

User Manual

PTX1xxR NFC IoT-Reader API for Non-OS Stack Integration (SDK v7.3.1)

R35AN0021EU0103 Rev.1.03
Jan 20, 2026

 Page 1
© 2020-2026 Renesas Electronics

Introduction
This document describes the PTX NFC IOT-Reader API non-OS software stack (referred to as IoT-Reader (Non-
OS)) for the PTX1xxR-Reader (PTX100R, PTX105R, PTX130R) products. The IoT-Reader (Non-OS) SDK
provides a reference implementation of an IoT-Reader with multiple card type detection capability, running on a
RA4M2 ARM Cortex® M33 (R7FA4M2AD) as an example host target platform.

Contents
1. Overview .. 4

1.1 Audience ... 4
1.2 Requirements ... 4

1.2.1 Building the IoT-Reader SDK ... 4
1.3 Abbreviations and Terminology .. 4

2. Architecture of IoT-Reader (Non-OS) System .. 5
2.1 Component Description .. 5

2.1.1 IoT-Reader API .. 5
2.1.2 Add-on APIs ... 6
2.1.3 IoT-Reader Component .. 6
2.1.4 NSC Component .. 6
2.1.5 Platform API ... 6
2.1.6 Platform Component .. 7

3. IoT-Reader API Description ... 7
3.1 ptxIoTRd_Init .. 7
3.2 ptxIoTRd_InitNSC ... 7
3.3 ptxIoTRd_Update_ChipConfig .. 8
3.4 ptxIoTRd_Get_Revision_Info .. 8
3.5 ptxIoTRd_Initiate_Discovery ... 9
3.6 ptxIoTRd_Get_Card_Registry .. 9
3.7 ptxIoTRd_Activate_Card... 9
3.8 ptxIoTRd_Data_Exchange .. 10
3.9 ptxIoTRd_Bits_Exchange_Mode .. 10
3.10 ptxIoTRd_Bits_Exchange ... 11
3.11 ptxIoTRd_RF_PresenceCheck ... 11
3.12 ptxIoTRd_T5T_IsolatedEoF .. 12
3.13 ptxIoTRd_T3T_SENSFRequest ... 12
3.14 ptxIoTRd_Reader_Deactivation .. 13
3.15 ptxIoTRd_Update_ChipConfig .. 13
3.16 ptxIoTRd_Set_Power_Mode ... 13
3.17 ptxIoTRd_Get_System_Info ... 14
3.18 ptxIoTRd_SWReset .. 14
3.19 ptxIoTRd_Deinit .. 14

PTX1xxR NFC IoT-Reader API for Non-OS Stack Integration (SDK v7.3.1) User Manual

R35AN0021EU0103 Rev.1.03
Jan 20, 2026

 Page 2

3.20 ptxIoTRd_Get_Status_Info ... 15
3.21 ptxIoTRd_ConfigHBR ... 15
3.22 ptxIoTRd_Set_RSSI_Mode .. 15
3.23 ptxIoTRd_Get_RSSI_Value .. 16

4. IoT-Reader API States .. 16
4.1 State Descriptions .. 17

5. HCE API Description .. 20
5.1 ptxHCE_Init .. 20
5.2 ptxHCE_Deinit .. 20
5.3 ptxHCE_GetEvent .. 20
5.4 ptxHCE_SendData ... 21

6. HCE API States ... 21
6.1 State Descriptions .. 22

7. IoT-Reader (Non-OS) SDK Delivery ... 23

8. Platform Specific .. 24
8.1 Project Quick-Start Guide ... 26
8.2 Porting Guide .. 30

8.2.1 Introduction... 30
8.2.2 PLAT Architecture .. 31
8.2.3 PLAT Host-Interface Implementation ... 32
8.2.4 Implementation and Verifying Low-Level Host-Interface Driver .. 34
8.2.5 Implementation Suggestions for PLAT Layer ... 35

8.3 Integration Notes/Suggestions .. 38
8.3.1 Performance Optimization .. 38
8.3.2 Artificial Delays/Sleep-Operations .. 38
8.3.3 Maximum Number of Supported Cards .. 38
8.3.4 Reference Implementation–Code Size and Memory Consumption 39
8.3.5 Switching Reference Host-Interface Implementation .. 40

9. RF Configuration Updates ... 41
9.1 Default RF Configuration .. 41

9.1.1 Temperature Sensor Calibration .. 43
9.2 Dynamic at Runtime ... 43
9.3 Platform Specific ... 44

10. Add-on Libraries/APIs .. 44
10.1 Native-Tag API ... 44

10.1.1 Supported Type 2 Tag Commands .. 45
10.1.2 Supported Type 3 Tag Commands .. 45
10.1.3 Supported Type 4 Tag Commands .. 45
10.1.4 Supported Type 5 Tag Commands .. 45

10.2 NDEF API ... 46
10.3 GPIO API .. 47
10.4 RF Test API .. 48
10.5 FeliCa DTE API .. 48
10.6 Transparent-Mode API ... 49

PTX1xxR NFC IoT-Reader API for Non-OS Stack Integration (SDK v7.3.1) User Manual

R35AN0021EU0103 Rev.1.03
Jan 20, 2026

 Page 3

10.7 Transparent Data Channel (TDC) API .. 52
10.7.1 Transparent Data Channel (TDC) Timer API.. 53

11. References .. 53
11.1 General ... 53
11.2 Standards and Regulations .. 53

12. Revision History ... 54

Figures
Figure 1. IoT-Reader (Non-OS) Stack Architecture .. 5
Figure 2. IoT-Reader API Flow Example .. 16
Figure 3. State: Test ... 18
Figure 4. HCE API Flow Example... 21
Figure 5. IoT-Reader (Non-OS) SDK Folder Structure ... 23
Figure 6. SRC Folder Structure .. 23
Figure 7. Tools Folder Structure ... 23
Figure 8. Project Files ... 24
Figure 9. PLAT Folder Structure ... 24
Figure 10. RENESAS Folder Structure ... 25
Figure 11. Importing the Project into Workspace .. 26
Figure 12. Project Explorer Contents.. 27
Figure 13. Build Output Folder ... 28
Figure 14. Selecting Debug Target ... 29
Figure 15. System Architecture .. 30
Figure 16. PLAT Component Architecture .. 31
Figure 17. Synchronous Command Handling (Simplified) .. 33
Figure 18. Asynchronous Command-Exchange (Simplified) .. 34
Figure 19. PTX1xxR RRA-Operation using I2C (Simplified).. 36
Figure 20. UART Message Format ... 36
Figure 21. Concatenated UART Messages .. 37
Figure 22. UART Messages with Circular Buffer Overflow ... 37
Figure 23. Pin Configuration in “configuration.xml” ... 40
Figure 24. Build Target Selection ... 41
Figure 25. PTX1xxR IOT Config Tool ... 42
Figure 26. Native-Tag API Overview .. 44
Figure 27. NDEF API Overview .. 47

PTX1xxR NFC IoT-Reader API for Non-OS Stack Integration (SDK v7.3.1) User Manual

R35AN0021EU0103 Rev.1.03
Jan 20, 2026

 Page 4

1. Overview
The provided SDK is implemented in C and the source code can be easily ported to any target MCU or host
platform. The RA4M2 reference should be regarded only as an example implementation. Information about the
porting to other MCU and host platforms is provided in this document and is supported by the Renesas
application support team.

This solution is intended for platforms without an operating system and without a filing system.

In addition to the IoT-Reader (Non-OS) stack, the delivery also contains an example application for simultaneous
discovery of multiple card types, thereby showing the correct usage of the IoT-Reader (Non-OS) stack.

1.1 Audience
This document is intended to be used by:
■ Software architects
■ Software engineers
■ Software integrators

1.2 Requirements
1.2.1 Building the IoT-Reader SDK
For building the IoT-Reader projects, the following tools are required:
■ Renesas e2 Studio 2023.10 (or higher)

● RA Flexible Software Package (FSP) v5.1 (or higher)
■ C-Compiler supporting C99 standard

1.3 Abbreviations and Terminology

Abbreviation Terminology

APDU Application Protocol Data Unit.

HW Hardware.

Integrator Developer who build/integrates the IoT-Reader API into a target application.

IoTRd IoT-Reader profile.

IoT-Reader IoT-Reader stack controller.

NDEF NFC Data Exchange Format.

NFC Near Field Communication.

NSC NFC Soft Controller.

RF Radio Frequency.

RTOS Real-time Operating System.

SDK Software Development Kit.

SW Software.

https://www.renesas.com/en/software-tool/e-studio?queryID=2e2d12833af4e66a516f37cf2dd9605a
https://www.renesas.com/en/software-tool/flexible-software-package-fsp?queryID=5b103decbf86f63c4191872d70493b0b

PTX1xxR NFC IoT-Reader API for Non-OS Stack Integration (SDK v7.3.1) User Manual

R35AN0021EU0103 Rev.1.03
Jan 20, 2026

 Page 5

2. Architecture of IoT-Reader (Non-OS) System
The IoT-Reader (Non-OS) System follows component-based approach that increases modularity and usability.
The components are divided into two main groups:

1. Hardware/Platform Independent:
It is suitable to run on application processors where there is neither operating system nor file system. Those
components are IoT-Reader (IoT Rd) and NSC.

2. Hardware/Platform Dependent:
This part must be adapted to a specific MCU/platform used as application processor. Reference implementation
is provided in this SDK (for more information, refer to section 8). PLAT component belongs to this group.

The IoT-Reader (Non-OS) stack is implemented in ANSI C in order to maximize its portability. Figure 1 shows
the main components of this system.

Figure 1. IoT-Reader (Non-OS) Stack Architecture

2.1 Component Description
2.1.1 IoT-Reader API
This API defines the system functionalities exposed by the IoT-Reader (Non-OS) Stack to the application on top.
The IoT-Reader API provides the following features:
■ Initializes the IOTRD API and NSC stack
■ Initializes the PTX chip
■ Discovers cards according to NFC Forum including support for “Low-Power-Card-Detection”
■ Selects a specific card in case multiple cards/protocols were discovered
■ Retrieves card details like technical/activation parameters
■ Exchanges RF data and bitstreams

NFC Soft Controller
(NSC)

IoT-Reader API

Hardware / Platform
Independent

Hardware / Platform
Dependent

ptx_IOT_READER.h

SPI/I2C/UART
Impl.

GPIO (IRQ, nSS)
Impl.

Timer
Impl.

IoT-Reader
(IoTRd)

Platform API ptxPLAT.h

NSC (Non-OS) Stack

Platform

Add-On APIs (optional)

NDEF API
Native-Tag API

GPIO Application Layer
RF-Test

FeliCa-DTE

Transparent-Mode

PTX1xxR NFC IoT-Reader API for Non-OS Stack Integration (SDK v7.3.1) User Manual

R35AN0021EU0103 Rev.1.03
Jan 20, 2026

 Page 6

■ Stops RF communication
■ Optionally updates RF and System configuration parameters at runtime
■ Optionally puts the PTX chip into and wake up from stand-by mode
■ Controls various GPIO pins of the PTX chip (input, output, can be used any state from Ready onwards)
■ Performs Host Card Emulation using the HCE API (see section 5)
■ Performs FeliCa performance and Digital Protocol Requirement tests
■ Enables various RF test-sequences (for example, PRBS9, PRBS15, ...)
■ Exchanges low-level RF commands (Transparent Mode)
■ Perform arbitrary NFC data exchange with a Renesas NFC Forum WLC Listener device (for example,

PTX30W) using the “Transparent Data Channel”-API

The IoT-Reader API itself is described in detail in section 3, and an example flow is described in section 4.

2.1.2 Add-on APIs
This layer contains various optional add-on APIs that can be used on top of the NSC IoT-Reader API such as:
■ To access native commands of a Tag
■ NDEF Tag operations
■ GPIO Operation
■ FeliCa-DTE tests
■ Generic RF tests
■ Transparent Mode operations
■ Transparent Data Channel operations
These APIs are described in section 10.

2.1.3 IoT-Reader Component
This layer contains the actual implementation of the IoT-Reader API functions. It configures the NSC component
to operate as multiprotocol NFC Reader device using the PTX NFC chip.

2.1.4 NSC Component
This component exposes to the upper layer the set of functions that abstract the PTX NFC functionality. This
layer represents the actual core of the NSC (Non-OS) Stack and provides mainly the following functionalities:
■ PTX Chip configuration and initialization
■ PTX Chip RF discovery loop
■ PTX Chip RF card activation detection
■ PTX Chip RF data exchange

2.1.5 Platform API
This API defines the platform/MCU dependent functionalities required by the NSC (Non-OS) stack. The Platform
API enables:
■ Byte transfer to/from the PTX chip
■ The “waiting on” synchronous (blocking) events, interrupts driven, triggered by PTX chip
■ The capture of asynchronous (non-blocking) events, interrupts driven, triggered by PTX chip
■ Sleep functionality which puts the software execution to sleep for certain time

PTX1xxR NFC IoT-Reader API for Non-OS Stack Integration (SDK v7.3.1) User Manual

R35AN0021EU0103 Rev.1.03
Jan 20, 2026

 Page 7

2.1.6 Platform Component
This component is dependent on the platform/MCU which is used as application processor. It depends as well
on the used physical hardware interface (SPI, I2C, or UART) between the application processor platform and the
PTX chip.

The Platform component includes the following sub-modules:
■ Interface: Implements the driver for the physical interface used for communication with the PTX chip
■ GPIO:. Implements the driver for the GPIO used for IRQ. This submodule is needed when SPI or I2C are

used as physical interface; if UART is used, IRQ is not required
■ Timer: Implements a wrapper for a hardware Timer in order to provide time-out functionality for the IoT-

Reader (Non-OS) stack

Note: The delivered SDK contains a reference implementation for Platform component used on R7FA4M2AD
application processor. This layer must be adapted/ported for different targets.

3. IoT-Reader API Description
This section contains an overview of the functions provided by the IoT-Reader API.

Note: A detailed description of all functions including parameters and types can be found in the file:
\SRC\COMPS\IOT_READER\ptx_IOT_READER.h

3.1 ptxIoTRd_Init

Declaration
ptxStatus_t ptxIoTRd_Init(
 ptxIoTRd_t *iotRd,
 ptxIoTRd_InitPars_t *initParams);

Description Initialize software and hardware components for IoT-Reader operation. This function has to be called
before any other API functions. It performs software initialization and configuration for the PTX chip.

Input Parameters
iotRd Pointer to stack component (to be allocated by user).

initParams NSC initialization parameters.

Return Value Status Success or failure, refer to ptxStatus_t for details.

3.2 ptxIoTRd_InitNSC

Declaration
ptxStatus_t ptxIoTRd_InitNSC(
 ptxIoTRd_t *iotRd,
 ptxIoTRd_ComInterface_Params_t *initParams);

Description Initializes the NSC component / the PTX chip.

Input Parameters
iotRd Pointer to initialized stack component.

initParams Pointer to communication initialization parameter structure

Return Value Status Success or failure, refer to ptxStatus_t for details.

PTX1xxR NFC IoT-Reader API for Non-OS Stack Integration (SDK v7.3.1) User Manual

R35AN0021EU0103 Rev.1.03
Jan 20, 2026

 Page 8

3.3 ptxIoTRd_Update_ChipConfig

Declaration

ptxStatus_t ptxIoTRd_Update_ChipConfig (
 ptxIoTRd_t *iotRd,
 uint8_t nrConfigs,
 ptxIoTRd_ChipConfig_t *configParams);

Description Updates the RF- and System-Configuration parameters of the NFC hardware. This function allows to
change RF and System configuration parameters at runtime.

Input Parameters

iotRd Pointer to stack component.

nrConfigs Number of RF/System configurations to set.

configParams Pointer to n-configuration parameters sets.

Return Value Status Success or failure, refer to ptxStatus_t for details.

3.4 ptxIoTRd_Get_Revision_Info

Declaration

ptxStatus_t ptxIoTRd_Get_Revision_Info (
 ptxIoTRd_t *iotRd,
 ptxIoTRd_RevisionType_t revisionType,
 uint32_t *revisionInfo);

Description

Reads various revisions of system like software version, uCode-version, hardware revision, product ID,
etc.
Note: HW/Chip ID and product ID can only be read after successful call to ptxIoTRd_InitNSC.
Product ID:
0x00 = PTX100x
0x01 = PTX105x
0x02 = PTX130x
0xFF = Unknown/Invalid product ID

Input Parameters

iotRd Pointer to stack component (to be allocated by user).

revisionType Revision type.

revisionInfo Pointer to variable holding revision information.

Return Value Status Success or failure, refer to ptxStatus_t for details.

PTX1xxR NFC IoT-Reader API for Non-OS Stack Integration (SDK v7.3.1) User Manual

R35AN0021EU0103 Rev.1.03
Jan 20, 2026

 Page 9

3.5 ptxIoTRd_Initiate_Discovery

Declaration
ptxStatus_t ptxIoTRd_Initiate_Discovery (
 ptxIoTRd_t *iotRd,
 ptxIoTRd_DiscConfig_t *discConfig);

Description

This function starts the RF Discovery procedure as defined in the NFC Forum.

Note:
Setting parameters “Discover_Mode” != 0 (= LPCD enabled) and “IdleTime” = 0 is an invalid combination
which results in an erroneous return value.

Input Parameters
iotRd Pointer to stack component.

discover config Pointer to RF Discovery structure (if set to NULL, default values will be used).

Return Value Status Success or failure, refer to ptxStatus_t for details.

3.6 ptxIoTRd_Get_Card_Registry

Declaration
ptxStatus_t ptxIoTRd_Get_Card_Registry (
 ptxIoTRd_t *iotRd,
 ptxIoTRd_CardRegistry_t **cardRegistry);

Description Access the internal card registry. This function can be used to access the internal card registry to retrieve
a card’s detailed information.

Input Parameters
iotRd Pointer to stack component.

cardRegistry Pointer to pointer to keep reference to card registry.

Return Values Status Success or failure, refer to ptxStatus_t for details.

3.7 ptxIoTRd_Activate_Card

Declaration

ptxStatus_t ptxIoTRd_Activate_Card (
 ptxIoTRd_t *iotRd,
 ptxIoTRd_CardParams_t *cardParams,
 ptxIoTRd_CardProtocol_t protocol);

Description Selects/Activates a given card in case of multiple available cards.

Input Parameters

iotRd Pointer to stack component.

cardParams Pointer to card (within registry) to select/activate.

protocol RF protocol to activate.

Return Value Status Success or failure, refer to ptxStatus_t for details.

PTX1xxR NFC IoT-Reader API for Non-OS Stack Integration (SDK v7.3.1) User Manual

R35AN0021EU0103 Rev.1.03
Jan 20, 2026

 Page 10

3.8 ptxIoTRd_Data_Exchange

Declaration

ptxStatus_t ptxIoTRd_Data_Exchange (
 ptxIoTRd_t *iotRd,
 uint8_t *tx,
 uint32_t txLength,
 uint8_t *rx,
 uint32_t *rxLength,
 uint32_t msAppTimeout);

Description Protocol-based or raw RF data exchange.

Input Parameters

iotRd Pointer to stack component.

tx Pointer to buffer holding data to send.

txLength Length of data to send.

rx Pointer to buffer holding received data.

rxLength Size of buffer holding received data / length of received data.

msAppTimeout Application timeout.

Return Values Status Success or failure, refer to ptxStatus_t for details.

3.9 ptxIoTRd_Bits_Exchange_Mode

Declaration
ptxStatus_t ptxIoTRd_Bits_Exchange_Mode (
 ptxIoTRd_t *iotRd,
 uint8_t enable);

Description Enables/Disables the bit exchange mode required to call ptxIoTRd_Bits_Exchange.

Input Parameters
iotRd Pointer to stack component.

enable Enable/Disable flag.

Return Values Status Success or failure, refer to ptxStatus_t for details.

PTX1xxR NFC IoT-Reader API for Non-OS Stack Integration (SDK v7.3.1) User Manual

R35AN0021EU0103 Rev.1.03
Jan 20, 2026

 Page 11

3.10 ptxIoTRd_Bits_Exchange

Declaration

ptxStatus_t ptxIoTRd_Bits_Exchange (
 ptxIoTRd_t *iotRd,
 uint8_t *tx,
 uint8_t *txPar,
 uint32_t txLength,
 uint8_t *rx,
 uint8_t *rxPar,
 uint32_t *rxLength,
 uint32_t *numTotBits,
 uint32_t msAppTimeout);

Description Exchanges a bitstream based on NFC-A technology.

Input Parameters

iotRd Pointer to stack component.

tx Pointer to buffer holding data bytes to send.

txPar Pointer to buffer holding parity bits to send.

txLength Length of tx and txPar buffers.

rx Pointer to buffer holding received bytes.

rxPar Pointer to buffer holding received parity bits.

rxLength Length of received bytes/parity bits.

numTotBits Total number of received bits.

msAppTimeout Application timeout.

Return Value Status of operation Success or failure, refer to ptxStatus_t for details.

3.11 ptxIoTRd_RF_PresenceCheck

Declaration
ptxStatus_t ptxIoTRd_RF_PresenceCheck (
 ptxIoTRd_t *iotRd,
 ptxIoTRd_CheckPresType_t presCheckType);

Description Executes a presence check method on ISO-DEP cards or NFC-DEP targets.

Input Parameters
iotRd Pointer to stack component.

presCheckType Presence check method type.

Return Value Status of operation -

PTX1xxR NFC IoT-Reader API for Non-OS Stack Integration (SDK v7.3.1) User Manual

R35AN0021EU0103 Rev.1.03
Jan 20, 2026

 Page 12

3.12 ptxIoTRd_T5T_IsolatedEoF

Declaration

ptxStatus_t ptxIoTRd_T5T_IsolatedEoF (
 ptxIoTRd_t *iotRd,
 uint8_t *rx,
 uint32_t *rxLength,
 uint32_t msAppTimeout);

Description Sends an EoF-packet according to T5T protocol.

Input Parameters

iotRd Pointer to stack component.

rx Pointer to buffer holding received bytes.

rxLength Size of buffer holding received data/length of received data.

msAppTimeout Application timeout

Return Value Status of operation -

3.13 ptxIoTRd_T3T_SENSFRequest

Declaration

ptxStatus_t ptxIoTRd_T3T_SENSFRequest (
 ptxIoTRd_t *iotRd,
 uint16_t systemCode,
 uint8_t requestCode,
 uint8_t tsn,
 uint8_t *rx,
 uint32_t *rxLength,
 uint32_t msAppTimeout);

Description Sends a SENSF_REQ-packet according to T3T/FeliCa protocol.

Input Parameters

iotRd Pointer to stack component.

systemCode System code.

requestCode Request code.

tsn Number of timeslot(s).

rx Pointer to buffer holding received bytes.

rxLength Size of buffer holding received data/length of received data.

msAppTimeout Application timeout.

Return Value Status of operation -

PTX1xxR NFC IoT-Reader API for Non-OS Stack Integration (SDK v7.3.1) User Manual

R35AN0021EU0103 Rev.1.03
Jan 20, 2026

 Page 13

3.14 ptxIoTRd_Reader_Deactivation

Declaration
ptxStatus_t ptxIoTRd_Reader_Deactivation (
 ptxIoTRd_t *iotRd,
 uint8_t deactivationType);

Description Stops any finished RF communication and deactivates the reader/remove device.

Input Parameters
iotRd Pointer to stack component.

deactivationType Type of deactivation (IDLE, DISCOVERY, Sleep).

Return Value Status of operation -

3.15 ptxIoTRd_Update_ChipConfig

Declaration

ptxStatus_t ptxIoTRd_Update_ChipConfig (
 ptxIoTRd_t *iotRd,
 uint8_t nrConfigs,
 ptxIoTRd_ChipConfig_t *configParams);

Description Updates RF- and System-parameters at runtime.

Input Parameters

iotRd Pointer to stack component.

nrConfigs Number of RF/System configurations to set.

configParams Pointer to n-configuration parameters sets.

Return Value Status of operation -

3.16 ptxIoTRd_Set_Power_Mode

Declaration
ptxStatus_t ptxIoTRd_Set_Power_Mode (
 ptxIoTRd_t *iotRd,
 uint8_t newPowerMode);

Description Puts chip into stand-by or wakes it up from stand-by.

Input Parameters
iotRd Pointer to stack component.

newPowerMode Type of stand-by operation.

Return Value Status of operation -

PTX1xxR NFC IoT-Reader API for Non-OS Stack Integration (SDK v7.3.1) User Manual

R35AN0021EU0103 Rev.1.03
Jan 20, 2026

 Page 14

3.17 ptxIoTRd_Get_System_Info

Declaration

ptxStatus_t ptxIoTRd_Get_System_Info

 (ptxIoTRd_t *iotRd,
 ptxIoTRd_SysInfoType_t infoType,
 uint8_t *infoBuffer,
 uint8_t *infoBufferLength);

Description Optional command to retrieve system relevant information like VDPA calibration result.

Input Parameters

iotRd Pointer to stack component.

infoType Information identifier.

infoBuffer Buffer to store information.

infoBufferLength Length of information.

Return Value Status of operation -

3.18 ptxIoTRd_SWReset

Declaration
ptxStatus_t ptxIoTRd_SWReset (
 ptxIoTRd_t *iotRd);

Description Performs a soft-reset of the PTX chip.

Input Parameters iotRd/ Pointer to stack component.

Return Value Status Success or failure, refer to ptxStatus_t for details.

3.19 ptxIoTRd_Deinit

Declaration
ptxStatus_t ptxIoTRd_Deinit (
 ptxIoTRd_t *iotRd);

Description Close the IoT-Reader component. This function closes the IoT and releases the resources used. It must
be called as the last function before the stop of the library usage.

Input Parameters iotRd Pointer to stack component.

Return Value Status Success or failure, refer to ptxStatus_t for details.

PTX1xxR NFC IoT-Reader API for Non-OS Stack Integration (SDK v7.3.1) User Manual

R35AN0021EU0103 Rev.1.03
Jan 20, 2026

 Page 15

3.20 ptxIoTRd_Get_Status_Info

Declaration

short ptxIoTRd_Status_Info
 (ptxIoTRd_t *iotRd,
 ptxIoTRd_StatusType_t statusType

 uint8_t *statusInfo);

Description Retrieves current operating state of chip.

Input Parameters

iotRd Pointer to stack component.

statusType Status type identifier.

systemState Pointer to variable holding system state.

Return Value Status of operation -

3.21 ptxIoTRd_ConfigHBR

Declaration
short ptxIoTRd_ConfigHBR
 (ptxIoTRd_t *iotRd,
 ptxIoTRd_HBRConfig_t *configParams);

Description Configures the stack to support higher bitrates.

Input Parameters
stackComp Pointer to stack component

configParams Pointer to configurations

Return Value Status of operation -

3.22 ptxIoTRd_Set_RSSI_Mode

Declaration

short ptxIoTRd_Set_RSSI_Mode
 (ptxIoTRd_t *iotRd,
 ptxIoTRd_RSSI_Mode_t rssiMode,
 uint8_t *rssiRefreshPeriodInt);

Description Enables or Disables the RSSI Mode in State “Ready”.

Input Parameters

iotRd Pointer to stack component

rssiMode Enables/Disables RSSI-Mode

rssiRefreshPeriodInt
RSSI Calculation Refresh Integer. Follows the equation:
RSSI Refresh Rate in ms = 2 ^ (rssiRefreshPeriodInt - 1)
If set to null or a value higher than 16, 1ms will be set as default.

Return Value Status of operation -

PTX1xxR NFC IoT-Reader API for Non-OS Stack Integration (SDK v7.3.1) User Manual

R35AN0021EU0103 Rev.1.03
Jan 20, 2026

 Page 16

3.23 ptxIoTRd_Get_RSSI_Value

Declaration
short ptxIoTRd_Get_RSSI_Value
 (void *stackComp,
 uint16_t *rssiValue);

Description Reads the current RSSI value in State “Ready”.

Input Parameters
iotRd Pointer to stack component.

rssiValue Current RSSI value.

Return Value Status of operation -

4. IoT-Reader API States

Figure 2. IoT-Reader API Flow Example

Note: All IoT-Reader API functions return a 16-bit status word indicating the status of the requested operation. If
an operation succeeded, the status word is set to 0x0000 (= SUCCESS). In any other case the upper 8 bits of
the status word indicate the (sub-) component identifier of where the error occurred, and the lower 8 bits indicate
the exact error code. Details of the status word definition can be found in the source file “ptxStatus.h”.

Figure 2 shows a typical example flow of how to use the IOTRD API assuming all functions return successfully. If
an error occurs, the system remains in the current state.

START READY

FINISHED

DATA
EXCHANGE

ptxIoTRd_Init()

ptxIoTRd_Initiate_Discovery()

ptxIoTRd_Data_Exchange()
ptxIoTRd_Bits_Exchange

ptxNativeTag...()
ptxNDEF...()

ptxIoTRd_Get_Status_Info(Discover)
==

No Card(s) found
or

Multiple Cards found
 (Still Resolving)

ptxIoTRd_Reader_Deactivation
(Discover)

ptxIoTRd_Deinit()

ptxIoTRd_Get_Status_Info(Discover)
==

(Single) Card found / activated

ptxIoTRd_Reader_Deactivation
(IDLE)

POLLING
WAIT
FOR

SELECTION

ptxIoTRd_Get_Status_Info(Discover)
==

Multiple Cards found
 (Resolved)

ptxIoTRd_Activate_Card()
==

ERROR

ptxIoTRd_Activate_Card()
==

SUCCESS

ptxIoTRd_Reader_Deactivation
(SLEEP*)

HOST CARD
EMULATION

ptxIoTRd_Get_Discover_State()

ptxIoTRd_ConfigHBR()
ptxRF_Test_*

ptxFeliCa_DTE_*

PTX1xxR NFC IoT-Reader API for Non-OS Stack Integration (SDK v7.3.1) User Manual

R35AN0021EU0103 Rev.1.03
Jan 20, 2026

 Page 17

4.1 State Descriptions
■ State: Start

The system must be initialized first via a call to "ptxIoTRd_Init". This will initialize the software Stack and the
PTX chip to be ready for NFC operations.

■ State: Ready
After IC initialization, the IoT-Reader API is ready to poll for cards in the field via a call to
"ptxIoTRd_Initiate_Discovery".
The behavior of the discovery-loop is configurable where a user can change, for example:

● Poll for Type-A
● Poll for Type-B
● Poll for Type-F (212 kBit/s or 424 kBit/s)
● Poll for Type-V
● Use Low-Power card detection (“LPCD”). Note that this is incompatible with an idle time of 0.

Note: The call to "ptxIoTRd_Initiate_Discovery" is non-blocking; that is, it returns immediately to the caller
while the actual polling operation is handled in the background.
Important: If enabled in the system configuration parameters, the PTX chip supports detection of critical
errors like overcurrent and temperature. In case such an error occurs, the PTX chip shuts down automatically
all relevant hardware blocks and informs the stack about the changed state. This state can be read via a call
to "ptxIoTRd_Get_Status_Info (System)".
It is strongly recommended to call "ptxIoTRd_Get_Status_Info (System)"periodically from state Ready
onwards.
In addition, the following optional functions can be executed exclusively in this state:
● ptxIoTRd_Update_ChipConfig
● ptxIoTRd_Set_Power_Mode
● ptxIoTRd_Get_Revision_Info
● ptxIoTRd_*_RSSI_*
● ptxFeliCa_DTE* (except API/component (un)initialization
● ptxRF_Test* (except API/component (un)initialization

Note: A call to "ptxIoTRd_Update_ChipConfig" requires a following call to "ptxIoTRd_SWReset" and
"ptxIoTRd_Init" to apply the changed configuration
The IoT-Reader also supports higher bitrates for Type A and Type B polling. The default configuration only
supports 106kbit/s. Higher bitrates can be configured by a call to “ptxIoTRd_ConfigHBR”. The higher bitrate
is only used if the card supports it. If the card does not support the configured higher bit rates, the reader uses
the default speed of 106kbit/s.

PTX1xxR NFC IoT-Reader API for Non-OS Stack Integration (SDK v7.3.1) User Manual

R35AN0021EU0103 Rev.1.03
Jan 20, 2026

 Page 18

■ State: Test (Optional)
This optional state allows the application to perform various system/RF tests using the add-on APIs
described in this document as well as low-level RF exchanges using the Transparent Mode API. The
transition from and back to state Ready is shown in Figure 3.

Figure 3. State: Test

■ State: Polling

The status of the polling operation can be retrieved via a call to "ptxIoTRd_Get_Status_Info (Discover)".
This function returns that:
● A single card was discovered and activated

A call to function "ptxIoTRd_Get_Card_Registry" should be used to retrieve details on the discovered card
(for example, serial number, information on used RF protocol, etc.) to determine, for example, if a card
supports the ISO-DEP protocol (see ISO 14443-4, T = CL).

● Multiple cards were discovered, and the RF discovery is still ongoing
This state is for information purposes only.

● Multiple cards were discovered, and the RF discovery has finished
A call to "ptxIoTRd_Get_Card_Registry" should be used to retrieve the internal card registry to get the
number of discovered cards including detailed information for each card (for example, supported RF-
protocols).

● Nothing was discovered

● The low power card detection (LPCD) triggered

An ongoing polling operation can be stopped via a call to "ptxIoTRd_Reader_Deactivation".

■ State: Host Card Emulation
This state is reached if an external field is discovered. Once entered this state, the application communicates
with the external reader device and only leaves this state if the external field is turned off again. All data and
notifications are written into a message queue and can then be processed by the HCE API. The application
uses "ptxHce_Get_Event" to receive the oldest event in the queue and processes it according to the event
type. Possible event types can be:
● External Field On
● External Field Off
● Activated Listen for Type A
● Data Exchange
Note: When the external field is turned off, the application returns to the Polling state.

TESTREADY

ptx[IoTRd/POS]_Set_RSSI_Mode (Enable)
ptxFeliCa_DTE_EnableMode (Enable)

ptxRF_Test_RunTest()
ptxTransparentMode_SetField (Enable)

ptx[IoTRd/POS]_Set_RSSI_Mode (Disable)
ptxFeliCa_DTE_EnableMode (Disable)

ptxRF_Test_StopTest
ptxTransparentMode_SetField (Disable)

ptx[IoTRd/POS]_Get_RSSI_Value()
ptxFeliCa_DTE_RunTest()

ptxTransparentMode_SetRFParameters()
ptxTransparentMode_Exchange()

PTX1xxR NFC IoT-Reader API for Non-OS Stack Integration (SDK v7.3.1) User Manual

R35AN0021EU0103 Rev.1.03
Jan 20, 2026

 Page 19

■ State: Wait For Selection
This state is reached if multiple cards were previously discovered or if a specific card was deactivated. The
application can use the function "ptxIoTRd_Get_Card_Registry" to gather information about all available
cards.
To select/activate a specific card or specific RF protocol, a call to "ptxIoTRd_Activate_Card" is required
before an actual RF data exchange can be executed.

■ State: Data Exchange
In this state RF data exchanges can be exchanged with the active card via:
● Calls to "ptxIoTRd_Data_Exchange"
● Calls to “ptxIoTRd_Bits_Exchange” (only if T2T protocol is active)
● Calls to the functions from the NativeTag and NDEF API

Note: The function “ptxIoTRd_Bits_Exchange” can only be used in this state and requires the active card/tag
to use the T2T protocol. Additionally, the bits-exchange mode must be enabled upon the first usage in this
state via a call to “ptxIoTRd_Bits_Exchange_Mode” and must be disabled after the last usage. The bits-
exchange mode is not compatible with standard RF data exchanges via “ptxIoTRd_Data_Exchange”.
The RF protocols ISO and NFC DEP are handled internally by the PTX chip, all other (NFC Forum) protocols
like T2T, T3T, and T5T must be handled by the application/add-on APIs on top.

The API contains additionally the following functions which may be used in this state:
● ptxIoTRd_RF_PresenceCheck

This is an optional function to perform a presence during an active data-exchange session with ISO DEP
cards or NFC DEP targets.

● ptxIoTRd_T5T_IsolatedEoF
This is an optional function which may be used to send an isolated EoF-packet to a T5T card which may be
required for certain commands.

● ptxIoTRd_T3T_SENSFRequest
This is an optional function which allows to send a T3T-SENSF_REQ with given parameters in the current
state. The data contained in the provided output buffer contains the concatenated responses of each
detected card with a prepended length.

Note: If the function "ptxIoTRd_Data_Exchange” gets used in combination with the (RF) protocols T2T, T3T
or T5T, the received data from a card contains one additional byte at the end which represents the status of
the data-exchange. If bit 7 of this byte (mask 0x80) is set to1, the received data is invalid (for example, CRC,
parity error, etc.). It is up to the application to determine how to handle this scenario. If the higher-level
protocols like ISO-DEP and NFC-DEP are used, the received data contains only the payload of the used
protocol
The delivered demo application provides a few examples of how the different RF technologies and protocols
are handled for single and multiple available cards. The demo application selects the first card found in the
field which is also stored first in the internal card registry.
A special case is RF-technology Type A where the card response parameter SEL_RES (also referred to as
SAK-byte in ISO 14443-3) may indicate support for the RF protocols ISO-DEP and NFC-DEP. In this case, the
single remote NFC-peer device is treated internally as two devices. like with cards, a specific protocol can be
selected via a call to “ptxIoTRd_Activate_Card” in state “WAIT FOR SELECTION”
Note: The default delivery of the IoT API activates the LLCP-protocol on top of NFC-DEP. Like in state
"Polling", completed RF exchanges can be stopped via a call to "ptxIoTRd_Reader_Deactivation".

■ State: Finished
Once the complete IoT-Reader application should be stopped or shut down, it is required to call function
"ptxIoTRd_Deinit" to free previously allocated system resources like memory, drivers, etc.

PTX1xxR NFC IoT-Reader API for Non-OS Stack Integration (SDK v7.3.1) User Manual

R35AN0021EU0103 Rev.1.03
Jan 20, 2026

 Page 20

5. HCE API Description
This section contains an overview of the functions provided by the HCE API from the \COMPS folder.

Note: The HCE API consists of additional functions which are not listed here. These functions are used internally
and are not intended to be used at application level.

Note: A detailed description of all functions including parameters and types can be found in the “DOCS” folder of
the delivery (see \DOCS\index.html).

5.1 ptxHCE_Init

Declaration
ptxStatus_t ptxHCE_Init

 (void *stackComp,
 ptxHCE_t *hceCtx);

Description Host Card Emulation Component initialization.

Input Parameters
stackComp Pointer to component.

hceCtx Pointer to initialization parameters.

Return Value Status of operation -

5.2 ptxHCE_Deinit

Declaration
ptxStatus_t ptxHCE_Deinit

 (ptxHCE_t *hceCtx);

Description Host Card Emulation Component deinitialization. Already handled during IoT API main component
deinitialization.

Input Parameters hceCtx Pointer to an allocated instance of the HCE stack controller record.

Return Value Status of operation -

5.3 ptxHCE_GetEvent

Declaration
ptxStatus_t ptxHCE_GetEvent

 (ptxHCE_t *hceCtx,

 ptxHCE_EventRecord_t **event);

Description This function allows the user to request latest event notification data received from the PTX card
emulation device.

Input Parameters
hceCtx Pointer to an allocated instance of the HCE stack controller record.

event Reference to an event record supplied by the AP into which event details can
be entered.

Return Value Status of operation -

PTX1xxR NFC IoT-Reader API for Non-OS Stack Integration (SDK v7.3.1) User Manual

R35AN0021EU0103 Rev.1.03
Jan 20, 2026

 Page 21

5.4 ptxHCE_SendData

Declaration

uint16_t ptxHCE_SendData
 (void *stackComp,
 uint8_t *tx,
 uint32_t txLength,
 uint32_t msAppTimeout);

Description This function sends Data to the main component in the stack.

Input Parameters

stackComp Pointer to an initialized instance of the main component in the stack.

tx Buffer containing the data to transmit.

txLength Length of "tx".

msAppTimeout Application-timeout in ms that the function is going to wait for receiving data
from the card.

Return Value Status of operation -

6. HCE API States
Figure 4 shows an example flow of how the HCE API should be used. The internal Host Card Emulation (HCE)
component is initialized together with the IoT-Reader API and ready to use when the IoT-Reader API is. The
HCE component will be active if in the polling configuration the ListenTypeA parameter is set to 1. This
parameter enables the listen mode and allows the API to receive listen events. The HCE component uses a
message queue to queue received events and processes them in
“ptxIoTRdInt_DemoState_HostCardEmulation”.

Note: An application can use the functions of the HCE component also directly (usage of the DemoState-
extension is not mandatory).

The following section describes the states used in “ptxIoTRdInt_DemoState_HostCardEmulation”. The states
Start, Reset, Init, and Ready are the same as in IoT-Reader API state machine. All transitions between the
states are done via “ptxHce_Get_Event()”.

Figure 4. HCE API Flow Example

PTX1xxR NFC IoT-Reader API for Non-OS Stack Integration (SDK v7.3.1) User Manual

R35AN0021EU0103 Rev.1.03
Jan 20, 2026

 Page 22

6.1 State Descriptions
■ State: Field On

The message queue contains this state if the PTX chip detects an external field from a reader. The PTX chip
can now receive and send data.

■ State Field Off
The message queue contains this state if the PTX chip does not detect an external field. No more
transactions are possible.

■ State: Activated Listen A
The message queue contains this state if the external reader has successfully activated the emulated card.
The PTX chip receives the protocol information which should be activated.

■ State: Data
The message queue contains this state if the external reader is sending data to the emulated card on a
protocol level. The emulated card receives the command from the reader, processes it, and returns the
requested data together with a status code.

■ State: Deactivated
The message queue contains this state if the emulated card is deactivated. Currently, there are three
possible reasons:

● A Deselect command is received
● A Release command is received
● The reader has turned off the external field

■ State: No Data Available
The message queue contains this event if the transmission from the reader does not contain any data.

PTX1xxR NFC IoT-Reader API for Non-OS Stack Integration (SDK v7.3.1) User Manual

R35AN0021EU0103 Rev.1.03
Jan 20, 2026

 Page 23

7. IoT-Reader (Non-OS) SDK Delivery
The IoT-Reader (Non-OS) SDK delivery contains the source code for the IoT-Reader API and the NSC (Non-
OS) Stack. A demo application is also included in the delivery in order to show how to communicate to various
cards/tags via different protocols.

The R7FA4M2AD (Cortex-M33 based MCU) has been the platform used for reference implementation provided
in the SDK. More detailed overview of platform specific files is given in section 8.

Important: The provided IoT Reader demo application project is based on Renesas FSP Platform. To build the
project and execute the application, Renesas Flexible Software Package (FSP) and Renesas e2 studio
development tool is required to be installed. Installation of those tools is out of scope of this document. Refer to
the vendor website.

Although platform-specific code for R7FA4M2AD microcontroller is not included in the delivery, it can be easily
generated after importing and building the project in Renesas e2 studio IDE. The SDK also contains a tool
enabling the update of the RF Configuration used by the PTX1xxR. For more information, see section 9.

The SDK structure at root folder is:
■ Root Folder

Figure 5. IoT-Reader (Non-OS) SDK Folder Structure

● \DOCS
Doxygen-based API-description

● \SRC
This folder contains the source code for both Application Example and IoT-Reader (Non-OS) Stack
including add-on APIs.

Figure 6. SRC Folder Structure

Important: The file “ptxNSC_uCODE.c” and ‘.h’ in folder \SRC\COMPS\NSC\ contain the FW-image for the
PTX1xxR-chip which is required for proper functionality of the PTX1xxR-chip. DO NOT modify the content of
these two files.

● \TOOLS
PLAT contains the project to be imported in Renesas e2 studio.

Figure 7. Tools Folder Structure

PTX1xxR NFC IoT-Reader API for Non-OS Stack Integration (SDK v7.3.1) User Manual

R35AN0021EU0103 Rev.1.03
Jan 20, 2026

 Page 24

● \TOOLS\PLAT\RENESAS\RA4M2\E2STUDIO_WORKSPACE\PTX_IOTRD
This is the location where project files are located. When importing project in Renesas e2 studio, just point
to this location. All the files required to build the project are included.

Figure 8. Project Files

8. Platform Specific
The platform/MCU dependent code has been encapsulated in the PLAT Component. This section describes the
platform-specific code and project settings used for R7FA4M2AD as the reference implementation. This
reference code can be used as guidance for porting the platform-specific code to any other platform/MCU used
as application processor, in which case a general rule should be followed: keep PLAT API declarations the same
while changing functions (or data structure) implementation to fit specific MCU requirements.

RA4M2 MCU-specific third-party code is not included in this delivery since the source code is automatically
generated during every build process.

Figure 9. PLAT Folder Structure

The following items can be found in the PLAT folder:
■ \RENESAS

Folder containing source code specific for R7FA4M2AD platform
■ ptxPLAT.h

Platform API definition.

PTX1xxR NFC IoT-Reader API for Non-OS Stack Integration (SDK v7.3.1) User Manual

R35AN0021EU0103 Rev.1.03
Jan 20, 2026

 Page 25

Figure 10 shows the content of RENESAS folder.

Figure 10. RENESAS Folder Structure

In the RENESAS folder there are the following items:
■ ptxPLAT.c

Platform-specific wrapper that adapts the PLAT API functions for the submodules: TIMER, GPIO and the
host interfaces (I2C, SPI and UART).

■ ptxPLAT_GPIO.h
Platform-specific header where the GPIO-IRQ set of functions are defined.

■ ptxPLAT_GPIO.c
Platform-specific implementation of the GPIO-IRQ for R7FA4M2AD.

■ ptxPLAT_INT.h
Platform-specific header where the PLAT component for R7FA4M2AD implementation is defined.

■ ptxPLAT_SPI/_I2C/_UART.h
Platform-specific header where the SPI/I2C/UART features are defined.

■ ptxPLAT_SPI/_I2C/_UART.c
Platform-specific implementation for SPI/I2C/UART features.

Important: Depending on the used host-interface, a global compile switch / #define must be set depending on
the used host-interface which is either “PTX_INTF_SPI”, “PTX_INTF_I2C”, or “PTX_INTF_UART”. If the
switch / #define is not used, the provided demo code will not compile.

Important: Using the UART-interface also requires using the Flow Control (RTS and CTS, see Datasheet).
Some target systems may require changing the polarity of the Flow Control pins, which requires also to
set/unset a preprocessor #define in the stack.
The #define is called HIF_UART_USE_INVERTED_FLOW_CONTROL (file “ptxNSC_Intf_UART.c”) and if
set, the Flow Control pins are inverted (default) value.

PTX1xxR NFC IoT-Reader API for Non-OS Stack Integration (SDK v7.3.1) User Manual

R35AN0021EU0103 Rev.1.03
Jan 20, 2026

 Page 26

■ ptxPLAT_TIMER.h
Platform-specific header where the Timer features are defined.

■ ptxPLAT_TIMER.c
Platform-specific implementation for Timer features.

8.1 Project Quick-Start Guide
As discussed in section 5, to build the delivered project and execute the demo application on EK-RA4M2
(RA4M2 MCU development board), Renesas Flexible Software Package (FSP) and Renesas e2 studio
development IDE must be installed.

Step 1: Import project into workspace with File >Import.

Extract the archive file (.zip) containing the SDK first to a local folder and import the project via File >Import
select “Existing Projects into Workspace”. In the next window, select the option “Select root directory” and point
to the root folder with the extracted SDK. The project located in
\TOOLS\PLAT\RENESAS\RA4M2\E2STUDIO_WORKSPACE\PTX_IOTRD gets found automatically by the
tool. After clicking the “Finish” button at the bottom of the Window, the SDK gets finally imported and is ready to
be built.

Figure 11. Importing the Project into Workspace

PTX1xxR NFC IoT-Reader API for Non-OS Stack Integration (SDK v7.3.1) User Manual

R35AN0021EU0103 Rev.1.03
Jan 20, 2026

 Page 27

After successfully importing the project, the contents of the Project Explorer in e2 studio is similar to what is
shown in Figure 12 (a).

(a)

(b)

Figure 12. Project Explorer Contents

Note: (a) After Importing, Before Build; (b) After the Build.

The following items can be found in Project Explorer:
■ src/STACK

Contains SDK source files. However, project is organized so that source files are used as linked resources.
This means that source files are not physically located in workspace folder but are located in the SDK´s SRC
folder as described in section 5.

■ hal_entry.c
This is the file containing the call to demo application.

■ script/fsp.ld
Linker script for R7FA4M2AD MCU.

■ 0_PreBuild_IoTRd.bat
Batch file used in pre-build process.

■ configuration.xml
Configuration file used/modified in FSP Configuration tool to set up various platform related features. Based
on these settings project content will be generated (board configuration and drivers source files). Hint:
double-clicking on this file loads the FSP Configuration tool.

■ R7FA4M2AD3CFP.pincfg
Pin configuration file containing current MCU pins configuration. This is also updated in FSP Configuration
tool.

■ ra_cfg.txt
File presenting current MCU and board configuration.

PTX1xxR NFC IoT-Reader API for Non-OS Stack Integration (SDK v7.3.1) User Manual

R35AN0021EU0103 Rev.1.03
Jan 20, 2026

 Page 28

Step 2: Build Project

Select build configuration and click Project > Build Project.

There are multiple build configurations available. All of them will generate a .elf binary file (named of the build-
configuration) which is then used to download into MCU.

In Figure 13, folders marked in red are automatically generated with every build process:
■ ra_gen, ra and ra_cfg folders contain third-party source code which includes support for all used

(configured) MCU and board features for example, clock settings, connectivity drivers, timers, IO drivers, etc.
Example:

IoTRd_App_SPI_Debug folder contains build output files for IoTRd_App_SPI_Debug build configuration. If
another build configuration is chosen, a new folder with the same as build configuration will be created.

Figure 13. Build Output Folder

Use this file to download into R7FA4M2AD.

PTX1xxR NFC IoT-Reader API for Non-OS Stack Integration (SDK v7.3.1) User Manual

R35AN0021EU0103 Rev.1.03
Jan 20, 2026

 Page 29

Step 3: Debugging

As already discussed, project has been developed based on the R7FA4M2AD MCU and deployed on the EK-
RA4M2 development kit board. For this specific board, debugging is started as follows:

1. Connect the board´s J-Link OB port to USB on host PC
2. Select .elf binary to download to MCU
3. Click Run > Debug As > Renesas GDB Hardware Debugging

a. Select J-Link ARM
b. Select target R7FA4M2AD from the list

Figure 14. Selecting Debug Target

Important: The provided SDK contains all the required files and project settings to build and execute application
on EK-RA4M2 board by following the steps described in this section. If a different board, a different host
interface or a different R7FA4M2AD MCU configuration will be used to evaluate provided demo application, pins
and peripherals of the MCU are or might need to be reconfigured. This means a different .pincfg file has to be
provided, or pins and peripheral usage has to be set appropriately in FSP Configurator by opening and modifying
configuration.xml file. Detailed procedure how this is done is provided in vendor´s documentation and is out of
scope of this document.
■ Current SDK Pin Assignment (Renesas RA4M2-EVK)

Interface Pins Comment

SPI

MOSI = P4.11
MISO = P4.10
SCK = P4.12
CS = 4.13

Requires Pin-Config RA4M2 EK SPI in configuration.xml.

I2C SDA = P4.09
SCL = P4.08 Requires Pin-Config RA4M2 EK I2C in configuration.xml.

PTX1xxR NFC IoT-Reader API for Non-OS Stack Integration (SDK v7.3.1) User Manual

R35AN0021EU0103 Rev.1.03
Jan 20, 2026

 Page 30

Interface Pins Comment

UART

RXD = P2.06
TXD = P2.05
CTS = P4.08
RTS = P4.01

Requires Pin-Config RA4M2 EK UART in configuration.xml.
CTS and RTS connected using 10K pull-down resistors.

GPIO (IRQ) P4.14 Only required for I2C and SPI.

Console UART RXD = P1.13
TXD = P1.12 Optional, only for Console-Output.

8.2 Porting Guide
8.2.1 Introduction
As described in the introduction to section 8, the PLAT component encapsulates all the hardware platform-
dependent code and serves as the “Hardware Abstraction Layer“ (HAL) of the overall software-architecture as
shown in the following figure.

Figure 15. System Architecture

The higher software-layers are only using API functions from the PLAT layer that are defined in “ptxPLAT.h” and
are agnostic to the concrete implementation of the PLAT component itself.

When the SDK (in other words, the PLAT component) should be ported to a new hardware-platform, all API
functions from “ptxPLAT.h” must be implemented/ported.

“ptxPLAT.h” itself exposes the following low-level functionalities for the upper software layers:
■ Host-Interface access (for example, SPI, I2C, or UART)
■ GPIO access (for example, IRQ pin used for SPI and I2C, NSS pin for SPI)
■ Timer access (for example, general purpose timers to implement delays, timeouts, etc.)
■ Interrupt controlling

The SDK contains example/reference implementations of the PLAT component based on the Renesas RA4M2-
MCU using the EK-RA4M2 eval-kit covering all above listed low-level functionalities.

PTX1xxR NFC IoT-Reader API for Non-OS Stack Integration (SDK v7.3.1) User Manual

R35AN0021EU0103 Rev.1.03
Jan 20, 2026

 Page 31

8.2.2 PLAT Architecture
Figure 16 shows the architecture/structure of the PLAT component.

Figure 16. PLAT Component Architecture

The central part of the PLAT component is ptxPLAT.h which exposes all required low-level functionalities to the
upper software layers.

“ptxPLAT.c” implements already some of the basic API functions defined in “ptxPLAT.h”, such as:
■ Component (de-)initialization
■ IRQ control handling
■ Dispatching the host-interface related API calls by using #defines as described in section 7 (see

PTX_INTF_SPI, PTX_INTF_I2C or PTX_INTF_UART)
■ Timer related API calls
■ Checking for new available Rx data from the PTX1xxR chip

Despite being dependent on the underlying hardware, most of the API functions implemented in “ptxPLAT.c” are
common functions that just refer to API functions from the GPIO/Timer and Host-Interface components.
Therefore, it should not be needed to change big portions of this file except a few exceptions like
enabling/disabling IRQs or MCU-related operations. Changes are however possible/allowed (for example, code
optimization reasons).

All API functions of the PLAT component use a component specific data structure called “ptxPlat_t” which is
defined in “ptxPLAT_INT.h”. This data structure contains a minimum set of base variables/members which are
uses across the entire PLAT component. If proprietary variables are needed (or any kind of other user context),
this data structure should be used for that.

“ptxPLAT_EXT.h” contains #include-directives and compiler-specific disabling of warnings for third-party code
which is outside the scope of the SDK provided by PTX.

The three modules “ptxPLAT_GPIO.c/.h”, “ptxPLAT_TIMER.c/.h” and “ptxPLAT_[SPI, I2C, UART].c/.h”
contain the concrete low-level API-functions which are then commonly called within “ptxPLAT.c”. These low-
level API functions must be implemented/ported and require – depending on the underlying hardware – the most
adaptations. To simplify the implementation/porting process, the SDK contains reference implementations that
should be used as an example. Some parts of the implementation can even be reused.

ptxPLAT.h

ptxPLAT.c

ptxPLAT_GPIO.c/.h

ptxPLAT_INT.h

ptxPLAT_EXT.h

ptxPLAT_TIMER.c/.h

ptxPLAT_[SPI, I2C,
UART].c/.h

PTX1xxR NFC IoT-Reader API for Non-OS Stack Integration (SDK v7.3.1) User Manual

R35AN0021EU0103 Rev.1.03
Jan 20, 2026

 Page 32

8.2.3 PLAT Host-Interface Implementation
The PTX1xxR hardware uses two types of communication via the physical host-interface:
■ Synchronous communication used for commands and responses
■ Asynchronous communication for events / notifications and RF data exchanges

The PLAT component must support both communication types by implementing mechanisms to do the following:
■ Synchronously send and receive data to / from the PTX1xxR
■ Asynchronously receive data from the PTX1xxR

This mechanism is supported by the PLAT API function “ptxPLAT_TRx (…)”, which takes parameters for Tx and
Rx operations. As mentioned above, the PLAT implementation must support separated Tx and Rx operations by
setting either the Tx or Rx parameters to NULL/0. This allows to use the API function to be used for both
communication types.

To detect if the PTX1xxR hardware wants to send data to the host (both communication types), the PLAT
component must implement support for one of the following mechanisms depending on the used host-interface:
■ SPI and I2C

These host-interfaces use an additional IRQ pin to indicate to the host that data is available.

■ UART
This host-interface works in push-mode (for example, data can be sent at any time to the host after chip
initialization). It is the responsibility of the implementation in “ptxPLAT_UART.c/.h” to collect the incoming
data and to provide means to signal to the upper software layers that the received data/frame is complete.
Note: UART Rx-frames from the PTX1xxR are always starting with 1 byte length information followed by the
actual data -> [LEN] [DATA …].

A frame is complete when the number of received DATA bytes equals the value in [LEN]. For more
information on the structure of UART frames, refer to References item [6].

8.2.3.1 Example: Exchanging Commands with PTX1xxR
Figure 17 shows a simplified example how the SDK exchanges commands and responses with the PTX1xxR.
The application on the host calls an API function (for example, Discover command) from the SDK (valid for POS
or IoT SDK). Every API function call that requires access to the PTX1xxR calls a function from the NSC library
which handles all the calls to the PLAT component.

PTX1xxR NFC IoT-Reader API for Non-OS Stack Integration (SDK v7.3.1) User Manual

R35AN0021EU0103 Rev.1.03
Jan 20, 2026

 Page 33

Figure 17. Synchronous Command Handling (Simplified)

In this case, the NSC library function first transmits the command to the PTX1xxR by calling the “ptxPLAT_TRx”
function with only Tx-parameters provided. Afterwards, it waits until it receives a response from PTX1xxR by
calling “ptxPLAT_IsRxPending” by implementing/handling one of the mechanisms described above for SPI, I2C,
or UART.

When data is available, the NSC library calls again the “ptxPLAT_TRx” function but only with Rx parameters
provided to read the actual data from the PTX1xxR.

8.2.3.2 Example: Receiving Events/Notifications from PTX1xxR
Figure 18 shows a simplified example of how the SDK and in particular the PLAT component reads
events/notifications from the PT1xxR. Atypical example for an event/notification is the status whether a card was
found and activated during the RF-discovery process or an RF error occurred.

The detection if PTX1xxR has data to send:
■ Is managed internally by the SDK API functions (POS or IoT) or the NSC library, or
■ Can implicitly be triggered by the application through various API calls (see below)

When the PLAT component gets initialized, the upper software layers provide a callback function which is called
when an event/notification or RF data is available from the PTX1xxR.

NSC Library

IRQ triggered by PTX1xxR (SPI,
I2C) or Data complete (UART)

IoT/POS API PLAT

ptx[IoT|POS]_CMD

ptxNSC_CMD

ptxPLAT_TRx (Tx only)

Send Tx-Data via phys. Host-IF

ptxPLAT_IsRxPending

ptxPLAT_TRx (Rx only)

Read Rx-Data via phys. Host-IF

PTX1xxR NFC IoT-Reader API for Non-OS Stack Integration (SDK v7.3.1) User Manual

R35AN0021EU0103 Rev.1.03
Jan 20, 2026

 Page 34

Figure 18. Asynchronous Command-Exchange (Simplified)

To check if new data is available, many of the SDK API functions and/or the NSC library functions are internally
calling “ptxPLAT_TriggerRx”. This function works in a similar manner as “ptxPLAT_IsRxPending” which is
used for exchanging commands and responses. If data is available, the PLAT component will call the initially
registered callback function implemented in the NSC library.

The callback function calls the “ptxPLAT_TRx” function, but only with Rx parameters provided to read the actual
data from the PTX1xxR and stores the data internally for further processing.

Apart from other SDK API or NSC library functions, one important example of an SDK API function which calls
“ptxPLAT_TriggerRx” is “ptx[IoTRd | POS]_Get_Status_Info” (further referenced as “ptxGet_Status_Info”) as
shown in Figure 18. Assuming the application has started the RF-Discovery process and frequently polls for new
cards by calling “ptxGet_Status_Info (Discover)”. Every time it gets called, “ptxPLAT_TriggerRx” gets called
internally before it returns the status whether a card was found or not. During the first call in Figure 18, no event
(IRQ or data) is available, but immediately afterwards. When “ptxGet_Status_Info (Discover)” gets now called
the second time, “ptxPLAT_TriggerRx” sees that an event is pending and calls the callback function which then
reads the data from PTX1xxR and stores the event data internally for further processing. In this example, it could
have been the event “Card Type x Activated” which gets then returned by “ptxGet_Status_Info (Discover)”.

Important: In order not to miss any asynchronous events from the PTX1xxR, it is crucial that the application
regularly calls “ptxGet_Status_Info” in its main loop or thread. It is strongly recommended to check regularly for
critical system errors via “ptxGet_Status_Info (System)” as mentioned in section 4.

8.2.4 Implementation and Verifying Low-Level Host-Interface Driver
An elementary step for porting the PLAT component to a new platform is to implement/provide access to low-
level host-interface drivers for either SPI, I2C or UART. In many applications, these drivers provided by third
parties.

NSC Library

IRQ triggered by PTX1xxR (SPI,
I2C) or Data complete (UART)

PLAT

ptxPLAT_TriggerRx
Read level of IRQ (SPI, I2C) or check
if Data avail. (UART)IRQ = 0 or no Data avail.

ptxPLAT_TriggerRx

IRQ = 1 or Data avail. -> Call CB-Fn

ptxPLAT_StartWaitForRx(CB-Fn)
Register Callback-function to
handle async. Events at NSC-level

ptxPLAT_TRx (Rx only)
Read Rx-Data via phys. Host-IF

IoT/POS API

ptx[IoT|POS]_Get_Status_Info

Process Request

Return Status Info

ptx[IoT|POS]_Get_Status_Info

Process Request
Return Status Info

Store Data for further
internal processing

Application

PTX1xxR NFC IoT-Reader API for Non-OS Stack Integration (SDK v7.3.1) User Manual

R35AN0021EU0103 Rev.1.03
Jan 20, 2026

 Page 35

To verify the correct functionality of the drivers in combination with the PTX1xxR chip, the following hard-coded
sequences can be used to test the correct connection, framing, timings, etc.

Host-IF Tx Sequence Expected Rx Sequence Comment

SPI nSS = 0, 0x30, 0xFF, 0xFF, 0xFF 0x00, 0x00, 0x00, 0x21, nSS=1 Use up to 10 Mbit/s

I2C S, SA (W), 0x30, 0xFF, RS SA (R), 0x21, P

Use 100kHz/s
S = Start Condition
SA = Slave Address
RS = Repeated Start Cond.
P = Stop Condition

UART 0x55, 0x02, 0x30, 0xFF 0x01, 0x21 Use 115200 kBit/s

Important: The provided implementations for “ptxPLAT_TRx” and the concrete implementations for SPI, I2C,
and UART implement the third-party drivers in a blocking manner. If blocking behavior is not suitable for the
given target system, adaptations to the implementation may be required.

Example:
When sending data to the PTX1xxR using “ptxPLAT_TRx”, a “Write” function from the third-party driver is
internally called to send out the data on the physical bus. Once all data was sent out, the driver generates an
IRQ and calls a callback function in the ISR-context to signal a “Tx Complete” event. The “ptxPLAT_TRx”
function waits for this “Tx-Complete” event in a blocking manner by polling until the event status changes and
resumes afterwards. Depending on the used host-interface, the same or a similar mechanism is implemented for
“Rx-Complete” events (see previous section).

If the current blocking/polling type of implementation is not suitable for the available target system, other
mechanisms can be implemented as well as shown in the following examples:
■ The polling mechanism can be replaced by putting the host into stand-by-mode while waiting for the event

and wake-up when an IRQ occurs, thus avoiding high CPU load.
■ In an RTOS environment, a semaphore can be used which suspends/pauses the current thread while

waiting for the event (“consume”) and resumes when an IRQ occurs (“produce”).
■ The blocking behavior of “ptxPLAT_TRx” may be replaced by:

● Adding user-specific callback functions after the Tx/Rx-operation, thus giving the application all means to
either wait for the end of an operation or execute other code parts.

● Changing the function in a way that it returns immediately after the Tx/Rx operation. In addition, the PLAT
component would need to be extended by an additional API-function to check whether the Tx/Rx operation
has finished. This would also require some adaptation in the higher software layers. This would allow an
asynchronous implementation of “ptxPLAT_TRx”.

8.2.5 Implementation Suggestions for PLAT Layer
This section provides additional information for the PLAT implementation for specific host interfaces (if
applicable).
■ I2C

The PTX1xxR hardware implements a few low-level host commands which require to send a repeated-start
condition on the I2C bus during a data exchange via the PLAT API function “ptxPLAT_TRx”. This is
exemplarily shown for the RRA-operation in Figure 19 (simplified). The RRA operation requires first to
set/write the address where to read from, followed by a repeated-start condition before the actual read
operation takes place. When the read operation is done, the host stops the data exchange by sending a stop
condition on the I2C bus.

PTX1xxR NFC IoT-Reader API for Non-OS Stack Integration (SDK v7.3.1) User Manual

R35AN0021EU0103 Rev.1.03
Jan 20, 2026

 Page 36

Figure 19. PTX1xxR RRA-Operation using I2C (Simplified)

The handling of when a repeated-start condition is required for a specific HW-command is completely managed
by the upper layers of the SDK and is controlled through the parameter “flags” of “ptxPLAT_TRx” . One bit of
this parameter is used to indicate to the lower layer PLAT I2C implementation if a repeated-start condition is
necessary during the call to “ptxPLAT_TRx”.

As “ptxPLAT_TRx” must be implemented / ported by the user, care must be taken to tell the target platform-
dependent I2C driver implementation to not send a stop condition when the last entry of array parameter “txBuf”
was sent in case the flag is set.

Note: Unfortunately, many target platform driver implementations and its API interfaces are using different
terms/ways for handling repeated start conditions or no stop conditions, such as:
■ Not sending a stop condition for the current I2C transfer
■ Using a repeated start condition for the next I2C transfer (prevents the stop condition internally)

The scenario as shown and required by the example in Figure 19 can be achieved with each of the mentioned
examples but may need some adaptations in the logic of the actual PLAT I2C implementation.

■ UART
The provided reference low-level UART implementation in “ptxPLAT_UART.c” is based on a circular buffer
implementation to store all the received messages from the PTX1xxR hardware.
UART Messages are defined as follows:

Figure 20. UART Message Format

The first byte “LEN” defines the length of the message, and the remaining “LEN”-bytes define the actual
message itself. The circular buffer implementation allows to concatenate multiple messages consecutively as
shown in the following example.

Device AddressS W A T = 001 AH [12:8] A AL [7:0] A

Device AddressRS R A RDn A P

Sent by Host

Sent by Device (PTX1xxR)

S Start Condition
W Write
R Read
A Acknowledge
RS Repeated Start Condition
T Type of Transaction

AH Address High
AL Address Low
RDn Read Data N
A Acknowledge
P Stop Condition

Message (LEN Bytes)

Single Message

LEN

PTX1xxR NFC IoT-Reader API for Non-OS Stack Integration (SDK v7.3.1) User Manual

R35AN0021EU0103 Rev.1.03
Jan 20, 2026

 Page 37

Figure 21. Concatenated UART Messages

In this example, the circular buffer has a total size of 10 bytes which exemplarily contains two messages.
The first message has a length of 3 bytes and payload value range from 0xA0 to 0xA2 and the second
message following right after has a length of 5 bytes and payload value range from 0xB0 to 0xB4.
If the circular buffer would just consist of 8 bytes, the 2 remaining bytes would overwrite the first 2 bytes of the
first message as shown below.

Figure 22. UART Messages with Circular Buffer Overflow

With every received byte from the UART, the upper layers in the SDK check if a message has been
completely received (for example, via call to “ptxPLAT_(UART)_TriggerRx”).
If a message is complete, the upper layers in the SDK calls “ptxPLAT_GetReceivedMessage” to copy the
next pending (complete) message into a dedicated buffer for further processing. This is happening in the
background while the next bytes can be received from the UART.
As the UART interface is relatively slow compared to the speed of the host-processor, the first message would
already be completely processed while the reception of the second message is still ongoing, therefore the
overflow (in other words, overwriting) of the bytes from a previous message is not an issue.
As “ptxPLAT_(UART)_GetReceivedMessage” must be implemented/ported by the user, it is strongly
recommended to:
● Re-use the approach of a circular buffer implementation (as provided in the reference implementation) by

keeping track of the current message index as well as the index of the currently received byte. Furthermore,
the implementation must be able to handle circular buffer overflows.

● Use a size of at least 256 bytes for the circular buffer.

If an implementation other than a circular buffer approach is chosen (not recommended), adaptations are
needed in the upper SDK layers as well, like in function “ptxNSC_GetRx” in “ptxNSC_Intf_UART.c”.

Message 1 Message 2

0xA0 0xA1 0xA2 0xB0 0xB1 0xB2 0xB3 0xB40x03 0x05

Message 2 Part 2 Message 2 Part 1

0xA1 0xA2 0xB0 0xB1 0xB20xB3 0x050xB4

Leftovers from previous Message 1

PTX1xxR NFC IoT-Reader API for Non-OS Stack Integration (SDK v7.3.1) User Manual

R35AN0021EU0103 Rev.1.03
Jan 20, 2026

 Page 38

8.3 Integration Notes/Suggestions
8.3.1 Performance Optimization
The SDK contains various code examples to demonstrate the usage of the provided SDK API. As such, the code
examples sometimes may enable features/extended capabilities like artificial delays for better readability of the
output in the console-application or serial terminal, (real-time) logging.

Depending on the target system, these features/capabilities may impact overall performance and can be
adapted for the integration into the final application.

The following list provides an overview on which features/capabilities can be adapted to improve overall
performance of the SDK APIs.

8.3.2 Artificial Delays/Sleep-Operations
To improve the readability of the output in the provided console-application and/or serial application, the example
code contains several artificial delays/sleep-operations (further referenced as “delays”).

There are two types of (artificial) delays:
■ Delay after Exemplary RF Data Exchanges

These delays are used to improve readability and can be disabled by either defining the compile flag/switch
“PTX_DISABLE_EXAMPLE_DELAYS” globally or by simply removing them.

■ Delays after Polling Various States
Polling certain states/variables may increase the overall CPU-load of an application or produce a high
amount of unwanted console output. To avoid this, several delays were introduced (for example, card-state
during RF polling/discovery and no card was detected). Performance can be improved by adapting these
delays for the target application or to replace the polling by using platform-specific stand-by mode(s).

Example:
The delays for polling the card-status is referenced in the example code by the
PTX_*_NO_CARD_SLEEP_TIME definition.

8.3.3 Maximum Number of Supported Cards
The IoT-Reader SDK implementation uses an internal card registry to store card data (for example, technical
and activation parameters) for up to 50 cards by default. The memory for card data entries in the registry is
allocated statically and has a direct impact on the consumed memory.

The number for maximum supported cards can be adapted depending on the target application. The number can
be changed by adapting the #define PTX_IOTRD_MAX_SUPPORTED_DEVICES in the header file of the IoT-
Reader API component.

Note: On MCU systems, reducing the number from 50 down to 5 can free up approximately 1kB of RAM.

PTX1xxR NFC IoT-Reader API for Non-OS Stack Integration (SDK v7.3.1) User Manual

R35AN0021EU0103 Rev.1.03
Jan 20, 2026

 Page 39

8.3.4 Reference Implementation–Code Size and Memory Consumption
The reference implementation provided with the SDK was exemplarily built (release version) on a Renesas
RA4M2 system using GCC V9.3.1 which produces the following output in terms of code size and memory
consumption.

Memory Type (Target IoTRd_App_xxx_Release) Size (SPI) Size (I2C) Size (UART)

PTX Code with third-party code [1] ~ 53KB ~ 52KB ~ 52KB

PTX Code without third-party code ~ 39KB ~ 39KB ~ 39KB

Total Memory Consumption (Data + BSS, Example Application) ~ 3KB ~ 2,8 KB ~ 2,9 KB

Stack Consumption (Example Application) ~ 3,4 KB ~ 3,4 KB ~ 3,4 KB

1. The third -party code consists of low-level drivers and libraries to access peripherals on the RA4M2 platform such as host
interfaces (SPI, I2C, …), GPIOs, timers, etc.

Important: The values listed in the table are reference values. Depending on the target system integration,
build/environment properties, such as:
■ Target platform/MCU architecture
■ Compilers/compiler versions and settings (for example, optimization level)
■ Included/excluded SDK modules (for example, optional modules)
■ SDK configuration (for example, maximum number of supported cards)
■ Tested use case/scenario

These properties can have a large impact on the output and the numbers can vary significantly.

PTX1xxR NFC IoT-Reader API for Non-OS Stack Integration (SDK v7.3.1) User Manual

R35AN0021EU0103 Rev.1.03
Jan 20, 2026

 Page 40

8.3.5 Switching Reference Host-Interface Implementation
The SDK contains example/reference implementations for the three supported host-interfaces SPI, I2C, and
UART for the Renesas RA4M2-platform based on the EK-RA4M2 evaluation kit.

To switch between the reference host-interface implementations in E2 Studio, complete the following steps:

1. Open file configuration.xml (1), select tab “Pins” (2) and select the targeted pin configuration via the drop-
down menu (3).

Figure 23. Pin Configuration in “configuration.xml”

2. Set project-wide/global pre-processor definition PTX_INTF_SPI, PTX_INTF_I2C or PTX_INTF_UART as
described in section 8 for the targeted host-interface implementation.
Important: This step is only mandatory if a project gets ported to a new target platform, that is, if none of the
provided example reference implementations gets used. When using one of the existing implementations,
the definitions are automatically set when the desired build-target gets selected (see next step).

PTX1xxR NFC IoT-Reader API for Non-OS Stack Integration (SDK v7.3.1) User Manual

R35AN0021EU0103 Rev.1.03
Jan 20, 2026

 Page 41

3. Select corresponding build-target.

Figure 24. Build Target Selection

4. Wire/connect the physical pins from the EK-RA4M2 board and the PTX board as described in section 8.1.
5. Reboot the PTX board, build the target, and run the application.

9. RF Configuration Updates
The PTX chip allows to update RF configuration parameters. A default configuration is downloaded to the PTX
chip during the initialization phase and can be optionally changed during runtime via an API call.

9.1 Default RF Configuration
The default RF configuration is provided as source files “ptxNSC_RfConfigVal.c” and “ptxNSC_RfConfigVal.h”
and is stored inside the IoT-Reader (Non-OS) SDK in the folder “SRC\COMPS\NSC”.

The default RF configuration, that is the source files themselves, can be generated using the PTX1xxR IOT
Config Tool from Renesas (for reference documentation, see section 11).

Figure 25 shows a screenshot of the PTX1xxR IOT Config Tool. It allows the user to configure the RF
configuration parameters and to generate the required ‘.c’ and ‘.h’ files accordingly.

PTX1xxR NFC IoT-Reader API for Non-OS Stack Integration (SDK v7.3.1) User Manual

R35AN0021EU0103 Rev.1.03
Jan 20, 2026

 Page 42

Figure 25. PTX1xxR IOT Config Tool

To update RF configuration of the IoT-Reader (Non-OS) SDK, click the toolbar button “Generate C files” and
select the folder “SRC\COMPS\NSC”.

Important: The default RF configuration provided with the SDK works best with the accompanying product
evaluation kit/board. It may also work well out of the box with a custom setup/application using a different
antenna setup and matching components.

In most cases, updating (in other words, adapting) the default RF configuration is mandatory for a custom/final
target application setup. As a reminder, the SDK implements an artificial compiler warning printing the following
message:

 Attention - Default SDK RF-Config settings used - please adapt values for
 target application platform!

The warning disappears automatically when the RF configuration is regenerated using the PTx1xxR Config Tool.

PTX1xxR NFC IoT-Reader API for Non-OS Stack Integration (SDK v7.3.1) User Manual

R35AN0021EU0103 Rev.1.03
Jan 20, 2026

 Page 43

9.1.1 Temperature Sensor Calibration
PTX chip features an on-chip temperature sensor that continuously monitors the die temperature. In case the
temperature exceeds a configurable threshold, the transmitter is automatically disabled.

To get expected accuracy, the temperature sensor requires calibration. This should be done once for a given
PTX chip. Calibration can be triggered by appropriate setting of the following input parameters in a call to
"ptxIoTRd_Init":

ptxIoTRd_TempSense_Params_t *TemperatureSensor
■ Calibrate

Start temperature sensor calibration or not: 1 = start, 0 = don´t start

■ Tshutdown
Expected thermal shutdown threshold value

■ Tambient
Ambient temperature at which temp. sensor calibration takes place

Important: The implemented temperature sensor serves as safety-mechanism only. It is optimized for a
temperature shutdown threshold of 120°C which is also the recommended value to be used for the calibration
routine.

Along with sensor calibration, the API calculates the compensated temperature threshold value that is then used
as one of the input parameters in subsequent calls to "ptxIoTRd_Init".

Temperature Compensation Steps:

1. Set the system into Start state (according to section 4)
2. Start system initialization and perform temperature calibration:

a. Set ambient temperature to a desired value for example, 25°C. Provide this value as “Tambient” input
parameter in "ptxIoTRd_Init"

b. Set the value of expected temperature shutdown threshold in “Tshutdown” parameter (for example,
100°C, the value is provided in the PTX1xxR datasheet). Note that “Tshutdown” returns the calculated
threshold value from the calibration routine.

c. Set “Calibrate” to 1.
d. Call "ptxIoTRd_Init" with provided parameters.

3. Permanently store the value returned in “Tshutdown” parameter for future use (for example, in a
configuration file).

Use that stored value to fill “TemperatureSensor::Tshutdown” member of the “initParams” input
parameter in every call to "ptxIoTRd_Init", during system initialization.

Important: Temperature sensor calibration (temperature threshold compensation) must be executed once
per PTX chip in controlled environment conditions (with parameter “Calibrate” set to 1). When done, it does
not need to be started all over again.

The resulting value should be stored and re-used in all future calls to "ptxIoTRd_Init" (with parameter
“Calibrate” set to 0).

9.2 Dynamic at Runtime
The API function “ptxIoTRd_Update_ChipConfig” can be used to change the RF and System parameters at
Runtime. The function takes a struct-type as input parameter containing the ID, the value and the length of a
given RF parameter set.

PTX1xxR NFC IoT-Reader API for Non-OS Stack Integration (SDK v7.3.1) User Manual

R35AN0021EU0103 Rev.1.03
Jan 20, 2026

 Page 44

9.3 Platform Specific
If the RF parameters are stored in a platform-specific memory location (for example, EEPROM, internal, or
extern Flash memory), the internal function “ptxNSC_RFConfig_GetConfigPointer” inside the source file
“ptxNSC_RfConfig.c” can be overwritten and adapted to specific target characteristics. The function is used to
return a pointer to a selected set of RF parameter values and their length. The reference implementation
provided with this SDK returns pointers and lengths to the constant fields of the files described in section 7.

10. Add-on Libraries/APIs
The IOTRD API contains additional support libraries that extend the existing functionality of the IOTRD
component at application layer. The use of these libraries is optional; that is, they can be included in or excluded
from the build process.

The current SDK version 2.0.0 contains the following add-on libraries:
■ NativeTag API for NFC Forum Type Tags 2–5 (T2T, T3T, T4T, T5T)
■ NDEF-API for NFC Forum Type Tags 2–5 Tag (T2T, T3T, T4T, T5T)
■ GPIO API for PTX1xxR
■ RF Test
■ FeliCa DTE
■ Transparent Mode

Details for each of the APIs can be found in the following sections.

10.1 Native-Tag API
The Native-Tag API implements the native command set for each of the NFC Forum Tag Types and allows also
to be further extended if required (for example, manufacturer product specific command set).

As shown in Figure 26, the Native-Tag API is located on top of the IoT-Reader API and it uses internally the
function “ptxIoTRd_Data_Exchange” to exchange RF data with the corresponding Tag.

Figure 26. Native-Tag API Overview

Each of the individual Tag-specific APIs follows the same approach where:
■ An initial call to “ptxNativeTag_TxTOpen” is required to initialize the component
■ A final call to “ptxNativeTag_TxTClose” is required to free potentially allocated resources
■ All other functions can be used to send a Tag-specific command

Note: While the component initialization can also take place at the beginning (for example, after stack
initialization), the actual Tag-specific command can only be sent in API state “Data Exchange”. For some
protocols that use an ID as part of the command-packet (for example, T3T or T5T), it may be necessary to set
the ID (of the active Tag) once when the API state “Data Exchange” is entered. The ID itself can be set via a
dedicated function provided by the corresponding API.

IoT-Reader API - ptxIoTRd_Data_Exchange()

Native-Tag API

T5TT4TT3TT2TRFU

PTX1xxR NFC IoT-Reader API for Non-OS Stack Integration (SDK v7.3.1) User Manual

R35AN0021EU0103 Rev.1.03
Jan 20, 2026

 Page 45

10.1.1 Supported Type 2 Tag Commands
■ READ
■ WRITE
■ SECTOR_SELECT

10.1.2 Supported Type 3 Tag Commands
■ SENSF_REQ
■ CHECK
■ UPDATE

10.1.3 Supported Type 4 Tag Commands
■ SELECT
■ READ_BINARY
■ UPDATE_BINARY

10.1.4 Supported Type 5 Tag Commands
■ READ_SINGLE_BLOCK _REQ
■ WRITE_SINGLE_BLOCK_REQ
■ LOCK_SINGLE_BLOCK_REQ
■ READ_MULTIPLE_BLOCK _REQ
■ EXTENDED_READ_SINGLE_REQ
■ EXTENDED_WRITE_SINGLE_BLOCK _REQ
■ EXTENDED_LOCK_SINGLE_BLOCK _REQ
■ EXTENDED_READ_MULTIPLE_BLOCK _REQ
■ SELECT_REQ
■ SLPV_REQ

PTX1xxR NFC IoT-Reader API for Non-OS Stack Integration (SDK v7.3.1) User Manual

R35AN0021EU0103 Rev.1.03
Jan 20, 2026

 Page 46

10.2 NDEF API
The NDEF API implements the (NDEF) operations for each of the NFC Forum Tag Types which consists of the
following set of functions:
■ FORMAT (*)
■ CHECK
■ READ
■ WRITE
■ LOCK

Important (*): While the operations CHECK, READ, WRITE, and LOCK are defined by the NFC Forum, the
operation FORMAT is out of scope of the specifications and often depends on parameters/sequences, such as:
■ Tag memory size
■ Timing parameters
■ Certain file systems (may also use cryptographic algorithms for creation)
■ Certain format of memory blocks

These are proprietary/manufacturer specific. Although prepared in the NDEF API(s), the final implementation
must be handled by the integrator (if required).

As shown in Figure 27, the NDEF API is located on top of the Native-Tag API. The NDEF API is split into two
sub-modules consisting of:
■ The Tag-Type specific NDEF-operations
■ A generic NDEF-operation layer

The generic NDEF operation layer determines which Tag/RF-Protocol is currently active and calls the
corresponding Tag-Type specific operation.

Note: Each of the operations READ, WRITE, and LOCK requires an initial execution of operation CHECK,
otherwise the operations/functions will return an error.

Note: Handling of IDs as described in the previous section, is handled automatically by the NDEF API.

PTX1xxR NFC IoT-Reader API for Non-OS Stack Integration (SDK v7.3.1) User Manual

R35AN0021EU0103 Rev.1.03
Jan 20, 2026

 Page 47

Figure 27. NDEF API Overview

Each of the individual Tag-Operation APIs, or the general NDEF APIs, follows the same approach where:
■ An initial call to “ptxNDEF_[TxT]Open” is required to initialize the component
■ A final call to “ptxNDEF_[TxT]Close” is required to free potentially allocated resources
■ All other functions can be used to execute NDEF operations

Note: While the component initialization can also take place at the beginning (for example, after stack
initialization), the NDEF operations can only be used in API state “Data Exchange”. Setting Tag-specific
parameters like ID (see previous section) are handled internally.

10.3 GPIO API
The GPIO API grants access to the GPIO pins 5 to 12 of the PTX chip which consists of the following set of
functions:
■ ptxGPIO_Init

Initializes the GPIO component (possible to be called in any state).

■ ptxGPIO_Deinit
Deinitializes the GPIO component (possible to be called in any state).

■ ptxGPIO_Config
Configure an individual GPIO pin as:

● Input (+optional flag to enable an internal pull-up resistor; see PTX chip datasheet)
● Output (+optional flag to increase the internal driver strength; see PTX chip datasheet)

■ ptxGPIO_Write
Sets/Writes a GPIO pin.

■ ptxGPIO_Read
Gets / Reads a GPIO pin.

■ ptxGPIO_Write_DAC
Writes a value to 5-bit DAC-0.

Note: GPIO access can be performed in any state from Ready onwards.

IoT-Reader API - ptxIoTRd_Data_Exchange()

Native-Tag API

NDEF API

Generic NDEF-Operations API

T5T-OPT4T-OPT3T-OPT2T-OPRFU

T5TT4TT3TT2TRFU

PTX1xxR NFC IoT-Reader API for Non-OS Stack Integration (SDK v7.3.1) User Manual

R35AN0021EU0103 Rev.1.03
Jan 20, 2026

 Page 48

10.4 RF Test API
The RF-Test API allows to perform various general RF-Tests such as the PRBS9 or PRBS15 tests.
■ ptxRF_Test_Init

Initializes the RF-Test component (possible to be called in any state).

■ ptxRF_Test_Deinit
Deinitializes the RF-Test component (possible to be called in any state).

■ ptxRF_Test_RunTest
Executes a selected RF-test. The test configuration gets passed as test input parameter structure which also
contains an ID-field to identify/select the desired test.

Currently Supported RF Tests:
● PRBS9 (must be stopped manually (see below)
● PRBS15 (must be stopped manually (see below)
● Carrier-on without modulation (must be stopped manually (see below)

■ ptxRF_Test_StopTest
Stops an ongoing RF-test.

Note: RF-test execution and -stopping is only allowed in state Ready.

10.5 FeliCa DTE API
The FeliCa DTE API allows to perform various FeliCa-related tests to pass the FeliCa M-Class certification
and/or to run the test-sequences defined in the Reader/Writer Digital Protocol Requirements specification.
■ ptxFeliCa_DTE_Init

Initializes the FeliCa DTE component (possible to be called in any state).

■ ptxFeliCa_DTE_Deinit
Deinitializes the FeliCa DTE component (possible to be called in any state).

■ ptxFeliCa_DTE_EnableMode
Configures the PTX chip to work in FeliCa DTE mode. The mode must be enabled before any test gets
carried out and disabled afterwards.

■ ptxFeliCa_DTE_RunTest
Executes a selected RF test. The test configuration gets passed as test input parameter structure which also
contains an ID-field to identify/select the desired test.

Currently Supported FeliCa Tests:
● M-Class Performance Tests according to References item [4]
● Test-sequences defined in Reader/Writer Digital Protocol Requirements according to References item [5]

Note: FeliCa test execution is only allowed in state Ready.

PTX1xxR NFC IoT-Reader API for Non-OS Stack Integration (SDK v7.3.1) User Manual

R35AN0021EU0103 Rev.1.03
Jan 20, 2026

 Page 49

10.6 Transparent-Mode API
The optional Transparent Mode API enables an application to implement proprietary protocols based on low-
level RF commands.

Important: This API works independently of the implemented on-chip standard RF-Discovery procedure (for
example, NFC Forum/ISO). Until explicitly mentioned, this API should not be mixed up with the standard API
functions provided by this SDK.
■ ptxTransparentMode_Init

Initializes the Transparent-Mode component (possible to be called in any state)

■ ptxTransparentMode_Deinit
Deinitializes the Transparent-Mode component (possible to be called in any state)

■ ptxTransparentMode_SetField
Enables or disables the Transparent Mode by turning the RF field on or off in state Test.
An application must call this function before any further call to “ptxTransparentMode_SetRFParameters()”
/ “ptxTransparentMode_Exchange()” with input parameter state = 1. If the mode should be exited to return
to state Ready, this function must be called again with input parameter state = 0.

■ ptxTransparentMode_SetRFParameters
This API function configures the hardware for the following call(s) to “ptxTransparentMode_Exchange()”.
The following configuration parameters are supported:

● RF Technology:
A, B, F, or V

● Tx and Rx Bitrates:
106/212/424/848/26.5 kBit/s

● Flags (Parity, CRC):
○ Enable / Disable Tx-/Rx-CRC handling
○ Enable / Disable Tx-/Rx-Parity-Bit handling
○ Enable reception of Start-of-Frame (SoF) only (only in combination with RF-technology Type-V)
○ Include / Exclude 1st byte of data in CRC-calculation (used by certain propr. Card protocols; only in

combination with RF-technology Type-V)

● Number of Tx-Bits:
Number of (residual) Bits to be sent for last byte

● RES-Limit:
Max. number of responses to receive

■ ptxTransparentMode_Exchange
This API function performs the actual data exchange via RF. Received data always contains one additional
byte which contains a contactless status byte.
The contactless status byte is defined as follows:

● Bit 7: If set to 1, a contactless error occurred (for example, CRC or Parity error).
● Bit 6–0: Number of valid bits in last received byte.

Example: If the answer to a REQ-A / SENS_REQ is 0x44 0x03, the API function returns:
rxLength = 3 (2 Byte received data + 1 byte contactless status byte)
rx = 0x44 0x03 0x00 (last byte = contactless status byte)

PTX1xxR NFC IoT-Reader API for Non-OS Stack Integration (SDK v7.3.1) User Manual

R35AN0021EU0103 Rev.1.03
Jan 20, 2026

 Page 50

Implementation Guidelines/Suggestions:
■ If a protocol should be implemented that always uses the same RF-parameters, a single call to this function

is sufficient. The function “ptxTransparentMode_Exchange()” can be used to overwrite the parameters for
a single call

■ Tx/Rx Parity Bit handling is only applicable for RF Technology A – ignored for others
■ Number of Tx Bits can be set from 0–7, where 0 means that all 8 bits should be sent
■ RF Technology F works only for bitrates 212 and 424 kBit/s
■ RF Technology F normally prepends the LEN-byte to a Tx or Rx frame. The LEN-byte is automatically

managed by the hardware. If multiple responses are received (for example, SENSF_REQ), it is up to the
application to parse the received bytes.

■ Performing a SENSF_REQ (RF Technology F) requires to re-enable the hardware receiver n-times (i.e.,
within a given time. This can be achieved with the RES-Limit parameter. To send a SENSF_REQ with a TSN
value ! = 0, the RES-Limit parameter should be set to 0. In this case, the hardware receiver gets re-enabled
until the timeout parameter (see “ptxTransparentMode_Exchange()”) expires. For all other cases, RES-
Limit should be set to 1.

Examples:
■ Type A – REQ-A / SENS_REQ:

● RF Technology = A
● Tx/Rx Bitrate = 106kBit/s
● Flags = Tx/Rx Parity = Enabled, Tx/Rx CRC = Disabled
● Number of Tx-Bits = 7
● RES-Limit = 1
● Timeout = 1ms
● tx[0] = 0x26
● txLength = 1

■ Type A – SELECT / SEL_REQ:
● RF Technology = A
● Tx/Rx Bitrate = 106kBit/s
● Flags = Tx/Rx Parity = Enabled, Tx/Rx CRC = Enabled
● Number of Tx Bits = 0
● RES-Limit = 1
● Timeout = 10ms
● tx[…] = 0x93, 0x70, 4 x UID, 1 x BCC
● txLength = 7

■ Type B – REQ-B / SENSB_REQ:
● RF Technology = F
● Tx/Rx Bitrate = 106kBit/s
● Flags = Tx/Rx Parity = d.c., Tx/Rx CRC = Enabled
● Number of Tx Bits = 0
● RES-Limit = 1
● Timeout = 10ms
● tx[…] = 0x05, 0x00, 0x00
● txLength = 3

PTX1xxR NFC IoT-Reader API for Non-OS Stack Integration (SDK v7.3.1) User Manual

R35AN0021EU0103 Rev.1.03
Jan 20, 2026

 Page 51

■ Type F – SENSF_REQ (Single Card or TSN = 0):
● RF Technology = F
● Tx/Rx Bitrate = 212 or 424 kBit/s
● Flags = Tx/Rx Parity = d.c., Tx/Rx CRC = Enabled
● Number of Tx Bits = 0
● RES-Limit = 1
● Timeout = 5ms
● tx[…] = 0x00 0xFF 0xFF 0x00 0x0F
● txLength = 5

■ Type F – SENSF_REQ (Multiple Cards or TSN != 0):
● RF-Technology = F
● Tx/Rx Bitrate = 212 or 424 kBit/s
● Flags = Tx/Rx Parity = d.c., Tx/Rx CRC = Enabled
● Number of Tx Bits = 0
● RES-Limit = 0
● Timeout = 2.4ms + TSN * 1.2 (Note: Timeout is always given in integers)
● tx[…] = 0x00 0xFF 0xFF 0x00 0x0F
● txLength = 5

■ Type V – Inventory Command:
● RF Technology = V
● Tx/Rx Bitrate = 26.5kBit/s
● Flags = Tx/Rx Parity = d.c., Tx/Rx CRC = Enabled
● Number of TxBits = 0
● RES-Limit = 1
● Timeout = 10ms
● tx[…] = 0x26 0x01 0x00
● txLength = 3

■ Type B Prime – APGEN:
● RF-Technology = BPrime
● Tx/Rx Bitrate = 106 kBit/s
● Flags = Tx-/Rx Parity = d.c., Tx-/Rx-CRC = Enabled
● Number of Tx-Bits = 0
● RES-Limit = 1
● Timeout = 10ms
● tx[…] = 0x01, 0x0B, 0x3F, 0x80
● txLength = 4

PTX1xxR NFC IoT-Reader API for Non-OS Stack Integration (SDK v7.3.1) User Manual

R35AN0021EU0103 Rev.1.03
Jan 20, 2026

 Page 52

10.7 Transparent Data Channel (TDC) API
The Transparent Data Channel (TDC) enables arbitrary data transfers between the PTX1xxR and a Renesas
NFC Forum WLC Listener device (further referenced as Listener in this section) such a the Renesas PTX30W.
The transport protocol is built upon ISO14443-3 (or NFC Forum T2T) – Type A 106kbps frames.

The TDC component consists of the following API functions:

■ ptxTDC_Init
Initializes the TDC component (possible to be called in any state).

■ ptxTDC_Deinit
Deinitializes the TDC component (possible to be called in any state).

■ ptxTDC_Write
Writes a TDC message with a maximum of 63 payload bytes to the Listener. If the function input parameter
“ackTimeoutMs” is set to a value larger than 0, the function call waits internally for an acknowledgement from
the Listeners Host MCU by internally calling “ptxTDC_IsReceived” (see below).

■ ptxTDC_IsReceived
Checks if the previously sent message using “ptxTDC_Write” has been received/read by the Listener Host
MCU.

Data transfers are done in packets of max 63 bytes. Every data transfer (no matter whether it is a Tx or Rx
operation) must always be initiated by the PTX1xxR – it is the master of the communication channel. If data shall
be sent to the Listener, the PTX1xxR can write this data directly to the T2T memory of the Listener. If data shall
be received from the Listener, the Listener cannot start a data transfer directly to the PTX1xxR, instead it must
wait until it is read by the PTX1xxR.

The application can choose between two different modes of operation:
■ NFC FORUM COMPLIANT MODE:

The NFC Forum Compliant transfer mode uses the T2T command set (defined in References item [7]) to
read and write data from/to the Listener. With the T2T_WRITE command, the PTX1xxR can transfer 4 bytes
of payload to the Listener, whereas with the T2T_READ command, the PTX1xxR can read 16 bytes from the
Listener device with a single RF transaction.

■ PTX PROPRIETARY MODE:
Using the PTX proprietary transfer mode, 64 bytes can be transferred at once, either from or to the Listener,
allowing an increased data throughput.

By default, the PTX PROPRIETARY MODE is active. NFC FORUM COMPLIANT mode can be enabled by
setting the define as shown below.

The TDC add-on API consists of the following files:
■ \SRC\COMPS\TDC\ptxTDC.c
■ \SRC\COMPS\TDC\ptxTDC.h

PTX1xxR NFC IoT-Reader API for Non-OS Stack Integration (SDK v7.3.1) User Manual

R35AN0021EU0103 Rev.1.03
Jan 20, 2026

 Page 53

10.7.1 Transparent Data Channel (TDC) Timer API
The non-OS implementation of the TDC API requires a stop-watch functionality which is implemented in a
dedicated component called TDC Timer API.

The TDC API is hardware-dependent and must therefore be adapted/ported to the target platform. The
reference implementation provided with the SDK is based on the App-Timer implementation located in:

\SRC\COMPS\PERIPHERALS\RA4M2\ptxPERIPH_APPTIMER.*

The App-Timer implementation uses a general-purpose Timer of the RA4M2 reference MCU. For porting the
implementation, any timer supporting a resolution given in [Milliseconds] is suitable.

The TDC Timer component consists of the following API functions:
■ ptxTDC_Timer_Start

Starts a timer with a given number of milliseconds.

■ ptxTDC_Timer_Start
Stops the previously started timer.

■ ptxTDC_Timer_Status
Returns whether the timer has expired or not.

The TDC Timer add-on API consists of the following files:
■ \SRC\COMPS\TDC\ptxTDC_Timer.c
■ \SRC\COMPS\TDC\ptxTDC_Timer.h

11. References

11.1 General
■ [1] Renesas PTX100R Datasheet
■ [2] Renesas PTX105R Datasheet
■ [3] Renesas PTX130R Datasheet
■ [4] Renesas PTX1xxR POS-Reader API Device Test Environment
■ [5] FeliCa Reader/Writer RF Performance Certification Specification Ver.1.5
■ [6] FeliCa Reader/Writer Digital Protocol Requirements Specification Ver.1.22
■ [7] NFC Forum, Tag Type 2 Specifications 1.2, 2021.

11.2 Standards and Regulations
■ NFC Forum

https://www.renesas.com/us/en/document/dst/ptx100r-datasheet?r=25426186
https://www.renesas.com/us/en/document/dst/ptx105r-datasheet?r=25426196
https://www.renesas.com/us/en/document/dst/ptx130r-datasheet?r=25426201
https://nfc-forum.org/

PTX1xxR NFC IoT-Reader API for Non-OS Stack Integration (SDK v7.3.1) User Manual

R35AN0021EU0103 Rev.1.03
Jan 20, 2026

 Page 54

12. Revision History

Revision Date Description

1.03 Jan 20, 2026
SDK Release 7.3.1:
 Extended Chapter 9.1.1 by adding recommended temperature shutdown threshold

1.02 Aug 29, 2025
Updated manual for SDK Release 7.3.0:
 Improved description of section 4.1 (general)
 Extended section 10.6 (introduction of new Flags for Transparent Mode API)

1.01 May 3, 2024

Updated manual for SDK Release 7.2.0:
 Improved description of API Init-/Open-functions (clarified usage of allocated vs. initialized)
 Fixed issue related to EMV collision detection for Type-B (POS-SDK only).
 Added new member "ReadCCVariant" to T2T-NDEF-OP initialization parameters to select if

the Capability Container CC gets read initially via Block 3 (default) or Block 0.
 Extended description of PLAT-UART reference implementation
 Added support for B-Prime RF-Technology in Transparent-Mode API
 Integrated “Transparent Data Channel (TDC)”-API (previously located in PTX130WN WLC

Poller SDK)

1.00 Oct 24, 2023
SDK Release 7.1.0:
 Upgraded project files to Renesas E2 Studio 2022-10 and FSP 4.2
 Added new API “Transparent-Mode”.

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit www.renesas.com/contact-us/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1)
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an
application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is
granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims
responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses,
or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and
Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise
alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

© 2026 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/contact-us
https://www.renesas.com

	1. Overview
	1.1 Audience
	1.2 Requirements
	1.2.1 Building the IoT-Reader SDK

	1.3 Abbreviations and Terminology

	2. Architecture of IoT-Reader (Non-OS) System
	2.1 Component Description
	2.1.1 IoT-Reader API
	2.1.2 Add-on APIs
	2.1.3 IoT-Reader Component
	2.1.4 NSC Component
	2.1.5 Platform API
	2.1.6 Platform Component

	3. IoT-Reader API Description
	3.1 ptxIoTRd_Init
	3.2 ptxIoTRd_InitNSC
	3.3 ptxIoTRd_Update_ChipConfig
	3.4 ptxIoTRd_Get_Revision_Info
	3.5 ptxIoTRd_Initiate_Discovery
	3.6 ptxIoTRd_Get_Card_Registry
	3.7 ptxIoTRd_Activate_Card
	3.8 ptxIoTRd_Data_Exchange
	3.9 ptxIoTRd_Bits_Exchange_Mode
	3.10 ptxIoTRd_Bits_Exchange
	3.11 ptxIoTRd_RF_PresenceCheck
	3.12 ptxIoTRd_T5T_IsolatedEoF
	3.13 ptxIoTRd_T3T_SENSFRequest
	3.14 ptxIoTRd_Reader_Deactivation
	3.15 ptxIoTRd_Update_ChipConfig
	3.16 ptxIoTRd_Set_Power_Mode
	3.17 ptxIoTRd_Get_System_Info
	3.18 ptxIoTRd_SWReset
	3.19 ptxIoTRd_Deinit
	3.20 ptxIoTRd_Get_Status_Info
	3.21 ptxIoTRd_ConfigHBR
	3.22 ptxIoTRd_Set_RSSI_Mode
	3.23 ptxIoTRd_Get_RSSI_Value

	4. IoT-Reader API States
	4.1 State Descriptions

	5. HCE API Description
	5.1 ptxHCE_Init
	5.2 ptxHCE_Deinit
	5.3 ptxHCE_GetEvent
	5.4 ptxHCE_SendData

	6. HCE API States
	6.1 State Descriptions

	7. IoT-Reader (Non-OS) SDK Delivery
	8. Platform Specific
	8.1 Project Quick-Start Guide
	8.2 Porting Guide
	8.2.1 Introduction
	8.2.2 PLAT Architecture
	8.2.3 PLAT Host-Interface Implementation
	8.2.3.1 Example: Exchanging Commands with PTX1xxR
	8.2.3.2 Example: Receiving Events/Notifications from PTX1xxR

	8.2.4 Implementation and Verifying Low-Level Host-Interface Driver
	8.2.5 Implementation Suggestions for PLAT Layer

	8.3 Integration Notes/Suggestions
	8.3.1 Performance Optimization
	8.3.2 Artificial Delays/Sleep-Operations
	8.3.3 Maximum Number of Supported Cards
	8.3.4 Reference Implementation–Code Size and Memory Consumption
	8.3.5 Switching Reference Host-Interface Implementation

	9. RF Configuration Updates
	9.1 Default RF Configuration
	9.1.1 Temperature Sensor Calibration

	9.2 Dynamic at Runtime
	9.3 Platform Specific

	10. Add-on Libraries/APIs
	10.1 Native-Tag API
	10.1.1 Supported Type 2 Tag Commands
	10.1.2 Supported Type 3 Tag Commands
	10.1.3 Supported Type 4 Tag Commands
	10.1.4 Supported Type 5 Tag Commands

	10.2 NDEF API
	10.3 GPIO API
	10.4 RF Test API
	10.5 FeliCa DTE API
	10.6 Transparent-Mode API
	10.7 Transparent Data Channel (TDC) API
	10.7.1 Transparent Data Channel (TDC) Timer API

	11. References
	11.1 General
	11.2 Standards and Regulations

	12. Revision History

