

012 RL78 ファミリ

EEPROM エミュレーション・ソフトウェア

RL78 Type03

ユーザーズマニュアル

ルネサスマイクロコンピュータ RL78 / F22 RL78 / F25

本資料に記載の全ての情報は本資料発行時点のものであり、ルネサス エレクトロニクスは、 予告なしに、本資料に記載した製品または仕様を変更することがあります。 ルネサス エレクトロニクスのホームページなどにより公開される最新情報をご確認ください。

Rev.1.01 2025.05

ご注意書き

- 本資料に記載された回路、ソフトウェアおよびこれらに関連する情報は、半導体製品の動作例、応用例を説明するものです。回路、ソフトウェアおよび これらに関連する情報を使用する場合、お客様の責任において、お客様の機器・システムを設計ください。これらの使用に起因して生じた損害(お客様 または第三者いずれに生じた損害も含みます。以下同じです。)に関し、当社は、一切その責任を負いません。
- 当社製品または本資料に記載された製品データ、図、表、プログラム、アルゴリズム、応用回路例等の情報の使用に起因して発生した第三者の特許権、 著作権その他の知的財産権に対する侵害またはこれらに関する紛争について、当社は、何らの保証を行うものではなく、また責任を負うものではありま せん。
- 3. 当社は、本資料に基づき当社または第三者の特許権、著作権その他の知的財産権を何ら許諾するものではありません。
- 当社製品を組み込んだ製品の輸出入、製造、販売、利用、配布その他の行為を行うにあたり、第三者保有の技術の利用に関するライセンスが必要となる 場合、当該ライセンス取得の判断および取得はお客様の責任において行ってください。
- 当社製品を、全部または一部を問わず、改造、改変、複製、リバースエンジニアリング、その他、不適切に使用しないでください。かかる改造、改変、 複製、リバースエンジニアリング等により生じた損害に関し、当社は、一切その責任を負いません。
- 6. 当社は、当社製品の品質水準を「標準水準」および「高品質水準」に分類しており、各品質水準は、以下に示す用途に製品が使用されることを意図しております。

標準水準: コンピュータ、OA機器、通信機器、計測機器、AV機器、家電、工作機械、パーソナル機器、産業用ロボット等 高品質水準:輸送機器(自動車、電車、船舶等)、交通制御(信号)、大規模通信機器、金融端末基幹システム、各種安全制御装置等 当社製品は、データシート等により高信頼性、Harsh environment向け製品と定義しているものを除き、直接生命・身体に危害を及ぼす可能性のある機 器・システム(生命維持装置、人体に埋め込み使用するもの等)、もしくは多大な物的損害を発生させるおそれのある機器・システム(宇宙機器と、海 底中継器、原子力制御システム、航空機制御システム、プラント基幹システム、軍事機器等)に使用されることを意図しておらず、これらの用途に使用 することは想定していません。たとえ、当社が想定していない用途に当社製品を使用したことにより損害が生じても、当社は一切その責任を負いませ ん。

- 7. あらゆる半導体製品は、外部攻撃からの安全性を 100%保証されているわけではありません。当社ハードウェア/ソフトウェア製品にはセキュリティ対策が組み込まれているものもありますが、これによって、当社は、セキュリティ脆弱性または侵害(当社製品または当社製品が使用されているシステムに対する不正アクセス・不正使用を含みますが、これに限りません。)から生じる責任を負うものではありません。当社は、当社製品または当社製品が使用されたあらゆるシステムが、不正な改変、攻撃、ウイルス、干渉、ハッキング、データの破壊または窃盗その他の不正な侵入行為(「脆弱性問題」といいます。)によって影響を受けないことを保証しません。当社は、脆弱性問題に起因しまたはこれに関連して生じた損害について、一切責任を負いません。また、法令において認められる限りにおいて、本資料および当社ハードウェア/ソフトウェア製品について、商品性および特定目的との合致に関する保証ならびに第三者の権利を侵害しないことの保証を含め、明示または黙示のいかなる保証も行いません。
- 8. 当社製品をご使用の際は、最新の製品情報(データシート、ユーザーズマニュアル、アプリケーションノート、信頼性ハンドブックに記載の「半導体デバイスの使用上の一般的な注意事項」等)をご確認の上、当社が指定する最大定格、動作電源電圧範囲、放熱特性、実装条件その他指定条件の範囲内でご使用ください。指定条件の範囲を超えて当社製品をご使用された場合の故障、誤動作の不具合および事故につきましては、当社は、一切その責任を負いません。
- 9. 当社は、当社製品の品質および信頼性の向上に努めていますが、半導体製品はある確率で故障が発生したり、使用条件によっては誤動作したりする場合 があります。また、当社製品は、データシート等において高信頼性、Harsh environment向け製品と定義しているものを除き、耐放射線設計を行っており ません。仮に当社製品の故障または誤動作が生じた場合であっても、人身事故、火災事故その他社会的損害等を生じさせないよう、お客様の責任におい て、冗長設計、延焼対策設計、誤動作防止設計等の安全設計およびエージング処理等、お客様の機器・システムとしての出荷保証を行ってください。特 に、マイコンソフトウェアは、単独での検証は困難なため、お客様の機器・システムとしての安全検証をお客様の責任で行ってください。
- 10. 当社製品の環境適合性等の詳細につきましては、製品個別に必ず当社営業窓口までお問合せください。ご使用に際しては、特定の物質の含有・使用を規制する RoHS 指令等、適用される環境関連法令を十分調査のうえ、かかる法令に適合するようご使用ください。かかる法令を遵守しないことにより生じた損害に関して、当社は、一切その責任を負いません。
- 11. 当社製品および技術を国内外の法令および規則により製造・使用・販売を禁止されている機器・システムに使用することはできません。当社製品および 技術を輸出、販売または移転等する場合は、「外国為替及び外国貿易法」その他日本国および適用される外国の輸出管理関連法規を遵守し、それらの定 めるところに従い必要な手続きを行ってください。
- 12. お客様が当社製品を第三者に転売等される場合には、事前に当該第三者に対して、本ご注意書き記載の諸条件を通知する責任を負うものといたします。
- 13. 本資料の全部または一部を当社の文書による事前の承諾を得ることなく転載または複製することを禁じます。
- 14. 本資料に記載されている内容または当社製品についてご不明な点がございましたら、当社の営業担当者までお問合せください。
- 注 1. 本資料において使用されている「当社」とは、ルネサス エレクトロニクス株式会社およびルネサス エレクトロニクス株式会社が直接的、間接的に支配 する会社をいいます。
- 注2. 本資料において使用されている「当社製品」とは、注1において定義された当社の開発、製造製品をいいます。

(Rev.5.0-1 2020.10)

本社所在地

〒135-0061 東京都江東区豊洲 3-2-24(豊洲フォレシア) www.renesas.com

商標について

ルネサスおよびルネサスロゴはルネサス エレクトロニクス株式会社の 商標です。すべての商標および登録商標は、それぞれの所有者に帰属し ます。

お問合せ窓口

弊社の製品や技術、ドキュメントの最新情報、最寄の営業お問合せ窓口 に関する情報などは、弊社ウェブサイトをご覧ください。 www.renesas.com/contact/

© 2025 Renesas Electronics Corporation. All rights reserved.

製品ご使用上の注意事項

ここでは、マイコン製品全体に適用する「使用上の注意事項」について説明します。個別の使用上の注意事項については、本ドキュメントおよびテクニカル

- アップデートを参照してください。
- 1. 静電気対策

CMOS 製品の取り扱いの際は静電気防止を心がけてください。CMOS 製品は強い静電気によってゲート絶縁破壊を生じることがあります。運搬や保存の際には、当社が出荷梱包に使用している導電性のトレーやマガジンケース、導電性の緩衝材、金属ケースなどを利用し、組み立て工程にはアースを施してください。プラスチック板上に放置したり、端子を触ったりしないでください。また、CMOS 製品を実装したボードについても同様の扱いをしてください。

2. 電源投入時の処置

電源投入時は、製品の状態は不定です。電源投入時には、LSIの内部回路の状態は不確定であり、レジスタの設定や各端子の状態は不定です。外部リセット ト端子でリセットする製品の場合、電源投入からリセットが有効になるまでの期間、端子の状態は保証できません。同様に、内蔵パワーオンリセット機 能を使用してリセットする製品の場合、電源投入からリセットのかかる一定電圧に達するまでの期間、端子の状態は保証できません。

3. 電源オフ時における入力信号

当該製品の電源がオフ状態のときに、入力信号や入出力プルアップ電源を入れないでください。入力信号や入出力プルアップ電源からの電流注入により、誤動作を引き起こしたり、異常電流が流れ内部素子を劣化させたりする場合があります。資料中に「電源オフ時における入力信号」についての記載 のある製品は、その内容を守ってください。

4. 未使用端子の処理

未使用端子は、「未使用端子の処理」に従って処理してください。CMOS 製品の入力端子のインピーダンスは、一般に、ハイインピーダンスとなってい ます。未使用端子を開放状態で動作させると、誘導現象により、LSI 周辺のノイズが印加され、LSI 内部で貫通電流が流れたり、入力信号と認識されて誤 動作を起こす恐れがあります。

5. クロックについて

リセット時は、クロックが安定した後、リセットを解除してください。プログラム実行中のクロック切り替え時は、切り替え先クロックが安定した後に 切り替えてください。リセット時、外部発振子(または外部発振回路)を用いたクロックで動作を開始するシステムでは、クロックが十分安定した後、 リセットを解除してください。また、プログラムの途中で外部発振子(または外部発振回路)を用いたクロックに切り替える場合は、切り替え先のクロ ックが十分安定してから切り替えてください。

6. 入力端子の印加波形

入力ノイズや反射波による波形歪みは誤動作の原因になりますので注意してください。CMOS 製品の入力がノイズなどに起因して、VL(Max.)から VH(Min.)までの領域にとどまるような場合は、誤動作を引き起こす恐れがあります。入力レベルが固定の場合はもちろん、VL(Max.)から VH(Min.)までの領域を通過する遷移期間中にチャタリングノイズなどが入らないように使用してください。

7. リザーブアドレス(予約領域)のアクセス禁止

リザーブアドレス(予約領域)のアクセスを禁止します。アドレス領域には、将来の拡張機能用に割り付けられている リザーブアドレス(予約領域)が あります。これらのアドレスをアクセスしたときの動作については、保証できませんので、アクセスしないようにしてください。

8. 製品間の相違について

型名の異なる製品に変更する場合は、製品型名ごとにシステム評価試験を実施してください。同じグループのマイコンでも型名が違うと、フラッシュメ モリ、レイアウトパターンの相違などにより、電気的特性の範囲で、特性値、動作マージン、ノイズ耐量、ノイズ幅射量などが異なる場合があります。 型名が違う製品に変更する場合は、個々の製品ごとにシステム評価試験を実施してください。

このマニュアルの使い方

- 対象者 このユーザーズマニュアルは、RL78/F22,F25 マイクロコントローラの EEPROM エミュレーションの機能を 理解し、それを用いたアプリケーション・システムを設計するユーザを対象としています。
- 目 的 このユーザーズマニュアルは、RL78/F22,F25 マイクロコントローラのデータ・フラッシュ・メモリに
 EEPROM エミュレーション・ソフトウェア(EES)でデータを格納する方法(アプリケーションによる定数デ ータ書き込み)をユーザに理解していただくことを目的としています。
- 構 成 このマニュアルは、大きく分けて次の内容で構成しています。
 - ・概要
 - ・システム構成
 - ・EEPROM エミュレーション
 - ・EEPROM エミュレーションの使用方法
 - ・ユーザインタフェース
 - ・サンプル・プログラム
 - ・サンプル・プロジェクトの作成
- 読み方 このマニュアルを読むにあたっては、電気、論理回路、マイクロコントローラ、C 言語とアセンブラの一般 的な知識を持つことを想定しています。 RL78/F22,F25 のハードウェア機能を理解するために、RL78/F22,F25 製品のユーザーズマニュアルを参照し てください。
- 凡 例 データ表記の重み : 左が上位桁、右が下位桁
 - アクティブ・ロウの表記 : ××× (端子、信号名称に上線)
 - 注 : 本文中につけた注の説明
 - 注意 : 気をつけて読んでいただきたい内容
 - 備考:本文の補足説明
 - 数の表記 : 2 進数…××××または××××B
 - 10 進数…xxxx

16 進数…XXXXH または 0xXXXX

2の累乗を示す単位の表記(アドレス空間、メモリ容量)

関連資料 関連資料は暫定版の場合がありますが、この資料では「暫定」の表示をしておりません。あらかじめご了承 ください。

No	Document Title	Document Number
1	RL78/F22,F25 ユーザーズマニュアル ハードウェア編	R01UH1061JJ
2	RL78ファミリ Renesas Flash Driver RL78 Type03 ユーザーズマニュアル	R20UT5454JJ
3	E1/E20/E2エミュレータ, E2エミュレータLite ユーザーズマニュアル別冊 (RL78接続時の注意事項)	R20UT1994JJ

目 次

略語	8
専門用語	9
1 概要	10
1.1 製品概要	
1.1.1 目的	
1.2 製品内容	
1.3 製品の特長	11
1.4 動作環境	
1.5 注意事項	
1.6 Cコンパイラ定義	
2 システム構成	17
2.1 システム構成	
2.2 EES アーキテクチャ	
2.2.1 EES ブロック	
2.2.2 EES プール	
2.3 ファイル構成	
2.3.1 フォルダ構成	
2.3.2 ファイル・リスト	
2.4 RL78/F22,F25 リソース	
2.4.1 メモリ・マップ	
2.4.2 フロックイメージ	
2.5 EES RL78 Type03 使用リソース	
2.5.1 EES RL/8 Type03 使用時のセクション	
2.5.2 ソフトウェア・リゾース	
3 EEPROM エミュレーション	24
3.1 EEPROM エミュレーションの仕様	
3.2 機能概要	24
3.3 EES プール	
3.3.1 EES プールの状態	25
3.3.2 EES ブロック構造	27
3.3.3 EES ブロック・ヘッダ	
3.3.4 格納データの構造	
3.3.5 EES ブロックの概要	
4 EEPROM エミュレーションの使用方法	
4.1 格納ユーザ・データ数とユーザ・データの合計サイズ	
4.2 ユーザ設定初期値	
5 ユーザインタフェース	
5.1 リクエスト・ストラクチャー(st_ees_request_t)設定	
5.1.1 ユーザ・ライトアクセス	
5.1.2 ユーザ・リードアクセス	

5.2.1 EES API 関数	
5.2.2 R_EES_Execute 関数のコマンド	
5.2.3 EES 用 RFD 制御 API 関数	40
5.3 状態遷移	
5.4 基本フローチャート	
5.5 コマンド操作フローチャート	
5.6 データ型定義	
5.6.1 データ型	
5.6.2 グローバル変数	
5.6.3 列挙型	
5.7 API 関数仕様	
5.7.1 EES RL78 Type03 EEPROM エミュレーション制御関数仕様	51
5.7.2 EES 用 RFD 制御関数	
5.7.3 EEPROM エミュレーションを制御する API 関数用内部関数	61
	64
6 リノノル・ノロクラム	04
0.1 ノアイル構成	
0.1.1 ノオルタ構成	04 65
0.1.2 ノアイル・ワスト 6.2 データ刑字差	00 65
0.2) 一 2 空足我	
0.2.1 マクロに我	
0.5 リンフル・フロップム関数	
0.3.TEEFROM エミュレーション制御りシンル・シログラム	00 72
0.4 リンフル・フロップ公開数任禄 6/1 EEDPOM エミュレーションを使用したサンプル・プログラム関数仕様	
0.4.TEEROWIエミュレーションを使用したサンクル・クログクム関数性報…	
7 サンプル・プロジェクトの作成	74
7.1 CC-RL コンパイラを使用する場合のプロジェクトの作成	74
7.1.1 サンプル・プロジェクト作成例	75
7.1.2 対象フォルダと対象ファイルの登録例	
7.1.3 ビルド・ツールの設定	
7.1.4 デバッグ・ツールの設定	
7.2 IAR コンパイラを使用する場合のプロジェクトの作成	
7.2.1 サンプル・プロジェクト作成例	
7.2.2 対象フォルダと対象ファイルの登録例	
7.2.3 統合開発環境の設定	
7.2.4 リンカ設定ファイル(.icf)の設定	
7.2.5 オンチップ・デバッグの設定	
7.3 デバイス変更に伴う設定	100
7.3.1 CC-RL コンパイラ環境の設定	
7.3.2 IAR Embedded Workbench (IAR コンパイラ)を使用する場合の変更箇所	
8 改定記録	110
 3.1 本版で改定された主な箇所 	

用語	説明
EES	EEPROM Emulation Software(EEPROM エミュレーション・ソフトウェア)
RFD	Renesas Flash Driver (ルネサス・フラッシュ・ドライバ)
API	Application Program Interface(アプリケーション・プログラム・インタフェース)
DOO	Background operation
BGO	データ・フラッシュ書き換え中に、プログラム・メモリ内の命令実行が可能。
DAM	Random Access Memory
	ランダムにアクセスできる揮発性メモリ。プログラム実行中に変更する値を保持するメモリです。
	Read Only Memory
ROM	不揮発性メモリ。内容変更することができないメモリです。コード・フラッシュ・メモリを ROM と
	表現する場合があります。

専門用語

用語	説明	
コード・フラッシュ・メモリ	アプリケーション・コードや定数データを格納するフラッシュ・メモリ	
	※本文中で、"CF"と略す場合があります。	
データ・フラッシュ・メモリ	データを格納するフラッシュ・メモリ	
	※本文中で、"DF"と略す場合があります。	
エクストラ領域	コンフィギュレーション設定領域、セキュリティ設定領域、ブロック保護設定領	
	域、ブート・スワップ設定領域の総称	
フラッシュ・メモリ・シーケンサ	RL78マイクロコントローラにはフラッシュ・メモリ制御用の専用回路が搭載されています。本書ではこの回路のことをフラッシュ・メモリ・シーケンサと呼びます。フラッシュ・メモリ・シーケンサに、コード・フラッシュ領域、またはデ ータ・フラッシュ領域を書き換える「コード/データ・フラッシュ領域シーケン サ」とエクストラ領域を書き換える「エクストラ領域シーケンサ」の総称です。	
フラッシュ・メモリ制御モード	フラッシュ・メモリ・シーケンサの書き換え可否状態(モード)を示します。	
	- コード・フラッシュ・プログラミング・モード(Code flash programming mode)	
	- データ・フラッシュ・プログラミング・モード(Data flash programming mode)	
	- 非書き換えモード(Non-programmable mode)	
コード・フラッシュ・プログラミ	Code flash programming mode	
ング・モード	コード・フラッシュ・メモリ(および、エクストラ領域)を書き換え可能な状態	
	(モード)を指します。	
データ・フラッシュ・プログラミ	Data flash programming mode	
ング・モード	データ・フラッシュ・メモリを書き換え可能な状態(モード)を指します。	
非書き換えモード	Non-programmable mode	
	フラッシュ・メモリ(および エクストラ領域)を書き換え不可の状態(モード)を	
	指します。	
セルフ・プログラミング	外部のフラッシュ・プログラミング・ツールを使用せず、ユーザ・プログラムを	
	実行して、フラッシュ・メモリの書き換えを行うこと。	
RFD 関数	RFD が提供する関数の総称です。	
EES 関数	EES が提供する関数の総称です。	
EES 用 RFD 制御関数	EES が提供する RFD を制御する関数の総称です。	
EES ブロック	EEPROM エミュレーション・ソフトウェアがアクセスするブロックの略称で	
	す。なお、以降、本ユーザーズマニュアル内では EEPROM エミュレーション・	
	ソフトウェア・ブロックを EES ブロックと呼称します。	

1 概要

1.1 製品概要

EEPROM エミュレーションとは、マイコンに搭載されているデータ・フラッシュ・メモリへ EEPROM のよう にデータを格納させるための機能です。EEPROM エミュレーションでは、EEPROM Emulation Software (EES) RL78 Type03 から Renesas Flash Driver (RFD) RL78 Type03 を操作して、データ・フラッシュ・メモリへの書き 込みや読み出しを実行します。

EES RL78 Type03 は、ユーザ・プログラムにより RL78/F22,F25 に搭載されているデータ・フラッシュ・メモ リ内のデータを書き換えるためのソフトウェアです。

RL78/F22,F25 用の Renesas Flash Driver (RFD) RL78 Type03 については、RL78 ファミリ Renesas Flash Driver RL78 Type03 ユーザーズマニュアルを参照してください。

1.1.1 目的

このユーザーズマニュアルは、RL78/F22,F25 マイクロコントローラのデータ・フラッシュ・メモリに EEPROM エミュレーション・ソフトウェア(EES)でデータを格納する方法(アプリケーションによる定数データ書 き込み)をユーザに理解していただくことを目的としています。

1.2 製品内容

EES RL78 Type03の API 関数をユーザ・プログラムから呼び出すことにより、データ・フラッシュ・メモリへ 配置した EEPROM エミュレーション・ブロック (EES ブロック)の内容を書き換えることができます。

EES RL78 Type03 は、以下を含んでいます。

- ・本ユーザーズマニュアル
- ・RL78/F22,F25のデータ・フラッシュ・メモリを操作する EES のソース・コード・ファイル。
- ・EES を操作するためのサンプル・プログラム。

1.3 製品の特長

EES RL78 Type03 は、フラッシュ・メモリ・シーケンサを操作する RFD RL78 Type03 の API 関数を呼び出しま す。EES RL78 Type03 の API 関数は、1 つ、もしくは複数の関数で構成されており、各関数とユーザで行う処理を 組み合わせて実現します。これは、ユーザ・アプリケーションに依存する処理、例えばタイムアウト処理のように、 タイムアウト値がユーザ・アプリケーション・プログラムの実行条件によって異なるケースがあり、柔軟に対応で きるよう、このような構成を採用しています。

ユーザ・アプリケーションが、EES RL78 Type03 の API 関数を使ってデータ・フラッシュ・メモリを操作する ときのイメージを図 1-1 に示します。

EES RL78 Type03 では、複数の API 関数とユーザ・プログラムで行うべき処理を組み合わせた処理の例をサン プル・プログラムとして提供しています。EEPROM エミュレーションの処理をアプリケーションに組み込む際は、 このサンプル・プログラムを参考にしてください。

図 1-1 EES RL78 Type03の API 関数を使ったデータ・フラッシュ・メモリの操作イメージ

EES RL78 Type03

1.4 動作環境

- ホスト・マシン

動作環境は、ホスト・マシンには依存しませんが、C コンパイラ・パッケージ、デバッガ、およびエミュレー タが動作する環境が必要となります。(EES RL78 Type03 の開発は Windows10 Enterprise で実施)

- C コンパイラ・パッケージ

EES RL78 Type03の対象のCコンパイラ・パッケージを表1-1に示します。

表 1-1 対象の C コンパイラ・パッケージ

パッケージ	統合開発環境	メーカー	バージョン
CC-RL コンパイラ	CS+, e ² studio	Renesas Electronics	V1.13 以降
IAR コンパイラ	IAR Embedded Workbench [®]	IAR システムズ [®]	V5.10.3 以降
	for Renesas RL78		

注. 統合開発環境、およびコンパイラは、対象デバイスをサポートしている必要があります。

- エミュレータ

動作確認したエミュレータを表 1-2 に示します。

表 1-2 動作確認したエミュレータ

エミュレータ	メーカー
E2 エミュレータ	Renesas Electronics
E2 エミュレータ Lite	Renesas Electronics

- ターゲット MCU

RL78/F22

RL78/F25

- EEPROM エミュレーション・ソフトウェア (EES)

本資料に対応している EEPROM エミュレーション・ソフトウェア (EES)を表 1-3 に示します。

表 1-3 本資料に対応している EEPROM エミュレーション・ソフトウェア

パッケージ	メーカー	バージョン
EES RL78 Type03	Renesas Electronics	V1.00

注. 表 1-4 に記載されているバージョンの RFD RL78 Type03 をご使用ください。

- ルネサス・フラッシュ・ドライバ

動作確認に使用したルネサス・フラッシュ・ドライバを表 1-4 に示します。

表 1-4 使用したルネサス・フラッシュ・ドライバ

パッケージ	メーカー	バージョン
RFD RL78 Type03	Renesas Electronics	V1.00

1.5 注意事項

EEPROM エミュレーションは、RL78/F22,F25 に搭載しているデータ・フラッシュ・メモリを操作する機能を使用して実現しています。このため、次の点に注意する必要があります。

- (1) 全ての EES のコードと定数は、同一の 64KB のフラッシュ・ブロック内に配置する必要があります。(コンパイラに依存します。)
- (2) R_EES_Init 関数による EES の初期化は、すべての EES 関数群を実行する前に行う必要があります。
- (3) EES によるデータ・フラッシュ・メモリ操作中はデータ・フラッシュ・メモリを読み出せません。
- (4) EES のコマンド実行中は RFD 関数を呼び出さないでください。
- (5) EES 以外からは、直接 EES 用 RFD 制御関数を呼び出さないでください。
- (6) EEPROM エミュレーション実行中に STOP 命令、および HALT 命令は実行しないでください。STOP 命令、 および HALT 命令を実行する必要がある場合は必ず R_EES_Close 関数まで実行し、EEPROM エミュレーシ ョンを終了させてください。
- (7) ウォッチドック・タイマは EES 実行中も停止しません。
- (8) コマンド実行中はリクエスト・ストラクチャー(st_ees_request_t)を破壊しないでください。
- (9) EEPROM エミュレーション・ソフトウェアで使用する引数(RAM)は一度初期化してください。初期化をしない場合、RAM パリティ・エラーが検出され、RL78/F22,F25 にリセットが発生する可能性があります。 RAM パリティ・エラーについては、対象デバイスの「ユーザーズマニュアル:ハードウェア編」を参照してください。
- (10) EES のコマンドを実行する前に、リクエスト・ストラクチャー(st_ees_request_t)のすべてのメンバは一度初期化する必要があります。リクエスト・ストラクチャー(st_ees_request_t)内に使用されないメンバがある場合には、そのメンバに任意の値を設定してください。初期化されない場合、RAM パリティ・エラーによってRL78/F22,F25 にリセットが発生する可能性があります。詳細については対象デバイスの「ユーザーズマニュアル:ハードウェア編」を参照してください。
- (11) EES は多重実行に対応していないため、EES 関数を割り込み処理内で実行しないで下さい。
- (12) R_EES_Close 関数の実行後は、要求済みのコマンド、および実行中のコマンドは停止し、それを再開することはできません。R_EES_Close 関数を呼び出す前に、実行中のコマンドをすべて終了させてください。
- (13) EEPROM エミュレーション実行中に、RFD RL78 Type03 でコード・フラッシュ・メモリの操作を実行しないでください。使用する場合は必ず R_EES_Close 関数まで実行し、EEPROM エミュレーションを終了状態にする必要があります。RFD RL78 Type03 でコード・フラッシュ・メモリの操作を実行後に EEPROM エミュレーションを使用する場合は、初期化関数 (R_EES_Init 関数)から処理を行う必要があります。
- (14) EEPROM エミュレーションを開始する前に高速オンチップ・オシレータを起動しておく必要があります。また、外部クロックを使用時も高速オンチップ・オシレータは起動しておく必要があります。

- (15) EES ではユーザ・データにチェックサムを追加しません。チェックサムが必要な場合、ユーザ・データにチ ェックサムを付加して判定する等ユーザ・プログラムで対応してください。
- (16) EESの実行中に DFLCTL (データ・フラッシュ・コントロール・レジスタ)を操作しないでください。
- (17) データ・フラッシュ・メモリを EEPROM エミュレーションで使用するためには初回起動時に R_EES_ENUM_CMD_FORMATコマンドを実行し、データ・フラッシュ・メモリを EES ブロックとして使用 できるように初期化をおこなう必要があります。
- (18) EESを使用するためには、EESブロック(仮想ブロック)に3ブロック以上を設定することを推奨します。
- (19) EES 以外の RFD RL78 Type03 を使用したデータ・フラッシュを操作するユーザ・プログラム等で EES ブロ ックを破壊しないください。
- (20) EES ディスクリプタが変更された場合、EEPROM エミュレーションの実行を継続することはできません。このような場合には、R_EES_CMD_FORMAT コマンドによる EES プールのフォーマットを行う必要があります。ただし、データの追加の場合は、実行を継続することができます。
- (21) RL78/F22,F25 の CPU の動作周波数と初期化関数(R_EES_Init 関数)で設定する CPU の動作周波数値につい て、以下の点に注意してください。
 - RL78/F22,F25の CPU の動作周波数として 4MHz 未満の周波数を使用する場合は、2MHz、3MHz のみを使用することができます(2.5 MHz のように整数値にならない周波数は使用できません)。
 - RL78/F22,F25の CPU の動作周波数として 4MHz 以上^注の周波数を使用する場合は、RL78/F22,F25 に任意の周波数を使用することができます。
 - 高速オンチップ・オシレータの動作周波数ではありません。
 - 注.最大周波数については、対象デバイスの「ユーザーズマニュアル:ハードウェア編」を参照してください。

(22) オンチップ・デバッガでセルフ・プログラミングのデバッグをする場合の注意事項

オンチップ・デバッガでセルフ・プログラミングのデバッグをする場合、デバッグ実行時に RAM の先頭アド レスから 128byte の領域を使用するため、この領域を空けてください。それと同時に、ご使用の開発環境が CS+, e² studio の場合は、デバッガでフラッシュのセルフ・プログラミングを行う設定をしておく必要があり ます。

- CS+の設定例:

プロジェクトの"RL78 E2 [Lite](デバッグ・ツール)"から"接続用設定"タブを選択、"フラッシュ"の「Flash のセ ルフ・プログラミングを行う」を「はい」に設定します。

- e² studio の設定例:

プロジェクトの"プロパティ"から"実行/デバッグ設定"を選択し、対象の"HardwareDebug"設定を編集します。 "Debugger"タブを選択後、"Connection Settings"タブを選択し、表示された「フラッシュのセルフ・プログラ ミングを行う」を「はい」に設定します。 (23) CC-RL コンパイラ使用時に ROM から RAM への転送処理を実行する場合の注意事項

CC-RL コンパイラ使用時、main 関数から Sample_INITSCT_EES 関数を呼び出しています。この関数は、 EES RL78 Type03 が使用するデータを ROM から RAM ヘコピーする処理を実行します。ただし、この処理を CC-RL コンパイラ機能で cstart.asm ファイル内のスタートアップ・ルーチンを実行する場合(初期化テーブル を利用した RAM 領域セクションの初期化処理【V1.12 以降】)、下記設定が必要です。

- リンカで"-ram_init_table_section"を指定。

- アセンブル・オプションのマクロを定義する欄に"__USE_RAM_INIT_TABLE"を指定。

※詳細は CC-RL コンパイラ、および開発環境のユーザーズマニュアルを参照してください。

この時、Sample_INITSCT_EES 関数の ROM から RAM ヘコピーする処理が重複するため、"コンパイラ・オ プション"で次のように[定義マクロ]を指定して、Sample_INITSCT_EES 関数の処理を無効化する必要があり ます。

- コンパイラ・オプションのマクロを定義する欄に"__USE_RAM_INIT_TABLE"を指定。

1.6 Cコンパイラ定義

EES RL78 Type03 のヘッダ・ファイル(r_ees_compiler.h)に記述する対象コンパイラの定義を示します。

コンパイラごとに異なる記述が必要なため、使用しているコンパイラを"r_ees_compiler.h"ファイルで判別し、 対象のコンパイラ用の定義を使用します。

(1)

(2)

Cコンパイラの定義

- CC-RL コンパイラの定義:
 - "__CCRL__"が定義されている場合

#define EES_COMPILER_CC

- IAR コンパイラ:

"__IAR_SYSTEMS_ICC__"が定義されている場合

#define EES_COMPILER_IAR

<r_ees_compiler.h ファイル内の記述>

/* Compiler definition */ #define EES_COMPILER_CC (1) #define EES_COMPILER_IAR (2) #if defined (__CCRL__) #define EES_COMPILER EES_COMPILER_CC #elif defined (__IAR_SYSTEMS_ICC) #define EES_COMPILER EES_COMPILER_IAR #else /* Unknown compiler error */ #error "Non-supported compiler." #endif /* Compiler dependent definition */ #if (EES_COMPILER_CC == EES_COMPILER) #define R_EES_FAR_FUNC far #elif (EES_COMPILER_IAR == EES_COMPILER) #define R_EES_FAR_FUNC ___far_func #else /* Unknown compiler error */ #error "Non-supported compiler." #endif

・Cコンパイラ・オプション

以下に、動作確認したCコンパイラ・オプションを示します。

- [CC-RL(CS+)]

Major compile options:

-cpu=S3 -g -g_line -lang=c99

- [IAR(Embedded Workbench)]

Major compile options:

--core s3 --calling_convention v2 --code_model far --data_model near -e -OI --no_cse --no_unroll --no_inline

--no_code_motion --no_tbaa --no_cross_call --no_scheduling --no_clustering --debug

2 システム構成

2.1 システム構成

EESは、ユーザが定義するデータ・フラッシュ領域(EESプール)にアクセスするためのインタフェースです。 EES では、EES で提供している API 関数から EES 用 RFD 制御関数、および RFD を介して EES プールにアク セスします。「図 2-1 システム構成」の矢印が操作の流れです。

図 2-1 システム構成

2.2 EES アーキテクチャ

この章では、ユーザが EES を使用してデータ・フラッシュ・メモリ (EES プール)の書き換えを行う上で必要な EES のアーキテクチャについて説明します。

2.2.1 EES ブロック

EESでは、複数のデータ・フラッシュ・メモリのブロックを1つの仮想ブロックとして使用できます。この仮想ブロックを EES ブロックと呼びます。

RL78/F22,F25 では、データ・フラッシュ・メモリの 1 ブロックのサイズが 1K バイトのため、EES ブロックサイ ズに 2K バイトを設定する場合は、データ・フラッシュ・メモリの 2 ブロックを 2K バイトの仮想ブロックとして扱 えます。必ず対象デバイスに搭載されているデータ・フラッシュ・メモリのサイズ、および総ブロック数の値を考 慮し、EES ブロックのサイズを設定してください。なお、設定方法につきましては、「4.2 ユーザ設定初期値」をご 参照ください。EES ブロックに 1K バイト、および 2K バイトを設定した時の EES ブロック 0 の概念図を「図 2-2 EES ブロック 0 の概念図」に示します。

なお、EES ブロックに設定できる最大ブロック数は、データ・フラッシュ・メモリを 16K バイト搭載している製品の場合、EES ブロックに 1K バイトを設定すると 16 ブロック。EES ブロックに 2K バイトを設定すると 8 ブロックです。

図 2-2 EES ブロック 0 の概念図

2.2.2 EES プール

EES プールはユーザによって定義される EES がアクセス可能なデータ・フラッシュ領域です。ユーザ・プログラ ムからのデータ・フラッシュへのアクセスは、EES 経由での EES 用 RFD 制御関数、および RFD から EES プールへ のアクセスのみ許可されます。

必ず対象デバイスに搭載されているデータ・フラッシュサイズ内の値を EES プールに設定してください。なお、 設定方法につきましては、「4.2 ユーザ設定初期値」をご参照ください。

16KB のデータ・フラッシュ・メモリを有するデバイスの 8KB を EES ブロックに使用する場合の EES プール構成 例を「図 2-3 EES プール構成例(EES ブロックサイズに 1K バイトを設定)」に示します。

図 2-3 EES プール構成例(EES ブロックサイズに 1K バイトを設定)

2.3 ファイル構成

2.3.1 フォルダ構成

EES RL78 Type03 のフォルダ構成を図 2-4 に示します。

図 2-4 EES RL78 Type03 のフォルダ構成

注) 図 2-4 では RL78/F25 を使用する場合の例を記載しています。 サンプル用フォルダについては、「6.1.1 フォルダ構成」をご確認ください。 2.3.2 ファイル・リスト

2.3.2.1 ソース・ファイル・リスト

"source\ees\"フォルダ内のプログラム・ソース・ファイルを表 2-1 に示します。

```
表 2-1 "source\ees\"フォルダ内プログラム・ソース・ファイル
```

No	ソース・ファイル名	概略(Summary)
1	r_ees_api.c	EES を制御する API 関数ファイル
2	r_ees_exrfd_api.c	EES 用 RFD を制御する API 関数ファイル
3	r_ees_sub_api.c	EES 制御関数の内部で使用される API 関数ファイル

"userown\"フォルダ内のプログラム・ソース・ファイルを表 2-2 に示します。

表 2-2 "userown\"フォルダ内プログラム・ソース・ファイル

No	ヘッダ・ファイル名	概略(Summary)
1	r_ees_descriptor.c	EES で使用するディスクリプタを実装するファイル

2.3.2.2 ヘッダ・ファイル・リスト

"include\"フォルダ内のプログラム・ヘッダ・ファイルを表 2-3 に示します。

表 2-3 "include\"フォルダ内プログラム・ヘッダ・ファイル

No	ヘッダ・ファイル名	概略(Summary)
1	r_ees_api.h	EES を制御する API 関数のプロトタイプ宣言を定義したファ イル
2	r_ees_exrfd_api.h	EES 用 RFD 制御関数のプロトタイプ宣言を定義したファイル
3	r_ees_sub_api.h	EES 制御関数の内部で使用される関数のプロトタイプ宣言を 定義したファイル

"userown\include"フォルダ内のプログラム・ヘッダ・ファイルを表 2-4 に示します。

表 2-4 "เ	userown\include"フォルダ内プログラム・ヘッダ [、]	・ファイル	,
----------	---	-------	---

No	ヘッダ・ファイル名	概略(Summary)
1	r_ees_descriptor.h	EES で使用するディスクリプタを定義するファイル
2	r_ees_user_types.h	EES RL78 Type03 内で使用するユーザ・データの型を定義し たファイル

"include\ees"フォルダ内のプログラム・ヘッダ・ファイルを表 2-5 に示します。

表 2-5 "include\ees\"フォ	ルダ内プログラム・	ヘッダ・	ファイル
------------------------	-----------	------	------

No	ヘッダ・ファイル名	概略(Summary)
1	r_ees.h	共通ヘッダ・ファイルを記述したファイル。
2	r_ees_compiler.h	EES RL78 Type03 で使用するコンパイラ依存のマクロを定義 したファイル
3	r_ees_defines.h	EES RL78 Type03 で使用するマクロを定義したファイル
4	r_ees_device.h	EES RL78 Type03 で使用するハードウェア固有のマクロを定 義したファイル
5	r_ees_memmap.h	EES RL78 Type03 で使用するセクションを記述するためのマ クロを定義したファイル
6	r_ees_types.h	EES RL78 Type03 で使用する変数の型を定義したファイル
7	r_typedefs.h	EES RL78 Type03 で使用するデータの型を定義したファイル

2.4 RL78/F22,F25 リソース

2.4.1 メモリ・マップ

RL78/F22,F25 のコード・フラッシュ: CF (1 ブロック:2Kbyte) 、データ・フラッシュ: DF (1 ブロック:1Kbyte) 、RAM のメモリ・マップを表 2-6 に示します。

表 2-6 コード・フラッシュ、データ・フラッシュ、RAM のメモリ・マップ

デバイス	コード・フラッシュ:CF	データ・フラッシュ:DF	RAM
RL78/F22	128 Kbyte	8 Kbyte	12 Kbyte
R7F122FxG (x=7, B, G)	00000H-1FFFFH	F1000H-F2FFFH	FCF00H-FFEFFH
RL78/F25	512 Kbyte	16 Kbyte	40 Kbyte
R7F125FxL (x=G, L, M, P)	00000H-7FFFFH	F1000H-F4FFFH	F5F00H-FFEFFH

2.4.2 ブロック・	イメージ		
RL78/F22,F25 ወ	コード・フラッシュ: CF のブ	ブロックイメージ図を図 2-5 にお	示します 。
RL78/F22(⊐·	ード・フラッシュ 128 Kbyte)	RL78/F25 (⊐-	ード・フラッシュ 512 Kbyte)
		7FFFH	CF:ブロック 0FFH (2Kbyto)
		7F800H	(ZKDyte)
		7F7FFH	CF:ブロック 0FEH
		7F000H	(2Kbyte)
		7EFFFH	CF:ブロック 0FDH
		7E800H	(2Kbyte)
		7E7FFH	
1FFFFH	CF:ブロック 03FH		
1F800H	(2Kbyte)		
1F7FFH	CF:ブロック 03EH		1
1F000H	(2Kbyte)		I
1EFFFH			
01000H		01000H	
00FFFH	CF:ブロック 001H	00FFFH	CF:ブロック 001H
00800H	(2Kbyte)	00800H	(2Kbyte)
007FFH	CF:ブロック 000H	007FFH	CF:ブロック 000H
00000H	(2Kbyte)	00000H	(2Kbyte)

図 2-5 コード・フラッシュ のブロックイメージ

RL78/F22,F25のデータ・フラッシュ: DFのブロックイメージ図を図 2-6 に示します。 RL78/F22 (データ・フラッシュ 8 Kbyte)

RL78/F25 (データ・フラッシュ 16 Kbyte)

		F4FFH F4C00H	DF:ブロック 00FH (1Kbyte)
F2FFFH		F4BFFH F4800H	DF:ブロック 00EH (1Kbyte)
F2C00H	DF:フロック 007H (1Kbyte)	F47FFH	
	I	E400011	I
F1800H F17FFH F1400H	DF:ブロック 001H (1Kbyte)	F1800H F17FFH F1400H	DF:ブロック 001H (1Kbyte)
F13FFH F1000H	DF:ブロック 000H (1Kbyte)	F13FFH F1000H	DF:ブロック 000H (1Kbyte)

図 2-6 データ・フラッシュのブロックイメージ

2.5 EES RL78 Type03 使用リソース

2.5.1 EES RL78 Type03 使用時のセクション

EES で使用するセクションと配置の一覧を表 2-7 に示します。

表 2-7 EES 使用時のセクション

セクション名	内容	配置
EES_CODE	EES 制御 API 関数のプログラム・セクション	ROM
EES_CNST	EES 定数のセクション	ROM
EES_VAR	EES 変数のデータ・セクション	RAM
SMP_EES	EES 制御サンプル関数のプログラム・セクション	ROM
SMP_VAR	EES 制御サンプル変数のデータ・セクション	RAM

2.5.2 ソフトウェア・リソース

表 2-8 に EES RL78 Type03 のソフトウェア・リソース(参考値)を示します。

	容量(バイト)	
項日	CC-RL	IAR
スタックサイズ	42	48
コードサイズ ^{注 3}	4649	5221

表 2-8 EES RL78 Type03 のソフトウェア・リソース^{注 1,2}(参考値)

注1 「1.6 Cコンパイラ定義」のコンパイラ・オプション使用時の数値です。

注2 サンプル・プログラムのスタックサイズ、コードサイズは含みません。

注3 RFD RL78 Type03 のコードサイズは含みません。

3 EEPROM エミュレーション

3.1 EEPROM エミュレーションの仕様

EES RL78 Type03 では、ユーザ・プログラムから EES RL78 Type03 が提供する API 関数を呼び出す事により、デ ータ・フラッシュ・メモリに関する操作を意識することなく使用することができます。

EES RL78 Type03 では、1 バイトの識別子(データ ID: 1~254)をデータごとにユーザが割り振り、割り振った識 別子ごとに読み出しや書き込みを 1~255 バイトの任意の単位で操作することができます(識別子は最大 254 個まで 扱うことができます)。

また、データを格納するための EES ブロック(仮想ブロック)は、3 ブロック以上(推奨)^注の領域を使用します。 EEPROM エミュレーションによって書き込まれるデータは、参照用の参照データと、ユーザが指定したユーザ・デ ータに分けられ、参照データはブロックの小さいアドレスから、ユーザ・データはブロックの大きいアドレスから EES ブロックに書き込みが行われます。

注 EEPROM エミュレーションを行う場合、最低限 2 ブロック以上の EES ブロックが必要です。EES ブロックを 2 ブロックと指定した場合、1 度でも書き込みエラーが発生した時に、以降はそれまで正常に書き込めたデータ の読み出しのみ可能で、書き込みを継続して行うことができません。次に EES でデータの書き込みを行う場合 は対象 2 ブロックをフォーマットする必要があり、それまで書き込んでいたデータは全て消去されます。また、 システムにより電圧低下など、不慮の状態が発生する可能性もあるので、EES ブロックには、3 ブロック以上を ご指定いただくことを推奨いたします。

3.2 機能概要

EES では以下のような特徴を含む基本的な書き込み、および読み出し機能等が提供されています。

- EES ブロックのサイズに、1024 または 2048 バイトのいずれかを設定可能
- ユーザ・データは 1~254 個まで設定可能
- ユーザ・データのサイズは 1~255 バイトまで設定可能
- BGO(Back Ground Operation) に対応
- EES 管理用データ (ブロック・ヘッダ、セパレータ)のメモリ消費量: EES ブロックあたり 10 バイト
- 参照領域の参照データのメモリ消費量: EES ブロックに書き込まれる1データあたり3バイト
- R_EES_ENUM_CMD_WRITE、または R_EES_ENUM_CMD_REFRESH 実行中の CPU リセットによる中 断に対して、R_EES_ENUM_CMD_REFRESH で復旧
- ブロック・ローテーション(データ・フラッシュ使用頻度の均衡化)

EES機能使用時の設定範囲を「表 3-1」に示します。

表 3-1 EES 機能使用時の設定	定範囲
--------------------	-----

項目	範囲
EESブロックサイズ	1024もしくは2048(バイト)
ユーザ・データ長	1~255
格納ユーザ・データ数 ^{注1}	1~254
ユーザ・データ ID 番号	1~254 (登録順に1から最大254が割り当てられ、任意の設定は不可)
EEPROM エミュレーション・ブロック数 ^{注2}	3~255
ユーザ・データの推奨サイズ ^{注1}	EES ブロックを1024 (バイト) に設定時:1014/2 (バイト) 以下 EES ブロックを2048 (バイト) に設定時:2038/2 (バイト) 以下

- 注1 ユーザ・データは、すべてのユーザ・データが EES ブロックへ書き込まれるときに必要な合計サイズを 1 ブロックの 1/2 以内に収められる状態にする必要があります。そのため、格納するユーザ・データのサイ ズによって格納ユーザ・データ数の使用範囲は変わります。また、合計サイズも管理用としてデータごとに 付与される参照データ分のサイズも考慮に入れる必要があります。格納ユーザ・データ数や合計サイズの詳 細については「4.1 格納ユーザ・データ数とユーザ・データの合計サイズ」を参照してください。
- 注2 搭載されているデータ・フラッシュ・メモリの最大容量以上には設定できません。
- 3.3 EES プール

この章では、ユーザが EES を使用してデータ・フラッシュ・メモリ (EES プール)の書き換えを行う上で必要な EES のアーキテクチャについて説明します。

3.3.1 EES プールの状態

EES プールの各ブロックには状態があり、表 3-2 にブロックの使用状態を示しています。

状態	内容
有効	1つの EES ブロックが有効となり、定義済みのデータを格納します。有効ブロックは EES プー
	ルに割り当てられた EES ブロック群を循環します。
無効	無効ブロックにはデータは格納されません。EES ブロックは EES によって無効とされるか、消
	去ブロックの場合は無効となります。
使用禁止	機能動作が失敗してデータ・フラッシュの故障の可能性が判明した場合は、EES では該当ブロッ
	クを使用禁止とし、その後はそのブロックを EEPROM エミュレーションには使用しません。

表 3-2 EES ブロックの状態一覧

EES プールの状態例を「図 3-1 EES プール状態例」に示します。

有効ブロック(例では EES ブロック1)に書き込み可能領域がなくなり追加データの格納ができなくなった時 (write コマンドの失敗)には、新規の有効ブロックが循環的に選定され、その時点で有効なデータ群が新規の有効 ブロックにコピーされます。このプロセスは「リフレッシュ」と呼ばれます

R_EES_ENUM_CMD_REFRESH コマンド実行後に元の有効ブロックは無効となり、1つの有効ブロックのみが 存在します。このプロセスにおいて使用禁止ブロック(例では EES ブロック7)は無視され、次の有効ブロック選定 の候補にはなりません。

EES RL78 Type03

図 3-1 EES プール状態例(EES ブロックに1K バイト設定時)

EES プール内の EES ブロックのライフサイクルのイメージを「図 3-2 EES ブロックのライフサイクル」に示し ます。通常動作時では、EES ブロックは有効状態と無効状態の間を行き来します。EES ブロックへのアクセス中 にエラーが発生した場合には、エラーが発生した EES ブロックは使用禁止ブロックとなります。このブロックは EES ブロックのライフサイクルに再投入されることはありません。ただし、ユーザが EES プール全体をフォーマ ットすることにより使用禁止ブロックの修復を試みることは可能ですが、この際に既存データの内容はすべて消去 されます。

注意 EES ブロックは、仮想ブロックであるため EES ブロック内で使用されているデータ・フラッシュ・メモリの 物理ブロックのうち 1 ブロックでも故障などで使用できない場合、そのブロックを含む EES ブロックは使用禁 止ブロックと判断されます。

図 3-2 EES ブロックのライフサイクル

EESプールには、以下のような4種類の状態があります。

表 3-3 EESプールの状態一覧

状態	説明
プール動作可能	EES 動作時の通常状態です。すべてのコマンドが実行可能です。
プール・フル	使用中の有効ブロックは、書き込みを行うための空き容量が足りません。リフレッシュの実行 が必要であることを示しています。
プール消耗	継続して使用できる EES ブロックがなくなりました(EES の動作には、最低でも使用禁止でな いブロックが 2 つ必要です)。
プール不整合	プールの状態に不整合があり、EES ブロック内に存在するデータ構造が、ユーザが設定した構造と一致しません。EES ブロックが不定状態(有効ブロックがない等)です。

3.3.2 EES ブロック構造

EES が使用する EES ブロック構造を「図 3-3 EES ブロック (EES ブロックに 1K バイト設定時)の構成」に示しま す。EES ブロックは、ブロック・ヘッダ、参照領域、データ領域の 3 つの利用領域で構成されています。

図 3-3 EES ブロック (EES ブロックに 1K バイト設定時)の構成

表 3-4 EESブロックの構成一覧

名称	説明
ブロック・ヘッダ	EES プール内のブロック管理に必要なブロック状態の情報が格納されています。8 バイトの 固定サイズです。
参照領域	データの管理に必要な参照データが格納されています。データが書き込まれると、上位アドレス方向に拡大します。
データ領域	ユーザ・データが格納されています。データが書き込まれると、下位アドレス方向に拡大し ます。

参照領域とデータ領域の間には、消去済み領域があります。データが更新される(データの書き込みが行われる) たびに、この領域は減少します。しかし、参照領域とデータ領域の間には、領域の分離とブロック管理のために最 低でも2バイトの未使用領域が常に残されています。これは「図 3-3 EESブロック(EESブロックに1Kバイト設定 時)の構成」ではセパレータとして示されています。

EESブロック・ヘッダの詳細を「3.3.3 EESブロック・ヘッダ」に、参照領域とデータ領域に格納されるデータの構造を「3.3.4 格納データの構造」で説明します。

3.3.3 EES ブロック・ヘッダ

EES ブロック・ヘッダの構成を「図 3-4 EES ブロック・ヘッダの構成」に示します。8 バイトで構成され、その中の 3 バイトはシステムで予約されています。

ブロック内の 相対アドレス		
0x0000	А	Ν
0x0001	В	0xFF - N
0x0002	B'	0x00
0x0003	I	0x00
0x0004	Х	0x00
0x0005	-	予約
0x0006	-	予約
0x0007	-	予約

図 3-4 EES ブロック・ヘッダの構成

ブロック状態フラグは、ブロックの先頭から A フラグ、B フラグ、B'フラグ、I フラグ、X フラグの各 1 バイト ずつ計 5 バイトのデータとして配置されます。各フラグの組み合わせにより EES ブロックの状態を示します。

「図 3-4 EES ブロック・ヘッダの構成」に各フラグの配置状態を、「表 3-5 ブロック状態フラグの説明」に各フ ラグの組み合わせによる状態を示します。

ブロック状態フラグ						
A フラグ	B フラグ	B' フラグ	ー フラグ	X フラグ	状態	概要
0x01	0xFE	0x00	0xFF	0xFF		現在使用中のブロック R_EES_ENUM_CMD_REFRESH コマンドを実行 後、新しい有効ブロックのAフラグには0x02が設定 されます。
0x02	0xFD	0x00	0xFF	0xFF	有効	現在使用中のブロック R_EES_ENUM_CMD_REFRESH コマンドを実行 後、新しい有効ブロックのAフラグには0x03が設定 されます。
0x03	0xFC	0x00	0xFF	0xFF		現在使用中のブロック R_EES_ENUM_CMD_REFRESH コマンドを実行 後、新しい有効ブロックのAフラグには0x01が設定 されます。
0x01	0xFE		0xFF	0xFF		現在使用中のブロック。ただし、 B'フラグの書き込 みが完了していないため、新しいデータを追加する
0x02	0xFD	0x01~ 0xFE	0xFF	0xFF	有効	ことはできません。読み出しは可能です。 R_EES_ENUM_CMD_REFRESH コマンドを実行
0x03	0xFC		0xFF	0xFF	FF	後、新しい有効ブロックの A フラグは、0x01, 0x02, 0x03, 0x01,…の順序で設定されます。
_		0xFF	0xFF	0xFF	细动	毎劫华能をたった ブロック
_			0xFF 以外	0xFF	**	無効状態となうにノロック
_			_	0xFF 以外	使用禁止	使用禁止となったブロック

表 3-5 ブロック状態フラグの説明

3.3.4 格納データの構造

EES ブロックにユーザ・データを書き込むときの格納データの構造を示します。データは、レコード開始(SoR) フィールド、レコード終了(EoR, EoR')フィールド、データフィールドの3つの部分から成ります。EES ディスク リプタ・テーブルを使って、EES 内部で使用するデータを設定できます。各データは識別番号(ID)によって参照さ れ、1~255バイトまでのサイズが設定可能です。(EES ディスクリプタ・テーブルのフォーマットの正確な仕様は 「4.2 ユーザ設定初期値」に記載されています。)

データが書き込まれるたびに EES ブロック内に格納データが増加し、複数の格納データが存在しますが、参照 されるのは最新の格納データのみです。

SoR と EoR, EoR'は、データの管理に必要な参照データを構成します。参照データとユーザ・データは有効ブロック内の別々のフィールドに格納されますが、これらのフィールドはそれぞれ参照領域、データ領域と呼ばれます。 データの全体構造の使用例を「図 3-6 有効な EES ブロックの例」に示します。

図 3-5 格納データの構造

表 3-6 テータの谷領域の記り	表	3-6	データ	の各領域の説明
------------------	---	-----	-----	---------

名称	説明
SoR フィールド	1 バイトの SoR フィールドにはデータのデータ ID が格納されています。
(Start of Record)	このフィールドは、書き込み処理の開始を示します。消去済みセルのパターンを避けるため、デ
	ータ ID には、0x00 と 0xFF は使用されません。
EoR フィールド	1バイトの EoR フィールドには「0xFF – データ ID」の値が格納されています。
(End of Record)	このフィールドは、データ書き込み処理の正常終了を示します。デバイスのリセット等により書
	き込みが不完全である場合には、対応する格納データは EES から無視されます。
EoR'フィールド	1 バイトの EoR'フィールドは、EoR フィールド書き込み処理の正常終了を示します。
(End of Record')	このフィールドは、EoR フィールドの書き込み終了後に 0x00 が書き込まれます。
	0x01~0xFEの場合は、格納データは有効ですが書き込みが最後まで完了していないと判断され
	るため、以降そのブロックは追記できないブロックとして扱われます。0xFF の場合、EoR フィ
	ールドの書き込みが正常終了していないと判定し、無効データとして扱われます。
データフィールド	データフィールドにはユーザ・データが格納されています。データ範囲は 1~255 バイトです。
	サイズが2バイト以上のデータの場合、小さいアドレスのデータが、データフィールドの小さい
	アドレス側に格納されます(図 3-6 で確認してください)。

格納データは、SoR → データフィールド → EoR → EoR'の順番でEESブロックへの書き込みが行われます。また、

EoRフィールドの値が正常に書き込まれていない場合、ひとつ前のデータが有効です。

- 注意1 各格納データによって消費される参照データの合計サイズは3バイトです。R_EES_GetSpace関数を用いてデー タの書き込み前に空き容量を確認する際には、参照データの合計サイズも考慮する必要があります。
- 注意2 ユーザ・データにチェックサムは追加されません。チェックサムが必要な場合、ユーザ・データにチェックサ ムを付加し判定する等、ユーザ・プログラムで対応してください。

3.3.5 EES ブロックの概要

「図 3-6 有効なEESブロックの例」に、複数の格納データを含むEESブロックの例を示します。:

- データID 0x01 : データ長 4バイト
- データID 0x02 : データ長 1バイト
- データID 0x03 : 定義されていますが、書き込まれていません。
- データID 0x04 : データ長 2バイト

データは、データID 0x01 \rightarrow データID 0x04 \rightarrow データID 0x02 の順に書かれています。 この例では、データID 0x03のデータはまだ書き込まれていません。

図 3-6 有効な EES ブロックの例

4 EEPROM エミュレーションの使用方法

EEPROM エミュレーションは、3 ブロック以上(推奨)の EES ブロックを使用することにより、1~255 バイトのデータを最大 254 個まで EEPROM エミュレーションによりデータ・フラッシュ・メモリに格納することができます。

EES をユーザ・プログラムに組み込み、そのプログラムを実行することにより、EEPROM エミュレーションを 実現することができます。

4.1 格納ユーザ・データ数とユーザ・データの合計サイズ

EEPROM エミュレーションで使用できるユーザ・データの合計サイズには制限があり、すべてのユーザ・データ が EES ブロックに書き込まれる場合に必要なサイズを 1 ブロックの 1/2 以内に収まる状態にする必要があります。 また、使用できる格納データ数は、EES ブロックのサイズ設定や、実際に格納するユーザ・データのサイズによっ て異なります。以下に実際にユーザ・データの書き込みで使用できるサイズ、およびユーザ・データの合計サイズの 計算方法を示します。

【ユーザ・データの書き込みに使用できる1ブロックの最大使用可能サイズ】

EEPROM エミュレーションでブロックの管理に必要なサイズ : 8 バイト終端用の情報として必ず必要な空き容量(セパレータ) : 2 バイト

- EES ブロックサイズを 1024 バイトに設定した場合
 EES ブロックサイズ: 1024 (バイト)
 1 ブロックの最大使用可能サイズ = 1024 (8 + 2) = 1014 (バイト)
- EES ブロックサイズを 2048 バイトに設定した場合
 EES ブロックサイズ: 1024 * 2 = 2048 (バイト)
 1 ブロックの最大使用可能サイズ = 2048 (8 + 2) = 2038 (バイト)

【ユーザ・データごとの書き込みサイズの計算方法】注

書き込まれる個々のユーザ・データのサイズ = データ・サイズ + 参照エントリ・サイズ(3 バイト)

注 詳細については「3.3.4 格納データの構造」の項を参照してください。

【ユーザ・データの基本合計サイズの計算方法】

基本合計サイズ = (ユーザ・データ1+3) + (ユーザ・データ2+3)・・・+ (ユーザ・データn+3)

【最大サイズと推奨サイズ】

データはすべて1ブロック内に収める必要があります。そのため、最大サイズは1ブロックの最大使用可能サイズ ですが、以下の関係式を満たすことを推奨します。全データを1回は更新できるようにするため、1ブロックの最大 使用可能サイズの半分の容量内で使用することを推奨しています。

最大サイズ:全データを書き込み後、一番サイズが大きなデータを1回更新できることを想定。 推奨サイズ:全データを書き込み後、全データを1回更新できることを想定。

- EES ブロックサイズを 1024 バイトに設定した場合
 最大サイズ = ユーザ・データの基本合計サイズ + 最大のデータ・サイズ + 3 ≤ 1014
 推奨サイズ = 1014 / 2 = 507 (バイト)以下
- EES ブロックサイズを 2048 バイトに設定した場合
 最大サイズ = ユーザ・データの基本合計サイズ + 最大のデータ・サイズ + 3 ≤ 2038
 推奨サイズ = 2038 / 2 = 1019 (バイト)以下

4.2 ユーザ設定初期値

EESの設定初期値は、次に示す項目をユーザが必ず設定する必要があります。また、EESを実行する前に、高速オン チップ・オシレータを起動しておく必要があります。外部クロック使用時も、高速オンチップ・オシレータを起動して おく必要があります。

• EES 設定初期値

<EEPROM エミュレーション・ソフトウェア ユーザ・インクルード・ファイル (r_ees_descriptor.h) >^{注2、3}

#define R_EES_EXRFD_VALUE_U16_PHYSICAL_BLOCK_SIZE (1024u)
:(1) データ・フラッシュ・メモリ 1 ブロックの
サイズ(物理ブロックサイズ)
#define R_EES_EXRFD_VALUE_U08_PHYSICAL_BLOCKS_PER_VIRTUAL_BLOCK (1u)
: (2) EES ブロック(1 仮想ブロック当たり)に設
定するデータ・フラッシュ・メモリ・ブロック
数(物理ブロック数) ^{注1}
#define R_EES_EXRFD_VALUE_U08_POOL_VIRTUAL_BLOCKS (4u)
: (3) EES プールサイズ (仮想ブロック数)
#define R_EES_VALUE_U08_VAR_NO (8u) : (4) 格納データ数

注1 EES ブロックに設定可能なデータ・フラッシュ・メモリ・ブロック数は、1または2です。

<EEPROMエミュレーション・ソフトウェア ユーザ・データ定義ファイル (r_ees_user_types.h) >^{注3}

typedef uint8_t	type_A[2];	: (5) 識別子(データ ID)毎の
typedef uint8_t	type_B[3];	データ・サイズ定義
typedef uint8_t	type_C[4];	
typedef uint8_t	type_D[5];	
typedef uint8_t	type_E[6];	
typedef uint8_t	type_F[10];	
typedef uint8_t	type_X[20];	
typedef uint8_t	type_Z[255];	

<EEPROMエミュレーション・ソフトウェア ユーザプログラムファイル (r_ees_descriptor.c) >^{注3}

far const uint8_t			:(6)各データ識別子(データ ID)
g_ar_u08_ees_descriptor [F	R_EES_VALUE_U08	8_VAR_NO + 2u] =	のデータのサイズ
{			
(uint8_t)(R_EES_VALUE_U	J08_VAR_NO), / [*]	* variable count */ \	
(uint8_t)(sizeof(type_A)),	/* id=1	*/ \	
(uint8_t)(sizeof(type_B)),	/* id=2	*/ \	
(uint8_t)(sizeof(type_C)),	/* id=3	*/ \	
(uint8_t)(sizeof(type_D)),	/* id=4	*/ \	
(uint8_t)(sizeof(type_E)),	/* id=5	*/ \	
(uint8_t)(sizeof(type_F)),	/* id=6	*/ \	
(uint8_t)(sizeof(type_X)),	/* id=7	*/ \	
(uint8_t)(sizeof(type_Z)),	/* id=8	*/ \	
(uint8_t)(0x00),	/* zero terminator	*/ \	
};			

注2 使用しているマクロは、EES共通のパラメータとして使用していますので、数値以外は変更しないでください。

- 注3 EESブロック初期化後(R_EES_ENUM_CMD_FORMATコマンド実行後)は各値を変更しないでください。変更す る場合は、EESブロックの再初期化(R_EES_ENUM_CMD_FORMATコマンド実行)を行ってください。
- (1) データ・フラッシュ・メモリ1ブロックのサイズ(物理ブロックサイズ)対象デバイスに搭載されている、データ・フラッシュ・メモリ1ブロックのサイズを設定します。
- (2) EESブロックに使用するデータ・フラッシュ・メモリ・ブロック数EESブロック1ブロックに使用するデータ・フラッシュ・メモリ・ブロック数を設定します。
- EESプールサイズ^注

EESプールに使用するEESブロック数(仮想ブロック数)を設定します。必ず対象デバイスに搭載されているデー タ・フラッシュ・メモリのサイズを考慮しEESプールのブロック数に設定してください。 注 EES プールサイズには3ブロック以上の値を設定してください(推奨)

- (4) 格納データ数EEPROM エミュレーションで使用するデータ数を設定します。設定できる値は1~254の範囲です。
- (5) 識別子(データID)毎のデータ・サイズ定義
 ユーザが指定する各ユーザ・データのバイトサイズのデータ型名を定義します。EESディスクリプタ・テーブルに
 各ユーザ・データのバイトサイズが反映されます。
- (6) 各データ識別子(データID)のデータのサイズ

各識別子のデータのサイズを規定するテーブルです。これをEESディスクリプタ・テーブルといいます。書き込み を行うデータはEESディスクリプタ・テーブルに事前に登録する必要があります。

R_EES_VALUE_U08_VAR_NO
データ ID1 のバイトサイズ
データ ID2 のバイトサイズ
データ ID3 のバイトサイズ
データ ID4 のバイトサイズ
データ ID5 のバイトサイズ
データ ID6 のバイトサイズ
データ ID7 のバイトサイズ
データ ID8 のバイトサイズ
0x00

___far const uint8_t g_ar_u08_ees_descriptor[格納データ数 + 2]

図 4-1 EESディスクリプタ・テーブル(8件の異なったデータがある場合)

• R_EES_VALUE_U08_VAR_NO

ユーザが指定するEESで使用するデータの数です。

・データIDxのバイトサイズ

ユーザが指定する各ユーザ・データのバイトサイズです。

・終端領域(0x00)

終端情報として0を設定します。

5 ユーザインタフェース

5.1 リクエスト・ストラクチャー(st_ees_request_t) 設定

データ・フラッシュへの書き込み、読み出し等の基本操作は一つの実行関数で実行されます。実行関数へリクエスト・ストラクチャー(st_ees_request_t)経由でコマンドやデータ ID を EES へ受け渡します。また、逆に EES の状態、エラー情報をリクエスト・ストラクチャー(st_ees_request_t)経由で取得します。

以降ユーザによるリクエスト・ストラクチャー(st_ees_request_t)への書き込みアクセスを「ユーザ・ライトアク セス」と呼び、読み出しアクセスを「ユーザ・リードアクセス」と呼びます。

図 5-1 リクエスト・ストラクチャー(st_ees_request_t)

リクエスト・ストラクチャー(st_ees_request_t)はファイル r_ees_types.h に記述されています。ユーザによる変更は禁止です。

【リクエスト・ストラクチャー(st_ees_request_t)の定義】

typedef struct st_ees_request			
{			
uint8_tnear *	np_u08_address;		
uint8_t	u08_identifier;		
e_ees_command_t	e_command;		
e_ees_ret_status_t	e_status;		
} st_ees_request_t;			
uint8_tnear *	np_u08_address		
-----------------------------	---------------------------		
uint8_t u08_identifier	e_ees_command_t e_command		
e_ees_ret_status_t e_status			
bit0	bit15		

図 5-2 リクエスト・ストラクチャー(st_ees_request_t)変数配置

5.1.1 ユーザ・ライトアクセス

(1) np_u08_address

R_EES_ENUM_CMD_WRITE コマンド、R_EES_ENUM_CMD_READ コマンド時に使用するデータ・バッファの 先頭アドレスへのポインタを設定します。

設定値
データ・バッファ ^{注1} の先頭アドレスへのポインタ
データ・バッファ ^{注2} の先頭アドレスへのポインタ

注1 ユーザの書き込むデータが配置されているバッファ

注2 データ・フラッシュから読み出したデータを配置するバッファ

(2) u08_identifier

各コマンドで使用するデータ ID を設定します。設定方法の詳細は「5.7 API 関数仕様 R_EES_Execute」のページをご 参照ください。

対応コマンド名(マクロ名)	設定値
R_EES_ENUM_CMD_WRITE	書き込みデータの ID 指定
R_EES_ENUM_CMD_READ	読み出しデータの ID 指定

(3) e_command

共通実行関数へ設定するコマンド

コマンド名(マクロ名)	説明
R_EES_ENUM_CMD_UNDEFINED	コマンド未定義 (初期値:初期化以外で使用することはありません。)
R_EES_ENUM_CMD_STARTUP	スタートアップ処理
R_EES_ENUM_CMD_WRITE	書き込み処理
R_EES_ENUM_CMD_READ	読み出し処理
R_EES_ENUM_CMD_REFRESH	リフレッシュ処理
R_EES_ENUM_CMD_FORMAT	フォーマット処理
R_EES_ENUM_CMD_SHUTDOWN	シャットダウン処理

5.1.2 ユーザ・リードアクセス

e_status

EES の状態、エラー情報。各関数において発生する可能性のある状態、エラーにつきましては「5.7 API 関数仕様」の各関数をご参照ください。

5.2 EES API 関数、および R_EES_Execute 関数のコマンド機能一覧

5.2.1 EES API 関数

EES RL78 Type03の EES プールを制御する API 関数一覧を表 5-1 に示します。

表 5-1	FES RI 78	3 Type03 AP	閏数— 暫
10-1			11为外 見

	API 関数名	概要
1	R_EES_Init	すべての内部データ、変数の初期化、およびディスクリプタなどの
		構成のチェックを行います。
2	R_EES_Open	EEPROM エミュレーション準備処理
		EEPROM エミュレーションを実行できる状態にします。
3	R_EES_Close	EEPROM エミュレーション終了処理
		EEPROM エミュレーションを実行できない状態にします。
4	R_EES_Execute	EEPROM エミュレーション実行関数
		EEPROM エミュレーションを操作するための各処理をコマンド形式
		で本関数の引数に設定し、処理を開始します。
5	R_EES_Handler	EEPROM エミュレーション継続実行処理
		R_EES_Execute 関数で開始されたコマンドの処理を進行させ、終了
		を確認します。
6	R_EES_GetSpace	有効ブロックの空き容量を取得します。

5.2.2 R_EES_Execute 関数のコマンド

R_EES_Execute 関数において実行できる各コマンドの機能一覧を表 5-2 に示します。

	Command Name	Outline
1	R_EES_ENUM_CMD_STARTUP	【スタートアップ処理】
		EES ブロックの状態を確認し、EEPROM エミュレーション(デー
		タ・アクセス) 可能(Full Access)状態にします。有効ブロックが 2 個
		あった場合等は、不正な EES ブロックを無効ブロックに変更しま
		す。R_EES_ENUM_CMD_FORMAT コマンド以外のコマンドについ
		ては、必ず本コマンドを事前に実行し、正常終了させてください。
2	$R_{EES} ENUM_{CMD} WRITE {}^{\pm 1}$	【書き込み処理】
		EES ブロックへ指定データの書き込みを行います。
		※実行には以下の引数の設定が必要です。
		・np_u08_address:書き込みデータが保存されている RAM 領域の
		先頭アドレスへのポインタを指定
		・u08_identifier:書き込みデータのデータ ID 指定
3	R_EES_ ENUM_CMD_READ ^{注 1}	【読み出し処理】
		EES ブロックから指定データの読み出しを行います。
		※実行には以下の引数の設定が必要です。
		・np_u08_address : 読み出したデータを保存する RAM 領域の先頭
		アドレスへのポインタを指定
		・u08_identifier:読み出すデータのデータ ID 指定
4	$R_{EES} ENUM_{CMD} REFRESH {}^{\pm 1,2}$	【リフレッシュ処理】
		有効ブロック (コピー元 EES ブロック)から EES プールの次のブロ
		ック (コピー先 EES ブロック)に対し、消去処理後に各データの最新
		の格納データをコピーします。これにより、コピー先 EES ブロック
		が新たな有効ブロックとなります。
5	R_EES_ENUM_CMD_FORMAT	【フォーマット処理】
		EES プール全体を記録されていたデータも含め、すべて初期化 (消
		去) します。EEPROM エミュレーションを最初に使用する場合に必
		ず使用します。また、EES ブロックに異常が発生(有効ブロックがな
		くなる等)した場合や、ディスクリプタ・テーブル等の値(変更でき
		ない固定値)を修正する場合にも本コマンドを使用し、ブロック全体
		を初期化する必要があります。処理終了後は結果に関わらず必ず停
		止状態(opened)に遷移しますので、EEPROM エミュレーションを継
		続して使用する場合は、R_EES_ENUM_CMD_STARTUP コマンド
		を実行してください。
6	R_EES_ ENUM_CMD_SHUTDOWN ^{注 1}	【シャットダウン処理】
		EEPROM エミュレーションを停止状態(opened)にします。

表 5-2 R_EES_Execute 関数コマンドの機能一覧

注1 R_EES_ENUM_CMD_STARTUP コマンドを正常に終了させてからコマンドを実行してください。

注 2 R_EES_ENUM_CMD_REFRESH コマンドを実行することで、消去処理が実行されます。

5.2.3 EES 用 RFD 制御 API 関数

EES 用 RFD 制御 API 関数一覧を表 5-3 に示します。

本関数は EES 内部で使用される関数で、ユーザが直接使用する必要はありません。

	API 関数名	概要
1	R_EES_EXRFD_Init	RFD RL78 Type03 の初期化を行います。
2	R_EES_EXRFD_Open	データ・フラッシュ・コントロール・レジスタ(DFLCTL)をデー タ・フラッシュ・メモリへのアクセス許可状態(DFLEN = 1)に設定 します。
3	R_EES_EXRFD_Close	データ・フラッシュ・コントロール・レジスタ(DFLCTL)をデー タ・フラッシュ・メモリへのアクセス禁止状態(DFLEN = 0) に設定 します。動作中のすべての EES 処理が停止します。
4	R_EES_EXRFD_Erase	EES ブロックの消去を開始します。
5	R_EES_EXRFD_Write	指定したデータ・フラッシュのアドレスに書き込みを開始します。
6	R_EES_EXRFD_BlankCheck	データ・フラッシュのブランク・チェック(対象データ・サイズ分) を開始します。
7	R_EES_EXRFD_Read	指定したアドレスからデータ(読み込みデータ・サイズ分)を読み出 します。
8	R_EES_EXRFD_Handler	実行中の EES 用 RFD 制御関数の処理を進行し終了を確認します。

表 5-3 EES 用 RFD 制御 API 関数一覧

5.3 状態遷移

ユーザ・プログラムから EEPROM エミュレーションを使用するためには EES の初期化処理を行い、書き込みや 読み出し等 EES ブロックの操作を行う関数を実行する必要があります。全体の状態遷移図を「図 5-3 状態遷移図」 に、基本的な機能を使用するための操作フローを「図 5-4 EES 基本フローチャート」に示します。EEPROM エミュ レーションを使用する場合は、この流れに沿ってユーザ・プログラムに組み込んでください。

図 5-3 状態遷移図

注意 R_EES_ENUM_CMD_FORMATコマンドを開始した場合、R_EES_Handler関数を実行して、必ず終了を確認し てください。

【状態遷移図の概要】

EES を使用してデータ・フラッシュ・メモリを操作するためには、用意されている関数を順に実行し処理を進める必要があります。

(1) Not powered

Power OFF の状態です。

(2) closed

R_EES_Init 関数を実行し、EEPROM エミュレーションを実行するためのデータを初期化した状態(データ・フ ラッシュ・メモリへの操作は停止状態)です。EEPROM エミュレーションを動作させた後に RFD RL78 Type03 を 使用したコード・フラッシュ・メモリの操作や、STOP モード、HALT モードを実行する場合は、opened 状態から R_EES_Close 関数を実行し、この状態に遷移させてください。

(3) opened

closed 状態から R_EES_Open 関数を実行し、データ・フラッシュ・メモリへの操作が可能になった状態です。 R_EES_Close 関数を実行し、closed 状態に遷移するまでの間は RFD RL78 Type03 を使用したコード・フラッシュ・メモリの操作や STOP モード、HALT モードは実行できません。

(4) Full Access

opened 状態から R_EES_ENUM_CMD_STARTUP コマンドを実行し、EEPROM エミュレーションが実行でき るようになった状態です。この状態から EEPROM エミュレーションを使用した書き込みや読み出しを行います。

(5) exhausted

opened 状態および Full Access 状態から、コマンド実行中に継続して使用できる EES ブロックがなくなった状態です。この状態では、R_EES_ENUM_CMD_READ コマンド、R_EES_ENUM_CMD_SHUTDOWN コマンドの み実行できます。

(6) busy

指定された各コマンドを実行している状態です。実行コマンドと終了状況によっては遷移する状態が変わる場合 もあります。 5.4 基本フローチャート

「図 5-4 EES 基本フローチャート」に、EES を用いてデータ・フラッシュを操作(書き込み、読み出し等)する際の基本手順を示します。

図 5-4 EES 基本フローチャート

- 注意1 EEPROMエミュレーションを初めて使用する場合、必ずR_EES_ENUM_CMD_FORMATコマンドを実行してく ださい。
- 注意2 上記フローは、コマンド実行後のR_EES_Handler処理とエラー処理を省略しています。

EES RL78 Type03

【基本操作フローの概要】

- EESの初期化処理(R_EES_Init関数)
 EESで使用する内部データ、変数の初期化、およびディスクリプタなどの構成のチェックを行います。
- ② EEPROMエミュレーション準備処理(R_EES_Open関数)
 EEPROMエミュレーションを実行するため、データ・フラッシュ・メモリを制御可能な状態(opened)にします。
- ③ EEPROMエミュレーション実行開始処理(R_EES_Execute関数:R_EES_ENUM_CMD_STARTUPコマンド)
 EEPROMエミュレーション(データ・アクセス)可能(Full Access)状態にします。
- ④ EEPROMエミュレーション・データ書き込み処理(R_EES_Execute関数:R_EES_ENUM_CMD_WRITEコマンド) 指定されたIDのデータをEESブロックへ書き込みます。
- ⑤ EEPROMエミュレーション・データ読み出し処理(R_EES_Execute関数:R_EES_ENUM_CMD_READコマンド) 指定されたIDのデータをEESブロックから読み出します。
- ⑥ EEPROMエミュレーション・リフレッシュ処理(R_EES_Execute関数:R_EES_ENUM_CMD_REFRESHコマンド) 有効ブロック(コピー元ブロック)からEESプールの次のブロック(コピー先ブロック)に対し、消去処理後に各デー タの最新の格納データをコピーします。これにより、コピー先ブロックが新たな有効ブロックとなります。
- ⑦ EEPROMエミュレーション実行停止処理(R_EES_Execute関数:R_EES_ENUM_CMD_SHUTDOWNコマンド)
 EEPROMエミュレーションの動作を停止状態(opened)にします。
- ⑧ EEPROMエミュレーション終了処理(R_EES_Close関数)
 EEPROMエミュレーションを終了するために、データ・フラッシュ・メモリを制御出来ない状態(closed)にします。

5.5 コマンド操作フローチャート

「図 5-5 コマンド操作フローチャート」に、EES を用いてデータ・フラッシュを操作(書き込み、読み出し等)する際の基本手順を示します。

図 5-5 コマンド操作フローチャート

① R_EES_Execute 関数

データ・フラッシュ操作を実行します。

ビジー確認

リクエスト・ストラクチャー(st_ees_request_t)の e_status を確認します。 R_EES_ENUM_RET_STS_BUSY であれば、引き続きデータ・フラッシュ操作を実行します。 R_EES_ENUM_RET_STS_BUSY 以外であれば終了状態確認をしてください。

③ R_EES_Handler 関数

実行中の EES を制御します。R_EES_Handler 関数を繰り返し実行することによってデータ・フラッシュ操作を進行させます。

④ 終了状態確認

R_EES_ENUM_RET_STS_OK であれば、正常終了です。R_EES_ENUM_RET_STS_OK 以外であればエラー終了 してください。 5.6 データ型定義

5.6.1 データ型

EES RL78 Type03 のデータ型定義一覧を表 5-4 に示します。

表 5-4 EES RL78 Type03 デー	-タ型定義一覧
--------------------------	---------

Macro value	Туре	Description
int8_t	signed char	1byte signed integer
uint8_t	unsigned char	1byte unsigned integer
int16_t	signed short	2byte signed integer
uint16_t	unsigned short	2byte unsigned integer
int32_t	signed long	4byte signed integer
uint32_t	unsigned long	4byte unsigned integer
bool	unsigned char	Boolean (false:0 / true:1)

補足:これらのデータ型はC言語規格C99以降では標準整数型として stdint.h と stdbool.h に定義されています。

5.6.2 グローバル変数

EES RL78 Type03 で使用するグローバル変数を以下に示します。

(1) g a	ar u08	ees	descriptor[R	EES	VALUE	U08	VAR	NO +	2u]
---------	--------	-----	--------------	-----	-------	-----	-----	------	-----

型 / 名称	uint8_t g_ar_u08_ees_descriptor[]
初期値	(uint8_t)(R_EES_VALUE_U08_VAR_NO), /* variable count */
	(uint8_t)(sizeof(type_A)), /* id=1 */
	(uint8_t)(sizeof(type_B)), /* id=2 */
	(uint8_t)(sizeof(type_C)),
	(uint8_t)(sizeof(type_D)), /* id=4 */
	(uint8_t)(sizeof(type_E)), /* id=5 */
	(uint8_t)(sizeof(type_F)), /* id=6 */
	(uint8_t)(sizeof(type_X)),
	(uint8_t)(sizeof(type_Z)), /* id=8 */
	(uint8_t)(0x00u) /* zero terminator */
説明	各データ識別子 (データID)のデータのサイズを格納
定義ファイル	r_ees_descriptor.c

(2) g_st_ees_exrfd_descriptor

型 / 名称	st_ees_exrfd_descriptor_t g_st_ees_exrfd_descriptor
初期値	(uint16_t) R_EES_EXRFD_VALUE_U16_PHYSICAL_BLOCK_SIZE (uint8_t) R_EES_EXRFD_VALUE_U08_PHYSICAL_BLOCKS_PER_VIRTUAL_BLOCK (uint8_t) R_EES_EXRFD_VALUE_U08_POOL_VIRTUAL_BLOCKS
説明	 EESプールを構成している設定値を格納 uint16_t u16_ees_physical_block_size; データ・フラッシュ・メモリ1ブロックのサイズ(物理ブロックサイズ) 例) RL78/F22,F25では(1024u)固定 uint8_t u08_ees_physical_blocks_per_virtual_block; EESブロックに設定するデータ・フラッシュ・メモリ・ブロック数(物理ブロック数) 例) EESブロック1KBの場合は、物理ブロックに(1u)を使用 uint8_t u08_ees_pool_virtual_blocks; EESプールサイズ(仮想ブロック数) 例) EESブロック総数(4u)個
定義ファイル	r_ees_descriptor.c

(3) g_ar_u16_ram_ref_table[R_EES_VALUE_U08_VAR_NO]

型 / 名称	uint16_t g_ar_u16_ram_ref_table[]
初期値	-
説明	各データ識別子 (データID)の参照情報を格納
定義ファイル	r_ees_descriptor.c

5.6.3 列挙型

- e_ees_command (列挙変数名 : e_ees_command_t)

EES 実行コマンド

Symbol Name	Value	Description
R_EES_ENUM_CMD_UNDEFINED	0x00	コマンド未定義(初期値)
R_EES_ENUM_CMD_STARTUP	0x01	スタートアップ処理
R_EES_ENUM_CMD_WRITE	0x02	書き込み処理
R_EES_ENUM_CMD_READ	0x03	読み出し処理
R_EES_ENUM_CMD_REFRESH	0x04	リフレッシュ処理
R_EES_ENUM_CMD_FORMAT	0x06	フォーマット処理
R_EES_ENUM_CMD_SHUTDOWN	0x07	シャットダウン処理

- e_ees_ret_status (列挙変数名 : e_ees_ret_status_t)

EES 関数戻り値

Symbol Name	Value	Description
R_EES_ENUM_RET_STS_OK	0x00	正常終了
R_EES_ENUM_RET_STS_BUSY	0x01	コマンド実行中
R_EES_ENUM_RET_ERR_CONFIGURATION	0x82	EES 構成エラー
R_EES_ENUM_RET_ERR_INITIALIZATION	0x83	EES 初期化エラー
R_EES_ENUM_RET_ERR_ACCESS_LOCKED	0x84	EEPROM エミュレーション・ロック・
		エラー
R_EES_ENUM_RET_ERR_PARAMETER	0x85	パラメータ・エラー
R_EES_ENUM_RET_ERR_WEAK	0x86	書き込み不十分エラー
R_EES_ENUM_RET_ERR_REJECTED	0x87	リジェクト・エラー
R_EES_ENUM_RET_ERR_NO_INSTANCE	0x88	データ未書き込みエラー
R_EES_ENUM_RET_ERR_POOL_FULL	0x89	プール・フル・エラー
R_EES_ENUM_RET_ERR_POOL_INCONSISTENT	0x8A	EES ブロック不整合エラー
R_EES_ENUM_RET_ERR_POOL_EXHAUSTED	0x8B	EES ブロック消耗エラー
R_EES_ENUM_RET_ERR_INTERNAL	0x8C	内部エラー
R_EES_ENUM_RET_ERR_FLASH_SEQ	0x8D	フラッシュ・シーケンサー・エラー

- e_ees_exrfd_ret_status (列挙変数名 : e_ees_exrfd_ret_status_t)

本列挙型は EES 内部で使用される列挙型で、ユーザが直接使用する必要はありません。

EES 用 RFD 制御関数戻り値

Symbol Name	Value	Description
R_EES_EXRFD_ENUM_RET_STS_OK	0x00	正常終了
R_EES_EXRFD_ENUM_RET_STS_BUSY	0x01	コマンド実行中
R_EES_EXRFD_ENUM_RET_ERR_CONFIGURATION	0x10	構成エラー
R_EES_EXRFD_ENUM_RET_ERR_INITIALIZATION	0x11	初期化エラー
R_EES_EXRFD_ENUM_RET_ERR_REJECTED	0x12	リジェクト・エラー
R_EES_EXRFD_ENUM_RET_ERR_PARAMETER	0x13	パラメータ・エラー
R_EES_EXRFD_ENUM_RET_ERR_INTERNAL	0x14	内部エラー
R_EES_EXRFD_ENUM_RET_ERR_MODE_MISMATCHED	0x20	モード不一致エラー
R_EES_EXRFD_ENUM_RET_ERR_CFDF_SEQUENCER	0x21	シーケンサ・エラー
R_EES_EXRFD_ENUM_RET_ERR_ERASE	0x22	消去処理エラー
R_EES_EXRFD_ENUM_RET_ERR_BLANKCHECK	0x23	ブランク・チェック処理エラー
R_EES_EXRFD_ENUM_RET_ERR_WRITE	0x24	書き込み処理エラー

5.7 API 関数仕様

この章では、EEPROM Emulation Software (EES) RL78 Type03の API 関数の詳細仕様について説明します。EES RL78 Type03の API 関数を使用して、フラッシュ・メモリの書き換えを実施する上での前提条件があります。この前提条件と異なる条件で EES RL78 Type03の API 関数を使用した場合、各関数の動作が不定となる可能性がありますので、ご注意ください。

≪前提条件≫

- ・R_EES_Init 関数は、全ての EES 関数を使用する前に、1 回実行してください。
- ・セルフ・プログラミング実行中は、高速オンチップ・オシレータを起動しておく必要があります。EES RL78 Type03 の全ての API 関数は、高速オンチップ・オシレータが起動している状態で実行してください。
- EEPROM エミュレーションを操作する場合、データ・フラッシュへのアクセスを許可した状態で EES RL78
 Type03 の API 関数を実行してください。データ・フラッシュへのアクセス許可方法については、対象デバイ スの「ユーザーズマニュアル:ハードウェア編」を参照してください。

以下に API 関数仕様の記述例を示します。

≪API 関数仕様の記述例≫

Information

Syntax	この関数をC言語で記述されたフロクラムから呼び出す除の書式を示します。		
Reentrancy	再帰可否 : Reentrant(再帰可能)、	または Non-Reentrant (再起不可)。	
Parameters	この関数の引数(入力)	引数[値、範囲、引数の意味等]	
(IN)			
Parameters	この関数の引数(入出力)	引数[値、範囲、引数の意味等]	
(IN/OUT)			
Parameters	この関数の引数(出力)	引数 [値、範囲、引数の意味等]	
(OUT)	1		
Return Value	この関数からの戻り値の型	戻り値の列挙子 (定数): 値	
	(列挙型、ポインタ等)	[定数の意味:詳細説明]	
	1	戻り値の列挙子(定数):値	
	1	[定数の意味:詳細説明]	
Description	+继会5+80 西		
Description			
Preconditions	事前条件の概要		
Remarks	特記事項		

動作概要:

この関数の機能概要を示します。

備考:

この関数の使用条件や制限事項を示します。

5.7.1 EES RL78 Type03 EEPROM エミュレーション制御関数仕様

EEPROM エミュレーションを制御する API 関数を示します。

5.7.1.1 R_EES_Init

Information

Syntax	R_EES_FAR_FUNC e_ees_ret_status_t R_EES_Init(uint8_t i_u08_cpu_frequency);		
Reentrancy	Non-Reentrant		
Parameters (IN)	uint8_t i_u08_cpu_frequency	CPU 動作周波数[2~40(MHz)]	
Parameters (IN/OUT)	N/A		
Parameters (OUT)	N/A		
Return Value	e_ees_ret_status_t	R_EES_ENUM_RET_STS_OK : 0x00 [正常終了]	
		R_EES_ENUM_RET_ERR_CONFIGURATION: 0x82 [EES 構成エラー]	
Description	すべての内部データ、変数の初期化、およびディスクリプタなどの構成のチェックを行		
	います。		
Preconditions	高速オンチップ・オシレータを起動している状態で実行してください。		
Remarks	EES 関数を使用する前に、1 回実行してください。		

動作概要:

・引数(CPU 動作周波数)を R_EES_EXRFD_Init 関数に設定して実行します。

備考:

- ・EES プールや、EES ブロックサイズなどの EEPROM エミュレーションを実行するための構成が異常な場合、 リターン値に EES 構成エラー(R_EES_ENUM_RET_ERR_CONFIGURATION)が返ります。
- ・EEPROM エミュレーション実行中は、高速オンチップ・オシレータを起動しておく必要があります。高速オ ンチップ・オシレータが起動している状態で、本関数を実行してください。

※EES RL78 Type03 では、高速オンチップ・オシレータの起動やチェックは行っていません。

・引数(i_u08_cpu_frequency)には、実際に CPU が動作する周波数の値の小数点以下を切り上げた整数値を設定 します。(例:CPU が動作する周波数が 4.5MHz の場合は、初期化関数で 5 を設定してください)

CPU の動作周波数を 4 MHz 未満で使用する場合は、2 MHz, 3 MHz を使用することができます。その際、整数 値でない周波数 (2.5MHz など)は使用できません。

引数(i_u08_cpu_frequency)に設定する周波数は、フラッシュ書き換え時、実際に CPU が動作する周波数であり、必ずしも高速オンチップ・オシレータの周波数を設定するということではありません。

- CPU 動作周波数と異なる値を指定した場合、その後の動作は不定となります。その際、フラッシュの書き換 えが完了した場合でも、データの値、及びその後の保持期間を満たすことができない可能性があります。
- ※CPU 動作周波数の範囲については、対象デバイスの「ユーザーズマニュアル:ハードウェア編」を参照し てください。

5.7.1.2 R_EES_Open

Information

Syntax	R_EES_FAR_FUNC e_ees_ret_status_t R_EES_Open(void);		
Reentrancy	Non-Reentrant		
Parameters (IN)	N/A		
arameters (IN/OUT)	N/A		
Parameters (OUT)	N/A		
Return Value	e_ees_ret_status_t	R_EES_ENUM_RET_STS_OK:0x00 [正常終了] R_EES_ENUM_RET_ERR_REJECTED:0x87 [リジェクト・エラー]	
Description	EEPROM エミュレーション準備処理 EEPROM エミュレーションを実行できる状態にします。		
Preconditions	R_EES_Init 関数を正常終了させていること。		
Remarks			

動作概要:

・R_EES_EXRFD_Open 関数を実行し、データ・フラッシュ・メモリにアクセスできる状態にします。

備考:

・R_EES_Init 関数を実行せず、内部変数が初期化されていなかった場合、リターン値にはリジェクト・エラー (R_EES_ENUM_RET_ERR_REJECTED)が返ります。

5.7.1.3 R_EES_Close

Information

Syntax	R_EES_FAR_FUNC e_ees_ret_status	s_t R_EES_Close(void);	
Reentrancy	Non-Reentrant		
Parameters	N/A		
(IN)			
Parameters	N/A		
(IN/OUT)			
Parameters	N/A		
(OUT)			
Return Value	e_ees_ret_status_t	R_EES_ENUM_RET_STS_OK	
		[正常終了]	
Description	EEPROM エミュレーション終了処理		
	EEPROM エミュレーションを実行できない状態にします。		
Preconditions	-		
Remarks	-		

動作概要:

・R_EES_EXRFD_Close 関数を実行し、EEPROM エミュレーションを終了します。

備考:

・EEPROM エミュレーションを実行していた場合は、R_EES_ENUM_CMD_SHUTDOWN コマンドで EEPROM エミュレーションを停止状態 (opened 状態) にしてから実行します。

5.7.1.4 R_EES_Execute

Information

Syntax	R_EES_FAR_FUNC void R_EES_Execute(st_ees_request_tnear *		
	ionp_st_ees_request);		
Reentrancy	Non-Reentrant		
Parameters	N/A		
(IN)			
Parameters	st_ees_request_tnear *	リクエスト・ストラクチャー(st_ees_request_t)のポイ	
(IN/OUT)	ionp_st_ees_request	ンタ	
Parameters	N/A		
(OUT)			
Return Value	N/A		
Description	EEPROM エミュレーション実行関数		
	EEPROM エミュレーションを操作するための各処理をコマンド形式で本関数の引数に		
	設定し、処理を開始します。		
Preconditions	R_EES_Init, R_EES_Open 関数を正常終了させていること。		
Remarks	-		

動作概要:

・リクエスタに設定されたコマンドを設定し処理を開始します。

備考:

- ・R_EES_Execute 関数は、コマンドの処理を開始させたのち、制御を直ちにユーザ・プログラムに戻します。 コマンドの処理の継続は R_EES_Handler の実行によって行われます。そのため、コマンドの処理が完了する まで、R_EES_Handler 関数を継続的に実行しなければいけません。
- ・リクエスト・ストラクチャー(st_ees_request_t)の e_status が R_EES_ENUM_RET_STS_BUSY の間は、繰り 返し R_EES_Handler 関数を実行してください。
- ・割り込み処理内で R_EES_Execute 関数の呼び出しは許可していません。

R_EES_Execute / R_EES_Handler のコマンド実行状態(e_status)一覧(1/2)

コマンド実行状態	カテゴリ	説明	対応コマンド
R_EES_ENUM_RET_STS_	説明	正常終了	
ОК	原因	なし	すべてのコマンド
	対処方法	なし	
R_EES_ENUM_RET_STS_	説明	コマンド実行中	
BUSY	原因	なし	R_LLS_LNOM_CMD_ SHUTDOWN以外の⊐
	対処方法	状態が変化するまでR_EES_Handler関数を呼び出してくだ さい。	マンド
R_EES_ENUM_RET_ERR_	説明	EES初期化エラー	
INITIALIZATION	原因	R_EES_Init関数、R_EES_Open関数が正常に完了していま せん。	すべてのコマンド
	対処方法	R_EES_Init関数、R_EES_Open関数を正常に完了させてく ださい。	
R_EES_ENUM_RET_ERR_	説明	EEPROMエミュレーション・ロック・エラー	R_EES_ENUM_CMD_
ACCESS_LOCKED	原因	EEPROMエミュレーションが実行できない状態です。	STARTUP、
	対処方法	R_EES_ENUM_CMD_STARTUPコマンドを正常に終了さ せてください。	R_EES_ENUM_CMD_ FORMAT以外のコマン ド
R_EES_ENUM_RET_ERR_	説明	パラメータ・エラー	
PARAMETER	原因	コマンドの設定パラメータに誤りがあります。	すべてのコマンド
	対処方法	設定したパラメータを見直してください。	
R_EES_ENUM_RET_ERR_ WEAK	説明	ブロック・ヘッダもしくは最後に書き込まれた格納データ の書き込みが正常に完了していません。	
	原因	有効ブロック・ヘッダ、もしくは書き込まれた格納データ の書き込み処理が中断された可能性があります。	R_EES_ENUM_CMD_ STARTUP
	対処方法	R_EES_ENUM_CMD_REFRESHコマンドを実行してくだ さい。	
R_EES_ENUM_RET_ERR_	説明	リジェクト・エラー	
REJECTED	原因	別コマンドが実行中です。	すべてのコマンド
	対処方法	R_EES_Handler関数を呼び出して実行中のコマンドを終了 させてください。	

R_EES_Execute / R_EES_Handler のコマンド実行状態(e_status)一覧(2/2)

コマンド実行状態	カテゴリ	説明	対応コマンド
R_EES_ENUM_RET_ERR_	説明	データ未書き込みエラー	
NO_INSTANCE	原因	指定された識別子のデータが書き込まれていません。	R_EES_ENUM_CMD_
		R_EES_ENUM_CMD_WRITEコマンドで指定された識別子	READ
	対処万法	にデータを書いてください。	
R_EES_ENUM_RET_ERR_	説明	プール・フル・エラー	
POOL_FULL	原因	データを書き込める領域が存在しません。	R_EES_ENUM_CMD_
		R_EES_ENUM_CMD_REFRESHを実行し、書き込みを再	WRITE
	対処万法	実行してください。	
R_EES_ENUM_RET_ERR_	説明	EESブロック不整合エラー	
POOL_INCONSISTENT	原因	EESブロックが不定状態 (有効ブロックがない等) です。	R_EES_ENUM_CMD_
		R_EES_ENUM_CMD_FORMATコマンドを実行し、EESブ	STARTUP
	対処万法	ロックを初期化してください。	
R_EES_ENUM_RET_ERR_	説明	EES ブロック消耗エラー	R_EES_ENUM_CMD_
POOL_EXHAUSTED	原因	継続して使用できる EES ブロックがなくなりました。	STARTUP
		EEPROMエミュレーションを終了してください。	R_EES_ENUM_CMD_
		 R_EES_ENUM_CMD_FORMATコマンドを実行し修復(既	FORMAT
	动机方法	存のデータはすべて消去されます)を試行、もしくは既存	R_EES_ENUM_CMD_
		データの読み出しのみ実行可能。	REFRESH
			R_EES_ENUM_CMU_
	'		WRITE
R_EES_ENUM_RET_ERR_	説明	内部エラー	R_EES_ENUM_CMD_
INTERNAL	原因	予期しないエラーが発生しました。	SHUTDOWN以外の⊐
	対処方法	EESを終了してください。	マンド
		デバイス状態を確認してください。	
R_EES_ENUM_RET_ERR_	説明	フラッシュ・シーケンサー・エラー	
FLASH_SEQ	百田	フラッシュ・メモリ・モードの変更、またはフラッシュ・	
	》 四	シーケンサーの起動に失敗しました。	R_EES_ENUM_CMD_
		EESを終了してください。	SHUTDOWN以外のコ
		EEPROMエミュレーションの操作以外で、RFD RL78	マンド
	对処力法	Type03を使用したフラッシュ・メモリの操作を実行してい	
		ナション ム Tかき取 レーナーノーキャント・ション	

5.7.1.5 R_EES_Handler

Information

Syntax	R_EES_FAR_FUNC void R_E	ES_Handler(void);
Reentrancy	Non-Reentrant	
Parameters (IN)	N/A	
Parameters (IN/OUT)	N/A	
Parameters (OUT)	N/A	
Return Value	N/A	
Description	EEPROM エミュレーション継続実行処理 R_EES_Execute 関数で開始されたコマンドの処理を進行させ、終了を確認します。	
Preconditions	R_EES_Init, R_EES_Open 関∛	牧を正常終了させていること。
Remarks	-	

動作概要:

・R_EES_Execute 関数で開始された EEPROM エミュレーションの処理を進行させます。

備考:

- ・リクエスト・ストラクチャー(st_ees_request_t)の e_status が R_EES_ENUM_RET_STS_BUSY の間は、繰り 返し R_EES_Handler 関数を実行してください。
- ・割り込み処理内で R_EES_Handler 関数の呼び出しは許可していません。
- ・R_EES_Handler 関数のコマンド実行状態は R_EES_Execute 関数の引数で使用されたリクエスト・ストラクチャー(st_ees_request_t)に設定されます。そのため、R_EES_Handler 関数を使用する場合、リクエスト・ストラクチャー(st_ees_request_t)を解放しないでください。

5.7.1.6 R_EES_GetSpace

Information

Syntax	R_EES_FAR_FUNC e_ees_re	t_status_t R_EES_GetSpace(uint16_tnear *
		onp_u16_space);
Reentrancy	Non-Reentrant	
Parameters (IN)	N/A	
Parameters (IN/OUT)	N/A	
Parameters	uint16_tnear *	現在の有効ブロックの空き容量の情報が入力される変
(OUT)	onp_u16_space	数へのポインタ
Return Value	e_ees_ret_status_t	R_EES_ENUM_RET_STS_OK: 0x00 [正常終了] R_EES_ENUM_RET_ERR_INITIALIZATION: 0x83 [EES 初期化エラー] R_EES_ENUM_RET_ERR_ACCESS_LOCKED: 0x84 [EEPROM エミュレーション・ロック・エラー] R_EES_ENUM_RET_ERR_REJECTED: 0x87 [リジェクト・エラー]
Description	有効ブロックの空き容量を取得	
Preconditions	R_EES_Init, R_EES_Open 関	数を正常終了させていること。
	R_EES_Execute 関数で R_EE	S_ENUM_CMD_STARTUP コマンドを正常に終了させて
	いること。	
Remarks	-	

動作概要:

・有効ブロックの空き容量を計算します。

備考:

- ・R_EES_Init 関数を実行せず、内部変数が初期化されていなかった場合、リターン値には EES 初期化エラー (R_EES_ENUM_RET_ERR_INITIALIZATION)が返ります。
- ・R_EES_Execute 関数で R_EES_ENUM_CMD_STARTUP コマンドが正常に終了していなかった場合、リターン値には EEPROM エミュレーション・ロック・エラー(R_EES_ENUM_RET_ERR_ACCESS_LOCKED)が返ります。
- ・R_EES_Execute 関数で EES のコマンド処理が実行中の場合、リターン値にはリジェクト・エラー (R_EES_ENUM_RET_ERR_REJECTED)が返ります。
- ・EES プールがプール消耗状態の場合、空き容量には常に 0x0000 が戻ります。
- ・有効ブロック・ヘッダ、もしくは書き込まれた格納データの書き込み処理が中断された可能性がある場合、空 き容量には 0x0000 が戻ります。
- ・エラー値が戻る場合、空き容量の情報は取得されません。

5.7.2 EES 用 RFD 制御関数

RFD を制御する API 関数を示します。これらの関数は、EEPROM エミュレーション制御関数から呼び出されます。ユーザ・プログラムからは直接呼び出さないでください。

Information

Syntax	R_EES_FAR_FUNC e_ees_exrfd_ret_status_t R_EES_EXRFD_Init(
	uint8_t i_u08_cpu_frequency);	
Description	RFD RL78 Type03 の初期化を行います。	

Information

Syntax	R_EES_FAR_FUNC e_ees_exrfd_ret_status_t R_EES_EXRFD_Open(void);
Description	データ・フラッシュ・コントロール・レジスタ(DFLCTL)をデータ・フラッシュ・メモ リへのアクセス許可状態(DFLEN = 1) に設定します。

Information

Syntax	R_EES_FAR_FUNC e_ees_exrfd_ret_status_t R_EES_EXRFD_Close(void);
Description	データ・フラッシュ・コントロール・レジスタ(DFLCTL)をデータ・フラッシュ・メモ リへのアクセス禁止状態(DFLEN = 0) に設定します。動作中のすべての EES 処理が停 止します。

Information

Syntax	R_EES_FAR_FUNC e_ees_exrfd_ret_status_t R_EES_EXRFD_Erase(
	uint8_t i_u08_virtual_block_number);
Description	EES ブロックの消去を開始します。

Information

Syntax	R_EES_FAR_FUNC e_ees_exrfd_ret_status_t R_EES_EXRFD_Write(
	uint16_t i_u16_offset_addr,
	uint8_tnear * inp_u08_write_data,
	uint16_t i_u16_size);
Description	指定したデータ・フラッシュのアドレスに書き込みを開始します。

Syntax	R_EES_FAR_FUNC e_ees_exrfd_ret_status_t R_EES_EXRFD_BlankCheck(
	uint16_t i_u16_offset_addr,
	uint16_t i_u16_size);
Description	データ・フラッシュのブランク・チェック (対象データ・サイズ分)を開始します。

Information

Syntax	R_EES_FAR_FUNC e_ees_exrfd_ret_status_t R_EES_EXRFD_Read(
	uint16_t i_u16_offset_addr,
	uint8_tnear * onp_u08_read_data,
	uint16_t i_u16_size);
Description	指定したアドレスからデータ(読み込みデータ・サイズ分)を読み出します。

Information

Syntax	R_EES_FAR_FUNC e_ees_exrfd_ret_status_t R_EES_EXRFD_Handler(void);
Description	実行中の EES 用 RFD 制御関数の処理を進行し終了を確認します。

Information

Syntax	static R_EES_FAR_FUNC e_ees_exrfd_ret_status_t
	r_ees_exrfd_get_seq_error_status(void);
Description	データ・フラッシュ・メモリ・シーケンサから処理結果を取得します。

Information

Syntax	<pre>static R_EES_FAR_FUNC e_ees_exrfd_ret_status_t r_ees_exrfd_finish_state(void);</pre>
Description	EES 用 RFD 制御関数を終了状態にします。

Information

Syntax	static R_EES_FAR_FUNC e_ees_exrfd_ret_status_t
	r_ees_exrfd_check_cmd_executable(void);
Description	EES 用 RFD 制御関数の実行状態とフラグを確認します。

Information

Syntax	static R_EES_FAR_FUNC bool r_ees_exrfd_is_valid_byte_parameter(
	uint16_t i_u16_offset_addr,
	uint16_t i_u16_size);
Description	EES 用 RFD 制御関数で使用するパラメータを確認します。

Syntax	<pre>static R_EES_FAR_FUNC void r_ees_exrfd_clear_cmd_workarea(void);</pre>
Description	EES 用 RFD 制御関数で使用するデータ領域をクリアします。

5.7.3 EEPROM エミュレーションを制御する API 関数用内部関数

EEPROM エミュレーションを制御する関数内で使用されている内部関数を示します。ユーザ・プログラムからは 直接呼び出さないでください。

Information

Syntax	R_EES_FAR_FUNC bool r_ees_is_valid_configuration(void);
Description	EES の構成を確認し、使用する内部データを初期化します。

Information

Syntax	R_EES_FAR_FUNC bool r_ees_is_valid_requester(
	<pre>st_ees_request_tnear * ionp_st_ees_request);</pre>
Description	リクエスト・ストラクチャーと EES の状態を確認し、内部ステータスを更新します。

Information

Syntax	R_EES_FAR_FUNC void r_ees_fsm_startup_state_00(void); ~
	R_EES_FAR_FUNC void r_ees_fsm_startup_state_09(void);
Description	スタートアップ処理用の内部ステータスを更新します。

Information

Syntax	R_EES_FAR_FUNC void r_ees_fsm_write_state_00(void); ~
	R_EES_FAR_FUNC void r_ees_fsm_write_state_04(void);
Description	書き込み処理用の内部ステータスを更新します。

Information

Syntax	R_EES_FAR_FUNC void r_ees_fsm_read_state_00(void); ~
	R_EES_FAR_FUNC void r_ees_fsm_read_state_01(void);
Description	読み込み処理用の内部ステータスを更新します。

Information

Syntax	R_EES_FAR_FUNC void r_ees_fsm_refresh_state_00(void); ~
	R_EES_FAR_FUNC void r_ees_fsm_refresh_state_17(void);
Description	リフレッシュ処理用の内部ステータスを更新します。

Information

Syntax	R_EES_FAR_FUNC void r_ees_fsm_format_state_00(void); ~
	R_EES_FAR_FUNC void r_ees_fsm_format_state_11(void);
Description	フォーマット処理用の内部ステータスを更新します。

Syntax	R_EES_FAR_FUNC void r_ees_fsm_shutdown_state_00(void);
Description	EEPROM エミュレーションのシャットダウン処理をします。

EES RL78 Type03

Information

Syntax	R_EES_FAR_FUNC void r_ees_fsm_exrfd_cmd_erase_state_00(void);
Description	消去処理を開始します。

Information

Syntax	R_EES_FAR_FUNC void r_ees_fsm_exrfd_cmd_bw_state_00(void);
Description	ブランク・チェック処理、書き込み処理を開始します。

Information

Syntax	R_EES_FAR_FUNC void r_ees_fsm_exrfd_cmd_inner_blankcheck_state_00(void);
Description	ブランク・チェックの内部処理を開始します。

Information

Syntax	R_EES_FAR_FUNC void r_ees_fsm_exrfd_cmd_write_state_00(void);
Description	書き込み処理を開始します。

Information

Syntax	R_EES_FAR_FUNC void r_ees_fsm_exrfd_cmd_inner_write_state_00(void);
Description	書き込みの内部処理を開始します。

Information

Syntax	R_EES_FAR_FUNC void r_ees_fsm_exrfd_cmd_read_state_00(void);
Description	読み込み処理を開始します。

Information

Syntax	R_EES_FAR_FUNC void r_ees_fsm_exrfd_cmd_state_01(void);
Description	開始した EES 用 RFD 制御関数の内部処理を進めます。

Syntax	R_EES_FAR_FUNC void r_ees_fsm_exit_state(void);
Description	ダミー処理

EES RL78 Type03

5. ユーザインタフェース

Information

Syntax	<pre>static R_EES_FAR_FUNC uint8_t r_ees_calculate_next_a_flag(</pre>
	uint8_t i_u08_a_flag_value);
Description	A フラグの値を計算します。

Information

Syntax	<pre>static R_EES_FAR_FUNC void r_ees_fsm_finish_command(void);</pre>
Description	実行コマンドの終了処理を行います。

Information

Syntax	<pre>static R_EES_FAR_FUNC void r_ees_fsm_swap_acvive_block_info(void);</pre>
Description	有効ブロックの情報を入れ替えます。

Information

Syntax	static R_EES_FAR_FUNC bool r_ees_fsm_exrfd_cmd_detect_fatal_error(
	<pre>e_ees_exrfd_ret_status_t i_e_ees_exrfd_ret_value);</pre>
Description	EES 用 RFD 制御処理結果に EES が継続実行不可となるエラーがないか確認します。

Syntax	static R_EES_FAR_FUNC e_ees_block_status_t
	r_ees_fsm_get_ees_block_status(void);
Description	EES ブロックの状態を取得します。

6 サンプル・プログラム

EES RL78 Type03 に添付しているサンプル・プログラムについて説明します。

6.1 ファイル構成

6.1.1 フォルダ構成

サンプル・プログラムのフォルダ構成を図 6-1 に示します。

図 6-1 は、RL78/F25 を使用する場合の例です。実際にインストールした"sample"フォルダには、デバイスグルー プごとのサンプル用フォルダが含まれます(例: RL78_F25)。

RL78_F25 フォルダは、RL78/F22,F25 で使用することができます。

図 6-1 サンプル・プログラムのフォルダ構成

6.1.2 ファイル・リスト

6.1.2.1 ソース・ファイル・リスト

"sample\common\source\ees\"フォルダ内のプログラム・ソース・ファイルを表 6-1 に示します。

表 6-1 "sample\common\source\ees\"フォルダ内プログラム・	ソース・	ファイル
--	------	------

No	ソース・ファイル名	概略(Summary)
1	sample_control_ees.c	EEPROM エミュレーション制御用関数サンプル・ファイ
		ル

"sample\RL78_F25"フォルダ内のメイン処理のプログラム・ソース・ファイルを表 6-2 に示します。

"sample\RL78_F25\EES\[コンパイラ名]\source\"フォルダ

表 6-2 メイン処理のプログラム・ソース・ファイル

No	ソース・ファイル名	概略(Summary)
1	main.c	メイン処理関数サンプル・ファイル

6.1.2.2 ヘッダ・ファイル・リスト

"sample\common\include\"フォルダ内のプログラム・ヘッダ・ファイルを表 6-3 に示します。

表	6-3	sample\common\include	"フォル	~ダ内プロ	リグラム	・ヘッダ・	ファイル
---	-----	-----------------------	------	-------	-------------	-------	------

No	ヘッダ・ファイル名	概略(Summary)
1	sample_control_ees.h	EES を制御する関数サンプルのプロトタイプ宣言を定義し
		たファイル
2	sample_ees_defines.h	EES を制御する関数サンプルのマクロを定義したファイル
3	sample_ees_memmap.h	EES を制御する関数サンプルで使用するセクションを記述
		するためのマクロを定義したファイル

"sample\RL78_F25\EES\[コンパイラ名]\include\"フォルダ内のプログラム・ヘッダ・ファイルを表 6-4 に示しま

す。

表 6-4 "sample\RL78_F25\EES\[コンパイラ名]\include\"フォルダ内プログラム・ヘッダ・ファイル

No	ヘッダ・ファイル名	概略(Summary)
1	sample_config.h	初期設定値を定義したファイル

6.2 データ型定義

6.2.1 マクロ定義

- 周波数設定マクロ

サンプルで使用している CPU の動作に使用している周波数。

Symbol Name	Value	Description
SAMPLE_VALUE_U08_CPU_FREQUENCY	40u	CPU の動作周波数

6.3 サンプル・プログラム関数

サンプル・プログラム関数一覧を表 6-5 に示します。

表 6-5 サンプル・プログラム関数一覧

	API Name	Outline
1	main	EES 制御サンプル・プログラムのメイン関数
2	Sample_EES_Control	EES の基本的な使用手順に従い、EES ブロックの書き込み、読み 出しを実行します。

6.3.1 EEPROM エミュレーション制御サンプル・プログラム

EES RL78 Type03 の書き換え制御サンプルでは、EES を使用するための基本的な操作手順に従い EES ブロックの書き換え、読み出し処理を実行します。

注) EES のコマンド処理を実行中は、データ・フラッシュ上のデータを参照できないため、参照するデータは、 事前に RAM ヘコピーして、RAM 上で参照する必要があります。

動作条件(RL78/F25 用サンプル・プログラムの例):

• CPU 動作周波数:40MHz

(メイン・システム・クロックに高速オンチップ・オシレータ・クロック(HOCO)を使用)

EES RL78 Type03 のサンプルのメイン処理実行フローを図 6-2 に示します。

6.3.1.1 main 関数

図 6-2 EEPROM エミュレーション制御サンプルのメイン処理実行フロー

6.3.1.2 Sample_EES_Control 関数

EES を使用する際に必要な事前処理と、基本的な書き込み、読み出しの処理フローを図 6-3 に示します。

・EES の初期化を行います。

図 6-3 EEPROM エミュレーション制御サンプルの処理実行フロー(1/5)

図 6-4 EEPROM エミュレーション制御サンプルの処理実行フロー(2/5)

・書き込み処理を実行しプール・フルの場合は、リフレッシュ実施後に書き込み処理を再実行します。

図 6-6 EEPROM エミュレーション制御サンプルの処理実行フロー(4/5)

図 6-7 EEPROM エミュレーション制御サンプルの処理実行フロー(5/5)

注 エラー処理、および正常終了時のユーザ処理は記載していません。

6.4 サンプル・プログラム関数仕様

この章では、EES RL78 Type03 のサンプル・プログラム関数仕様について説明します。EES RL78 Type03 の サンプル・プログラムは、EEPROM エミュレーションの基本的な実行手順の例を示しています。EEPROM エミ ュレーションを使用するアプリケーションを開発する上で参考にしていただくことができます。

開発されたアプリケーション・プログラムについては、お客様自身で必ず十分な動作確認を行ってください。

6.4.1 EEPROM エミュレーションを使用したサンプル・プログラム関数仕様

6.4.1.1 main

Syntax	int main(void);		
Reentrancy	Non-Reentrant		
Parameters (IN)	N/A		
Parameters (IN/OUT)	N/A		
Parameters (OUT)	N/A		
Return Value	int (e_ees_ret_status_t)	R_EES_ENUM_RET_STS_OK: 0x00 [正常終了] R_EES_ENUM_RET_STS_BUSY: 0x01 [コマンド実行中] R_EES_ENUM_RET_ERR_CONFIGURATION: 0x82 [EES構成エラー] R_EES_ENUM_RET_ERR_INITIALIZATION: 0x83 [EES 初期化エラー] R_EES_ENUM_RET_ERR_ACCESS_LOCKED: 0x84 [EEPROM エミュレーション・ロック・エラー] R_EES_ENUM_RET_ERR_PARAMETER: 0x85 [パラメータ・エラー] R_EES_ENUM_RET_ERR_WEAK: 0x86 [書き込み不十分エラー] R_EES_ENUM_RET_ERR_REJECTED: 0x87 [リジェクト・エラー] R_EES_ENUM_RET_ERR_NO_INSTANCE: 0x88 [データ未書き込みエラー] R_EES_ENUM_RET_ERR_POOL_FULL: 0x89 [プール・フル・エラー] R_EES_ENUM_RET_ERR_POOL_SULL: 0x89 [プール・フル・エラー] R_EES_ENUM_RET_ERR_POOL_EXHAUSTED: 0x88 [EES ブロック消耗エラー] R_EES_ENUM_RET_ERR_INTERNAL: 0x8C [内部エラー]	
		R_EES_ENUM_RET_ERR_FLASH_SEQ : 0x8D [フラッシュ・シーケンサー・エラー]	
Description	EES 制御サンプル・プログ	ブラムのメイン関数	
Preconditions	-		
Remarks	-		
6.4.1.2 Sample_EES_Control

Information

Syntax	R_EES_FAR_FUNC e_ees_ret_status_t Sample_EES_Control();				
Reentrancy	Non-Reentrant	Non-Reentrant			
Parameters (IN)	N/A				
Parameters (IN/OUT)	N/A				
Parameters (OUT)	N/A				
Return Value	e_ees_ret_status_t	R_EES_ENUM_RET_STS_OK: 0x00 [正常終了] R_EES_ENUM_RET_STS_BUSY: 0x01 [コマンド実行中] R_EES_ENUM_RET_ERR_CONFIGURATION: 0x82 [EES構成エラー] R_EES_ENUM_RET_ERR_INITIALIZATION: 0x83 [EES 初期化エラー] R_EES_ENUM_RET_ERR_ACCESS_LOCKED: 0x84 [EEPROM エミュレーション・ロック・エラー] R_EES_ENUM_RET_ERR_PARAMETER: 0x85 [パラメータ・エラー] R_EES_ENUM_RET_ERR_WEAK: 0x86 [書き込み不十分エラー] R_EES_ENUM_RET_ERR_REJECTED: 0x87 [リジェクト・エラー] R_EES_ENUM_RET_ERR_RO_INSTANCE: 0x88 [データ未書き込みエラー] R_EES_ENUM_RET_ERR_POOL_FULL: 0x89 [プール・フル・エラー] R_EES_ENUM_RET_ERR_POOL_INCONSISTENT: 0x8A [EES ブロック不整合エラー] R_EES_ENUM_RET_ERR_POOL_EXHAUSTED: 0x8B [EES ブロック消耗エラー] R_EES_ENUM_RET_ERR_INTERNAL: 0x8C [内部エラー] R_EES_ENUM_RET_ERR_FLASH_SEQ: 0x8D [フョッシュ・シーケンサー・エラー]			
Description	 EES の基本的な使用手順に	」 、EES ブロックの書き込み、読み出しを実行します。			
Preconditions	-	· · · · · · · · · · · ·			
Remarks	読み出したデータのベリフ	ッァイ・チェックでエラーとなった場合、Return Value には反映			
	されません。				

7 サンプル・プロジェクトの作成

EES RL78 Type03 には、EEPROM エミュレーションを操作するサンプル・プログラムが含まれます。EES RL78 Type03 で使用できるコンパイラは、CC-RL コンパイラと IAR コンパイラです。それぞれのコンパイラに対応する統合 開発環境を使用してサンプル・プロジェクトを作成することができます。

この項では、RL78/F25(R7F125FPL)用のサンプル・プログラムを例に説明しています。RL78/F25(R7F125FPL)以外 を使用する場合、セクション設定のアドレスなどを、対象デバイスのユーザーズマニュアルを参照いただき変更する必 要があります。

RL78/F22を使用する場合は、RL78/F25のサンプル・プログラムを使用することができます。

注意 1. 対象の統合開発環境、およびコンパイラは、RL78/F22,F25 を対象としたバージョンをご使用いただくこ とを前提としています。RL78/ F22,F25 が対象製品であることをご確認の上、ご使用ください。 2. EES RL78 Type03 では、データ・フラッシュを操作するために RFD RL78 Type03 を使用しますが、 EES RL78 Type03 のインストーラには含まれていません。別途 RFD RL78 Type03 をインストールしてプ ロジェクトに登録する必要があります。また、この章では EEPROM エミュレーションを使用するために必 要な RFD RL78 Type03 のファイルや使用するセクションについて記載していますが、RFD RL78 Type03 の詳細については RFD RL78 Type03 のユーザーズマニュアルを参照してください。

7.1 CC-RL コンパイラを使用する場合のプロジェクトの作成

RENESAS 製 CC-RL コンパイラは、統合開発環境として CS+、および e² studio を使用して作成したプロジェクトへ EES RL78 Type03 と RFD RL78 Type03 を登録し、ビルドすることができます。各統合開発環境を使用した場合のサン プル・プロジェクトの作成例を示します。CC-RL コンパイラ、および各統合開発環境を理解するため、それぞれのツー ル製品のユーザーズマニュアルを参照してください。 7.1.1 サンプル・プロジェクト作成例

- (1) 統合開発環境 CS+を使用したサンプル・プロジェクト作成例
 CS+を起動し、[プロジェクト]メニューの[新しいプロジェクトを作成]を選択し、以下に示す"プロジェクト作
 成"ウインドウを起動します。
 - ・[使用するマイクロコントローラ]は、"RL78/F25 (ROM: 512KB)" "R7F125FPL4xFB (100pin)"を選択します。
 - ・[プロジェクトの種類]は、"アプリケーション(CC-RL)"を選択します。
 - ・ここでの[プロジェクト名]は、仮に"EESRL78T03_PJ01"とします。
 - ・[作成]ボタンを押すと、新しいプロジェクトが作成されます。

プロジェクト作成			×			
マイクロコントローラ(T):	RL78		\checkmark			
使用するマイクロコントローラ(<u>M</u>):					
	索できます)	アップデート(U)				
R7F125FGL4×F R7F125FLL3×FE R7F125FLL3×FE R7F125FLL4×FE R7F125FML3×F R7F125FPL3×FE R7F125FPL3×FE	B(48pin) 3(64pin) 3(64pin) B(80pin) B(80pin) 3(100pin) 3(100pin)	品種名:R7F125FPL4×FB 内部ROMサイズ[K/イト]:512 内部RAMサイズ[Viイト]:40960	∧			
プロジェクトの種類(K):	アプリケーション(0	C-RL)	~			
プロジェクト名(N):	EESRL78T03_PJ	01				
作成場所(L):	C:¥Users¥xxxxx	C.¥Users¥xxxxxxx¥Documents¥CS_Plus_Project 🗸 参照(R)				
	🗹 プロジェクト名の	Dフォルダを作成する(A)				
C:¥Users¥xxxxxx¥Docume	ents¥CS_Plus_Project	¥EESRL78T03_PJ01¥EESRL78T	03_PJ01.mtpj			
🔲 既存のプロジェクトのファイル	ル構成を流用する(S)					
流用元のブロジェクト(P):	(流用元のプロジ:	ェクト・ファイルを入力してください)	✓ 参照(₩)			
🗌 プロジェクト・フォルダ以下(の構成ファイルをコピー	して流用する(0)				
		作成(C) キャンセル	ヘルプ(H)			

(2) 統合開発環境 e² studio を使用したサンプル・プロジェクト作成例

e² studio を起動し、[ファイル]メニューの[新規]から[C/C++ Project]を選択し、"新規 C/C++ プロジェクトのテ

ンフ	パレ-	- ト "「	ウイント	・ウを起露	動します。								
	C v	vorkspa	ace - e² st	udio									
	ファイ	(ル(F)	編集(E)	ソース(S)	リファクタリング(T)	ナビゲート(N)	検索	(A)	プロジェクト(P)	Renesas Views	実行(R)	ウィンドウ(W)	
		新規(N)			Alt+シフト+N >	C.	Ma	kefile Project w	ith Existing Code			
		ファイノ	レを開く(.).				C	C/C	2++ Project				
		ファイノ	レ・システム	からプロジェ	クトを開く		Ľ	プロ	ジェクト(R)				
		最近(のファイル			>	C++	C/C	2++ プロジェクトは	変換 (C/C++ ネー	チャーを追力	ID)	

・[Renesas RL78]を選択して表示した[Renesas CC-RL C/C++ Executable Project]を選択、"次へ"ボタンを押しま

All CMake Make Renesas Debug	
All CMake Make Renesas Debug	
Renesas Debug	Proje g
Renesas RL78 LLVM for Renesas RL78 C/C++ Library Project for Renesas RL78 using LL for Renesas RL78 Toolchain.	ect VM
Renesas CC-RL C/C++ Executable Project A C/C++ Executable Project for Renesas RL78 using CC-RL toolchain.	g the
Renesas CC-RL C/C++ Library Project A C/C++ Library Project for Renesas RL78 using the CC-RL toolchain.	е
1 11	

・"New Renesas CC-RL Executable Project"ウインドウで、プロジェクト名を入力して"次へ"ボタンを押します。

(ここでは、仮に"EESRL78T03_PJ01"とします。)

8	-		×
New Renesas CC- New Renesas CC-R	RL Executable Project L Executable Project		2
プロジェクト名(<u>P</u>): EE	SRL78T03_PJ01		
☑ デフォルト・ロケージ	/ヨンの使用(<u>D</u>)		
ロケーション(<u>L</u>):	D:\u00e4work\u00e402-Project\u00e4E2_Studio\u00e4workspace\u00e4EESRL78T03_P.	参照(<u>R</u>)	
ファイル・システムを選	✓ Create Directory for Project 沢(ソ): <mark>デフォルト</mark> 〜		
	•		
?	< 戻3(<u>B</u>) 次へ(<u>N</u>) > 終了(<u>F</u>)	キャンセ	zJV

EES RL78 Type03

- ・[Device Settings]の[ターゲット・デバイス]で、"RL78 F25" "RL78 F25 100pin" "R7F125FPL4xFB"を選択 し[OK]ボタンを押します。
- ・デバッグ・ツールに E2 Lite を選択し、オンチップ・デバッグを実施することを前提としています。 [Configurations]で"Hardware Debug 構成を生成"にチェックが入った状態で、E2 Lite (RL78)を選択します。
- ・[次へ]ボタンを押すと"Select Coding Assistant settings"ウインドウが表示されるので、[終了]ボタンを押しま

す。							
8							Х
New Renesas CC-RL	Executab	le Project					Ŷ
Toolchain Settings 言語: ツールチェーン: ツールチェーン・パージョン:	C C+ Renesas CC v1.13.00	+ C-RL	ールチェーンの	~ ~ 管理…			
Device Settings Target Board: Cus ターゲット・デパイス: R7I	stom F125FPL4xFB	Download a	dditional bo	v pards	Configurations ✓ Hardware De E2 Lite (RL78	bug 構成を) さた st	生成 ~
エンディアン: Litt プロジェクト・タイプ: デフ	le オルト	:	<u>ŦĬĸſĸŎŢŸ</u>	<u>ロック</u> 〜 〜	□ Release 構成	を生成	~
?		< 戻る(<u>B</u>)	次へ()	<u>V</u>) >	終了(<u>F</u>)	キャンさ	zIV
Device Selection You can filter devices	by regular ex	pression			-		×
Search Device							
Device	RAM	ROM	Pin	RTO	S Smart Co	周辺コード	^

✓ RL78 - F25

?

> RL78 - F25 48pin
 > RL78 - F25 64pin
 > RL78 - F25 80pin
 > RL78 - F25 100pin

R7F125FPL3xFB 40 KB

R7F125FPL4xFB 40 KB

512 KB

512 KB

100

100

×

×

OK

××

キャンセル

7.1.2 対象フォルダと対象ファイルの登録例

EES RL78 Type03 を使用して、EEPROM エミュレーションを実行するために必要なファイルの登録例を記述しま す。まず、EES RL78 Type03 ソースプログラムの"EESRL78T03"フォルダを登録します。このフォルダには、 "include", "source", "userown", "sample"フォルダが含まれます。

その他の手順として、"include", "source", "userown", "sample"の全てのフォルダを登録し、不要なファイルとフォ ルダを、[プロジェクトから外す] 機能(CS+)、[リソース構成] – [ビルドから除外...]機能により、対象から外すこと もできます。

CS+の EES RL78 Type03 登録時のツリー画面

e² studioの EES RL78 Type03 登録時のツリー画面

・統合開発環境で対象製品用に出力された最新の I/O ヘッダ・ファイルの登録 "iodefine.h"は、CS+、または e² studio が対象製品用に出力する I/O ヘッダ・ファイルを使用します。

統合開発環境が I/O ヘッダ・ファイル"iodefine.h"を出力するフォルダ:

- CS+ : [プロジェクト名]フォルダ

- e² studio : [プロジェクト名]/generate フォルダ

・統合開発環境の機能により自動的に追加されたファイルの除外

作成されたプロジェクトには、自動的に追加されるファイルがあります。これらと同様のファイルは、EES RL78 Type03 の"sample"フォルダ内にも存在するため、プロジェクト・ツリーから各ファイルを選択し、各統合 開発環境の機能を使用して、プロジェクトから外します。

- CS+ではツリーでファイルをマウス右クリック、"プロジェクトから外す"機能で対象ファイルを除外します。 [プロジェクト名]フォルダ内の hdwinit.asm, main.c が対象。
- e² studio ではツリーでファイルをマウス右クリック、"プロパティ"で表示された[設定]画面で、"ビルドからリ ソースを除外"にチェックを入れ、対象ファイル(対象フォルダ)を除外します。(フォルダから削除も可能)
 [プロジェクト名]/generate フォルダ内の hdwinit.asm、および[プロジェクト名]/src フォルダ内の[プロジェク ト名].c(ここでは"EESRL78T03_PJ01.c")が対象。

(1) EES RL78 Type03 の対象フォルダと対象ファイルの登録

EES RL78 Type03 ソースプログラムファイルの各フォルダ("include", "source", "userown", "sample")と登録ファ イルを以下に示します。

include フォルダ内

source フォルダ内

userown フォルダ内

sample フォルダ内

(2) RFD RL78 Type03の対象フォルダと対象ファイルの登録

RFD RL78 Type03 ソースプログラムファイルの各フォルダ("include", "source", "userown")と登録ファイルを以下に示します。

include フォルダ内

source フォルダ内

userown フォルダ内

7.1.3 ビルド・ツールの設定

CC-RL コンパイラで EES RL78 Type03 をビルドして実行するための各統合開発環境の設定を行います。

CS+ではツリーで"CC-RL(ビルド・ツール)"のマウス右クリックで"プロパティ"を選択、e² studio ではツリーでプロ ジェクト(ここでは"EESRL78T03_PJ01")のマウス右クリックで"プロパティ"を選択することにより、表示された画面 内のビルド・ツールの各設定を行います。

7.1.3.1 インクルード・パスの設定

・CS+でのインクルード・パスの設定は、"共通オプション"タブで設定

- [よく使うオプション(コンパイル)] – [追加のインクルード・パス]で"パス編集"ウインドウを表示して、インクル ード・ファイルのパスを設定します。

(1) EES RL78 Type03の include パス

	パス編集	\times
EESRL78T03\include EESRL78T03\include\ees EESRL78T03\userown\include EESRL78T03\sample\common\include EESRL78T03\sample\RL78_F25\EES\CCRL\include	パス(1行につき1つのパス)(P): 図 EESRL78T03¥include EESRL78T03¥include¥ees EESRL78T03¥userown¥include EESRL78T03¥sample¥common¥include EESRL78T03¥sample¥RL78_F25¥EES¥CCRL¥include RFDRL78T03¥include	^
(2) RFD RL78 Type03 の include パス	RFDRL78T03¥include¥rfd	~
RFDRL78T03\include RFDRL78T03\include\rfd ·	参照(<u>B</u>)… □ 存在しないパスを許可する(<u>N</u>)	
	│ □ 参照ボタンからパスを追加時に、サブフォルダも含める(S) ↓ プレースホルダ(1)・	

・e² studio でのインクルード・パスの設定は、"プロパティ"ウインドウで設定

- "C/C++ビルド" [設定] – "Compiler" [ソース] で表示した画面でインクルード・ファイルのパスを設定します。

(1) EES RL78 Type03の include パス

\${ProjDirPath}/generate
\${ProjDirPath}/src/EESRL78T03/include
\${ProjDirPath}/src/EESRL78T03/include/ees
\${ProjDirPath}/src/EESRL78T03/userown/include
\${ProjDirPath}/src/EESRL78T03/sample/common/include
\${ProjDirPath}/src/EESRL78T03/sample/RL78_F25/EES/CCRL/include

\${ProjDirPath}/src/RFDRL78T03/include \${ProjDirPath}/src/RFDRL78T03/include/rfd v//v/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/	· · · · · · · · · · · · · · · · · · ·
\${ProjDirPath}/src/RFDRL78T03/include \${ProjDirPath}/src/RFDRL78T03/include/rfd \${ProjDirPath}/src/RFDRL78T03/include/rfd このでいていていていていていていていていていていていていていていていていていていて	
ビルド安安 ロギング 選進 アクレーー 般 Reress QE	 登定
ビルジー プロジェクト・ネーチャー	

EES RL78 Type03

7.1.3.2 デバイス項目の設定

- ・CS+でのデバイス項目の設定は、"リンク・オプション"タブで設定
- [デバイス]項目を設定します。

[オンチップ・デバッグの許可/禁止をリンク・オプションで設定する]を"はい(-OCDBG) "に設定します。

注)オンチップ・デバッグを実施することを前提とした設定例です。

[オンチップ・デバッグ・オプション・バイト制御値]を"A5"に設定します。(オンチップ・デバッグ動作許可の例)

[セキュリティ・オプション・バイトを設定する]を"はい(-SECURITY_OPT_BYTE)"に設定します。

[セキュリティ・オプション・バイト制御値]を"FE"に設定します。(オンチップ・デバッグおよびフラッシュ・シリアル・プログラミング・セキュリティ ID の読み出し許可の例)([RL78/F25の例])

注)対象デバイスのユーザーズマニュアルで「オプション・バイト」の章の「オンチップ・デバッグ・オプショ ン・バイト」、「セキュリティ・オプション・バイト」の内容をご確認いただき、使用する設定値を書き込ん でください。

[デバッグ・モニタ領域を設定する]を"はい(範囲指定)(-OCDBG_MONITOR=<アドレス範囲>)"に設定します。

- [デバッグ・モニタ領域の範囲]を"7FE00-7FFF"に設定します。[RL78/F25の例]
- 注)対象デバイスのユーザーズマニュアルで「オンチップ・デバッグ機能」の章の「ユーザ資源の確保」で「デ バッグ用モニタ・プログラムが配置されるメモリ空間」をご確認いただき、使用する領域の範囲を書き込ん でください。

[ユーザ・オプション・バイトを設定する]を"はい(-USER_OPT_BYTE)"に設定します。

- [ユーザ・オプション・バイト値]を"6E6BE8"に設定します。(WDT 停止, LVD (reset モード), 40MHz [RL78/F25の例])
- 注)対象デバイスのユーザーズマニュアルで「オプション・バイト」の章の「ユーザ・オプション・バイト」の 内容をご確認いただき、使用する設定値を書き込んでください。

	CC-RL のプロパティ	م 1
>	ライブラリ	
~	テバイス	
	オンチップ・デバッグの許可/禁止をリンク・オブションで設定する	(はい(-OCDBG)
	オンチップ・デバッグ・オプション・バイト制御値	HEX A5
	セキュリティ・オブション・バイトを設定する	(#()(-SECURITY_OPT_BYTE)
	セキュリティ・オプション・バイト制御値	HEX FE
	デバッグ・モニタ領域を設定する	はい(範囲指定)(-DEBUG_MONITOR=<アドレス範囲>)
	デバッグ・モニタ領域の範囲	7FE00-7FFFF
	ユーザ・オプション・バイトを設定する	(はい(-USER_OPT_BYTE)
	ユーザ・オプション・バイト値	HEX 6E6BE8
	トレースRAM領域への配置を制御する	いいえ
	ホット・プラグインRAM領域への配置を制御する	いいえ
>	出力コード	
>	ሀスト	
ш	ha_k	
(Ħ	⊧通オプション 🖌 コンパイル・オ 🖌 アセンブル・オ 🔪 リンク・オ	プシ

・e² studio でのデバイス項目の設定は、"プロパティ"ウインドウで設定

- "C/C++ビルド" [設定] – "Linker" [デバイス] で表示した画面でデバイス項目を設定します。

[OCD モニタのメモリ領域を確保する(-debug_monitor)]をチェックします。

注)オンチップ・デバッグを実施することを前提とした設定例です。

[メモリ領域(-debug_monitor=<start address>-<end address>)]を"7FE00-7FFFF"に設定します。[RL78/F25の例]

注)対象デバイスのユーザーズマニュアルで「オンチップ・デバッグ機能」の章の「デバッグ用モニタ・プログ ラムが配置されるメモリ空間」をご確認いただき、使用する領域の範囲を書き込んでください。

[オプション・バイト領域のユーザ・オプション・バイト値を設定する(-user_opt_byte)] をチェックします。 [ユーザ・オプション・バイト値(-user_opt_byte=<value>)]を"6E6BE8"に設定します。(WDT 停止, LVD (reset モ ード), 40MHz [RL78/F25の例])

注)対象デバイスのユーザーズマニュアルで「オプション・バイト」の章の「ユーザ・オプション・バイト」の 内容をご確認いただき、使用する設定値を書き込んでください。

[オプション・バイト領域のオンチップ・デバッグ・オプション・バイトに値を設定する(-ocdbg)]をチェックします。 注)オンチップ・デバッグを実施することを前提とした設定例です。

[オンチップ・デバッグ制御値(-ocdbg=<value>)]を"A5"に設定します。(オンチップ・デバッグ動作許可の例) [オプション・バイト領域のセキュリティ・オプション・バイトに値を設定する(--security_opt_byte)]をチェック します。

[セキュリティ・オプション・バイト制御値 (-security_opt_byte=<value>)]を"FE"に設定します。(オンチップ・デ バッグおよびフラッシュ・シリアル・プログラミング・セキュリティ IDの読み出し許可の例)([RL78/F25の例])

注)対象デバイスのユーザーズマニュアルで「オプション・バイト」の章の「オンチップ・デバッグ・オプショ ン・バイト」、「セキュリティ・オプション・バイト」の内容をご確認いただき、使用する設定値を書き込ん でください。

フィルタ入力	設定		
 > リソース > C/C++ ビルド スタック解析 ッールチェイン・エディター ビルド変数 ロギング 環境 設定 > C/C++ 一般 Renesas QE ビルダー プロジェクト・ネーチャー プロジェクト・参照 実行/デバッグ設定 	Configuration: Hardwared ③ ツール設定 Toolchain 1 > ③ SMS Assembler > ③ Common > ③ Sommon > ③ Common > ④ Common > ④ Common ④ Common ④ Common ● ③ Linker > ③ 登 出力 ④ 登 出力	Debug [アクティブ] Device アレド・ステップ P ビルド成果物 G バイナリー・パーサー セキュリティID値 (-security_id) シリアル・プログラミング・セキュリティID値 (-flash_security_id) ■ RRM / DMM機能用ワーク領域を確保する (-rrm) 開始アドレス (-rrm= <value>) ✓ OCDモニタのメモリ領域を確保する (-debug_monitor) メモリ領域 (-debug_monitor=<start address="">-<end address="">) ✓ オブション・パイト領域のユーザ・オブション・パイトに値を設定する (-us ユーザ・オブション・パイト領域のオンチップ・デバッグ・オブション・パイトに値を設</end></start></value>	 ● エラー・パーサー ● ●
	シ い Converter	オンテッノ・テハック前御値 (-ocodg= <value>)</value>	A5 6 (-security opt byte)
			FE
		セクションを配置しないRAM領域 (-self/-ocdtr/-ocdhpi)	なし
		□ セクションを配置した場合にワーニングを出力する (-selfw/-ocdtrw/	-ocdhpiw)
		□ オブジェクト・ファイル作成時に指定したデバイス・ファイルがすべて同-	-であるかチェックを行う (-check_device)
		□ (04K-1)/11 ト現赤を時くビンンヨン配直のテエッンを判止する(-cheo □ セクションの割り付けアドレスがデバイス・ファイルの情報と整合するか	.ĸ_o4ĸ_oniy) チェックを行わない (-no_check_section_layout)

7.1.3.3 セクション項目の設定

- ・CS+でのセクション項目の設定は、"リンク・オプション"タブで設定
- [セクション]項目を設定します。

[セクションを自動的に配置する]を一度"いいえ"に設定すると[セクションの開始アドレス]にセクションが表示されるようになり、表示された最も右の",,,,,"ボタンで、"セクション設定"画面を表示します。

>	7/17	
>	出力コード	
>	リスト	
>	変数/関数配置情報	
~	セクション	
	セクションを自動的に配置する	いいえ
	セクションの開始アドレス	.const, text, .RLIB, .SLIB, .textf, .constf, .dat
>	外部定義シンボルをファイル出力するセクション	外部定義シンボルをファイル出力するセクション[0]
>	ROMからRAMへマップするセクション	ROMからRAMへマップするセクション[0]
>	ベリファイ	
>	メッヤージ	

・e² studio でのセクション項目の設定は、"プロパティ"ウインドウで設定

- "C/C++ビルド" [設定] – "Linker" [セクション] で表示した画面でセクション項目を設定します。

[デバイス・ファイルの情報からセクションを自動的に配置する(-auto_section_layout)]のチェックを一度外しま す。ここで、[セクション(-start)]の最も右の", ポタンで、"セクション設定"画面を表示します。

🗐 プロパティ: EESRL78T03_PJ01				
フィルタ入力	設定		\$	•=
 > リソース マ C/C++ ビルド スタック解析 ツールチェイン・エディター ビルド変数 	Configuration: HardwareDe	bug [アクティブ] ice 🎤 ビルド・ステップ 🤍 ビルド成果物 🔂 パイナリー・パー1	✓ 構 サ- 0 Tラ-・パーサ- 1	成の管理.
ロギング 環境 設定 > C/C++一般 Renesas QE ビルダー ゴのジェクト・スーチャー	 > Wate Looman Loo > Sommon > Compiler > Assembler > Linker > 盗入力 ※ 以及 	 ・ アレイ マルフラン 「「「「「「「「」」」」 ・・・・・・・・・・・・・・・・・・	start 」 す象にする(-ALLOW_OPTIMIZE_ENTRY_BLOCK) -auto_section_layout) n)	
フロジェクト・ネーチャー プロジェクト参照 実行/デバッグ設定	-	セクション (-start) FAAメモリ領域を自動的に割り当てる (-dsp_memory_area)	.const,.text,.data,.sdata,.RLIB,.SLIB,.textf,.constf,RFD. いいえ	_DA

・CS+、e² studio のセクション設定操作

先頭アドレスに"0x05000"を設定します。

プログラム領域 (コード・フラッシュ・メモリ) と RAM 領域に、EES RL78 Type03 内の"#pragma section"で定義 されたセクションを追加します。各セクションの詳細は「表 2-7 EES 使用時のセクション」を参照してくださ い。

※本説明では、[コンパイル・オプション]の[メモリ・モデル]がミディアム・モデル(R7F125FPL での"自動選択" と同じ)であることを前提としています。また、"スモール・モデル"を選択した場合の各プログラムのセクション 名については CC-RL のユーザーズマニュアルを参照してください。 (1) EES 使用時に必要なセクションの追加

・CS+での EEPROM エミュレーションの実行に必要なセクション追加

EEPROM エミュレーションの操作に必要なセクションを"セクション設定"画面で追加します。RFD RL78 Type03 のセクションも含んでいます。

プログラム領域へ追加:RFD_DATA_n, RFD_CMN_f, RFD_DF_f, EES_CODE_f, SMP_EES_f, EES_CNST_f RAM へ追加:RFD_DATA_nR, EES_VAR_n, SMP_VAR_n

"OK"ボタン押下後、[セクションを自動的に配置する]を"はい"に戻して下さい。

>	ሀスト	
>	変数/関数配置情報	
\sim	セクション	
	セクションを自動的に配置する	(t()(-AUTO_SECTION_LAYOUT)
	自動配置をモジュール別セクションで実施する	いいえ
	セクションの開始アドレス	.const.text.RLIB.SLIB.textf.constf.data.sdata.RFD_DATA_r
>	外部定義シンボルをファイル出力するセクション	外部定義シンボルをファイル出力するセクション[0]
>	ROMからRAMへマップするセクション	ROMからRAMへマップするセクション[2]
>	ベリファイ	

[ROM から RAM ヘマップするセクション]の最も右の" ,,,, "ボタンで、"テキスト編集"画面を表示して、ROM から RAM ヘマップするセクションを追加します。

・e² studio での EEPROM エミュレーションの実行に必要なセクション追加

EEPROM エミュレーションの操作に必要なセクションを"セクション・ビューアー"で追加します。RFD RL78 Type03 のセクションも含んでいます。

プログラム領域へ追加:RFD_DATA_n, RFD_CMN_f, RFD_DF_f, EES_CODE_f, SMP_EES_f, EES_CNST_f RAM へ追加:RFD_DATA_nR, EES_VAR_n, SMP_VAR_n

"OK"ボタン押下後、[デバイス・ファイルの情報からセクションを自動的に配置する(-auto_section_layout)]を チェックして下さい。

> リソース > C(C++ ビルド	> 🐯 Common	✓ 実行開始アドレスを指定する (-entry)	
スタック解析	> 🛞 Compiler	外部定義シンポル、またはアドレス (-entry= <symbol>)</symbol>	_start
ツールチェイン・エディ ビルド変数	> 🛞 Assembler	実行開始シンボルより前に配置されている領域を最適化のジ	対象にする (-ALLOW_OPTIMIZE_ENTRY_BLOCK)
ロギング	▶ 🖄 九力	□ 自動配置をモジュール別セクションで実施する (-split_section	on)
環境 設定		セクション (-start)	.const,.text,.data,.sdata,.RLIB,.SLIB,.textf,constf,RFD_D/
> C/C++ 一般 Renesas QE	を 地 地 し	FAAメモリ領域を自動的に割り当てる (-dsp_memory_area)	เป็นวิ

"C/C++ビルド"[設定] – "Linker"[出力] で表示した画面で[ROM から RAM ヘマップするセクション(-rom)] を設定します。

ROMからRAMへマップするセクション (-rom)	ROM から RAM へ マップするセクション
.data=.dataR	.data=.dataR
sdata=.sdataK RFD_DATA_n=RFD_DATA_nR	.sdata=.sdataR
	RFD_DATA_n=RFD_DATA_nR

7.1.4 デバッグ・ツールの設定

ここでは、デバッグ・ツールに E2 Lite を選択してオンチップ・デバッグを行う場合のターゲット・ボードとの接 続の設定について説明します。その他のデバッグ・ツール設定の詳細については、各統合開発環境のユーザーズマニ ュアルを参照してご確認ください。

CS+では、ツリーで"RL78 シミュレータ(ビルドツール)" [初期設定]でマウス右クリックし、表示された"使用する デバッグ・ツール"で"RL78 E2 Lite"を選択します。この時、"RL78 E2 Lite のプロパティ"画面が表示されます。ここ で各タブを選択して、デバッグ・ツール設定を行います。

e² studio では、ツリーで対象プロジェクトをマウス右クリックし、[デバッグ] - [デバッグの構成]を選択して表示 された"デバッグ構成"画面のツリーで、[Renesas GDB Hardware Debugging]の対象プロジェクト(ここでは、 "EESRL78T03_PJ01 HardwareDebug")を選択し、表示された"Debugger"タブで、デバッグ・ツール設定を行いま す。

注) ターゲット・ボードに他の電源が供給されている場合や電源供給容量が不足するなど、E2 Lite を含むエミュ レータからターゲット・ボードへの電源供給ができない場合があります。必ず、対象デバイス用のエミュレ ータのユーザーズマニュアル、およびユーザーズマニュアル別冊(RL78 接続時の注意事項)をご参照の上、ご 使用ください。

7.1.4.1 ターゲット・ボードとの接続の設定

- ・CS+でのターゲット・ボードとの接続(E2 Lite 経由)は、"接続用設定"タブで設定
- [ターゲット・ボードとの接続]項目

[エミュレータから電源供給をする(最大 200mA)]を"はい"に設定することで、E2 Lite からターゲット・ボードに電 源供給(供給電圧:3.3V)することが可能です。

プロジェクト・ツリー 🛛 🗸 🗙	🚰 למולדי
2 🕜 🙎 🔳	
■ EESRL78T03 PJ01 (プロジェクト)*	> 内部ROM/RAM
	▼ クロック メイン・クロック周波数[MHz] 内蔵クロックを使用する
- 🔐 RL78 E2 Lite (デパッグ・ツール)	サブ・クロック周波数[kHz] 内蔵クロックを使用する
☆ プログラム解析 (解析ツール)	→ <u>Tミュレータとの接続</u>
· · · · · · · · · · · · · · · · · · ·	▼ ダーグラト・ホートとの接続 エミュレータから電源供給をする(最大200mA) はい
	供給電圧[V] 3.3V
	セキュリティID (MEX) 000000000000000000000000000000000000
	ジリアル・フロクラミンク・セキュリティル (HEX) トトトトトトトトトトトトトトトトトトトトトトトトトトトトトトトトトトトト
	シリアル・プログラミング・セキュリティIDの書き換えを許可する いいえ コラッジューまき換え時に主使用語転転が期代する (メリラ
	シッシュ各となん。時に来ば日期間でありましょう。 いいん 起動時にフラッシュ ROMを消去する いいえ
	Flashのセルフ・ブログラミングを行う (いいえ
	│ 接続用設定 / デバッグ・ツール設定 / ダウンロード・ファイル設定 / フック処理設定 /

・e² studio でのターゲット・ボードとの接続(E2 Lite 経由)の設定は、"Connection Setting"タブで設定

- [ターゲット・ボードとの接続] 項目

[エミュレータから電源供給(最大 200mA)]を"はい"に設定することで、E2 Lite からターゲット・ボードに電源供給 (供給電圧:3.3V)することが可能です。

名前(N): EESRL78T03_PJ01 HardwareDebug			
📄 メイン 🏠 Debugger 🕨 Startup 🤤 ソース 🔲 共通			
Debug hardware: E2 Lite (RL78) \checkmark Target Device: R7F125FPL			
GDB Settings Connection Settings デバッグ・ツール設定			
✓ クロック			
メイン・クロック周波数 [MHz]	内部クロックの使用		
サブ・クロック周波数 [kHz]	内部クロックの使用		
モニター・クロック	システム		
✓ ターゲット・ボードとの接続			
エミュレーター	(Auto)		
低電圧OCDボードを使用する	いいえ		
エミュレーターから電源供給 (最大 200mA)	はい		
供給電圧[V]	3.3		
Hot Plug	いいえ		
✓ フラッシュ			

7.2 IAR コンパイラを使用する場合のプロジェクトの作成

IAR コンパイラは、統合開発環境として IAR Embedded Workbench を使用して作成したプロジェクトへ EES RL78 Type03 を登録し、ビルドすることができます。IAR Embedded Workbench を使用した場合のサンプル・プロジェク トの作成例を示します。IAR コンパイラ、および統合開発環境を理解するため、IAR Systems のツール製品のユーザ ーズマニュアルを参照してください。

IAR Systems、IAR Embedded Workbench、C-SPY、IAR および IAR システムズのロゴタイプ は、IAR Systems AB が所有権を有する商標または登録商標です。 7.2.1 サンプル・プロジェクト作成例

(1) 統合開発環境 IAR Embedded Workbench を使用したサンプル・プロジェクト作成例

IAR Embedded Workbench を起動し、[プロジェクト]メニューの[新規プロジェクトの作成]を選択し、以下に 示す "新規プロジェクトの作成"ウインドウを起動します。

- ・[プロジェクトテンプレート]で、"C"を選択します。
- ・[OK]ボタンを押すと、[名前を付けて保存]ウインドウが表示されます。

新規プロジェクトの作成	×
ツールチェーン(丁): RL78 プロジェクトテンプレート(P): Asm C++ Dlb ● ● Dlb ● ● Dlb	
説明: C プロジェクト・テンプレート	
OK キャンセル	

- ・ここでは、仮に"EESRL78T03_PJ01"フォルダを作成し、フォルダ内へ移動します。
- ・ここでの[プロジェクト名]は、仮に"EESRL78T03_PJ01"として保存します。

🔮 名前を付けて保存				×
← → × ↑ 📜 « IAR_F	Project > EESRL78T03_PJ01	✓ Č EESR	L78T03_PJ01_の検索	Q
整理 ▼ 新しいフォルダー				•
名前	更新日時	種類	サイズ	
	検索条件に一致する項目は	ありません。		
ファイル名(<u>N</u>): EESRL78	T03_PJ01			~
ファイルの種類(<u>T</u>): プロジェク	トファイル (*.ewp)			~
▲ フォルダーの非表示			保存(<u>S</u>) キャン・	セル :

(2) 対象デバイスの選択

IAR Embedded Workbench ではツリーでプロジェクト(ここでは"EESRL78T03_PJ01 - Debug")のマウス右ク リックで"オプション"を選択することにより、"オプション"の画面を表示します。

ワークスペース		→ ¤ ×	main.c 🗙
Debug		~	
ファイル 日 ● EESRL78T03 PJ01 - Debug	オプション(O)	ů,	int main(void)
L-⊞ © main.c	メイク(M) コンパイル(C) すべてを再ビルド(B) クリーン(L)		
	C-STAT静的解析(C)	>	
	ビルドを停止(S)		
	追加(A)	>	
	削除(V) 名前の変更		
	バージョン管理システム(Y)	>	
EESRL78T03_PJ01	ファイルの場所を開く ファイルのプロパティ(P)		
	アクティブに設定(E)		

・"オプション"の画面内の[一般オプション] – [ターゲット]タブの各設定を行います。 [デバイス]の" 📴 "ボタンで"RL78 - F25" - "RL78 - R7F125FPL"を選択します。

ここでは、[コードモデル]に"Far"を選択し、[データモデル]に"Near"を選択します。

7.2.2 対象フォルダと対象ファイルの登録例

EEPROM エミュレーションを実行するために必要なファイルの登録例を記述します。

ここでは、IAR Embedded Workbench でフォルダを登録する代わりに、[プロジェクト]メニューの[グループの追加]を選択し、EES RL78 Type03 と RFD RL78 Type03 のフォルダ構成と同様のグループを追加してファイルを登録 する例を示します。(グループを作らずに登録することも可能です。)

(1) EES RL78 Type03、(2) RFD RL78 Type03 のグループを追加した例を示します。

(1) EES RL78 Type03

(2) RFD RL78 Type03

・統合開発環境の機能により自動的に追加されたファイルの除外

作成されたプロジェクトには、自動的に追加されるファイルがあります。これらと同様のファイルは、EES RL78 Type03 の"sample"フォルダ内にも存在するため、ツリーで各ファイルを選択し、各統合開発環境の機能を 使用して、プロジェクトから外します。

- IAR Embedded Workbench では、ツリーでファイルをマウス右クリック、"削除"機能で対象の"main.c"ファイル を除外します。 (1) EES RL78 Type03 の対象ファイルの登録

EES RL78 Type03 ソースプログラムファイルの各グループ("include", "source", "userown", "sample")に登録する

ファイルを以下に示します。

"include" グループ内

— 📮 🛑 include
⊢Ģ ≡ ees
📔 🛏 🗟 r_ees_compiler.h
📔 🛏 🗟 r_ees_defines.h
📔 🛏 🗟 r_ees_device.h
🗟 r_ees_memmap.h
│
📔 🖵 🗟 r_type_defs.h
🛏 🗟 r_ees_api.h
🛏 🗟 r_ees_exrfd_api.h
🖵 🖬 riees subiapilh

"source" グループ内

	burce
│└ᇢ╽	ees
-∈] 💿 r_ees_api.c
-∈] 💿 r_ees_exrfd_api.c
] 💿 r_ees_sub_api.c

"userown" グループ内

니다. 🗐 🖬 userown
├
📔 🛏 🗟 r_ees_descriptor.h
🖵 🖥 r_ees_user_types.h
└─⊞ 🖸 r_ees_descriptor.c

(2) RFD RL78 Type03の対象ファイルの登録

RFD RL78 Type03 ソースプログラムファイルの各グループ("include", "source", "userown")に登録するファイル

を以下に示します。

"include" グループ内

│
🖬 r_rfd.h
📔 📙 🖬 r_rfd_compiler.h
🛛 🚽 🖬 r_rfd_device.h
🗟 r_rfd_memmap.h
📔 ⊨ 🖬 r_rfd_types.h
│ │ └──
📙 🛏 🗟 r_rfd_common_api.h
🛛 🛏 🗟 r_rfd_common_control_api.h
📙 🛏 🗟 r_rfd_common_userown.h
🛛 🖵 🗟 r_rfd_data_flash_api.h

"source" グループ内

"userown" グループ内

7.2.3 統合開発環境の設定

IAR コンパイラで EEPROM エミュレーションをビルドして実行するための統合開発環境の設定を行います。IAR Embedded Workbench ではツリーで[プロジェクト]をマウス右クリックして"オプション"を選択、表示された画面内 の"カテゴリ"を選択して各設定を行います。

7.2.3.1 インクルード・パスの設定

IAR Embedded Workbench でのインクルード・パスの設定は、カテゴリの"C/C++コンパイラ"を選択し、"プリプロセッサ"タブで設定します。

- [追加インクルード・ディレクトリ(A): (1行に1ディレクトリ)]で"パス編集"ウインドウを表示して、インクル ード・ディレクトリのパスを設定します。

ノード"EESRL78T03_PJ01"のオプション					×
カテゴリ: 一般オプション 静め解析 Cパモ+コンパパラ アセンブラ Output Converter カスタムビルド ビルドアクション リンカ デパッガ COM Port E1 E2 E20 E2 Lite / E2 On-board E2-CUBE ジュレータ TK	□ 複数ファイルのコンパイル 末使用パブリックを読 言語1 言語2 標準のインクルードディークト ご利します¥xxxxxx¥Doct C¥Users¥xxxxx¥Doct C¥Users¥xxxxx¥Doct C¥Users¥xxxxx¥Doct Tリインクルードファイル(B): シンボル定義(D):(1行に1):	来 また また メクトリを無視(L <u>J(A):(1行にデ</u> uments¥JAR,P uments¥JAR,P uments¥JAR,P vンボル)	Iード 出力 roject¥ESRL roject¥ESRL roject¥ESRL roject¥ESRL	追 リスト 78T03_PJ011 78T03_PJ011 78T03_PJ011 78T03_PJ011 78T03_PJ011 78T03_PJ011 78T03_PJ011 78T03_PJ011 78T03_PJ011	★ 工場出荷時設定 加オブション プリプロセッサ デリプロセッサ ¥EESRL7 ↓ #EESRL7 ↓ #ESRL7
			E	OK	キャンセル

インクルードディレクトリを編集	>
インクルードティレクトリ	
C#Users#xxxxx#Documents#IAR_Project#EESRL78T03_PJ01#EESRL78T03#include	
C/¥Users¥xxxxxx¥Documents¥IAR_Project¥EESRL78T03_PJ01¥EESRL78T03¥include¥ees	
C:¥Users¥xxxxxx¥Documents¥IAR_Project¥EESRL78T03_PJ01¥EESRL78T03¥sample¥common¥include	
C:¥Users¥xxxxxx¥Documents¥IAR_Project¥EESRL78T03_PJ01¥EESRL78T03¥sample¥RL78_F25¥EES¥IAR¥incle	ude
C/¥Users¥xxxxxx¥Documents¥IAR_Project¥EESRL78T03_PJ01¥EESRL78T03¥userown¥include	
C:¥Users¥xxxxxx¥Documents¥IAR_Project¥EESRL78T03_PJ01¥RFDRL78T03¥include	
C.¥Users¥xxxxxx¥Documents¥IAR_Project¥EESRL78T03_PJ01¥RFDRL78T03¥include¥rfd	
〈クリックして追加〉	
OK キャンセル	,

- 設定するディレクトリパスの例

"C:\Users\xxxxx\Documents\IAR_Project\"に、プロジェクトフォルダを置いた場合の例です。

(1) EES RL78 Type03 のインクルード・ディレクトリ

C:\Users\xxxxx\Documents\IAR_Project\EESRL78T03_PJ01\EESRL78T03\include

C:\Users\xxxxx\Documents\IAR_Project\EESRL78T03_PJ01\EESRL78T03\include\ees

C:\Users\xxxxx\Documents\IAR_Project\EESRL78T03_PJ01\EESRL78T03\sample\common\include

 $C: \label{eq:listic_l$

C:\Users\xxxxx\Documents\IAR_Project\EESRL78T03_PJ01\EESRL78T03\userown\include

(2) RFD RL78 Type03 のインクルード・ディレクトリ

C:\Users\xxxxx\Documents\IAR_Project\EESRL78T03_PJ01\RFDRL78T03\include C:\Users\xxxxx\Documents\IAR Project\EESRL78T03 PJ01\RFDRL78T03\include\rfd

注) インクルード・ディレクトリのパス設定については、絶対パスで指定しているとプロジェクトをコピーした 時に再設定が必要になります。プロジェクトをコピーしても使用できるよう相対パス(\$PROJ_DIR\$)を指定す ることも可能です。指定方法については、IAR Embedded Workbench の[Help]から各リファレンスマニュア ルをご参照いただき、必要に応じて設定してください。

7.2.3.2 デバッガの設定

・オンチップ・デバッグを実施することを前提として、[デバッガ] – [設定]タブの[ドライバ]で"E2 Lite / E2 On-Board"を選択します。

ノード"EESRL78T03_PJ01"のオプション		×
カテゴリ: 一般オプション 静台)解析 C/C++コンパイラ アセンブラ Output Converter	工場出荷時設定 設定 イメージ 追加オブション ブラグイン	
なみないでのからます カスタムビルド ビルドアクション リンカ COM Port E1 E2	ドライバ(<u>D</u>): ✓ 指定位置まで実行(<u>B</u>): E2 Lite / E2 On-board ✓ main セットアップマクロ(<u>S</u>) □ マクロファイルの使用(<u>U</u>): 	
E20 E2 Lite / E2 On-board EZ-CUBE EZ-CUBE2 IECUBE ジミュレータ TK	デバイス記述ファイル(E) 「デフォルトのオーバライド(Q): \$TOOLKIT_DIR\$¥config¥debugger¥ior7f125fpl.ddf	
	OK キャンセル	

注)その他の設定項目については、IAR Embedded Workbench の[Help]から各リファレンスマニュアルをご参照いただき、必要に応じて設定してください。

7.2.4 リンカ設定ファイル(.icf)の設定

IAR Embedded Workbench では、ビルドで実行するリンク設定をリンカ設定ファイル(*.icf)に記述します。ツリー で[プロジェクト]のマウス右クリックで"オプション"を選択、表示された画面内の[リンカ]で、[設定] – [デフォル では、EES RL78 Type03 用に準備されている"sample_linker_file.icf"ファイルを選択します。

ード"EESRL78T03_PJ01"のオプション							
カテゴリ:					工场	出荷時設定	
一般オプション 静的解析							1
C/C++コンパ1フ フォン・ゴニ	リスト	#define	診断	チェックサム	ז א-בעד	追加オプション	
Output Converter	設定	ライブラリ	入力	最適化	アドバンスト	出力	
カスタムビルド	ーリンカ設	定ファイル(L)					
ビルドアクション		*ルトのオーバライ	(ド(O)				
ባンታ		TO2Vermul-V		CVIA DV course - V-	ample linker fils	ief	
รี / โงวี		orus#sample#f	NL/0_F20#EE	SHIMIN#SOUICE#S	ample_linker_file	SICI	
COMPORT							
開く						×	
- → × ↑ 🔒 « EES >	IAR > sourc	e	~ Ō	sourceの検索		Q	
整理 ▼ 新しいフォルダー					== -	•	
CCRL	^	名前	^				
IAR		🖳 cample lini	ver file icf				
include			ke_meact				
project							
source							
	¥						
		1. 10. 1.1		lef Eiler (* ief		~	
ファイル名(ト	l): sample_lir	nker_file.icf	~	ici Files (lici		*	

- sample linker file.icf (\sample\RL78 F25\EES\IAR\source\)

注)リンカ設定ファイルの記述内容、及び記述方法の詳細については、IAR Embedded Workbenchの[Help]か ら各リファレンスマニュアルをご参照ください。

7.2.4.1 セクション項目の設定

EES RL78 Type03 で準備されているリンカ設定ファイル(*.icf)で追加しているセクションの概要を記述します。

- 注)リンカ設定ファイルのセクション項目の設定、及び機能の詳細は、IAR Embedded Workbench の[Help]か ら各リファレンスマニュアルをご参照ください。
- (1) EES RL78 Type03 のセクション追加

EES_CODE, SMP_EES, EES_CNST の各セクションの初期値を ROM 領域(ROM_far)へ追加します。 - ROM_far 領域の追加セクション(プログラムと Const データ): EES_CODE, SMP_EES, EES_CNST

- RAM_near 領域の追加セクション: EES_VAR, SMP_VAR

(2) RFD RL78 Type03 のセクション追加

RFD_DATA の初期値と RFD_CMN, RFD_DF の各セクションを ROM 領域(ROM_far)へ追加し、RFD_DATA は RAM 領域(RAM_near)のセクションヘコピーする必要があります。

- ROM_far 領域の追加セクション(プログラムと RAM 領域ヘコピーするためのデータ): RFD_DATA_init, RFD_CMN, RFD_DF

- RAM_near 領域の追加セクション(ROM 領域からコピーされるデータ): RFD_DATA 7.2.4.2 オプション・バイトの設定

RL78のオプション・バイト定義は、IAR Embedded Workbench 付属のリンカ設定ファイル(*.icf)、及び EES RL78 Type03 用に準備されている"sample_linker_file.icf"ファイルに記述されています。EES RL78 Type03 でのオプショ ン・バイト値は、"option byte.c"ファイルに記述されています。

注) リンカ設定ファイルのオプション・バイトの設定については、IAR Embedded Workbench の[Help]から各 リファレンスマニュアルをご参照ください。

EES RL78 Type03 用リンカ設定ファイル(*.icf)のオプション・バイトの定義例

"option_byte.c"ファイル内のオプション・バイト値の記述例

- ユーザ・オプション・バイト値の説明 [RL78/F25の例]:

"option_byte.c"ファイル内のユーザ・オプション・バイト(000C0H-000C2H)の値は"6E6BE8"です。

(WDT 停止, LVD (reset モード), 40MHz)

"option_byte.c"ファイル内のオンチップ・デバッグ・オプション・バイト(000C3H/040C3H)の値は"A5"です。 (オンチップ・デバッグ動作許可の例)

"option_byte.c"ファイル内のセキュリティ・オプション・バイト(000C4H/040C4H)の値は"FE"です。

(オンチップ・デバッグおよびフラッシュ・シリアル・プログラミング・セキュリティ ID の読み出し許可の例)

注)対象デバイスのユーザーズマニュアルで「オプション・バイト」の章の「ユーザ・オプション・バイト」、 「オンチップ・デバッグ・オプション・バイト」、「セキュリティ・オプション・バイト」の内容をご確認い ただき、ユーザ・アプリケーションで使用する設定値を書き込んでください。 7.2.5 オンチップ・デバッグの設定

プロジェクトのビルド実行後、E2 Lite を接続した状態で、 [プロジェクト]メニューから[ダウンロードしてデバッグ]を選択して、デバッグを開始します。

7.2.5.1 接続エラーに関する対処の例

ここでは、オンチップ・デバッグを実行時の接続エラーに関する対処(よくある例)として、"ID コード"の不一致や "電源"が正しく設定されていない場合について説明します。

注)その他の原因によりターゲットに接続できない場合は、IAR Embedded Workbench の[Help]から各リファレンス・マニュアルをご確認ください。

[ダウンロードしてデバッグ]を選択して、デバッグを開始するときに、"E2 Lite ハードウェア設定"画面が表示される場合があります。原因として、"ID コード"の不一致や"電源"が正しく設定されていない場合が考えられます。

- ID コードが不一致の場合:

"ID コードをベリファイできない。" 等のメッセージが表示されることがあります。この場合は、"E2 Lite ハードウェア設定"画面の[ID コード]で、"次の ID チェックの前にフラッシュを消去"をチェックし、一度フラッシュ・メモリを消去することで、接続できる場合があります。

- 電源が設定されていない場合:

"電源"の初期状態は、"ターゲット"ですが E2 Lite から電源を供給する場合は、プルダウン・メニューで"3V"を選択します。

E2Lite ハードウェア設定 (R	7F125FPL)		×
Flash セキュリティID 000000000000000000000000 シリアルプログラミングセネ FFFFFFFFFFFFFFF ロ次のIDチェックの前に Enable serial progra Fill unused space w	10000000000000 キュリティID FFFFFFFFFFFFFFF 2ラッシュを消去 amming security ID rewrit vith 0xFF when writing fla	時間単位 nsec ~	ОК キャンセル
メインクロック クロックボード 今外部 システム None フラッシュプログラミング ●許可 ○許可なし	サブクロック ○クロックボード ● 外部 ○システム None ✓ kHz ターゲット電源オフ ●許可 ●許可 ●27	モニタクロック ●システム ・ユーザ 町圧 電源 たり オフ 夏又	デフォルト フェイルセーフブレーク ●表示設定
ピンマスク 	問辺プレーク ロA (タイマ) ト ロB (シリア)	ターゲット ② 接続 いなど ③ 非接続	TOOL0 V
メモリマップ 開始アドレス: 0x0 0x00000 - 0x7FFFF 0xF5F00 - 0xFFFFF	長さ: 960 〜 内部ROM 512 Kbytes 内部RAM 40960 bytes	タイプ: 内部ROM	 送加 首川()余
			すべてを削除

注)ターゲットに電源が供給されている場合、絶対に"3V"(E2 Lite から電源を供給)に設定しないでください。

7.3 デバイス変更に伴う設定

RL78/F25(R7F125FPL) 以外のデバイスを使用する場合、ROM や RAM、データ・フラッシュ・メモリのサイズが 異なるため、セクションのアドレス設定やサンプル・プログラムの一部を変更する必要があります。この項では変更 手順、および変更箇所について説明しています。

設定値などの変更には、以下に示す"RL78/F22,F25 用 MCU リスト"を参照し、使用しているデバイスにあわせて 設定値などを変更します。

・RL78/F22, F25 用 MCU リスト

	Co	de Flash memory	User RAM		Da	ata Flash memory	Target MCU name	
MCU Group	Size (bytes)	Start/End Address	Address Size (bytes) Start/End Ad		Size (bytes)	Start/End Address		
RL78/F22	128K	0x00000 - 0x1FFFF	12K	0xFCF00 - 0xFFEFF	8K	0xF1000 - 0xF2FFF	R7F122FxG(x = 7, B, G)	
RL78/F25	512K	0x00000 - 0x7FFFF	40K	0xF5F00 - 0xFFEFF	16K	0xF1000 - 0xF4FFF	R7F125FxL(x = G, L, M, P)	

	[R-1]	[R-2]	[R-3]	[R-4]	[R-5]	[R-6]	[R-7]	[R-8]	
MCU Group	RAM Start Address	ROM End Address 1	ROM End Address 2	Data Flash End Address	OCD_ROM	Trace_RAM	Hot plug-in	END_BLOCK	Target MCU name
RL78/F22	0xFCF00	0x0FFFF	0x1FFFF	0xF2FFF	0x1FE00	0xFD300	0xFD500	64	R7F122FxG(x = 7, B, G)
RL78/F25	0xF5F00	0x0FFFF	0x7FFFF	0xF4FFF	0x7FE00	0xF6300	0xF6500	256	R7F125FxL(x = G, L, M, P)

- RL78/F22, F25 用 MCU リストの参照例

例えば、次の図のように[R-1] が指している箇所の設定値(RAM の先頭アドレス)を変更するとします。ここでは、 RL78/F22,F25 用 MCU リストに記載されている RAM の先頭アドレス [R-1] (RAM Start Address)の設定値を参照して、 RL78/F22(R7F122FGG)の値を設定します。

例) RAM の先頭アドレス変更箇所:RL78/F25(R7F125FPL RAM: 40KB)

		KEU_DATA_N	
		RFD_CMN_f	
		RFD_DF_f	
		EES_CODE_f	
		SMP_EES_f	
		EES_ONST_f	
[R-1] →	0×F5F00	.dataR	
		bss	

例) RL78/F22(R7F122FGG RAM: 12KB)を使用する場合の RAM の先頭アドレス値を設定

	RED_DATA_n
	RFD_CMN_f
	RFD_DF_f
	EES_CODE_f
	SMP_EES_f
	EES_CNST_f
0×FCF00	.dataR
	bss

[R-1] に設定する値は、RL78/F22,F25 用 MCU リストを参照して対象デバイスの RAM の先頭アドレスを設定しま す。対象 MCU Group の Target MCU name の列から、R7F122FxG の行を検索します。次に、[R-1] の列から R7F122FxG の行と交わるセルを検索します。

"0xFCF00"が該当するので、RL78/F22(R7F122FxG)における[R-1]の設定値に"0xFCF00"を設定します。

	[R-1]	[R-2]	[R-3]	[R-4]	[R-5]	[R-6]	[R-7]	[R-8]	
MCU Group	RAM Start Address	ROM End Address 1	ROM End Address 2	Data Flash End Address	OCD_ROM	Trace_RAM	Hot plug-in	END_BLOCK	Target MCU name
RL78/F22	0xFCF00	0x0FFFF	0x1FFFF	0xF2FFF	0x1FE00	0xFD300	0xFD500	64	R7F122FxG(x = 7, B, G)
RL78/F25	0xF5F00	0x0FFFF	0x7FFFF	0xF4FFF	0x7FE00	0xF6300	0xF6500	256	R7F125FxL(x = G, L, M, P)

- 変更箇所の記載例

「7.3.1 CC-RL コンパイラ環境の設定」以降に、RL78/F25(R7F125FPL)の設定値から変更が必要な箇所を記載しています。その変更が必要な箇所には、"[R- x] →" のように示しているので、RL78/F22,F25 用 MCU リストから使用しているデバイスに該当する[R- x] の設定値を検索し、[R- x] に設定値を入力します。(x = 1, 2, 3...)

・セクション設定(RAM の先頭アドレス)の変更箇所の例:

CS+(CC-RLコンパイラ)

例) RL78/F25(R7F125FPL)用設定 RAM: 40KB

例) RL78/F22(R7F122FGG)用設定 RAM: 12KB

7.3.1 CC-RL コンパイラ環境の設定

CC-RL コンパイラ環境(CS+、e² studio)を使用する場合の変更箇所と変更例を記載します。

7.3.1.1 セクション設定

セクション設定で使用する製品の RAM 領域の先頭アドレスを設定します。

RL78/F25(R7F125FPL)から RL78/F22(R7F122FGG)へ変更する場合を例として示します。RAM のサイズが 40KB から 12KB へ変更されるため、RAM の先頭アドレスを"0xF5F00"から"0xFCF00"へ変更します。各製品の RAM の先頭アドレスについては、RL78/F22,F25 用 MCU リストの[R-1] 列をご確認ください。

・CS+でのセクション設定(RAMの先頭アドレス)の変更箇所の例。

例) RL78/F25(R7F125FPL)用設定 RAM: 40KB

例) RL78/F22(R7F122FGG)用設定 RAM: 12KB

・e² studio でのセクション設定 (RAM の先頭アドレス)の変更箇所の例。

例) RL78/F25(R7F125FPL)用設定 RAM: 40KB

例) RL78/F22(R7F122FGG)用設定 RAM: 12KB

		×				×
- セクション・ビュー	アー:			セクション・ビュー	アー:	
アドレス	セクション名			アドレス	セクション名	
0x00005000	.const			0x00003000	.const	
	.text				.text	
	.data				.data	
	.sdata				.sdata	
	.RLIB				.RLIB	
	.SLIB				.SLIB	
	.textf	セクションの追加			.textf	セクションの追加
	.constf	セクション・オーバーレイの追加			.constf	セクション・オーバーレイの追加
	RFD_DATA_n	セクションの除夫			RFD_DATA_n	セクションの除土
	RFD_CMN_f				RFD_CMN_f	
	RFD_DF_f	上へ移動			RFD_DF_f	上へ移動
	EES_CODE_f	下へ移動			EES_CODE_f	下へ移動
	SMP_EES_f	インポート			SMP_EES_f	インポート
	EES_CNST_f	エクスポート		-	EES_CNST_f	エクフポート
• 0x000F5F00	.dataR	177/11	$ \rangle$	0x000FCF00	.dataR	122/11-11
	.bss				.bss	
	RFD_DATA_nR				RFD_DATA_nR	
	EES_VAR_n				EES_VAR_n	
	SMP_VAR_n				SMP_VAR_n	
0x000FFE20	.sdataR			0x000FFE20	.sdataR	
	.sbss				.sbss	

7.3.1.2 デバッグ設定

EES RL78 Type03 を RL78/F22 で使用する場合、デバッガ使用時のデバッグ・モニタ領域の範囲が異なります。

- デバッグ・モニタ領域の先頭アドレスは、ROM 領域の終了アドレスから"511byte(0x1FF)"を減算したアドレス を設定します。終了アドレスが"0x7FFFF"なら、"0x7FE00"を設定します。

RL78/F25(R7F125FPL)から RL78/F22(R7F122FGG)へ変更する場合を例として示します。

- RL78/F22 用にデバッグ・モニタ領域の範囲を[0x1FE00 0x1FFFF]に設定します。
- 各製品のデバッグ・モニタ領域の先頭アドレスについては、RL78/F22,F25 用 MCU リストの[R-5] 列をご確認く ださい。
- ・CS+でのデバッグ・モニタ領域の設定は、"リンク・オプション"タブで[デバイス]項目を選択します。

RL78/F25 用設定(ROM:512KB) R7F125FPL の例

~	, CC-RL ๗ฺํฃ๗ฺํไร่า				
~	デバイス				
	オンチップ・デバッグの許可/禁止をリンク・オブションで設定する	(はい(-OCDBG)			
	オンチップ・デバッグ・オプション・バイト制御値	HEX A5			
	セキュリティ・オブション・バイトを設定する	(#t/(-SECURITY_OPT_BYTE)			
	セキュリティ・オプション・バイト制御値	HEX FE			
	デバッグ・モニタ領域を設定する	<u>はい(範囲指定)</u> (-DEBUG_MONITOR=<アドレス範囲>)			
	デバッグ・モニタ領域の範囲	1FE00-1FFFF			
	ユーザ・オブション・バイトを設定する	(\$C)(-USER_OPT_BYTE)			
	ユーザ・オブション・バイト値	HEX 6E6BE8			
	トレースRAM領域への配置を制御する	いいえ			
	ホット・プラグインRAM領域への配置を制御する	いいえ			
>	出力コード				
入力マッイル.					
ŕ /	も通オプション 🖌 コンパイル・オプション 🖌 アセンブル・オプション	/ 🔪 リンク・オプション 🗸 ヘキサ出力オプション 🖌 標準ライブラ			

・e² studio での OCD・モニタのメモリ領域の設定は、"Linker"から[デバイス]を選択します。

RL78/F25 用設定(ROM:512KB) R7F125FPL の例

> リソ−ス ❤ C/C++ ビルド	🛞 ツール設定 Toolchain De	vice 🎤 ビルド・ステップ 🏪 ビルド成果物 🔜 バイナリー・パーサー 🌜	ĵ エラ−・パーサー
スタック解析	> 🛞 Common	セキュリティID値 (-security_id)	0
ビルド変数	> 🐯 Compiler > 🐯 Assembler	シリアル・プログラミング・セキュリティID値 (-flash_security_id)	FFFFFFFFFFFFFFFFFFFFFFFFFF
ロギング 環境	V 🛞 Linker	□ RRM / DMM機能用ワーク領域を確保する (-rrm)	
設定	אגע 🚰 🔪	開始アトレス(-rrm= <value>)</value>	
> C/C++ 一般 Renesas QE		メモリ領域 (-debug_monitor= <start address="">-<end address="">)</end></start>	7FE00-7FFFF ← [R-5]
ビルダー	 ごうちょう ごバイス ご 出力 ご 出力 ご その他 ご ユーザー 	☑ オプション・バイト領域のユーザ・オプション・バイトに値を設定する (-user_opt_byte)	
プロジェクト・ホーテャー プロジェクト参照		ユーザ・オプション・バイト値 (-user_opt_byte= <value>)</value>	6E6BE8
実行/デバッグ設定		└」オフションバイト領域のオンナッフ・デバック・オフション・バイトに値を設 オンチップ・デバッグ制御値 (-ocdbg- <value>)</value>	定する (-ocdbg)
	 Solution Solution<	□ オプション・バイト領域のセキュリティ・オプション・バイトに値を設定する	(-security_opt_byte)
		セキュリティ・オプション・バイト制御値 (-security_opt_byte= <value>)</value>	FE
		セクションを配置しないRAM領域 (-self/-ocdtr/-ocdhpi)	なし
		セクションを配置した場合にワーニングを出力する (-selfw/-ocdtrw/-ocdpiw)	
		□ オノシェクト・ファイル作成時に指定したテハイス・ファイルかすべて同一 □ (64K-1)パイト境界を跨ぐセクション配置のチェックを抑止する (-chec	・(*あるかナエックを行う (-check_device) k 64k only)
		□ セクションの割り付けアドレスがデバイス・ファイルの情報と整合するか	チェックを行わない (-no_check_section_layout)
		セクション割り付け領域の整合性をチェックするアドレス範囲とメモリ種	別 (-cpu)

RL78/F22 用設定(ROM:128KB) R7F122FGG の例

> リソース > C/C++ ビルド	🛞 ツール設定 Toolchain De	evice 🎤 ビルド・ステップ 🙅 ビルド成果物 🔜 バイナリー・パーサー 🄇	● エラー・パーサー
スタック解析 ツールチェイン・Tディター	> 🐯 Common	セキュリティID値 (-security_id)	0
ビルド変数	> 🛞 Compiler	シリアル・プログラミング・セキュリティID値 (-flash_security_id)	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
ロギング	V 🛞 Linker	RRM/DMM機能用ワーク領域を確保する (-rrm)	
泉定	> 🖄 入力	開始アドレス (-rrm= <value>) —</value>	
> C/C++ 一般	 タスト 登録 ま適化	✓ OCDモニタのメモリ領域を確保する (-debug_monitor)	
Renesas QE ビルダー		メモリ領域 (-debug_monitor= <start address="">-<end address="">)</end></start>	
プロジェクト・ネーチャー		✓オノジョン・ハイト領域のユーザ・オノジョン・ハイトに値を設定する (-us コーザ・オブション・バイト値 (-user opt bute- <values)< p=""></values)<>	
プロジェクト参照		マンオブションバイト領域のオンチップ・デバッグ・オブション・バイトに値を設定する (-ocdbg)	
美行/ナハック設定	2−ザ−	オンチップ・デバッグ制御値 (-ocdbg= <value>)</value>	A5
	> 🛞 Converter	☑ オプション・バイト領域のセキュリティ・オプション・バイトに値を設定する	(-security_opt_byte)
		セキュリティ・オプション・バイト制御値 (-security_opt_byte= <value>)</value>	FE
		セクションを配置しないRAM領域 (-self/-ocdtr/-ocdhpi)	なし
		■ セクションを配置した場合にワーニングを出力する (-selfw/-ocdtrw/-	ocdhpiw)
		□オブジェクト・ファイル作成時に指定したデバイス・ファイルがすべて同一	であるかチェックを行う (-check_device)
		□ (64K-1)ハイト境界を跨ぐセクション配直のナエックを抑止する (-chec) □ セクションの割りはけけアドレスがデバイス・ファイルの情報と整合するか	k_64k_only) FTックを行わたし (-no check section layout)
		セクション割り付け領域の整合性をチェックするアドレス範囲とメモリ種	别 (-cpu)
		セクション割り付け領域の整合性をチェックするアドレス範囲とメモリ種	킹 (-cpu)

7.3.2 IAR Embedded Workbench (IAR コンパイラ)を使用する場合の変更箇所

以降、IAR Embedded Workbench (IAR コンパイラ)を使用する場合の変更箇所と変更例を記載します。

7.3.2.1 デバイス用ヘッダ・ファイルの設定

EES RL78 Type03 で用意している main.c, low_level_init.c では、RL78/F25(R7F125FPL)用のヘッダ・ファイルを インクルードしています。その他の RL78/F25 製品や RL78/F22 製品を使用する場合は、インクルードするヘッダ・ ファイルを使用するデバイス用のヘッダ・ファイルに変更する必要があります。

ここでは、RL78/F22(R7F122FGG)を使用する場合の例を記載します。

対象ファイル名:main.c, low_level_init.c

- RL78/F25(R7F125FPL)用:

< main.c >

#include "ior7f125fpl.h"

< low_level_init.c >

#include "ior7f125fpl.h"

#include "ior7f125fpl_ext.h"

- RL78/F22(R7F122FGG)を使用する場合の例:

< main.c >

#include "ior7f122fgg.h"

< low_level_init.c >

#include "ior7f122fgg.h"

#include "ior7f122fgg_ext.h"

※ 製品のデバイス型名については、RL78/F22,F25 用 MCU リストの"Target MCU name" 列をご確認ください。

7.3.2.2 サンプル用リンカファイルの設定

EES RL78 Type03 で提供しているサンプル・プログラムでは、RL78/F25(R7F125FPL)のセクション(ROM, RAM, Data flash の範囲) が設定されています。RL78/F25(R7F125FPL)以外のデバイスを使用する場合は、セクション設定 や、デバッガ使用時の TraceRAM 領域、デバッガ・モニタ領域の範囲、ホットプラグイン用 RAM 領域が異なるた め、EES RL78 Type03 の RL78/F25 用に提供されているサンプル用リンカファイル(sample_linker_file.icf)の内容を 変更します。下記に変更箇所を赤文字で示していますので、RL78/F22,F25 用 MCU リストを参照し、設定値を対象 デバイス用に変更してください。

対象ファイル名:sample_linker_file.icf

RL78/F25(R7F125FPL)から RL78/F22(R7F122FGG)へ変更する場合を例として示します。

- ROM 領域を 128KB[0x00000 - 0x1FFFF]の範囲に設定します。

- RAM 領域が 12KB[<mark>0x0FCF00</mark> - 0x0FFEFF]のため、開始アドレスを"<mark>0xFCF00</mark>"に変更します。

- Data flash 領域が 8KB[0x0F1000 - 0x0F2FFF]のため、終了アドレスを"0xF2FFF"に変更します。

(1) セクション設定

- ROM, RAM, Data Flash のサイズの変更箇所

例) RL78/F25(R7F125FPL)用設定 ROM: 512KB, RAM: 40KB, Data Flash: 16KB

define region ROM_near = mem:[from 0x00132 to 0x0FFFF]; ← [R-2]					
define region ROM_far = mem:[from 0x00132 to 0x0FFFF] mem:[from 0x10000 to 0x1FFFF]					
mem:[from 0x20000 to 0x2FFFF] mem:[from 0x30000 to 0x3FFFF]					
mem:[from 0x40000 to <mark>0x4FFFF</mark>] mem:[from 0x50000 to <mark>0x5FFFF</mark>]					
mem:[from 0x60000 to <mark>0x6FFFF</mark>] mem:[from 0x70000 to <mark>0x7FFFF]; ← [R-2], [R-3] 注 1</mark>					
define region ROM_huge = mem:[from 0x00132 to <mark>0x7FFFF</mark>]; ← [R-2] or [R-3] 注 2					
define region SADDR = mem:[from 0xFFE20 to 0xFFEDF];					
define region RAM_near = mem:[from 0xF5F00 to 0xFFE1F]; ← [R-1]					
define region RAM_far = mem:[from 0xF5F00 to 0xFFE1F]; ← [R-1]					
define region RAM_huge = mem:[from 0xF5F00 to 0xFFE1F]; ← [R-1]					
define region VECTOR = mem:[from 0x00000 to 0x0007F];					
define region CALLT = mem:[from 0x00080 to 0x000BF];					
define region EEPROM = mem:[from 0xF1000 to 0xF4FFF]; ← [R-4]					

注1 ROM サイズが 64KB よりも大きい場合、ROM サイズが増加するごとに記載を変更する必要があります。

注 2 RL78/F22,F25 用 MCU リストの[R-3] にアドレス値が入力されている場合は[R-3] の値を使用し、"-"の場合は [R-2] の値を設定してください。

例) RL78/F22(R7F122FxG)用設定 ROM: 128KB, RAM: 12KB, Data Flash: 8KB

define region ROM_near = mem:[from 0x00132 to 0x0FFFF]; define region ROM_far = mem:[from 0x00132 to 0x0FFFF] | mem:[from 0x10000 to 0x1FFFF]; define region ROM_huge = mem:[from 0x00132 to 0x1FFFF]; define region SADDR = mem:[from 0xFFE20 to 0xFFEDF]; define region RAM_near = mem:[from 0xFCF00 to 0xFFE1F]; define region RAM_far = mem:[from 0xFCF00 to 0xFFE1F]; define region RAM_huge = mem:[from 0xFCF00 to 0xFFE1F]; define region RAM_huge = mem:[from 0xFCF00 to 0xFFE1F]; define region CALLT = mem:[from 0x00000 to 0x0007F]; define region EEPROM = mem:[from 0xF1000 to 0xF2FFF]; (2) デバッグ設定

- デバッグ・モニタ領域の先頭アドレスは、ROM 領域の終了アドレスから"511byte(0x1FF)"を減算したアドレスを 設定します。終了アドレスが"0x7FFFF"なら、"0x7FE00"を設定します。
- TraceRAM 領域の先頭アドレスは、RAM 領域の先頭アドレスに"1KB(0x400)"を加算したアドレスを設定します。 先頭アドレスが"0xF5F00"なら、"0xF6300"を設定します。
- ホットプラグイン用 RAM 領域の先頭アドレスは、RAM 領域の先頭アドレスに"0x600"を加算したアドレスを設定 します。 先頭アドレスが"0xF5F00"なら、"0xF6500"を設定します。
- オンチップ・デバッガでセルフ・プログラミングのデバッグ実行時に RAM の先頭アドレスから 128byte の領域を 使用するため、RAM 領域の先頭アドレスと"127 バイト(0x7F)"を加算したアドレスを設定します。先頭アドレスが "0xF5F00"なら、"0xF5F00"と"0xF5F7F"を設定します。

RL78/F25(R7F125FPL)から RL78/F22(R7F122FGG)へ変更する場合を例として示します。

- デバッグ・モニタ領域の範囲を[from <mark>0x1FE00</mark> size 0x0200]に設定します。
- TraceRAM 領域の範囲を[from 0xFD300 size 0x0200]に設定します。
- ホットプラグイン用 RAM 領域の範囲を[from 0xFD500 size 0x0030]に設定します。
- セルフ・プログラミングのデバッグをするために必要な領域を[from 0xFCF00 to 0xFCF7F]に設定します。
- デバッガ使用時の TraceRAM 領域、デバッグ・モニタ領域、ホットプラグイン RAM 領域の変更箇所

例) RL78/F25(R7F125FPL)用設定 ROM: 512KB, RAM: 40KB

```
if (isdefinedsymbol(__RESERVE_OCD_ROM))
{
    if (__RESERVE_OCD_ROM == 1)
    reserve region "OCD ROM area" = mem:[from 0x7FE00 size 0x0200]; ← [R-5]
    }
}
(一部省略)
    if (isdefinedsymbol(__RESERVE_OCD_TRACE_RAM))
{
    if (__RESERVE_OCD_TRACE_RAM == 1)
    {
    reserve region "OCD Trace RAM" = mem:[from 0xF6300 size 0x0200]; ← [R-6]
    }
}
    I
(一部省略)
if (isdefinedsymbol(__RESERVE_HOTPLUGIN_RAM))
{
 if (___RESERVE_HOTPLUGIN_RAM == 1)
 {
  reserve region "Hot Plugin RAM" = mem:[from 0xF6500 size 0x0030];
                                                             ← [R-7]
}
}
(一部省略)
if (isdefinedsymbol(__RESERVE_FLASH_SELF_PROGRAMMING_RAM))
{
 if ( RESERVE_FLASH_SELF_PROGRAMMING_RAM == 1)
{
 reserve region "RESERVED_FLASH_SELF_PROGRAMMING_RAM" = mem:[from 0xF5F00] to 0xF5F7F];
}
                                                                          1 [R-1]
}
```

例) RL78/F22(R7F122FGG)用設定 ROM: 128KB, RAM: 12KB

```
if (isdefinedsymbol(__RESERVE_OCD_ROM))
{
     if (__RESERVE_OCD_ROM == 1)
    reserve region "OCD ROM area" = mem:[from 0x1FE00 size 0x0200];
    }
}
(一部省略)
if (isdefinedsymbol(__RESERVE_OCD_TRACE_RAM))
{
    if (___RESERVE_OCD_TRACE_RAM == 1)
     {
    reserve region "OCD Trace RAM" = mem:[from 0xFD300 size 0x0200];
     }
}
(一部省略)
if (isdefinedsymbol(__RESERVE_HOTPLUGIN_RAM))
{
 if (___RESERVE_HOTPLUGIN_RAM == 1)
 {
  reserve region "Hot Plugin RAM" = mem:[from 0xFD500 size 0x0030];
}
}
(一部省略)
if (isdefinedsymbol(__RESERVE_FLASH_SELF_PROGRAMMING_RAM))
{
if (__RESERVE_FLASH_SELF_PROGRAMMING_RAM == 1)
{
  reserve region "RESERVED_FLASH_SELF_PROGRAMMING_RAM" = mem:[from 0xFCF00 to 0xFCF7F];
}
}
```

(3) RAM の開始アドレス設定

RAM 領域の開始アドレスを設定します。

"sample_linker_file.icf"は、RL78/F25(R7F125FPL)の RAM サイズを 40KB で使用する設定のため、RAM サイズ を 40KB 以外で使用する場合は設定を変更する必要があります。

ここでは、RL78/F22(R7F122FGG)の RAM サイズを 12KB で使用するための設定変更例を記載します。 RL78/F22R7F122FGG)を RAM サイズ 12KB で使用するためには、RAM 開始アドレス設定レジスタ(RAMSAR)の 値を"0x5F"から"0xCF"に変更します。

RAM 開始アドレス設定レジスタ(RAMSAR)の詳細は、デバイスのハードウェアマニュアルでご確認ください。

例) RL78/F25 用設定(RAM:40KB) R7F125FPL

例) RL78/F22 用設定(RAM:12KB) R7F122FGG

8 改定記録

8.1 2	▶版で改定され⊅	た主な箇所
-------	----------	-------

Rev.	発行日	改定内容		
		Page	概要	
1.00	2024.08.05	-	新規作成	
1.01	2025.05.30	-	RL78/F22 追加サポート	

EEPROM エミュレーション・ソフトウェア RL78 Type03 ユーザーズマニュアル

- 発行年月日 2025年 05月 30日 Rev.1.01
- 発行 ルネサス エレクトロニクス株式会社〒135-0061 東京都江東区豊洲3-2-24(豊洲フォレシア)

EEPROM エミュレーション・ソフトウェア RL78 Type03

R20UT5477JJ0101