

本資料に記載の全ての情報は本資料発行時点のものであり、ルネサス エレクトロニクスは、 予告なしに、本資料に記載した製品または仕様を変更することがあります。 ルネサス エレクトロニクスのホームページなどにより公開される最新情報をご確認ください。

製品ご使用上の注意事項

ここでは、マイコン製品全体に適用する「使用上の注意事項」について説明します。個別の使用上の注意事項については、本ドキュメントおよびテクニカルアップデートを参照してください。

1. 静雷気対策

CMOS 製品の取り扱いの際は静電気防止を心がけてください。CMOS 製品は強い静電気によってゲート絶縁破壊を生じることがあります。運搬や保存の際には、当社が出荷梱包に使用している導電性のトレーやマガジンケース、導電性の緩衝材、金属ケースなどを利用し、組み立て工程にはアースを施してください。プラスチック板上に放置したり、端子を触ったりしないでください。また、CMOS 製品を実装したボードについても同様の扱いをしてください。

2 電源投入時の処置

電源投入時は、製品の状態は不定です。電源投入時には、LSIの内部回路の状態は不確定であり、レジスタの設定や各端子の状態は不定です。外部 リセット端子でリセットする製品の場合、電源投入からリセットが有効になるまでの期間、端子の状態は保証できません。同様に、内蔵パワーオン リセット機能を使用してリセットする製品の場合、電源投入からリセットのかかる一定電圧に達するまでの期間、端子の状態は保証できません。

3. 電源オフ時における入力信号

当該製品の電源がオフ状態のときに、入力信号や入出力プルアップ電源を入れないでください。入力信号や入出力プルアップ電源からの電流注入により、誤動作を引き起こしたり、異常電流が流れ内部素子を劣化させたりする場合があります。資料中に「電源オフ時における入力信号」についての記載のある製品は、その内容を守ってください。

4. 未使用端子の処理

未使用端子は、「未使用端子の処理」に従って処理してください。CMOS製品の入力端子のインピーダンスは、一般に、ハイインピーダンスとなっています。未使用端子を開放状態で動作させると、誘導現象により、LSI周辺のノイズが印加され、LSI内部で貫通電流が流れたり、入力信号と認識されて誤動作を起こす恐れがあります。

5. クロックについて

リセット時は、クロックが安定した後、リセットを解除してください。プログラム実行中のクロック切り替え時は、切り替え先クロックが安定した後に切り替えてください。リセット時、外部発振子(または外部発振回路)を用いたクロックで動作を開始するシステムでは、クロックが十分安定した後、リセットを解除してください。また、プログラムの途中で外部発振子(または外部発振回路)を用いたクロックに切り替える場合は、切り替え先のクロックが十分安定してから切り替えてください。

6. 入力端子の印加波形

入力ノイズや反射波による波形歪みは誤動作の原因になりますので注意してください。 CMOS 製品の入力がノイズなどに起因して、 V_{IL} (Max.) から V_{IH} (Min.) までの領域にとどまるような場合は、誤動作を引き起こす恐れがあります。入力レベルが固定の場合はもちろん、 V_{IL} (Max.) から V_{IH} (Min.) までの領域を通過する遷移期間中にチャタリングノイズなどが入らないように使用してください。

7. リザーブアドレス (予約領域) のアクセス禁止

リザーブアドレス (予約領域) のアクセスを禁止します。アドレス領域には、将来の拡張機能用に割り付けられている リザーブアドレス (予約領域) があります。これらのアドレスをアクセスしたときの動作については、保証できませんので、アクセスしないようにしてください。

8. 製品間の相違について

型名の異なる製品に変更する場合は、製品型名ごとにシステム評価試験を実施してください。同じグループのマイコンでも型名が違うと、フラッシュメモリ、レイアウトパターンの相違などにより、電気的特性の範囲で、特性値、動作マージン、ノイズ耐量、ノイズ幅射量などが異なる場合があります。型名が違う製品に変更する場合は、個々の製品ごとにシステム評価試験を実施してください。

ご注意書き

- 1. 本資料に記載された回路、ソフトウェアおよびこれらに関連する情報は、半導体製品の動作例、応用例を説明するものです。回路、ソフトウェアおよびこれらに関連する情報を使用する場合、お客様の責任において、お客様の機器・システムを設計ください。これらの使用に起因して生じた損害(お客様または第三者いずれに生じた損害も含みます。以下同じです。)に関し、当社は、一切その責任を負いません。
- 2. 当社製品または本資料に記載された製品データ、図、表、プログラム、アルゴリズム、応用回路例等の情報の使用に起因して発生した第三者の特許権、著作権その他の知的財産権に対する侵害またはこれらに関する紛争について、当社は、何らの保証を行うものではなく、また責任を負うものではありません。
- 3. 当社は、本資料に基づき当社または第三者の特許権、著作権その他の知的財産権を何ら許諾するものではありません。
- 4. 当社製品を組み込んだ製品の輸出入、製造、販売、利用、配布その他の行為を行うにあたり、第三者保有の技術の利用に関するライセンスが必要となる場合、当該ライセンス取得の判断および取得はお客様の責任において行ってください。
- 5. 当社製品を、全部または一部を問わず、改造、改変、複製、リバースエンジニアリング、その他、不適切に使用しないでください。かかる改造、改変、複製、リバースエンジニアリング等により生じた損害に関し、当社は、一切その責任を負いません。
- 6. 当社は、当社製品の品質水準を「標準水準」および「高品質水準」に分類しており、各品質水準は、以下に示す用途に製品が使用されることを意図 しております。

標準水準: コンピュータ、OA機器、通信機器、計測機器、AV機器、家電、工作機械、パーソナル機器、産業用ロボット等高品質水準:輸送機器(自動車、電車、船舶等)、交通制御(信号)、大規模通信機器、金融端末基幹システム、各種安全制御装置等当社製品は、データシート等により高信頼性、Harsh environment 向け製品と定義しているものを除き、直接生命・身体に危害を及ぼす可能性のある機器・システム(生命維持装置、人体に埋め込み使用するもの等)、もしくは多大な物的損害を発生させるおそれのある機器・システム(宇宙機器と、海底中継器、原子力制御システム、航空機制御システム、プラント基幹システム、軍事機器等)に使用されることを意図しておらず、これらの用途に使用することは想定していません。たとえ、当社が想定していない用途に当社製品を使用したことにより損害が生じても、当社は一切その責任を負いません。

- 7. あらゆる半導体製品は、外部攻撃からの安全性を 100%保証されているわけではありません。当社ハードウェア/ソフトウェア製品にはセキュリティ対策が組み込まれているものもありますが、これによって、当社は、セキュリティ脆弱性または侵害(当社製品または当社製品が使用されているシステムに対する不正アクセス・不正使用を含みますが、これに限りません。) から生じる責任を負うものではありません。当社は、当社製品または当社製品が使用されたあらゆるシステムが、不正な改変、攻撃、ウイルス、干渉、ハッキング、データの破壊または窃盗その他の不正な侵入行為(「脆弱性問題」といいます。) によって影響を受けないことを保証しません。当社は、脆弱性問題に起因しまたはこれに関連して生じた損害について、一切責任を負いません。また、法令において認められる限りにおいて、本資料および当社ハードウェア/ソフトウェア製品について、商品性および特定目的との合致に関する保証ならびに第三者の権利を侵害しないことの保証を含め、明示または黙示のいかなる保証も行いません。
- 8. 当社製品をご使用の際は、最新の製品情報(データシート、ユーザーズマニュアル、アプリケーションノート、信頼性ハンドブックに記載の「半導体デバイスの使用上の一般的な注意事項」等)をご確認の上、当社が指定する最大定格、動作電源電圧範囲、放熱特性、実装条件その他指定条件の範囲内でご使用ください。指定条件の範囲を超えて当社製品をご使用された場合の故障、誤動作の不具合および事故につきましては、当社は、一切その責任を負いません。
- 9. 当社は、当社製品の品質および信頼性の向上に努めていますが、半導体製品はある確率で故障が発生したり、使用条件によっては誤動作したりする場合があります。また、当社製品は、データシート等において高信頼性、Harsh environment 向け製品と定義しているものを除き、耐放射線設計を行っておりません。仮に当社製品の故障または誤動作が生じた場合であっても、人身事故、火災事故その他社会的損害等を生じさせないよう、お客様の責任において、冗長設計、延焼対策設計、誤動作防止設計等の安全設計およびエージング処理等、お客様の機器・システムとしての出荷保証を行ってください。特に、マイコンソフトウェアは、単独での検証は困難なため、お客様の機器・システムとしての安全検証をお客様の責任で行ってください。
- 10. 当社製品の環境適合性等の詳細につきましては、製品個別に必ず当社営業窓口までお問合せください。ご使用に際しては、特定の物質の含有・使用を規制する RoHS 指令等、適用される環境関連法令を十分調査のうえ、かかる法令に適合するようご使用ください。かかる法令を遵守しないことにより生じた損害に関して、当社は、一切その責任を負いません。
- 11. 当社製品および技術を国内外の法令および規則により製造・使用・販売を禁止されている機器・システムに使用することはできません。当社製品および技術を輸出、販売または移転等する場合は、「外国為替及び外国貿易法」その他日本国および適用される外国の輸出管理関連法規を遵守し、それらの定めるところに従い必要な手続きを行ってください。
- 12. お客様が当社製品を第三者に転売等される場合には、事前に当該第三者に対して、本ご注意書き記載の諸条件を通知する責任を負うものといたします。
- 13. 本資料の全部または一部を当社の文書による事前の承諾を得ることなく転載または複製することを禁じます。
- 14. 本資料に記載されている内容または当社製品についてご不明な点がございましたら、当社の営業担当者までお問合せください。
- 注 1. 本資料において使用されている「当社」とは、ルネサス エレクトロニクス株式会社およびルネサス エレクトロニクス株式会社が直接的、間接的に 支配する会社をいいます。
- 注 2. 本資料において使用されている「当社製品」とは、注 1 において定義された当社の開発、製造製品をいいます。

(Rev.5.0-1 2020.10)

本社所在地

〒135-0061 東京都江東区豊洲 3-2-24 (豊洲フォレシア)

www.renesas.com

商標について

ルネサスおよびルネサスロゴはルネサス エレクトロニクス株式会社の 商標です。すべての商標および登録商標は、それぞれの所有者に帰属 します。

お問合せ窓口

弊社の製品や技術、ドキュメントの最新情報、最寄の営業お問合せ窓口に関する情報などは、弊社ウェブサイトをご覧ください。

www.renesas.com/contact/

目次

1.	概要	3
1.1	本書の前提と注意事項	3
2.	製品構成	4
3.	製品注文情報	4
4.	ハードウェア構成とデフォルト設定	5
4.1	ハードウェア構成	5
4.2	ブロック図	7
4.3	ボードレイアウト	8
4.4	スペーサ、ねじの取り付け	8
4.5	ジャンパの設定	9
4.6	接続例	9
5.	インバータボードの仕様	10
5.1	機能	
5.1.1	*****	
5.1.2		
5.1.3		
5.1.4		
5.1.5		
5.1.6		
5.1.7		
5.1.8		
5.2		
5.2.1		
5.2.2	2 ホールセンサ信号入力	17
	3 エンコーダ/誘導式位置センサ信号入力	17
6.	設計製造情報	18
7.	ウェブサイトおよびサポート	18
改訂	丁履歴	19

図目次

図 2-1 製品構成	4
図 4-1 インバータボードのブロック図	7
図 4-2 インバータボードのレイアウト	8
図 4-3 スペーサおよびネジの取り付け	8
図 4-4 ジャンパーピンの初期設定	9
図 4-5 ハードウェア接続例	9
図 5-1 インバータ制御回路	10
図 5-2 電流検出回路	11
図 5-3 過電流検出回路	12
図 5-4 出力電圧検出回路	13
表目次	
表 4-1 MCI-LV-1 スペック一覧(1/2)	5
表 4-2 MCI-LV-1 スペック一覧(2/2)	6
表 4-3 ジャンパーピンの初期設定と機能	9
表 5-1 電圧生成回路	13
表 5-2 LED	14
表 5-3 トグルスイッチ、プッシュスイッチ	14
表 5-4 可変抵抗仕様	14
表 5-5 CPU ボードコネクタ(CN3)	15
表 5-6 CPU ボードコネクタ(CN4)	16
表 5-7 ホールセンサ信号入力用コネクタ(CN6)ピンアサイン	17
表 5-8 エンコーダ/誘導式位置センサ信号入力用端子(CN5)ピンアサイン	17

1. 概要

MCI-LV-1 はモータ制御評価用のインバータボードキットです。本製品を CPU ボードと組み合わせて使用することでモータ制御を簡単に実現できます。

MCI-LV-1には、下記の特徴があります。

- (1) ブラシレス DC モータに対応
- (2) 1シャント/2シャント/3シャント電流検出に対応
- (3) 過電流検出回路を用いて過電流保護機能を実現

1.1 本書の前提と注意事項

- 1. ツール類使用の経験について:本書は、e2 studio などの統合開発環境(IDE)などのターミナルエミュレーションプログラムを使用した経験をすでにお持ちであるユーザを想定しています。
- 2. 開発対象の知識について:本書は、MCU、組み込みシステムに関して、サンプルプロジェクトを修正するために必要な基本的な知識をお持ちであるユーザを想定しています。
- 3. 本製品の使用には、静電防止バンドを使用してください。静電気を帯電している状態で本製品に触れる と機器の故障や動作不安定の原因になります。
- 4. 本書に掲載のスクリーンショットは全て参考用です。実際の画面表示内容は、ご使用のソフトウェアや 開発ツールのバージョンによっては異なる場合があります。

2. 製品構成

本キットは以下の部品で構成されています。

- 1. インバータボード (RTK0EM0000B12020BJ) x1
- 2. ブラシレス DC モータ (R42BLD30L3) x1
- 3. ネジ x4
- 4. スペーサ x4

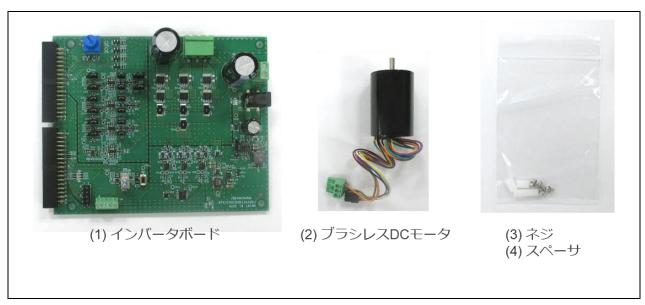


図 2-1 製品構成

RENESAS

3. 製品注文情報

MCI-LV-1 の注文用製品型名: RTK0EM0000S04020BJ

4. ハードウェア構成とデフォルト設定

4.1 ハードウェア構成

MCI-LV-1 はインバータボード、CPU ボード、通信ボードで構成されています。キットとしてのスペックおよびそれぞれのボードのスペックを下記に示します。

表 4-1 MCI-LV-1 スペック一覧(1/2)

項目	仕様		
製品名	MCI-LV-1		
キット型名	RTK0EM0000S04020BJ		
キット構成	インバータボード	RTK0EM0000B12020BJ	
	ブラシレス DC モータ	R42BLD30L3(MOONS'製)	
		定格電圧:36[V]	
		定格電流:1.67[A]	
が一ド寸法使用温度	【注】実物は写真と異 インバータボード: 133mm(幅)×109mm(長さ) 常温		
使用湿度	結露なきこと FN64226 4:2024		
EMC 規格	EN61326-1:2021		
	EMI : Class A		
	EMS: Basic Electromagnetic environmen	t	

表 4-2 MCI-LV-1 スペック一覧(2/2)

項目	仕様	
品名	インバータボード	
基板型名	RTK0EM0000B12020BJ	
外観	OUT OF THE PROPERTY OF THE PRO	
電源入力	【注】実物は写真と異なる場合があります。 下記の 2 通り ・ 電源コネクタ、もしくは DC ジャックから入力 (DC12~48V) *1 CPU ボードから入力 (DC5V)	
└────────────────────────────────────	AC 10 A (実効値) *2	
スイッチング周波数	20 kHz (typical)	
電流検出方式	1シャント、2シャント、3シャント検出	
シャント抵抗	10mΩ	
PWM 論理	下アーム、上アーム共に正論理	
DC バス電圧検出 (母線電圧検出)	抵抗分割による検出 (0 V ~ 48 V)	
三相出力電圧検出	抵抗分割による検出(0V~48V)	
三相出力電流検出	シャント抵抗による検出	
過電流検出	21.4A (AVCC=3.3V の場合) 32.4A (AVCC=5.0V の場合)	
対応センサ	ホールセンサ、エンコーダ	
コネクタ	 CPU ボードコネクタ モータコネクタ 電源入力コネクタ ホールセンサ信号入力用コネクタ エンコーダ/誘導式位置センサ信号入力用コネクタ 	
スイッチ	トグルスイッチ×1プッシュスイッチ×1	
LED	• LED×3 • 電源 LED	

^{*1} DC ジャック(J1)の極性はセンタープラスです。また、適合プラグは内径 2.1mm、外径 5.5mm です。

^{*2 5}A 以上で使用する場合には MOSFET にヒートシンクを取り付けることを強く推奨。

4.2 ブロック図

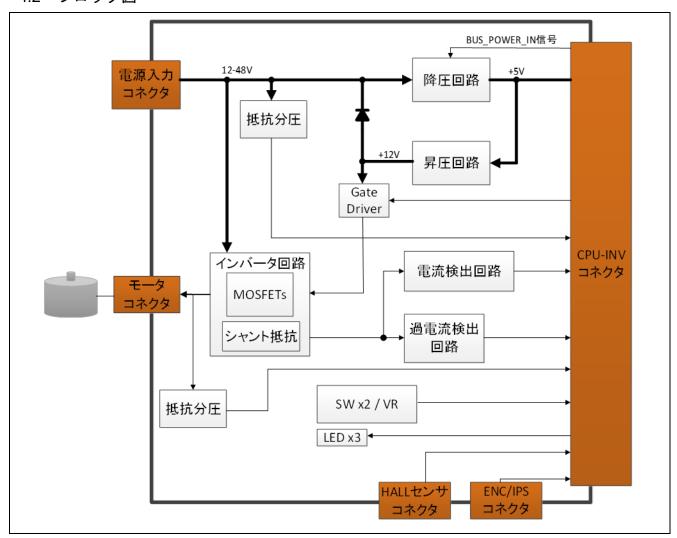


図 4-1 インバータボードのブロック図

4.3 ボードレイアウト

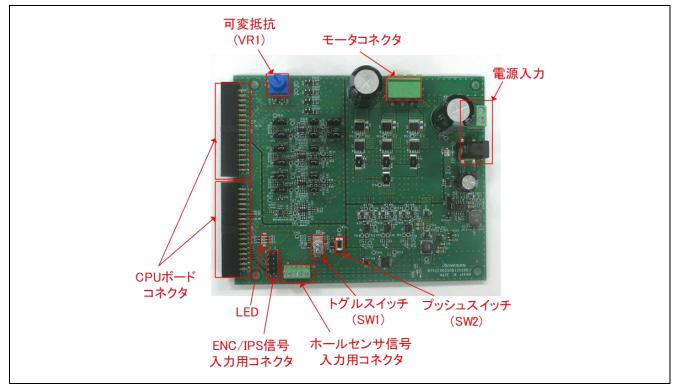


図 4-2 インバータボードのレイアウト

4.4 スペーサ、ねじの取り付け

本製品を使用する前に同梱されているスペーサ、ネジを下記のように取り付けてください。

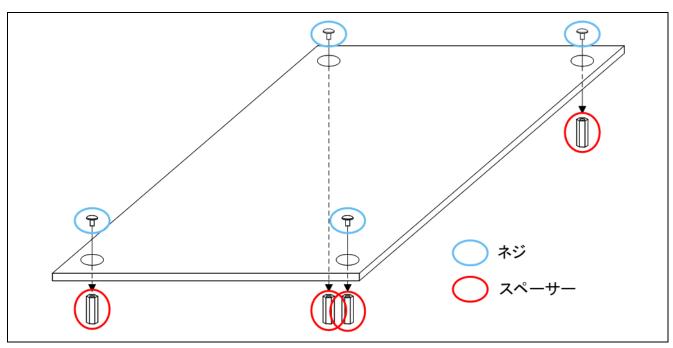


図 4-3 スペーサおよびネジの取り付け

4.5 ジャンパの設定

ジャンパーピン(JP1~JP15)の初期設定と機能について下記に示します。

表 4-3 ジャ	ンパー	ピンの	初期設定	レ機能
----------	-----	-----	------	-----

ジャンパーピン	初期設定	機能
JP1	2-3pin ショート	1-2pin ショート : 5V レギュレータ無効 2-3pin ショート : 5V レギュレータ有効
JP2, JP3, JP4, JP6, JP12, JP13	2-3pin ショート	1-2pin ショート : 電流検出アンプ無効 2-3pin ショート : 電流検出アンプ有効
JP5, JP7, JP9, JP10, JP14, JP15	1-2pin ショート	1-2pin ショート : 電流検出アンプゲイン 20 倍 1-2pin オープン : 電流検出アンプゲイン 10 倍
JP8, JP11	1-2pin ショート	1-2pin ショート : 2-/3-シャント電流検出 2-3pin ショート : 1-シャント電流検出

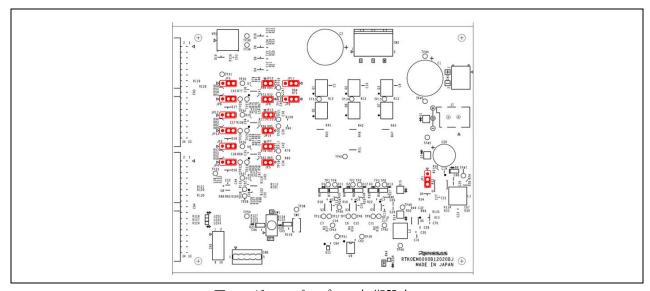


図 4-4 ジャンパーピンの初期設定

4.6 接続例

本製品をルネサス製 CPU ボードおよび通信ボードキット(MC-COM、型名: RTK0EMXC90S00000BJ)と組み合わせて使用する際の接続例を図 4-5 に示します。

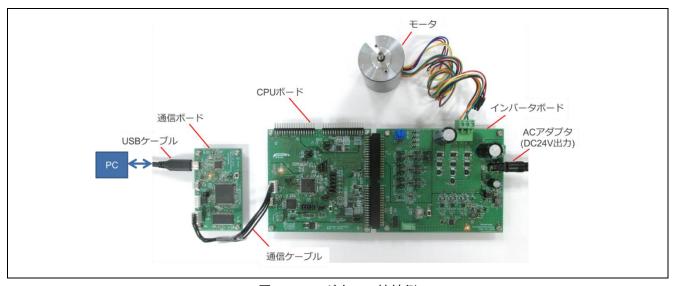


図 4-5 ハードウェア接続例

5. インバータボードの仕様

本章では、インバータボードの仕様について説明します。

5.1 機能

5.1.1 インバータ制御回路部

インバータボードでは6つの POWER MOSFET を用いてモータを制御するインバータ制御回路部を搭載しています。POWER MOSFET は MCU の6相タイマ出力により制御します。

インバータ制御回路部では DC 母線電圧、U、V、W 各相電圧端子およびシャント電流端子をコネクタ(CN3, CN4)へと出力しています。これらの出力を CPU ボード上の MCU の A/D に入力する事により、各電圧とシャント電流のアナログ値の測定が可能となります。電流検出は 5.1.2 節、電圧検出は 5.1.4 節を参照ください。また、シャント抵抗に流れる電流から過電流を検出する機能を搭載しています。詳細は 5.1.3 節をご参照ください。

インバータ制御回路部イメージを図 5-1 に示します。実際の A/D 端子への入力は分圧やオフセットなどを経由している箇所があります。詳しくは回路図をご参照ください。

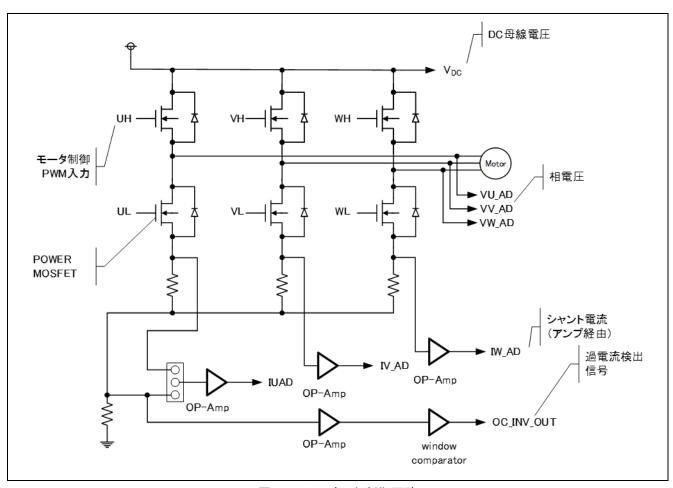


図 5-1 インバータ制御回路

5.1.2 電流検出回路

インバータボードでは U、V、W 相の電流を測定するための電流検出回路を搭載しています。U 相、V 相、W 相にシャント抵抗を搭載することにより電流検出回路を実現しています。電流がそのシャント抵抗に流れることにより発生する電圧降下分を電流検出アンプで増幅させて出力しています。また、初期設定で電流検出アンプのゲインは 20 倍に設定されていますが、JP5,JP7,JP9,JP10,JP14,JP15 をオープンにする事によりゲインを 10 倍に変更することが可能です。シャント抵抗に流れる電流 lin と電流検出回路から出力される電圧 Vout の関係は式(1)、(2)となります。また、JP8,JP11 を 2-3pin ショートに切り替えることによりワンシャント電流検出に対応する事ができます。

ゲイン設定 10 倍: Vout[V] = $Iin[A] \times Rs[\Omega] \times 10 + AVCC/2$ (1)

ゲイン設定 20 倍: Vout[V] = $Iin[A] \times Rs[\Omega] \times 20 + AVCC/2$ (2)

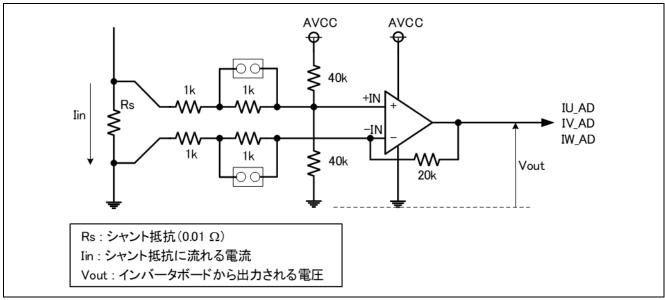


図 5-2 電流検出回路

5.1.3 過電流検出回路

図 5-3 の過電流検出回路を用いて入力電流から過電流を検出します。電流値が閾値以下であれば、 OC_INV_OUT は HIGH ですが、過電流を検出すると LOW となります。よって、過電流検出信号を監視し、LOW になった場合にゲート駆動用 PWM 出力端子を LOW もしくは Hi-Z 状態となるよう設定することで、ボードおよびモータを保護することができます。本製品のシャント抵抗値 Rs は $10m\Omega$ のため、過電流検知する電流値は AVCC=3.3V の場合は 21.4A、AVCC=5.0V の場合は 32.4A です。

<u>本回路はボードおよびモータを直接保護するものではありません。</u>マイクロコントローラなどにより適切な 処理を行い、保護するようにしてください。

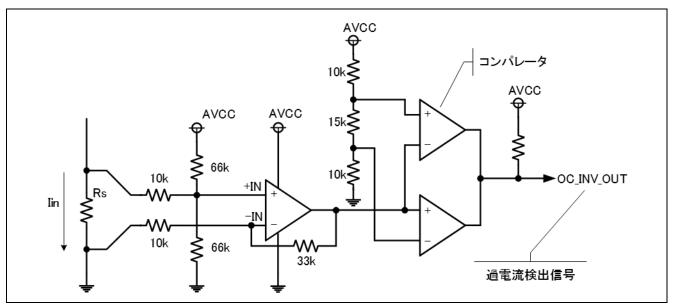


図 5-3 過電流検出回路

5.1.4 出力電圧検出回路

インバータボードでは抵抗分圧を介して母線電圧及び三相出力電圧(U相、V相、W相)をマイクロコントローラの AD 端子に入力する回路を搭載しています。三相出力電圧及び母線電圧と検出用電圧の関係は式(3)となります。

$$Vout[V] = \frac{470}{10 \times 10^3 + 470} \times Vin[V]$$
 (3)

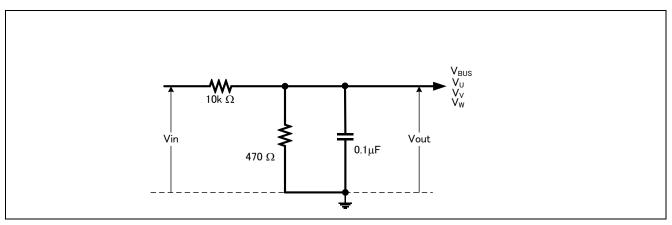


図 5-4 出力電圧検出回路

5.1.5 電圧生成回路

インバータボードでは、5V 電源(回路図では"+5V")からゲートドライバ駆動用電圧(回路図では"+12V")を 生成します。また、CPU ボードから 5V が供給されない場合は、インバータボード上で 5V を生成します。

項目	入力電圧 [V]	出力電圧(TYP.) [V]	出力電流(Max) [A]
5V 生成	12~48	5	0.6
ゲートドライバ 駆動電圧生成	5	11.4	-

表 5-1 電圧生成回路

5.1.6 LED

インバータボードでは、ユーザが制御可能な LED を 3 個搭載しています。LED のオンオフは端子状態で制御されます。

表 5-2 LED

コネクタ端子		LED1	LED2	LED3
CN4-18	HIGH	消灯	=	-
	LOW	点灯	-	-
CN4-19	HIGH	-	消灯	-
	LOW	-	点灯	-
CN4-20	HIGH	-	-	消灯
	LOW	-	-	点灯

5.1.7 トグルスイッチ、プッシュスイッチ

インバータボードでは、トグルスイッチ(SW1)、プッシュスイッチ(SW2)を搭載しています。スイッチの状態で端子電圧が制御されます。

表 5-3 トグルスイッチ、プッシュスイッチ

コネクタ端子		SW1	SW2
CN4-16	CN4-16 HIGH		-
	LOW	OFF	-
CN4-17	HIGH	-	RELEASE
	LOW	-	PUSH

5.1.8 可変抵抗

インバータボードでは、可変抵抗 (VR1) を搭載しています。ボリューム抵抗を時計回りに回すと可変抵抗の端子電圧(コネクタ CN3 の 17 ピン)が低く、反時計回りに回すと高くなります。

表 5-4 可変抵抗仕様

項目	仕様
電圧範囲	0~AVCC
可変抵抗範囲	0~10kΩ

5.2 端子割り当て

5.2.1 CPU ボード接続

表 5-5 CPU ボードコネクタ(CN3)

端子 No	出力方向	信号
1	-	SPARE1
2	-	AGND
3	To CPU	電源電圧検出
4	-	AGND
5	To CPU	U相電流検出
6	To CPU	U 相電流検出(PGAVSS)
7	To CPU	V 相電流検出
8	To CPU	V 相電流検出(PGAVSS)
9	To CPU	W 相電流検出
10	To CPU	W 相電流検出(PGAVSS)
11	To CPU	U相電圧検出
12	To CPU	V 相電圧検出
13	To CPU	W 相電圧検出
14	-	AGND
15	To CPU	VPFC_AD
16	To CPU	IPFC_AD
17	To CPU	VR1
18	-	AGND
19	-	AVCC
20	-	AVCC
21	-	AGND
22	-	AGND
23	-	VCC
24	-	VCC
25	-	DGND
26	-	DGND
27	To INV	PWM U 相(Lower)
28	-	DGND
29	To INV	PWM U 相(Upper)
30	-	DGND
31	To INV	PWM V 相(Lower)
32	-	DGND
33	To INV	PWM V 相(Upper)
34	-	DGND

表 5-6 CPU ボードコネクタ(CN4)

端子 No	出力方向	信号
1	To INV	PWM W 相(Lower)
2	-	DGND
3	To INV	PWM W 相(Upper)
4	-	DGND
5	-	SPARE2
6	-	SPARE3
7	-	SPARE4
8	-	SPARE5
9	To INV	CPU ボードからの電圧供給信号
10	To CPU	INV 接続判定信号
11	To CPU	セーフインターロック用接続判定信号
12	To CPU	過電流検出
13	To CPU	OC_PFC_OUT
14	To INV	PWM_IN
15	To INV	RELAY_IN
16	To CPU	SW1
17	To CPU	SW2
18	To INV	LED1
19	To INV	LED2
20	To INV	LED3
21	To CPU	HALL センサ U 相
22	To CPU	HALL センサ V 相
23	To CPU	HALL センサ W 相
24	To CPU	IPS_SIO_SDA
25	To CPU	IPS_SCK_SCL
26	To CPU	IPS_CSN_IRQN/エンコーダ Z 相
27	To CPU	IPS_A/エンコーダ A 相
28	To CPU	IPS_A#/エンコーダ A 相#
29	To CPU	IPS_B/エンコーダ B 相
30	To CPU	IPS_B#/エンコーダ B 相#
31	-	AGND
32	-	AGND
33	-	+5V
34	-	+5V

5.2.2 ホールセンサ信号入力

本製品はホールセンサ信号入力用コネクタを設けています。ホールセンサ信号入力用コネクタのピンアサインを表 5-7 に示します。

表 5-7 ホールセンサ信号入力用コネクタ (CN6) ピンアサイン

端子 No.	端子機能
1	DGND
2	+5V
3	HALL_W
4	HALL_V
5	HALL_U

5.2.3 エンコーダ/誘導式位置センサ信号入力

本製品はエンコーダ/誘導式位置センサ信号入力用ピンを設けています。ピンアサインを表 5-8 に示します。

表 5-8 エンコーダ/誘導式位置センサ信号入力用端子(CN5)ピンアサイン

端子 No.	端子機能
1	VCC
2	+5V
3	CSN_IRQN/ENC_Z
4	SIO_SDA
5	SCK_SCL
6	IPS_A/ENC_A
7	IPS_A#/ENC_A#
8	IPS_B/ENC_B
9	IPS_B#/ENC_B#
10	DGND

6. 設計製造情報

本製品の設計製造情報は、renesas.comから入手できます。

7. ウェブサイトおよびサポート

ツールやドキュメントのダウンロード、技術サポートなどは、下記のウェブサイトを通じて利用できます。

· Renesas サポート <u>renesas.com/support</u>

改訂履歴

Rev.	発行日	改訂内容	
		ページ	ポイント
1.00	2021年8月3日	_	初版
1.10	2022年10月28日	14	表 5-3 を改訂
1.20	2023年12月20日	6, 12	過電流閾値を修正(AVCC=3.3V で 21.4A、AVCC=5.0V で 32.4A)
		17	誤記を修正(CN7→CN5)

発行年月日 2023年12月20日 Rev 1.20

発行 ルネサス エレクトロニクス株式会社 〒135-0061 東京都江東区豊洲 3-2-24 (豊洲フォレシア)

