
U
ser’s M

anual

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

RH850G4MH
Virtualization

User’s Manual: Software

Rev. 1.10 Jun. 2021

32
Renesas microcontroller
RH850 Family

www.renesas.com

© 2021 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of
these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or
other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system;
undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims
any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is
inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not
limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products
are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury,
injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety
design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging
degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered trademarks
are the property of their respective owners.

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement

tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be

touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on
The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in

a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level

at which resetting is specified.

3. Input of signal during power-off state
Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements.

Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins
Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated

due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed

high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to power supply or GND via a resistor if there is a possibility

that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications

governing the device.

5. Voltage application waveform at input pin
Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (Max.)

and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level

is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).

6. Prohibition of access to reserved addresses
Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.

7. Power ON/OFF sequence
In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply

after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal

power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing

malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged

separately for each device and according to related specifications governing the device.

Table of Contents

Section 1 Overview .. 5
1.1 Purpose of This User’s Manual .. 5

Section 2 Instruction ... 6
2.1 Opcodes and Instruction Formats .. 6

2.1.1 CPU Instructions .. 6
2.1.2 Coprocessor Instructions ... 8
2.1.3 Reserved Instructions .. 8

2.2 Basic Instructions .. 9
2.2.1 Overview of Basic Instructions ... 9
2.2.2 Special Operations ... 9
2.2.3 Basic Instruction Set .. 10

2.2.3.1 EIRET ... 13
2.2.3.2 FERET .. 15
2.2.3.3 LDM.MP .. 17
2.2.3.4 STM.MP .. 20

2.3 Cache Instructions .. 22
2.4 Floating-Point Instructions .. 22
2.5 Extended Floating-Point Instructions .. 22
2.6 Virtualization Support Instructions .. 23

2.6.1 Overview of Virtualization Support Instructions ... 23
2.6.2 Virtualization Support Instruction Set ... 23

2.6.2.1 HVTRAP ... 24
2.6.2.2 LDM.GSR .. 26
2.6.2.3 STM.GSR .. 28

Appendix A Number of Instruction Execution Clocks ... 30
A.1 Numbers of Clock Cycles for Execution ... 30
A.2 Number of G4MH Instruction Execution Clocks ... 30

RH850G4MH Virtualization Section 1 Overview

R01US0432EJ0110 Rev.1.10 Page 5 of 32
June 30, 2021

Section 1 Overview

1.1 Purpose of This User’s Manual
This user's manual describes the details of instructions related to the virtualization functionNote 1 available in the
RH850G4MH. For details of other instructions, see the RH850G4MH User's Manual: Software.

For details of RH850 architecture, see the hardware manual of the product used.

Note 1. The virtualization function is supported only when Architecture Identifier bit is 07H in the PID register of RH850 architecture.

RH850G4MH Virtualization Section 2 Instruction

R01US0432EJ0110 Rev.1.10 Page 6 of 32
June 30, 2021

Section 2 Instruction

This section describes the instructions (mnemonics) used for this CPU.

Only the changes involved with the addition of the virtualization support function are described below. For details of
each instruction (mnemonic) for which any specification has not been changed, see the relevant section of the
RH850G4MH User's Manual: Software.

2.1 Opcodes and Instruction Formats
This CPU has two types of instructions: CPU instructions, which are defined as basic instructions, and coprocessor
instructions, which are defined according to the application.

2.1.1 CPU Instructions
Instructions classified as CPU instructions are allocated in the opcode area other than the area used in the format of the
coprocessor instructions shown in Section 2.1.2, Coprocessor Instructions.

CPU instructions are basically expressed in 16-bit and 32-bit formats. There are also several instructions that use option
data to add bits, enabling the configuration of 48-bit and 64-bit instructions. For details, see the opcode of the relevant
instruction in Section 2.2.3, Basic Instruction Set.

Opcodes in the CPU instruction opcode area that do not define significant CPU instructions are reserved for future
function expansion and cannot be used. For details, see Section 2.1.3, Reserved Instructions.

Only the instruction format of each instruction (mnemonic) changed with the addition of the virtualization support
function is described below. For details of the instruction format of each instruction (mnemonic) for which any
specification has not been changed, see the relevant section of the RH850G4MH User's Manual: Software.

RH850G4MH Virtualization Section 2 Instruction

R01US0432EJ0110 Rev.1.10 Page 7 of 32
June 30, 2021

(1) Extended Instruction Format 2 (Format X)

This is a 32-bit instruction format that has a 6-bit opcode field and uses the other bits as a sub- opcode field.

CAUTION

Extended instruction format 2 might use part of the general-purpose register specification field or the sub-opcode field as
a system register number field, condition code field, immediate field, or displacement field. For details, see the
description of each instruction in Section 2.2.3, Basic Instruction Set.

15 5 011 10

opcode

4 31 1617

0sub-opcode sub-opcode/
imm/vector sub-opcode

(2) Extended Instruction Format 3 (Format XI)

This is a 32-bit instruction format that has a 6-bit opcode field and three general-purpose register specification fields,
and uses the other bits as a sub-opcode field.

CAUTION

Extended instruction format 3 might use part of the general-purpose register specification field or the sub-opcode field as
a system register number field, condition code field, immediate field, or displacement field. For details, see the
description of each instruction in Section 2.2.3, Basic Instruction Set.

15 5 011 10

reg1opcode reg3

4 31 16

reg2

27 26

0

17

sub-opcode

RH850G4MH Virtualization Section 2 Instruction

R01US0432EJ0110 Rev.1.10 Page 8 of 32
June 30, 2021

2.1.2 Coprocessor Instructions
For detailed of Coprocessor Instructions, see the relevant section of the RH850G4MH User's Manual: Software.

2.1.3 Reserved Instructions
For detailed of Reserved Instructions, see the relevant section of the RH850G4MH User's Manual: Software.

RH850G4MH Virtualization Section 2 Instruction

R01US0432EJ0110 Rev.1.10 Page 9 of 32
June 30, 2021

2.2 Basic Instructions

2.2.1 Overview of Basic Instructions
Only the changes involved with the addition of the virtualization support function are described below. For details of
each instruction (mnemonic) for which any specification has not been changed, see the relevant section of the
RH850G4MH User's Manual: Software.

(16) Special Instructions

The following instructions (mnemonics) are provided.

● EIRET : Return from EI level trap or interrupt

● FERET : Return from FE level trap or interrupt

● LDM.MP : Load Multiple MPU entries from memory

● STM.MP : Store Multiple MPU entries to memory

2.2.2 Special Operations
For detailed of Special Operations, see the relevant section of the RH850G4MH User's Manual: Software.

RH850G4MH Virtualization Section 2 Instruction

R01US0432EJ0110 Rev.1.10 Page 10 of 32
June 30, 2021

2.2.3 Basic Instruction Set
This section explains the following items of each mnemonic (in alphabetical order).

● Instruction format: Indicates how the instruction is written and its operand(s) (for symbols, see Table 2.1).

● Operation: Indicates the function of the instruction (for symbols, see Table 2.2).

● Format: Indicates the instruction format (see Section 2.1, Opcodes and Instruction Formats).

● Opcode: Indicates the bit field of the instruction opcode (for symbols, see Table 2.3).

● Flag: Indicates the change of flags of PSW (program status word) after the instruction execution.
“0” is to clear (reset), “1” to set, and “—” to remain unchanged.

● Description: Describes the operation of the instruction.

● Supplement: Provides supplementary information on the instruction.

● Caution: Provides precautionary notes.

Table 2.1 Conventions of Instruction Format

Symbol Meaning

reg1 General-purpose register (as source register)

reg2 General-purpose register (primarily as destination register with some as source registers)

reg3 General-purpose register (primarily used to store the remainder of a division result and/or the higher 32 bits of a
multiplication result)

bit#3 3-bit data to specify bit number

imm × ×-bit immediate data

disp × ×-bit displacement data

regID System register number

selID System register selection ID

vector × Data to specify vector (× indicates the bit size)

cond Condition code (see Table 2.4)

cccc 4-bit data to specify condition code (see Table 2.4)

sp Stack pointer (r3)

ep Element pointer (r30)

list12 Lists of registers

rh-rt Indicates multiple general-purpose registers, from the general-purpose register indicated by rh to the general-
purpose register indicated by rt.

eh-et Indicates multiple system registers of MPU entry (MPLA, MPUA, MPAT), from the entry number indicated by eh to
the entry number indicated by et.

[]+ Post increment addressing

[]− Post decrement addressing

Table 2.2 Conventions of Operation (1/2)

Symbol Meaning

← Assignment

GR [a] Value stored in general-purpose register a

SR [a, b] Value stored in system register (RegID = a, SelID = b)

(n:m) Bit selection. Select from bit n to bit m.

CheckException(a) Checks the conditions for generating the exception “a” and, if one is detected, suspends the
instruction execution and performs exception processing.

RH850G4MH Virtualization Section 2 Instruction

R01US0432EJ0110 Rev.1.10 Page 11 of 32
June 30, 2021

Table 2.2 Conventions of Operation (2/2)

Symbol Meaning

zero-extend (n) Zero-extends “n” to word

sign-extend (n) Sign-extends “n” to word

load-memory (a, b) Reads data of size b from address a

store-memory (a, b, c) Writes data b of size c to address a

extract-bit (a, b) Extracts value of bit b of data a

set-bit (a, b) Sets value of bit b of data a

not-bit (a, b) Inverts value of bit b of data a

clear-bit (a, b) Clears value of bit b of data a

saturated (n) Performs saturated processing of “n”.
If n ≥ 7FFF FFFFH, n = 7FFF FFFFH.
If n ≤ 8000 0000H, n = 8000 0000H.

clip (a, b, c) Performs saturated processing on the word data “a” assuming the sign “b” and converts it to data of the
size “c”.
● If the sign “b” is Sign and the size “c” is Byte:

When 0000 007FH < a ≤ 7FFF FFFFH, the result is 0000 007FH.
When 8000 0000H ≤ a < FFFF FF80H, the result is FFFF FF80H.

● If the sign “b” is Unsign and the size “c” is Byte:
When 0000 00FFH < a, the result is 0000 00FFH.

● If the sign “b” is Sign and the size “c” is Halfword:
When 0000 7FFFH < a ≤ 7FFF FFFFH, the result is 0000 7FFFH.
When 8000 0000H ≤ a < FFFF 8000H, the result is FFFF 8000H.

● If the sign “b” is Unsign and the size “c” is Halfword:
When 0000 FFFFH < a, the result is 0000 FFFFH.

result Outputs results on flag

Byte Byte (8 bits)

Halfword Halfword (16 bits)

Word Word (32 bits)

== Comparison (true upon a match)

!= Comparison (true upon a mismatch)

+ Add

− Subtract

|| Bit concatenation

× Multiply

÷ Divide

% Remainder of division results

AND AND

OR OR

XOR Exclusive OR

NOT Logical negate

logically shift left by Logical left-shift

logically shift right by Logical right-shift

arithmetically shift right by Arithmetic right-shift

P-TYPE_Addressing() Handles post index increment/decrement addressing.

RH850G4MH Virtualization Section 2 Instruction

R01US0432EJ0110 Rev.1.10 Page 12 of 32
June 30, 2021

Table 2.3 Conventions of Opcode

Symbol Meaning

R 1-bit data of code specifying reg1 or regID

r 1-bit data of code specifying reg2

w 1-bit data of code specifying reg3

D 1-bit data of displacement (indicates higher bits of displacement)

d 1-bit data of displacement

I 1-bit data of immediate (indicates higher bits of immediate)

i 1-bit data of immediate

V 1-bit data of code specifying vector (indicates higher bits of vector)

v 1-bit data of code specifying vector

cccc 4-bit data for condition code specification (See Table 2.4)

bbb 3-bit data for bit number specification

L 1-bit data of code specifying general-purpose register in register list

S 1-bit data of code specifying EIPC/FEPC, EIPSW/FEPSW in register list

P 1-bit data of code specifying PSW in register list

Table 2.4 Condition Codes

Condition Code (cccc) Condition Name Condition Formula

0000 V OV = 1

1000 NV OV = 0

0001 C/L CY = 1

1001 NC/NL CY = 0

0010 Z Z = 1

1010 NZ Z = 0

0011 NH (CY or Z) = 1

1011 H (CY or Z) = 0

0100 S/N S = 1

1100 NS/P S = 0

0101 T Always (Unconditional)

1101 SA SAT = 1

0110 LT (S xor OV) = 1

1110 GE (S xor OV) = 0

0111 LE ((S xor OV) or Z) = 1

1111 GT ((S xor OV) or Z) = 0

RH850G4MH Virtualization Section 2 Instruction

R01US0432EJ0110 Rev.1.10 Page 13 of 32
June 30, 2021

2.2.3.1 EIRET
<Special instruction>

Return from EI level trap or interrupt

EIRET
Return from EI level exception

[Instruction format] EIRET

[Operation] if (PSWH.GM==1)
then

if (GMPSW.UM==0)
then

PC ← GMEIPC
GMPSW ← GMEIPSW

else
else

if (HMPSW.UM==0)
then

PC ← HMEIPC
HMPSW ← HMEIPSW
PSWH ← EIPSWH

else

[Format] Format X

[Opcode]

15 0 31 16

0000011111100000 0000000101001000

RH850G4MH Virtualization Section 2 Instruction

R01US0432EJ0110 Rev.1.10 Page 14 of 32
June 30, 2021

[Flags] CY Value read from EIPSW.CY is set

 OV Value read from EIPSW.OV is set

 S Value read from EIPSW.S is set

 Z Value read from EIPSW.Z is set

 SAT Value read from EIPSW.SAT is set

[Description] Returns execution from an EI level exception.

This instruction loads the return PC, return PSW, and return PSWH from the EIPC,
EIPSW, and EIPSWH, sets the values in the PC, PSW, and PSWH, and passes control to
the return PC address.

When the EIRET instruction is executed while EIPSWH.GM is set (1) in the host mode,
PSWH.GM is restored to the value and a transition to the guest mode occurs. In the
transition to the guest mode, in addition, control is passed to the return PC address loaded
from the HMEIPC. For this reason, to execute the EIRET instruction which causes a mode
transition, it is necessary to set a value appropriate for the guest mode in the HMEIPC in
advance. When the EIRET instruction which causes a mode transition is executed, the
HMPSW is restored to the value of the HMEIPSW. A transition to the guest mode causes
the destination referenced as the PSW to be changed to the GMPSW. The value of the
GMPSW is not restored by executing the EIRET instruction which causes a mode
transition. For this reason, it is necessary to set a value appropriate for the guest mode in
the GMPSW before executing the EIRET instruction in advance.

When the EIRET instruction is executed in the guest mode, the PSWH is not restored to the
EIPSWH. In the guest mode, a mode transition cannot be caused by executing the EIRET
instruction.

When the EIRET instruction is executed while the INTCFG.EPL, INTCFG.ISPC, and
PSW.EP are all cleared (0), the corresponding bits of the ISPR register are cleared.

[Supplement] This instruction is a supervisor-privileged instruction.

RH850G4MH Virtualization Section 2 Instruction

R01US0432EJ0110 Rev.1.10 Page 15 of 32
June 30, 2021

2.2.3.2 FERET
<Special instruction>

Return from FE level trap or interrupt

FERET
Return from FE level exception

[Instruction format] FERET

[Operation] if (PSWH.GM==1)
then

if (GMPSW.UM==0)
then

PC ← GMFEPC
GMPSW ← GMFEPSW

else
else

if (HMPSW.UM==0)
then

PC ← HMFEPC
HMPSW ← HMFEPSW
PSWH ← FEPSWH

else

[Format] Format X

[Opcode]

15 0 31 16

0000011111100000 0000000101001010

RH850G4MH Virtualization Section 2 Instruction

R01US0432EJ0110 Rev.1.10 Page 16 of 32
June 30, 2021

[Flags] CY Value read from FEPSW.CY is set

 OV Value read from FEPSW.OV is set

 S Value read from FEPSW.S is set

 Z Value read from FEPSW.Z is set

 SAT Value read from FEPSW.SAT is set

[Description] Returns execution from an FE level exception.

This instruction loads the return PC, return PSW, and return PSWH from the FEPC,
FEPSW, and FEPSWH, sets the values in the PC, PSW, and PSWH, and passes control to
the return PC address.

When the FERET instruction is executed while FEPSWH.GM is set (1) in the host mode,
PSWH.GM is restored to the value, a transition to the guest mode occurs. In the transition
to the guest mode, in addition, control is passed to the return PC address loaded from the
HMFEPC. For this reason, to execute the FERET instruction which causes a mode
transition, it is necessary to set a value appropriate for the guest mode in the HMFEPC in
advance. When the FERET instruction which causes a mode transition is executed, the
HMPSW is restored to the value of the HMFEPSW. A transition to the guest mode causes
the destination referenced as the PSW to be changed to the GMPSW. The value of the
GMPSW is not restored by executing the FERET instruction which causes a mode
transition. For this reason, it is necessary to set a value appropriate for the guest mode in
the GMPSW before executing the FERET instruction in advance.

When the FERET instruction is executed in the guest mode, the PSWH is not restored to
the FEPSWH. In the guest mode, a mode transition cannot be caused by executing the
FERET instruction.

[Supplement] This instruction is a supervisor-privileged instruction.

CAUTION

The FERET instruction can also be used as a hazard barrier instruction when the CPU’s operating status (PSW)
is changed by a control program such as the OS. Use the FERET instruction to clarify the program blocks on
which to effect the hardware function (mainly the memory management function) associated with the UM bit in
the PSW when these bits are changed to accord with the mounted CPU. The hardware function that operates in
accordance with the PSW value updated by the FERET instruction is guaranteed to be effected from the
instruction indicated by the return address of the FERET instruction.

RH850G4MH Virtualization Section 2 Instruction

R01US0432EJ0110 Rev.1.10 Page 17 of 32
June 30, 2021

2.2.3.3 LDM.MP
<Special instruction>

Load Multiple MPU entries from memory

LDM.MP
Load MPU entries

[Instruction format] LDM.MP [reg1], eh-et

[Operation] if (PSW.UM==0)
then

if (eh ≤ et)
then
cur ← eh
end ← et
tmp ← reg1
while (cur ≤ end) {

adr ← tmp Note 1, Note 2
CheckException(MDP)
MPLA[cur] ← Load-memory (adr, Word)
tmp ← tmp + 4
adr ← tmp Note 1, Note 2
CheckException(MDP)
MPUA[cur] ← Load-memory (adr, Word)
tmp ← tmp + 4
adr ← tmp Note 1, Note 2
CheckException(MDP)
MPAT[cur] ← Load-memory (adr, Word)
tmp ← tmp + 4
cur ← cur + 1

}
else

else

Note 1. The lower 2 bits of adr are masked by 0.
Note 2. An MDP exception may occur as a result of address calculation.

[Format] Format XI

RH850G4MH Virtualization Section 2 Instruction

R01US0432EJ0110 Rev.1.10 Page 18 of 32
June 30, 2021

[Opcode]

15 0 31 16

rrrrr111111RRRRR wwwww00101100110

rrrrr indicates eh.
wwwww indicates et.
RRRRR indicates reg1.

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

[Descriptions] The word data is read from the address generated from the word data of the general-purpose
register reg1 and stored to the MPU protection area setting system registers (MPLA,
MPUA, and MPAT) according to the specified order. Word size is added to the address
each time the read data is stored to the system register. The contents of these system
registers is processed in ascending order, regardless of the value of MPIDX, from the entry
number starting from eh to that starting from et (eh, eh+1, eh+2, …, et). The bank specified
by MPBK is only to be processed.

[Supplement] This instruction stores data directly from memory to multiple target system registers. This
instruction can perform the operation more effectively than by reading memory into a
general-purpose register by LD.W instructions, and storing it to the system register by
LDSR instructions.

The lower 2-bit address generated from the general-purpose register reg1 is masked by 0
and aligned on a word boundary. The general-purpose register reg1 retains the original
value after the instruction execution is complete.

This instruction is an SV privilege instruction.

When this instruction is executed in guest mode and host managed entries are included for
specified entries, data is read from the corresponding memory, whose data is discarded
without being stored to the system register. In this case, an exception accompanied by
memory access occurs though a PIE exception does not occur.

RH850G4MH Virtualization Section 2 Instruction

R01US0432EJ0110 Rev.1.10 Page 19 of 32
June 30, 2021

CAUTIONS

1. When an exception or an interrupt occurs during instruction execution and even if data from memory has
not been stored to all system registers, the instruction execution can be aborted and the exception or
interrupt can be accepted, when the acceptance condition is satisfied. When the execution is suspended, it
is impossible to know to which system registers data from memory has been stored. After the return from
exception processing, the suspended LDM.MP instruction can be precisely re-executed as long as
resources related to execution of the LDM.MP instruction are not changed during exception processing, for
the return PC from an exception is considered to be PC of this LDM.MP instruction. This instruction re-
execution restarts the LDM.MP instruction processing from the start.

2. When this instruction is executed, memory protection violation is detected with the MPU settings updated.
This instruction as hardware function does not automatically stop memory protection violation detection.
Therefore, it is necessary to avoid the occurrence of unintended memory protection violation during
execution of this instruction that memory protection function be disabled in advance or entries that
configured the memory protection settings for memory access be excluded from the processing target.
Memory protection by host managed entries is always enabled.

RH850G4MH Virtualization Section 2 Instruction

R01US0432EJ0110 Rev.1.10 Page 20 of 32
June 30, 2021

2.2.3.4 STM.MP
<Special instruction>

Store Multiple MPU entries to memory

STM.MP
Store MPU entries

[Instruction format] STM.MP eh-et, [reg1]

[Operation]

if (PSW.UM==0)
then

if (eh ≤ et)
then

cur ← eh
end ← et
tmp ← reg1
while (cur ≤ end) {

adr ← tmp Note 1, Note 2
CheckException(MDP)
Store-memory (adr, MPLA[cur], Word)
tmp ← tmp + 4
adr ← tmp Note 1, Note 2
CheckException(MDP)
Store-memory (adr, MPUA[cur], Word)
tmp ← tmp + 4
adr ← tmp Note 1, Note 2
CheckException(MDP)
Store-memory (adr, MPAT[cur], Word)
tmp ← tmp + 4
cur ← cur + 1

}
else

else

Note 1. The lower 2 bits of adr are masked by 0.
Note 2. An MDP exception may occur as a result of address calculation.

[Format] Format XI

RH850G4MH Virtualization Section 2 Instruction

R01US0432EJ0110 Rev.1.10 Page 21 of 32
June 30, 2021

[Opcode]

15 0 31 16

rrrrr111111RRRRR wwwww00101100100

rrrrr indicates eh.
wwwww indicates et.
RRRRR indicates reg1.

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

[Descriptions]

The word data of the MPU protection area setting system registers (MPLA, MPUA, and
MPAT) is stored to the address generated from the word data of the general-purpose
register reg1 according to the specified order. Word size is added to the address each time
the word data of the system register is stored. The contents of these system registers is
processed in ascending order, regardless of the value of MPIDX, from the entry number
starting from eh to that starting from et (eh, eh+1, eh+2, …, et). The bank specified by
MPBK is only to be processed.

[Supplement] This instruction stores the target MPU protection area setting directly to memory. This
instruction can perform the operation more effectively than by specifying the entry via
MPIDX, reading the value of system register into a general-purpose register by STSR
instructions, and storing it to memory by ST.W instructions.

The lower 2-bit address generated from the general-purpose register reg1 is masked by 0
and aligned on a word boundary. The general-purpose register reg1 retains the original
value after the instruction execution is complete.

This instruction is an SV privilege instruction.

When this instruction is executed in guest mode and host managed entries are included for
specified entries, the contents is stored to memory.

CAUTION

When an exception or an interrupt occurs during instruction execution and even if the contents of all system
registers has not been stored to the memory, instruction execution can be aborted and exceptions or interrupts
can be accepted, as long as the acceptance condition is satisfied. When the execution is suspended, it is
impossible to know the contents of which system registers has been stored to the memory. After the return from
exception processing, the suspended STM. MP instruction can be precisely re-executed as long as resources
related to execution of the STM.MP instruction are not changed during exception processing, for the return PC
from an exception is considered to be the PC of STM.MP instruction. This instruction re-execution restarts the
STM.MP instruction processing from the start.

RH850G4MH Virtualization Section 2 Instruction

R01US0432EJ0110 Rev.1.10 Page 22 of 32
June 30, 2021

2.3 Cache Instructions
For detailed of Cache Instructions, see the relevant section of the RH850G4MH User's Manual: Software.

2.4 Floating-Point Instructions
For detailed of Floating-Point Instructions, see the relevant section of the RH850G4MH User's Manual: Software.

2.5 Extended Floating-Point Instructions

For detailed of Extended Floating-Point Instructions, see the relevant section of the RH850G4MH User's Manual:
Software.

RH850G4MH Virtualization Section 2 Instruction

R01US0432EJ0110 Rev.1.10 Page 23 of 32
June 30, 2021

2.6 Virtualization Support Instructions

2.6.1 Overview of Virtualization Support Instructions
This CPU supports virtualization support instructions to help you build a virtual machine with virtualization software.

The following virtualization support instructions (mnemonics) are available:

● HVTRAP : Hypervisor EI-level Trap

● LDM.GSR : Load Multiple Guest System Registers from memory

● STM.GSR : Store Multiple Guest System Registers to memory

2.6.2 Virtualization Support Instruction Set
This section details each instruction, dividing each mnemonic (in alphabetical order) into the following items.

● Instruction format: Indicates how the instruction is written and its operand(s).

● Operation: Indicates the function of the instruction.

● Format: Indicates the instruction format.

● Opcode: Indicates the bit field of the instruction opcode..

● Description: Describes the operation of the instruction.

● Supplement: Provides supplementary information on the instruction.

RH850G4MH Virtualization Section 2 Instruction

R01US0432EJ0110 Rev.1.10 Page 24 of 32
June 30, 2021

2.6.2.1 HVTRAP
<Special instruction>

Hypervisor EI-level Trap

HVTRAP

[Instruction format] HVTRAP vector5

[Operation] if (HVCFG.HVE==1)
then

if (PSW.UM==0)
then

HMEIPC ← PC+4 (return PC)
HMEIPSW ← HMPSW
EIPSWH ← PSWH
HMEIIC ← vector5(cause code)
PSWH.GM ← 0
HMPSW.UM ← 0
HMPSW.EP ← 1
HMPSW.ID ← 1
PC ← exception handler address

else
else

[Format] Format X

[Opcode]

15 0 31 16

00000111111vvvvv 0000000100010000

vvvvv indicates vector5.

RH850G4MH Virtualization Section 2 Instruction

R01US0432EJ0110 Rev.1.10 Page 25 of 32
June 30, 2021

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

[Description] When the HVTRAP instruction is executed while HVCFG.HVE is set (1), the CPU saves
the return PC, current HMPSW and PSWH values in the HMEIPC, HMEIPSW, and
EIPSWH, respectively, stores the exception cause code in the HMEIIC register, and
updates the HMPSW and PSWH according to operation description. When the HVTRAP
instruction is executed in the guest mode, the CPU enters the host mode. When the
HVTRAP instruction is executed in the host mode, the CPU remains in the host mode.

[Supplement] This instruction can be executed only when the virtualization support function is enabled.
In addition, the instruction is an SV privilege instruction.

RH850G4MH Virtualization Section 2 Instruction

R01US0432EJ0110 Rev.1.10 Page 26 of 32
June 30, 2021

2.6.2.2 LDM.GSR
<Special instruction>

Load Multiple Guest System Registers from memory

LDM.GSR
Load Guest System Registers

[Instruction format] LDM.GSR [reg1]

[Operation] if (HVCFG.HVE==1)
then

if (PSWH.GM==0)
then

if (PSW.UM==0)
then

tmp ← reg1
foreach (all system registers in the pre-defined list) {

adr ← tmp Note 1, Note 2
CheckException(MDP)
SR[in list] ← Load-memory (adr, Word)
tmp ← tmp + 4

}
else

else
else

Note 1. The lower 2 bits of adr are masked by 0.
Note 2. An MDP exception may occur as a result of address calculation.

[Format] Format X

[Opcode]

15 0 31 16

00000111111RRRRR 1001100101100000

RRRRR indicates reg1.

RH850G4MH Virtualization Section 2 Instruction

R01US0432EJ0110 Rev.1.10 Page 27 of 32
June 30, 2021

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

[Description] This instruction reads word data from the address generated from the word data of the
general-purpose register reg1 and sequentially stores it in the pre-defined system registers.
Each time read data is stored in a system register, the word size is added to the address. For
details of target system registers, see the hardware manual of the product used.

This instruction manipulates coprocessor system registers. Even when this instruction is
executed if you do not have the corresponding coprocessor use permission, no coprocessor
unusable exception occurs. Read data is stored in the coprocessor system registers.

[Supplement] This instruction stores data directly from memory to multiple target system registers. This
instruction can perform the operation more effectively than by reading memory into a
general-purpose register by LD.W instructions, and storing it to the system register by
LDSR instructions.

The lower 2-bit address generated from the general-purpose register reg1 is masked by 0
and aligned on a word boundary. The general-purpose register reg1 retains the original
value after the instruction execution is complete.

This instruction can be executed only when the virtualization support function is enabled.
In addition, the instruction is an HV privilege instruction.

CAUTION

When an exception or an interrupt occurs during instruction execution and even if not all of processing has
been completed, the instruction execution can be aborted and the exception or interrupt can be accepted, when
the acceptance condition is satisfied. When the execution is suspended, it is impossible to know to which
system registers data from memory has been stored. After the return from exception processing, the suspended
LDM.GSR instruction can be precisely re-executed as long as resources related to execution of the LDM.GSR
instruction are not changed during exception processing, for the return PC from an exception is considered to
be PC of this LDM.GSR instruction. This instruction re-execution restarts the LDM.GSR instruction processing
from the start.

RH850G4MH Virtualization Section 2 Instruction

R01US0432EJ0110 Rev.1.10 Page 28 of 32
June 30, 2021

2.6.2.3 STM.GSR
<Special instruction>

Store Multiple Guest System Registers to memory

STM.GSR
Store of Guest System Registers

[Instruction format] STM.GSR [reg1]

[Operation] if (HVCFG.HVE==1)
then

if (PSWH.GM==0)
then

if (PSW.UM==0)
then

tmp ← reg1
foreach (all system registers in the pre-defined list) {

adr ← tmp Note 1, Note 2
CheckException(MDP)
Store-memory (adr, SR[in list], Word)
tmp ← tmp + 4

}
else

else
else

Note 1. The lower 2 bits of adr are masked by 0.
Note 2. An MDP exception may occur as a result of address calculation.

[Format] Format X

[Opcode]

15 0 31 16

00000111111RRRRR 1001000101100000

RRRRR indicates reg1.

RH850G4MH Virtualization Section 2 Instruction

R01US0432EJ0110 Rev.1.10 Page 29 of 32
June 30, 2021

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

[Descriptions] This instruction sequentially stores the word data of pre-defined system registers in the
address generated from the word data of the general-purpose register reg1. Each time one of
these system registers is stored, the word size is added to the address. For details of target
system registers, see the hardware manual of the product used.

This instruction manipulates coprocessor system registers. Even when this instruction is
executed if you do not have the corresponding coprocessor use permission, no coprocessor
unusable exception occurs. The contents of the coprocessor system registers are stored in
the memory.

[Supplement] This instruction stores data directly from multiple target system registers to memory. The
instruction can perform the operation more effectively than by reading the values of system
registers into a general-purpose register by STSR instructions and storing them to memory
by ST.W instructions.

The lower 2-bit address generated from the general-purpose register reg1 is masked by 0
and aligned on a word boundary. The general-purpose register reg1 retains the original
value after the instruction execution is complete.

This instruction can be executed only when the virtualization support function is enabled.
In addition, the instruction is an HV privilege instruction.

CAUTION

When an exception or an interrupt occurs during instruction execution and even if data from memory has not
been stored to all system registers, the instruction execution can be aborted and the exception or interrupt can
be accepted, when the acceptance condition is satisfied. When the execution is suspended, it is impossible to
know which system register's data has been stored to memory. After the return from exception processing, the
suspended STM.GSR instruction can be precisely re-executed as long as resources related to execution of the
STM.GSR instruction are not changed during exception processing, for the return PC from an exception is
considered to be PC of this STM.GSR instruction. This instruction re-execution restarts the STM.GSR instruction
processing from the start.

RH850G4MH Virtualization Appendix A Number of Instruction Execution Clocks

R01US0432EJ0110 Rev.1.10 Page 30 of 32
June 30, 2021

Appendix A Number of Instruction Execution Clocks

A.1 Numbers of Clock Cycles for Execution
For detailed of Numbers of Clock Cycles for Execution, see the relevant section of the RH850G4MH User's Manual:
Software.

A.2 Number of G4MH Instruction Execution Clocks
Legend of Execution Clocks

Symbol Description

issue When the other instruction is executed immediately after the execution of the current instruction

repeat When the same instruction is repeated immediately after the execution of the current instruction

latency When the following instruction uses the result of the current instruction

Types of
Instructions Mnemonics Operand

Instruction Length
(Number of Bytes)

Number of Execution Clocks

issue repeat latency

Special
instruction

LDM.GSR [reg1] 4 26 Note 1, Note 2 26 Note 1, Note 2 26 Note 1, Note 2

LDM.MP [reg1], eh-et 4 N+8 Note 2, Note 3 N+8 Note 2, Note 3 N+8 Note 2, Note 3

STM.GSR [reg1] 4 19 19 19

STM.MP eh-et, [reg1] 4 N+2 Note 2, Note 3 N+2 Note 2, Note 3 N+2 Note 2, Note 3

Special
instruction
(with branching)

HVTRAP vector5 4 8 8 8

Note 1. If there are no wait states (cycles of waiting) associated with the memory access.
Note 2. Performs processing to synchronize pipeline.
Note 3. N depends on the total number of MPU entries specified in eh-et. Each entry has 3 registers, and since up to two registers

are processed in one cycle, the value if there are no wait states will be as follows.
N = int (Number of saved and restored MPU entries x 1.5 + 0.5); however, N is in the range of 0 to 32.

RH850G4MH Virtualization
User’s Manual: Software

Publication Date: Rev.0.90 April 17, 2020
 Rev.1.10 June 30, 2021

Published by: Renesas Electronics Corporation

RH850G4MH Virtualization

 R01US0432EJ0110

	Cover
	Notice
	General Precautions in the Handling of Microprocessing Unit and MicrocontrollerUnit Products
	Table of Contents
	Section 1 Overview
	1.1 Purpose of This User’s Manual

	Section 2 Instruction
	2.1 Opcodes and Instruction Formats
	2.1.1 CPU Instructions
	2.1.2 Coprocessor Instructions
	2.1.3 Reserved Instructions

	2.2 Basic Instructions
	2.2.1 Overview of Basic Instructions
	2.2.2 Special Operations
	2.2.3 Basic Instruction Set
	2.2.3.1 EIRET
	2.2.3.2 FERET
	2.2.3.3 LDM.MP
	2.2.3.4 STM.MP

	2.3 Cache Instructions
	2.4 Floating-Point Instructions
	2.5 Extended Floating-Point Instructions
	2.6 Virtualization Support Instructions
	2.6.1 Overview of Virtualization Support Instructions
	2.6.2 Virtualization Support Instruction Set
	2.6.2.1 HVTRAP
	2.6.2.2 LDM.GSR
	2.6.2.3 STM.GSR

	Appendix A Number of Instruction Execution Clocks
	A.1 Numbers of Clock Cycles for Execution
	A.2 Number of G4MH Instruction Execution Clocks

	Colophon
	Back Cover

