディタ」
・デバッグ時の表示に便利「標準入出力」
・「入出力パネル」はLEDマトリックス、レベルゲージなどの多彩な部品を用意
デバッグにかかせない下記機能も搭載されています。
・トレース
・カバレッジ
・条件ブレーク
・Tcl言語の実行
是非システム･シミュレータ(SM+)の便利な機能を体験してください。
次ページよりターゲット･ボードを使った「ターゲット･ボード体験編」が始まります。

システム･シミュレータ(SM+)の様々な機能を使用した例

端子の信号を波形観測できます
また信号の時間も測れます

シミュレーションがTcl言
語で自動テストできます。
テスト結果もファイルに
残せます

A/D入力、LED、7セグメ
ントLED、ボタン、部品
が揃っています

シリアル信号の入出力も
エミュレーション可能

ZUD-CD-06-0036-1 Page 36/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

総合ﾃﾞﾊﾞｯｶﾞ
ID850QB

ターゲット･ボード体験編

体験

ターゲット･ボード体験編では実際にターゲット･ボードをMINICUBE2へ接
続して使ってみるまでの手順を説明します。

Step4
Step3で作成したオブジェクトファイルを
MINICUBE2で実行します。実機を使ってプ
ログラム動作の確認ができます。

次ページよりStep1～Step4で作成手順を説明します。

ﾀｰｹﾞｯﾄ･ﾎﾞｰﾄﾞ
QB-V850ESHG2-TB

ｵﾝﾁｯﾌﾟ･ﾃﾞﾊﾞｯｸﾞ･ｴﾐｭﾚｰﾀ
MINICUBE2

NEC
QB-78K0KF2-TB
SS-77029

NEC
QB-78K0KF2-TB
SS-77029

接続後のイメージ図

ﾃﾞﾊﾞｲｽ･ﾄﾞﾗｲﾊﾞ･
ｺﾝﾌｨｷﾞｭﾚｰﾀ
Applilet

統合開発環境 PM+

ｺﾝﾊﾟｲﾗ
CA850

ﾕｰｻﾞ
ﾌﾟﾛｸﾞﾗﾑ

Step1
Appliletを使い統合開発環境 PM+で読
み込み可能なプロジェクトファイルを
作成します。

ﾃﾞﾊﾞｲｽ
ﾌｧｲﾙ

Step2
統合開発環境 PM+内のエディタを使いユ
ーザー･プログラムを作成します。

Step3
統合開発環境 PM+でコンパイル/リンクを
実行して、オンチップ･デバッグ･エミュ
レータで実行可能なオブジェクトファイ
ルを作成します。

ZUD-CD-06-0036-1 Page 37/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

a.サンプル･プログラムで使用する周辺機器を設定します。
ターゲット･ボードにはクロックが載っていますのでシステム設定に変更があります。

体験

システム設定
[基本設定]タブ
サブ･クロック設定エリアの
”使用しない”にチェック。
ウォッチドッグ･タイマ2機能エリアの
”使用しない”にチェック。
内蔵発振器使用設定エリアの
”禁止”にチェック。

[起動設定]タブ
CPUクロック選択(MHz)メイン･クロック
“20(fxx)”を選択。

[オンチップ･ディバグ設定]タブ
オンチップディバグ設定エリアの
“使用する”にチェック。
インサーキットエミュレータ選択は
“MINICUBE2”にチェック。
MINICUBE2端子選択は”CSIB0”、
RAM Monitor/DMM機能選択は
“使用する”にチェック。

ターゲット･ボード体験編 (Step1-1)

Step1 Appliletを使い統合開発環境 PM+で読み込み可能なプロジェクトファ
イルを作成し、統合デバッガID850QBの使い方を学びます。Appliletの使い
方については、システム･シミュレータ(SM+)体験編(Step1-1)～(Step1-5)も参照
してください。

ZUD-CD-06-0036-1 Page 38/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

体験

ターゲット･ボード体験編 (Step1-2)

割り込み設定
[外部割込み設定]タブ
“INTP0許可”にチェック。有効エッジを”立上がりエッジ”へ変更します。

タイマ設定
[タイマP0]タブ
タイマP0機能エリアのインターバル･
タイマにチェック。詳細をクリックし
次設定へ。設定単位を”msec”へ変更
し、インターバル時間を”10”としま
す。割り込み設定で”TMP0とCCR0の一
致で割り込み発生”にチェックします

[タイマP1]タブ
タイマP0と同様にタイマP1機能エリア
のインターバル･タイマにチェック。
詳細をクリックし次設定へ。設定単位
を”msec”へ変更し、インターバル時
間を”100”とします。
割り込み設定で”TMP1とCCR0の一致で
割り込み発生”にチェックします。

ZUD-CD-06-0036-1 Page 39/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

ポート設定
[ポート0]タブ
P03はINTP0と兼用端子です。そのため先に
割り込み設定を行うとP03の「入力、出力」
のチェックBOXは使用不可のアイコン に
なっています。ここではINTP0のPull-upの
設定をします。

[ポートCM]タブ
PCM2、PCM3の「出力、1」にチェック。
LED1、LED2はそれぞれPCM3、PCM2のポート
に接続されています。LEDはLOW出力によっ
て点灯するので初期値を1に設定します。

ターゲット･ボード体験編 (Step1-3)

ワンポイント

有効エッジについて

外部割込み設定で有効エッジを立上りエッジに変更しました。立上りエッジとは信号が0から1へ変

化するときに有効とする設定です。ターゲット･ボードのSWを押した時が立下り、押してからSWを

離した時が立上りになります。ソフトウエア･シミュレータでは問題になりませんが実機ですとチ

ャタリングという問題があります。解決方法についてはターゲットボード体験編を参照して下さい。

HIGH
LOW

立下り 立上り

理論値 HIGH
LOW

実測値

スイッチは機械的に動作するので接触
する瞬間はON/OFFが繰り返される

b. ソースコードを自動生成します。

システム･シミュレータ(SM+)体験編(Step1-4)を参考に、ソースコードを自動生成
します。

体験

ZUD-CD-06-0036-1 Page 40/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

体験

Step2 統合開発環境 PM+内のエディタを使い、サンプル･プログラムを作成
します。

ターゲット･ボード体験編 (Step2-1)

a. Appliletでソースコードを自動生成した後にPM+で読み込みます。
システム･シミュレータ(SM+)体験編(Step2-1)を参照してください。

extern UCHAR g_interval_sw;
extern UINT g_interval_count;

void main(void)
{

g_interval_sw= 0;
g_interval_count= 1;
TMP0_Start();/*Function MD_INTTM000() is called by every 10msec*/
TMP1_Start();/*Function MD_INTTM001() is called by every 100msec*/
__EI();
while(1){

;
}

}

b-1) main.c

b.プログラムを作成します

下記に示す青色の付いた部分のコードを追加してください。

UCHAR g_interval_sw;
UCHAR g_onetime_sw;

__interrupt void MD_INTP0(void)
{
/* TODO. Add user defined interrupt service routine */
if (g_onetime_sw== 0)
{
g_onetime_sw= 2;
g_interval_sw++;
g_interval_sw= g_interval_sw& 7;

}
}

下記に示す青色の付いた部分のコードを追加してください。

b-2) int_user.c

ZUD-CD-06-0036-1 Page 41/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

体験

b-3) TIMER_user.c

extern UCHAR g_interval_sw;
extern UCHAR g_onetime_sw;
UINT g_interval_count;
UCHAR g_counter_data[8] = { 1, 3, 7, 15, 31, 47, 63, 127 };

__interrupt void MD_INTTP0CC0()
{

/* TODO. Add user defined interrupt service routine */
UCHAR inreg, outreg;
if (g_interval_count== 0)
{

g_interval_count= g_counter_data[g_interval_sw];
inreg= PCM.2;
outreg= inreg^ 1;
PCM.2 = outreg;
PCM.3 = inreg;

}
g_interval_count--;

}

__interrupt void MD_INTTP1CC0()
{

/* TODO. Add user defined interrupt service routine */
if (g_onetime_sw!= 0)
{

g_onetime_sw--;
}

}

ターゲット･ボード体験編 (Step2-2)

下記に示す青色の付いた部分のコードを追加してください。

ZUD-CD-06-0036-1 Page 42/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

体験

システム･シミュレータ(SM+)体験編(Step2-5)の処理説明と同じですが、1点だけ処理の追

加があります。100msec毎に呼ばれる関数 MD_INTTP1CC0() のチャタリング防止処理です。

外部SWが押下されると g_onetime_swに2が代入されます。g_onetime_swは100msec毎に

-1されます。1度外部SWが押下されるとg_onetime_swが0になるまで200msecかかるわけで

す。MD_INTP0()の処理は、このg_onetime_swが0でないとLED点滅のタイミングを変更し

ません。ゆえにチャタリングのために短い時間に何度MD_INTP0()が呼ばれても200msec以

上の時間を空けないとLED点滅タイミングは変更されません。

HIGH

LOW

INTP0

MD_INTTP1CC0
割り込み処理

(g_onetime_swの値)

2

1

0
最初のINTP0割込で2になります
その後は200msec後に0へ戻ります

ワンポイント

チャタリングについて

ターゲット･ボード体験編ではチャタリング防止をソフトウエアで行いました。他にハードウエア

で行う方法があります。今回ソフトウエアでチャタリングを防止しましたが、ソフトウエアではチ

ャタリングが発生する期間を無視するという処理上から高速な応答を必要とするシステムには使え

ません。ハードウエアではシミュットトリガインバータ(74HC14など)を使うのが一般的です。この

方法はノイズ除去にも使われます。ターゲット･システム作成例AではSWにコンデンサを接続し、ハ

ードウエア的に急激なON/OFFをしない簡易な方法でチャタリングを防止しています。

74HC14などのシミュット
トリガインバータ

入力 出力

SW

ターゲット･ボード体験編 (Step2-3)

c.処理の説明

処理前の信号

HIGH
LOW

HIGH
LOW

処理後の信号

VDD

立上り信号でMD_INTP0の割り込みが発生します
MD_INTP0ではg_onetime_swが0の時だけSWが押
下されたと判断します。

100msec100msec

ZUD-CD-06-0036-1 Page 43/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

体験

b. PM+ から連携起動するデバッガを設定します。
メニュー・バーの[ﾂｰﾙ(T)]→[ﾃﾞｨﾊﾞｯｶﾞの設定(D)...]を選択します。『ﾃﾞｨﾊﾞｯ
ｶﾞの設定』ダイアログのプルダウンメニューで、[選択ﾃﾞｨﾊﾞｯｶﾞ(D)]に
“ID850QB Vx.xx総合ﾃﾞﾊﾞｯｶﾞ”を設定します。

Step3PM+でサンプル･プログラムのビルド(コンパイル/リンク)を行います。

a. ビルド･ボタン を押すか、メニュー・バーの[ﾋﾞﾙﾄﾞ(B)]→[ﾋﾞﾙﾄﾞ
(B)]を選択します。記述したソースに誤りが無ければ下図のダイアロ
グが表示されます。

ワンポイント

ビルドについて

ビルドメニューの[ﾋﾞﾙﾄﾞ->ﾃﾞｨﾊﾞｸﾞ(A) F5]または[ﾘﾋﾞﾙﾄﾞ->ﾃﾞｨﾊﾞｸﾞ(U)]を選択する場合

必ず連携起動するデバッガを指定してください。

デバッガの指定により下記のデバッグ環境が実現されます。

・ソフトウェア･シミュレータ : SM+ for V850ES/HX2 V2.00 ｼｽﾃﾑ･ｼﾐｭﾚｰﾀ

・MINICUBE2/IECUBE用デバッガ: ID850QB V3.20 V850 統合ﾃﾞﾊﾞｯｶﾞ

・TK用デバッガ : ID850-TK V1.01

TK-V850HG2 (株)アプリケーション製StarterKit

ターゲット･ボード体験編 (Step3)

ZUD-CD-06-0036-1 Page 44/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

体験

Step4Step3で作成したオブジェクトファイルをMINICUBE2でオンチップ･デ
バッグします。

a. MINICUBE2のターゲット･ボードへの接続方法

b. 接続の順番について
下記の順番で接続を行ってください。順番を間違えるとターゲット･システムを
壊す原因となります
1.MINICUBE2のSWを設定する
2.ターゲット･ボードへ16pinターゲット･ケーブルを接続する
3.MINICUBE2とPC本体を接続する

ワンポイント

電源選択SWについて

ターゲット用電源を切り替えます。切り替えは5V供給、3V供給、ターゲット電源使用の3種類です。

5V、3Vの供給はデバイスによって異なります。小さい回路ならMINICUBE2からの電源供給で大丈夫

ですが100mAを超えるような(モータを使うなど)回路は必ずターゲット･システム側で電源を用意し

てください。

MINICUBE2

16pinターゲット･ケーブル

ターゲット･ボード

スイッチを設定します

モード選択SW 電源選択SW
M2 5V出力

M1 M2 3 T 5

1

15

NEC
QB-78K0KF2-TB
SS-77029

NEC
QB-78K0KF2-TB
SS-77029

コネクタの1pinを合わせて接続します

ターゲット･ボード体験編 (Step4-1)

ターゲット･ ボードとMINICUBE2
の設定が終わるまでPCと接続し
ないでください

ZUD-CD-06-0036-1 Page 45/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

体験

c. ID850QBを起動します。PM+のメニューよりデバッグ･ボタン を押
すか、メニュー・バーの[ﾋﾞﾙﾄﾞ(B)]→[ﾃﾞｨﾊﾞｸﾞ(D)]を選択します。
Target Device ConnectionのPortをCSIB0へ変更します。また、
Multiply rateを4にします。

ターゲット･ボード体験編 (Step4-2)

ワンポイント

Multiply rate、Target Device Connectionについて

Multiply rateはメイン･クロックの逓倍を指定します。本ボードに搭載のV850ES/HG2は4逓倍(入

力のクロックが5MHzに対して動作クロックは20MHz)なので4を選択します。

Target Device Connectionはオンチップ･デバッグを行う際の通信方法を指定します。本ボードは

SIBO,SOB0,SCKB0,PCM0の各端子で3線式シリアル･インタフェースを利用してオンチップ･デバッグ

を行っています。

CSIB0へ変更します

4へ変更します

ZUD-CD-06-0036-1 Page 46/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

体験

e. ファイルがダウンロードされ、main.cが開きます

ターゲット･ボード体験編 (Step4-3)

ワンポイント

ダウンロードの時間はプログラムのサイズやターゲット･

システムとMINICUBE2との接続方法によって変化しますが、

このサンプル･プログラムでは8秒ほどです。また、ダウ

ンロード中はMINICUBE2のLEDが1秒間隔で点滅します。

d. OKを押下し、[ﾌｧｲﾙ(F)]→[ﾀﾞｳﾝﾛｰﾄﾞ(D)...]を選択し「romp.out」を開
きます。2回目以降の起動では自動的にダウンロードもできます。

PM+で作成したオブジェクトファイル

[開く]を押下する

ワンポイント

MINICUBE2とターゲッ

ト･ボードの接続が成

功するとMINICUBE2の

LEDが青に点灯します。

ZUD-CD-06-0036-1 Page 47/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

V850ES
HG2

49

50

2

1

1

15

NEC
QB-V850ESHG2-TB
SS-77025

F
P1

Y1

Y2

LED3

SW1

LED1

LED2

CN1

CN2

VDD

GND

PCM2

PCM3

体験

f. Goボタン を押下してプログラムを実行します

実行中を示します

PC画面の表示 ターゲット･ボード上の動作

SWを押下するとLEDの点滅
速度が変化します

ターゲット･ボード体験編 (Step4-4)

LEDが点滅します。最初は高速に点滅
するため両方点灯しているように見
えますがSWを押すと点滅がだんだん
ゆっくりになります。

g. ブレークポイントの設定方法
ウォッチの登録はシステム･シミュレータ(SM+)体験編(Step4-5)～(Step4-6)の
「d.SM+ の基本的な使い方について(ブレークポイントの設定)」を参照してくだ
さい。カーソル位置でF9押下でハードウエア･ブレーク、F11押下でソフトウエア･
ブレークを設定できます。

ハードウエア･ブレークを設定した場合。Bの文字
が緑色になります。最大2箇所まで設定可能です。

ソフトウエア･ブレークを設定した場合。Bの文字が青色になります。
最大2000箇所まで設定可能です。ただし、ROM領域のコードは4箇所
まで設定可能です。

ZUD-CD-06-0036-1 Page 48/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

体験

ターゲット･ボード体験編 (Step4-5)

h. RAMモニタ機能を使う(実行中の変数表示を行います)

h-1) ID850QBの設定を変更します
[ｵﾌﾟｼｮﾝ(O)]→[拡張ﾌﾟｼｮﾝの設定(X)...]を選択します。

h-2) RAM Monitorエリアの [Break When Readout]項目の“Whole”
にチェックします。また、”Redraw Interval:”の値で表示
更新時間を変更できます。

h-3) 任意の変数をウォッチ登録します。ウォッチの登録方法についてはシステム･
シミュレータ(SM+)体験編 (Step4-7)の「e.SM+ の基本的な使い方について(ウォ
ッチの登録)」を参照してください。

h-4) プログラムを実行すると実行中でも変数がリアルタイムに表示されます。
プログラムが割り込みを受け付け中のみ表示が更新されます。

プログラムが実行中を示
します

プログラムが実行中だが、変数の値
がリアルタイムに変化しています。

ZUD-CD-06-0036-1 Page 49/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

体験

ターゲット･ボード体験編 (Step4-6)

ワンポイント

ブレーク時の変数書き換えについて

プログラム実行中に[実行(R)]→[ｽﾄｯﾌﾟ(S)]またはStopボタン でプログラムを停止させた時

Watchウインドウに表示されている変数の値を変更することができます。

変数の値を変更後、 [実行(R)]→[継続して実行(G)]またはGoボタン で実行を再開できます。

上記の例(g_interval_swを4へ変更した場合)ですとLED点滅の速度がゆっくりになります。

また、プログラム実行中に値を変更することも可能です。

実行中にMemory/Register/IORの内容を変更する方法としてDMM機能があります。

[編集(E)]→[DMM(D)...]で設定可能です。メモリの内容を変更するには[ﾌﾞﾗｳｽﾞ(B)]→[ﾒﾓﾘ(M)]

またはMemボタン でMemoryウインドウを開き、Memoryウインドウ内のDMM...ボタンを押下する

と表示されているMemoryAddressが自動で挿入されるので容易に設定可能です。

元の値は0だが4へ変更した場合です

値を5へ変更した場合です

プログラムが実行中を示します

DMM...ボタンを押下するカーソル位置のメモリが表示
され、値を変更できます。

任意の値を入力し、Setボタンを押下します。

値を入力すると左記のダイアログが表示されます。

「OK」ボタンを押下すると、入力した値が反映さ

れます。

ZUD-CD-06-0036-1 Page 50/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

体験

ターゲット･ボード体験編 (Step4-7)

ワンポイント

高度なブレーク設定(イベントリンク)について(その1)

ID850QBには高度なブレーク･ポイントの設定があります。任意のイベントを通過した時のみブレー

クすることができます。この機能はプログラム･シーケンスの確認にとても有効です。

下記の例を説明します。プログラムは左から流れてきています。Function 1 で、ある値の判断を

行い処理を分岐して Function A～C を実行します。最後に Function 2 を行うフローです。

Function 2 でプログラムを止める場合、Function A → Function 2を通った場合だけプログラム

を停止させることが可能です。実際にサンプル･プログラムで試してみます。

ID850QBを起動し“romp.out”をダウンロードしてください。そして「int_user.c」を開いてくだ

さい。このファイルはターゲット･ボードのSWが押下された時に呼ばれる割り込み関数です。

Function 1

Function A

Function B

Function C

Function 2

メニューより[ｲﾍﾞﾝﾄ(N)]→[ｲﾍﾞﾝﾄ(E)...]を選択
し、Eventウインドウを開きます。[Event Status]
を“Before Execution”にします。[Address]は設
定したい行番号を指定します。指定方法は“ファ
イル名#行番号”です。設定後に[Set]ボタン押下
でイベントが作成されます

[Set]ボタン押下でイベントが作成されました。

ZUD-CD-06-0036-1 Page 51/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

体験

ターゲット･ボード体験編 (Step4-8)

ワンポイント

高度なブレーク設定(イベントリンク)について(その2)

前ページで「int_user.c」の61行目にイベントを作成しました。同様に「timer_user.c」の65行目

にイベントを作成します。この関数「MD_INTTP0CC0」は10msec毎に呼ばれます。ここにブレーク･

ポイントを設定すると10msec毎にプログラムが止まってしまうのですが、前に設定したイベントと

リンクさせると条件に合致した場合のみプログラムを停止することができます。

下記の例を説明します。「timer_user.c」の65行目にイベントを作成します。前ページとは異なる

もう1つの方法で設定します。まず、「timer_user.c」を開きます。メニューより[ｲﾍﾞﾝﾄ(N)] →

[ｲﾍﾞﾝﾄ･ﾏﾈｰｼﾞｬｰ(M)]を選択し、Event Managerウインドウを開きます。 「timer_user.c」の65行目

にカーソルを移動し、マウスの左ボタンでドラッグしたままEvent Managerウインドウへ移動する

とイベント[Evt00002]が設定できます。

カーソルを合わせマウスの左ボタンでドラッグします。マウスカー
ソルが(-)に変わります。Event Managerウインドウ上まで移動する
と(OK)となり、新たなイベント[Evt00002]が設定できます。

Event Managerウィンドウです

OK

イベント[Evt00002]が設定されました

ZUD-CD-06-0036-1 Page 52/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

体験

ターゲット･ボード体験編 (Step4-9)

ワンポイント

高度なブレーク設定(イベントリンク)について(その3)

前ページまででイベントを2つ作成できました。次に設定するのは「Event Link」です。イベント

とイベントを連携する設定です。この関数「MD_INTTP0CC0」は10msec毎に呼ばれます。ここにブレ

ーク･ポイントを設定すると10msec毎にプログラムが止まってしまうのですが、前に設定したイベ

ントとリンクさせると条件に合致した場合のみプログラムを停止することができます。

Eventウインドウ内の[Event Link...]ボタンを押下し、Event Linkウインドウを開きます。同じウ

インドウ内の[Evt00001], [Evt00002]をそれぞれ[Phase 1:], [Phase 2:]へマウスの左ボタンをド

ラッグしてください。[OK]ボタン押下で[Lnk00001]が設定されます。

[Event Link...]ボタンを押下して
Event Linkウインドウを開きます

[Lnk00001]が設定されました

ZUD-CD-06-0036-1 Page 53/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

体験

ターゲット･ボード体験編 (Step4-10)

ワンポイント

高度なブレーク設定(イベントリンク)について(その4)

最後に設定するのは「ブレーク･ ポイント」です。Event Linkを元に「ブレーク･ポイント」を設

定します。メニューより[ｲﾍﾞﾝﾄ(N)] → [ﾌﾞﾚｰｸ(B)...]を選択し、Breakウインドウを表示します。

同じウインドウ内の「Event Manager:」より[Lnk00001]をマウスの左ボタンでドラッグし、

「Break Event」へ設定します。[OK]ボタンを押下するとブレーク･ポイントが設定されます。

プログラムを実行してください。SWを押した時にg_interval_countが0だった場合にのみプログラ

ムが停止します。少し停止しにくいですが、何度かSWを押下してください。

Breakウインドウを開きます

[Brk00001]が設定され、それぞれの
イベントが有効になり、アイコンが

から へ変わりました。

if (g_interval_count == 0)の判断の中に
EventLinkが設定されているのでプログラムが
停止するときは、値が必ず0になっている。

ZUD-CD-06-0036-1 Page 54/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

体験

ターゲット･ボード体験編 (おわり)

ターゲット･ボード体験編は以上です。ターゲット･ボードにはSWとLEDが2つのシン
プルな構成になっていますが、ソフトウエアの工夫次第によっていろいろ表示を変え
てみてください。またターゲット･ボード上にはユニバーサル・エリアがありますの
で、ここに半固定抵抗、LEDを搭載しても充分マイコンのポートで制御可能です。
次ページよりターゲット･ボードを使った「マイコン･プログラミング体験編」が始

まります。マイコンにプログラミングを行うとターゲット･ボードへ電源を供給する
だけで動作します。電池ボックスをつければ電池駆動も可能になります。

下図はターゲット･ボードに半固定抵抗とLEDを追加した例です。
・半固定抵抗をANI8へ接続
・LEDをP30～P35へ接続

半固定抵抗 10KΩ
2

1 3
2

1 3

LED 抵抗 330Ω

1

2

49

50

50

49

2

1

1

15

NEC
QB-V850ESHG2-TB
SS-77025

F
P1

Y1

Y2

LED3

SW1

CN1

CN2

VDD

GND

LED2

LED1

PCM2

PCM3

V850ES
HG2

ZUD-CD-06-0036-1 Page 55/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

マイコン･プログラミング体験編

体験

マイコン･プログラミング体験編ではターゲット･ボード(マイコン)にプロ
グラミングするまでの手順を説明します。

ﾌﾟﾛｸﾞﾗﾐﾝｸﾞGUI
QB-Programmer

ﾊﾟﾗﾒｰﾀ
ﾌｧｲﾙ

Step2
Step1で作成したオブジェクト(HEXファイ
ル)をデバイスへ書き込みます

次ページよりStep1,Step2でプログラミング手順を説明します

ﾀｰｹﾞｯﾄ･ﾎﾞｰﾄﾞ
QB-V850HG2-TB

ﾕｰｻﾞ
ﾌﾟﾛｸﾞﾗﾑ

Step1
統合開発環境 PM+でコンパイル/リンクを
実行して、 ROM化対応したオブジェクト
(HEXファイル)を作成します。

ｵﾝﾁｯﾌﾟ･ﾃﾞﾊﾞｯｸﾞ･ｴﾐｭﾚｰﾀ
MINICUBE2

NEC
QB-78K0KF2-TB
SS-77029

NEC
QB-78K0KF2-TB
SS-77029

接続後のイメージ図

ZUD-CD-06-0036-1 Page 56/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

体験

Step1 統合開発環境 PM+でコンパイル/リンクを実行して、 ROM化対応した
オブジェクト(HEXファイル)を作成します。

マイコン･プログラミング体験編 (Step1)

a.HEX形式のファイルを作成します
PM plusのメニュー･バーの[ﾂｰﾙ(T)]→[ﾍｷｻｺﾝﾊﾞｰﾀｵﾌﾟｼｮﾝの設定(O)...]を選

択します。ﾍｷｻｺﾝﾊﾞｰﾀｵﾌﾟｼｮﾝの設定」のファイルタブで”使用する(U)”にチェ
ックされていることを確認してください。出力ファイル名は空欄でOKです。空
欄にすると”romp.hex”が作成されます。

b.MINICUBE2とターゲット･ボードを接続します

NEC
QB-78K0KF2-TB
SS-77029

V850ES
HG2

NEC
QB-
V850ESHG2-TB
SS-77025

F
P1

CN1

CN2

c.MINICUBE2をPCへ接続します

NEC
QB-78K0KF2-TB
SS-77029

V850ES
HG2

NEC
QB-
V850ESHG2-TB
SS-77025

F
P1

CN1

CN2

ZUD-CD-06-0036-1 Page 57/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

体験

Step2 Step1で作成したオブジェクト(HEXファイル)をデバイスへ書き込みま
す。

マイコン･プログラミング体験編 (Step2-1)

a.QB-Programmerを起動します。
ID850QBを起動している場合は終了してください

b.パラメータ･ファイルをロードします
メニュー･バー[Device]→[Setup...]→[PRM File Read]ボタンを押下します。ロードす
るファイルは70F3707.prmです。

パラメータ･ファイルをロードす
ると各種の設定が行われます。
「Port」のインタフェースを
“SIO-H/S”へ変更します。

MINICUBE2のLEDはアイドル
モードより緑点灯へ変わり
ます

ZUD-CD-06-0036-1 Page 58/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

体験

マイコン･プログラミング体験編 (Step2-2)

c.QB-Programmerの画面を確認します
Device Setupに成功すると下記のメッセージが表示されます。

>Device Setup
Parameter File Read PASS.

d.HEXファイルをロードします
メニュー･バー[File]→[Load...]でロードするファイルを指定します。“romp.hex”が
あるフォルダを指定してロードしてください。HEXファイルのロードに成功すると下記
のメッセージが表示されます。

>Open Load File....
Success read HEX file.

e.デバイスを消去します
メニュー･バー[Device]→[Erase...]でデバイスを消去します。デバイスの消去に成功
すると下記のメッセージが表示されます。(ブロック0に書き込まれていた場合)

>Erase
Blank check Block 000: Not blank, Erase need.
Erasing...
Erasing Chip:PASS
Erase PASS
>

PASSが表示され、エラーのない
ことを確認してください

ZUD-CD-06-0036-1 Page 59/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

体験

マイコン･プログラミング体験編 (Step2-3)

f.デバイスにプログラミング(書き込み)します
メニュー･バー[Device]→[Program...]でデバイスにプログラミングします。プログラ
ミング(書き込み)に成功すると下記のメッセージが表示されます。時間は10秒ほどで終
了します。

>Program
Program Chip:
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
PASS
Set Security Flags
Program PASS
>

ワンポイント

AutoプログラミングとMINICUBE2のLEDについて

デバイスの消去/書き込み/ベリファイ一連の動作を1つのコマンドで行う事もできます。メニュー

より[Device]→[Autoprocedure(EPV)]を選択してください。時間は全体で20秒ほどで終了します。

また、デバイスの消去/書き込み/ベリファイの処理中はMINICUBE2のLEDが黄色点滅します。各処理

にエラーがあった場合MINICUBE2のLEDは赤が点灯します。

書き込み中にプログレスバーが表示されます。

各種コマンド実行中は黄色点滅 各種コマンドでエラーが
発生した場合は赤点灯

各種コマンドが正しく
終了した場合は緑点灯

ZUD-CD-06-0036-1 Page 60/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

体験

マイコン･プログラミング体験編 (おわり)

マイコン･プログラミング体験編は以上です。プログラミングしたターゲット･ボー
ドは電源を供給すれば動作します。USBポートより電源のみを供給するケーブルを自
作するか、または乾電池を3本直列で供給してもよいでしょう。
次ページよりターゲット･ボードを使った「ターゲット･システム作成例」が始まり

ます。ドットマトリクスLEDを使用した回路例を紹介しています。

V850ES
HG2

49

50

2

1

1

15

NEC
QB-V850ESHG2-TB
SS-77025

F
P1

Y1
Y2

LED3

SW1

LED1

LED2

CN1

CN2

VDD

GND

PCM2

PCM3

50

49

1

2

動作電圧が5.5Vまでなので乾電池なら
3本の使用します。もし乾電池4本使う
のなら3端子レギュレータなどを使用し
て電圧を降下させる必要があります。
また、MINICUBE2でオンチップデバッグ
する際はSW設定に注意してください。

MINICUBE2

MINICUBE2の電源選択SWは
必ず“T”に設定します

モード選択SW 電源選択SW
M2 5V出力

M1 M2 3 T 5

ZUD-CD-06-0036-1 Page 61/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

応用

ターゲット･システム作成例A（その1）

この章ではターゲット･システム作成例を紹介します。ドットマトリクス
LEDを使用した電光掲示板を作成します。マイコンに表示機能とSWがあれ
ばゲーム作成などにも応用可能です。ターゲット･システム作成例Bでは電
光掲示板プログラムを流用した簡単なゲームを作成しています。

ターゲット･ボードを使用した回路を作成します。ここでは8x8のドットマトリクスLED
をダイナミック点灯させます。ダイナミック点灯とは表示を分割して(今回は8個のLED)
行う方法です。表示を高速に順次繰り返す事によって人の目には全てが表示されている
ように見えます。
利点:常時点灯していないので消費電力が少ない。ポート制御が少なく済む
欠点:スタティック点灯に比べて表示が暗い。

人の目に見える表示 高速に表示を繰り返しています

ワンポイント

ドットマトリクスLEDについて

ドットマトリクスLEDとはLEDがマトリクス(matrix)状に並んだ表示器です。8x8ならLEDが

行(column) 8個、列(row) 8個が格子状に64個並んでいます。

例えば四角内のLEDを点灯させるにはrow1に+、column8に-を接続すれば点灯します。LEDを1つ点灯

させるには通常10mA～20mA必要です。これを+5Vで供給するには抵抗150Ω～300Ωを接続します。

マトリクスLEDは1列に8個接続されていますので80mA～160mAが必要です。これを+5Vで供給するに

は抵抗37.5Ω～75Ωを接続します。しかし、マイコンの1ポートに80mA～160mAを流せませんので何

らかの回路(トランジスタ制御など)が必要になります。

row

column

1

2

3

.

.

.

8

1 2 3 4 5 6 7 8

アノード(+)

カソード(-)

ZUD-CD-06-0036-1 Page 62/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

応用

ターゲット･システム作成例A（その2）

50 (P70)

49 (P71)

48 (P72)

47 (P73)

46 (P74)

45 (P75)

44 (P76)

43 (P77)

ターゲット･ボード

100Ωx8
column

row

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

LEDマトリクス

E

C
B

2SC2120x8

2SC2120

ECB

74HC4028

16 VCC
15 Y3
14 Y1
13 B
12 C
11 D
10 A
9 Y8

Y4 1
Y2 2
Y0 3
Y7 4
Y9 5
Y5 6
Y6 7
GND 8

12345678

161514131211109

VDD

74HC402821(PDL0)

22(PDL1)

23(PDL2)

CN2

42 (P78/
ANI8)

半固定抵抗
2

1 3
2

1 3

19 (P04/

INTP1)

SW

+1uF

表示方向

c
o
l
u
m
n

row

VDD

10KΩ

CN2

CN2

CN1

GND注

VDD注
VDD注:ターゲットボード上のGND,VDD端子(POWER LEDの左隣にあります)

と接続する。

3.3KΩ

3.3KΩ
3.3KΩ

ZUD-CD-06-0036-1 Page 63/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

応用

ターゲット･システム作成例A（その3）

a.回路説明

ドットマトリクスLEDは8個のLEDを点灯させるためマイコンで直接ドライブできません

のでトランジスタでドライブします。

74HC4028はBCDコードを10進化します。ポートPDL0～PDL2からの出力を74HC4028のABCで

受け、その結果をY0～Y7へ変換します。ドットマトリクスLEDのrowは0～7の値ですので

Y8,Y9は不要です。そのため74HC4028のD入力はGNDに接します。

更にA/Dコンバータ(ANI8)を使用します。半固定抵抗の抵抗値によって電光掲示板の流

れる速度を調整できるようにします。

INTP1に接続しているSWは表示切り替え用です。SWにはチャタリング防止回路を入れて

あります。(内蔵のプルアップ抵抗を使用しますのでコンデンサのみ使用します)

電源はMINICUBE2より供給します。ターゲットボードのGND,VDDと接続してください。

ワンポイント

シンク電流、ソース電流について

V850ES/HG2のポートはソース電流で4mA(端子合計50mA)、シンク電流で4mA(端子合計50mA)の容量が

あります(ポート番号によって異なります)。

74HC4028について

BCD TO DECIMAL DECODERです。 下図のABCDの入力に応じてY0～Y9がH(ハイレベル)になります

+

-

シンク電流(IOL)

ポート
ポートの出力がローレ
ベルの時に流れる電流

+

-

ソース電流(IOH)

ポート
ポートの出力がハイレ
ベルの時に流れる電流

16 VCC
15 Y3
14 Y1
13 B
12 C
11 D
10 A
9 Y8

Y4 1
Y2 2
Y0 3
Y7 4
Y9 5
Y5 6
Y6 7
GND 8

74HC4028

HLLLLLLLLL HLLH

LHLLLLLLLL HLLL

LLHLLLLLLL LHHH

LLLHLLLLLL LHHL

LLLLHLLLLL LHLH

LLLLLHLLLL LHLL

LLLLLLHLLL LLHH

LLLLLLLHLL LLHL

LLLLLLLLHL LLLH

LLLLLLLLLH LLLL

Y9Y8Y7Y6Y5Y4Y3Y2Y1Y0DCBA

DECIMAL出力BCD入力

ZUD-CD-06-0036-1 Page 64/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

応用

ターゲット･システム作成例A（その4）

ポート設定
[ポート0]タブ
P04のPull-upにチェック

[ポートDL-1]タブ
PDL0～PDL2の”出力”にチェック

[ポート7-1]タブ
P70～P77の出力”1”にチェック

b.プログラム作成
システム設定 [ターゲットボード体験編(Step1-1)と同じ設定にします]
[基本設定]タブ
サブ･クロック設定エリアの”使用しない”にチェック。ウォッチドッグ･タイマ2機能エリア
の”使用しない”にチェック。内蔵発振器使用設定の”禁止”にチェック。

[起動設定]タブ
CPUクロック選択(MHz)メイン･クロック“20(fxx)”を選択。

[オンチップディバグ設定]タブ
オンチップディバグ設定を”使用する”にチェック。インサーキットエミュレータ選択
を”MINICUBE2”にチェック。MINICUBE2選択端子”CSIB0”を選択。RAM Monitor/DMM機能選
択”使用する”にチェック。

ワンポイント

Applilet起動について
システム･シミュレータ(SM+)体験編(Step1-1)
「a.Appliletを起動します」を参照してプロジ
ェクトを作成してください。ここではプロジェ
クト名を「extend」、チップシリーズ名
「V850ESHG2」、チップ名「μPD70F3707」で作
成しています。

割り込み設定

[外部割込み設定]タブ
“INTP1許可”にチェック

ZUD-CD-06-0036-1 Page 65/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

応用

ターゲット･システム作成例A（その5）
タイマ設定
[タイマP0] [タイマP1]タブ
“インターバル･タイマ”にチェック

それぞれ[詳細]ボタンを押下し、インターバル･タイ
マウィンドウを表示します。設定単位を”msec”、
インターバル時間を”1”にします。また、「割り込
み設定」で“TMP0とCCR0の一致で割り込み発生”に
チェックします。なお、優先順位は変更しなくて構
いません。

A/Dコンバータ設定
「モード設定」
“使用する”にチェック。

「トリガ･モードを指定」
“ソフトウエアトリガ･モード”に
チェック。

「動作モードを指定」
“連続セレクト･モード”にチェック
“アナログ入力チャンネル選択”を8
にする。

「割り込み設定」
“A/Dの割り込み許可”にチェック
“変換終了ごとに割り込み”にチェック

ワンポイント

ソースコード生成について
システム･シミュレータ(SM+)体験編(Step1-4)「e.ソースコードを自動生成します」を参照してくだ
さい。

ZUD-CD-06-0036-1 Page 66/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

応用

ターゲット･システム作成例A（その6）
プログラム作成
下記に示す青字のコードを追加してください

main.c(リスト1) main.c(リスト2)
リスト省略

#include "macrodriver.h"
#include "ad.h"
#include "int.h"
#include "port.h"
#include "timer.h"
/*
**
** MacroDefine
**
*/

/* ----------------------*/
#pragmasection sconstbegin

extern const UCHAR g_font_numeric[] =
{ /* font data 0 -9 */
0x00, 0x0E, 0x11, 0x13, 0x15, 0x19, 0x11, 0x0E

, 0x00, 0x04, 0x0C, 0x04, 0x04, 0x04, 0x04, 0x0E
, 0x00, 0x0E, 0x11, 0x01, 0x0E, 0x10, 0x10, 0x1F
, 0x00, 0x0E, 0x11, 0x01, 0x0E, 0x01, 0x11, 0x0E
, 0x00, 0x02, 0x06, 0x0A, 0x12, 0x1F, 0x02, 0x02
, 0x00, 0x1F, 0x10, 0x10, 0x1E, 0x01, 0x01, 0x1E
, 0x00, 0x0F, 0x10, 0x10, 0x1E, 0x11, 0x11, 0x0E
, 0x00, 0x1F, 0x01, 0x02, 0x04, 0x04, 0x04, 0x04
, 0x00, 0x0E, 0x11, 0x11, 0x1E, 0x11, 0x11, 0x0E
, 0x00, 0x0E, 0x11, 0x11, 0x0F, 0x01, 0x01, 0x0E
};

extern const UCHAR g_font_alphabet[] =
{ /* font data A -Z */
0x00, 0x04, 0x0A, 0x0A, 0x11, 0x1F, 0x11, 0x11

, 0x00, 0x1E, 0x11, 0x11, 0x1E, 0x11, 0x11, 0x1E
, 0x00, 0x0E, 0x11, 0x10, 0x10, 0x10, 0x11, 0x0E
, 0x00, 0x1C, 0x12, 0x11, 0x11, 0x11, 0x12, 0x1C
, 0x00, 0x1F, 0x10, 0x10, 0x1E, 0x10, 0x10, 0x1F
, 0x00, 0x1F, 0x10, 0x10, 0x1E, 0x10, 0x10, 0x10
, 0x00, 0x0E, 0x11, 0x10, 0x17, 0x11, 0x11, 0x0E
, 0x00, 0x11, 0x11, 0x11, 0x1F, 0x11, 0x11, 0x11
, 0x00, 0x0E, 0x04, 0x04, 0x04, 0x04, 0x04, 0x0E
, 0x00, 0x02, 0x02, 0x02, 0x02, 0x02, 0x12, 0x0C
, 0x00, 0x11, 0x12, 0x14, 0x18, 0x14, 0x12, 0x11
, 0x00, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x1F
, 0x00, 0x11, 0x11, 0x1B, 0x15, 0x11, 0x11, 0x11
, 0x00, 0x11, 0x11, 0x19, 0x15, 0x13, 0x11, 0x11
, 0x00, 0x0E, 0x11, 0x11, 0x11, 0x11, 0x11, 0x0E
, 0x00, 0x1E, 0x11, 0x11, 0x1E, 0x10, 0x10, 0x10
, 0x00, 0x0E, 0x11, 0x11, 0x11, 0x15, 0x13, 0x0F
, 0x00, 0x1E, 0x11, 0x11, 0x1E, 0x14, 0x12, 0x11
, 0x00, 0x0E, 0x11, 0x10, 0x0E, 0x01, 0x11, 0x0E
, 0x00, 0x1F, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04
, 0x00, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x0E
, 0x00, 0x11, 0x11, 0x11, 0x11, 0x0A, 0x0A, 0x04
, 0x00, 0x11, 0x15, 0x15, 0x15, 0x15, 0x15, 0x0A
, 0x00, 0x11, 0x11, 0x0A, 0x04, 0x0A, 0x11, 0x11
, 0x00, 0x11, 0x11, 0x0A, 0x04, 0x04, 0x04, 0x04
, 0x00, 0x1F, 0x01, 0x02, 0x04, 0x08, 0x10, 0x1F
};

extern const UCHAR g_textdata[][D_MAXTEXT] =
{ /* text data */
"THIS IS V850ESHG2 TARGET BOARD "

, "DISPLAY CHANGES IF SW IS PUSHED "
, "THIS IS PROGRAM SAMPLE OF NECEL "
, "abcdefghijklmnopqrstuvwxyz "
, "0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6"
, 0
};
#pragmasection sconstend

/* ----------------------*/
/* ----protoype ----*/
void initialize_text(void);
/* font_ is displayed to virtual vram. */
void disp_putfont(UCHAR font_);

/* ----------------------*/
/* ----global value ----*/
/*Interval timer counter */
UINT g_timer0_counter = 0;
UINT g_timer1_counter = 0;

/* control for text */
UCHAR g_text_sw = 0;
UCHAR g_text_cnt = 0;
UINT g_text_scrollcnt = 0;
USHORT g_text_speed = 0;

/* Matrix LED vram */
UCHAR g_matrix_ram[D_MLED_CNT][D_MLED_ROW];

/* ----------------------*/
void initialize_value(void)
{

memset(g_matrix_ram, 0x00,
sizeof(g_matrix_ram));

g_timer0_counter = 0;
g_timer1_counter = 0;
g_text_sw = 0;

}

/* ----------------------*/
void initialize_text(void)
{
UCHAR font;

memset(g_matrix_ram, 0x00,
sizeof(g_matrix_ram));

g_text_scrollcnt = 0;
g_text_cnt = 0;

font = g_textdata[g_text_sw][0];
disp_putfont(font);

}

ZUD-CD-06-0036-1 Page 67/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

応用

ターゲット･システム作成例A（その7）
プログラム作成
下記に示す青字のコードを追加してください

main.c(リスト3) main.c(リスト4)

/* ----------------------*/
/* font_ is displayed to virtual vram. */

void disp_putfont(UCHAR font_)
{
inti;
UCHAR cnvf, fnt;

cnvf= (UCHAR)(toupper(font_));
if (cnvf>='A' && cnvf<='Z')
{ /* Alphabet font */
cnvf-='A';
for (i=0; i<D_MLED_ROW; i++)
{
fnt= g_font_alphabet[cnvf*8 + i];
g_matrix_ram[1][i] = (fnt<< 2);

}
}
else if (cnvf>='0' && cnvf<='9')
{ /* Numeric font */
cnvf-='0';
for (i=0; i<D_MLED_ROW; i++)
{
fnt= g_font_numeric[cnvf*8 + i];
g_matrix_ram[1][i] = (fnt<< 2);

}
}
else
{ /* Null font */
for (i=0; i<D_MLED_ROW; i++)
{
g_matrix_ram[1][i] = 0;

}
}

}

/* ----------------------*/
/* 1 dot is scrolled. */
void disp_move1dot(void)
{
inti;
UCHAR vtmp, vtmp2;

for (i=0; i<D_MLED_ROW; i++)
{
vtmp= (g_matrix_ram[0][i] & 0x7f) << 1;
vtmp2 = (g_matrix_ram[1][i] & 0x80) >> 7;
g_matrix_ram[0][i] = vtmp+ vtmp2;
vtmp2 = (g_matrix_ram[1][i] & 0x7f) << 1;
g_matrix_ram[1][i] = vtmp2;

}
}

void main(void)
{

/* initialize */
initialize_value();
initialize_text();

/* start timer */
TMP0_Start();
TMP1_Start();
__EI();

while(1)
{
;

}
}

macrodrive.h(リスト1)

リスト省略

#define SYSTEMCLOCK 20000000
#define SUBCLOCK 32768
#define MAINCLOCK 20000000
#define FRCLOCK 8000000
#define FRCLOCKLOW 240000

#define D_MLED_CNT 2 /* Matrix LED number */
#define D_MLED_ROW 8 /* Matrix LED row */
#define D_FONT_WIDTH 6 /* font width */
#define D_MAXTEXT 34 /* Max display of text */

#include "string.h"
#include "ctype.h"

#endif

ワンポイント

systeminit.cの_rcopy(&_S_romp, -1)について

Appliletが生成するソースファイル

「systeminit.c」で初期化を行う関数

void SystemInit(void)にあるコード

_rcopy(&_S_romp, -1) ですが
プログラムをROM化する際に必要なコードです。
ROM化での設定方法については、CA850のユーザー
ズ・マニュアル操作編「6.4 ROM 化用オブジェク
トの作成」を参照してください。

ZUD-CD-06-0036-1 Page 68/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

応用

ターゲット･システム作成例A（その8）
プログラム作成
下記に示す青字のコードを追加してください

timer_user.c(リスト1) timer_user.c(リスト2)

リスト省略
#include "macrodriver.h"
#include "timer.h"
#include "ad.h"

#pragmainterrupt INTTP0CC0 MD_INTTP0CC0
#pragmainterrupt INTTP1CC0 MD_INTTP1CC0

extern void disp_putfont(UCHAR font_);
extern void disp_move1dot(void);

extern UINT g_timer0_counter;
extern UINT g_timer1_counter;
extern UCHAR g_text_sw;
extern UCHAR g_text_cnt;
extern UINT g_text_scrollcnt;
extern USHORT g_text_speed;
extern UCHAR
g_matrix_ram[D_MLED_CNT][D_MLED_ROW];
extern const UCHAR g_textdata[][D_MAXTEXT];

/*
**--
**
** Abstract:
** TMP0 INTTP0CC0 interrupt service routine.
**
** Parameters:
** None
**
** Returns:
** None
**
**--
*/
__interrupt void MD_INTTP0CC0(void)
{
/*TODO.Adduser defined interrupt service routine*/
UCHAR row, line;

/* Matrix LED line disp*/
row = (UCHAR)(g_timer0_counter) & 7;

/* display column */
P7L = 0;
line = g_matrix_ram[0][row];
P7L = line;

/* display row */
PDLL.0 = (row & 1);
PDLL.1 = ((row & 2) >> 1);
PDLL.2 = ((row & 4) >> 2);

g_timer0_counter++;
}

/*
**---
**

** Abstract:
** TMP1 INTTP1CC0 interrupt service routine.
**
** Parameters:
** None
**
** Returns:
** None
**
**---
*/
__interrupt void MD_INTTP1CC0(void)
{
/*TODO.Adduser defined interrupt service routine*/
UCHAR font;

AD_Start();

g_timer1_counter++;
if (g_timer1_counter > g_text_speed)
{
if ((g_text_scrollcnt% D_FONT_WIDTH) == 0)
{ /* next font */
font = g_textdata[g_text_sw][g_text_cnt];
disp_putfont(font);

g_text_cnt++;
if (g_text_cnt>= D_MAXTEXT)
{
g_text_cnt= 0;

}
}

/* scroll */
disp_move1dot();

g_text_scrollcnt++;
g_timer1_counter = 0;

}
}

ZUD-CD-06-0036-1 Page 69/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

応用

ターゲット･システム作成例A（その9）
プログラム作成
下記に示す青字のコードを追加してください

ad_user.c(リスト1) int_user.c(リスト1)

/*
**
** Include files
**
*/
#include "macrodriver.h"
#include "ad.h"
#pragma interrupt INTAD MD_INTAD

extern USHORT g_text_speed;

/*
**---
**
** Abstract:
** INTAD Interrupt service routine.
**
** Parameters:
** None
**
** Returns:
** None
**
**---
*/
__interrupt void MD_INTAD(void)
{
/*TODO. Add user defined interrupt service routine*/
USHORT adval;

AD_Stop();

AD_Read(&adval);
g_text_speed= adval/2 + 1;
if (g_text_speed> 500)
{
g_text_speed= adval;

}
}

/*
**
** Include files
**
*/
#include "macrodriver.h"
#include "int.h"
#pragmainterrupt INTP1 MD_INTP1

extern void initialize_text(void);

extern UCHAR g_text_sw;
extern UCHAR g_matrix_ram[D_MLED_CNT][D_MLED_ROW];
extern const UCHAR g_textdata[][D_MAXTEXT];

/*
**
** MacroDefine
**
*/

/*
**--
**
** Abstract:
** INTP1 Interrupt service routine.
**
** Parameters:
** None
**
** Returns:
** None
**
**--
*/
__interrupt void MD_INTP1(void)
{
/*TODO. Add user defined interrupt service routine*/
g_text_sw++;
if (g_textdata[g_text_sw][0] == 0)
{
g_text_sw= 0;

}

memset(g_matrix_ram, 0x00,
sizeof(g_matrix_ram));

initialize_text();
}

ZUD-CD-06-0036-1 Page 70/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

応用

ターゲット･システム作成例A（その10）
プログラム説明
プログラムリストを元に説明します

main.c timer_user.c

マトリックスLEDに表示する数字フォントデータです
const UCHAR g_font_numeric[] /* font data 0 -9 */

マトリックスLEDに表示する英字(大文字のみ)フォント
データです
const UCHAR g_font_alphabet[] /* font data A -Z */

マトリックスLEDに表示するテキストデータです
const UCHAR g_textdata[][D_MAXTEXT] /* text data */

タイマ割り込み時に+1されるカウンタです
UINT g_timer0_counter = 0;
UINT g_timer1_counter = 0;

表示するテキストを選択します
UCHAR g_text_sw = 0;

表示されているテキストが何文字目かを示します
UCHAR g_text_cnt = 0;

表示されている文字が何ドット移動したかを示します
UINT g_text_scrollcnt = 0;

スクロールスピードを示します
USHORT g_text_speed = 0;

マトリックスLEDに表示するデータです。8x16ドット分
ありますが実際に表示されるのは8x8ドットです
UCHAR g_matrix_ram[D_MLED_CNT][D_MLED_ROW];

変数初期化を行う関数です
void initialize_value(void)
void initialize_text(void)

パラメータ font_(asciiコード)で指定された文字を
マトリックスLEDの非表示領域へ出力します
void disp_putfont(UCHAR font_)

マトリックスLEDの表示を1ドット移動(スクロール)します
void disp_move1dot(void)

1msec毎に呼ばれる関数です。
マトリックスLEDにg_matrix_ramよりデータを読み込み
1ライン表示します
__interrupt void MD_INTTP0CC0()

1msec毎に呼ばれる関数です。下記の処理を行います。
・A/D変換を開始します
・移動のチェックを行い、1文字分のスクロールが終了
したら disp_putfontを呼び出し、指定された文字を
マトリックスLEDの非表示領域へ出力します。
そうでなければ disp_move1dot を呼び出し、1ドット
分スクロールします。

__interrupt void MD_INTTP1CC0()

ad_user.c

A/D変換終了時に呼ばれる関数です。
A/D値を読み込み g_text_speed へ反映させます
__interrupt void MD_INTAD(void)

int_user.c

外部割り込みINTP1に呼ばれる関数です。
SWが押下されたら g_text_swを+1し、表示するテキス
トを変更します。
__interrupt void MD_INTP1(void)

ワンポイント

割り込み処理について

割り込みの処理時間は短くするのが基本です。1msecの割り込みがA,Bとあった場合Aの処理に1msec

以上かかるとBの処理が待たされてしまいます。それを避けるために多重割り込みという方法もあ

りますが、処理が複雑になりやすいので割り込み処理時間は短くしましょう。
= CPU処理時間

Main処理

処理A

処理B

1msec

1msec

1msec 1msec以上の処理
時間になっている

Main処理を
行う時間が
無い

1msecの割り込み
処理に1msec以上
かかる場合

macrodriver.h

#define D_MLED_CNT 2 /* Matrix LED number */
マトリックスLEDの数2つあるのは1つはバッファ領域と
して使用しているため。先頭が実際の表示領域。

#define D_MLED_ROW 8 /* Matrix LED row */
マトリックスLEDの列の数。

#define D_FONT_WIDTH 6 /* font width */
表示するフォントの幅(ドット数)。

#define D_MAXTEXT 34 /* Max display of text */
スクロールして表示するテキストの文字数。

ZUD-CD-06-0036-1 Page 71/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

応用

ターゲット･システム作成例A（その11）
動作概要1
プログラムの動作として、下記の5つに分けられます
1.メイン処理
2.タイマP0(インターバル･タイマとして使用)
3.タイマP1(インターバル･タイマとして使用)
4.A/Dコンバータ完了割り込み
5.INTP1外部割り込み

1.メイン処理 void main(void)
変数/マトリックスLEDの初期化、タイマP0/P1を開始します。
処理としては電源ON後に1度しか動きません。
後はwhileで無限ループとなります。

2.タイマP0 __interrupt void MD_INTTP0CC0()
1msec毎に起動します。g_matrix_ram[0][0～7]の1byteをマトリックスLEDの1ラインへ出力します。
呼ばれる毎に1ライン表示を行います。(下図の点灯が1msec毎に行われます)

3.タイマP1 __interrupt void MD_INTTP1CC0()
1msec毎に起動します。
A/Dコンバートの開始を行います。A/Dコンバートが完了すると割り込みが発生します。
A/Dコンバートの結果は g_text_speedへ反映されるので、それを元にスクロールスピードを決めます
タイマ01は呼ばれる毎に g_timer1_counter を+1していますので、g_text_speedとg_timer1_counter
の値を比較してスクロールを行うか行わないかを判断しています。
スクロールを行う場合は2通りの処理があります。
a.マトリックスLEDへ表示されているデータを1ドット左へ移動する
b.1文字のスクロールが終了したので新たな文字を表示する

g_matrix_ram[0][0～7] (実際に表示されるエリア)

g_matrix_ram[1][0～7] (マトリックスLEDを2個目とする仮想エリア)
スクロールは仮想エリアも含めて行う。1文字のスクロールが終了した
ら、仮想エリアに1文字表示を行う。

a.マトリックスLEDへ表示されているデータを1ドット左へ移動する

1フォントは縦8x横6ドットで構成されています。a.の処理は1文字
のスクロール処理(6ドット左へ移動)のうち5ドット左移動までの分
を行います。
1文字のスクロール処理開始時は b.1文字のスクロールが終了した
ので新たな文字を表示する の処理を行います。

b.1文字のスクロールが終了したので新たな文字を表示する

1フォントは縦8x横6ドットで構成されています。1文字のスクロール
開始時にはマトリックスLEDを2個目とする仮想エリアへ1文字出力し
ます。

ZUD-CD-06-0036-1 Page 72/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

応用

ターゲット･システム作成例A（その12）
動作概要2

4.A/Dコンバータ完了割り込み __interrupt void MD_INTAD(void)
タイマP1で開始されたA/D変換が完了した場合に呼ばれます。
A/D変換の中止を行い、変換結果を読み込みます。
結果は g_text_speed へ代入されます。g_text_speed の値は 0 以外を想定していますので、念の為
変換結果に +1 を行います。表示するスピードが調整しやすいよう変換結果を変えています。

5.INTP1外部割り込み __interrupt void MD_INTP1(void)
INTP1端子がLOWになった場合(SWが押下された場合)に呼ばれます。
スクロールするテキストを変えます。表示させるテキストは1文が32文字で構成されています。
g_textdata[][D_MAXTEXT]の内容を書き換えればマトリックスLEDへ表示させる事ができますが、
表示するデータは必ず32byteで構成してください。

NEC
QB-78K0KF2-TB
SS-77029

ワンポイント

電源供給について

MINICUBE2より電源供給する場合5V供給で最大定格100mAです。ターゲット･システム作成例の回路

で使用する部品によっては100mAを超える場合があります。その場合は5V電源を別に用意してくだ

さい。ターゲット･システム側の電源を使用する場合はMINICUBE2の「電源選択SW」を「T」に設定

してください。

MINICUBE2

スイッチを設定します

モード選択SW 電源選択SW
M2 ターゲット

M1 M2 3 T 5

5V出力の別電源を
用意します

ターゲット･システム
作成例の回路

ZUD-CD-06-0036-1 Page 73/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

割り込み設定
[外部割込み設定]タブ
“INTP1許可”, “INTP3許可”にチェック
有効エッジを“両エッジ”へ変更します

“両エッジ”へ設定すると、SWを押下した時
とSWを離したときに割り込みが発生するように
なります。

応用

ターゲット･システム作成例B（その1）

ターゲット･システム作成例BではドットマトリクスLEDを使用した電光掲示
板の回路を応用した簡単なゲームの作成例を説明します。

a.Appliletで設定します
Appliletでの設定は、ターゲット･システム作成例A(その4)、(その5)と同様の設定
を行います。更に下記の設定を追加します

電光掲示板の回路にSWを1つ追加して簡単なスクロールゲームを作成します。電光掲示板では文字を
スクロールさせましたが、今度は文字ではなく迷路をスクロールさせます。ただそれだけではゲーム
性に乏しいのでプレイヤーを操作して障害物をよけるゲームにします。

SWを2つ使ってプレ
イヤーを上下させ
ます

前からスクロール
してくる壁をよけ
ます

プレイヤーと壁が
接触すると画面が
反転します。

壁のスクロール速度はA/Dに接続した半固定抵抗で調整可能にし、ゲームの難易度を調整できるよう
にします。プレイヤーと壁は同じ色で表示しますが、プレイヤーは点滅するので壁と判別可能です。

ポートの設定
[ポート0]タブ

P04のPull-upにチェック。P04はINTP3の外部割り込みと兼用端子ですので、Pull-upの設定は
“ポート”項目で行います。同様にP06のPull-upにもチェックします。

ターゲット･ボード CN1

21(P06/

INTP3)

SW

+1uF

ターゲット・システム作成例A(その2)
の回路図にSWを追加します。

ZUD-CD-06-0036-1 Page 74/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

応用

ターゲット･システム作成例B（その2）

main.c(リスト1) main.c(リスト2)

リスト省略
#include "macrodriver.h"
#include "ad.h"
#include "int.h"
#include "port.h"
#include "timer.h"

/*
**
** MacroDefine
**
*/

/* ----------------------*/
#pragmasection sconstbegin

const UCHAR g_maze_data[] =
{

0x08,0xab,0xff,0xff,0xff,
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff,0xff,0xe0,0x00,0x00,
0x00,0xff,0xff,0xff,0xff,0xff,0xff,0xf0,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x03,0xc0,0x00,0x00,0x00,0x07,0xf8,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x20,0x20,0x00,0x00,0x02,0x02,0x00,0xff,
0x00,0x03,0xff,0xf8,0x00,0xff,0xfc,0x00,
0x0f,0xfc,0x0f,0xf0,0x00,0x00,0x1f,0xff,
0xf8,0x00,0x7f,0xc0,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x08,0x0e,0x06,
0x3e,0x30,0x83,0xe0,0x1e,0x1f,0x80,0x70,
0x0e,0x00,0x1f,0xff,0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xf8,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x3f,0xff,0xfe,0x00,
0x00,0x00,0xc0,0x00,0x06,0x00,0xc0,0x00,
0x00,0x00,0x00,0x60,0x0c,0x00,0x03,0xe0,
0x03,0xe0,0x00,0xe0,0x00,0x00,0x00,0x00,
0x07,0xe0,0x00,0x00,0x3c,0x00,0xc0,0x00,
0x20,0x20,0x10,0x00,0x02,0x02,0x00,0xff,
0x00,0x03,0xff,0xf8,0x00,0x7f,0xfc,0x00,
0x0f,0xfc,0x03,0xe0,0x03,0xff,0xff,0xfe,
0x00,0x00,0x07,0x80,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x40,0x00,0x00,0x00,0x00,0x00,0x00,
0x20,0x00,0x00,0x00,0x40,0x00,0x00,0x41,

0x00,0x00,0x00,0x00,0x00,
0x0c,0x00,0x00,0x00,0x04,0x0f,0x00,0x20,
0x04,0x00,0x1e,0x00,0x7f,0xf0,0x01,0xff,
0xff,0xff,0x80,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0xc0,0x01,0x86,0x00,0xc0,0x60,
0x0c,0x03,0x00,0x60,0x0c,0x00,0x03,0xe0,
0x07,0xe0,0x00,0xc0,0x07,0xe0,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x20,
0x20,0x20,0x10,0x02,0x02,0x02,0x00,0x30,
0x00,0x00,0xff,0xf0,0x00,0x1f,0xf8,0x00,
0x07,0xfc,0x00,0x00,0xff,0xff,0xff,0xe0,
0x00,0x00,0x00,0x00,0x00,0x0f,0x80,0x00,
0xe0,0x00,0x40,0x00,0x00,0x00,0x40,0x04,
0x00,0x00,0x04,0x00,0x00,0x10,0x08,0x00,
0x04,0x10,0x02,0x04,0x00,0x88,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x06,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x3f,
0xfc,0x00,0x00,0x00,0x00,0x03,0xff,0xff,
0xf0,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x01,0x80,0x00,0x01,0x80,0x00,0x00,0x60,
0x0c,0x03,0x00,0x03,0x00,0x00,0x03,0xe0,
0x03,0xc0,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x3f,0x80,0x00,0x00,0x20,
0x22,0x21,0x11,0x02,0x00,0x02,0x00,0x00,
0x00,0x00,0x1f,0xe1,0xfe,0x07,0xf8,0x00,
0x03,0xf8,0x00,0x00,0x1f,0xf0,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x06,0x00,0x00,
0x00,0x00,0x00,0x80,0x00,0x40,0x00,0x80,
0x00,0x00,0x00,0x00,0x02,0x00,0x00,0x11,
0x01,0x01,0x00,0x00,0x10,0x00,0x04,0x04,

0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x06,
0x00,0x00,0x00,0x01,0xff,0xff,0xff,0xff,
0xf8,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x01,0x80,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x06,0x03,0x00,0x07,0x80,0x00,
0x00,0x00,0xe0,0x00,0x00,0x00,0x00,0x7f,
0xe0,0x00,0x00,0x00,0x00,0x00,0x00,0x02,
0x02,0x21,0x01,0x00,0x20,0x00,0x00,0x00,
0x00,0x00,0x03,0xc1,0xff,0x01,0xf0,0x00,
0x03,0xf0,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x01,0x00,0x02,0x00,0x00,
0x00,0x02,0x00,0x04,0x00,0x01,0x00,0x00,
0x40,0x00,0x08,0x00,0x00,0x00,0x40,0x00,

b. Appliletでソースコードを自動生成します。
システム･シミュレータ(SM+)体験編(Step1-4)「e.ソースコードを自動生成します」を
参照してください

c.ソースコードの修正を行います
下記に示す青字のコードを追加してください

ZUD-CD-06-0036-1 Page 75/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

応用

ターゲット･システム作成例B（その3）

main.c(リスト3) main.c(リスト4)
0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x08,0x02,
0x00,0x04,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x1f,0xff,0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff,0x80,0x00,0x00,0x00,
0x00,0x00,0x00,0x30,0x00,0x18,0x0c,0x03,
0x00,0x30,0x06,0x03,0x00,0x07,0x80,0x00,
0xc0,0x00,0xe0,0x01,0x00,0x07,0xe0,0x00,
0x00,0x01,0xfc,0x00,0x00,0xfc,0x04,0x02,
0x02,0x01,0x01,0x10,0x20,0x40,0x18,0x00,
0x0f,0x80,0x00,0x01,0xff,0x00,0x00,0x1f,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0xf8,0x00,0x03,0xf0,
0x00,0xc2,0x00,0x00,0x00,0x00,0x00,0x00,
0x84,0x00,0x00,0x80,0x00,0x00,0x00,0x40,
0x00,0x10,0x00,0x01,0x00,0x00,0x00,0x20,

0x00,0x00,0x40,0x80,0xc0,
0x61,0x8e,0x38,0x0f,0x00,0x00,0x1c,0x07,
0x00,0x0e,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0xff,0xff,0xff,0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff,0xff,0xf0,0x1f,0x80,
0x00,0x00,0x00,0x30,0x18,0x18,0x0c,0x03,
0x00,0x30,0x60,0x00,0x03,0x07,0x80,0x00,
0xe0,0x00,0xe0,0x01,0xc0,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x04,0x02,
0x02,0x01,0x00,0x10,0x20,0x40,0x7f,0x00,
0x0f,0xe0,0x00,0x03,0xff,0x00,0x00,0x7f,
0x00,0x00,0x0f,0xc0,0x00,0x00,0x00,0x3f,
0xff,0xfc,0x00,0x00,0xff,0x80,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x08,0x00,
0x00,0x00,0x10,0x00,0x10,0x00,0x00,0x01,
0x02,0x00,0x40,0x40,0x02,0x08,0x00,0x00,

0x12,0xaf,0xff,0xff,0xff,
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff,0xff,0xff,0xe0,0x00,
0x7f,0xff,0xff,0xff,0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,
0xff,0xfc,0x00,0x00,0x18,0x00,0x00,0x03,
0x00,0x00,0x60,0x00,0x03,0x00,0x00,0x00,
0xe0,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x02,
0x02,0x01,0x00,0x00,0x00,0x40,0xff,0x80,
0x1f,0xe0,0x00,0x03,0xff,0x00,0x00,0xff,
0x00,0x00,0x1f,0xe0,0x00,0x00,0xff,0xff,
0xff,0xfe,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x08,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x04,0x02

};

#pragma section sconst end
/* ----------------------*/

/* Interval timer counter */
UINT g_timer0_counter = 0;
UINT g_timer1_counter = 0;
UINT g_bump_counter;

/* control for maze */
USHORT g_maze_scrollcnt = 0;
USHORT g_maze_speed = 0;

/* INTP1, INTP4 status */
UCHAR g_intp1_sw;
UCHAR g_intp3_sw;

/*g_matrix_ram[0]is real vram.[1] is buffer vram*/
UCHAR g_matrix_ram[D_MLED_CNT][D_MLED_ROW];
UCHAR g_matrix_realram[D_MLED_ROW];
UCHAR g_plane_location;
BOOL g_plane_bump;

/* ----------------------*/
void initialize_value(void)
{

memset(g_matrix_ram, 0x00,
sizeof(g_matrix_ram));

g_timer0_counter = 0;
g_timer1_counter = 0;
g_plane_location = 2;
g_plane_bump = MD_FALSE;
g_bump_counter = 3000;

}

/* ----------------------*/
/* font_ is displayed to virtual vram. */
void disp_putmaze(USHORT cnt_)
{

int i;
UCHAR fnt;

for (i=0; i<D_MLED_ROW; i++)
{

fnt = g_maze_data[i*125 + (cnt_/8)];
g_matrix_ram[1][i] = fnt;

}
}

d.ソースコードの修正を行います
下記に示す青字のコードを追加してください

ZUD-CD-06-0036-1 Page 76/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

応用

ターゲット･システム作成例B（その4）

main.c(リスト5)
/* ----------------------*/
/* 1 dot is scrolled. */
void disp_move1dot(void)
{
int i;
UCHAR vtmp, vtmp2;

for (i=0; i<D_MLED_ROW; i++)
{
vtmp = (g_matrix_ram[0][i] & 0x7f) << 1;
vtmp2 = (g_matrix_ram[1][i] & 0x80) >> 7;
g_matrix_ram[0][i] = vtmp + vtmp2;
vtmp2 = (g_matrix_ram[1][i] & 0x7f) << 1;
g_matrix_ram[1][i] = vtmp2;

}
}

/*
**---
**
** Abstract:
** main function
**
** Parameters:
** None
**
** Returns:
** None
**
**---
*/
void main(void)
{

/* initialize */
initialize_value();

/* TB-board LED off */
PCM.2 = 1;
PCM.3 = 1;

/* start timer */
TMP0_Start();
TMP1_Start();
__EI();

while (1)
{

;
}

}

e.ソースコードの修正を行います
下記に示す青字のコードを追加してください

macrodrive.h(リスト1)

リスト省略
#define SYSTEMCLOCK 20000000
#define SUBCLOCK 32768
#define MAINCLOCK 5000000
#define FRCLOCK 200000
#define FxInuse 0

#define D_MLED_CNT 2 /* Matrix LED number */
#define D_MLED_ROW 8 /* Matrix LED row */
#define D_FONT_WIDTH 8 /* font width */

#include "string.h"
#include "ctype.h"

#endif

ad_user.c(リスト1)

/*
**
** Include files
**
*/
#include "macrodriver.h"
#include “ad.h”

#pragma interrupt INTAD MD_INTAD

extern USHORT g_maze_speed;

/*
**---
**
** Abstract:
** INTAD Interrupt service routine.
**
** Parameters:
** None
**
** Returns:
** None
**
**---
*/
__interrupt void MD_INTAD(void)
{
USHORT adval;

AD_Stop();

AD_Read(&adval);
g_maze_speed= adval/2 + 1;
if (g_maze_speed> 500)
{
g_maze_speed= adval;

}
}

ZUD-CD-06-0036-1 Page 77/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

応用

ターゲット･システム作成例B（その5）
f.ソースコードの修正を行います
下記に示す青字のコードを追加してください

timer_user.c(リスト1)
リスト省略

#include "macrodriver.h"
#include "timer.h"
#include "ad.h"

#pragmainterrupt INTTP0CC0 MD_INTTP0CC0
#pragmainterrupt INTTP1CC0 MD_INTTP1CC0

extern void initialize_value(void);
extern void disp_putmaze(USHORT cnt_);
extern void disp_move1dot(void);

extern UINT g_timer0_counter;
extern UINT g_timer1_counter;
extern UINT g_bump_counter;
extern USHORT g_maze_scrollcnt;
extern USHORT g_maze_speed;
extern UCHAR
g_matrix_ram[D_MLED_CNT][D_MLED_ROW];
extern UCHAR g_matrix_realram[D_MLED_ROW];
extern UCHAR g_intp1_sw;
extern UCHAR g_intp3_sw;
extern UCHAR g_plane_location;
extern BOOL g_plane_bump;

/*
**--
** Abstract:
** TMP0 INTTP0CC0 interrupt service routine.
**
** Parameters:
** None
**
** Returns:
** None
**--
*/
__interrupt void MD_INTTP0CC0(void)
{
UCHAR row, line, pdat;

/* Matrix LED line disp*/
row = (UCHAR)(g_timer0_counter) & 7;

/* display column */
P7L = 0;
if (g_timer0_counter & 0x40)
{
if (row == g_plane_location)
{
pdat= 0x80;

}
else if (row == (g_plane_location+ 1))
{
pdat= 0x40;

}
else if (row == (g_plane_location+ 2))

timer_user.c(リスト2)

{
pdat= 0x80;

}
else
{
pdat= 0;

}

if (g_matrix_realram[row] & pdat)
{ /* bump judgment */
g_plane_bump= MD_TRUE;

}
else
{
g_matrix_realram[row] ¦= pdat;

}
}
line = g_matrix_realram[row];
P7L = line;

/* display row */
PDLL.0 = (row & 1);
PDLL.1 = ((row & 2) >> 1);
PDLL.2 = ((row & 4) >> 2);

g_timer0_counter++;
}

/*
**---
** Abstract:
** TMP1 INTTP1CC0 interrupt service routine.
**
** Parameters:
** None
**
** Returns:
** None
**---
*/
__interrupt void MD_INTTP1CC0(void)
{
UCHAR dat;
UINT i;

AD_Start();

g_timer1_counter++;
if (g_plane_bump)
{
for (i=0; i<D_MLED_ROW; i++)
{
dat= g_matrix_ram[0][i];
if (g_timer1_counter & 0x40)
{
dat= dat^ 0xff;
g_bump_counter--;

}
g_matrix_realram[i] = dat;

}

ZUD-CD-06-0036-1 Page 78/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

応用

ターゲット･システム作成例B（その6）

if (g_bump_counter<= 0)
{
initialize_value();

}
}
else
{
if (g_timer1_counter > g_maze_speed)
{
if ((g_maze_scrollcnt% D_FONT_WIDTH) == 0)
{ /* next maze */
disp_putmaze(g_maze_scrollcnt);

}

/* scroll */
disp_move1dot();

g_maze_scrollcnt++;
if (g_maze_scrollcnt>=1000)
{
g_maze_scrollcnt= 0;

}
g_timer1_counter = 0;

/* plane postion*/
if (g_intp3_sw)
{
if (g_plane_location> 0)
{
g_plane_location--;
}

}
if (g_intp1_sw)
{
if (g_plane_location< 5)
{
g_plane_location++;
}

}
}

for (i=0; i<D_MLED_ROW; i++)
{
g_matrix_realram[i] = g_matrix_ram[0][i];

}
}

}

g.ソースコードの修正を行います
下記に示す青字のコードを追加してください

timer_user.c(リスト3) int_user.c(リスト1)

リスト省略
#include "macrodriver.h"
#include "int.h"

#pragmainterrupt INTP1 MD_INTP1
#pragmainterrupt INTP3 MD_INTP3

/*
**
** MacroDefine
**
*/

extern UCHAR g_intp1_sw;
extern UCHAR g_intp3_sw;

/*
**--
** Abstract:
** This function is INTP1 Interrupt service
routine.
**
** Parameters:
** None
**
** Returns:
** None
**--
*/
__interrupt void MD_INTP1(void)
{

g_intp1_sw = P0.4 ^ 1;

}

/*
**--
** Abstract:
** This function is INTP3 Interrupt service
routine.
**
** Parameters:
** None
**
** Returns:
** None
**--
*/
__interrupt void MD_INTP3(void)
{

g_intp3_sw = P0.6 ^ 1;
}

ZUD-CD-06-0036-1 Page 79/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

応用

ターゲット･システム作成例B（その7）
h.迷路データ作成のヒント
const UCHAR g_maze_data[] データ作成方法

main.cのconst UCHAR g_maze_data[] を簡単に作成できる方法があります。

Windowsのペイントツールを使い、画像を作成します

・大きさを1000x8ドット

・色は黒

・ファイルの種類はモノクロビットマップ

次にメニューより[表示(V)]→[拡大(Z)]→[拡大率の指定(U)]で800%を指定します。また、[表示

(V)]→[拡大(Z)]→[グリッドを表示(G)]を指定します。画面は下図のようになります

白を描画すると、それが壁のデータになります。後は保存したbmpファイルをソースへ変換して下さ

い。bmpファイルのフォーマット説明します

最初の59バイトはbmpヘッダ

3バイト(ヘッダ)+125バイト
(1000ドット分)が
1ライン分のデータです。

1ライン分データの125バイトを変換すれば実データになります。

ラインデータは逆になっています画面最下ラインから上に向かってのデータになっていますので、

ソースへ変換後順序を入れ替えてください。

x 8

ZUD-CD-06-0036-1 Page 80/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

応用

ターゲット･システム作成例B（その8）

timer_user.c

__interrupt void MD_INTTP0CC0()
1msec毎に呼ばれる関数です。下記の処理を行います
・プレイヤーの表示
・プレイヤーと壁の衝突判定
・マトリックスLEDにg_matrix_realramよりデータを読
み込み1ライン表示

__interrupt void MD_INTTP1CC0()
1msec毎に呼ばれる関数です。下記の処理を行います。
・A/D変換を開始します
・プレイヤーと壁が衝突していたら衝突処理します
・スクロールのチェックを行い、1画面分のスクロール
が終了したら disp_putmazeを呼び出し、指定された
壁をマトリックスLEDの非表示領域へ出力します。
そうでなければ disp_move1dot を呼び出し、1ドット
分スクロールします。

・プレイヤーの移動処理します
・マトリックスLEDの非表示領域より実際の表示領域
g_matrix_realram へデータ転送します

i.プログラム説明
プログラムリストを元に説明します

main.c

タイマ割り込み時に+1されるカウンタです
UINT g_timer0_counter = 0;
UINT g_timer1_counter = 0;

衝突した時にLEDを点滅する時間です
UINT g_bump_counter = 0;

表示するテキストを選択します
UCHAR g_text_sw = 0;

表示されている壁が何ドット移動したかを示します
UINT g_maze_scrollcnt = 0;

壁のスクロール速度を示します
USHORT g_maze_speed = 0;

マトリックスLEDに表示するデータです。8x16ドット分
ありますが実際に表示されるのは8x8ドットです
UCHAR g_matrix_ram[D_MLED_CNT][D_MLED_ROW];
UCHAR g_matrix_realram[D_MLED_ROW];

プレイヤーの位置を示します
UCHAR g_plane_location;

プレイヤーと壁が衝突したかを示します
BOOL g_plane_bump;

変数初期化を行う関数です
void initialize_value(void)

パラメータ cnt_ で指定された壁をマトリックスLEDの
非表示領域へ出力します
void disp_putmaze(USHORT cnt_)

マトリックスLEDの表示を1ドット移動(スクロール)します
void disp_move1dot(void)

int_user.c

__interrupt void MD_INTP1(void)
外部割り込みINTP1に呼ばれる関数です。
SWの値を g_intp1_swへ反映します

__interrupt void MD_INTP3(void)
外部割り込みINTP3に呼ばれる関数です。
SWの値を g_intp3_swへ反映します

ad_user.c

__interrupt void MD_INTAD(void)
A/D変換終了時に呼ばれる関数です。
A/D値を読み込み g_maze_speed へ反映させます

macrodriver.h

#define D_MLED_CNT 2 /* Matrix LED number */
マトリックスLEDの数2つあるのは1つはバッファ領域と
して使用しているため。先頭が実際の表示領域。

#define D_MLED_ROW 8 /* Matrix LED row */
マトリックスLEDの列の数。

#define D_FONT_WIDTH 8 /* font width */
表示するフォントの幅(ドット数)。実際に表示するのは
フォントではなく迷路データになる。

ZUD-CD-06-0036-1 Page 81/81

はじめに 準備 体験 応用

クイック・スタート・ガイド

応用

ターゲット･システム作成例（おわり）

ワンポイント

プログラムの共通化について
Appliletを使用するとプログラムを共通化するのが楽になります。ここでいう共通化とはCPUを変
えた場合を指します。例えば78K0/KF2(8bitマイコン)からV850ES/HG2(32bitマイコン)へ変更して
もプログラムはそれほど変化なく作成できます。QB-78K0KF2-TBのクイック･スタート･ガイドと比
べてください。電光掲示板プログラムで変わる点は__interrupt void MD_INTTP0CC0(void)のポ
ート制御部分です。またポート制御もdefine定義すれば、もっと共通化できます。

ユーザ
プログラム

Applilet
出力コード マイコン

AppliletのAPIを使うのでマイコンが変
わっても使用する周辺I/Oが同じならプ
ログラムの修正は最小限で済みます。

78K0/V850の8bit/
32bitマイコンで
ユーザプログラム
が共通化可能です。

Appliletの設定はGUIで行うので直感的に周辺
I/Oなど設定可能です。複雑なマイコンのマニ
ュアルは読まなくても大丈夫です。

ターゲット･システム作成例は以上です。最後の作成例はゲーム性を持たせホビー
の要素を取り入れました。このゲームには音がないので、タイマをPWM出力させたポ
ートへ圧電スピーカを接続しても面白いと思います。圧電スピーカは小型で非常に薄
く、高能率、低消費電力ですのでアンプを通さず、そのままポートに接続しても充分
音がでます。
昨今の電機製品の殆どにマイコンが使われています。特に子供向けのゲームなど

1000円前後で買えるものは1チップマイコンにスピーカー、LEDをつけただけです。そ
れが音声出力、各種制御まで行っています。これだけでもマイコンの可能性がわかる
のではないでしょうか。このクイック･スタート･ガイドがマイコンを始めるきっかけ
になれば幸いです。
この作成例を元に電光掲示板の大きさを大きくしたり、赤外線送受信を加えて対戦

方式のゲームを作成など、これを応用して是非チャレンジしてください。

FLMD0

P10

P42

P11

P02
P04 P05
P06

P30

P40

P03

T_RESET

P41
P31

P32 P33
P35

P36 P37
P34

P38 P39
P50 P51

P54 P55
P52 P53

P90 P91
P93

P94 P95
P92

P96 P97

P910
P912

PCM2

PCT6

PCM3

P911
P913

PDL3

P98

PDL4

PDL0

P99

PCT0

PCM0

PCT4

PCM1

P915P914

PDL2

PCT1

PDL1

PDL6
PDL5
PDL7
PDL9

PDL10
PDL8

PDL11

P714
PDL13

P715
PDL12

P713 P712

P71 P70
P72P73

P75 P74
P77 P76

X2
X1

P7
7

P7
5

P7
6

P7
3

P7
4

P7
2

P7
1

P7
0

P7
13

P7
12

P7
15

P7
14

P06
P40

P42
P41

PCS1

P3
1

P3
8

PDL0

RESET

P3
2

PCT6

PD
L1

3

P914

P5
0

P9
3

P9
5

P911

P02 PCS0

P3
5

P5
1

P98

PD
L9

P00

PCT4

P3
9

PCT0

P5
5

PD
L1

0

P9
4

P910

P915

P3
4

P5
4

PD
L7

PCT1

PCM1

P9
7

P99

PDL4

PD
L1

1

P3
7

P5
3

P912

PD
L8

P01

P9
6

PDL3

P3
3

PCM3

PD
L5

P04

PCM0

PDL1
P10

P5
2

P913

PD
L6

PDL2

P3
6

P11

P9
2

PCM2

PD
L1

2

X1

P9
1

P9
0

FLMD0

FLMD0

P30

T_RESET

P7
11

P7
10

P7
9

P7
8

P05

RESET
P41
P40
P42 PCM0

P78P79

P00
P01

P710

PCS0 PCS1

P711

XT1

X2

XT2

XT2
XT1

P03

PDL5

AVREF0

EVDD

VDD EVDD AVREF0

BVDD

AVREF0VDD EVDD

EVDD

VDD

VDD

VDD

EVDD

EVDD

BVDD

VDDBVDD

BVDD

VDD

EVDD

LED1
SML-311YT

R8

10K

EVDD

R6
1.6K

AVREF0

PCM3

C8
10PF

CN1

FFC-50BMEP

1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50

R2
1.6K

LED3
SML-311UT

LED2
SML-311YT

C2

0.1uF

C3

0.1uF

R3
1.6K

R1
1K

R7
10K

C5

0.1uF

R5
10K

1
2

TP1
LC-2

C4

0.1uF

BVDD

C6
4.7uF(2125) V850ES/HG2

U1

V850ES/HG2

AVREF01
AVSS2
P10/INTP93
P11/INTP104
EVDD5
P00/TIP31/TOP316
P01/TIP30/TOP307
FLMD08
VDD9
REGC10
VSS11
X112
X213
RESET14
XT115
XT216
P02/NMI17
P03/INTP0/ADTRG18
P04/INTP119
P05/INTP2/DRST20
P06/INTP321
P40/SIB022
P41/SOB023
P42/SCKB024
P30/TXDA025

P
31

/IN
TP

7/
R

X
D

A
0

26
P

32
/A

S
C

K
A

0/
TI

P
00

/T
O

P
00

/T
O

P
01

27
P

33
/T

IP
01

/T
O

P
01

28
P

34
/T

IP
10

/T
O

P
10

29
P

35
/T

IP
11

/T
O

P
11

30
P

36
31

P
37

32
E

V
S

S
33

E
V

D
D

34
P

38
/T

X
D

A
2

35
P

39
/R

X
D

A
2/

IN
TP

8
36

P
50

/T
IQ

01
/T

O
Q

01
/K

R
0

37
P

51
/T

IQ
02

/T
O

Q
02

/K
R

1
38

P
52

/T
IQ

03
/T

O
Q

03
/K

R
2/

D
D

I
39

P
53

/T
IQ

00
/T

O
Q

03
/K

R
3/

D
D

O
40

P
54

/K
R

4/
D

C
K

41
P

55
/K

R
5/

D
M

S
42

P
90

/T
X

D
A

1/
K

R
6

43
P

91
/R

X
D

A
1/

K
R

7
44

P
92

/T
IQ

11
/T

O
Q

11
45

P
93

/T
IQ

12
/T

O
Q

12
46

P
94

/T
IQ

13
/T

O
Q

13
47

P
95

/T
IQ

10
/T

O
Q

10
48

P
96

/T
IP

21
/T

O
P

21
49

P
97

/T
IP

20
/T

O
P

20
/S

IB
1

50

P98/SOB1 51P99/SCKB1 52P910 53P911 54P912 55P913/INTP4/PCL 56P914/INTP5 57P915/INTP6 58PCS0 59PCS1 60PCM0 61PCM1/CLKOUT 62PCM2 63PCM3 64PCT0 65PCT1 66PCT4 67PCT6 68BVSS 69BVDD 70PDL0 71PDL1 72PDL2 73PDL3 74PDL4 75

P
D

L5
/F

LM
D

1
76

P
D

L6
77

P
D

L7
78

P
D

L8
79

P
D

L9
80

P
D

L1
0

81
P

D
L1

1
82

P
D

L1
2

83
P

D
L1

3
84

P
71

5/
A

N
I1

5
85

P
71

4/
A

N
I1

4
86

P
71

3/
A

N
I1

3
87

P
71

2/
A

N
I1

2
88

P
71

1/
A

N
I1

1
89

P
71

0/
A

N
I1

0
90

P
79

/A
N

I9
91

P
78

/A
N

I8
92

P
77

/A
N

I7
93

P
76

/A
N

I6
94

P
75

/A
N

I5
95

P
74

/A
N

I4
96

P
73

/A
N

I3
97

P
72

/A
N

I2
98

P
71

/A
N

I1
99

P
70

/A
N

I0
10

0

TP2
LC-2

PCM2

R4
100

SW1

SKQMBB

1 2

CN2

FFC-50BMEP

1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50

Y2

MC-306 32.7680K-A0

C1

0.1uF

FP1

TSM-108-01-l-DH

1
3
5
7
9
11
13
15

2
4
6
8

10
12
14
16

Y1
CSTCR 5MHz G

C7
10PF

	はじめに
	目次
	ターゲット･ボードについて

	準備
	ターゲット･ボード仕様
	システム構成図１
	システム構成図２
	システム構成図３
	開発ツールのダウンロード

	体験
	マイコン開発
	システム･シミュレータ体験編
	Appliletを使う
	統合環境PM+を使う
	プログラムをビルドする
	システム･シミュレータを動かす
	システム･シミュレータ体験編（おわり）
	ターゲット･ボード体験編
	Appliletで設定する
	プログラムを作成する
	プログラムをビルドする
	プログラムを実行（デバッグ）する
	ターゲット･ボード体験編（おわり）
	マイコン・プログラミング体験編
	HEXファイルの作成
	デバイスへの書き込み
	マイコン・プログラミング体験編(おわり)

	応用
	ターゲット・システム作成例A
	回路図
	Appliletで設定する
	プログラム作成
	プログラム説明
	動作概要
	ターゲット・システム作成例B
	プログラム作成
	プログラム説明
	ターゲット・システム作成例(おわり)

	付録回路図

