

RZ/N1D グループ、 RZ/N1S グループ、 RZ/N1L グループ

ユーザーズマニュアル アーキテクチャ・製品データ編

RZ ファミリ RZ/N シリーズ

本資料に記載の全ての情報は本資料発行時点のものであり、ルネサス エレクトロニクスは、 予告なしに、本資料に記載した製品または仕様を変更することがあります。 ルネサス エレクトロニクスのホームページなどにより公開される最新情報をご確認ください。

ご注意書き

- 1. 本資料に記載された回路、ソフトウェアおよびこれらに関連する情報は、半導体製品の動作例、応用例を説明するものです。回路、ソフトウェアおよびこれらに関連する情報を使用する場合、お客様の責任において、お客様の機器・システムを設計ください。これらの使用に起因して生じた損害(お客様または第三者いずれに生じた損害も含みます。以下同じです。)に関し、当社は、一切その責任を負いません。
- 2. 当社製品または本資料に記載された製品データ、図、表、プログラム、アルゴリズム、応用回路例等の情報の使用に起因して発生した第三者の特許権、 著作権その他の知的財産権に対する侵害またはこれらに関する紛争について、当社は、何らの保証を行うものではなく、また責任を負うものではありません。
- 3. 当社は、本資料に基づき当社または第三者の特許権、著作権その他の知的財産権を何ら許諾するものではありません。
- 4. 当社製品を組み込んだ製品の輸出入、製造、販売、利用、配布その他の行為を行うにあたり、第三者保有の技術の利用に関するライセンスが必要となる場合、当該ライセンス取得の判断および取得はお客様の責任において行ってください。
- 5. 当社製品を、全部または一部を問わず、改造、改変、複製、リバースエンジニアリング、その他、不適切に使用しないでください。かかる改造、改変、 複製、リバースエンジニアリング等により生じた損害に関し、当社は、一切その責任を負いません。
- 6. 当社は、当社製品の品質水準を「標準水準」および「高品質水準」に分類しており、各品質水準は、以下に示す用途に製品が使用されることを意図しております。

標準水準: コンピュータ、OA 機器、通信機器、計測機器、AV 機器、家電、工作機械、パーソナル機器、産業用ロボット等

高品質水準:輸送機器(自動車、電車、船舶等)、交通制御(信号)、大規模通信機器、金融端末基幹システム、各種安全制御装置等当社製品は、データシート等により高信頼性、Harsh environment 向け製品と定義しているものを除き、直接生命・身体に危害を及ぼす可能性のある機器・システム(生命維持装置、人体に埋め込み使用するもの等)、もしくは多大な物的損害を発生させるおそれのある機器・システム(宇宙機器と、海底中継器、原子力制御システム、航空機制御システム、プラント基幹システム、軍事機器等)に使用されることを意図しておらず、これらの用途に使用することは想定していません。たとえ、当社が想定していない用途に当社製品を使用したことにより損害が生じても、当社は一切その責任を負いません。

- 7. あらゆる半導体製品は、外部攻撃からの安全性を 100%保証されているわけではありません。当社ハードウェア/ソフトウェア製品にはセキュリティ対策が組み込まれているものもありますが、これによって、当社は、セキュリティ脆弱性または侵害(当社製品または当社製品が使用されているシステムに対する不正アクセス・不正使用を含みますが、これに限りません。)から生じる責任を負うものではありません。当社は、当社製品または当社製品が使用されたあらゆるシステムが、不正な改変、攻撃、ウイルス、干渉、ハッキング、データの破壊または窃盗その他の不正な侵入行為(「脆弱性問題」といいます。)によって影響を受けないことを保証しません。当社は、脆弱性問題に起因しまたはこれに関連して生じた損害について、一切責任を負いません。また、法令において認められる限りにおいて、本資料および当社ハードウェア/ソフトウェア製品について、商品性および特定目的との合致に関する保証ならびに第三者の権利を侵害しないことの保証を含め、明示または黙示のいかなる保証も行いません。
- 8. 当社製品をご使用の際は、最新の製品情報(データシート、ユーザーズマニュアル、アプリケーションノート、信頼性ハンドブックに記載の「半導体デバイスの使用上の一般的な注意事項」等)をご確認の上、当社が指定する最大定格、動作電源電圧範囲、放熱特性、実装条件その他指定条件の範囲内でご使用ください。指定条件の範囲を超えて当社製品をご使用された場合の故障、誤動作の不具合および事故につきましては、当社は、一切その責任を負いません。
- 9. 当社は、当社製品の品質および信頼性の向上に努めていますが、半導体製品はある確率で故障が発生したり、使用条件によっては誤動作したりする場合があります。また、当社製品は、データシート等において高信頼性、Harsh environment 向け製品と定義しているものを除き、耐放射線設計を行っておりません。仮に当社製品の故障または誤動作が生じた場合であっても、人身事故、火災事故その他社会的損害等を生じさせないよう、お客様の責任において、冗長設計、延焼対策設計、誤動作防止設計等の安全設計およびエージング処理等、お客様の機器・システムとしての出荷保証を行ってください。特に、マイコンソフトウェアは、単独での検証は困難なため、お客様の機器・システムとしての安全検証をお客様の責任で行ってください。
- 10. 当社製品の環境適合性等の詳細につきましては、製品個別に必ず当社営業窓口までお問合せください。ご使用に際しては、特定の物質の含有・使用を規制する RoHS 指令等、適用される環境関連法令を十分調査のうえ、かかる法令に適合するようご使用ください。かかる法令を遵守しないことにより生じた損害に関して、当社は、一切その責任を負いません。
- 11. 当社製品および技術を国内外の法令および規則により製造・使用・販売を禁止されている機器・システムに使用することはできません。当社製品および 技術を輸出、販売または移転等する場合は、「外国為替及び外国貿易法」その他日本国および適用される外国の輸出管理関連法規を遵守し、それらの定 めるところに従い必要な手続きを行ってください。
- 12. お客様が当社製品を第三者に転売等される場合には、事前に当該第三者に対して、本ご注意書き記載の諸条件を通知する責任を負うものといたします。
- 13. 本資料の全部または一部を当社の文書による事前の承諾を得ることなく転載または複製することを禁じます。
- 14. 本資料に記載されている内容または当社製品についてご不明な点がございましたら、当社の営業担当者までお問合せください。
- 注 1. 本資料において使用されている「当社」とは、ルネサス エレクトロニクス株式会社およびルネサス エレクトロニクス株式会社が直接的、間接的に支配する会社をいいます。
- 注 2. 本資料において使用されている「当社製品」とは、注1において定義された当社の開発、製造製品をいいます。

(Rev.5.0-1 2020.10)

本社所在地

〒135-0061 東京都江東区豊洲 3-2-24 (豊洲フォレシア)

www.renesas.com

商標について

ルネサスおよびルネサスロゴはルネサス エレクトロニクス株式会社の 商標です。すべての商標および登録商標は、それぞれの所有者に帰属し ます。

お問合せ窓口

弊社の製品や技術、ドキュメントの最新情報、最寄の営業お問合せ窓口に関する情報などは、弊社ウェブサイトをご覧ください。

www.renesas.com/contact/

製品ご使用上の注意事項

ここでは、マイコン製品全体に適用する「使用上の注意事項」について説明します。個別の使用上の注意事項については、本ドキュメントおよびテクニカル アップデートを参照してください。

1. 静電気対策

CMOS 製品の取り扱いの際は静電気防止を心がけてください。CMOS 製品は強い静電気によってゲート絶縁破壊を生じることがあります。運搬や保存の際には、当社が出荷梱包に使用している導電性のトレーやマガジンケース、導電性の緩衝材、金属ケースなどを利用し、組み立て工程にはアースを施してください。プラスチック板上に放置したり、端子を触ったりしないでください。また、CMOS 製品を実装したボードについても同様の扱いをしてください。

2. 電源投入時の処置

電源投入時は、製品の状態は不定です。電源投入時には、LSIの内部回路の状態は不確定であり、レジスタの設定や各端子の状態は不定です。外部リセット端子でリセットする製品の場合、電源投入からリセットが有効になるまでの期間、端子の状態は保証できません。同様に、内蔵パワーオンリセット機能を使用してリセットする製品の場合、電源投入からリセットのかかる一定電圧に達するまでの期間、端子の状態は保証できません。

3 電源オフ時における入力信号

当該製品の電源がオフ状態のときに、入力信号や入出力プルアップ電源を入れないでください。入力信号や入出力プルアップ電源からの電流注入により、 誤動作を引き起こしたり、異常電流が流れ内部素子を劣化させたりする場合があります。資料中に「電源オフ時における入力信号」についての記載のある製品は、その内容を守ってください。

4. 未使用端子の処理

未使用端子は、「未使用端子の処理」に従って処理してください。CMOS製品の入力端子のインピーダンスは、一般に、ハイインピーダンスとなっています。未使用端子を開放状態で動作させると、誘導現象により、LSI周辺のノイズが印加され、LSI内部で貫通電流が流れたり、入力信号と認識されて調動作を起こす恐れがあります。

5. クロックについて

リセット時は、クロックが安定した後、リセットを解除してください。プログラム実行中のクロック切り替え時は、切り替え先クロックが安定した後に切り替えてください。リセット時、外部発振子(または外部発振回路)を用いたクロックで動作を開始するシステムでは、クロックが十分安定した後、リセットを解除してください。また、プログラムの途中で外部発振子(または外部発振回路)を用いたクロックに切り替える場合は、切り替え先のクロックが十分安定してから切り替えてください。

6. 入力端子の印加波形

入力ノイズや反射波による波形歪みは誤動作の原因になりますので注意してください。CMOS 製品の入力がノイズなどに起因して、 V_L (Max.) から V_H (Min.) までの領域にとどまるような場合は、誤動作を引き起こす恐れがあります。入力レベルが固定の場合はもちろん、 V_L (Max.) から V_H (Min.) までの領域を通過する遷移期間中にチャタリングノイズなどが入らないように使用してください。

7. リザーブアドレス(予約領域)のアクセス禁止

リザーブアドレス (予約領域) のアクセスを禁止します。アドレス領域には、将来の拡張機能用に割り付けられている リザーブアドレス (予約領域) があります。これらのアドレスをアクセスしたときの動作については、保証できませんので、アクセスしないようにしてください。

8. 製品間の相違について

型名の異なる製品に変更する場合は、製品型名ごとにシステム評価試験を実施してください。同じグループのマイコンでも型名が違うと、フラッシュメモリ、レイアウトパターンの相違などにより、電気的特性の範囲で、特性値、動作マージン、ノイズ耐量、ノイズ幅射量などが異なる場合があります。 型名が違う製品に変更する場合は、個々の製品ごとにシステム評価試験を実施してください。

このマニュアルの使い方

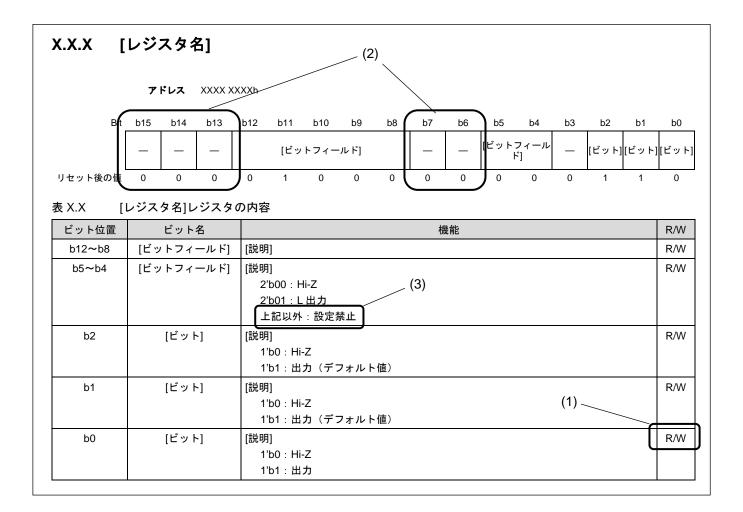
1. 目的と対象者

このマニュアルは、本マイコンのハードウェア機能と電気的特性をユーザに理解していただくためのマニュアルです。本マイコンを用いた応用システムを設計するユーザを対象にしています。このマニュアルを使用するには、電気回路、論理回路、マイクロコンピュータに関する基本的な知識が必要です。

このマニュアルは、大きく分類すると、製品の概要、CPU、システム制御機能、周辺機能、電気的特性、使用上の注意で構成されています。

本マイコンは、注意事項を十分確認の上、使用してください。注意事項は、各章の本文中、各章の最後、注意事項の章に記載しています。

改訂記録は旧版の記載内容に対して訂正または追加した主な箇所をまとめたものです。改訂内容すべてを記録したものではありません。詳細は、このマニュアルの本文でご確認ください。


RZ/N1 グループでは次のドキュメントを用意しています。

■ RZ/N1 関連ドキュメント一覧

ドキュメント名	資料番号
RZ/N1D グループ、RZ/N1S グループ、RZ/N1L グループ データシート	R01DS0323JJ****
RZ/N1D グループ、RZ/N1S グループ、RZ/N1L グループ ユーザーズマニュアル アーキテクチャ・製品データ編	R01UH0750JJ**** (本ユーザーズマニュアル)
RZ/N1D グループ、RZ/N1S グループ、RZ/N1L グループ ユーザーズマニュアル システム・周辺機能 1 編	R01UH0751JJ****
RZ/N1D グループ、RZ/N1S グループ、RZ/N1L グループ ユーザーズマニュアル 周辺機能 2 編	R01UH0752JJ****
RZ/N1D グループ、RZ/N1S グループ、RZ/N1L グループ ユーザーズマニュアル R-IN Engine・イーサネット機能編	R01UH0753JJ****
RZ/N1D グループ、RZ/N1S グループ、RZ/N1L グループ ユーザーズマニュアル PWMTimer	R01UH0913JJ****

2. レジスタの表記

各章において「レジスタの説明」には、ビットの並びを示すビット配置図とビットに設定する内容を説明するビット機能表があります。使用する記号、用語を以下に説明します。

(1) R/W : 読み出し/書き込みとも有効です。

R/(W) : 読み出し/書き込みとも有効ですが、書き込みには制限があります。

制限の内容については、各レジスタの説明や注記を参照ください。

R: 読み出しのみ有効です。書き込みは無効になります。

W: 書き込みのみ有効です。読み出した値は保証されません。

(2) 予約ビットです。書き込みを行う場合には、指定された値を書き込んでください。指定以外の値を書き込んだ場合の動作は保証されません。

(3) 設定禁止。設定した場合の動作は保証されません。

3. 略語および略称の説明

略語/略称	フルスペル	
AHB	Arm Advanced High-performance Bus	
APB	Arm Advanced Peripheral Bus	
AXI	Arm Advanced eXtensible Interface	
bps	bits per second	
CA7	Arm Cortex-A7 module	
CM3	Arm Cortex-M3 module	
CRC	Cyclic Redundancy Check	
DMA	Direct Memory Access	
DMAC	Direct Memory Access Controller	
Hi-Z	High Impedance	
HSR	High-availability Seamless Redundancy	
HW-RTOS	Hard Ware Real Time OS	
I/O	Input/Output	
INTC	Interrupt Controller	
LSB	Least Significant Bit	
MSB	Most Significant Bit	
NC	Non-Connect	
NoC	Network-on-Chip	
PLL	Phase Locked Loop	
PWM	Pulse Width Modulation	
UART	Universal Asynchronous Receiver/Transmitter	
OTP	One Time Programmable	
PTP	Precision Time Protocol	
PRP	Parallel Redundancy Protocol	
SoC	System On Chip	

4. アクセスサイズの表記

アクセスサイズ:

8 ビット=バイト

16 ビット=ハーフワード

32 ビット=ワード

CAN(Controller Area Network): ドイツ Robert Bosch GmbH により開発された車載ネットワーク規格です。 Arm は Arm Limited(またはその子会社)の EU およびその他地域における登録商標です。 全ての商標・登録商標は各所有者の財産です。

目 次

第1草	全体構造	14
1.1	デバイス概要	14
1.2	仕様の概要	15
1.3	製品ファミリ/パッケージ別機能比較	23
1.4	製品一覧	24
1.5	ブロック図	
第2章	アドレス空間	28
2.1	メモリマップ	
	.1.1 RZ/N1D	
	.1.2 RZ/N1S	
2	.1.3 RZ/N1L	32
2.2	レジスタマップサマリ	33
第3章	クロック生成	35
3.1	概要	35
3.2	クロックゲーティング	37
3.3	クロック選択	37
3.4	クロック分周	
3.5	クロック周波数変更	
3.6	クロックオシレータ接続	
	.6.1 メインクロックオシレータ	
	3.6.1.1 水晶発振子	
	3.6.1.2 外部クロック入力	
3	.6.2 RTC クロックオシレータ	
	3.6.2.2 RTC を使用しない場合	
第4章	リセット	44
4.1	概要	44
4.2	チップレベルリセット	45
4	.2.1 マスタリセット	45
4	.2.2 システムリセット	45
4	.2.3 JTAG リセット	45
4.3	モジュールリセット	46
第5章	IO マルチプレキシング	47
5.1	概要	47
5.2	レジスタマップ	50
5.3	レジスタ説明	51

	5.3.1	rGPIOs_Level1_ConfigA_[n] — GPIO[n] RGMII マルチプレキシング Level1	
		コンフィグレーションレジスタ(n=0~59)	51
	5.3.2	rGPIOs_Level1_ConfigB_[n] – GPIO[n] Standard マルチプレキシング Level1	
		コンフィグレーションレジスタ(n=60~169(最大))	52
	5.3.3	rGPIOs_Level1_StatusProtect — GPIO マルチプレキシング Level1 ステータスおよび	
		プロテクトレジスタ	53
	5.3.4	rGPIOs_Level2_Config_[n]ーGPIO[n]マルチプレキシング Level2	
		コンフィグレーションレジスタ(n=0~169(最大))	54
	5.3.5	rGPIOs_Level2_StatusProtect — GPIO マルチプレキシング Level2 ステータスおよび	
		プロテクトレジスタ	55
	5.3.6	rGPIOs_Level2_Config_MDIO1 ― MDIO1 インタフェースコンフィグレーション	
		レジスタ	56
	5.3.7	rGPIOs_Level2_Config_MDIO2 ー MDIO2 インタフェースコンフィグレーション	
		レジスタ	57
	5.3.8	rGPIOs_Level2_GPIO_Int_[n] – GPIO_Int[n]割り込みコンフィグレーションレジスタ	
		(n=0~7)	58
5.4	動作詞	设定	59
	5.4.1	GPIOs Level1 コンフィグレーションレジスタのプロテクトアクセス	59
	5.4.2	GPIOs Level2 コンフィグレーションレジスタのプロテクトアクセス	60
	5.4.3	GPIO 割り込みラインのコンフィグレーション	61
## 0 #	±	7 = / - > u	00
第 6 章	-	ステムコントロール	
6.1			
6.2	レジ	スタマップ	62
6.3	レジ	スタ説明	66
	6.3.1	PWRCTRL_SWITCHDIV — A5PSW のクロック分周器コントロール	66
	6.3.2	PWRCTRL_OPPDIV — OPP モードのクロック分周器コントロール	67
	6.3.3	PWRCTRL_CA7DIV — CA7 のクロック分周器コントロール	68
	6.3.4	PWRCTRL_PG1_PR2DIV — PG1 Program2 のクロック分周器コントロール	69
	6.3.5	PWRCTRL_PG1_PR3DIV — PG1 Program3 のクロック分周器コントロール	70
	6.3.6	PWRCTRL_PG1_PR4DIV — PG1 Program4 のクロック分周器コントロール	71
	6.3.7	PWRCTRL_PG4_PR1DIV — PG4 Program1 のクロック分周器コントロール	72
	6.3.8	PWRCTRL_QSPI1DIV — QSPI1 のクロック分周器コントロール	73
	6.3.9	PWRCTRL_SDIO1DIV — SDIO1 のクロック分周器コントロール	74
	6.3.10	PWRCTRL_SDIO2DIV — SDIO2 のクロック分周器コントロール	75
	6.3.11	PWRCTRL_PG0_ADCDIV — PG0 ADC のクロック分周器コントロール	76
	6.3.12	PWRCTRL_PG0_I2CDIV — PG0 I2C のクロック分周器コントロール	77
	6.3.13	PWRCTRL_PG0_UARTDIV — PG0 UART のクロック分周器コントロール	78
	6.3.14	PWRCTRL_NFLASHDIV — NAND FLASH Controller のクロック分周器コントロール	79
	6.3.15	PWRCTRL_HWRTOS_MDCDIV — HW-RTOS GMAC の MDC Clock のクロック分周器	÷
		コントロール	80
	6.3.16	PWRCTRL_QSPI2DIV — QSPI2 のクロック分周器コントロール	81
	6.3.17	PWRCTRL SDIO1 – SDIO1 のパワーマネージメントコントロール	82

6.3.18	PWRSTAT_SDIO1 – SDIO1 のパワーマネージメントステータス	83
6.3.19	SYSSTAT – システムステータスフラグレジスタ	84
6.3.20	PWRCTRL_USB - USB2.0 のパワーマネージメントコントロール	85
6.3.21	PWRSTAT_USB – USB2.0 のパワーマネージメントステータス	86
6.3.22	PWRCTRL_MSEBI — MSEBI のパワーマネージメントコントロール	87
6.3.23	PWRSTAT_MSEBI — MSEBI のパワーマネージメントステータス	88
6.3.24	PWRCTRL_PG0_0 - PG0 のパワーマネージメントコントロール#0	89
6.3.25	PWRSTAT_PG0 - PG0 のパワーマネージメントステータス	91
6.3.26	PWRCTRL_PG0_1 – PG0 のパワーマネージメントコントロール#1	92
6.3.27	PWRCTRL_PG1_1 – PG1 のパワーマネージメントコントロール#1	93
6.3.28	PWRCTRL_PG1_2 – PG1 のパワーマネージメントコントロール#2	95
6.3.29	PWRCTRL_DMA - DMAC1 と DMAC2 のパワーマネージメントコントロール	96
6.3.30	PWRCTRL_NFLASH – NAND FLASH Controller のパワーマネージメント	
	コントロール	
6.3.31	PWRCTRL_QSPI1 — QSPI1 のパワーマネージメントコントロール	
6.3.32	PWRSTAT_DMA - DMAC1 と DMAC2 のパワーマネージメントステータス	99
6.3.33	PWRSTAT_NFLASH - NAND FLASH Controller のパワーマネージメントステータス	.100
6.3.34	PWRSTAT_QSPI1 - QSPI1 のパワーマネージメントステータス	.101
6.3.35	PWRCTRL_DDRC - DDR Memory Controller のパワーマネージメントコントロール	.102
6.3.36	PWRCTRL_EETH — 外部 Ethernet クロックのパワーマネージメントコントロール	.103
6.3.37	PWRCTRL_MAC1 – GMAC1 のパワーマネージメントコントロール	.104
6.3.38	PWRCTRL_MAC2 – GMAC2 のパワーマネージメントコントロール	.105
6.3.39	PWRSTAT_DDRC - DDR Memory Controller のパワーマネージメントステータス	.106
6.3.40	PWRSTAT_MAC1 – GMAC1 のパワーマネージメントステータス	.107
6.3.41	PWRSTAT_MAC2 – GMAC2 のパワーマネージメントステータス	
6.3.42	PWRCTRL_ECAT — ETHERCAT のパワーマネージメントコントロール	.109
6.3.43	PWRCTRL_SERCOS - SERCOSIII のパワーマネージメントコントロール	.110
6.3.44	PWRSTAT_ECAT — ETHERCAT のパワーマネージメントステータス	.111
6.3.45	PWRSTAT_SERCOS - SERCOSIII のパワーマネージメントステータス	.112
6.3.46	PWRCTRL_HSR – HSR のパワーマネージメントコントロール	.113
6.3.47	PWRCTRL_QSPI2 – QSPI2 のパワーマネージメントコントロール	.114
6.3.48	PWRSTAT_HSR – HSR のパワーマネージメントステータス	.115
6.3.49	PWRSTAT_QSPI2 - QSPI2 のパワーマネージメントステータス	.116
6.3.50	PWRSTAT_SWITCH – A5PSW のパワーマネージメントステータス	.117
6.3.51	RSTSTAT – リセットステータスレジスタ	.118
6.3.52	USBSTAT — USBPLL のステータス情報	.119
6.3.53	PWRCTRL_SDIO2 – SDIO2 のパワーマネージメントコントロール	.120
6.3.54	PWRSTAT_SDIO2 – SDIO2 のパワーマネージメントステータス	.121
6.3.55	PWRCTRL_PG2_25MHZ — PG2 25MHz のパワーマネージメントコントロール	.122
6.3.56	PWRCTRL_PG1_PR2 - PG1 Program2 のパワーマネージメントコントロール	.123
6.3.57	PWRCTRL_PG3_48MHZ - PG3 48MHz のパワーマネージメントコントロール	.125
6.3.58	PWRCTRL_PG4 - PG4 のパワーマネージメントコントロール	.126
6.3.59	PWRCTRL_PG1_PR3 - PG1 Program3 のパワーマネージメントコントロール	.127

6.3.	.60 PWRCTRL_PG1_PR4 — PG1 Program4 のパワーマネージメントコントロール	128	
6.3.	1 PWRCTRL_PG4_PR1 – PG4 Program1 のパワーマネージメントコントロール		
6.3.	.62 RSTEN — リセットイネーブルレジスタ	130	
6.3.	.63 PWRCTRL_SWITCH — A5PSW のパワーマネージメントコントロール	131	
6.3.	.64 PWRCTRL_RTC – RTC のパワーマネージメントコントロール	132	
6.3.	.65 PWRSTAT_RTC – RTC のパワーマネージメントステータス	133	
6.3.	.66 PWRCTRL_ROM — ROM のパワーマネージメントコントロール	134	
6.3.	.67 PWRSTAT_PG1 – PG1 のパワーマネージメントステータス	135	
6.3.	.68 PWRSTAT_PG2_25MHZ — PG2 25MHz のパワーマネージメントステータス	137	
6.3.	.69 PWRSTAT_PG3_48MHZ – PG3 48MHz のパワーマネージメントステータス	138	
6.3.	.70 PWRSTAT_PG4 – PG4 のパワーマネージメントステータス	139	
6.3.	.71 PWRSTAT_ROM – ROM のパワーマネージメントステータス	140	
6.3.	.72 PWRCTRL_CM3 — CM3 のパワーマネージメントコントロール	141	
6.3.	.73 PWRSTAT_CM3 – CM3 のパワーマネージメントステータス	142	
6.3.	.74 PWRSTAT_RINCTRL – R-IN Engine アクセサリレジスタのパワーマネージメント		
	ステータス	143	
6.3.	.75 PWRSTAT_SWITCHCTRL — イーサネットアクセサリレジスタの		
	パワーマネージメントステータス	144	
6.3.	.76 PWRCTRL_RINCTRL — R-IN Engine アクセサリレジスタの		
	パワーマネージメントコントロール	145	
6.3.	.77 PWRCTRL_SWITCHCTRL — イーサネットアクセサリレジスタの		
	パワーマネージメントコントロール	146	
6.3.	.78 PWRCTRL_HWRTOS — HW-RTOS のパワーマネージメントコントロール	147	
6.3.	.79 RSTCTRL — リセットコントロールレジスタ	148	
6.3.	.80 CFG_USB — USB モードコンフィグレーションレジスタ	149	
6.3.	.81 OPMODE – システムとブートのコンフィグレーションレジスタ	150	
6.3.	.82 CFG_SDIO[m] — SDIO[m]コンフィグレーションレジスタ(m=1 もしくは 2)	151	
6.3.	.83 DBGCON — デバッグコントロールレジスタ	152	
6.3.	.84 CFG_GPIOT_PTEN_xx — GPIO トリガイネーブルレジスタ	153	
6.3.	.85 CFG_GPIOT_TSRC — GPIO トリガソースセレクトレジスタ	154	
6.3.	.86 CFG_DMAMUX — DMAC1 と DMAC2 のマルチプレクサレジスタ	155	
6.3.	.87 VERSION — プロダクトバージョンレジスタ	158	
6.3.	.88 BOOTADDR – Cortex-A7 プロセッサ 1 ブートアドレスコンフィグレーション		
	レジスタ	158	
第7章	動作モード	159	
7.1	概要	159	
7.2	ブートモード仕様(RZ/N1D および RZ/N1S)	160	
7.2.	.1 共通の特徴	160	
7.2.	.2 QSPI ブートの特徴	160	
7.2.	.3 NAND ブートの特徴	161	
7.2.	.4 USB ブートの特徴	162	
7.3	標準のブートシーケンス	163	

7.3.1	概要	163
7.3.2	外部端子によるコンフィグレーション	163
7.3.3	CPU ブート	164
7.3.4	RZ/N1D および RZ/N1S のブート	165
7.3.5	RZ/N1L のブート	165
7.4 SP	PKG フォーマット(RZ/N1D および RZ/N1S)	166
7.4.1	概要	166
7.4.2	実装の詳細	166
7.5 RZ	/N1 初期化シーケンス	169
7.5.1	標準の初期化シーケンス	169
7.5.2	USBPLL の設定	169
7.5.3	Cortex-M3 の活性化	169
7.5.4	一般的な NoC のプログラミングシーケンス	170
第8章 E	Ethernet インタフェースモード	175
8.1 概	要	175
8.2 サ7	ポートするモード	177
8.2.1	イーサネットポートの内部接続	181
8.2.2	PTP 用クロックの選択	182
8.3 操作	作手順	185
8.3.1	初期化	185
8.3.2	ETHMODE_SET	186
8.4 使月	用上の注意事項	187
8.4.1	制限	187
8	3.4.1.1 サポートされる Ethernet 信号	187
第9章 害	剽り込み	188
9.1 概要	要	188
9.1.1	Cortex-A7 GICv2	188
9.1.2	Cortex-M3 NVIC	188
9.2 動作	作	189
9.2.1	IRQ の同期化	189
9.2.2	ノンマスカブル割り込み	189
9.2.3	Cortex-A7 と Cortex-M3 の割り込みマネージメント	190
9.2.4	割り込み割り当てとベクタ番号	191
第 10 章 (0	195
10.1 端-	子機能	195
10.2 未信	使用端子の処理	201
10.3 端-	子配置図	202
10.3.1	l RZ/N1D BGA-400 パッケージ	202
10.3.2	2 RZ/N1D BGA-324 パッケージ	203

10.3.3 RZ/N1S BGA-324 パッケージ	204
10.3.4 RZ/N1S BGA-196 パッケージ	205
10.3.5 RZ/N1L BGA-196 パッケージ	206
第 11 章 電気的特性	207
11.1 絶対最大定格	207
11.2 推奨動作条件	208
11.3 DC 特性	209
11.3.1 電流	
11.3.2 デジタル IO	
11.3.3 DDR3/DDR2 SDRAM インタフェース	210
11.4 電源投入/切断シーケンス	211
11.4.1 電源投入	211
11.4.2 電源切断	211
11.5 AC タイミング特性	212
11.5.1 Ethernet MAC インタフェースタイミング	212
11.5.1.1 RGMII	
11.5.1.2 RMII	
11.5.1.3 MII	
11.5.2 メモリインタフェースタイミング	
11.5.2.1 QSPI Flash タイミング	
11.5.2.2 DDR3/DDR2 インタフェース	
11.5.2.3 NAND Flash インタフェース	
11.5.2.4 SD/eMMC/SDIO インタフェース	
11.5.3 シリアルインタフェースタイミング	
11.5.3.1 UART 11.5.3.2 SPI マスタ	
11.5.3.3 SPI スレーブ	
11.5.3.4 I2C	
11.5.3.5 CAN	
11.5.3.6 JTAG/SWD	
11.5.4 LCD インタフェースタイミング	
11.5.5 MSEBI インタフェースタイミング	230
11.6 ADC 特性	232
11.7 RTC オシレータ特性	232
第 12 章 機械的特性	233
12.1 パッケージ情報	233
12.1.1 BGA-400 パッケージ	233
12.1.2 BGA-324 パッケージ	234
12.1.3 BGA-196 パッケージ	235

付録 A	端子割り当て	. 236
付録 B	IO マルチプレクシング割り当て	. 245
付録 C	クロックツリー構造	. 249

第1章 全体構造

1.1 デバイス概要

■ 32 ビット Arm® Cortex®-A7 MPCore 内蔵

- 最大 500MHz
- シングルコアもしくはデュアルコア
- FPU、VFPv4-D16
- MMU
- L1 キャッシュ:コア毎に 16K バイト(命令)/ 16K バイト(データ)
- L2 キャッシュ:最大 256K バイト

■ 32 ビット Arm® Cortex®-M3 プロセッサ内蔵

- 最大 125MHz
- Memory Protection Unit (MPU) をサポート

■ 低消費電力機能

- クロックゲーティング管理
- クロック周波数変更

■ 内蔵 SRAM

• 最大 6M バイト (ECC 付き)

■ データ転送

● 2 ユニットの各 8ch DMAC

■ メモリインタフェース

- 最大 2ch の Quad SPI/XIP
- 高度な ECC 管理機能を備えた NAND Flash
- 16 ビット幅 DDR インタフェース (DDR2-500/DDR3-1000)
- 最大 2ch の SD/SDIO/eMMC

■ IO マルチプレキシングコントローラ

• 周辺機能の I/O 位置を複数の端子の中から選択可

■ クロックオシレータ

- ◆外部クロック/オシレータ 入力周波数:40MHz
- 32kHz ∅ RTC

■ セキュリティ機能(オプション)

• セキュアブート/JTAG ロック/64 ビットのチップ ID

■ 周辺機能

- CPU リソース
 - メールボックス
 - 2ユニットのタイマ (16bit×6ch, 32bit×2ch)
 - PWMTimer $(16bit \times 16ch)$
 - CPU 毎に1ユニットのウォッチドッグ
 - セマフォ
- 汎用インタフェース
 - 1ch の USB2.0 ホスト
 - 1ch の USB2.0 ホストもしくはファンクション
 - 8ch O UART
 - 6ch の SPI (4ch のマスタ / 2ch のスレーブ)
 - 2ch Ø I²C
 - 2ch Ø CAN
 - 最大 2 ユニットの 12 ビット ADC (最大 1MSPS)
 - MSEBI (外部バスインタフェース)
- その他機能
 - LCD コントローラ
 - GPIOピン(最大 170)

■ R-IN Engine

- Arm[®] Cortex[®]-M3 CPU
- ハードウェア RTOS アクセラレータ (HW-RTOS)
- ハードウェア Ethernet アクセラレータ

■ 高度なリアルタイム Ethernet 機能

- Sercos^{®注1}III スレーブコントローラ
- EtherCAT®注23ポートスレーブコントローラ
- Advanced 5 (4+1) Port Switch (A5PSW)
 - QoS と IEEE1588 対応で 5 ポートをスイッチ ▶ 最大 5 のギガビットのポート
 - IEC62439-3 Ed2.0-2012 準拠の PRP (オプション)
- IEC62439-3 Ed2.0-2012 準拠の HSR (オプション)
- 最大2つの独立したGMAC、IEEE1588 準拠
- MII/RMII/RGMII の最大 5 の外部ポート

注1. Sercos は、Sercos International e.V.の登録商標です。

注2. EtherCAT は、ドイツ Beckhoff Automation GmbH によりライセンスされた特許取得済み技術であり登録商標です。

1.2 仕様の概要

表 1.1 仕様の概要 (1/8)

分類	モジュール/機能	説明
CPU	Arm Cortex-A7	 Arm 社の 32 ビット CPU Cortex-A7 (リビジョン r0p5) デュアルコアもしくはシングルコア 最大動作周波数: 500MHz クロック周波数変更 L1 キャッシュ: コア単位に 16K バイト (命令) /16K バイト (データ) L2 キャッシュ: 最大 256K バイト FPU、VFPv4-D16 MMU ハードウェアコヒーレントキャッシュ リトルエンディアン
	Arm Cortex-M3	 Arm 社の 32 ビット CPU Cortex-M3 (リビジョン r2p1) 最大動作周波数: 125MHz Memory Protection Unit (MPU) リトルエンディアン
メモリ	オンチップ 2MB SRAM	 容量: 2M バイト (1M バイト+1M バイト) 512K バイト単位に分割されたアクセスポート SEC-DED (シングルエラー訂正、ダブルエラー検出)
	オンチップ 4MB SRAM	 容量:4M バイト 1M バイト単位に分割されたアクセスポート SEC-DED(シングルエラー訂正、ダブルエラー検出)
ウォッチドッグ		 リロードレジスタ付きのフリーランニングの12ビットデクリメントカウンタ 出力をシステムリセット、あるいは割り込みとして使用可能 デバッガ(ブレークポイント実行など)によるCPU停止中のウォッチドッグ停止制御
動作モード		● 3 つのブートモード(CA7) — NAND Flash — QSPI Flash — USB DFU
クロック	クロック発生回路	 入力 40MHz クロックをオシレータまたはクリスタルから選択可能 システムクロック:最大 125MHz Cortex-A7 クロック:システムクロックの 1/2/4 倍 DDR メモリクロック: 250MHz/500MHz
RTC		 ● 24 時間モードの日付クロック ● カレンダー ● アラーム機能 ● クリスタル 32kHz ● RTC バックアップモード用独立電源供給
リセット		● マスタリセット入力● 内部システムリセット(ソフトウェア、ウォッチドッグ)

表 1.1 仕様の概要(2/8)

分類	モジュール/機能	説明
データ転送	ダイレクトメモリ アクセスコントローラ (Direct Memory Access Controller: DMAC)	 2ユニット: DMAC1:8チャネル、16 リクエストソース DMAC2:8チャネル、16 リクエストソース メモリからメモリ、メモリから周辺機能、周辺機能からメモリの転送 転送幅: 8、16、32、64 ビット プログラマブルな DMA バーストサイズ
メールボックス		● 3 ユニットのプログラマブルなメールボックス メールボックス毎の 7 つの 32 ビットデータレジスタ
セマフォ	T.,,,	● 内部共有リソースのハードウェアロックメカニズム
パラレルバス インタフェース	外部バスインタフェース (Medium Speed External Bus Interface: MSEBI)	 マスタおよびスレーブモード 8、16、32 ビットから選択可能なデータバス幅 アドレス/データ/制御データをデータバス上にマルチプレクス バーストモード DMA サポート マスタモード: 4DMA チャネル接続(外部リクエスト受信可能) スレーブモード: 外部リクエスト送信可能 最大 4 チップセレクト 2 バイト~4G バイトのプログラマブルなアドレス機能 プログラマブルなセットアップ/ホールド時間 外部ウエイトリクエスト
/0 ポート	IO マルチプレキシング	周辺機能の I/O 位置が選択可能出力ドライブ強度の選択オンチップのプルアップ/プルダウン抵抗の選択
メモリ インタフェース	DDR2/3 コントローラ	 DDR2-500/DDR3-1000 メモリデータパスサイズ:16 ビット、8 ビット、8+ECC ビット 最大2 チップセレクトおよび 2ODT 最大2G バイトアドレスをサポート ECC SEC/DED ソフトウェア設定可能(有効/無効) 終端抵抗(ODT:On-Die Termination)設定 出カインピーダンスおよびスルーレート設定 DDR2/DDR3 低電力制御マネージメント(ソフトウェアによる) ポートアドレス保護チェック ーポート単位の最大16アドレス保護領域
	NAND Flash コントローラ	 ● 8 ビットパス幅の NAND インタフェース ● 非同期モードサポート ● 4 チップセレクト ● ライトプロテクション ● プログラマブルなアドレスサイクル (0/1/2/3/4/5) ● 内蔵 DMA ● 256B、512B、2KB、1KB、4KB、8KB、16KBページをサポート ● BCH ECC (エラー検出およびデータ訂正) - ECC データブロックサイズ: 256 バイト、512 バイト、1024 バイト - ECC 訂正機能: 2、4、8、16、24、32 ビットエラー ● Bad Block Management (BBM)

表 1.1 仕様の概要 (3/8)

分類	モジュール/機能	説明
メモリ インタフェース	Quad SPI (QSPI)	 最大 2 ユニット Single、Dual もしくは Quad の I/O 命令をサポート リード高速化モード (NoCMD モード) をサポート リマップアドレスによるダイレクトアクセス プログラマブルなデバイスサイズ 最大 4 チップセレクト 1/2/3/4 バイトアドレス指定をサポート プログラマブルなページサイズをサポート (デフォルト 256 バイト) プログラマブルなデバイスブロック毎のバイト数 プログラマブルなライトプロテクト領域 送受信 FIFO: 16 バイト 送受信 FIFO へのダイレクトアクセス (レガシーモード) コントロールレジスタセットによる任意の FLASH コマンド実行 ダイレクトアクセス時のバーストライト対応
	SD/SDIO/eMMC	 ● 最大 2 ユニット ● SD/SDIO カードインタフェース 1 ビットもしくは 4 ビットモードでのデータ転送 デフォルトモードもしくはハイスピードモードでのデータ転送 ● eMMC インタフェース 1 ビット、4 ビットもしくは 8 ビットモードでのデータ転送 ● 転送速度 デフォルトモード:最大 25MHz ハイスピードモード:最大 50MHz ● PIO/SDMA/ADMA2 転送のサポート
ネットワークエレメント	R-IN Engine	● ITRON ライクのシステムコール

表 1.1 仕様の概要 (4/8)

分類	モジュール/機能	説明
ネットワークエレメント	アドバンスト5ポートスイッチ(Advanced 5 Port Switch:A5PSW)	● 動作モード:

表 1.1 仕様の概要 (5/8)

分類	モジュール/機能	説明
ネットワーク	HSR スイッチ	● HSR 機能(IEC 62439-3 edition 2.0- 2012)
エレメント		– DANH
		- 冗長ボックス(Red Box)
		- 冗長送信フレーム生成
		– 重複した受信フレームのフィルタリング
		- 冗長ヘッダの生成と検出
		- 受信フレーム追跡テーブル
		● 100Mbps 全二重イーサネット
		● 動的フレームバッファ割り当て(page manager)
		● 128 プロキシノード (VDANs) をサポート
		● リンクローカルプロトコルをサポート
		● 重複検出メモリ
		● MAC アドレスフィルタリング
		● 1 つの VLAN タグをサポート
		● ポート単位(集約なし)のポート統計
		● 144K バイトフレームバッファ
		• IEEE 1588-2008
		● フラッディング制御を備えたイーサネットマルチキャスト
		● 拡張フレーム長:最大 2000 バイト (ジャンボフレーム未対応)
		● HSR ループで最小 16 ノードをサポート
		● 重複検出滞留時間設定
	EtherCAT スレーブ	● 最大 3 ポート
	コントローラ	● 自動 TX シフト
		● 拡張リンク検出
		• 8 つの FMMU (Fieldbus Memory Management Unit)
		• 8つの SyncManager
		● 64 ビット分散クロック
		● グローバル IRQ へのマッピング
		• Read/Write オフセット
		● ライトプロテクション
		AL Status Code レジスタ History and the state of the state
		● 拡張ウォッチドッグ
		● AL Event Mask レジスタ
		• ウォッチドッグカウンタ
		● SyncManager イベントタイム ● EPU エラーカウンタ
		● ロストリンクカウンタ
		● 外部 EEPROM 用の I2C interface
	Corocolli 7 L. T	
	SercosIII スレーブ コントローラ	● 2 ポート ● シリアルインタフェースは 100Mbaud
		■ シリアルインダフェースは TOOMbaud ■ 自動送信のテレグラム処理および同期テレグラムおよびデータテレグラムのモニ
		タリング
		● マルチプレクサ経由で Sercos プロトコルと標準イーサネットプロトコル間の機
		能切り替え
		受信データストリームモニタによりフレームタイプ検出し、SercosIII フレームタイプ検出時に動作開始
		● テレグラムタイプ(MST/MDT もしくは AT)に基づいて SRAM の入出力データ
		転送のハンドリング

表 1.1 仕様の概要 (6/8)

分類	モジュール/機能	説明
ネットワーク	独立した GMAC	• 2ユニットの MAC (GMAC1、GMAC2)
エレメント		● 以下の標準規格に準拠
		– IEEE 1588-2008 v2 standard(高精度ネットワーククロック同期)
		- IEEE 1588-2008 v2 は Power IEEE C37.238 profile に準拠
		- IEEE 802.3-az-2010 (Energy Efficient Ethernet (EEE))
		● 10/100/1000Mbps データ転送速度をサポート
		● 半二重および全二重動作の両方をサポート
		● 標準および最大 16K バイト (16K バイトー1) のジャンボイーサネットフレーム
		をサポートするためのプログラマブルなフレーム長
		● アドレスフィルタブロック用 17 個の MAC アドレスレジスタ
		● 多種のフレキシブルなアドレスフィルタリングモードに対応
		● 送受信エンジン用独立チャネルネイティブ DMA
		● 拡張 IEEE 1588-2002 & 2008 イーサネットフレームタイムスタンプをサポート
		● Pulse-Per-Second (PPS) 出力信号のフレキシブル制御 (GMAC1 のみ)
		● CRC 生成およびチェック機能設定
		● RMON 統計サポート(L2 層のみ)
		● Station Management ブロック、MDIO インタフェース
サブシステム	USB2.0 ホスト	● 1 つの専用ポートと 1 つの共用ポート(ホストもしくはファンクション)
エレメント	(USBh)	● 転送速度
		- High speed (HS) : 480Mbps (USB2.0)
		- Full speed (FS) : 12Mbps (USB1.1)
		- Low speed (LS) : 1.5Mbps (USB1.1)
		USB Plug Detect (UPD)
		● 出力ポート電力切り替えマネージメント
		● アプリケーションからの過電流表示
		● 内蔵 DMA
		● 送受信 FIFO
	USB2.0 ファンクション	● 1 つの共用ポート (ホストもしくはファンクション)
	(USBf)	● サポート
		- High speed (HS) : 480Mbps (USB2.0)
		- Full speed (FS) : 12Mbps (USB1.1)
		● VBUS 経由でホストの接続を検出する USB Plug Detect(UPD)
		● 16 の物理 Endpoint
		● 内蔵 DMA
		● Endpoint バッファ
	UART 1, 2, 3	● 16550 UART 準拠
	57 1 , 2, 5	● 分離した 16×8(16×8 ビット幅)の送信および 16×8 の受信 FIFO
		RS485 および MODBUS®拡張機能
		● 最大 5.2Mbaud のボーレート生成
		● ラインブレークの生成および検出
		● プログラマブルなハードウェアフロー制御
		● 16750 に準拠した自動フロー制御モード
		● TXD、RXD、CTS_N、RTS_N、DTR_N、DSR_N、DCD_N、RI_Nのサポート
	UART 4、5、6、7、8	● UART 1、2、3 と同機能に加えて以下の機能が使用可能
		- バーストモード制御を備えた DMA 接続
		ハ ハドレ ド門呼と囲んた DIVIA J女似

表 1.1 仕様の概要 (7/8)

分類	モジュール/機能	説明
サブシステム	SPI 1, 2, 3, 4	● 送信および受信 FIFO(16×16)
エレメント	(マスタ)	● プログラマブルな RXD サンプリング機能
		プログラマブルなフレームデータサイズ(4~16 ビット)
		● 4 チップセレクト
		● DMA コントローラインタフェース
	SPI 5、6	● 送信および受信 FIFO(16×16)
	(スレーブ)	● プログラマブルなフレームデータサイズ(4~16 ビット)
		● DMA コントローラインタフェース
	I ² C 1、2	● 2 種類のスピードモード
		- 標準モード (0∼100Kbps)
		- ファストモード(400Kbps 以下)
		● 分離された 8×8 送信および 8×8 受信 FIFO
		● マスタもしくはスレーブの I2C 動作
		● 7 もしくは 10 ビットのアドレス指定
		● 7 もしくは 10 ビットの結合されたフォーマットの転送
		● バルク転送モード
		● プログラマブルな SDA ホールド時間(t _{HD; DAT})
	CAN 1, 2	● 11 ビットと 29 ビット ID の両方をサポート
		● 125Kbps~1Mbps のビットレートをサポート
		● アクセプタンスフィルタリング
		● ソフトウェアドリブンのビットレート検出 (ホットプラグインサポート)
		● シングルショット送信オプション、listen-only モード、自己メッセージ受信
		● ビット位置情報付きのアービトレーションロスト割り込み
		● Read/write エラーカウンタ
		● ラストエラーレジスタ
		● プログラマブルなエラー限界警告
		● 同期フレームの周期的送信
		● プログラマブルなタイムベース
	汎用タイマ(TIMER)	● 2 ユニットでそれぞれ以下をサポート
		- 6 つのプログラマブルな 16 ビットタイマ
		2 つのプログラマブルな 32 ビットタイマ
		● 2 つのタイムベースから選択可能なプリスケーラ
		● 自動リロードモードもしくはシングルショットモード
		● DMA 接続(32 ビットタイマのみ)
	PWMTimer	● キャプチャおよびクロック用の6本の入力
		- バウンスフィルタ
		- 40 本の外部入力
		● 16 本のコンペアマッチ出力
		- 20 本の外部出力
		● 16 個の 16 ビットカウンタ
		- キャプチャおよびコンペア機能
		- 32 ビットカスケードカウンタ
		- 2 つの 10 ビットプリスケーラクロック
		- 2000 10 ピットン・ハッ・ファロック - 他のカウンタとの同期動作
		一一世のカラファこの旧物制ト

表 1.1 仕様の概要 (8/8)

分類	モジュール/機能	説明
ADC	ADC	 最大2ユニット 12 ビット分解能 0.0625MSPS~1MSPSのサンプリングレート アナログ入力 8 チャネル: (5 チャネル+サンプル&ホールドを備えた3 チャネル) チャネル毎に個々のトリガー DNL、±1.0LSB (Max.) [VAIN=0.0V~AVDD および f_{CLK}=20MHz 時] INL、±4.0LSB (Max.) [VAIN=0.0V~AVDD および f_{CLK}=20MHz 時] パワーダウンモード 2 段階の優先度 同一優先度レベルで同時に変換要求発生時のラウンドロビン管理 DMA 接続 仮想チャネル機能
マルチメディア	LCD コントローラ (LCDC)	 プログラマブルな LCD パネル解像度 1 ポートの TFT LCD パネルインタフェース 18 ビットデジタル (6 ビット/color) 24 ビットデジタル (8 ビット/color) プログラマブルなフレームバッファ bits per pixel (bpp) カラーパレットでマップされた 1、2、4、8bpp の 18 ビット LCD ピクセル 16、18bpp の 18 ビット LCD ピクセル 24bpp の 24 ビット LCD ピクセル 17 ウェア点滅のサポート LCD パネルの LED バックライト輝度制御用の PWM モジュール 電源投入および切断シーケンスのサポート 内蔵 DMA
セキュリティ		 セキュアブートによるプログラムの署名検証 JTAG 接続によるデバッグ無効化 Coretex-A7 から読み出し可能なチップ固有の 64 ビット ID
デバッグインタフェ	ース	 JTAG デバッガに結合された ETM Cortex-A7 および Cortex-M3 コアで共有されたトレースバッファ (32KB) Arm JTAG Arm SWD
電源電圧		コア電圧: 1.15V±0.05VIO 電圧: 3.3V±0.3VDDR IO 電圧: 1.8V±0.1V、1.5V±0.075V
動作温度		ジャンクション温度:−40°C~+110°C
パッケージ		● RZ/N1D - 400LFBGA、17×17mm、0.8mm ピッチ - 324LFBGA、15×15mm、0.8mm ピッチ ● RZ/N1S - 324LFBGA、15×15mm、0.8mm ピッチ - 196LFBGA、12×12mm、0.8mm ピッチ ● RZ/N1L - 196LFBGA、12×12mm、0.8mm ピッチ

1.3 製品ファミリ/パッケージ別機能比較

表 1.2 ルネサス CPU サブシステム

//	ードウェア機能		RZ/	N1D	RZ/I	N1S	RZ/N1L		
	パッケーシ	ジタイプ :	400BGA	324BGA	324BGA	196BGA	196BGA		
Processor Unit	Arm Cortex-A7		デュアル シングル				_		
	Arm Cortex-M3	}			使用可能				
Memory Unit	2 MB with ECC	2 MB with ECC		使用可能					
	4 MB with ECC	;	-	_		使用可能			
	DDR メモリコ	ントローラ	使用可	可能 ^{注 1}		_			
	Quad SPI		1	ch	2ch	1ch	າ ^{注 2}		
	SDIO/SD/eMM	С			2ch				
	NAND Flash				使用可能				
Networking	R-IN Engine &	HWRTOS			使用可能 ^{注 5}				
elements	Ethernet ポート	√数	5 ポート	3 ポート ^{注 3}	5 ポート	3 ポ-	- ト ^{注 3}		
	独立した GMA	С	最大 2	使用不可 ^{注 4}	最大 2	最大	1 ^{注 4}		
	EtherCAT Slav	e Controller			使用可能注6 注7				
	SercosIII Slave	Controller			使用可能注6 注7				
	Advanced 5por	t Switch	5 ポート (4+1)	4 ポート (3+1)	5 ポート (4+1)		ート 1) ^{注7}		
		PRP	オプション	_	使用可能	-	_		
HSR Switch 注5		注 6	オプション						
Peripheral Group	ADC		2ユニット		1 ユニット				
	RTC			使用可能					
	DMAC		2ch						
	UART	UART		8ch					
	I ² C		2ch						
	Parallel bus Master & Slave 12 8		使用可能				スレーブのみ		
	USB Host & Function				使用可能		·		
	Mailbox	Mailbox		使用可能					
	Watchdog for C	CA7	使用可能、2 使用可能、1			使用不可			
	Watchdog for C	CM3	使用可能						
	SPIマスタ		4ch						
	SPIスレーブ		2ch						
	CAN			2ch					
	LCDC	LCDC		使用可能 使用不可					
	Semaphore		使用可能						
	Timer block		2ユニット						
	PWMTimer			使用可能					
GPIO 端子数 ^{注9}			170	132	160	95	95		
セキュリティ機能 ^{注 10}				オプシ	ション		_		

- 注1. RZ/N1D-324 はチップセレクトおよび ODT が 1 つとなります。
- 注2. RZ/N1S-196 および RZ/N1L はチップセレクトが 2 つのみとなります。
- 注3. 使用できないポートの詳細については Ethernet インタフェースモードの制限の章を参照ください。
- 注4. GMAC2 は RZ/N1D-324、RZ/N1S-196、および RZ/N1L において A5PSW 経由で使用できます。
- 注5. HW-RTOS と HSR は同時に使用できません。
- 注6. SERCOSIII、ETHERCAT、および HSR 機能は同時に使用できません。

- 注7. A5PSW、SERCOSIII、および ETHERCAT 機能は RZ/N1S-196 および RZ/N1L において同時に使用できません。
- 注8. RZ/N1D-324 は 32 ビットモードを使用できません。RZ/N1S-196 および RZ/N1L は 8 ビットモードかつ 2 外部ウエイトリクエストのみ使用できます。RZ/N1S-196 のマスタは ALE シリアルモードのみ使用できます。
- 注9. 周辺機能の信号と共用されています。
- 注10. オプションのセキュリティ機能に関する情報は、弊社営業窓口にお問い合わせください。

1.4 製品一覧

表 1.3 製品一覧

名称	P/N	パッケージ	メイン CPU	PRP/HSR	セキュリティ
RZ/N1D	R9A06G032VGBG	400BGA	デュアル Cortex-A7	_	_
	R9A06G032EGBG				使用可能
	R9A06G032VGBA	324BGA			_
	R9A06G032EGBA				使用可能
	R9A06G032NGBG	400BGA		PRP/HSR	_
	R9A06G032PGBG				使用可能
RZ/N1S	R9A06G033VGBA	196BGA	シングル Cortex-A7	_	_
	R9A06G033EGBA				使用可能
	R9A06G033NGBG	324BGA		PRP	_
	R9A06G033PGBG				使用可能
RZ/N1L	R9A06G034VGBA	196BGA	Cortex-M3	_	_

1.5 ブロック図

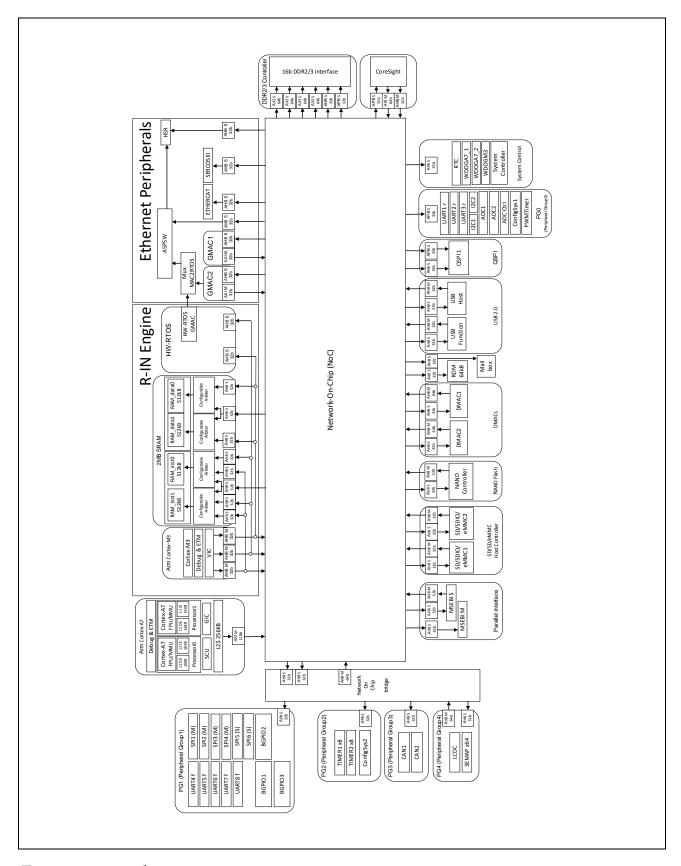


図 1.1 RZ/N1D デュアル Cortex-A7 & Cortex-M3

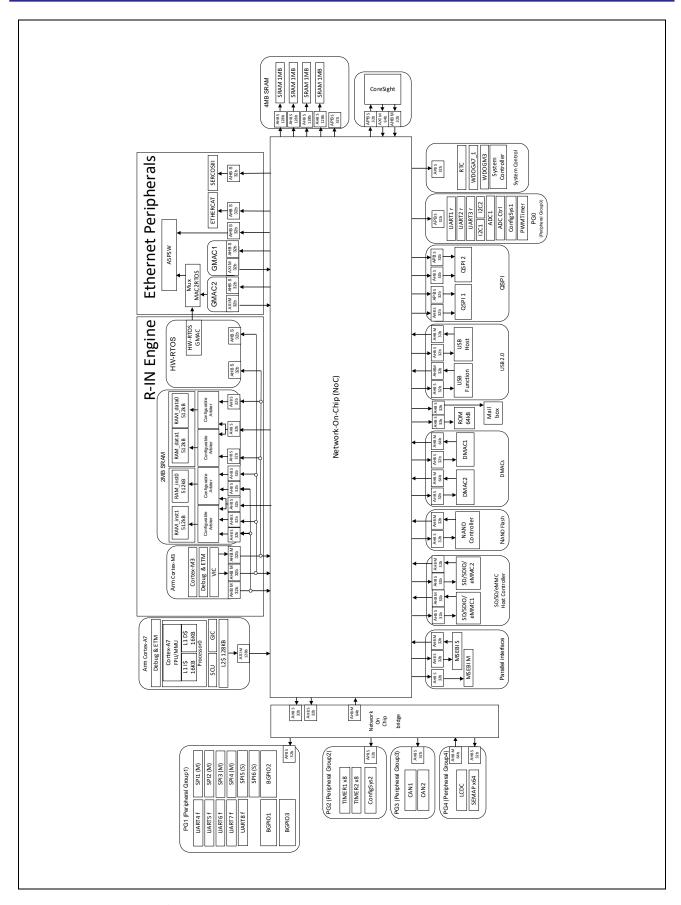


図 1.2 RZ/N1S シングル Cortex-A7 & Cortex-M3

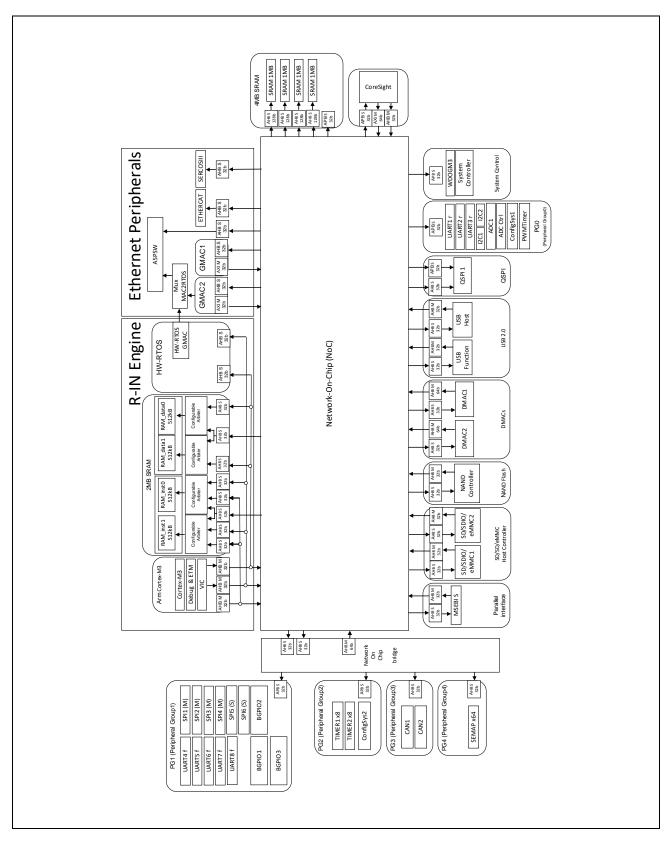


図 1.3 RZ/N1L Cortex-M3

第2章 アドレス空間

2.1 メモリマップ

2.1.1 RZ/N1D

以下の図は Arm Cortex-A7 から見たメモリマップの概要を示しています。

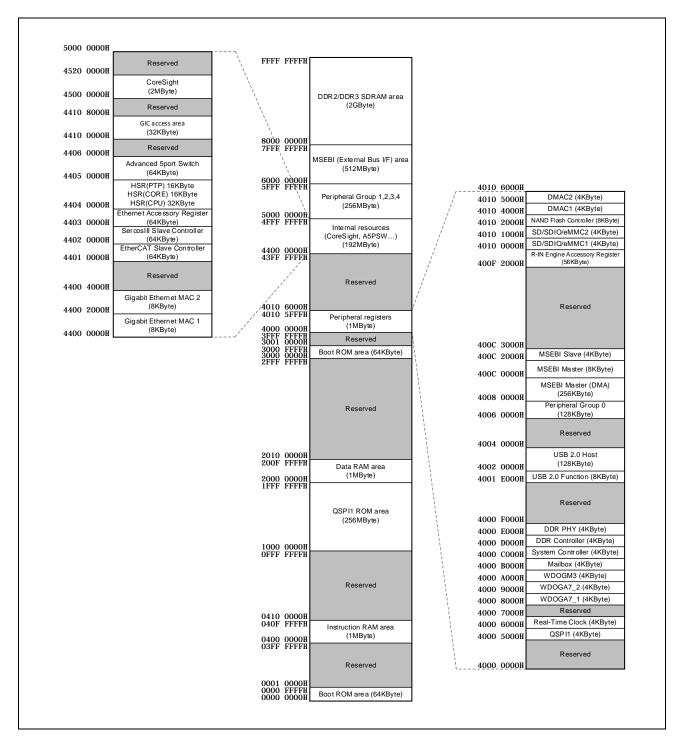


図 2.1 RZ/N1D (Cortex-A7) のメモリマップ

以下の図は Arm Cortex-M3 から見たメモリマップの概要を示しています。

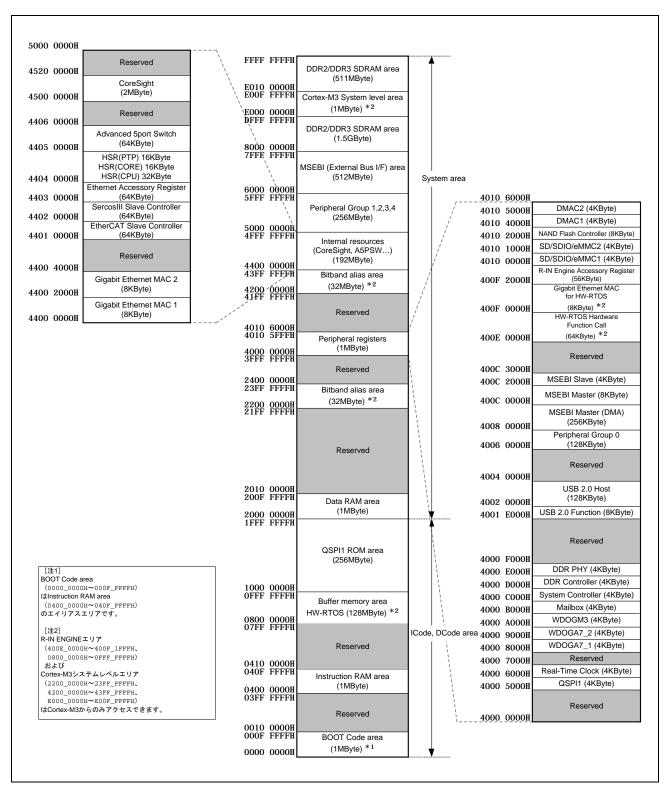


図 2.2 RZ/N1D(Cortex-M3)のメモリマップ

2.1.2 RZ/N1S

以下の図は Arm Cortex-A7 から見たメモリマップの概要を示しています。

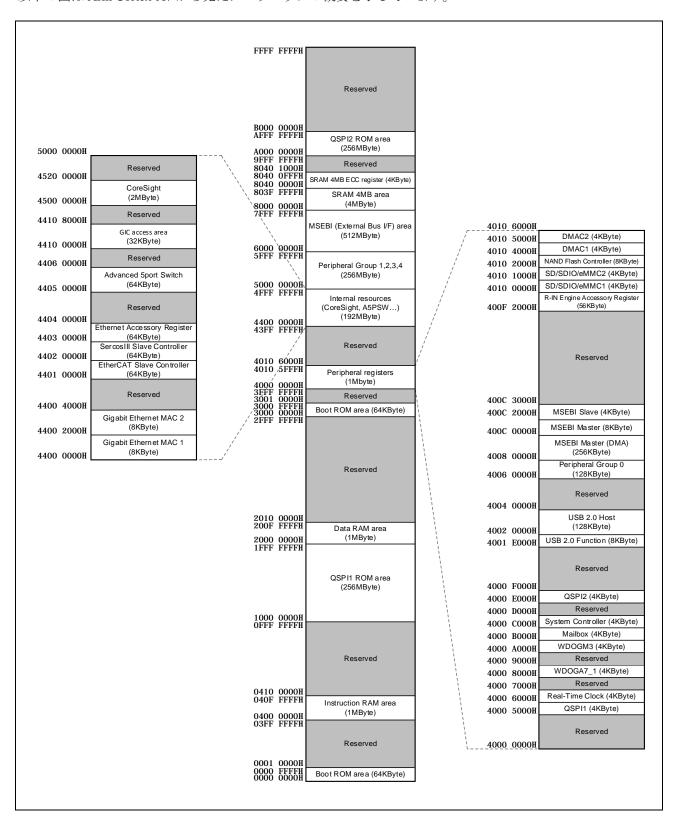


図 2.3 RZ/N1S (Cortex-A7) のメモリマップ

以下の図は Arm Cortex-M3 から見たメモリマップの概要を示しています。

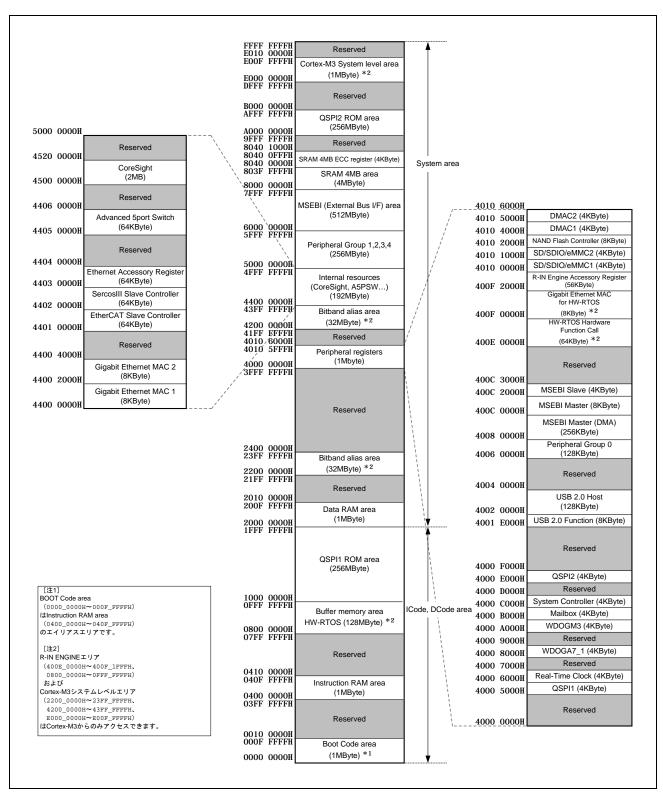


図 2.4 RZ/N1S (Cortex-M3) のメモリマップ

2.1.3 RZ/N1L

以下の図は Arm Cortex-M3 から見たメモリマップの概要を示しています。

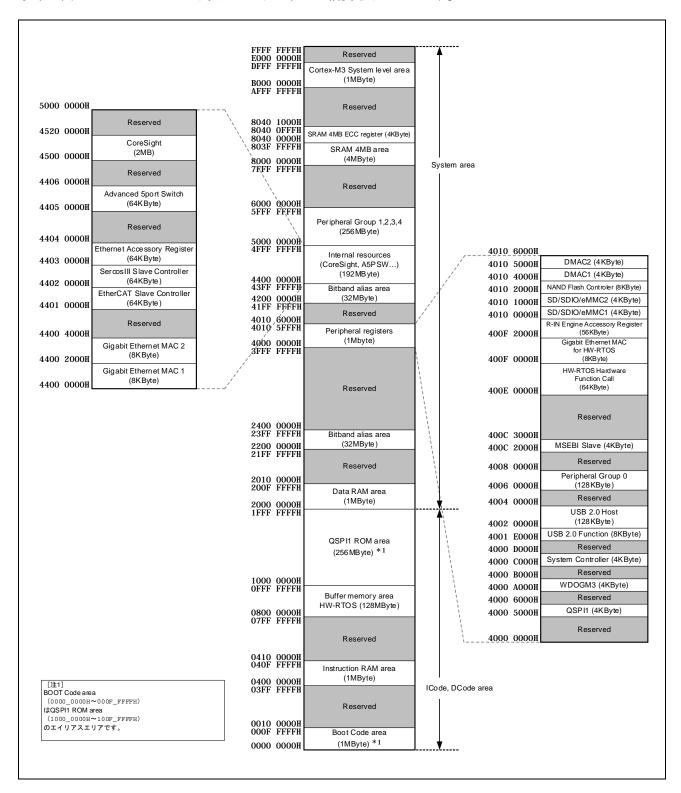


図 2.5 RZ/N1L のメモリマップ

2.2 レジスタマップサマリ

以下のレジスタマップはすべての RZ/N1 グループ内の周辺機能のベースアドレスをカバーしています。 『〇』マークがないモジュールにはアクセスしないでください。

表 2.1 レジスタマップ(1/2)

開始アドレス	周辺機能	RZ/N1D-400	RZ/N1D-324	RZ/N1S-324	RZ/N1S-196	RZ/N1L
4000_5000	Quad SPI Controller1 (QSPI1)	0	0	0	0	0
4000_6000	Real-Time Clock (RTC)	0	0	0	0	×
4000_8000	Watchdog for CA7 processor0 (WDOGA7_1)	0	0	0	0	×
4000_9000	Watchdog for CA7 processor1 (WDOGA7_2)	0	0	×	×	×
4000_A000	Watchdog for CM3 (WDOGCM3)	0	0	0	0	0
4000_B000	Mailbox (IPCM)	0	0	0	0	×
4000_C000	System Controller	0	0	0	0	0
4000_D000	DDR2/3 Controller	0	0	_	_	_
4000_E000	DDR2/3 PHY	0	0	_	_	_
	Quad SPI Controller2 (QSPI2)		_	0	×	×
4001_E000	USB 2.0 HS Function Controller (USBf) / EPC	0	0	0	0	0
4001_F000	USB 2.0 HS Function Controller (USBf) / AHB-EPC Bridge	0	0	0	0	0
4002_0000	USB 2.0 HS Host Controller (USBh) / OHCl Operation	0	0	0	0	0
4002_1000	USB 2.0 HS Host Controller (USBh) / EHCl Operation	0	0	0	0	0
4003_0000	USB 2.0 HS Host Controller (USBh) / AHB PCI Bridge (PCI Config. Space)	0	0	0	0	0
4003_0000	USB 2.0 HS Host Controller (USBh) / OHCI (PCI Config. Space)	0	0	0	0	0
4003_0100	USB 2.0 HS Host Controller (USBh) / EHCI (PCI Config. Space)	0	0	0	0	0
4003_0800	USB 2.0 HS Host Controller (USBh) / AHB PCI Bridge (PCI Com. Space)		0	0	0	0
4006_0000	UART1		0	0	0	0
4006_1000	UART2		0	0	0	0
4006_2000	UART3	0	0	0	0	0
4006_3000	I2C1	0	0	0	0	0
4006_4000	I2C2	0	0	0	0	0
4006_5000	ADC Controller / 12bit A/D Converters	0	0	0	0	0
4006_7000	ConfigSys1	0	0	0	0	0
4006_8000	PWMTimer	0	0	0	0	0
4008_0000	MSEBI / Master (MSEBIM) From DMA	0	0	0	0	×
400C_0000	MSEBI / Master (MSEBIM) From CPU	0	0	0	0	×
400C_1000	MSEBI / Slave (MSEBIS) From MSEBI	0	0	0	0	0
400C_2000	MSEBI / Slave (MSEBIS) From CPU	0	0	0	0	0
400E_0000	HW-RTOS Hardware Function Call		0	0	0	0
400F_0000	Gigabit Ethernet MAC for HW-RTOS (HW-RTOS GMAC)		0	0	0	0
400F_2000	R-IN Engine Accessory Register	0	0	0	0	0
4010_0000	SD/SDIO/eMMC Controller1 (SDIO1)		0	0	0	0
4010_1000	SD/SDIO/eMMC Controller2 (SDIO2)	0	0	0	0	0
4010_2000	NAND Flash Controller	0	0	0	0	0
4010_4000	DMAC1	0	0	0	0	0
4010_5000	DMAC2	0	0	0	0	0

表 2.1 レジスタマップ (2/2)

開始アドレス	周辺機能	RZ/N1D-400	RZ/N1D-324	RZ/N1S-324	RZ/N1S-196	RZ/N1L
4400_0000	Gigabit Ethernet MAC1 (GMAC1)	0	×	0	0	0
4400_2000	Gigabit Ethernet MAC2 (GMAC2)	0	0	0	0	0
4401_0000	EtherCAT Slave Controller (ETHERCAT)	0	0	0	0	0
4402_0000	SercosIII Slave Controller (SERCOSIII)	0	0	0	0	0
4403_0000	Ethernet Accessory Register	0	0	0	0	0
4404_0000	HSR Switch / CPU	注 1	_	_	_	_
4404_8000	HSR Switch / CORE	注 1	_	_	_	_
4404_C000	HSR Switch / PTP	注 1	_	_	_	_
4405_0000	Advanced 5port Switch (A5PSW)	0	0	0	0	0
5000_0000	UART4	0	0	0	0	0
5000_1000	UART5	0	0	0	0	0
5000_2000	UART6	0	0	0	0	0
5000_3000	UART7	0	0	0	0	0
5000_4000	UART8	0	0	0	0	0
5000_5000	SPI1 (Master)		0	0	0	0
5000_6000	SPI2 (Master)		0	0	0	0
5000_7000	SPI3 (Master)		0	0	0	0
5000_8000	SPI4 (Master)		0	0	0	0
5000_9000	SPI5 (Slave)	0	0	0	0	0
5000_A000	SPI6 (Slave)	0	0	0	0	0
5000_B000	BGPIO1	0	0	0	0	0
5000_C000	BGPIO2	0	0	0	0	0
5000_D000	BGPIO3	0	0	0	×	×
5100_0000	ConfigSys2	0	0	0	0	0
5100_1000	Timer Block1 (TIMER1)	0	0	0	0	0
5100_2000	Timer Block2 (TIMER2)		0	0	0	0
5210_4000	CAN1		0	0	0	0
5210_5000	CAN2	0	0	0	0	0
5300_0000	Semaphore (SEMAP)	0	0	0	0	0
5300_4000	LCD Controller (LCDC)		0	0	×	×

注1. HSR はオプションです。

第3章 クロック生成

3.1 概要

RZ/N1 は 3 つのクロックソースと 1 つの RGMII のリファレンスクロック入力と 1 つの RMII/MII のリファレンスクロック出力を持っています。

システムコントローラはクロックコントローラ向けのレジスタを含んでいます。これによりパワーマネージメントソフトウェアはクロックゲーティング、クロック選択そしてクロック分周機能のコントロールをすることが可能です。

表 3.1 クロック生成仕様

項目	仕様
メインクロックオシレータ	共振周波数:40MHz
	外部クロック入力周波数:40MHz
	このシステムのメインクロックソース。外部クロック入力モードも使用可能です。
RTC クロックオシレータ	共振周波数:32.768kHz
	RTC のクロックソース。RTC 専用パワードメインに属しています。
JTAG (JTAG_TCK) のため	入力周波数:10MHz(最大)
のクロック入力 	CoreSight®と JTAG コントローラのためのクロック。
PLL	入力クロックソース:メインクロックオシレータ
	出カクロック周波数:1000MHz
	このシステムのメイン PLL。
USBPLL	入力クロックソース:メインクロックオシレータ
	出カクロック周波数: 480MHz
	USBPHY の PLL。480MHz の 1/10 の 48MHz がシステムに供給されます。デフォルトはパワーダウンモードです。
RGMII (RGMII_REFCLK) 用	入力周波数:125MHz
外部クロック入力 	RGMII 出力信号用クロック。内部で生成された 125MHz を使うこともできます。
RMII (RMII_REFCLK) 用	出力周波数:50MHz
外部クロック出力 	外部 RMII インタフェースへのクロック供給
MII (MII_REFCLK) 用	出力周波数:25MHz
外部クロック出力	外部 MII インタフェースへのクロック供給

次のページに RZ/N1 のクロックシステムの概略図を示します。

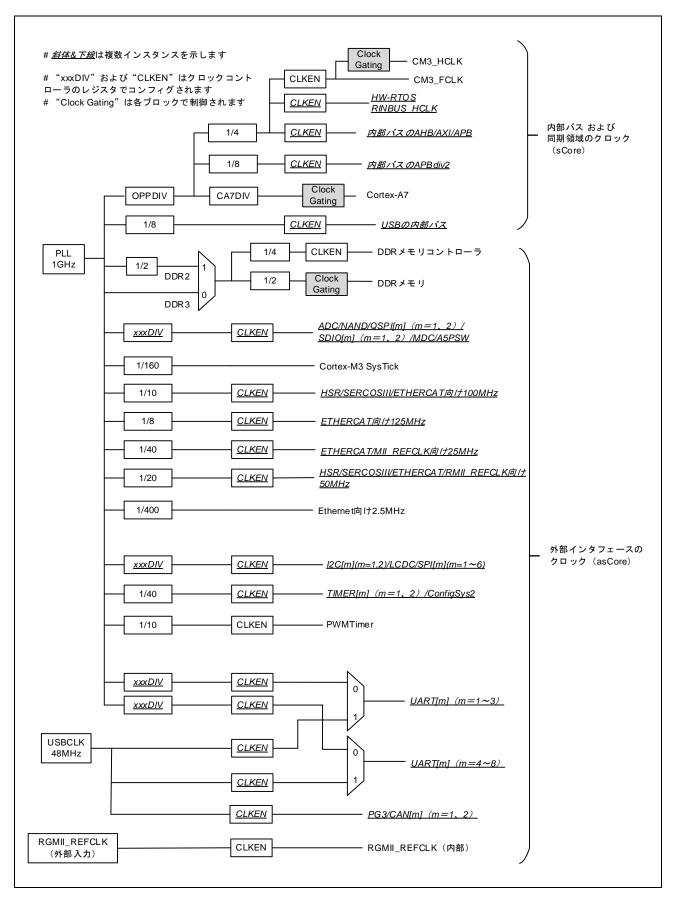


図 3.1 クロック生成のブロック図

3.2 クロックゲーティング

"PWRCTRL_*"レジスタはクロックゲーティング制御用の"CLKEN_*"を持っています。制御可能なクロックはレジスタのビットによって直接制御されます。

動作中のモジュールのクロックをゲーティングするとハングアップ等想定外の状態になる可能性があります。モジュールをインターコネクトから切断後にクロックをゲーティングするようにソフトウェアで管理する必要があります。

注 意

- RZ/N1 は USBPLL によって供給されたクロックを使います。システムのハングアップを防ぐため、ソフトウェアは USB クロックドメインにアクセスする前に USBPLL がロックされていることを保証してください。
- ソフトウェアはモジュールに対してクロックゲーティングやソフトウェアリセットを行う場合、モジュールの対応するすべてのインターコネクトが切断(SCON=1'b0)かつアイドル状態(MISTAT=1'b1)の場合にのみ行ってください。

3.3 クロック選択

RZ/N1 は各 UART 用のクロック選択機能があります。それらの機能はシステムコントローラの PWRCTRL_PG0_0 と PWRCTRL_PG1_PR2 レジスタによって設定できます。

注 意

RZ/N1 は USBPLL によって供給されたクロックを使います。システムのハングアップを防ぐため、ソフトウェアは USB クロックドメインにアクセスする前に USBPLL がロックされていることを保証してください。

3.4 クロック分周

RZ/N1 クロックコントローラはプログラマブルなクロック分周器を持っています。ゲーティング状態によらずソフトウェアは分周器の再設定が可能です。

注 意

対応するレジスタの BUSY フラグがアサートされた状態で分周器のコントロールレジスタへのライトをしないでください。

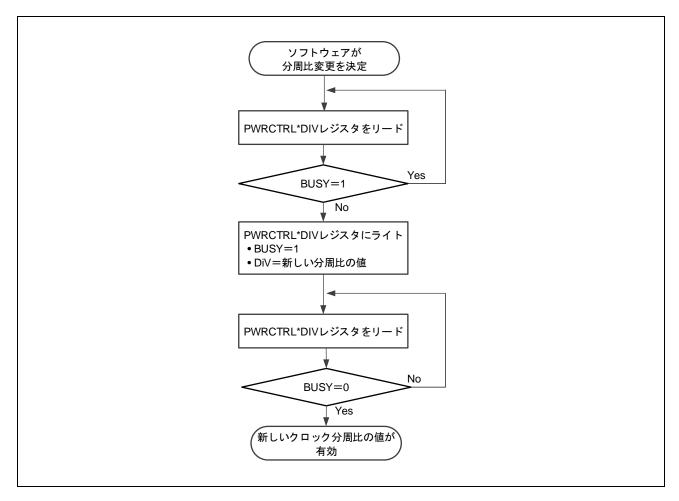


図 3.2 分周器の設定手順

3.5 クロック周波数変更

RZ/N1 クロックコントローラはクロック変更用の 2 つの専用クロック分周器を提供します。1 つは PWRCTRL_CA7DIV レジスタで制御される Cortex-A7 CPU クロックの変更用、もう一方は PWRCTRL_OPPDIV レジスタで制御されるメインの NoC のインターコネクト周波数の変更用です。パワーマネージメントソフトウェアはこれらを制御し、そしてクロック周波数変更をする実際の状況に基づいて決定する必要があります。

注 意

インターコネクトの周波数を変更するとウォッチドッグタイマーの周波数も変更されます。

次の表は設定可能なクロック周波数とユースケースを示しています。各モジュールの回路は、クロックがNoCに同期化しているかによって区別されます。各クロックについては、「**図 3.1 クロック生成のブロック図**」、および「**付録 C クロックツリー構造**」を参照ください。

• sCore: NoC に同期の回路(AXI/AHB/APB のクロック)

• asCore: NoC に非同期の回路

表 3.2 周波数モード (1/3)

機能リスト		125MHz モード (Default)	62.5MHz モード	31.25MHz モード	15.625MHz モード
一般のシステム ― NoC に	同期				
Network-on-Chip		125MHz	62.5MHz	31.25MHz	15.625MHz
DMAC		125MHz	62.5MHz	31.25MHz	15.625MHz
システムコントロールブロ (RTC、Watchdog など)	ック	62.5MHz	31.25MHz	15.625MHz	7.8125MHz
CPU & R-IN Engine — No	C に同期				
Cortex-A7	sCore	500MHz (4×) 250MHz (2×) (Default) 125MHz (1×)	250MHz (4×) 125MHz (2×) 62.5MHz (1×)	125MHz (4×) 62.5MHz (2×) 31.25MHz (1×)	62.5MHz (4×) 31.25MHz (2×) 15.625MHz (1×)
Cortex-M3	sCore	125MHz	62.5MHz	31.25MHz	15.625MHz
HW-RTOS	sCore	125MHz	62.5MHz	31.25MHz	15.625MHz
メモリユニット					
DDR3-1000	asCore	250MHz	250MHz	250MHz	250MHz
	メモリクロック	500MHz	500MHz	500MHz	500MHz
DDR2-500	asCore	125MHz	125MHz	125MHz	125MHz
	メモリクロック	250MHz	250MHz	250MHz	250MHz
SRAM 2MB & 4MB	sCore	125MHz	62.5MHz	31.25MHz	15.625MHz
NAND Flash Controller	sCore	125MHz	62.5MHz	31.25MHz	15.625MHz
	asCore	最大 83.33MHz	←	←	←
QSPI	sCore	125MHz	62.5MHz	31.25MHz	15.625MHz
	asCore	最大 250MHz ^{注 1}	←	←	←
SD/SDIO/eMMC	sCore	125MHz	62.5MHz	31.25MHz	使用不可
	asCore	最大 50MHz	←	←	
ネットワーク部分 & USB					
USB Host & Function	asCore	125MHz	125MHz	125MHz	使用不可
	USBCLK 出力	48MHz	←	←	

表 3.2 周波数モード (2/3)

機能リス	٢	125MHz モード (Default)	62.5MHz モード	31.25MHz モード	15.625MHz モード
GMAC	sCore	125MHz	62.5MHz	31.25MHz	使用不可
	PTP	125MHz もしくは 25MHz	←	←	
	Ether モード ^{注3}	GMII/RMII/MII	RMII/MII	RMII/MII	
Advanced 5 Port	sCore	125MHz	62.5MHz	31.25MHz	使用不可
Switch/PRP	asCore	200MHz	←	←	
	Ether モード ^{注3}	GMII/RMII/MII 5 ポート	RMII/MII 5 ポート	RMII/MII 3 ポート	
SERCOSIII	asCore	100MHz	100MHz	100MHz	使用不可
	Ether モード ^{注3}	MII/RMII	MII/RMII	MII/RMII	
ETHERCAT	asCore	125MHz	125MHz	125MHz	使用不可
	Ether モード ^{注3}	MII/RMII	MII/RMII	MII/RMII	
HSR	asCore	100MHz	100MHz	使用不可	使用不可
RGMII/RMII コンバータ	Ether モード ^{注3}	RGMII/RMII/MII	RMII/MII	RMII/MII	RMII/MII
周辺機能					
	1) 分周器を記	のクロックソースが使り 通した PLL 出力、最大 出力、48MHz 固定 T			
UART 1~3	sCore	62.5MHz	31.25MHz	15.625MHz	7.8125MHz
	asCore	最大 83.33MHz もしくは 48MHz	←	←	←
UART 4~8	sCore	125MHz	62.5MHz	31.25MHz	15.625MHz
	asCore	最大 83.33MHz もしくは 48MHz	←	↓	←
SPI 設定 1	sCore	125MHz	使用不可	使用不可	使用不可
	asCore	最大 125MHz			
SPI 設定 2	sCore	125MHz	62.5MHz	使用不可	使用不可
	asCore	最大 62.5MHz	←		
SPI 設定 3	sCore	125MHz	62.5MHz	31.25MHz	使用不可
	asCore	最大 31.25MHz	←	←	
SPI 設定 4	sCore	125MHz	62.5MHz	31.25MHz	15.625MHz
	asCore	最大 15.625MHz	←	←	←
I ² C	sCore	62.5MHz	31.25MHz	15.625MHz	7.8125MHz
	asCore	最大 83.33MHz ^{注 2}	←	←	←
MSEBI	sCore	125MHz	62.5MHz	31.25MHz	使用不可
CAN	asCore	48MHz	←	←	←
BGPIO	sCore	125MHz	62.5MHz	31.25MHz	15.625MHz
ADC	sCore	62.5MHz	31.25MHz	15.625MHz	7.8125MHz
	asCore	最大 20MHz	←	←	←
TIMER	asCore	25MHz	←	←	←
PWMTimer	asCore	100MHz	←	←	使用不可
セマフォ	sCore	125MHz	62.5MHz	31.25MHz	15.625MHz
メールボックス	sCore	125MHz	62.5MHz	31.25MHz	15.625MHz

表 3.2 周波数モード (3/3)

機能リスト		125MHz モード (Default)	62.5MHz モード	31.25MHz モード	15.625MHz モード
LCDC(設定 1)	sCore	125MHz	使用不可	使用不可	使用不可
	asCore	最大 83.33MHz			
LCDC(設定 2)	sCore	125MHz	62.5MHz	使用不可	使用不可
	asCore	最大 62.5MHz	62.5MHz 未満		
LCDC(設定 3)	sCore	125MHz	62.5MHz	31.25MHz	使用不可
	asCore	最大 31.25MHz	←	31.25MHz 未満	

- 注1. QSPI asCore は sCore より高い周波数としてください。
- 注2. I2C asCore は sCore 以上の周波数としてください。
- 注3. RGMII/RMII コンバータモード利用可能

3.6 クロックオシレータ接続

3.6.1 メインクロックオシレータ

メインクロックオシレータへクロック信号を供給する2つの方法があります。オシレーターへの接続と外部クロック信号の入力です。クロック入力モードはTHMODE端子によってセットされます。

表 3.3 THMODE で選択されるクロック入力モード

THMODE	クロック入力モード
Low	オシレーターモード
High	外部クロックモード

3.6.1.1 水晶発振子

以下の図は水晶発振子を接続する例を示しています。

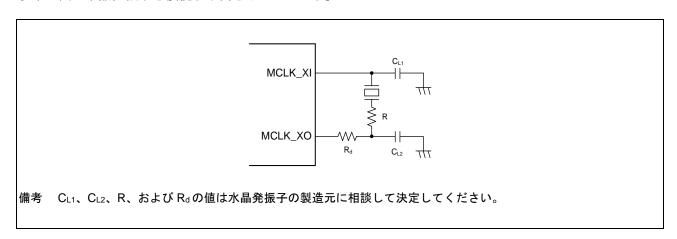


図 3.3 水晶発振子接続の例 (メインクロック)

3.6.1.2 外部クロック入力

以下の図は外部クロック入力の接続例を示しています。MCLK XI 端子はグランドに固定してください。

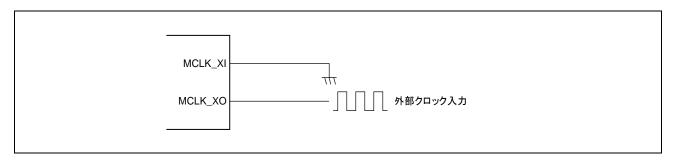


図 3.4 外部クロック接続の例

3.6.2 RTC クロックオシレータ

RTC クロックはオシレーターモードのみサポートします。

3.6.2.1 水晶発振子

以下の図は水晶発振子を接続する例を示しています。

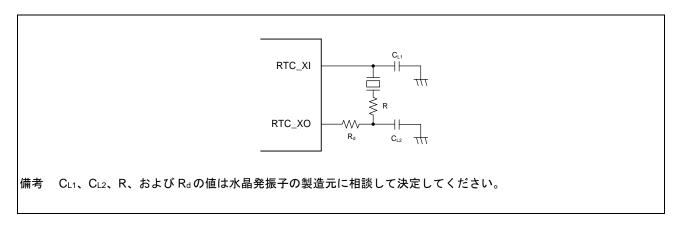


図 3.5 水晶発振子接続の例(RTC)

3.6.2.2 RTC を使用しない場合

以下の図はRTCが使用されないときのクロック端子接続を示しています。RTC_XI端子をグラウンドへ接続し、RTC_XO端子をボード上でオープンにしてください。

RTC_VDD33 には 3.3V 電源を供給し、RTC_PWRGOOD 入力端子は 3.3V を入力してください。

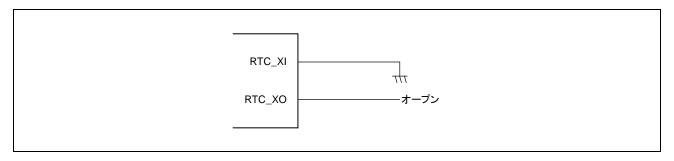


図 3.6 RTC を使用しないときの RTC クロック端子の接続

第4章 リセット

4.1 概要

RZ/N1 は大別して 2 種類のリセット(チップレベルリセット、機能モジュールレベルリセット)を持っています。

それらを以下の表に示します。

表 4.1 リセットの種類

	関連する外部端子	説明
マスタリセット	MRESET_N MRESET_OUT	RZ/N1 LSI 全体のためのリセット。LSI のすべてのハードウェアリソースは MRESET_N =0 の間にリセットされますが RTC ドメインは例外です。MRESET_OUT は MRESET_N =0 の間 1 になります。
システムリセット	MRESET_OUT	ウォッチドッグ、ソフトウェアトリガのような内部で生成されたイベントによるリセット RZ/N1 の大部分はこれによりリセットされます。 ソフトウェアは RSTSTAT レジスタによって直前のリセットのソースおよびマスタリセットかシステムリセットを区別できます。 システムリセットがアクティブになると、MRESET_OUT はパルス幅 0.5μs の 1 を出力します。
RTC リセット	_	RTC ドメインでの定電圧検出回路によるリセット RTC ドメインに供給された電圧が規定のレベル以下になったときリセットがアクティブ になります。
JTAG リセット	JTAG_TRST_N	CoreSight と JTAG TAP コントローラのためのリセット それらの回路は JTAG_TRST_N=0 の間リセットされます。
モジュールリセット	_	RZ/N1 の各機能モジュールのためのリセット "PWRCTRL_*レジスタの RSTN_*ビット"によってコントロールされます。

表 4.2 Reset ドメイン定義

リセット対象	リセット種別				
リセット対象	マスタリセット	システムリセット	RTC リセット	JTAG リセット	モジュールリセット
メインオシレータ	_	_			
RTC ドメイン	_	_	0	_	_
PLL	0	_	_	_	_
USBPLL	0	0	_	_	_
RSTSTAT レジスタ	0	_	_	_	_
メイン CPU ^{注1}	0	0	_	_	_
NoC	0	0	_	_	_
機能モジュール	0	0		_	O (モジュールごと)
CoreSight JTAG TAP コントローラ	0	_		0	_

注1. RZ/N1D、RZ/N1SのCortex-A7 RZ/N1LのCortex-M3

4.2 チップレベルリセット

4.2.1 マスタリセット

MRESET_N 外部端子は RTC ドメインを除く RZ/N1 LSI 全体をリセットします。メインオシレータと RTC オシレータは MRESET N=0 の間も動作しています。

注 意

RTC ドメインはシステム全体の電源投入や電源の電圧低下の間だけリセットされます。RTC 電源を供給している間 RTC ドメインは動作し続けます。

4.2.2 システムリセット

RZ/N1 システムコントローラはシステムリセット制御のための以下のレジスタを持っています。リセットソースはソフトウェアトリガやウォッチドッグタイマー等です。どのリセットソースも個別に有効/無効にでき、この機能全体を有効/無効にすることが可能です。

表 4.3 RZ/N1 システムリセットコントロールレジスタ

アドレス	レジスタシンボル	注釈
4000 C0A8h	RSTSTAT	リセットステータスレジスタ
		最後のリセットソースを表示します。
4000 C120h	RSTEN	リセットイネーブルレジスタ
		このレジスタはシステムリセットソースを個別に有効/無効にできます。(RSTCTRL レジスタ内で)アクティブになっているシステムリセット要求に対応するビットを有効にすると、システムがリセットされます。
4000 C198h	RSTCTRL	リセットコントロールレジスタ
		ソフトウェアはこのレジスタを使用してシステムリセットを開始することやハードウェアシステムリセットソースのいずれかがシステムリセットを要求しているかどうかを確認することが可能です。

注 意

- USBPLL はシステムリセットでパワーダウンモードになるので、必要になったら再び始めるのはソフトウェアの責任です。
- すべての分周器はリセット後の値に戻ります。
- RSTEN レジスタのリセットソースを有効にする前に、RSTCTRL レジスタで対応するリセットトリガがクリアされていることを確認してください。

4.2.3 JTAG リセット

JTAG_TRST_N 外部端子は CoreSight サブシステムと JTAG TAP コントローラをリセットします。JTAG TAP コントローラはバウンダリスキャン回路を含みます。CPU デバッグや JTAG TAP を使用しない場合、JTAG_TRST_N を 0 にする必要があります。

4.3 モジュールリセット

システムコントローラはシステムの特定のモジュールをリセットすることが可能です。リセット制御ビットを含むレジスタの名前は "PWRCTRL_*"、ビットフィールドの名前は "RSTN_*"です。

注 意

モジュールリセットはクロック供給されている状態で実施する必要があります。

第5章 IO マルチプレキシング

システム/周辺機能の信号は外部の GPIO 端子に多重化されています。高速動作をする信号はマルチプレクサ Level1 に接続され、それ以外はマルチプレクサ Level2 に接続されています。それらは IO マルチプレクスコンフィグレーションレジスタで管理されています。

5.1 概要

各 GPIO[n]端子は以下の機能で個別に設定することが可能です。

- **RGMII** インタフェース:
 - GPIO[n] (n=0~59) で 3.3V 電源
- Standard インタフェース:
 - GPIO[n] (n=60~169) で 3.3V 電源
- ドライブ強度
- プルアップ/プルダウン/なし

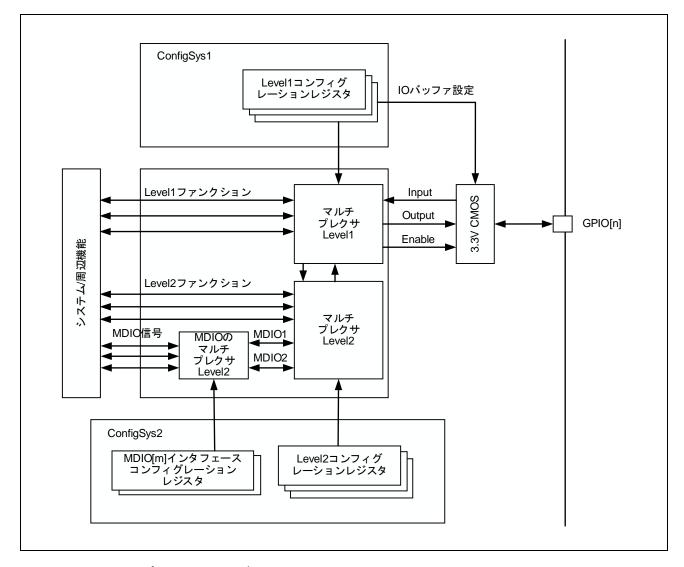


図 5.1 IO マルチプレクスコンフィグレーション Level1、Level2

使用可能な Levell コンフィグレーションは以下のように定義されています。

表 5.1 IO マルチプレクスコンフィグレーション Level1 一覧

ファンクション番号	Level1 ファンクション
0	機能なし(デフォルト値)
1	論理レベル 0 でドライブ
2	RGMII/RMII/MII および Ethernet リファレンスクロック
3	NAND Flash および Ethernet リファレンスクロック
4	QSPI1、2
5	SDIO1, 2
6	LCD コントローラ
8	外部バスインタフェースマスタ(MSEBIM)
9	外部バスインタフェーススレーブ(MSEBIS)
15	IO マルチプレクスは Level2 で制御されます。

使用可能な Level2 コンフィグレーションは以下のように定義されています。

表 5.2 IO マルチプレクスコンフィグレーション Level2 一覧

ファンクション番号	Level2 ファンクション
0	機能なし(デフォルト値)
1	ETHERCAT & Cortex-M3 NMI
2	SERCOSIII
3	拡張 SDIO
4	MDIO
6	拡張 USB
7	拡張 MSEBIM(マスタ)
8	拡張 MSEBIS(スレーブ)
12	UART1 割り当て 2
13	拡張 UART1 割り当て 2
14	UART2割り当て 2
15	拡張 UART2 割り当て 2
16	UART3割り当て 2
17	拡張 UART3 割り当て 2
18	UART1割り当て 1
19	拡張 UART1 割り当て 1
20	UART2割り当て1
21	拡張 UART2 割り当て 1
22	UART3 割り当て 1
23	拡張 UART3 割り当て 1
24	UART4
25	拡張 UART4
26	UART5
27	拡張 UART5
28	UART6
29	拡張 UART6
30	UART7
31	拡張 UART7
32	UART8
33	拡張 UART8
34	SPI1 (マスタ)
36	SPI2 (マスタ)
38	SPI3 (マスタ)
40	SPI4 (マスタ)
42	SPI5 (スレーブ)
44	SPI6 (スレーブ)
48	BGPIO
49	CAN
50	I ² C
52~56	PWMTimer
61	拡張 A5PSW & GMAC

5.2 レジスタマップ

表 5.3 IO マルチプレキシングレジスタマップ

アドレス	レジスタシンボル	レジスタ名
4006 7000h+4h×n	rGPIOs_Level1_ConfigA_[n] (n=0~59)	GPIO[n] RGMII マルチプレキシング Level1 コンフィグレーションレジスタ
4006 7000h + 4h × n	rGPIOs_Level1_ConfigB_[n] (n=60~169)	GPIO[n] Standard マルチプレキシング Level1 コンフィグレーション レジスタ
4006 7400h	rGPIOs_Level1_StatusProtect	GPIO マルチプレキシング Level1 ステータスおよびプロテクトレジスタ
5100 0000h + 4h × n	rGPIOs_Level2_Config_[n] (n=0~169)	GPIO[n]マルチプレキシング Level2 コンフィグレーションレジスタ
5100 0400h	rGPIOs_Level2_StatusProtect	GPIO マルチプレキシング Level2 ステータスおよびプロテクトレジスタ
5100 0404h	rGPIOs_Level2_Config_MDIO1	MDIO1 インタフェースコンフィグレーションレジスタ
5100 0408h	rGPIOs_Level2_Config_MDIO2	MDIO2 インタフェースコンフィグレーションレジスタ
5100 0480h+4h×n	rGPIOs_Level2_GPIO_Int_[n] (n=0~7)	GPIO_Int[n]割り込みコンフィグレーションレジスタ

5.3 レジスタ説明

5.3.1 rGPIOs_Level1_ConfigA_[n] — GPIO[n] RGMII マルチプレキシング Level1 コンフィグレーションレジスタ(n=0~59)

アドレス 4006 7000h+4h×n

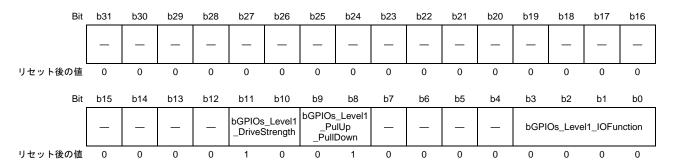
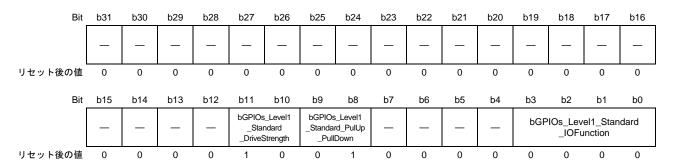


表 5.4 rGPIOs_Level1_ConfigA_[n]レジスタの内容


ビット位置	ビット名	機能	R/W
b31~b12	予約ビット	0 がリードされます。	R
b11, b10	bGPIOs_Level1_Driv eStrength	GPIO 端子のドライブ強度を選択 2'b00:4mA 2'b01:6mA 2'b10:8mA(デフォルト値) 2'b11:12mA	R/W
b9, b8	bGPIOs_Level1_PulU p_PullDown	GPIO 端子のプルアップ/プルダウン抵抗を選択 2'b00:抵抗なし 2'b01:プルアップ(デフォルト値) 2'b10:抵抗なし 2'b11:プルダウン	R/W
b7∼b4	予約ビット	0 がリードされます。	R
b3~b0	bGPIOs_Level1_IOFu nction	GPIO 端子に割り当てるマルチプレキシング Level1 機能を選択 「表 5.1 IO マルチプレクスコンフィグレーション Level1 一覧」を参照。	R/W

注 意

- ライトアクセスは bGPIOs_Level1_Config_StatusProtect ビットでプロテクトされています。
- 出力電流値については、「表 11.3 電流」の注 1 を参照ください。

5.3.2 rGPIOs_Level1_ConfigB_[n] — GPIO[n] Standard マルチプレキシング Level1 コンフィグレーションレジスタ(n=60~169(最大))

アドレス 4006 7000h+4h×n

表 5.5 rGPIOs_Level1_ConfigB_[n]レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b12	予約ビット	0 がリードされます。	R
b11, b10	bGPIOs_Level1_Stan dard_DriveStrength	GPIO 端子のドライブ強度を選択 2'b00:4mA 2'b01:6mA 2'b10:8mA(デフォルト値) 2'b11:12mA	R/W
b9、b8	bGPIOs_Level1_Stan dard_PulUp_PullDow n	GPIO 端子のプルアップ/プルダウン抵抗を選択 ^{注 1} 2'b00:抵抗なし 2'b01:プルアップ(デフォルト値) 2'b10:抵抗なし 2'b11:プルダウン	R/W
b7∼b4	予約ビット	0 がリードされます。	R
b3~b0	bGPIOs_Level1_Stan dard_IOFunction	GPIO 端子に割り当てるマルチプレキシング Level1 機能を選択注2 「表 5.1 IO マルチプレクスコンフィグレーション Level1 一覧」を参照。	R/W

- 注1. GPIO[73:62]と GPIO[145:127]は MRESET_N 立ち上がり時の GPIO[79]のレベルに従って初期設定されます。
 - 1: GPIO[73:62]および GPIO[145:127]をプルアップ
 - 0: GPIO[73:62]および GPIO[145:127]をプルダウン
- 注2. RZ/N1L のとき GPIO[79:74]は直接 QSPI インタフェースとして初期設定されます。 GPIO[103]はブート ROM によって UART1_TXD に設定されます。

注 意

- ライトアクセスは bGPIOs_Level1_Config_StatusProtect ビットでプロテクトされています。
- 出力電流値については、「表 11.3 電流」の注 1 を参照ください。

5.3.3 rGPIOs_Level1_StatusProtect — GPIO マルチプレキシング Level1 ステータ スおよびプロテクトレジスタ

アドレス 4006 7400h

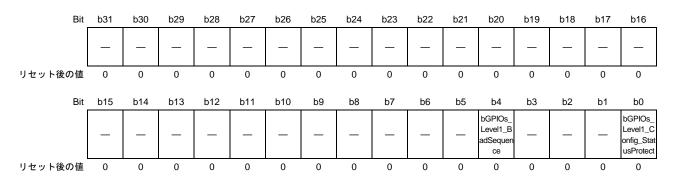
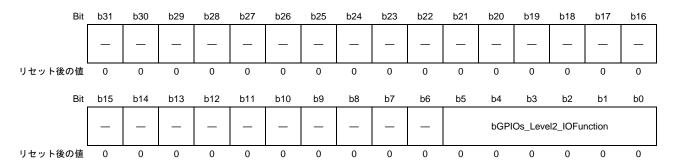



表 5.6 rGPIOs_Level1_StatusProtect レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b5	予約ビット	0 がリードされます。	R
b4	bGPIOs_Level1_Bad Sequence	不正シーケンス検出 rGPIOs_Level1_StatusProtect レジスタに不正なライトシーケンスが発生したとき 1 がセットされます。 以下のとき 0 クリアされます。 ● リセット ● 4006 7402h をライト	R/W
b3~b1	予約ビット	0 がリードされます。	R
bO	bGPIOs_Level1_Conf ig_StatusProtect	以下のレジスタのライトプロテクション rGPIOs_Level1_ConfigA_[n] rGPIOs_Level1_ConfigB_[n] 0: すべてのレジスタはライトプロテクトされ、リードオンリーです 1: すべてのレジスタはプロテクトされず、ライトリード可能です 以下のとき 0 クリアされます。 リセット レジスタで不正なライトシーケンス 以下により bGPIOs_Level1_Config_StatusProtect ビットはセットやクリアされます。 [セット] 4006 7400h をライト [クリア] 4006 7401h をライト 「5.4.1 GPIOs Level1 コンフィグレーションレジスタのプロテクトアクセス」を参照。	R/W

5.3.4 rGPIOs_Level2_Config_[n] — GPIO[n]マルチプレキシング Level2 コンフィグレーションレジスタ(n=0~169(最大))

アドレス 5100 0000h+4h×n

表 5.7 rGPIOs_Level2_Config_[n]レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b6	予約ビット	0 がリードされます。	R
b5~b0	bGPIOs_Level2_IOFu nction	PIO 端子に割り当てるマルチプレキシング Level2 機能を選択 表 5.2 IO マルチプレクスコンフィグレーション Level2 一覧」を参照。	

注 意

ライトアクセスは bGPIOs_Level2_Config_StatusProtect ビットでプロテクトされています。

5.3.5 rGPIOs_Level2_StatusProtect — GPIO マルチプレキシング Level2 ステータ スおよびプロテクトレジスタ

アドレス 5100 0400h

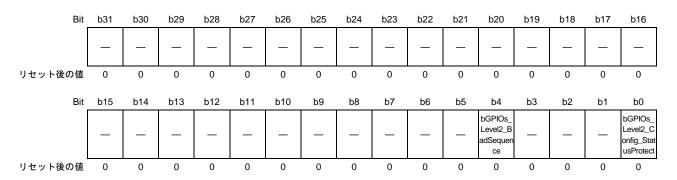
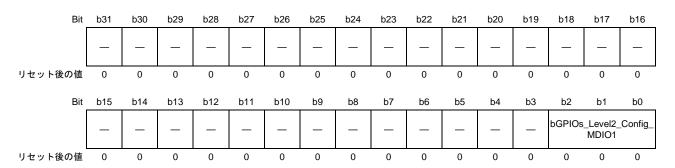



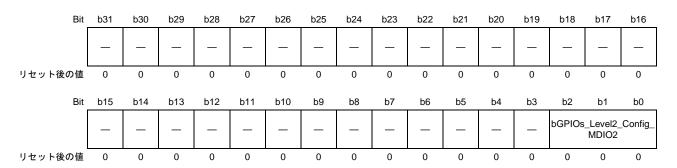
表 5.8 rGPIOs_Level2_StatusProtect レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b5	予約ビット	0 がリードされます。	R
b4	bGPIOs_Level2_Bad Sequence	不正シーケンス検出 rGPIOs_Level2_StatusProtect レジスタに不正なライトシーケンスが発生したとき 1 がセットされます。 以下のとき 0 クリアされます。 ● リセット ● 5100 0402h をライト	R/W
b3~b1	予約ビット	0 がリードされます。	R
bO	bGPIOs_Level2_Conf ig_StatusProtect	以下のレジスタのライトプロテクション • rGPIOs_Level2_Config_[n] • rGPIOs_Level2_Config_MDIO1 • rGPIOs_Level2_Config_MDIO2 0: すべてのレジスタはライトプロテクトされ、リードオンリーです 1: すべてのレジスタはプロテクトされず、ライトリード可能です 以下のとき 0 クリアされます。 • リセット • レジスタで不正なライトシーケンス 以下により bGPIOs_Level2_Config_StatusProtect ビットはセットやクリアされます。 [セット] 5100 0400h をライト [クリア] 5100 0401h をライト 「5.4.2 GPIOs Level2 コンフィグレーションレジスタのプロテクトアクセス」を参 照。	R/W

5.3.6 rGPIOs_Level2_Config_MDIO1 — MDIO1 インタフェースコンフィグレーションレジスタ

アドレス 5100 0404h

表 5.9 rGPIOs_Level2_Config_MDIO1 レジスタの内容


ビット位置	ビット名	機能	R/W
b31~b3	予約ビット	0 がリードされます。	R
b2~b0	bGPIOs_Level2_Conf ig_MDIO1	MDIO1 インタフェースコンフィグレーション 3'b000: フローティング 3'b001: GMAC1 3'b010: GMAC2 3'b011: ETHERCAT 3'b100: SERCOSIII MDIO1 3'b101: SERCOSIII MDIO2 3'b110: HW-RTOS GMAC 3'b111: Advanced 5port Switch	R/W

注 意

ライトアクセスは bGPIOs_Level2_Config_StatusProtect ビットでプロテクトされています。

5.3.7 rGPIOs_Level2_Config_MDIO2 — MDIO2 インタフェースコンフィグレーションレジスタ

アドレス 5100 0408h

表 5.10 rGPIOs_Level2_Config_MDIO2 レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b3	予約ビット	0 がリードされます。	R
b2~b0	bGPIOs_Level2_Conf ig_MDIO2	MDIO2 インタフェースコンフィグレーション rGPIOs_Level2_Config_MDIO1 と同様	R/W

注 意

ライトアクセスは bGPIOs_Level2_Config_StatusProtect ビットでプロテクトされています。

5.3.8 rGPIOs_Level2_GPIO_Int_[n] — GPIO_Int[n]割り込みコンフィグレーションレジスタ(n=0~7)

 $GPIO_Int[n]$ $(n=0\sim7)$ $(IRQ103\sim IRQ110)$ の割り込みラインのコンフィグレーション

アドレス 5100 0480h+4h×n

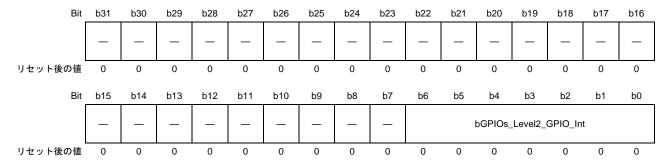


表 5.11 rGPIOs_Level2_GPIO_Int_[n]レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b7	予約ビット	0 がリードされます。	R
b6~b0	bGPIOs_Level2_GPI O_Int	各割り込み GPIO_Int[n]に対して 3×32 の割り込みソースから一つの割り込みソースを選択 BGPIO1_Int[31:0]もしくは BGPIO2_Int[31:0]もしくは BGPIO3_Int[31:0]	R/W
		マルチプレキシング Level2 で使用される機能を選択: ● BGPIO1 から送られた割り込みソース: 7'b00_00000: BGPIO1_Int[0]	

5.4 動作設定

5.4.1 GPIOs Level1 コンフィグレーションレジスタのプロテクトアクセス

想定外の動作によってレジスタが変更されることを防ぐプロテクトレジスタは、ライトの禁止/許可状態を変更するために特定の値をライトする必要があります。以下のレジスタへのライトを禁止/許可するには、bGPIOs_Level1_Config_StatusProtect をセット/クリアしてください。

rGPIOs_Level1_ConfigA_[n] rGPIOs_Level1_ConfigB_[n]

- 非保護(ライト許可)状態へ ~bGPIOs_Level1_Config_StatusProtect をセット rGPIOs_Level1_StatusProtect に{rGPIOs_Level1_StatusProtect アドレスの上位 29 ビット、3'b000}をライト すなわち、*(4006 7400h)=4006 7400h
- 保護(ライト禁止)状態へ ~bGPIOs_Level1_Config_StatusProtect をクリア rGPIOs_Level1_StatusProtect に{rGPIOs_Level1_StatusProtect アドレスの上位 29 ビット、3'b001}をライト すなわち、*(4006 7400h)=4006 7401h
- 不正シーケンス検出ビットのクリア

もし誤ったデータが rGPIOs_Level1_StatusProtect レジスタにライトされた場合、

bGPIOs_Level1_BadSequence がセットされ

bGPIOs_Level1_Config_StatusProtect がクリアされます。

bGPIOs_Level1_BadSequence は以下によってクリアされます

rGPIOs_Level1_StatusProtect に{rGPIOs_Level1_StatusProtect アドレスの上位 29 ビット、3'b010}をライト すなわち、*(4006 7400h)=4006 7402h

5.4.2 GPIOs Level2 コンフィグレーションレジスタのプロテクトアクセス

想定外の動作によってレジスタが変更されることを防ぐプロテクトレジスタは、ライトの禁止/許可状態を変更するために特定の値をライトする必要があります。以下のレジスタへのライトを禁止/許可するには、bGPIOs_Level2_Config_StatusProtect をセット/クリアしてください。

rGPIOs_Level2_Config_[n]
rGPIOs_Level2_Config_MDIO1

rGPIOs_Level2_Config_MDIO2

- 非保護(ライト許可)状態へ ~bGPIOs_Level2_Config_StatusProtect をセット rGPIOs_Level2_StatusProtect に{rGPIOs_Level2_StatusProtect アドレスの上位 29 ビット、3'b000}をライト すなわち、*(5100 0400h)=5100 0400h
- 保護(ライト禁止)状態へ ~bGPIOs_Level2_Config_StatusProtect をクリア rGPIOs_Level2_StatusProtect に{rGPIOs_Level2_StatusProtect アドレスの上位 29 ビット、3'b001}をライト すなわち、*(5100 0400h)=5100 0401h
- 不正シーケンス検出ビットのクリア

もし誤ったデータが rGPIOs_Level2_StatusProtect レジスタにライトされた場合、

bGPIOs_Level2_BadSequence がセットされ

bGPIOs_Level2_Config_StatusProtect がクリアされます。

bGPIOs_Level2_BadSequence は以下によってクリアされます

rGPIOs_Level2_StatusProtect に{rGPIOs_Level2_StatusProtect アドレスの上位 29 ビット、3'b010}をライト すなわち、*(5100 0400h)=5100 0402h

5.4.3 GPIO 割り込みラインのコンフィグレーション

各 CPU への割り込みラインである GPIO_Int[n]は rGPIOs_Level2_GPIO_Int_[n]によって設定されます。 GPIO_Int[n]は BGPIO モジュールの 32 ビット×3 の割り込み出力から選択されます。

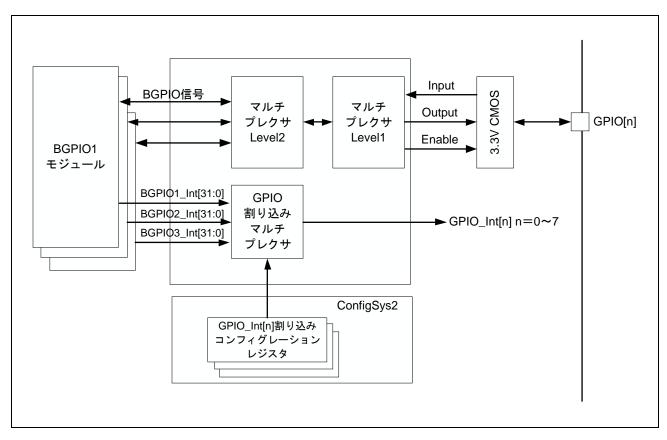


図 5.2 GPIO_Int[n]コンフィグレーション

第6章 システムコントロール

6.1 概要

RZ/N1 システムコントローラはクロック、リセット、NoC (Network-on-Chip) マネージメントとチップレベルの LSI コンフィグレーションのためのレジスタを含んでいます。詳細はクロック生成、リセット、動作モードの各章を参照してください。

6.2 レジスタマップ

表 6.1 クロック制御のレジスタマップ (1/2)

アドレス	レジスタシンボル	レジスタ名
4000 C00Ch	PWRCTRL_SDIO1	SDIO1 のパワーマネージメントコントロール
4000 C010h	PWRSTAT_SDIO1	SDIO1 のパワーマネージメントステータス
4000 C01Ch	PWRCTRL_USB	USB2.0 のパワーマネージメントコントロール
4000 C020h	PWRSTAT_USB	USB2.0 のパワーマネージメントステータス
4000 C02Ch	PWRCTRL_MSEBI	MSEBI のパワーマネージメントコントロール
4000 C030h	PWRSTAT_MSEBI	MSEBI のパワーマネージメントステータス
4000 C034h	PWRCTRL_PG0_0	PG0 のパワーマネージメントコントロール#0
4000 C038h	PWRSTAT_PG0	PG0 のパワーマネージメントステータス
4000 C03Ch	PWRCTRL_PG0_1	PG0 のパワーマネージメントコントロール#1
4000 C040h	PWRCTRL_PG1_1	PG1 のパワーマネージメントコントロール#1
4000 C044h	PWRCTRL_PG1_2	PG1 のパワーマネージメントコントロール#2
4000 C04Ch	PWRCTRL_DMA	DMAC1 と DMAC2 のパワーマネージメントコントロール
4000 C050h	PWRCTRL_NFLASH	NAND FLASH Controller のパワーマネージメントコントロール
4000 C054h	PWRCTRL_QSPI1	QSPI1 のパワーマネージメントコントロール
4000 C058h	PWRSTAT_DMA	DMAC1 と DMAC2 のパワーマネージメントステータス
4000 C05Ch	PWRSTAT_NFLASH	NAND FLASH Controller のパワーマネージメントステータス
4000 C060h	PWRSTAT_QSPI1	QSPI1 のパワーマネージメントステータス
4000 C064h	(RZ/N1D) PWRCTRL_DDRC	DDR Memory Controller のパワーマネージメントコントロール
	(RZ/N1S) PWRCTRL_QSPI2DIV	QSPI2 のクロック分周器コントロール
	(RZ/N1L)予約	
4000 C068h	PWRCTRL_EETH	外部 Ethernet クロックのパワーマネージメントコントロール
4000 C06Ch	PWRCTRL_MAC1	GMAC1 のパワーマネージメントコントロール
4000 C070h	PWRCTRL_MAC2	GMAC2 のパワーマネージメントコントロール
4000 C074h	(RZ/N1D) PWRSTAT_DDRC	DDR Memory Controller のパワーマネージメントステータス
	(RZ/N1S、RZ/N1L)予約	
4000 C078h	PWRSTAT_MAC1	GMAC1 のパワーマネージメントステータス
4000 C07Ch	PWRSTAT_MAC2	GMAC2 のパワーマネージメントステータス
4000 C080h	PWRCTRL_ECAT	ETHERCAT のパワーマネージメントコントロール
4000 C084h	PWRCTRL_SERCOS	SERCOSIII のパワーマネージメントコントロール
4000 C088h	PWRSTAT_ECAT	ETHERCAT のパワーマネージメントステータス
4000 C08Ch	PWRSTAT_SERCOS	SERCOSIII のパワーマネージメントステータス
4000 C090h	(RZ/N1D) PWRCTRL_HSR	HSR のパワーマネージメントコントロール
	(RZ/N1S) PWRCTRL_QSPI2	QSPI2 のパワーマネージメントコントロール
	(RZ/N1L) 予約	
4000 C094h	PWRCTRL_SWITCHDIV	A5PSW のクロック分周器コントロール

表 6.1 クロック制御のレジスタマップ (2/2)

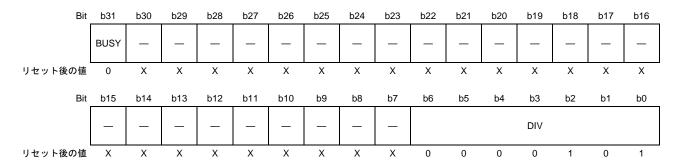
アドレス	レジスタシンボル	レジスタ名
4000 C098h	(RZ/N1D) PWRSTAT_HSR	HSR のパワーマネージメントステータス
	(RZ/N1S) PWRSTAT_QSPI2	QSPI2 のパワーマネージメントステータス
	(RZ/N1L) 予約	
4000 C09Ch	PWRSTAT_SWITCH	A5PSW のパワーマネージメントステータス
4000 C0C8h	PWRCTRL_SDIO2	SDIO2 のパワーマネージメントコントロール
4000 C0CCh	PWRSTAT_SDIO2	SDIO2 のパワーマネージメントステータス
4000 C0E0h	PWRCTRL_OPPDIV	OPP モードのクロック分周器コントロール
4000 C0E4h	PWRCTRL_CA7DIV	CA7 のクロック分周器コントロール
4000 C0E8h	PWRCTRL_PG2_25MHZ	PG2 25MHz のパワーマネージメントコントロール
4000 C0ECh	PWRCTRL_PG1_PR2	PG1 Program2 のパワーマネージメントコントロール
4000 C0F0h	PWRCTRL_PG3_48MHZ	PG3 48MHz のパワーマネージメントコントロール
4000 C0F4h	PWRCTRL_PG4	PG4 のパワーマネージメントコントロール
4000 C0F8h	PWRCTRL_PG1_PR2DIV	PG1 Program2 のクロック分周器コントロール
4000 C0FCh	PWRCTRL_PG1_PR3	PG1 Program3 のパワーマネージメントコントロール
4000 C100h	PWRCTRL_PG1_PR3DIV	PG1 Program3 のクロック分周器コントロール
4000 C104h	PWRCTRL_PG1_PR4	PG1 Program4 のパワーマネージメントコントロール
4000 C108h	PWRCTRL_PG1_PR4DIV	PG1 Program4 のクロック分周器コントロール
4000 C10Ch	PWRCTRL_PG4_PR1	PG4 Program1 のパワーマネージメントコントロール
4000 C110h	PWRCTRL_PG4_PR1DIV	PG4 Program1 のクロック分周器コントロール
4000 C124h	PWRCTRL_QSPI1DIV	QSPI1 のクロック分周器コントロール
4000 C128h	PWRCTRL_SDIO1DIV	SDIO1 のクロック分周器コントロール
4000 C12Ch	PWRCTRL_SDIO2DIV	SDIO2 のクロック分周器コントロール
4000 C130h	PWRCTRL_SWITCH	A5PSW のパワーマネージメントコントロール
4000 C134h	PWRCTRL_PG0_ADCDIV	PG0 ADC のクロック分周器コントロール
4000 C138h	PWRCTRL_PG0_I2CDIV	PG0 I2C のクロック分周器コントロール
4000 C13Ch	PWRCTRL_PG0_UARTDIV	PG0 UART のクロック分周器コントロール
4000 C140h	PWRCTRL_RTC	RTC のパワーマネージメントコントロール
4000 C144h	PWRSTAT_RTC	RTC のパワーマネージメントステータス
4000 C148h	PWRCTRL_NFLASHDIV	NAND FLASH Controller のクロック分周器コントロール
4000 C154h	(RZ/N1D, RZ/N1S) PWRCTRL_ROM	ROM のパワーマネージメントコントロール
	(RZ/N1L) 予約	
4000 C158h	PWRSTAT_PG1	PG1 のパワーマネージメントステータス
4000 C15Ch	PWRSTAT_PG2_25MHZ	PG2 25MHz のパワーマネージメントステータス
4000 C160h	PWRSTAT_PG3_48MHZ	PG3 48MHz のパワーマネージメントステータス
4000 C164h	PWRSTAT_PG4	PG4 のパワーマネージメントステータス
4000 C170h	(RZ/N1D, RZ/N1S) PWRSTAT_ROM	ROM のパワーマネージメントステータス
	(RZ/N1L) 予約	
4000 C174h	PWRCTRL_CM3	CM3 のパワーマネージメントコントロール
4000 C178h	PWRSTAT_CM3	CM3 のパワーマネージメントステータス
4000 C17Ch	PWRSTAT_RINCTRL	R-IN Engine アクセサリレジスタのパワーマネージメントステータス
4000 C180h	PWRSTAT_SWITCHCTRL	イーサネットアクセサリレジスタのパワーマネージメントステータス
4000 C184h	PWRCTRL_RINCTRL	R-IN Engine アクセサリレジスタのパワーマネージメントコントロール
4000 C188h	PWRCTRL_SWITCHCTRL	イーサネットアクセサリレジスタのパワーマネージメントコントロー ル
4000 C18Ch	PWRCTRL_HWRTOS	HW-RTOS のパワーマネージメントコントロール
4000 C190h	PWRCTRL_HWRTOS_MDCDIV	HW-RTOS GMAC の MDC Clock のクロック分周器コントロール

表 6.2 リセット制御のレジスタマップ (1/2)

アドレス	レジスタシンボル	レジスタ名
4000 C00Ch	PWRCTRL_SDIO1	SDIO1 のパワーマネージメントコントロール
4000 C010h	PWRSTAT_SDIO1	SDIO1 のパワーマネージメントステータス
4000 C018h	SYSSTAT	システムステータスフラグレジスタ
4000 C01Ch	PWRCTRL_USB	USB2.0 のパワーマネージメントコントロール
4000 C020h	PWRSTAT_USB	USB2.0 のパワーマネージメントステータス
4000 C02Ch	PWRCTRL_MSEBI	MSEBI のパワーマネージメントコントロール
4000 C030h	PWRSTAT_MSEBI	MSEBI のパワーマネージメントステータス
4000 C034h	PWRCTRL_PG0_0	PG0 のパワーマネージメントコントロール#0
4000 C038h	PWRSTAT_PG0	PG0 のパワーマネージメントステータス
4000 C03Ch	PWRCTRL_PG0_1	PG0 のパワーマネージメントコントロール#1
4000 C040h	PWRCTRL_PG1_1	PG1 のパワーマネージメントコントロール#1
4000 C044h	PWRCTRL_PG1_2	PG1 のパワーマネージメントコントロール#2
4000 C04Ch	PWRCTRL_DMA	DMAC1 と DMAC2 のパワーマネージメントコントロール
4000 C050h	PWRCTRL_NFLASH	NAND FLASH Controller のパワーマネージメントコントロール
4000 C054h	PWRCTRL_QSPI1	QSPI1 のパワーマネージメントコントロール
4000 C058h	PWRSTAT_DMA	DMAC1 と DMAC2 のパワーマネージメントステータス
4000 C05Ch	PWRSTAT_NFLASH	NAND FLASH Controller のパワーマネージメントステータス
4000 C060h	PWRSTAT_QSPI1	QSPI1 のパワーマネージメントステータス
4000 C064h	(RZ/N1D) PWRCTRL_DDRC	DDR memory controller のパワーマネージメントコントロール
	(RZ/N1S) PWRCTRL_QSPI2DIV	QSPI2 のクロック分周器コントロール
	(RZ/N1L)予約	
4000 C068h	PWRCTRL_EETH	外部 Ethernet クロックのパワーマネージメントコントロール
4000 C06Ch	PWRCTRL_MAC1	GMAC1 のパワーマネージメントコントロール
4000 C070h	PWRCTRL_MAC2	GMAC2 のパワーマネージメントコントロール
4000 C074h	(RZ/N1D) PWRSTAT_DDRC	DDR memory controller のパワーマネージメントステータス
	(RZ/N1S、RZ/N1L)予約	,
4000 C078h	PWRSTAT MAC1	GMAC1 のパワーマネージメントステータス
4000 C07Ch	PWRSTAT_MAC2	GMAC2 のパワーマネージメントステータス
4000 C080h	PWRCTRL_ECAT	ETHERCAT のパワーマネージメントコントロール
4000 C084h	PWRCTRL_SERCOS	SERCOSIII のパワーマネージメントコントロール
4000 C088h	PWRSTAT_ECAT	ETHERCAT のパワーマネージメントステータス
4000 C08Ch	PWRSTAT_SERCOS	SERCOSIII のパワーマネージメントステータス
4000 C090h	(RZ/N1D) PWRCTRL_HSR	HSR のパワーマネージメントコントロール
	(RZ/N1S) PWRCTRL_QSPI2	QSPI2 のパワーマネージメントコントロール
	(RZ/N1L) 予約	
4000 C098h	(RZ/N1D) PWRSTAT_HSR	HSR のパワーマネージメントステータス
	(RZ/N1S) PWRSTAT_QSPI2	QSPI2 のパワーマネージメントステータス
	(RZ/N1L) 予約	
4000 C09Ch	PWRSTAT_SWITCH	A5PSW のパワーマネージメントステータス
4000 C0A8h	RSTSTAT	リセットステータスレジスタ
4000 C0C0h	USBSTAT	USBPLL のステータス情報
4000 C0C8h	PWRCTRL_SDIO2	SDIO2 のパワーマネージメントコントロール
4000 C0CCh	PWRSTAT_SDIO2	SDIO2 のパワーマネージメントステータス
4000 C0CCII 4000 C0E8h	PWRCTRL_PG2_25MHZ	PG2 25MHz のパワーマネージメントコントロール
4000 C0E6h	PWRCTRL_PG2_25MH2 PWRCTRL_PG1_PR2	PG1 Program2 のパワーマネージメントコントロール
4000 CUECII	FWKUIKL_FGI_PKZ	FOT Flograniz のパソーマネーシメントコントロール

表 6.2 リセット制御のレジスタマップ (2/2)

アドレス	レジスタシンボル	レジスタ名
4000 C0F0h	PWRCTRL_PG3_48MHZ	PG3 48MHz のパワーマネージメントコントロール
4000 C0F4h	PWRCTRL_PG4	PG4 のパワーマネージメントコントロール
4000 C0FCh	PWRCTRL_PG1_PR3	PG1 Program3 のパワーマネージメントコントロール
4000 C104h	PWRCTRL_PG1_PR4	PG1 Program4 のパワーマネージメントコントロール
4000 C10Ch	PWRCTRL_PG4_PR1	PG4 Program1 のパワーマネージメントコントロール
4000 C120h	RSTEN	リセットイネーブルレジスタ
4000 C130h	PWRCTRL_SWITCH	A5PSW のパワーマネージメントコントロール
4000 C140h	PWRCTRL_RTC	RTC のパワーマネージメントコントロール
4000 C144h	PWRSTAT_RTC	RTC のパワーマネージメントステータス
4000 C154h	(RZ/N1D, RZ/N1S) PWRCTRL_ROM	ROM のパワーマネージメントコントロール
	(RZ/N1L)予約	
4000 C158h	PWRSTAT_PG1	PG1 のパワーマネージメントステータス
4000 C15Ch	PWRSTAT_PG2_25MHZ	PG2 25MHz のパワーマネージメントステータス
4000 C160h	PWRSTAT_PG3_48MHZ	PG3 48MHz のパワーマネージメントステータス
4000 C164h	PWRSTAT_PG4	PG4 のパワーマネージメントステータス
4000 C170h	(RZ/N1D, RZ/N1S) PWRSTAT_ROM	ROM のパワーマネージメントステータス
	(RZ/N1L)予約	
4000 C174h	PWRCTRL_CM3	CM3 のパワーマネージメントコントロール
4000 C178h	PWRSTAT_CM3	CM3 のパワーマネージメントステータス
4000 C17Ch	PWRSTAT_RINCTRL	R-IN Engine アクセサリレジスタのパワーマネージメントステータス
4000 C180h	PWRSTAT_SWITCHCTRL	イーサネットアクセサリレジスタのパワーマネージメントステータス
4000 C184h	PWRCTRL_RINCTRL	R-IN Engine アクセサリレジスタのパワーマネージメントコントロール
4000 C188h	PWRCTRL_SWITCHCTRL	イーサネットアクセサリレジスタのパワーマネージメントコントロー ル
4000 C18Ch	PWRCTRL_HWRTOS	HW-RTOS のパワーマネージメントコントロール
4000 C198h	RSTCTRL	リセットコントロールレジスタ


表 6.3 システムコンフィグレーションのレジスタマップ

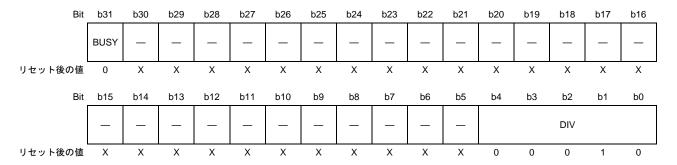
アドレス	レジスタシンボル	レジスタ名
4000 C000h	CFG_USB	USB モードコンフィグレーションレジスタ
4000 C004h	OPMODE	システムとブートのコンフィグレーションレジスタ
4000 C008h	CFG_SDIO1	SDIO1 コンフィグレーションレジスタ
4000 C014h	DBGCON	デバッグコントロールレジスタ
4000 C0A0h	CFG_DMAMUX	DMAC1 と DMAC2 のマルチプレクサレジスタ
4000 C0A4h	CFG_GPIOT_PTEN_1A	GPIO トリガイネーブルレジスタ 1A
4000 C0B0h	CFG_GPIOT_PTEN_1B	GPIO トリガイネーブルレジスタ 1B
4000 C0B4h	CFG_GPIOT_PTEN_2A	GPIO トリガイネーブルレジスタ 2A
4000 C0B8h	CFG_GPIOT_PTEN_2B	GPIO トリガイネーブルレジスタ 2B
4000 C0BCh	CFG_GPIOT_TSRC	GPIO トリガソースセレクトレジスタ
4000 C0C4h	CFG_SDIO2	SDIO2 コンフィグレーションレジスタ
4000 C0D8h	CFG_GPIOT_PTEN_3A	GPIO トリガイネーブルレジスタ 3A
4000 C0DCh	CFG_GPIOT_PTEN_3B	GPIO トリガイネーブルレジスタ 3B
4000 C19Ch	VERSION	プロダクトバージョンレジスタ
4000 C204h	BOOTADDR	Cortex-A7 プロセッサ 1 ブートアドレスコンフィグレーションレジスタ

6.3 レジスタ説明

6.3.1 PWRCTRL_SWITCHDIV — A5PSW のクロック分周器コントロール

アドレス 4000 C094h

表 6.4 PWRCTRL_SWITCHDIV レジスタの内容


ビット位置	ビット名	機能	R/W
b31	BUSY	レジスタライト (BUSY=1) は分周値変更のトリガです。レジスタリードは分周器のステータスを表示します。 1:分周設定変更中。DIV 値の変更は禁止です。変更した場合の動作は保証されません。 0:クロック設定は適用されています。DIV へ新しい設定をライト可能です。	R/W
b30∼b7	予約ビット		R
b6∼b0	DIV	A5PSW のクロック(A5PSW_SXCLK)のクロック分周値 有効なレンジ:5	R/W

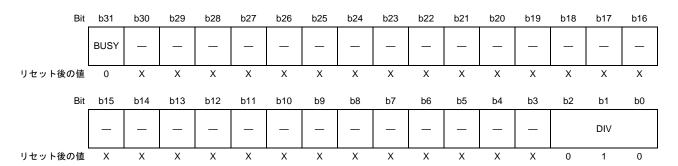
備考

6.3.2 PWRCTRL OPPDIV — OPP モードのクロック分周器コントロール

このレジスタはシステムのリファレンス周波数を変更します。この値は NoC のバス周波数と Cortex-A7 のクロックに直接的な影響を与えます。

アドレス 4000 C0E0h

表 6.5 PWRCTRL_OPPDIV レジスタの内容

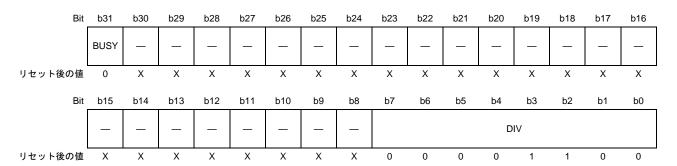

ビット位置	ビット名	機能	R/W
b31	BUSY	レジスタライト (BUSY=1) は分周値変更のトリガです。レジスタリードは分周器のステータスを表示します。 1:分周設定変更中。DIV 値の変更は禁止です。変更した場合の動作は保証されません。 0:クロック設定は適用されています。DIV へ新しい設定をライト可能です。	R/W
b30~b5	予約ビット		R
b4~b0	DIV	NoC clock のクロック分周値 有効な値: [2、4、8、16]	R/W

備考

- RTC バックアップモードに移行する場合、このレジスタの値を初期値に変更しておく必要があります。
- BUSY フィールドがアサートされている時、このレジスタへのライトは禁止で、行うとバスエラー応答になります。
- NoC のバス周波数変更はウォッチドッグタイマーのリファレンスクロック周波数に影響します。

6.3.3 PWRCTRL_CA7DIV — CA7 のクロック分周器コントロール

アドレス 4000 C0E4h

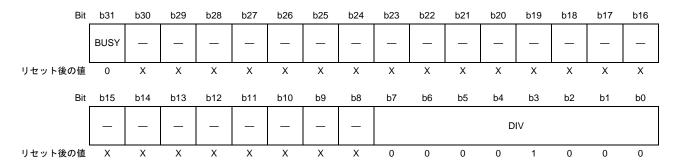

表 6.6 PWRCTRL_CA7DIV レジスタの内容

ビット位置	ビット名	機能	R/W
b31	BUSY	レジスタライト(BUSY=1)は分周値変更のトリガです。レジスタリードは分周器のステータスを表示します。 1:分周設定変更中。DIV値の変更は禁止です。変更した場合の動作は保証されません。 0:クロック設定は適用されています。DIVへ新しい設定をライト可能です。	R/W
b30~b3	予約ビット		R
b2~b0	DIV	Cortex-A7 processor clock のクロック分周値 有効な値:[1、2、4]	R/W

備考

6.3.4 PWRCTRL_PG1_PR2DIV — PG1 Program2 のクロック分周器コントロール

アドレス 4000 C0F8h

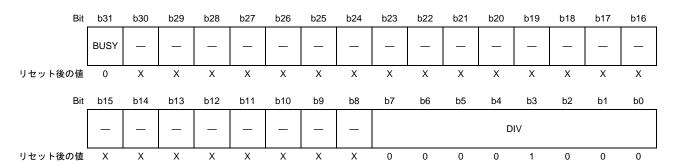

表 6.7 PWRCTRL_PG1_PR2DIV レジスタの内容

ビット位置	ビット名	機能	R/W
b31	BUSY	レジスタライト(BUSY=1)は分周値変更のトリガです。レジスタリードは分周器のステータスを表示します。 1:分周設定変更中。DIV値の変更は禁止です。変更した場合の動作は保証されません。 0:クロック設定は適用されています。DIVへ新しい設定をライト可能です。	R/W
b30~b8	予約ビット		R
b7∼b0	DIV	UART[m]_SCLK(m=4~8)の PG1 Program2 クロック分周値 有効なレンジ: 12~128	R/W

備考

6.3.5 PWRCTRL_PG1_PR3DIV — PG1 Program3 のクロック分周器コントロール

アドレス 4000 C100h

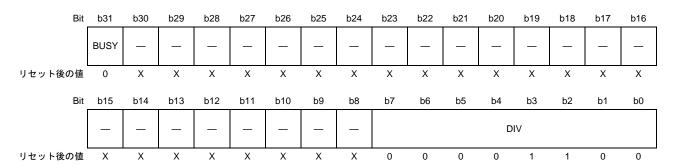

表 6.8 PWRCTRL_PG1_PR3DIV レジスタの内容

ビット位置	ビット名	機能	R/W
b31	BUSY	レジスタライト (BUSY=1) は分周値変更のトリガです。レジスタリードは分周器のステータスを表示します。 1:分周設定変更中。DIV 値の変更は禁止です。変更した場合の動作は保証されません。 0:クロック設定は適用されています。DIV へ新しい設定をライト可能です。	R/W
b30~b8	予約ビット		R
b7~b0	DIV	SPI[m]_SCLK (m=1~4) の PG1 Program3 のクロック分周値 有効なレンジ(周波数モードにも依存): 8~128 備考) SPI[m]_SCLK は NoC 以下の周波数としてください。	R/W

備考

6.3.6 PWRCTRL_PG1_PR4DIV — PG1 Program4 のクロック分周器コントロール

アドレス 4000 C108h

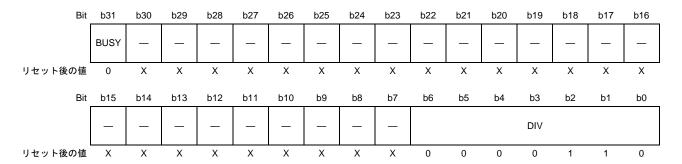

表 6.9 PWRCTRL_PG1_PR4DIV レジスタの内容

ビット位置	ビット名	機能	R/W
b31	BUSY	レジスタライト (BUSY=1) は分周値変更のトリガです。レジスタリードは分周器のステータスを表示します。 1:分周設定変更中。DIV 値の変更は禁止です。変更した場合の動作は保証されません。 0:クロック設定は適用されています。DIV へ新しい設定をライト可能です。	R/W
b30~b8	予約ビット		R
b7∼b0	DIV	SPI[m]_SCLK (m=5、6) の PG1 Program4 のクロック分周値 有効なレンジ(周波数モードにも依存):8~128 備考) SPI[m]_SCLK は NoC 以下の周波数としてください。	R/W

備考

6.3.7 PWRCTRL_PG4_PR1DIV — PG4 Program1 のクロック分周器コントロール

アドレス 4000 C110h

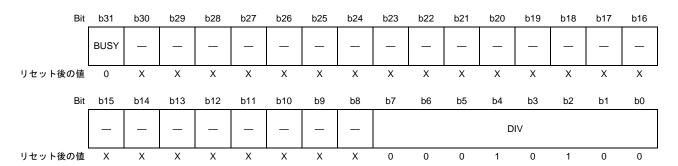

表 6.10 PWRCTRL_PG4_PR1DIV レジスタの内容

ビット位置	ビット名	機能	R/W
b31	BUSY	レジスタライト (BUSY=1) は分周値変更のトリガです。レジスタリードは分周器のステータスを表示します。 1:分周設定変更中。DIV 値の変更は禁止です。変更した場合の動作は保証されません。 0:クロック設定は適用されています。DIV へ新しい設定をライト可能です。	R/W
b30~b8	予約ビット		R
b7∼b0	DIV	PG4 Program1 のクロック分周値(LCD_ECLK) 有効なレンジ(周波数モードにも依存):12~200 備考) LCD_ECLK は LCD_HCLK 未満の周波数としてください。	R/W

備考

6.3.8 PWRCTRL_QSPI1DIV — QSPI1 のクロック分周器コントロール

アドレス 4000 C124h

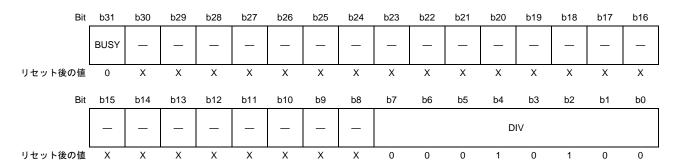

表 6.11 PWRCTRL_QSPI1DIV レジスタの内容

ビット位置	ビット名	機能	R/W
b31	BUSY	レジスタライト (BUSY=1) は分周値変更のトリガです。レジスタリードは分周器のステータスを表示します。 1:分周設定変更中。DIV 値の変更は禁止です。変更した場合の動作は保証されません。 0:クロック設定は適用されています。DIV へ新しい設定をライト可能です。	R/W
b30∼b7	予約ビット		R
b6∼b0	DIV	QSPI1_REFCLK のクロック分周値 有効なレンジ: 4~64 備考) QSPI1_REFCLK は NoC より高い周波数としてください。	R/W

備考

6.3.9 PWRCTRL_SDIO1DIV — SDIO1 のクロック分周器コントロール

アドレス 4000 C128h

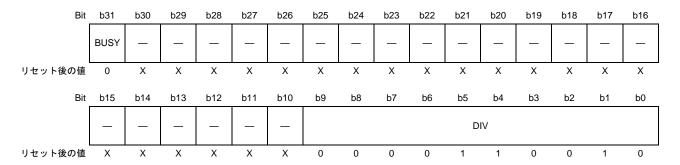

表 6.12 PWRCTRL_SDIO1DIV レジスタの内容

ビット位置	ビット名	機能	R/W
b31	BUSY	レジスタライト (BUSY=1) は分周値変更のトリガです。レジスタリードは分周器のステータスを表示します。 1:分周設定変更中。DIV 値の変更は禁止です。変更した場合の動作は保証されません。 0:クロック設定は適用されています。DIV へ新しい設定をライト可能です。	R/W
b30~b8	予約ビット		R
b7~b0	DIV	SDIO1_ECLK のクロック分周値 有効なレンジ: 20~100	R/W

備考

6.3.10 PWRCTRL_SDIO2DIV — SDIO2 のクロック分周器コントロール

アドレス 4000 C12Ch

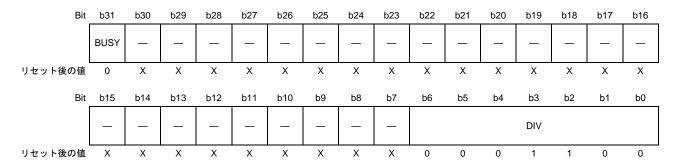

表 6.13 PWRCTRL_SDIO2DIV レジスタの内容

ビット位置	ビット名	機能	R/W
b31	BUSY	レジスタライト(BUSY=1)は分周値変更のトリガです。レジスタリードは分周器のステータスを表示します。 1:分周設定変更中。DIV値の変更は禁止です。変更した場合の動作は保証されません。 0:クロック設定は適用されています。DIVへ新しい設定をライト可能です。	R/W
b30~b8	予約ビット		R
b7~b0	DIV	SDIO2_ECLK のクロック分周値 有効なレンジ: 20~100	R/W

備考

6.3.11 PWRCTRL_PG0_ADCDIV — PG0 ADC のクロック分周器コントロール

アドレス 4000 C134h

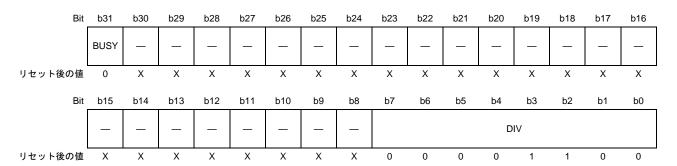

表 6.14 PWRCTRL_PG0_ADCDIV レジスタの内容

ビット位置	ビット名	機能	R/W
b31	BUSY	レジスタライト (BUSY=1) は分周値変更のトリガです。レジスタリードは分周器のステータスを表示します。 1:分周設定変更中。DIV 値の変更は禁止です。変更した場合の動作は保証されません。 0:クロック設定は適用されています。DIV へ新しい設定をライト可能です。	R/W
b30~b10	予約ビット		R
b9~b0	DIV	ADC_CLK のクロック分周値 有効なレンジ: 50~250	R/W

備考

6.3.12 PWRCTRL_PG0_I2CDIV — PG0 I2C のクロック分周器コントロール

アドレス 4000 C138h

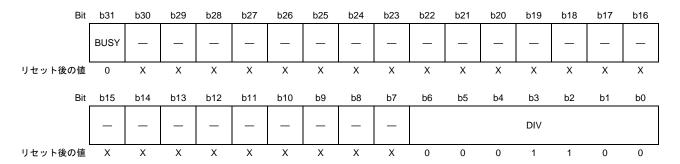

表 6.15 PWRCTRL_PG0_I2CDIV レジスタの内容

ビット位置	ビット名	機能	R/W
b31	BUSY	レジスタライト (BUSY=1) は分周値変更のトリガです。レジスタリードは分周器のステータスを表示します。 1:分周設定変更中。DIV 値の変更は禁止です。変更した場合の動作は保証されません。 0:クロック設定は適用されています。DIV へ新しい設定をライト可能です。	R/W
b30~b7	予約ビット		R
b6∼b0	DIV	I2C[m]_SCLK (m=1、2) のクロック分周値 有効なレンジ(周波数モードにも依存): 12~64 備考) I2C[m]_SCLK は I2C[m]_PCLK 以上の周波数としてください。	R/W

備考

6.3.13 PWRCTRL_PG0_UARTDIV — PG0 UART のクロック分周器コントロール

アドレス 4000 C13Ch

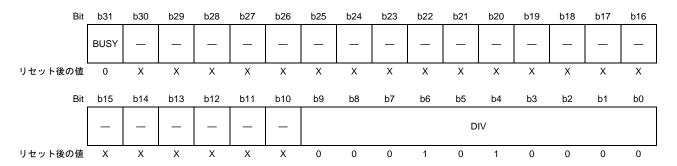

表 6.16 PWRCTRL_PG0_UARTDIV レジスタの内容

ビット位置	ビット名	機能	R/W
b31	BUSY	レジスタライト (BUSY=1) は分周値変更のトリガです。レジスタリードは分周器のステータスを表示します。 1:分周設定変更中。DIV 値の変更は禁止です。変更した場合の動作は保証されません。 0:クロック設定は適用されています。DIV へ新しい設定をライト可能です。	R/W
b30~b8	予約ビット		R
b7~b0	DIV	UART[m]_SCLK(m=1~3)のクロック分周値 有効なレンジ:12~128	R/W

備考

6.3.14 PWRCTRL_NFLASHDIV — NAND FLASH Controller のクロック分周器コントロール

アドレス 4000 C148h

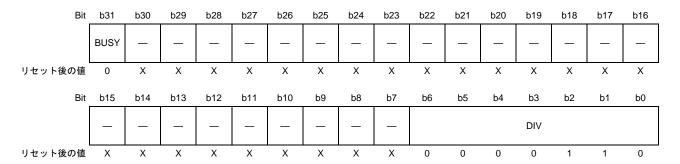

表 6.17 PWRCTRL_NFLASHDIV レジスタの内容

ビット位置	ビット名	機能	R/W
b31	BUSY	レジスタライト (BUSY=1) は分周値変更のトリガです。レジスタリードは分周器のステータスを表示します。 1:分周設定変更中。DIV 値の変更は禁止です。変更した場合の動作は保証されません。 0:クロック設定は適用されています。DIV へ新しい設定をライト可能です。	R/W
b30~b7	予約ビット		R
b6∼b0	DIV	NAND_ECLK のクロック分周値 有効なレンジ: 12~64 備考) PWRCTRL_OPPDIV.DIV=2 の場合、そのときの最大値は 32 です。	R/W

備考

6.3.15 PWRCTRL_HWRTOS_MDCDIV — HW-RTOS GMAC の MDC Clock のクロック分周器コントロール

アドレス 4000 C190h

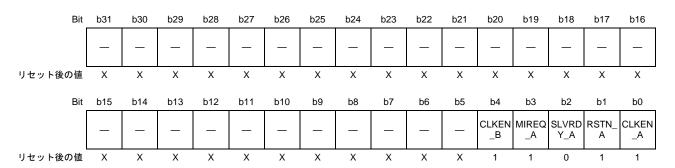

表 6.18 PWRCTRL_HWRTOS_MDCDIV レジスタの内容

ビット位置	ビット名	機能	R/W
b31	BUSY	レジスタライト (BUSY=1) は分周値変更のトリガです。レジスタリードは分周器のステータスを表示します。 1:分周設定変更中。DIV 値の変更は禁止です。変更した場合の動作は保証されません。 0:クロック設定は適用されています。DIV へ新しい設定をライト可能です。	R/W
b30~b10	予約ビット		R
b9~b0	DIV	HWRTOS_MDCCLK のクロック分周値 有効な値: [80、160、320、640]	R/W

備考

6.3.16 PWRCTRL_QSPI2DIV — QSPI2 のクロック分周器コントロール

アドレス 4000 C064h


表 6.19 PWRCTRL_QSPI2DIV レジスタの内容

ビット位置	ビット名	機能	R/W
b31	BUSY	レジスタライト (BUSY=1) は分周値変更のトリガです。レジスタリードは分周器のステータスを表示します。 1:分周設定変更中。DIV 値の変更は禁止です。変更した場合の動作は保証されません。 0:クロック設定は適用されています。DIV へ新しい設定をライト可能です。	R/W
b30~b7	予約ビット		R
b6∼b0	DIV	QSPI2_REFCLK のクロック分周値 有効なレンジ: 4~64 備考) QSPI2_REFCLK は NoC より高い周波数としてください。	R/W

備考

6.3.17 PWRCTRL_SDIO1 — SDIO1 のパワーマネージメントコントロール

アドレス 4000 C00Ch

表 6.20 PWRCTRL_SDIO1 レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b5	予約ビット		R
b4	CLKEN_B	SDIO1_ECLK(外部インタフェース)のクロックイネーブル 0:無効 1:有効	R/W
b3	MIREQ_A	SDIO1 の AHBM の NoC インターコネクトへの切断要求 0:接続要求 1:切断要求	R/W
b2	SLVRDY_A	SDIO1 の AHBS が接続可能であることを NoC インターコネクトに通知します。 0:接続不可 1:接続可	R/W
b1	RSTN_A	SDIO1_HCLK ドメインのリセット。Active Low です。0 をセットすると、SDIO1 のNoC インターコネクトをリセットします。	R/W
b0	CLKEN_A	SDIO1_HCLK(内部バス)のクロックイネーブル 0:無効 1:有効	R/W

6.3.18 PWRSTAT_SDIO1 — SDIO1 のパワーマネージメントステータス

アドレス 4000 C010h

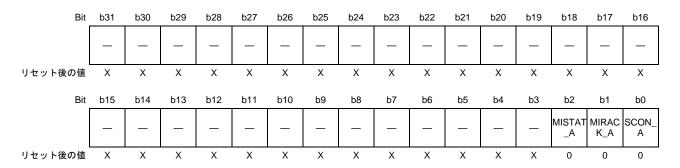



表 6.21 PWRSTAT_SDIO1 レジスタの内容

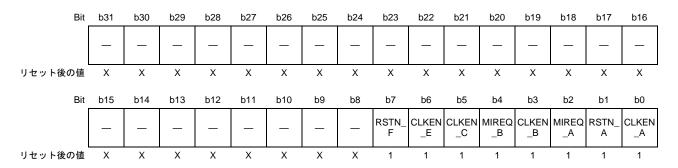
ビット位置	ビット名	機能	R/W
b31~b3	予約ビット		R
b2	MISTAT_A	SDIO1 の AHBM の NoC インターコネクトの接続状態 0:接続状態 1:切断状態	R
b1	MIRACK_A	SDIO1 の AHBM の切断要求に対する応答 0: 切断要求応答なし 1: 切断要求応答あり	R
b0	SCON_A	SDIO1 の AHBS の NoC インターコネクトの接続状態 0:切断状態 1:接続状態	R

備考

6.3.19 SYSSTAT — システムステータスフラグレジスタ

アドレス 4000 C018h

表 6.22 SYSSTAT レジスタの内容


ビット位置	ビット名	機能	R/W
b31~b7	予約ビット		R
b6	PKGMODE	パッケージタイプ	R
		(RZ/N1D)	
		0:400 pin パッケージ	
		1:324 pin パッケージ	
		(RZ/N1S)	
		0:324 pin パッケージ	
		1:196 pin パッケージ	
		(RZ/N1L)	
		1:196 pin パッケージ	
b5	予約ビット		R
b4	CA7_STANDBYWFIL		R
	2	き、すべての Cortex-A7 プロセッサは WFI ステートにあります。	
		0:L2メモリシステムはWFIステートにありません。	
		1:L2メモリシステムはWFIステートにあります。	
b3、b2	CA7_STANDBYWFI	Cortex-A7 プロセッサが WFI ステートであることを表示します。	R
		0:プロセッサは WFI ステートにありません。	
		1:プロセッサは WFI ステートにあります。	
		(RZ/N1D)ビット3はプロセッサ1を表しています。(RZ/N1S)予約	
		ビット 2 はプロセッサ 0 を表しています。	
b1, b0	CA7_STANDBYWFE	Cortex-A7 プロセッサが WFE ステートであることを表示します。	R
		0:プロセッサは WFE ステートにありません。	
		1:プロセッサは WFE ステートにあります。	
		(RZ/N1D)ビット1はプロセッサ1を表しています。(RZ/N1S)予約	
		ビット0はプロセッサ0を表しています。	

備考

RZ/N1L ではビット 5~0 は予約ビットです。

6.3.20 PWRCTRL_USB — USB2.0 のパワーマネージメントコントロール

アドレス 4000 C01Ch

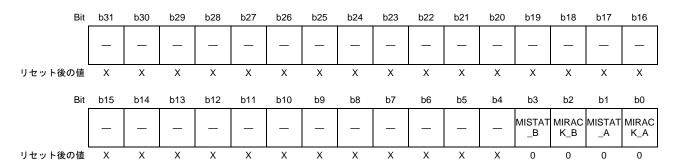
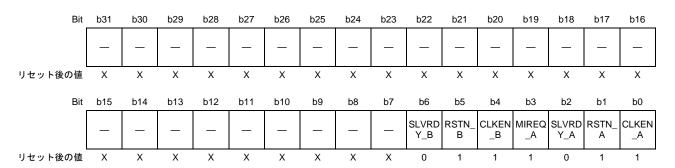


表 6.23 PWRCTRL_USB レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b8	予約ビット		R
b7	RSTN_F	48MHz クロックドメインのリセット。Active Low です。0 をセットすると、すべての 48MHz クロックドメインをリセットします。	R/W
b6	CLKEN_E	USB_PCICLK のクロックイネーブル 0:無効 1:有効	R/W
b5	CLKEN_C	USB_HCLKPM(内部パス~Power Management)のクロックイネーブル 0:無効 1:有効	R/W
b4	MIREQ_B	USB Function の NoC インターコネクトへの切断要求 0:接続要求 1:切断要求	R/W
b3	CLKEN_B	USB_HCLKF(内部バス~USB Function)のクロックイネーブル 0:無効 1:有効	R/W
b2	MIREQ_A	USB Host の NoC インターコネクトへの切断要求 0:接続要求 1:切断要求	R/W
b1	RSTN_A	USB_HCLKH ドメインのリセット。Active Low です。0 をセットすると、USB のNoC インターコネクトをリセットします。	R/W
b0	CLKEN_A	USB_HCLKH(内部パス~USB Host)のクロックイネーブル 0:無効 1:有効	R/W

6.3.21 PWRSTAT_USB — USB2.0 のパワーマネージメントステータス

アドレス 4000 C020h


表 6.24 PWRSTAT_USB レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b4	予約ビット		R
b3	MISTAT_B	USB Function の NoC インターコネクトの接続状態 0:接続状態 1:切断状態	Я
b2	MIRACK_B	USB Function の切断要求に対する応答 0: 切断要求応答なし 1: 切断要求応答あり	R
b1	MISTAT_A	USB Host の NoC インターコネクトの接続状態 0:接続状態 1:切断状態	R
b0	MIRACK_A	USB Host の切断要求に対する応答 0: 切断要求応答なし 1: 切断要求応答あり	R

備考

6.3.22 PWRCTRL_MSEBI — MSEBI のパワーマネージメントコントロール

アドレス 4000 C02Ch

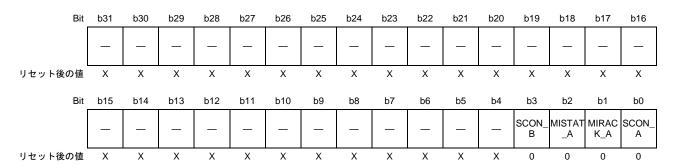


表 6.25 PWRCTRL_MSEBI レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b7	予約ビット		R
b6	SLVRDY_B	MSEBI master が接続可能であることを NoC インターコネクトに通知します。 0:接続不可 1:接続可	R/W
b5	RSTN_B	MSEBIM_HCLK ドメインのリセット。Active Low です。	R/W
b4	CLKEN_B	MSEBIM_HCLK のクロックイネーブル 0:無効 1:有効	R/W
b3	MIREQ_A	MSEBI slave の AHBM の NoC インターコネクトへの切断要求 0:接続要求 1:切断要求	R/W
b2	SLVRDY_A	MSEBI slave の AHBS が接続可能であることを NoC インターコネクトに通知します。	R/W
b1	RSTN_A	MSEBIS_HCLK ドメインのリセット。Active Low です。	R/W
b0	CLKEN_A	MSEBIS_HCLK のクロックイネーブル 0:無効 1:有効	R/W

6.3.23 PWRSTAT_MSEBI — MSEBI のパワーマネージメントステータス

アドレス 4000 C030h

表 6.26 PWRSTAT_MSEBI レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b4	予約ビット		R
b3	SCON_B	MSEBI master の NoC インターコネクトの接続状態 0:切断状態 1:接続状態	R
b2	MISTAT_A	MSEBI slave の AHBM の NoC インターコネクトの接続状態 0:接続状態 1:切断状態	R
b1	MIRACK_A	MSEBI slave の AHBM の切断要求に対する応答 0: 切断要求応答なし 1: 切断要求応答あり	R
b0	SCON_A	MSEBI slave の AHBS の NoC インターコネクトの接続状態 0:切断状態 1:接続状態	R

備考

6.3.24 PWRCTRL_PG0_0 — PG0 のパワーマネージメントコントロール#0

アドレス 4000 C034h

Bit	b31	b30	b29	b28	b27	b26	b25	b24	b23	b22	b21	b20	b19	b18	b17	b16
	_	UARTC LKSEL	RSTN_ J2	CLKEN _J2	RSTN_ J1	CLKEN _J1	RSTN_I 2	CLKEN _l2	RSTN_I 1	CLKEN _I1	RSTN_ H2	CLKEN _H2	RSTN_ H1	CLKEN _H1	SLVRD Y_F	RSTN_ F
リセット後の値	Х	0	1	1	1	1	1	1	1	1	1	1	1	1	0	1
Bit	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
	CLKEN _F	SLVRD Y_E	RSTN_ E	CLKEN _E	SLVRD Y_D	RSTN_ D	CLKEN _D	SLVRD Y_C	RSTN_ C	CLKEN _C	SLVRD Y_B	RSTN_ B	CLKEN _B	SLVRD Y_A	RSTN_ A	CLKEN _A
リセット後の値	1	0	1	1	0	1	1	0	1	1	0	1	1	0	1	1

表 6.27 PWRCTRL_PG0_0 レジスタの内容 (1/2)

ビット位置	ビット名	機能	R/W
b31	予約ビット		R
b30	UARTCLKSEL	PG0 内のすべての UART[m]_SCLK(m=1~3)ソースを選択 ^{注1} 0:メイン PLL(PWRCTRL_PG0_UARTDIV で制御される分周器の出力) 1: USB_DCLK48(USBPLL 経由の 48MHz)クロック	R/W
b29	RSTN_J2	UART3_SCLK ドメインのリセット ^{注2} (USB_DCLK48 選択時)。Active Low です。	R/W
b28	CLKEN_J2	UART3_SCLK のクロックイネーブル ^{注2} (USB_DCLK48 選択時) 0:無効 1:有効	R/W
b27	RSTN_J1	UART3_SCLK ドメインのリセット(メイン PLL 選択時)。Active Low です。	R/W
b26	CLKEN_J1	UART3_SCLK のクロックイネーブル(メイン PLL 選択時) 0:無効 1:有効	R/W
b25	RSTN_I2	UART2_SCLK ドメインのリセット ^{注2} (USB_DCLK48 選択時)。Active Low です。	R/W
b24	CLKEN_I2	UART2_SCLK のクロックイネーブル ^{注2} (USB_DCLK48 選択時) 0:無効 1:有効	R/W
b23	RSTN_I1	UART2_SCLK ドメインのリセット(メイン PLL 選択時)。Active Low です。	R/W
b22	CLKEN_I1	UART2_SCLK のクロックイネーブル(メイン PLL 選択時) 0:無効 1:有効	R/W
b21	RSTN_H2	UART1_SCLK ドメインのリセット ^{注2} (USB_DCLK48 選択時)。Active Low です。	R/W
b20	CLKEN_H2	UART1_SCLK のクロックイネーブル ^{注2} (USB_DCLK48 選択時) 0:無効 1:有効	R/W
b19	RSTN_H1	UART1_SCLK ドメインのリセット(メイン PLL 選択時)。Active Low です。	R/W
b18	CLKEN_H1	UART1_SCLK のクロックイネーブル(メイン PLL 選択時) 0:無効 1:有効	R/W
b17	SLVRDY_F	ADC が接続可能であることを NoC インターコネクトに通知します。 0:接続不可 1:接続可	R/W
b16	RSTN_F	ADC_PCLK ドメインのリセット。Active Low です。	R/W
b15	CLKEN_F	ADC_PCLK(内部バス)のクロックイネーブル 0:無効 1:有効	R/W

表 6.27 PWRCTRL_PG0_0 レジスタの内容(2/2)

ビット位置	ビット名	機能	R/W
b14	SLVRDY_E	I2C2 が接続可能であることを NoC インターコネクトに通知します。 0:接続不可 1:接続可	R/W
b13	RSTN_E	I2C2_PCLK ドメインのリセット。Active Low です。	R/W
b12	CLKEN_E	I2C2_PCLK(内部バス)のクロックイネーブル 0:無効 1:有効	R/W
b11	SLVRDY_D	I2C1 が接続可能であることを NoC インターコネクトに通知します。 0:接続不可 1:接続可	R/W
b10	RSTN_D	I2C1_PCLK ドメインのリセット。Active Low です。	R/W
b9	CLKEN_D	I2C1_PCLK(内部バス)のクロックイネーブル 0:無効 1:有効	R/W
b8	SLVRDY_C	UART3 が接続可能であることを NoC インターコネクトに通知します。 0:接続不可 1:接続可	R/W
b7	RSTN_C	UART3_PCLK ドメインのリセット。Active Low です。	R/W
b6	CLKEN_C	UART3_PCLK(内部バス)のクロックイネーブル 0:無効 1:有効	R/W
b5	SLVRDY_B	UART2 が接続可能であることを NoC インターコネクトに通知します。 0:接続不可 1:接続可	R/W
b4	RSTN_B	UART2_PCLK ドメインのリセット。Active Low です。	R/W
b3	CLKEN_B	UART2_PCLK(内部バス)のクロックイネーブル 0:無効 1:有効	R/W
b2	SLVRDY_A	UART1 が接続可能であることを NoC インターコネクトに通知します。 0:接続不可 1:接続可	R/W
b1	RSTN_A	UART1_PCLK ドメインのリセット。Active Low です。	R/W
b0	CLKEN_A	UART1_PCLK(内部バス)のクロックイネーブル 0:無効 1:有効	R/W

注1. クロックマルチプレクサを変更する前に、両方のクロックをリセット後の値に戻し、USBPLL がロックされていることを確認してください。

注2. この機能の適切な操作のため、USBPLLはロックされている必要があります。

6.3.25 PWRSTAT_PG0 — PG0 のパワーマネージメントステータス

アドレス 4000 C038h

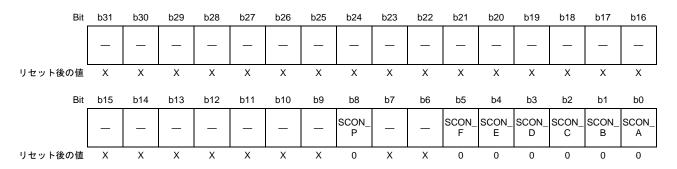


表 6.28 PWRSTAT_PG0 レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b9	予約ビット		R
b8	SCON_P	PWMTimer の NoC インターコネクトの接続状態 0:切断状態 1:接続状態	R
b7∼b6	予約ビット		R
b5	SCON_F	ADC の NoC インターコネクトの接続状態 0:切断状態 1:接続状態	R
b4	SCON_E	I2C2 の NoC インターコネクトの接続状態 0: 切断状態 1:接続状態	R
b3	SCON_D	I2C1 の NoC インターコネクトの接続状態 0: 切断状態 1:接続状態	R
b2	SCON_C	UART3 の NoC インターコネクトの接続状態 0: 切断状態 1:接続状態	R
b1	SCON_B	UART2 の NoC インターコネクトの接続状態 0: 切断状態 1:接続状態	R
b0	SCON_A	UART1 の NoC インターコネクトの接続状態 0: 切断状態 1:接続状態	R

備考

6.3.26 PWRCTRL_PG0_1 — PG0 のパワーマネージメントコントロール#1

アドレス 4000 C03Ch

Bit	b31	b30	b29	b28	b27	b26	b25	b24	b23	b22	b21	b20	b19	b18	b17	b16
	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
リセット後の値	Χ	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Bit	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
	_	SLVRD Y_P	RSTN_ P	CLKEN _P	RSTN_ M	CLKEN _M	RSTN_ L	CLKEN _L	RSTN_ K	CLKEN _K	_	_	_	_	_	_
リセット後の値	Х	0	1	1	1	1	1	1	1	1	Х	Х	Х	Х	Х	Х

表 6.29 PWRCTRL_PG0_1 レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b15	予約ビット		R
b14	SLVRDY_P	PWMTimer が接続可能であることを NoC インターコネクトに通知します。 0:接続不可 1:接続可	R/W
b13	RSTN_P	PWM_PCLK ドメインのリセット。Active Low です。	R/W
b12	CLKEN_P	PWM_PCLK(内部バス)のクロックイネーブル 0:無効 1:有効	R/W
b11	RSTN_M	ADC_CLK ドメインのリセット。Active Low です。	R/W
b10	CLKEN_M	ADC_CLK のクロックイネーブル 0:無効 1:有効	R/W
b9	RSTN_L	I2C2_SCLK ドメインのリセット。Active Low です。	R/W
b8	CLKEN_L	I2C2_SCLK のクロックイネーブル 0:無効 1:有効	R/W
b7	RSTN_K	I2C1_SCLK ドメインのリセット。Active Low です。	R/W
b6	CLKEN_K	I2C1_SCLK のクロックイネーブル 0:無効 1:有効	R/W
b5~b0	予約ビット		R

6.3.27 PWRCTRL_PG1_1 — PG1 のパワーマネージメントコントロール#1

アドレス 4000 C040h

Bit	b31	b30	b29	b28	b27	b26	b25	b24	b23	b22	b21	b20	b19	b18	b17	b16
	_	_	SLVRD Y_J	RSTN_ J	CLKEN _J	SLVRD Y_I	RSTN_I	CLKEN _I	SLVRD Y_H	RSTN_ H	CLKEN _H	SLVRD Y_G	RSTN_ G	CLKEN _G	SLVRD Y_F	RSTN_ F
リセット後の値	Х	Х	0	1	1	0	1	1	0	1	1	0	1	1	0	1
Bit	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
	CLKEN _F	SLVRD Y_E	RSTN_ E	CLKEN _E	SLVRD Y_D	RSTN_ D	CLKEN _D	SLVRD Y_C	RSTN_ C	CLKEN _C	SLVRD Y_B	RSTN_ B	CLKEN _B	SLVRD Y_A	RSTN_ A	CLKEN _A
リセット後の値	1	0	1	1	0	1	1	0	1	1	0	1	1	0	1	1

表 6.30 PWRCTRL_PG1_1 レジスタの内容 (1/2)

ビット位置	ビット名	機能	R/W
b31、b30	予約ビット		R
b29	SLVRDY_J	UART5 が接続可能であることを NoC インターコネクトに通知します。 0:接続不可 1:接続可	R/W
b28	RSTN_J	UART5_PCLK ドメインのリセット。Active Low です。	R/W
b27	CLKEN_J	UART5_PCLK(内部バス)のクロックイネーブル 0:無効 1:有効	R/W
b26	SLVRDY_I	UART4 が接続可能であることを NoC インターコネクトに通知します。 0:接続不可 1:接続可	R/W
b25	RSTN_I	UART4_PCLK ドメインのリセット。Active Low です。	R/W
b24	CLKEN_I	UART4_PCLK(内部バス)のクロックイネーブル 0:無効 1:有効	R/W
b23	SLVRDY_H	BGPIO2 が接続可能であることを NoC インターコネクトに通知します。 0:接続不可 1:接続可	R/W
b22	RSTN_H	BGPIO2_PCLK ドメインのリセット。Active Low です。	R/W
b21	CLKEN_H	BGPIO2_PCLK(内部バス)のクロックイネーブル 0:無効 1:有効	R/W
b20	SLVRDY_G	BGPIO1 が接続可能であることを NoC インターコネクトに通知します。 0:接続不可 1:接続可	R/W
b19	RSTN_G	BGPIO1_PCLK ドメインのリセット。Active Low です。	R/W
b18	CLKEN_G	BGPIO1_PCLK(内部バス)のクロックイネーブル 0:無効 1:有効	R/W
b17	SLVRDY_F	SPI6 が接続可能であることを NoC インターコネクトに通知します。 0:接続不可 1:接続可	R/W
b16	RSTN_F	SPI6_PCLK ドメインのリセット。Active Low です。	R/W
b15	CLKEN_F	SPI6_PCLK(内部バス)のクロックイネーブル 0:無効 1:有効	R/W

表 6.30 PWRCTRL_PG1_1 レジスタの内容 (2/2)

ビット位置	ビット名	機能	R/W
b14	SLVRDY_E	SPI5 が接続可能であることを NoC インターコネクトに通知します。 0:接続不可 1:接続可	R/W
b13	RSTN_E	SPI5_PCLK ドメインのリセット。Active Low です。	R/W
b12	CLKEN_E	SPI5_PCLK(内部バス)のクロックイネーブル 0:無効 1:有効	R/W
b11	SLVRDY_D	SPI4 が接続可能であることを NoC インターコネクトに通知します。 0:接続不可 1:接続可	R/W
b10	RSTN_D	SPI4_PCLK ドメインのリセット。Active Low です。	R/W
b9	CLKEN_D	SPI4_PCLK(内部バス)のクロックイネーブル 0:無効 1:有効	R/W
b8	SLVRDY_C	SPI3 が接続可能であることを NoC インターコネクトに通知します。 0:接続不可 1:接続可	R/W
b7	RSTN_C	SPI3_PCLK ドメインのリセット。Active Low です。	R/W
b6	CLKEN_C	SPI3_PCLK(内部バス)のクロックイネーブル 0:無効 1:有効	R/W
b5	SLVRDY_B	SPI2 が接続可能であることを NoC インターコネクトに通知します。 0:接続不可 1:接続可	R/W
b4	RSTN_B	SPI2_PCLK ドメインのリセット。Active Low です。	R/W
b3	CLKEN_B	SPI2_PCLK(内部バス)のクロックイネーブル 0:無効 1:有効	R/W
b2	SLVRDY_A	SPI1 が接続可能であることを NoC インターコネクトに通知します。 0:接続不可 1:接続可	R/W
b1	RSTN_A	SPI1_PCLK ドメインのリセット。Active Low です。	R/W
b0	CLKEN_A	SPI1_PCLK(内部バス)のクロックイネーブル 0:無効 1:有効	R/W

6.3.28 PWRCTRL_PG1_2 — PG1 のパワーマネージメントコントロール#2

アドレス 4000 C044h

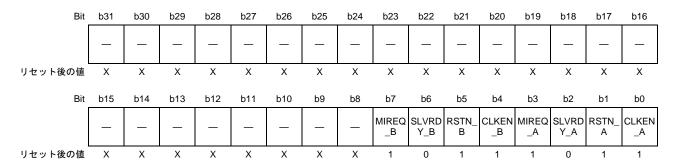

Bit	b31	b30	b29	b28	b27	b26	b25	b24	b23	b22	b21	b20	b19	b18	b17	b16
	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_
リセット後の値	Χ	X	X	Χ	X	X	X	X	X	X	X	X	X	X	0	1
Bit	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
	_	1	l	1	SLVRD Y_N	RSTN_ N	CLKEN _N	SLVRD Y_M	RSTN_ M	CLKEN _M	SLVRD Y_L	RSTN_ L	CLKEN _L	SLVRD Y_K	RSTN_ K	CLKEN _K
リセット後の値	1	0	1	1	0	1	1	0	1	1	0	1	1	0	1	1

表 6.31 PWRCTRL_PG1_2 レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b18	予約ビット		R
b17~b12	予約ビット	初期値を維持してください。	R/W
b11	SLVRDY_N	BGPIO3 が接続可能であることを NoC インターコネクトに通知します。 0:接続不可 1:接続可	R/W
b10	RSTN_N	BGPIO3_PCLK ドメインのリセット。Active Low です。	R/W
b9	CLKEN_N	BGPIO3_PCLK(内部バス)のクロックイネーブル 0:無効 1:有効	R/W
b8	SLVRDY_M	UART8 が接続可能であることを NoC インターコネクトに通知します。 0:接続不可 1:接続可	R/W
b7	RSTN_M	UART8_PCLK ドメインのリセット。Active Low です。	R/W
b6	CLKEN_M	UART8_PCLK(内部バス)のクロックイネーブル 0:無効 1:有効	R/W
b5	SLVRDY_L	UART7 が接続可能であることを NoC インターコネクトに通知します。 0:接続不可 1:接続可	R/W
b4	RSTN_L	UART7_PCLK ドメインのリセット。Active Low です。	R/W
b3	CLKEN_L	UART7_PCLK(内部バス)のクロックイネーブル 0:無効 1:有効	R/W
b2	SLVRDY_K	UART6 が接続可能であることを NoC インターコネクトに通知します。 0:接続不可 1:接続可	R/W
b1	RSTN_K	UART6_PCLK ドメインのリセット。Active Low です。	R/W
b0	CLKEN_K	UART6_PCLK(内部バス)のクロックイネーブル 0:無効 1:有効	R/W

6.3.29 PWRCTRL_DMA — DMAC1 と DMAC2 のパワーマネージメントコントロール

アドレス 4000 C04Ch

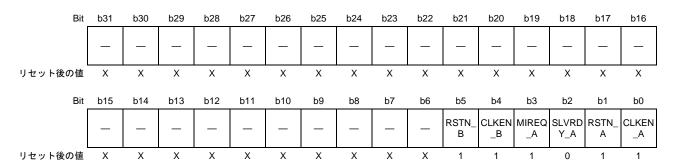


表 6.32 PWRCTRL_DMA レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b8	予約ビット		R
b7	MIREQ_B	DMAC2 の AHBM の NoC インターコネクトへの切断要求0:接続要求1:切断要求	R/W
b6	SLVRDY_B	DMAC2 の AHBS が接続可能であることを NoC インターコネクトに通知します。 0:接続不可 1:接続可	R/W
b5	RSTN_B	DMA2_HCLK ドメインのリセット。Active Low です。	R/W
b4	CLKEN_B	DMA2_HCLK(内部バス)のクロックイネーブル 0:無効 1:有効	R/W
b3	MIREQ_A	DMAC1 の AHBM の NoC インターコネクトへの切断要求 0:接続要求 1:切断要求	R/W
b2	SLVRDY_A	DMAC1 の AHBS が接続可能であることを NoC インターコネクトに通知します。 0:接続不可 1:接続可	R/W
b1	RSTN_A	DMA1_HCLK ドメインのリセット。Active Low です。	R/W
b0	CLKEN_A	DMA1_HCLK(内部バス)のクロックイネーブル 0:無効 1:有効	R/W

6.3.30 PWRCTRL_NFLASH — NAND FLASH Controller のパワーマネージメントコントロール

アドレス 4000 C050h

表 6.33 PWRCTRL_NFLASH レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b6	予約ビット		R
b5	RSTN_B	NAND_ECLK ドメインのリセット。Active Low です。	R/W
b4	CLKEN_B	NAND_ECLK(外部インタフェース)のクロックイネーブル 0:無効 1:有効	R/W
b3	MIREQ_A	NAND Flash Controller の AHBM の NoC インターコネクトへの切断要求 0:接続要求 1:切断要求	R/W
b2	SLVRDY_A	NAND Flash Controller の AHBS が接続可能であることを NoC インターコネクトに通知します。 0:接続不可 1:接続可	R/W
b1	RSTN_A	NAND_HCLK ドメインのリセット。Active Low です。	R/W
b0	CLKEN_A	NAND_HCLK(内部バス)のクロックイネーブル 0:無効 1:有効	R/W

6.3.31 PWRCTRL_QSPI1 — QSPI1 のパワーマネージメントコントロール

アドレス 4000 C054h

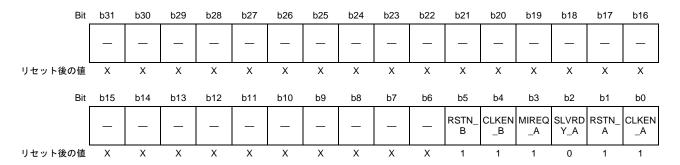
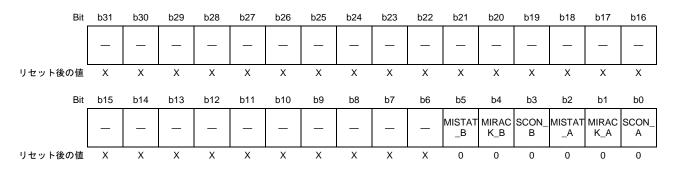


表 6.34 PWRCTRL_QSPI1 レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b6	予約ビット		R
b5	RSTN_B	QSPI1_REFCLK ドメインのリセット。Active Low です。	R/W
b4	CLKEN_B	QSPI1_REFCLK(外部インタフェース)のクロックイネーブル 0:無効 1:有効	R/W
b3	MIREQ_A	QuadSPI1 の AHBS の NoC インターコネクトへの切断要求 0:接続要求 1:切断要求	R/W
b2	SLVRDY_A	QuadSPI1 の APBS が接続可能であることを NoC インターコネクトに通知します。0:接続不可1:接続可	R/W
b1	RSTN_A	QSPI1_HCLK ドメイン、QSPI1_PCLK ドメインのリセット。Active Low です。	R/W
b0	CLKEN_A	QSPI1_HCLK、QSPI1_PCLK(内部バス)のクロックイネーブル 0:無効 1:有効	R/W

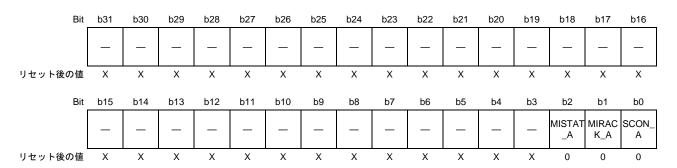

備考

QSP1 モジュールの動作中にリセットを行わないでください。

RZ/N1L ではこのレジスタの初期値は 0x37 です。

6.3.32 PWRSTAT_DMA — DMAC1 と DMAC2 のパワーマネージメントステータス

アドレス 4000 C058h

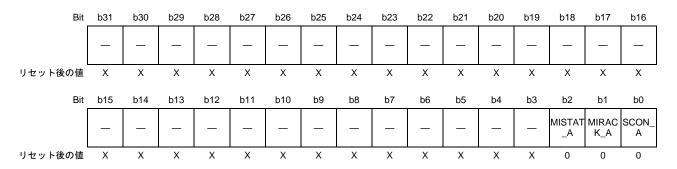

表 6.35 PWRSTAT_DMA レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b6	予約ビット		R
b5	MISTAT_B	DMAC2 の AHBM の NoC インターコネクトの接続状態0:接続状態1:切断状態	R
b4	MIRACK_B	DMAC2 の AHBM の切断要求に対する応答 0:切断要求応答なし 1:切断要求応答あり	R
b3	SCON_B	DMAC2 の AHBS の NoC インターコネクトの接続状態 0: 切断状態 1:接続状態	R
b2	MISTAT_A	DMAC1 の AHBM の NoC インターコネクトの接続状態 0:接続状態 1:切断状態	R
b1	MIRACK_A	DMAC1 の AHBM の切断要求に対する応答 0: 切断要求応答なし 1: 切断要求応答あり	R
b0	SCON_A	DMAC1 の AHBS の NoC インターコネクトの接続状態 0:切断状態 1:接続状態	R

備考

6.3.33 PWRSTAT_NFLASH — NAND FLASH Controller のパワーマネージメントステータス

アドレス 4000 C05Ch

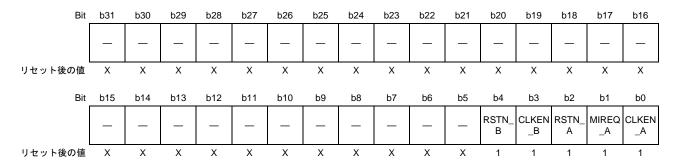

表 6.36 PWRSTAT_NFLASH レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b3	予約ビット		R
b2	MISTAT_A	NAND Flash Controller の AHBM の NoC インターコネクトの接続状態 0:接続状態 1:切断状態	R
b1	MIRACK_A	NAND Flash Controller の AHBM の切断要求に対する応答 0:切断要求応答なし 1:切断要求応答あり	R
b0	SCON_A	NAND Flash Controller の AHBS の NoC インターコネクトの接続状態 0:切断状態 1:接続状態	R

備考

6.3.34 PWRSTAT_QSPI1 — QSPI1 のパワーマネージメントステータス

アドレス 4000 C060h


表 6.37 PWRSTAT_QSPI1 レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b3	予約ビット		R
b2	MISTAT_A	QSPI1 の AHBS の NoC インターコネクトの接続状態 0:接続状態 1:切断状態	R
b1	MIRACK_A	QSPI1 の AHBS の切断要求に対する応答 0: 切断要求応答なし 1: 切断要求応答あり	R
b0	SCON_A	QSPI1 の APBS の NoC インターコネクトの接続状態 0:切断状態 1:接続状態	R

備考

6.3.35 PWRCTRL_DDRC — DDR Memory Controller のパワーマネージメントコントロール

アドレス 4000 C064h

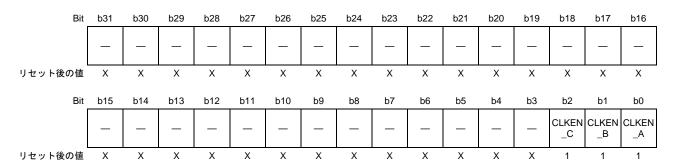


表 6.38 PWRCTRL_DDRC レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b5	予約ビット		R
b4	RSTN_B	DDR_DFICLK ドメインのリセット。Active Low です。	R/W
b3	CLKEN_B	DDR_DFICLK のクロックイネーブル 0:無効 1:有効	R/W
b2	RSTN_A	DDR_XCLK ドメインのリセット。Active Low です。	R/W
b1	MIREQ_A	DDR memory controller の NoC インターコネクトへの切断要求 0:接続要求 1:切断要求	R/W
b0	CLKEN_A	DDR_XCLK(内部バス)のクロックイネーブル 0:無効 1:有効	R/W

6.3.36 PWRCTRL_EETH — 外部 Ethernet クロックのパワーマネージメントコントロール

アドレス 4000 C068h

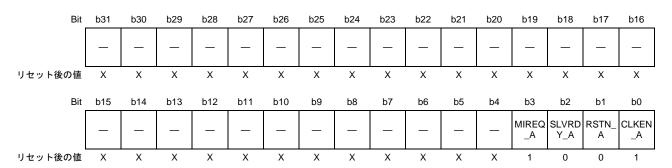


表 6.39 PWRCTRL_EETH レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b3	予約ビット		R
b2	CLKEN_C	MII_REFCLK(External output)のクロックイネーブル 0:無効 1:有効	R/W
b1	CLKEN_B	RMII_REFCLK(External output)のクロックイネーブル 0:無効 1:有効	R/W
b0	CLKEN_A	RGMII_REFCLK(External input)のクロックイネーブル 0:無効 1:有効	R/W

6.3.37 PWRCTRL_MAC1 — GMAC1 のパワーマネージメントコントロール

アドレス 4000 C06Ch

表 6.40 PWRCTRL_MAC1 レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b4	予約ビット		R
b3	MIREQ_A	GMAC1 の AXIM の NoC インターコネクトへの切断要求 0:接続要求 1:切断要求	R/W
b2	SLVRDY_A	GMAC1 の AHBS が接続可能であることを NoC インターコネクトに通知します。 0:接続不可 1:接続可	R/W
b1	RSTN_A	GMAC1_XCLK ドメイン、GMAC1_HCLK ドメインのリセット。Active Low です。	R/W
b0	CLKEN_A	GMAC1_XCLK、GMAC1_HCLK(内部バス)のクロックイネーブル 0:無効 1:有効	R/W

6.3.38 PWRCTRL_MAC2 — GMAC2 のパワーマネージメントコントロール

アドレス 4000 C070h

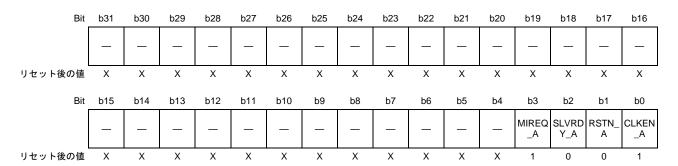
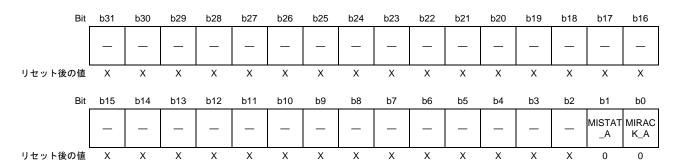
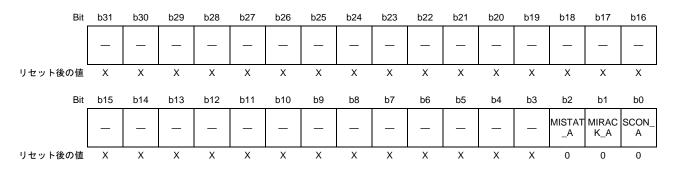



表 6.41 PWRCTRL_MAC2 レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b4	予約ビット		R
b3	MIREQ_A	GMAC2 の AXIM の NoC インターコネクトへの切断要求 0:接続要求 1:切断要求	R/W
b2	SLVRDY_A	GMAC2 の AHBS が接続可能であることを NoC インターコネクトに通知します。 0:接続不可 1:接続可	R/W
b1	RSTN_A	GMAC2_XCLK ドメイン、GMAC2_HCLK ドメインのリセット。Active Low です。	R/W
b0	CLKEN_A	GMAC2_XCLK、GMAC2_HCLK(内部パス)のクロックイネーブル 0:無効 1:有効	R/W

6.3.39 PWRSTAT_DDRC — DDR Memory Controller のパワーマネージメントステータス

アドレス 4000 C074h

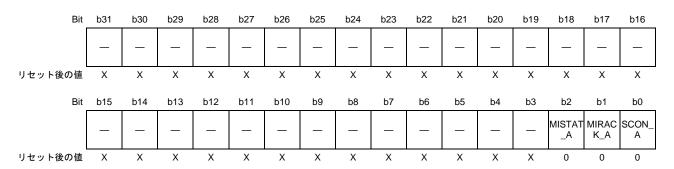

表 6.42 PWRSTAT_DDRC レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b2	予約ビット		R
b1	MISTAT_A	DDR memory controller の NoC インターコネクトの接続状態 0:接続状態 1:切断状態	R
b0	MIRACK_A	DDR memory controller の切断要求に対する応答 0:切断要求応答なし 1:切断要求応答あり	R

備考

6.3.40 PWRSTAT_MAC1 — GMAC1 のパワーマネージメントステータス

アドレス 4000 C078h


表 6.43 PWRSTAT_MAC1 レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b3	予約ビット		R
b2	MISTAT_A	GMAC1 の AXIM の NoC インターコネクトの接続状態 0:接続状態 1:切断状態	R
b1	MIRACK_A	GMAC1 の AXIM の切断要求に対する応答 0: 切断要求応答なし 1: 切断要求応答あり	R
b0	SCON_A	GMAC1 の AHBS の NoC インターコネクトの接続状態 0:切断状態 1:接続状態	R

備考

6.3.41 PWRSTAT_MAC2 — GMAC2 のパワーマネージメントステータス

アドレス 4000 C07Ch

表 6.44 PWRSTAT_MAC2 レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b3	予約ビット		R
b2	MISTAT_A	GMAC2 の AXIM の NoC インターコネクトの接続状態 0:接続状態 1:切断状態	R
b1	MIRACK_A	GMAC2 の AXIM の切断要求に対する応答 0: 切断要求応答なし 1: 切断要求応答あり	R
b0	SCON_A	GMAC2 の AHBS の NoC インターコネクトの接続状態 0:切断状態 1:接続状態	R

備考

6.3.42 PWRCTRL_ECAT — ETHERCAT のパワーマネージメントコントロール

アドレス 4000 C080h

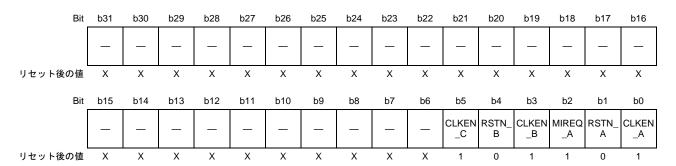


表 6.45 PWRCTRL_ECAT レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b6	予約ビット		R
b5	CLKEN_C	ECAT_CLK100 のクロックイネーブル 0:無効	R/W
		1:有効	
b4	RSTN_B	ECAT_CLK25 ドメインのリセット。Active Low です。	R/W
b3	CLKEN_B	ECAT_CLK25 のクロックイネーブル 0:無効 1:有効	R/W
b2	MIREQ_A	ETHERCAT の NoC インターコネクトへの切断要求 0:接続要求 1:切断要求	R/W
b1	RSTN_A	ECAT_HCLK ドメインのリセット。Active Low です。	R/W
b0	CLKEN_A	ECAT_HCLK(内部バス)のクロックイネーブル 0:無効 1:有効	R/W

6.3.43 PWRCTRL_SERCOS — SERCOSIII のパワーマネージメントコントロール

アドレス 4000 C084h

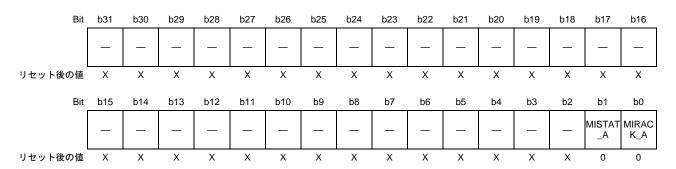
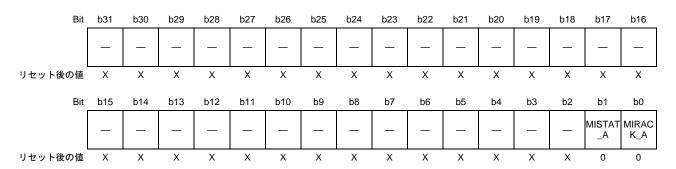

Bit	b31	b30	b29	b28	b27	b26	b25	b24	b23	b22	b21	b20	b19	b18	b17	b16
	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
リセット後の値	Χ	Х	X	X	X	X	X	Χ	X	X	Х	Х	X	Χ	X	X
Bit	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
	_	_	_	-	_	-	_		_	_	CLKEN _C	CLKEN _B	RSTN_ B	RSTN_ A	MIREQ _A	CLKEN _A
リセット後の値	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	1	1	0	0	1	1

表 6.46 PWRCTRL_SERCOS レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b6	予約ビット		R
b5	CLKEN_C	SERCOS_CLK100 のクロックイネーブル	R/W
		0:無効	
		1:有効	
b4	CLKEN_B	SERCOS_CLK50 のクロックイネーブル	R/W
		0:無効	
		1:有効	
b3	RSTN_B	SERCOS_CLK50 ドメインのリセット。Active Low です。	R/W
b2	RSTN_A	SERCOS_HCLK ドメインのリセット。Active Low です。	R/W
b1	MIREQ_A	SERCOSIII の NoC インターコネクトへの切断要求	R/W
		0:接続要求	
		1:切断要求	
b0	CLKEN_A	SERCOS_HCLK(内部バス)のクロックイネーブル	R/W
		0:無効	
		1:有効	

6.3.44 PWRSTAT_ECAT — ETHERCAT のパワーマネージメントステータス

アドレス 4000 C088h


表 6.47 PWRSTAT_ECAT レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b2	予約ビット		R
b1	MISTAT_A	ETHERCAT の NoC インターコネクトの接続状態 0:接続状態 1:切断状態	R
b0	MIRACK_A	ETHERCAT の切断要求に対する応答 0:切断要求応答なし 1:切断要求応答あり	R

備考

6.3.45 PWRSTAT_SERCOS — SERCOSIII のパワーマネージメントステータス

アドレス 4000 C08Ch

表 6.48 PWRSTAT_SERCOS レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b2	予約ビット		R
b1	MISTAT_A	SERCOSIII の NoC インターコネクトの接続状態 0:接続状態 1:切断状態	R
b0	MIRACK_A	SERCOSIII の切断要求に対する応答 0: 切断要求応答なし 1: 切断要求応答あり	R

備考

6.3.46 PWRCTRL_HSR — HSR のパワーマネージメントコントロール

アドレス 4000 C090h

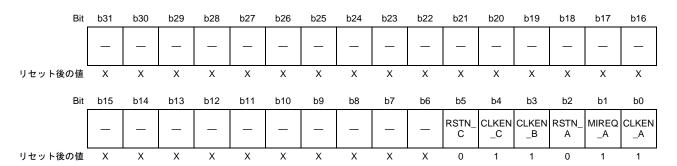
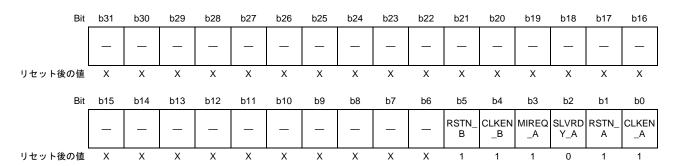



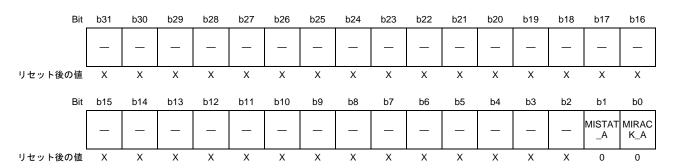
表 6.49 PWRCTRL_HSR レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b6	予約ビット		R
b5	RSTN_C	HSR_CLK50 ドメインのリセット。Active Low です。	R/W
b4	CLKEN_C	HSR_CLK50 のクロックイネーブル 0:無効 1:有効	R/W
b3	CLKEN_B	HSR_CLK100 のクロックイネーブル 0:無効 1:有効	R/W
b2	RSTN_A	HSR_HCLK ドメインのリセット。Active Low です。	R/W
b1	MIREQ_A	HSR の NoC インターコネクトへの切断要求 0:接続要求 1:切断要求	R/W
b0	CLKEN_A	HSR_HCLK(内部バス)のクロックイネーブル 0:無効 1:有効	R/W

6.3.47 PWRCTRL_QSPI2 — QSPI2 のパワーマネージメントコントロール

アドレス 4000 C090h

表 6.50 PWRCTRL_QSPI2 レジスタの内容

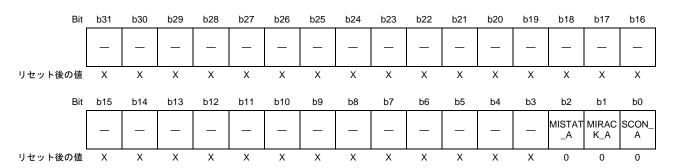

ビット位置	ビット名	機能	R/W
b31~b6	予約ビット		R
b5	RSTN_B	QSPI2_REFCLK ドメインのリセット。Active Low です。	R/W
b4	CLKEN_B	QSPI2_REFCLK(外部インタフェース)のクロックイネーブル 0:無効 1:有効	R/W
b3	MIREQ_A	QuadSPI2 の AHBS の NoC インターコネクトへの切断要求 0:接続要求 1:切断要求	R/W
b2	SLVRDY_A	QuadSPI2 の APBS が接続可能であることを NoC インターコネクトに通知します。0:接続不可1:接続可	R/W
b1	RSTN_A	QSPI2_HCLK ドメイン、QSPI2_PCLK ドメインのリセット。Active Low です。	R/W
b0	CLKEN_A	QSPI2_HCLK、QSPI2_PCLK(内部バス)のクロックイネーブル 0:無効 1:有効	R/W

備考

QSP2 モジュールの動作中にリセットを行わないでください。

6.3.48 PWRSTAT_HSR — HSR のパワーマネージメントステータス

アドレス 4000 C098h

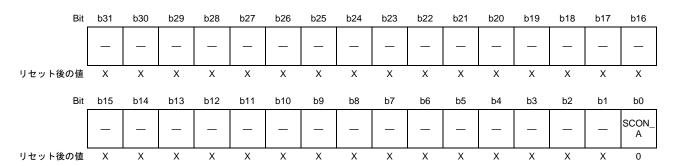

表 6.51 PWRSTAT_HSR レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b2	予約ビット		R
b1	MISTAT_A	HSR の NoC インターコネクトの接続状態 0:接続状態 1:切断状態	R
b0	MIRACK_A	HSR の切断要求に対する応答 0: 切断要求応答なし 1: 切断要求応答あり	R

備 老

6.3.49 PWRSTAT_QSPI2 — QSPI2 のパワーマネージメントステータス

アドレス 4000 C098h


表 6.52 PWRSTAT_QSPI2 レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b3	予約ビット		R
b2	MISTAT_A	QSPI2 の AHBS の NoC インターコネクトの接続状態 0:接続状態 1:切断状態	R
b1	MIRACK_A	QSPI2 の AHBS の切断要求に対する応答 0: 切断要求応答なし 1: 切断要求応答あり	R
b0	SCON_A	QSPI2 の APBS の NoC インターコネクトの接続状態 0:切断状態 1:接続状態	R

備考

6.3.50 PWRSTAT_SWITCH — A5PSW のパワーマネージメントステータス

アドレス 4000 C09Ch

表 6.53 PWRSTAT_SWITCH レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b1	予約ビット		R
b0	SCON_A	A5PSW の NoC インターコネクトの接続状態	R
		0:切断状態	
		1:接続状態	

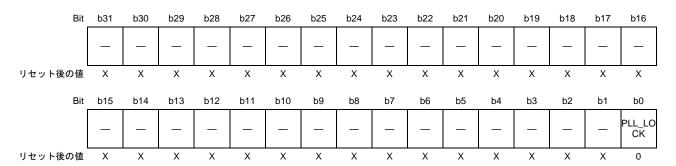
備考

6.3.51 RSTSTAT — リセットステータスレジスタ

アドレス 4000 C0A8h

Bit	b31	b30	b29	b28	b27	b26	b25	b24	b23	b22	b21	b20	b19	b18	b17	b16
	PORRS T_ST	1	1	ı	1	_	-	-		_	_	_	ı	1	1	_
リセット後の値	1	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bit	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
	1			-	1	1	ı	ı	1	SWRST _ST		CM3LO CKUPR ST_ST		WDA7F	RST_ST	_
リセット後の値	Х	Χ	Х	Х	Х	Х	Х	Х	Х	0	0	0	0	0	0	Х

表 6.54 RSTSTAT レジスタの内容


ビット位置	ビット名	機能	R/W
b31	PORRST_ST	外部(パワーオン)リセットが実行されたかどうかのステータスビット	R/W
		0:外部(パワーオン)リセットを実行していません。	
		1:外部(パワーオン)リセットを実行しました。	
b30~b7	予約ビット		R
b6	SWRST_ST	ソフトウェアリセットのステータスビット	R/W
		0:ソフトウェアトリガのリセットを実行していません。	
		1:ソフトウェアトリガのリセットを実行しました。	
b5	CM3SYSRESET_ST	Cortex-M3 の SYSRESETREQ によるリセットのステータスビット	R/W
		0 : Cortex-M3 トリガのシステムリセットを実行していません。	
		1:Cortex-M3 トリガのシステムリセットを実行しました。	
b4	CM3LOCKUPRST_S	Cortex-M3 Core Lockup によるリセットのステータスビット	R/W
	Т	0 : Cortex-M3 Lockup トリガのシステムリセットを実行していません。	
		1:Cortex-M3 Lockup トリガのシステムリセットを実行しました。	
b3	WDM3RST_ST	Cortex-M3 watchdog によるリセットのステータスビット	R/W
		0:watchdog トリガのシステムリセットを実行していません。	
		1:watchdog トリガのシステムリセットを実行しました。	
b2、b1	WDA7RST_ST	Cortex-A7 watchdog によるリセットのステータスビット	R/W
		0:watchdog トリガのシステムリセットを実行していません。	
		1:watchdog トリガのシステムリセットを実行しました。	
		ビット2(RZ/N1D)Cortex-A7 プロセッサ 1 watchdog リセット(RZ/N1S、 RZ/N1L)予約	
		ビット1(RZ/N1D、RZ/N1S)Cortex-A7 プロセッサ 0 watchdog リセット(RZ/N1L)予約	
b0	予約ビット		R

備考

これらのステータスビットは1をライトすることによってクリアされます。

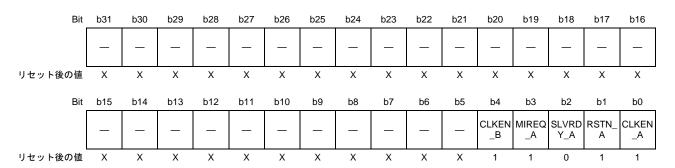
6.3.52 USBSTAT — USBPLL のステータス情報

アドレス 4000 C0C0h

表 6.55 USBSTAT レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b1	予約ビット		R
b0	PLL_LOCK	USBPLL のステータス	R
		0:アンロック	
		1 : ロック	

備考


USBPLL がロックした後、USBPLL のクロックで動作しているモジュールへのアクセスを開始してください。ロック前にアクセスした場合、システムがハングアップすることがあります。

注 意

USB モジュールの特定のレジスタアクセス(たとえば PLL_RST)や USB モジュールをリセットすることによって USBPLL はアンロックされます。

6.3.53 PWRCTRL_SDIO2 — SDIO2 のパワーマネージメントコントロール

アドレス 4000 C0C8h

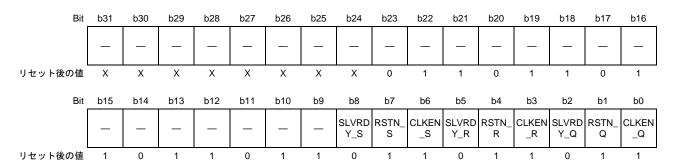
表 6.56 PWRCTRL_SDIO2 レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b5	予約ビット		R
b4	CLKEN_B	SDIO2_ECLK(外部インタフェース)のクロックイネーブル 0:無効 1:有効	R/W
b3	MIREQ_A	SDIO2 の AHBM の NoC インターコネクトへの切断要求 0:接続要求 1:切断要求	R/W
b2	SLVRDY_A	SDIO2 の AHBS が接続可能であることを NoC インターコネクトに通知します。 0:接続不可 1:接続可	R/W
b1	RSTN_A	SDIO2_HCLK ドメインのリセット。Active Low です。	R/W
b0	CLKEN_A	SDIO2_HCLK(内部バス)のクロックイネーブル 0:無効 1:有効	R/W

6.3.54 PWRSTAT_SDIO2 — SDIO2 のパワーマネージメントステータス

アドレス 4000 C0CCh

Bit	b31	b30	b29	b28	b27	b26	b25	b24	b23	b22	b21	b20	b19	b18	b17	b16
	_		-		-	-	-	-	_	_	_	-	_	_	_	_
し リセット後の値	Х	X	Х	Χ	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bit	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
	_	ı	ı	ı	ı	ı	ı	ı	_	_	_	ı	_	MISTAT _A	MIRAC K_A	SCON_ A
リセット後の値	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	0	0	0


表 6.57 PWRSTAT_SDIO2 レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b3	予約ビット		R
b2	MISTAT_A	SDIO2 の AHBM の NoC インターコネクトの接続状態 0:接続状態 1:切断状態	R
b1	MIRACK_A	SDIO2 の AHBM の切断要求に対する応答 0: 切断要求応答なし 1: 切断要求応答あり	R
b0	SCON_A	SDIO2 の AHBS の NoC インターコネクトの接続状態 0:切断状態 1:接続状態	R

備考

6.3.55 PWRCTRL_PG2_25MHZ — PG2 25MHz のパワーマネージメントコントロール

アドレス 4000 C0E8h

表 6.58 PWRCTRL_PG2_25MHZ レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b24	予約ビット		R
b23~b9	予約ビット	初期値を維持してください。	R/W
b8	SLVRDY_S	TIMER2 が接続可能であることを NoC インターコネクトに通知します。 0:接続不可 1:接続可	R/W
b7	RSTN_S	TIMER2_PCLK ドメインのリセット。Active Low です。	R/W
b6	CLKEN_S	TIMER2_PCLK(内部バス)のクロックイネーブル 0:無効 1:有効	R/W
b5	SLVRDY_R	TIMER1 が接続可能であることを NoC インターコネクトに通知します。 0:接続不可 1:接続可	R/W
b4	RSTN_R	TIMER1_PCLK ドメインのリセット。Active Low です。	R/W
b3	CLKEN_R	TIMER1_PCLK(内部バス)のクロックイネーブル 0:無効 1:有効	R/W
b2	SLVRDY_Q	ConfigSys2 が接続可能であることを NoC インターコネクトに通知します。 0:接続不可 1:接続可	R/W
b1	RSTN_Q	PG2_PCLK ドメインのリセット。Active Low です。	R/W
b0	CLKEN_Q	PG2_PCLK(ConfigSys2 の内部パス)のクロックイネーブル 0:無効 1:有効	R/W

6.3.56 PWRCTRL_PG1_PR2 — PG1 Program2 のパワーマネージメントコントロール

アドレス 4000 C0ECh

Bit	b31	b30	b29	b28	b27	b26	b25	b24	b23	b22	b21	b20	b19	b18	b17	b16
	_	_	_	_	_	-	_	UARTC LKSEL	_	_	-	_	RSTN_ AK2	CLKEN _AK2	RSTN_ AK1	CLKEN _AK1
リセット後の値	Х	Х	Х	Х	Х	Х	Х	0	1	1	1	1	1	1	1	1
Bit	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
	RSTN_ AJ2	CLKEN _AJ2	RSTN_ AJ1	CLKEN _AJ1	RSTN_ Al2	CLKEN _Al2	RSTN_ Al1	CLKEN _AI1	RSTN_ AH2	CLKEN _AH2	RSTN_ AH1	CLKEN _AH1	RSTN_ AG2	CLKEN _AG2	RSTN_ AG1	CLKEN _AG1
リセット後の値	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

表 6.59 PWRCTRL_PG1_PR2 レジスタの内容(1/2)

ビット位置	ビット名	機能	R/W
b31~b25	予約ビット		R
b24	UARTCLKSEL	PG1 内のすべての UART[m]_SCLK の(m=4~8)ソースを選択 ^{注 1} 0:メイン PLL(PWRCTRL_PG1_PR2DIV で制御される分周器の出力) 1:USB_DCLK48(USBPLL 経由の 48MHz)クロック	R/W
b23~b20	予約ビット	初期値を維持してください。	R/W
b19	RSTN_AK2	UART8_SCLK ドメインのリセット ^{注2} (USB_DCLK48 選択時)。Active Low です。	R/W
b18	CLKEN_AK2	UART8_SCLK のクロックイネーブル ^{注2} (USB_DCLK48 選択時) 0:無効 1:有効	R/W
b17	RSTN_AK1	UART8_SCLK ドメインのリセット(メイン PLL 選択時)。Active Low です。	R/W
b16	CLKEN_AK1	UART8_SCLK のクロックイネーブル(メイン PLL 選択時) 0:無効 1:有効	R/W
b15	RSTN_AJ2	UART7_SCLK ドメインのリセット ^{注2} (USB_DCLK48 選択時)。Active Low です。	R/W
b14	CLKEN_AJ2	UART7_SCLK のクロックイネーブル ^{注2} (USB_DCLK48 選択時) 0:無効 1:有効	R/W
b13	RSTN_AJ1	UART7_SCLK ドメインのリセット(メイン PLL 選択時)。Active Low です。	R/W
b12	CLKEN_AJ1	UART7_SCLK のクロックイネーブル(メイン PLL 選択時) 0:無効 1:有効	R/W
b11	RSTN_AI2	UART6_SCLK ドメインのリセット ^{注2} (USB_DCLK48 選択時)。Active Low です。	R/W
b10	CLKEN_AI2	UART6_SCLK のクロックイネーブル ^{注2} (USB_DCLK48 選択時) 0:無効 1:有効	R/W
b9	RSTN_AI1	UART6_SCLK ドメインのリセット(メイン PLL 選択時)。Active Low です。	R/W
b8	CLKEN_AI1	UART6_SCLK のクロックイネーブル(メイン PLL 選択時) 0:無効 1:有効	R/W

表 6.59 PWRCTRL_PG1_PR2 レジスタの内容 (2/2)

ビット位置	ビット名	機能	R/W
b7	RSTN_AH2	UART5_SCLK ドメインのリセット ^{注2} (USB_DCLK48 選択時)。Active Low です。	R/W
b6	CLKEN_AH2	UART5_SCLK のクロックイネーブル ^{注 2} (USB_DCLK48 選択時) 0:無効 1:有効	R/W
b5	RSTN_AH1	UART5_SCLK ドメインのリセット(メイン PLL 選択時)。Active Low です。	R/W
b4	CLKEN_AH1	UART5_SCLK のクロックイネーブル(メイン PLL 選択時) 0:無効 1:有効	R/W
b3	RSTN_AG2	UART4_SCLK ドメインのリセット ^{注2} (USB_DCLK48 選択時)。Active Low です。	R/W
b2	CLKEN_AG2	UART4_SCLK のクロックイネーブル ^{注 2} (USB_DCLK48 選択時) 0:無効 1:有効	R/W
b1	RSTN_AG1	UART4_SCLK ドメインのリセット(メイン PLL 選択時)。Active Low です。	R/W
b0	CLKEN_AG1	UART4_SCLK のクロックイネーブル(メイン PLL 選択時) 0:無効 1:有効	R/W

注1. クロックマルチプレクサを変更する前に、両方のクロックをリセット後の値に戻し、USBPLL がロックされていることを確認してください。

注2. この機能の適切な操作のため、USBPLLはロックされている必要があります。

6.3.57 PWRCTRL_PG3_48MHZ — PG3 48MHz のパワーマネージメントコントロール

注 意

USBPLL がロックした後、Peripheral Group 3 へのアクセスしてください。ロック前にアクセスした場合、システムが ハングアップすることがあります。

アドレス 4000 C0F0h

Bit	b31	b30	b29	b28	b27	b26	b25	b24	b23	b22	b21	b20	b19	b18	b17	b16
	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_
リセット後の値	Χ	X	Χ	X	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	X	Χ	Χ	X
Bit	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
	_	MIREQ _UF	RSTN_ UF	CLKEN _UF	_	_	_	SLVRD Y_AA	RSTN_ AA	CLKEN _AA	SLVRD Y_Z	RSTN_ Z	CLKEN _Z	_	_	_
リセット後の値	Х	1	1	1	0	1	1	0	1	1	0	1	1	0	1	1

表 6.60 PWRCTRL_PG3_48MHZ レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b15	予約ビット		R
b14	MIREQ_UF	Peripheral Group 3 の NoC インターコネクトへの切断要求 0:接続要求 1:切断要求	R/W
b13	RSTN_UF	Peripheral Group 3 のリセット。Active Low です。	R/W
b12	CLKEN_UF	Peripheral Group 3 のクロックイネーブル 0:無効 1:有効	R/W
b11~b9	予約ビット	初期値を維持してください。	R/W
b8	SLVRDY_AA	CAN2 が接続可能であることを NoC インターコネクトに通知します。 0:接続不可 1:接続可	R/W
b7	RSTN_AA	CAN2_HCLK ドメインのリセット。Active Low です。	R/W
b6	CLKEN_AA	CAN2_HCLK(内部バス)のクロックイネーブル 0:無効 1:有効	R/W
b5	SLVRDY_Z	CAN1 が接続可能であることを NoC インターコネクトに通知します。 0:接続不可 1:接続可	R/W
b4	RSTN_Z	CAN1_HCLK ドメインのリセット。Active Low です。	R/W
b3	CLKEN_Z	CAN1_HCLK(内部バス)のクロックイネーブル 0:無効 1:有効	R/W
b2~b0	予約ビット	初期値を維持してください。	R/W

6.3.58 PWRCTRL_PG4 — PG4 のパワーマネージメントコントロール

アドレス 4000 C0F4h

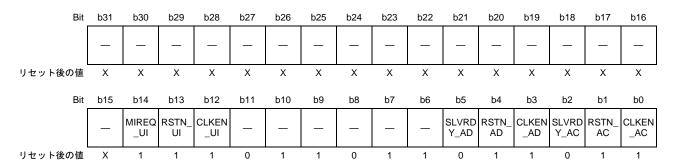


表 6.61 PWRCTRL_PG4 レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b15	予約ビット		R
b14	MIREQ_UI	Peripheral Group 4 の NoC インターコネクトへの切断要求 0:接続要求 1:切断要求	R/W
b13	RSTN_UI	Peripheral Group 4 のリセット。Active Low です。	R/W
b12	CLKEN_UI	Peripheral Group 4 のクロックイネーブル 0:無効 1:有効	R/W
b11~b6	予約ビット	初期値を維持してください。	R/W
b5	SLVRDY_AD	Semaphore が接続可能であることを NoC インターコネクトに通知します。 0:接続不可 1:接続可	R/W
b4	RSTN_AD	SEMAP_HCLK ドメインのリセット。Active Low です。	R/W
b3	CLKEN_AD	SEMAP_HCLK(内部バス)のクロックイネーブル 0:無効 1:有効	R/W
b2	SLVRDY_AC	LCDC が接続可能であることを NoC インターコネクトに通知します。 0:接続不可 1:接続可	R/W
b1	RSTN_AC	LCD_HCLK ドメインのリセット。Active Low です。	R/W
b0	CLKEN_AC	LCD_HCLK(内部バス)のクロックイネーブル 0:無効 1:有効	R/W

6.3.59 PWRCTRL_PG1_PR3 — PG1 Program3 のパワーマネージメントコントロール

アドレス 4000 C0FCh

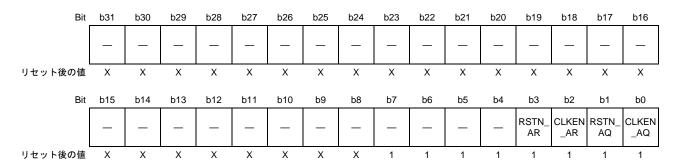

Bit	b31	b30	b29	b28	b27	b26	b25	b24	b23	b22	b21	b20	b19	b18	b17	b16
	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
リセット後の値	Χ	X	X	X	X	X	X	Χ	X	Х	Х	X	Х	X	X	X
Bit	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
	_	_	_	_	_	_	_	_	RSTN_ AP	CLKEN _AP	RSTN_ AO	CLKEN _AO	RSTN_ AN	CLKEN _AN	RSTN_ AM	CLKEN _AM
リセット後の値	Х	Х	Х	Х	Х	Х	Х	Х	1	1	1	1	1	1	1	1

表 6.62 PWRCTRL_PG1_PR3 レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b8	予約ビット		R
b7	RSTN_AP	SPI4_SCLK ドメインのリセット。Active Low です。	R/W
b6	CLKEN_AP	SPI4_SCLK(外部インタフェース)のクロックイネーブル 0:無効 1:有効	R/W
b5	RSTN_AO	SPI3_SCLK ドメインのリセット。Active Low です。	R/W
b4	CLKEN_AO	SPI3_SCLK(外部インタフェース)のクロックイネーブル 0:無効 1:有効	R/W
b3	RSTN_AN	SPI2_SCLK ドメインのリセット。Active Low です。	R/W
b2	CLKEN_AN	SPI2_SCLK(外部インタフェース)のクロックイネーブル 0:無効 1:有効	R/W
b1	RSTN_AM	SPI1_SCLK ドメインのリセット。Active Low です。	R/W
b0	CLKEN_AM	SPI1_SCLK(外部インタフェース)のクロックイネーブル 0:無効 1:有効	R/W

6.3.60 PWRCTRL_PG1_PR4 — PG1 Program4 のパワーマネージメントコントロール

アドレス 4000 C104h

表 6.63 PWRCTRL_PG1_PR4 レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b8	予約ビット		R
b7∼b4	予約ビット	初期値を維持してください。	R/W
b3	RSTN_AR	SPI6_SCLK ドメインのリセット。Active Low です。	R/W
b2	CLKEN_AR	SPI6_SCLK(外部インタフェース)のクロックイネーブル 0:無効 1:有効	R/W
b1	RSTN_AQ	SPI5_SCLK ドメインのリセット。Active Low です。	R/W
b0	CLKEN_AQ	SPI5_SCLK(外部インタフェース)のクロックイネーブル 0:無効 1:有効	R/W

6.3.61 PWRCTRL_PG4_PR1 — PG4 Program1 のパワーマネージメントコントロール

アドレス 4000 C10Ch

Bit	b31	b30	b29	b28	b27	b26	b25	b24	b23	b22	b21	b20	b19	b18	b17	b16
	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
し リセット後の値	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bit	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
	_	_	_	_	-	_	_		_	_	_		_		RSTN_ AU	CLKEN _AU
リセット後の値	Х	Х	Х	Х	Х	Х	Х	Х	1	1	1	1	1	1	1	1

表 6.64 PWRCTRL_PG4_PR1 レジスタの内容

ビット位置	ビット名	機能	R/W
b31∼b8	予約ビット		R
b7∼b2	予約ビット	初期値を維持してください。	R/W
b1	RSTN_AU	LCD_ECLK ドメインのリセット。Active Low です。	R/W
b0	CLKEN_AU	LCD_ECLK(外部インタフェース)のクロックイネーブル 0:無効 1:有効	R/W

6.3.62 RSTEN — リセットイネーブルレジスタ

このレジスタはシステムリセットソースを個別に有効/無効にできます。 (RSTCTRL レジスタ内で) アクティブになっているシステムリセット要求に対応するビットを有効にすると、システムがリセットされます。

アドレス 4000 C120h

Bit	b31	b30	b29	b28	b27	b26	b25	b24	b23	b22	b21	b20	b19	b18	b17	b16
	_		l	ı	ı	1	ı	ı		-	_	_	1	I	1	
リセット後の値	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bit	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
	_	_	ı	_	ı	_	_	_	_	SWRST _EN	SRESE	CM3LO CKUPR ST_EN	RST_E		RST_EN	MRESE T_EN
リセット後の値	Х	X	X	Х	Χ	X	Х	Х	Х	0	0	0	0	0	0	0

表 6.65 RSTEN レジスタの内容

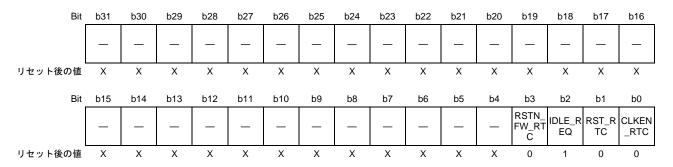
ビット位置	ビット名	機能	R/W
b31~b7	予約ビット		R
b6	SWRST_EN	ソフトウェアによるシステムリセット(RSTCTRL レジスタ SWRST_REQ ビット) のイネーブルビット 0:無効 1:有効	R/W
b5	CM3SYSRESET_EN	Cortex-M3 の SYSRESETREQ によるリセットのイネーブルビット 0:無効 1:有効	R/W
b4	CM3LOCKUPRST_E N	Cortex-M3 Core Lockup リセットのイネーブルビット 0:無効 1:有効	R/W
b3	WDM3RST_EN	Cortex-M3 Core watchdog リセットのイネーブルビット 0:無効 1:有効	R/W
b2、b1	WDA7RST_EN	Cortex-A7 watchdog リセットのイネーブルビット 0:無効 1:有効 ビット 2(RZ/N1D)Cortex-A7 プロセッサ 1 watchdog リセット要求(RZ/N1S、RZ/N1L)予約 ビット 1(RZ/N1D、RZ/N1S)Cortex-A7 プロセッサ 0 watchdog リセット要求 (RZ/N1L)予約	R/W
b0	MRESET_EN	システムリセットのイネーブルビット 本ビットが 1 のときビット 6~1 が有効になります。	R/W

6.3.63 PWRCTRL_SWITCH — A5PSW のパワーマネージメントコントロール

アドレス 4000 C130h

Bit	b31	b30	b29	b28	b27	b26	b25	b24	b23	b22	b21	b20	b19	b18	b17	b16
	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
リセット後の値	Χ	Х	X	X	X	X	X	Χ	X	X	X	Χ	X	Χ	Х	Χ
Bit	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
	_	_	_	_	_	_	_	_	_	_	1	_	RSTN_ B	CLKEN _B	SLVRD Y_A	CLKEN _A
リセット後の値	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	0	1	0	1

表 6.66 PWRCTRL_SWITCH レジスタの内容


ビット位置	ビット名	機能	R/W
b31~b4	予約ビット		R
b3	RSTN_B	A5PSW_SXCLK ドメインのリセット。Active Low です。	R/W
b2	CLKEN_B	A5PSW_SXCLK(コアクロック)のクロックイネーブル 0:無効 1:有効	R/W
b1	SLVRDY_A	A5PSW が接続可能であることを NoC インターコネクトに通知します。 0:接続不可 1:接続可	R/W
b0	CLKEN_A	A5PSW_HCLK(内部バス)のクロックイネーブル 0:無効 1:有効	R/W

6.3.64 PWRCTRL_RTC - RTC のパワーマネージメントコントロール

ソフトウェアアクセスのために RTC を有効にするには以下の手順を実施してください。

- 1. RST_RTC を解除する。
- 2. RTC_PCLK を有効にする。
- 3. RSTN_FW_RTC を解除する。
- 4. IDLE_REQ を解除する。

アドレス 4000 C140h

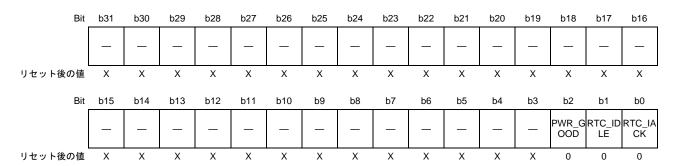


表 6.67 PWRCTRL_RTC レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b4	予約ビット		R
b3	RSTN_FW_RTC	RTC の NoC インターコネクトのソフトウェアリセット。Active Low です。 0: リセット 1: リセット解除	R/W
b2	IDLE_REQ	RTC の NoC インターコネクトへの切断要求 1: 切断要求 0:接続要求	R/W
b1	RST_RTC	RTC_PCLK ドメインのリセット。Active High です。 1:リセット 0:リセット解除	R/W
b0	CLKEN_RTC	RTC_PCLK(内部バス)のクロックイネーブル 1:RTC の APB とインターコネクトのクロックが On 0:クロックが Off	R/W

6.3.65 PWRSTAT_RTC — RTC のパワーマネージメントステータス

アドレス 4000 C144h

表 6.68 PWRSTAT_RTC レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b3	予約ビット		R
b2	PWR_GOOD	RTC_PWRGOOD 信号のステータスの表示	R
b1	RTC_IDLE	RTC の NoC インターコネクトの接続状態 0:接続状態 1:切断状態	R
b0	RTC_IACK	RTC の切断要求に対する応答 0: 切断要求応答なし 1: 切断要求応答あり	R

備考

クロックゲーティングやソフトウェアリセットを実施する場合、切断状態(RTC_IDLE=1)である必要があります。

6.3.66 PWRCTRL_ROM — ROM のパワーマネージメントコントロール

アドレス 4000 C154h

Bit	b31	b30	b29	b28	b27	b26	b25	b24	b23	b22	b21	b20	b19	b18	b17	b16
	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
 リセット後の値	Х	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
BIT	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
	_	_	_	_	_	_	_	_	_	_	_	_	_	SLVRD Y_A	RSTN_ A	CLKEN _A
リセット後の値	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	1	1	1

表 6.69 PWRCTRL_ROM レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b3	予約ビット		R
b2	SLVRDY_A	接続可能であることを NoC インターコネクトに通知します。 0:接続不可 1:接続可	R/W
b1	RSTN_A	ROM_HCLK ドメインのリセット。Active Low です。	R/W
b0	CLKEN_A	ROM_HCLK(内部バス)のクロックイネーブル 0:無効 1:有効	R/W

6.3.67 PWRSTAT_PG1 — PG1 のパワーマネージメントステータス

アドレス 4000 C158h

Bit	b31	b30	b29	b28	b27	b26	b25	b24	b23	b22	b21	b20	b19	b18	b17	b16
	_	-	_	-	_	_	_	_	_	_	_	_	_	_	_	_
リセット後の値	X	X	Χ	Χ	Χ	Χ	Χ	X	Χ	Χ	X	Χ	X	Χ	Χ	Χ
Bit	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
	_		SCON_ N	SCON_ M	SCON_ L	SCON_ K	SCON_	SCON_	SCON_ H	SCON_ G	SCON_ F	SCON_ E	SCON_ D	SCON_ C	SCON_ B	SCON_ A
リセット後の値	X	X	0	0	0	0	0	0	0	0	0	0	0	0	0	0

表 6.70 PWRSTAT_PG1 レジスタの内容(1/2)

ビット位置	ビット名	機能	R/W
b31~b14	予約ビット		R
b13	SCON_N	BGPIO3 の NoC インターコネクトの接続状態 0: 切断状態 1:接続状態	R
b12	SCON_M	UART8 の NoC インターコネクトの接続状態 0: 切断状態 1:接続状態	R
b11	SCON_L	UART7 の NoC インターコネクトの接続状態 0: 切断状態 1:接続状態	R
b10	SCON_K	UART6 の NoC インターコネクトの接続状態 0:切断状態 1:接続状態	R
b9	SCON_J	UART5 の NoC インターコネクトの接続状態 0:切断状態 1:接続状態	R
b8	SCON_I	UART4 の NoC インターコネクトの接続状態 0: 切断状態 1:接続状態	R
b7	SCON_H	BGPIO2 の NoC インターコネクトの接続状態 0: 切断状態 1:接続状態	R
b6	SCON_G	BGPIO1 の NoC インターコネクトの接続状態 0: 切断状態 1:接続状態	R
b5	SCON_F	SPI6 の NoC インターコネクトの接続状態 0: 切断状態 1:接続状態	R
b4	SCON_E	SPI5 の NoC インターコネクトの接続状態 0: 切断状態 1:接続状態	R
b3	SCON_D	SPI4 の NoC インターコネクトの接続状態 0: 切断状態 1:接続状態	R
b2	SCON_C	SPI3 の NoC インターコネクトの接続状態 0: 切断状態 1:接続状態	R

表 6.70 PWRSTAT_PG1 レジスタの内容 (2/2)

ビット位置	ビット名	機能	R/W
b1	SCON_B	SPI2 の NoC インターコネクトの接続状態 0: 切断状態 1:接続状態	R
b0	SCON_A	SPI1 の NoC インターコネクトの接続状態 0: 切断状態 1:接続状態	R

備考

6.3.68 PWRSTAT_PG2_25MHZ — PG2 25MHz のパワーマネージメントステータス

アドレス 4000 C15Ch

Bit	b31	b30	b29	b28	b27	b26	b25	b24	b23	b22	b21	b20	b19	b18	b17	b16
	_	_	_		_	_	_	_	_	_	_	_		_	_	_
リセット後の値 リセット後の値	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bit	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
	_	1	ı	1	1	1	ı	ı	1	1	1	ı	1	SCON_ S	SCON_ R	SCON_ Q
リセット後の値	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	0	0	0

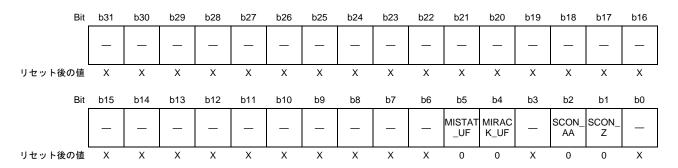
表 6.71 PWRSTAT_PG2_25MHZ レジスタの内容

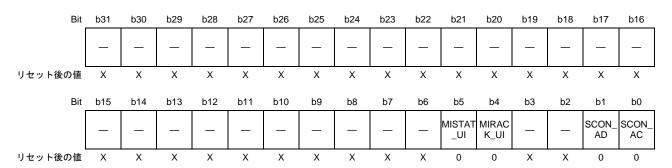
ビット位置	ビット名	機能	R/W
b31~b3	予約ビット		R
b2	SCON_S	TIMER2 の NoC インターコネクトの接続状態 0:切断状態 1:接続状態	R
b1	SCON_R	TIMER1 の NoC インターコネクトの接続状態 0:切断状態 1:接続状態	R
b0	SCON_Q	ConfigSys2 の NoC インターコネクトの接続状態 0:切断状態 1:接続状態	R

備考

6.3.69 PWRSTAT_PG3_48MHZ — PG3 48MHz のパワーマネージメントステータス

アドレス 4000 C160h



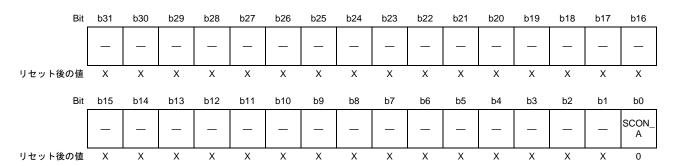

表 6.72 PWRSTAT_PG3_48MHZ レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b6	予約ビット		R
b5	MISTAT_UF	Peripheral Group 3 の NoC インターコネクトの接続状態 0:接続状態 1:切断状態	R
b4	MIRACK_UF	Peripheral Group 3 の切断要求に対する応答 0:切断要求応答なし 1:切断要求応答あり	R
b3	予約ビット		R
b2	SCON_AA	CAN2 の NoC インターコネクトの接続状態 0:切断状態 1:接続状態	R
b1	SCON_Z	CAN1 の NoC インターコネクトの接続状態 0:切断状態 1:接続状態	R
b0	予約ビット		R

備考

6.3.70 PWRSTAT_PG4 — PG4 のパワーマネージメントステータス

アドレス 4000 C164h


表 6.73 PWRSTAT_PG4 レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b6	予約ビット		R
b5	MISTAT_UI	Peripheral Group 4 の NoC インターコネクトの接続状態 0:接続状態 1:切断状態	Я
b4	MIRACK_UI	Peripheral Group 4 の切断要求に対する応答 0:切断要求応答なし 1:切断要求応答あり	R
b3, b2	予約ビット		R
b1	SCON_AD	Semaphore の NoC インターコネクトの接続状態 0:切断状態 1:接続状態	R
b0	SCON_AC	LCDC の NoC インターコネクトの接続状態 0:切断状態 1:接続状態	R

備考

6.3.71 PWRSTAT_ROM — ROM のパワーマネージメントステータス

アドレス 4000 C170h

表 6.74 PWRSTAT_ROM レジスタの内容

	ビット位置	ビット名	機能	R/W
	b31~b1	予約ビット		R
-	b0	SCON_A	ROM の NoC インターコネクトの接続状態 0: 切断状態 1:接続状態	R

備考

6.3.72 PWRCTRL_CM3 — CM3 のパワーマネージメントコントロール

アドレス 4000 C174h

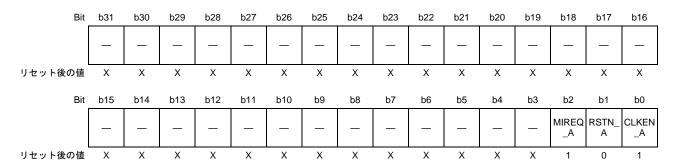


表 6.75 PWRCTRL_CM3 レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b3	予約ビット		R
b2	MIREQ_A	Cortex-M3 の NoC インターコネクトへの切断要求 0:接続要求 1:切断要求 Cortex-M3 のクロックとリセットのドメインが RIN BUS サブシステムに属していることに注意してください。そのため、PWRCTRL_RINCTRL のクロックとリセットを適切に制御してください。	R/W
b1	RSTN_A	CM3_HCLK ドメイン、CM3_FCLK ドメインのリセット。Active Low です。	R/W
b0	CLKEN_A	CM3_HCLK、CM3_FCLK のクロックイネーブル 0:無効 1:有効	R/W

備考

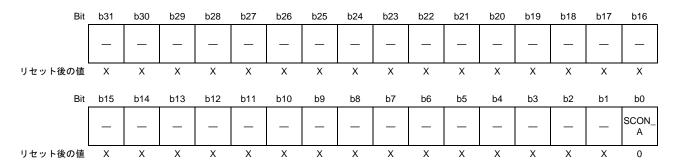
Cortex-M3 のリセットリクエストは、NoC インターコネクトで保留中のトランザクションがない場合(たとえば、Cortex-M3 が WFE ステート)のみ実施できます。Cortex-M3 バス動作が中断されると、NoC インターコネクトはハングアップします。RZ/N1L ではこのレジスタの初期値は 0x3 です。

6.3.73 PWRSTAT_CM3 — CM3 のパワーマネージメントステータス

アドレス 4000 C178h

Bit	b31	b30	b29	b28	b27	b26	b25	b24	b23	b22	b21	b20	b19	b18	b17	b16
	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
 リセット後の値	Х	X	X	X	X	X	X	X	X	X	X	X	X	Х	X	X
Rit	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
Di. [010	014	D13	012		1	03	50				D-F		02		
	_	_	_	_	_	_	_	_	_	_	_	_	_	_	MISTAT _A	K_A
リセット後の値	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	0	0

表 6.76 PWRSTAT_CM3 レジスタの内容


ビット位置	ビット名	機能	R/W
b31~b2	予約ビット		R
b1	MISTAT_A	Cortex-M3 の NoC インターコネクトの接続状態 0:接続状態 1:切断状態	R
b0	MIRACK_A	Cortex-M3 の切断要求に対する応答 0: 切断要求応答なし 1: 切断要求応答あり	R

備考

6.3.74 PWRSTAT_RINCTRL — R-IN Engine アクセサリレジスタのパワーマネージメントステータス

RINBUS_HCLK のゲーティングにより、R-IN Engine アクセサリレジスタブロックの RINBUS_HCLK で動作する 2MB SRAM の動作は保証されません。

アドレス 4000 C17Ch

表 6.77 PWRSTAT_RINCTRL レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b1	予約ビット		R
b0	SCON_A	R-IN Engine アクセサリレジスタの NoC インターコネクトの接続状態 0:切断状態 1:接続状態	R

備考

6.3.75 PWRSTAT_SWITCHCTRL — イーサネットアクセサリレジスタのパワーマネージメントステータス

アドレス 4000 C180h

Bit	b31	b30	b29	b28	b27	b26	b25	b24	b23	b22	b21	b20	b19	b18	b17	b16
	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
 リセット後の値	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	X
Bit	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	SCON_ A
リセット後の値	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	0

表 6.78 PWRSTAT_SWITCHCTRL レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b1	予約ビット		R
b0	SCON_A	イーサネットアクセサリレジスタの NoC インターコネクトの接続状態 0: 切断状態 1:接続状態	R

備考

6.3.76 PWRCTRL_RINCTRL — R-IN Engine アクセサリレジスタのパワーマネージメントコントロール

RINBUS_HCLK のゲーティングにより、R-IN Engine アクセサリレジスタブロックの RINBUS_HCLK で動作する 2MB SRAM の動作は保証されません。

Cortex-M3 動作中に RINBUS_HCLK をゲーティングすることにより、Cortex-M3 がアクセスに使用する RIN BUS サブシステムが停止するため、ハングアップします。

アドレス 4000 C184h

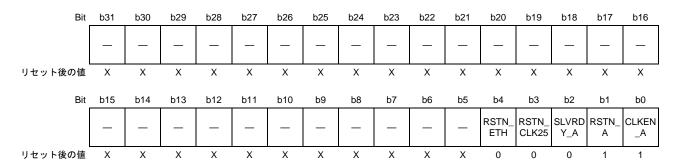

Bit	b31	b30	b29	b28	b27	b26	b25	b24	b23	b22	b21	b20	b19	b18	b17	b16
	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
リセット後の値	Χ	X	X	X	X	X	X	X	X	X	X	X	Χ	X	Х	X
Bit _	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
	_	l	l	l	ı	ı	_	l	_	_	_	l	_	SLVRD Y_A	RSTN_ A	CLKEN _A
リセット後の値	Х	X	X	X	X	Х	X	X	Х	Х	X	Χ	Х	0	1	1

表 6.79 PWRCTRL_RINCTRL レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b3	予約ビット		R
b2	SLVRDY_A	R-IN Engine アクセサリレジスタが接続可能であることを NoC インターコネクトに通知します。 0:接続不可 1:接続可	R/W
b1	RSTN_A	RINBUS_HCLK ドメインのリセット。Active Low です。	R/W
b0	CLKEN_A	RINBUS_HCLK(内部バス)のクロックイネーブル 0:無効 1:有効	R/W

6.3.77 PWRCTRL_SWITCHCTRL — イーサネットアクセサリレジスタのパワーマネージメントコントロール

アドレス 4000 C188h

表 6.80 PWRCTRL_SWITCHCTRL レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b5	予約ビット		R
b4	RSTN_ETH	RGMII/RMII コンバータ(50MHz)のリセット。Active Low です。	R/W
b3	RSTN_CLK25	タイムスタンプ信号の選択回路のリセット。Active Low です。	R/W
b2	SLVRDY_A	イーサネットアクセサリレジスタが接続可能であることを NoC インターコネクトに通知します。 0:接続不可 1:接続可	R/W
b1	RSTN_A	RINEG_HCLK ドメインのリセット。Active Low です。	R/W
b0	CLKEN_A	RINEG_HCLK(内部バス〜イーサネットアクセサリレジスタ)のクロックイネーブル 0:無効 1:有効	R/W

6.3.78 PWRCTRL_HWRTOS — HW-RTOS のパワーマネージメントコントロール

アドレス 4000 C18Ch

Bit	b31	b30	b29	b28	b27	b26	b25	b24	b23	b22	b21	b20	b19	b18	b17	b16
	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
 リセット後の値	Х	X	X	X	X	X	X	Х	X	X	X	X	X	X	X	X
グビグド後の値	^	^	^	^	^	^	^	^	^	^	^	^	^	^	^	Α
Bit	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
	_	_	_	l	ı	ı	_	ı	_	_	_	l	_	CLKEN _B	RSTN_ A	CLKEN _A
リセット後の値	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	1	1	1

表 6.81 PWRCTRL_HWRTOS レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b3	予約ビット		R
b2	CLKEN_B	HWRTOS_MDCCLK のクロックイネーブル 0:無効 1:有効	R/W
b1	RSTN_A	HWRTOS_CLK ドメインのリセット。Active Low です。	R/W
b0	CLKEN_A	HWRTOS_CLK のクロックイネーブル 0:無効 1:有効	R/W

6.3.79 RSTCTRL — リセットコントロールレジスタ

ソフトウェアによるシステムリセットを開始するため、もしくは現在のハードウェアシステムリセットソースのいずれかがシステムリセットを要求しているかどうかを識別するためにこのレジスタを使用できます。

アドレス 4000 C198h

Bit	b31	b30	b29	b28	b27	b26	b25	b24	b23	b22	b21	b20	b19	b18	b17	b16
	_	_		I	-	-	_	-	_	_	_	_	-	-	I	_
リセット後の値	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bit	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
	_		1	1	1	ı		ı		SWRST _REQ		CM3LOC KUPRST _REQ		WDA7R	RST_RE	_
リセット後の値	Х	Х	Χ	Х	Х	Х	Χ	Х	Х	0	0	0	0	0	0	Х

表 6.82 RSTCTRL レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b7	予約ビット		R
b6	SWRST_REQ	ソフトウェアによるシステムリセット要求 0:リセットしません 1:ソフトウェアによるシステムリセットの要求	R/W
b5	CM3SYSRESET_RE Q	Cortex-M3 の SYSRESETREQ によるリセット要求 0:システムリセット要求はありません 1:システムリセット要求を保留中 ^{注1}	R/W
b4	CM3LOCKUPRST_R EQ	Cortex-M3 Core Lockup リセット要求 0:システムリセット要求はありません 1:システムリセット要求を保留中 ^{注1}	R/W
b3	WDM3RST_REQ	Cortex-M3 Core watchdog リセット要求 0:システムリセット要求はありません 1:システムリセット要求を保留中 ^{注1}	R/W
b2、b1	WDA7RST_REQ	Cortex-A7 watchdog リセット要求 0:システムリセット要求はありません 1:システムリセット要求を保留中注1 ビット 2(RZ/N1D)Cortex-A7 プロセッサ 1 watchdog リセット要求(RZ/N1S、RZ/N1L)予約 ビット 1(RZ/N1D、RZ/N1S)Cortex-A7 プロセッサ 0 watchdog リセット要求(RZ/N1L)予約	R/W
b0	予約ビット		R

注1. 1をライトすることによってクリアされます。

6.3.80 CFG_USB — USB モードコンフィグレーションレジスタ

USB Host/Function コントローラのコンフィグレーションの変更により、USBPLL 動作が影響を受ける可能性があります。USBPLL 動作の停止はシステムのハングアップにつながる可能性があります。バスのハングアップを避けるため、USB コンフィグレーションの変更を実施する場合は事前にすべての USBPLL クロックで動作しているモジュールのバスが NoC インターコネクトから切断されていることを必ず確認してください。

アドレス 4000 C000h

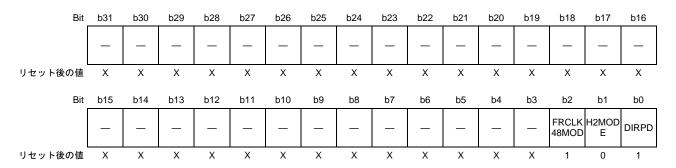


表 6.83 CFG_USB レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b3	予約ビット		R
b2	FRCLK48MOD	0: USB サスペンドの間、USBPLL は停止します。 1: USBPLL は USB のステートによらず動作します。すなわち、他のモジュールのクロックに使用できます。	R/W
b1	H2MODE	USB インタフェースのポート設定信号 0: Port1 ファンクション、Port2 ホスト 1: Port1 ホスト、Port2 ホスト USB リセットシーケンスで、リセット解除する前に本ビットを設定してください。	R/W
b0	DIRPD	ダイレクトパワーダウンコントロール 0: USBPLL はパワーオン 1: USBPLL はパワーダウン 本ビットは USB モジュールに対するダイレクトパワーダウン信号です。ダイレクト パワーダウン機能の詳細はユーザーズマニュアルのシステム・周辺機能 1 編の USB2.0 HS ホスト/ファンクションコントローラの章を参照してください。	R/W

6.3.81 OPMODE — システムとブートのコンフィグレーションレジスタ

ブートモードコンフィグレーションはパワーオンリセットの後に外部コンフィグレーション端子からリード されます。システムリセットはこれらの値に影響を与えません。

アドレス 4000 C004h

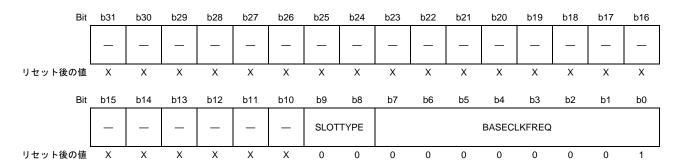

Bit	b31	b30	b29	b28	b27	b26	b25	b24	b23	b22	b21	b20	b19	b18	b17	b16
	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
リセット後の値	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	X	Χ	Χ	Χ	Χ	Χ	X
Bit	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
	_	_	_	_	_	_	_	_	_	LCD1P U	_	CM3BO OTSEL	CA7BO	OTSRC	_	DDRM OD
リセット後の値	Х	Х	Х	Х	Х	Х	Х	Х	Х	X ^{注 1}	Х	X ^{注 1}	X ^{注 1}	X ^{注 1}	Х	X ^{注 1}

表 6.84 OPMODE レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b7	予約ビット		R
b6	LCD1PU	LCD インタフェース(GPIO 端子に割り当て)のデフォルトプル抵抗設定	R
		0 : GPIO[73:62]と GPIO[145:127]をプルダウン 1 : GPIO[73:62]と GPIO[145:127]をプルアップ	
b5	予約ビット		R
b4	CM3BOOTSEL	Cortex-M3 ブートモード設定 0: CA7BOOTSRC に表示されるデバイスで CA7 ブート 1: QSPI から CM3 ブート(RZ/N1L)	R
b3、b2	CA7BOOTSRC	ブートモード設定 2'b00: QuadSPI1 でブート 2'b01: NAND Flash でブート 2'b10: USB function でブート 2'b11: 予約	R
b1	予約ビット		R
b0	DDRMOD	DDR Controller 設定(RZ/N1D) 0: DDR3 1: DDR2	R

6.3.82 CFG_SDIO[m] — SDIO[m]コンフィグレーションレジスタ (m=1 もしくは 2)

アドレス CFG_SDIO1: 4000 C008h CFG_SDIO2: 4000 C0C4h

表 6.85 CFG_SDIO[m]レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b10	予約ビット		R
b9、b8	SLOTTYPE	スロットタイプ - 製品の使用状況に基づいて設定する必要があります。 2'b00: リムーバブルカードスロット 2'b01: 組み込みスロット 上記以外: 予約 このスロットタイプは SDIO の機能レジスタに反映されます。カード検出時間の決定にも使われるため、適切な値を設定してください。	R/W
b7~b0	BASECLKFREQ	SDIO[m]_ECLK クロックのベースクロック周波数設定(MHz) このフィールドは以下の値に設定する必要があります。 SDIO[m]_ECLK 周波数=roundup(1000/PWRCTRL_SDIO[m]DIV.DIV)	R/W

6.3.83 DBGCON — デバッグコントロールレジスタ

アドレス 4000 C014h

Bit	b31	b30	b29	b28	b27	b26	b25	b24	b23	b22	b21	b20	b19	b18	b17	b16
	_	_	_	١	_	_	_	_	_	_	_	-	_	_	_	-
リセット後の値	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bit	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
	_	ı	ı	I	ı	_	_	-	ı	_	_	-	CA7WD 1_DBG _EN		CM3W D_DBG _EN	
リセット後の値	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	0	0	0	1

表 6.86 DBGCON レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b4	予約ビット		R
b3	CA7WD1_DBG_EN	(RZ/N1D) Cortex-A7 プロセッサ 1 が停止している間の watchdog 機能を制御	R/W
		0:停止中の Cortex-A7 プロセッサ 1 watchdog を有効	
		1:停止中の Cortex-A7 プロセッサ 1 watchdog を停止	
		(RZ/N1S、RZ/N1L)	
		予約	
b2	CA7WD0_DBG_EN	(RZ/N1D、RZ/N1S)	R/W
		Cortex-A7 プロセッサ 0 が停止している間の watchdog 機能を制御	
		0:停止中の Cortex-A7 プロセッサ 0 watchdog を有効	
		1:停止中の Cortex-A7 プロセッサ 0 watchdog を停止	
		(RZ/N1L)	
		予約	
b1	CM3WD_DBG_EN	Cortex-M3 Core が停止している間の watchdog 機能を制御	R/W
		0:停止中の Cortex-M3 Core watchdog を有効	
		1:停止中の Cortex-M3 Core watchdog を停止	
b0	PR_DBG_EN	制御エミュレーション機能	R/W
		0:エミュレーション機能を無効化	
		1:エミュレーション機能を有効化 - PR_DBG_EN ビットは Halt 中の HW-RTOS タイマー停止エミュレーション機能の有効/無効を制御します。初期設定では エミュレーション機能は有効です。PR_DBG_EN がイネーブルで CPU が debug(たとえば、ICE による CPU 停止)により halt されている間、HW-RTOS タイマーは停止されます。この機能は HW-RTOS OS タイマーの不一致 を防ぎます。	

6.3.84 CFG_GPIOT_PTEN_xx — GPIO トリガイネーブルレジスタ

アドレス CFG_GPIOT_PTEN_1A: 4000 C0A4h

CFG_GPIOT_PTEN_1B: 4000 C0B0h CFG_GPIOT_PTEN_2A: 4000 C0B4h CFG_GPIOT_PTEN_2B: 4000 C0B8h CFG_GPIOT_PTEN_3A: 4000 C0D8h CFG_GPIOT_PTEN_3B: 4000 C0DCh

Bit	b31	b30	b29	b28	b27	b26	b25	b24	b23	b22	b21	b20	b19	b18	b17	b16
								POR	TEN							
L リセット後の値	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
								POR	TEN							
リセット後の値	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

表 6.87 CFG_GPIOT_PTEN_xx レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b0	PORTEN	GPIO ポートトリガのイネーブル(ビット単位)	R/W
		0:ポートトリガ無効(本来の BGPIO 機能を有効化)	
		1:ポートトリガ有効	

備考

ビット 31~10 は CFG_GPIOT_PTEN_3B では予約ビットです。

6.3.85 CFG_GPIOT_TSRC — GPIO トリガソースセレクトレジスタ

BGPIO1/2/3 PortA/B のトリガソースセレクトコントロール

アドレス 4000 C0BCh

Bit	b31	b30	b29	b28	b27	b26	b25	b24	b23	b22	b21	b20	b19	b18	b17	b16
	_	_	_			TRIG3			_	_	_			TRIG2		
リセット後の値	Х	Х	Х	0	0	0	0	0	Х	Х	Х	0	0	0	0	0
Bit	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
	_	_	_			TRIG1			_	_	_			TRIG0		
リセット後の値	Х	Х	Х	0	0	0	0	0	Х	Х	Х	0	0	0	0	0

表 6.88 CFG_GPIOT_TSRC レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b29	予約ビット		R
b28~b24	TRIG3	割り込みソースから GPIO_TRIGGER[3](BGPIO 行き)の GPIO トリガソースを選択	R/W
		TRIG3[4:0] 割り込みソース	
		5'h00 : Ethernet Accessary Register で選択された GPIO_TRIGGER[0]	
		5'h01 : Ethernet Accessary Register で選択された GPIO_TRIGGER[1]	
		5'h02 : Ethernet Accessary Register で選択された GPIO_TRIGGER[2]	
		5'h03 : Ethernet Accessary Register で選択された GPIO_TRIGGER[3]	
		上記以外 : 使用しません	
b23~b21	予約ビット		R
b20~b16	TRIG2	割り込みソースから GPIO_TRIGGER[2] (BGPIO 行き) の GPIO トリガソースを選択。割り込みソースは TRIG3 と同様です。	R/W
b15~b13	予約ビット		R
b12~b8	TRIG1	割り込みソースから GPIO_TRIGGER[1] (BGPIO 行き) の GPIO トリガソースを選択。割り込みソースは TRIG3 と同様です。	R/W
b7~b5	予約ビット		R
b4~b0	TRIG0	割り込みソースから GPIO_TRIGGER[0](BGPIO 行き)の GPIO トリガソースを選択。割り込みソースは TRIG3 と同様です。	R/W

6.3.86 CFG_DMAMUX — DMAC1 と DMAC2 のマルチプレクサレジスタ

イーサネットの DMA ソースは 4 チャネルに割り当て可能となっていますが、同じ DMA ソースを複数チャネルに割り当てないでください。

アドレス 4000 C0A0h

Bit	b31	b30	b29	b28	b27	b26	b25	b24	b23	b22	b21	b20	b19	b18	b17	b16
	D2M X15	D2M X14	D2M X13	D2M X12	D2M X11	D2M X10	D2M X9	D2M X8	D2M X7	D2M X6	D2M X5	D2M X4	D2M X3	D2M X2	D2M X1	D2M X0
リセット後の値	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
	D1M X15	D1M X14	D1M X13	D1M X12	D1M X11	D1M X10	D1M X9	D1M X8	D1M X7	D1M X6	D1M X5	D1M X4	D1M X3	D1M X2	D1M X1	D1M X0
リセット後の値	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

表 6.89 CFG_DMAMUX レジスタの内容 (1/3)

ビット位置	ビット名	機能	R/W
b31	D2MX15	DMAC2 要求インタフェース 15 のマルチプレクサ 0:TIMER2_SubTimer7 1:ADC チャネル 1	R/W
b30	D2MX14	DMAC2 要求インタフェース 14 のマルチプレクサ 0: S3_DIVCLK ^{注 1} 1: ADC チャネル 0	R/W
b29	D2MX13	DMAC2 要求インタフェース 13 のマルチプレクサ 0: S3_CONCLK ^{注 1} 1: MSEBIM3(CS1_N の TX)	R/W
b28	D2MX12	DMAC2 要求インタフェース 12 のマルチプレクサ 0: MAC_TRIG[1] ^{注 1} 1: MSEBIM2(CS1_N の RX)	R/W
b27	D2MX11	DMAC2 要求インタフェース 11 のマルチプレクサ 0: MAC_PPS[1] ^{注 1} 1: MSEBIM1(CS0_N の TX)	R/W
b26	D2MX10	DMAC2 要求インタフェース 10 のマルチプレクサ 0: MAC_PPS[0] ^{注 1} 1: MSEBIM0(CS0_N の RX)	R/W
b25	D2MX9	DMAC2 要求インタフェース 9 のマルチプレクサ 0:CAT_SYNC1 または SERCOS3_Int[1] ^{注1} 1:予約	R/W
b24	D2MX8	DMAC2 要求インタフェース 8 のマルチプレクサ 0:CAT_SYNC0 または SERCOS3_Int[0] ^{注1} 1:予約	R/W
b23	D2MX7	DMAC2 要求インタフェース 7 のマルチプレクサ 0:TIMER2_SubTimer6 1:予約	R/W
b22	D2MX6	DMAC2 要求インタフェース 6 のマルチプレクサ 0: S3_DIVCLK ^{注 1} 1: 予約	R/W

表 6.89 CFG_DMAMUX レジスタの内容 (2/3)

ビット位置	ビット名	機能	R/W
b21	D2MX5	DMAC2 要求インタフェース 5 のマルチプレクサ 0: S3_CONCLK ^{注 1} 1: UART8 TX	R/W
b20	D2MX4	DMAC2 要求インタフェース 4 のマルチプレクサ 0: MAC_TRIG[1] ^{注1} 1: UART8 RX	R/W
b19	D2MX3	DMAC2 要求インタフェース 3 のマルチプレクサ 0: MAC_PPS[1] ^{注 1} 1: SPI6 TX	R/W
b18	D2MX2	DMAC2 要求インタフェース 2 のマルチプレクサ 0: MAC_PPS[0] ^{注 1} 1: SPI6 RX	R/W
b17	D2MX1	DMAC2 要求インタフェース 1 のマルチプレクサ 0: CAT_SYNC1 または SERCOS3_Int[1] ^{注 1} 1: SPI5 TX	R/W
b16	D2MX0	DMAC2 要求インタフェース 0 のマルチプレクサ 0: CAT_SYNC0 または SERCOS3_Int[0] ^{注 1} 1: SPI5 RX	R/W
b15	D1MX15	DMAC1 要求インタフェース 15 のマルチプレクサ 0: TIMER1_SubTimer7 1: SPI4 TX	R/W
b14	D1MX14	DMAC1 要求インタフェース 14 のマルチプレクサ 0: S3_DIVCLK ^{注 1} 1: SPI4 RX	R/W
b13	D1MX13	DMAC1 要求インタフェース 13 のマルチプレクサ 0: S3_CONCLK ^{注 1} 1: SPI3 TX	R/W
b12	D1MX12	DMAC1 要求インタフェース 12 のマルチプレクサ 0: MAC_TRIG[1] ^{注 1} 1: SPI3 RX	R/W
b11	D1MX11	DMAC1 要求インタフェース 11 のマルチプレクサ 0: MAC_PPS[1] ^{注 1} 1: SPI2 TX	R/W
b10	D1MX10	DMAC1 要求インタフェース 10 のマルチプレクサ 0: MAC_PPS[0] ^{注 1} 1: SPI2 RX	R/W
b9	D1MX9	DMAC1 要求インタフェース 9 のマルチプレクサ 0: CAT_SYNC1 または SERCOS3_Int[1] ^{注 1} 1: SPI1 TX	R/W
b8	D1MX8	DMAC1 要求インタフェース 8 のマルチプレクサ 0: CAT_SYNC0 または SERCOS3_Int[0] ^{注 1} 1: SPI1 RX	R/W
b7	D1MX7	DMAC1 要求インタフェース 7 のマルチプレクサ 0: TIMER1_SubTimer6 1: UART7 TX	R/W
b6	D1MX6	DMAC1 要求インタフェース 6 のマルチプレクサ 0: S3_DIVCLK ^{注1} 1: UART7 RX	R/W
b5	D1MX5	DMAC1 要求インタフェース 5 のマルチプレクサ 0: S3_CONCLK ^{注 1} 1: UART6 TX	R/W

表 6.89 CFG_DMAMUX レジスタの内容 (3/3)

ビット位置	ビット名	機能	R/W
b4	D1MX4	DMAC1 要求インタフェース 4 のマルチプレクサ 0:MAC_TRIG[1] ^{注1} 1:UART6 RX	R/W
b3	D1MX3	DMAC1 要求インタフェース 3 のマルチプレクサ 0: MAC_PPS[1] ^{注 1} 1: UART5 TX	R/W
b2	D1MX2	DMAC1 要求インタフェース 2 のマルチプレクサ 0: MAC_PPS[0] ^{注 1} 1: UART5 RX	R/W
b1	D1MX1	DMAC1 要求インタフェース 1 のマルチプレクサ 0:CAT_SYNC1 または SERCOS3_Int[1] ^{注 1} 1:UART4 TX	R/W
b0	D1MX0	DMAC1 要求インタフェース 0 のマルチプレクサ 0:CAT_SYNC0 または SERCOS3_Int[0] ^{注 1} 1:UART4 RX	R/W

注1. CAT_SYNC0 または SERCOS3_Int[0]は、イーサネットアクセサリレジスタの DMACTRL で選択します。
CAT_SYNC1 または SERCOS3_Int[1]は、イーサネットアクセサリレジスタの DMACTRL で選択します。
イーサネット周辺機能の 7 個の DMA 要求は、4 箇所の要求インタフェースに割り当てられています。同時に使用可能な要求は 1 つだけです。

6.3.87 VERSION — プロダクトバージョンレジスタ

アドレス 4000 C19Ch

Bit	b31	b30	b29	b28	b27	b26	b25	b24	b23	b22	b21	b20	b19	b18	b17	b16
	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
リセット後の値	Χ	Χ	Χ	X	Х	X	Х	Χ	X	Χ	Х	Χ	Х	Х	Х	X
Bit	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
	_	-	l	1	ı	ı	_	PROD				VER	SION			
リセット後の値	X	Χ	X	Χ	X	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ

表 6.90 VERSION レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b9	予約ビット		R
b8	PROD	0 : RZ/N1D 1 : RZ/N1S、RZ/N1L	R
b7~b0	VERSION	ハードウェアのバージョン ^{注 1} RZ/N1D: 0x13 RZ/N1S、RZ/N1L: 0x11	R

注1. RZ/N1D: 0x11、RZ/N1S、RZ/N1L: 0x10 では、A5PSW のレジスタ書込み不具合が発生する可能性があります。回避策は、 『Technical Update』をご覧ください。

6.3.88 BOOTADDR — Cortex-A7 プロセッサ 1 ブートアドレスコンフィグレーションレジスタ

Cortex-A7 プロセッサ 1 はプロセッサ 0 の ROM ブートプロセスの間スタンバイモードにあります。2nd ブートローダーはプロセッサ 1 のブートアドレスを定義するためにこのレジスタに設定する必要があります。いったんプロセッサ 1 のリセットが解除されると、最初に ROM のコードを実行し、そしてこのレジスタからジャンプアドレスを取得します。

このレジスタは RZ/N1D のみ使用し、Cortex-A7 から利用されます。

アドレス 4000 C204h

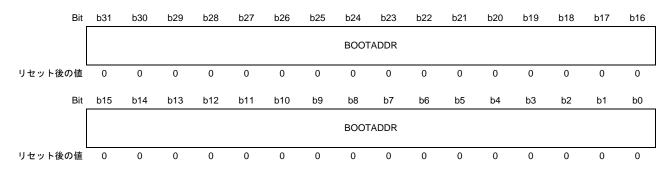


表 6.91 BOOTADDR レジスタの内容

ビット位置	ビット名	機能	R/W
b31~b0	BOOTADDR	Cortex-A7 プロセッサ 1 の 2nd ブートアドレス	R/W

第7章 動作モード

7.1 概要

RZ/N1D および RZ/N1S では、初めに Cortex-A7 がブートし、それから内蔵 ROM のブートローダーを実行します。3 つのブートソース(QSPI/NAND Flash/USB)を使用可能です。ブートローダーは 1st ブートのために RZ/N1 をイニシャライズし、そしてブートソースから 2nd ブートローダーをロードして、実行します。

RZ/N1L では、Cortex-M3 がブートします(Cortex-A7 は使用できません)。Cortex-M3 が QSPI の中のコードを直接実行します。

システムコントローラは外部端子状態やレジスタに基づいてリセット、クロック、およびコンフィグレーションを管理します。ブートのモードとシーケンスもシステムコントローラが処理します。

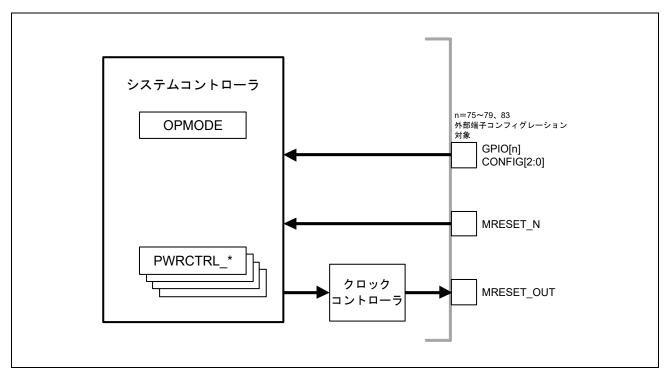


図 7.1 システムコントローラ

7.2 ブートモード仕様(RZ/N1D および RZ/N1S)

7.2.1 共通の特徴

- Cortex-A7 クロックスピード
 - Cortex-A7: 250MHz
 - ブート ROM はデフォルトの分周器設定(1/2)を使います。
- RAM 要件
 - 64k バイト (0x200F 0000~0x200F FFFF) はブート ROM によって使用されます。
- UART1 はブートメッセージを出力します。
 - 115200Baud
 - UART TXD 端子(GPIO[103])が UART インタフェースとして使用されます。
 - ブート進行状況とエラーメッセージ
- 2nd ステージブートイメージ
 - 最大サイズ 1M バイト
 - 最小サイズ4バイト
 - 2nd ステージイメージは連続した領域の内蔵 SRAM (2MB SRAM) から実行する必要があります。つまり、0x0400_0000 0x040F_FFFF あるいは 0x2000_0000 0x200E_FFFF のどちらかのアドレス領域です。

7.2.2 QSPI ブートの特徴

• QSPI ブートモード時に内蔵 ROM のブートローダーが QSPI1 モジュールを初期設定し、以下の GPIO 端子 を Level1/Func4 (QSPI) に設定します。QUAD1_CS_N[3:1] (GPIO73、GPIO149、および GPIO150) は CS 出力となります。これらの端子をボード上で他の機能としても使用する場合は、端子 I/O モードを考慮してください。

GPIO 端子	プルモード	QSPI1 端子名	端子 I/O モード	注意
GPIO74	プルアップ/プルダ	QUAD1_CS_N[0]	出力	QSPI ブートで常に使用
GPIO75	ウンなし	QUAD1_IO[3]	入出力	「7.3.2 外部端子によるコンフィグレー
GPIO76		QUAD1_IO[2]	入出力	ション」を参照
GPIO77		QUAD1_IO[1]	入出力	
GPIO78		QUAD1_IO[0]	入出力	
GPIO79		QUAD1_CLK	出力	
GPIO73		QUAD1_CS_N[1]	出力	ユーザ設定により、これらの端子を他の
GPIO149		QUAD1_CS_N[2]	出力	機能に使用可能ですが、ブート ROM が 設定する端子の状態に注意してくださ
GPIO150		QUAD1_CS_N[3]	出力	い。

- サポートされるシリアル Flash
 - (1) Quad IO SPI Flash
 - (2) Single IO SPI Flash

ブートローダーは QUAD1 CS N[0]に接続されたデバイスに標準 SPI モードでアクセスします。

RZ/N1 リセット時にシリアル Flash も標準 SPI モードになるようにしてください (MRESET_OUT 出力 (Active Hi)をシリアル Flash のリセット端子に接続することを推奨します)。

• Flash のクロック周波数: 5.2MHz

• アドレス:3バイト

7.2.3 NAND ブートの特徴

• NAND ブートモード時に内蔵 ROM のブートローダーが NAND モジュールを初期設定し、以下の GPIO 端子を Level1/Func3(NAND)に設定します。

GPIO 端子	プルモード	QSPI1 端子名	端子 I/O モード	注意
GPIO80	プルアップ/プルダ	FNAND_ALE	出力	
GPIO81	ウンなし	FNAND_CLE	出力	
GPIO82		FNAND_WE_N	出力	
GPIO83		FNAND_RE_N	出力	「7.3.2 外部端子によるコンフィグレー ション」を参照
GPIO9184		FNAND_IO[7:0]	入出力	
GPIO92		FNAND_CE_N[0]	出力	
GPIO93		FNAND_WP_N[0]	出力	
GPIO94	プルアップ	FNAND_RY/BY_N[0]	入力	

- サポートされる NAND Flash
 - (1) ONFI 1.0/非同期 NAND Flash
 - IO バス幅:8 ビット
 - 容量:1~8Gビット
 - モード 0 がブート中に使われます。デバイスはモード 0 をサポートする必要があります。

ブートローダーはブートシーケンスを始める前に ("Read ID" コマンドか ONFI パラメータをリードのどちらかで) デバイスを識別し、それに従ってタイミングと ECC をセットします。 デバイスが"READ ID"をサポートしない場合、ブートされません。

(2) ONFI 2.0 同期 NAND Flash

ONFI 1.0 後方互換モードのみ(本 NAND Flash Controller のサポート範囲に限る)

- NAND ECLK 周波数: 83.3MHz
 - FNAND_RE_N/FNAND_WE_N は 5NAND_ECLK 期間アサートされ、3NAND_ECLK 期間 High ホールドされます。

7.2.4 USB ブートの特徴

- 内蔵 ROM のブートローダーは USB Function かつ DFU デバイスとして RZ/N1 の USB ポート 1 を設定します。
- USB スピード
 - Full speed および High speed
- USB DFU Function インタフェース
 - 2nd ステージイメージをアップロードする目的のスタンダード DFU インタフェース
- PC/ホスト DFU ソフトウェア
 - 汎用 DFU ホストソフトウェアを使用することが可能です。
 - 例)Sourceforge の "dfu_util" および汎用 DFU ドライバ "libUSBk"

http://dfu-util.sourceforge.net/releases/dfu-util-0.8-binaries/win32-mingw32/

https://sourceforge.net/projects/libusbk/

USB ブートはまず SPKG フォーマットのイメージをダウンロードします。SPKG イメージは USB DFU ホスト (例: USB Function ファームウェアアップグレードアプリケーションを走らせている PC) から内蔵 SRAM にダウンロードされます。

PC のユーティリティは SPKG をダウンロードする機能のみ提供します。ホストの PC は FLASH を直接更新することはできません。

USB ブート後、このアプリケーション(uBoot または同様のもの)によって PC から新しいイメージで FLASH を更新可能です。

7.3 標準のブートシーケンス

7.3.1 概要

RZ/N1 システムコントローラは MRESET_N 端子の立ち上がりで特定の外部端子から初期システム設定を取り込みます。その後、プライマリ CPU により 1st ブートローダーが実行されます。RZ/N1D および RZ/N1S において、プライマリ CPU は Cortex-A7 であり、1st ブートローダーは内蔵 ROM に格納されています。RZ/N1L において、プライマリ CPU は Cortex-M3 であり、1st ブートローダーは QSPI Flash に格納されている必要があります。

7.3.2 外部端子によるコンフィグレーション

以下の外部端子はシステム設定およびブートシーケンスで使用されます。

- GPIO[75] (QUAD1 IO[3])
- GPIO[76] (QUAD1_IO[2])
- GPIO[77] (QUAD1 IO[1])
- GPIO[78] (QUAD1_IO[0])
- GPIO[79] (QUAD1_CLK)
- GPIO[83] (FNAND RE N)

これらの端子は IO 内蔵プルアップ/ダウンなしで起動します。

PCB ボード上の外部プルアップ/ダウン抵抗によって適切なモードを選択してください。

表 7.1 外部端子コンフィグレーション

コントロール信号	コンフィグされる機能	コメント
GPIO[75]	0 : DDR3 1 : DDR2	RZ/N1D 向けの DDR メモリコントローラ設定。 RZ/N1S および RZ/N1L ではプルアップもしくはプルダウンしてください。
GPIO[76]	1に設定してください。	
GPIO[78:77]	2'b00: QuadSPI で CA7 ブート 2'b01: NAND Flash で CA7 ブート 2'b10: USB Function で CA7 ブート 2'b11: 予約	RZ/N1D および RZ/N1S 向けのブートモード設定。 RZ/N1L ではプルアップもしくはプルダウンしてください。
GPIO[79]	1 : GPIO[73:62]と GPIO[145:127]をプルアップ 0 : GPIO[73:62]と GPIO[145:127]をプルダウン	RZ/N1D および RZ/N1S 向けの LCD インタフェースのデフォルトのプルアップ/ダウン設定。 RZ/N1L では 1 に設定してください。
GPIO[83]	1に設定してください。	
ブートデバッグ信号	コンフィグされる機能	コメント
GPIO[103]	UART1 TXD	ブート時の UART デバッグ用(RZ/N1D および RZ/N1S)

7.3.3 CPU ブート

システムコントローラはインターコネクトの初期設定を実行し、システムコンフィグレーションに基づいてプライマリ CPU のリセットを解除します。一連の動作はプライマリ CPU のリセット解除に先行して行われます。これらの初期設定動作はシステムコントローラで実行されます。このフェーズの間、すべての CPU はリセットを保持されています。すべての手順が終わると、プライマリ CPU がリセット解除されます。

"MRESET_N"による外部リセットの後のシステムイニシャライズの間、システムコントローラは外部のプルアップ/ダウン抵抗によって定義された外部端子コンフィグレーションを取り込んで保存します。 取り込みシーケンスは以下です。

- "MRESET_N"解除の後の最初のオシレータクロックの立ち上がり:外部端子コンフィグレーションが取り込まれ、LCD プルアップ/ダウン制御ビットは GPIO[79]から直接取得されます。
- "MRESET_N"解除後の2番目のクロックの立ち上がり:ブートコンフィグレーションがFFに取り込まれ、LCDプルアップ/ダウン制御ビットはFFの値からドライブされるように切り替わります。
- "MRESET_N"解除の後の3番目のクロックの立ち上がり:クロックコントローラで"MRESET_OUT"の解除を行うため、"BOOTMODE LATCHED"信号がアサートされます。

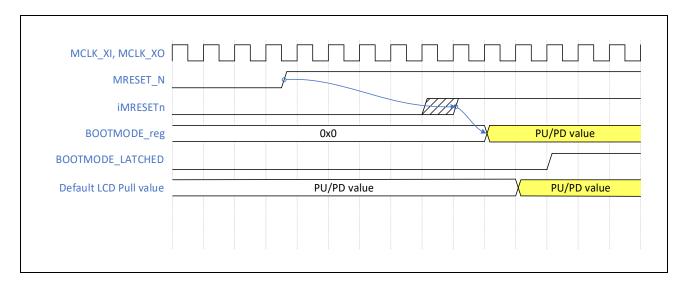


図 7.2 ブートコンフィグレーション取り込みシーケンス

注 意

"MRESET_OUT"信号がアサートされている間は外部端子コンフィグレーションに適切な値が取り込まれるように維持してください。

7.3.4 RZ/N1D および RZ/N1S のブート

Cortex-A7 プロセッサと Cortex-M3 プロセッサを搭載したシステムでは、Cortex-A7 プロセッサ 0 がプライマリプロセッサやブートプロセッサとなります。

システムが電源投入後、両方の Cortex-A7 プロセッサ(Cortex-A7 プロセッサ 0 とプロセッサ 1)はリセット解除されてアドレス 0x00000000 から内蔵 ROM のコードを実行します。初期コア ID チェックにより Cortex-A7 プロセッサ 1 を WFE にします。

Cortex-A7 プロセッサ 0 だけが続きのブートコードを実行することが可能です。その後、2nd ステージブートローダーを実行します。Cortex-A7 プロセッサ 1 と Cortex-M3 プロセッサのリセットベクタアドレスは任意の位置に設定可能です。BOOTADDR レジスタは Corte-xA7 プロセッサ 1 のブートアドレスを定義します。

• デバッグ目的で、ブートローダーは Level 1 function 15/Level 2 function 12 (UART1_TXD) で GPIO[103]を 設定し、この IO マルチプレキシング設定はブートローダーの終了後も維持されます。

7.3.5 RZ/N1L のブート

RZ/N1L では、Cortex-M3 がプライマリプロセッサになります。

Cortex-M3 は内蔵 ROM のブートローダーを実行しません。0x000000000 にマッピングされた QSPI Flash から 5.2MHz で直接ブートします。

GPIO[74:79]はシステムコントローラによって以下に設定されます。

GPIO 端子	プルモード	QSPI1 端子名	端子 I/O モード	注意
GPIO74	プルアップ	QUAD1_CS_N[0]	出力	ブート時、常に使用
GPIO75	プルアップ/プルダ	QUAD1_IO[3]	入出力	「7.3.2 外部端子によるコンフィグレー
GPIO76	ウンなし	QUAD1_IO[2]	入出力	ション」を参照
GPIO77		QUAD1_IO[1]	入出力	
GPIO78		QUAD1_IO[0]	入出力	
GPIO79		QUAD1_CLK	出力	

7.4 SPKG フォーマット (RZ/N1D および RZ/N1S)

7.4.1 概要

ブートソース(QSPI、NAND FLASH、USB)からダウンロードされたデータはビットエラーでイメージが壊れている可能性があります。SPKG フォーマットは内容をチェックするために使用されます。

7.4.2 実装の詳細

ブートローダーは選択されたブートソース(QSPI、NAND FLASH、USB)から有効な SPKG をロードします。

SPKG は以下を含んでいます。

- 8 個のヘッダ (CRC 付き) で構成されるブロック
- ペイロード (ヘッダのブロックの直後)
 - 2nd ステージブートローダーイメージ
 - ペイロードの CRC 値

SPKG データフィールドは以下のテーブルで定義されています。

表 7.2 SPKG フィールド

表 7.2	SPKG フィー	-ルト		
SPKG フィールド	ビット	長さ	フィールド	説明
ヘッダ ^{注 1}				合計 24bytes
	31:0	32bits	Marker	ヘッダ開始表示。 "R"、 "Z"、 "N"、 "1"を設定して ください。
	35:32	4bits	version	SPKG ヘッダのタイプバージョン
	39:36	4bits	spare bits	"0"をセットしてください
	40	1bit	padding	"0"をセットしてください
	42:41	2bits	NAND ECC block size (codeword size)	NAND Flash Controller の CONTROL レジスタの ECC_BLOCK_SIZE に設定されます。 2'b00 — 256 bytes 2'b01 — 512 bytes 2'b10 — 1024 bytes 2'b11 — 設定禁止
	44:43	2bits	padding	"0"をセットしてください
	45	1bit	Hardware ECC Support enable	NAND Flash Controller の CONTROL レジスタの ECC_ENに設定されます。 0 — ECC disabled 1 — ECC enabled
	47:46	2bits	padding	"0"をセットしてください
	50:48	3bits	NAND ECC scheme	NAND Flash Controller の CONTROL レジスタの ECC_CAP に設定されます。 3'b000 — BCH2 3'b001 — BCH4 3'b010 — BCH8 3'b011 — BCH16 3'b100 — BCH24 3'b101、3'b110、3'b111 — BCH32
	55:51	5bits	padding	"0"をセットしてください
	63:56	8bits	NAND ECC bytes per block	NAND ECC ブロックごとの NAND Flash ECC バイトの数 (8 ビット値)。 たとえば、BCH8 かつ NAND ECC ブロックサイズ=512 では、この値は一般的に 14(0x0E)になります
	71:64	8bits	spare byte	"0"をセットしてください
	95:72	24bits	payload length	BLp_header およびイメージとペイロードの CRC で構成されるペイロードの長さ。
	127:96	32bits	load addr	2nd ステージブートローダーイメージの書き込み先の内蔵メモリのアドレス。
	159:128	32bits	execution offset ^{注2}	内蔵メモリの 2nd ステージブートローダーイメージの開始位置からコードを実行する場所までのオフセット
	191:160	32bits	ヘッダの CRC	
~上記へッダの	カコピーを 7	回繰り返し~	•	•
Payload				可変長
		264Bytes	BLp_header	セキュリティオプション用ヘッダ。未使用時は、"O"をセットしてください
		可変	2 nd ステージブートロー ダーイメージ	
		32bits	ペイロードの CRC	

- 注1. NAND Flash からダウンロードしているとき、ヘッダは ECC なしですが CRC でチェックされます。ペイロードは bits 41-63 で 指定することにより ECC が有効になります。ヘッダは ECC なしのため 8 回繰り返されます。つまり、SPKG は 8 つのヘッダ とそれに続く 1 つのペイロードで構成されます。
- 注2. execution offset のビット 0 は 2nd ステージブートローダーが Thumb[®]命令か Arm 命令のどちらで動作するかを選択するために 使われます。(0=Arm 命令、1=Thumb 命令)

3 つのソース (QSPI、NAND FLASH、USB) からのブートイメージデータの整合性は次のように考慮します。

- NAND NAND FLASH に格納されたデータは CRC 機能で整合性が確認され、またハードウェアによる BCH ECC 機能で保護するオプションも用意されています。 ECC データは NAND FLASH のスペアエリア に格納されます。
 - ブートローダーは ECC なしでヘッダブロックの NAND のデータにアクセスします。ヘッダブロックを リードし、ヘッダの CRC 値を使って検証します。ヘッダは ECC の対象でないためヘッダを 8 個持つ ことによってエラーを緩和します。
 - ヘッダが検査されると、ペイロードの ECC パラメータを設定します。
 - ECC パラメータはユーザー定義です。NAND FLASH にイメージを書く時に使われたパラメータを SPKG ヘッダに反映してください。NAND Flash controller でサポートされる範囲で ECC のレベルを自由に決定してください。
 - SPKG はページ先頭に配置してください。ブートローダーは最初のページから順に検索します。
- QuadSPI エラーを含む可能性が低いですが、通常の SPKG 処理の一環として QuadSPI もその整合性を検査するために CRC チェックされます。
 - SPKG はページ先頭に配置してください。ブートローダーは最初のページから順に検索します。
- USB ブートローダーは USB DFU 経由で受信した SPKG に対しても CRC チェックを行います。USB で ダウンロードされる SPKG は 1 個だけです。

SPKG 検証は以下のとおりです。

- SPKG の最初にヘッダが配置されており、ヘッダの CRC 値を使って検証します。エラーになると次のヘッダが使われ、8 個のヘッダがエラーになった場合次の SPKG が使用されます。エラーが出なくなるまで繰り返されます。CRC チェックエラーは UART メッセージとして出力されます。すべての SPKG がエラーになったところでブートローダー処理が停止します。
- ペイロードは CRC チェックされます。
- エラーが SPKG で検出された場合、UART メッセージとして出力されます。

multi Logical Unit (multi-LUN) Flash デバイスの場合、ブートローダーは検出された最初の LUN (LUN0) に格納されたイメージを使用します。

7.5 RZ/N1 初期化シーケンス

7.5.1 標準の初期化シーケンス

- 1) PWRCTRL *DIV レジスタの DIV でクロック分周値を設定
- 2) PWRCTRL_*レジスタの CLKEN_*ビットで対象のクロックをイネーブル
- 3) PWRCTRL *レジスタの RSTN *ビットで対象の機能モジュールのリセットを解除
- 4) PWRCTRL_*および PWRSTAT_*レジスタで NoC インターコネクトを接続 「7.5.4 一般的な NoC のプログラミングシーケンス」を参照
- 5) rGPIOs_Level1_Config*および rGPIOs_Level2_Config*レジスタで IO マルチプレキシングの設定 「**第5章 IO マルチプレキシング**」を参照
- 6) モジュールの初期設定

7.5.2 USBPLL の設定

USBPLL は USB 以外のいくつかのモジュールへ 48MHz のクロックを供給することが可能です。このクロックが必要である場合、以下のシーケンスが要求されます。

- 1) PWRCTRL_USB レジスタの CLKEN_*ビットで USB_HCLKH、USB_HCLKF、USB_HCLKPM、USB PCICLK をイネーブル
- 2) PWRCTRL USB レジスタの RSTN *ビットで USB のリセットを解除
- 3) PWRCTRL USB および PWRSTAT USB レジスタで NoC インターコネクトを接続
- 4) CFG USB レジスタの FRCLK48MOD ビットをイネーブル
- 5) CFG USB レジスタの DIRPD ビットをディセーブル
- 6) 1ms 間ウエイト
- 7) EPCTR レジスタの PLL RST ビットを解除
- 8) USB Function の EPCTR レジスタの PLL_LOCK ビットがアサートされるまでウエイト

7.5.3 Cortex-M3 の活性化

RZ/N1D および RZ/N1S では、Cortex-M3 リセットは Cortex-A7 の起動後も有効です。

Cortex-M3 を活性化するために Cortex-A7 が以下のシーケンスを実行する必要があります。

- 1) PWRCTRL RINCTRL レジスタの CLKEN A で RINBUS HCLK をイネーブル
- 2) PWRCTRL CM3 レジスタの CLKEN A で CM3 HCLK をイネーブル
- 3) PWRCTRL CM3 レジスタの RSTN A で CM3 のリセットを解除
- 4) PWRCTRL_CM3 および PWRSTAT_CM3 レジスタで NoC インターコネクトを接続

Cortex-M3 は 0x0400 0000 に置かれたコードによって起動します。

(RZ/N1D および RZ/N1S では、0x0400_0000 は R-IN Engine の内部構造によって 0x0 にミラーされています)

7.5.4 一般的な NoC のプログラミングシーケンス

以下の図はクロック、リセットおよび NoC の接続/切断のフローのプログラミング手順を示します。

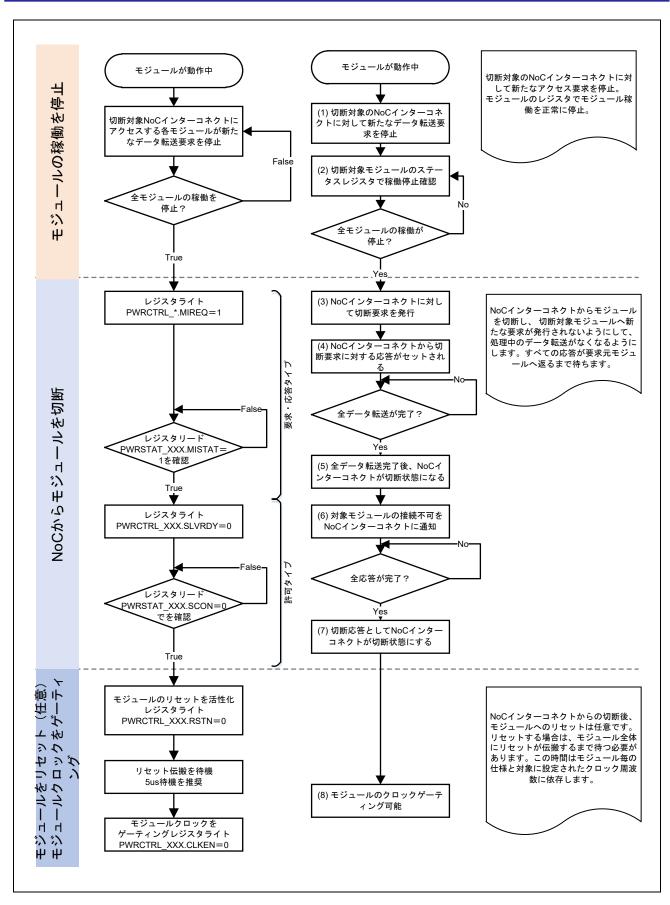


図 7.3 NoC の一般的なプログラミングシーケンス ― 切断

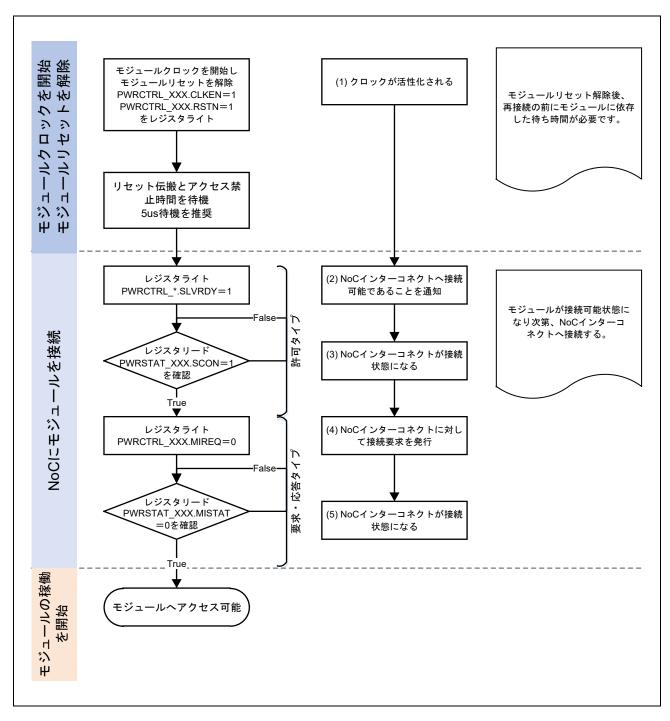


図 7.4 NoC の一般的なプログラミングシーケンス ― 接続

以下のテーブルは各モジュールを使用するための PWRCTRL および PWRSTAT レジスタを示しています。

CA7/CA3 用 Watchdog、システムコントローラ、ConfigSys1、ECC Controller 付き 4MB SRAM、CoreSight、Mailbox ヘアクセスするために PWRCTRL および PWRSTAT レジスタの制御は不要です。

2MB SRAM の ECC 設定レジスタは PWRCTRL_RINCTRL で制御するクロックで動作しているため、レジスタアクセスする前に PWRCTRL_RINCTRL をイネーブルにする必要があります。

表 7.3 各モジュールの接続/切断に関連したレジスタ (1/2)

	NoC 接続(要求/応答タイプ)用 PWRCTRL_XXX レジスタ名			NoC 接続(許可タイプ)用 PWRCTRL_XXX レジスタ名		
	MIREQ/MISTAT	CLKEN/RSTN	SLVRDY/SCON	CLKEN/RSTN	CLKEN/RSTN	
MSEBIM			MSEBI	MSEBI		
ROM			ROM	ROM		
R-IN Engine Accessory Register			RINCTRL	RINCTRL		
Ethernet Accessory Register			SWITCHCTRL	SWITCHCTRL	SWITCHCTRL ^{注 1}	
A5PSW			SWITCH	SWITCH	SWITCH	
QSPI1	QSPI1	QSPI1 ^{注 2}	QSPI1	QSPI1 ^{注 2}	QSPI1	
QSPI2	QSPI2	QSPI2 ^{注 2}	QSPI2	QSPI2 ^{注 2}	QSPI2	
I ² C 1/2			PG0_0	PG0_0	PG0_1	
UART 1/2/3 ^{注 3}			PG0_0	PG0_0	PG0_0	
ADC 1/2			PG0_0	PG0_0	PG0_1	
PWMTimer			PG0_1		PG0_1	
UART 4/5 ^{注 3}			PG1_1	PG1_1	PG1_PR2	
UART 6/7/8 ^{注 3}			PG1_2	PG1_2	PG1_PR2	
SPI 1/2/3/4			PG1_1	PG1_1	PG1_PR3	
SPI 5/6			PG1_1	PG1_1	PG1_PR4	
CAN 1/2			PG3_48MHZ		PG3_48MHZ	
ConfigSys2			PG2_25MHZ		PG2_25MHZ	
TIMER 1/2			PG2_25MHZ		PG2_25MHZ	
Semaphore			PG4	PG4		
BGPIO 1/2			PG1_1	PG1_1		
BGPIO 3			PG1_2	PG1_2		
LCDC	PG4	PG4	PG4	PG4	PG4_PR1	
ETHERCAT	ECAT	ECAT			ECAT ^{注 4}	
SERCOSIII	SERCOS	SERCOS			SERCOS 注4	
HSR	HSR	HSR			HSR ^{注 4}	
DDR 2/3 Controller	DDRC	DDRC			DDRC	
USB	USB ^{注 5}	USB			USB	
Cortex-M3 ^{注 6}	CM3	CM3				
MSEBIS	MSEBI	MSEBI 注 2	MSEBI	MSEBI ^{注 2}		
DMAC 1/2	DMA	DMA ^{注 2}	DMA	DMA ^{注 2}		
GMAC1	MAC1	MAC1 ^{注 2}	MAC1	MAC1 ^{注 2}		
GMAC2	MAC2	MAC2 ^{注 2}	MAC2	MAC2 ^{注 2}		

表 7.3 各モジュールの接続/切断に関連したレジスタ (2/2)

	NoC 接続用(要求/応答タイプ) PWRCTRL_XXX レジスタ名		NoC(許可タ PWRCTRL_X	モジュールインタ フェース用 PWRCTRL_XXX レ ジスタ名	
	MIREQ/MISTAT	CLKEN/RSTN	SLVRDY/SCON	CLKEN/RSTN	CLKEN/RSTN
SDIO1	SDIO1	SDIO1 ^{注2}	SDIO1	SDIO1 ^{注2}	SDIO1
SDIO2	SDIO2	SDIO2 ^{注 2}	SDIO2	SDIO2 ^{注 2}	SDIO2
NAND Flash Controller	NFLASH	NFLASH ^{注2}	NFLASH	NFLASH ^{注2}	NFLASH
RTC ^{注7}	RTC	RTC			RTC
外部 Ethernet クロック					EETH 注 8
HW-RTOS					HWRTOS 注 9

- 注1. 2つの RSTN (RSTN_ETH、RSTN_CLK25)
- 注2. CLKEN/RSTN はどちらのタイプでも共通です。
- 注3. クロックソースとしてメイン PLL もしくは USBPLL を選択できます。
- 注4. 2つの CLKEN と1つの RSTN
- 注5. 2つの MIREQ、3つの CLKEN、1つの RSTN
- 注6. PWRCTRL_CM3 の前に PWRCTRL_RINCTRL をイネーブルにする必要があります。
- 注7. RTC は特別なシーケンスになります。
 RST_RTC を解除 → RTC_PCLK をイネーブル → RSTN_FW_RTC を解除 → IDLE_REQ を解除
 CLKEN_RTC は RTC アクセスの間のみ有効にしてください。
- 注8. MII_REFCLK(外部出力)、RMII_REFCLK(外部出力)、およびRGMII_REFCLK(外部入力)のCLKEN
- 注9. HW-RTOS および HW-RTOS GMAC MDC の CLKEN/RST

第8章 Ethernet インタフェースモード

8.1 概要

Ethernet のプロトコルのためのいくつかのモジュール、GMII/MII マルチプレキシング論理および RGMII/RMII コンバータはイーサネット機能部にあります。この章ではイーサネット機能部を使用可能にするコンフィグレーションについての情報を提供します。

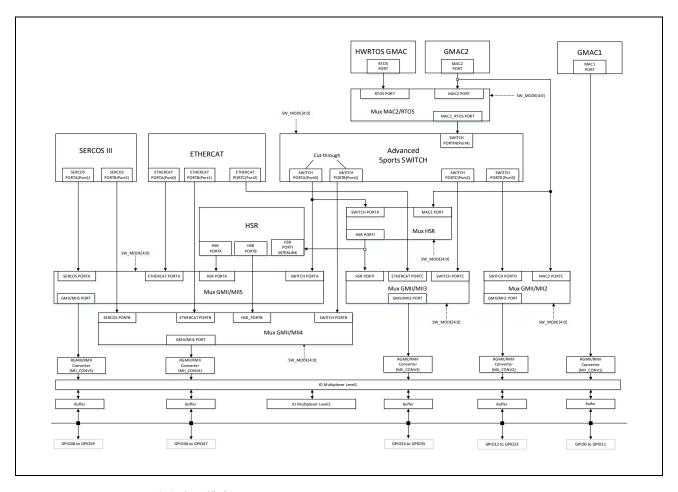


図 8.1 イーサネット機能部の構造

表 8.1 サポートされるイーサネットポート

イーサネットポート	RZ/I	N1D	RZ/I	RZ/N1L	
	BGA-400	BGA-324	BGA-324	BGA-196	BGA-196
ポート1	0	使用不可	0	0	0
ポート2	0	使用不可	0	使用不可	使用不可
ポート3	0	0	0	使用不可	使用不可
ポート4	0	0	0	0	0
ポート 5	0	0	0	0	0

備考 上記の図内の SW_MODE[4:0]については「**8.2.1 イーサネットポートの内部接続**」をご確認ください。ただし、使用可能な設定値は各製品によって異なります。

以下のレジスタはイーサネット機能部の RGMII/RMII コンバータおよびマルチプレクスを設定するために使用されます。

R-IN Engine・イーサネット機能のユーザーズマニュアルを参照してください。

表 8.2 動作モードコントロールレジスタ

公·2 幼川		
アドレス	レジスタシンボル	レジスタ名
4403 0008h	MODCTRL	モードコントロールレジスタ
4403 000Ch	PTPMCTRL	PTP モードコントロールレジスタ
4403 0100h	CONVCTRL1	RGMII/RMII コンバータ 1 コントロールレジスタ
4403 0104h	CONVCTRL2	RGMII/RMII コンバータ 2 コントロールレジスタ
4403 0108h	CONVCTRL3	RGMII/RMII コンバータ 3 コントロールレジスタ
4403 010Ch	CONVCTRL4	RGMII/RMII コンバータ 4 コントロールレジスタ
4403 0110h	CONVCTRL5	RGMII/RMII コンバータ 5 コントロールレジスタ

8.2 サポートするモード

表 8.3 Ethernet I/F のサポートモード

	コン コン バータ バータ による による 変換後 変換前		通信モ	通信モード レジスタ値					
NI-			MII/	` * # # ! ! ! ! ! ! ! ! ! !	全二重		RGMII/RMII コンバ	、 一タ	RGMII クロック セレクタ
No.	モード名	RMII/ RGMII	GMII	速度[bps]	半二重	CONVCTRL[m]. CONV_MODE (m=1~5)	CONVCTRL[m]. FULLD (m=1~5)	CONVCTRL[m]. RMII_CRS_MODE (m=1~5)	PTPMCTRL. RGMII_CLKSEL
1	MII_10M_HALF	MII	MII	10M	半二重	5'b00000	1'b0	1'b1	1'b0
2	MII_10M_FULL	MII	MII	10M	全二重	5'b00000	1'b1	1'b1	1'b0
3	MII_100M_HALF	MII	MII	100M	半二重	5'b00000	1'b0	1'b1	1'b0
4	MII_100M_FULL	MII	MII	100M	全二重	5'b00000	1'b1	1'b1	1'b0
5	RMII_10M_HALF_RI	RMII	MII	10M	半二重	5'b00100	1'b0	1'b1	1'b0
6	RMII_10M_FULL_RI	RMII	MII	10M	全二重	5'b00100	1'b1	1'b1	1'b0
7	RMII_100M_HALF_RI	RMII	MII	100M	半二重	5'b00101	1'b0	1'b1	1'b0
8	RMII_100M_FULL_RI	RMII	MII	100M	全二重	5'b00101	1'b1	1'b1	1'b0
9	RMII_10M_HALF_RO	RMII	MII	10M	半二重	5'b10100	1'b0	1'b1	1'b0
10	RMII_10M_FULL_RO	RMII	MII	10M	全二重	5'b10100	1'b1	1'b1	1'b0
11	RMII_100M_HALF_RO	RMII	MII	100M	半二重	5'b10101	1'b0	1'b1	1'b0
12	RMII_100M_FULL_RO	RMII	MII	100M	全二重	5'b10101	1'b1	1'b1	1'b0
13	RGMII_10M_HALF_RI	RGMII	MII	10M	半二重	5'b01000	1'b0	1'b1	1'b1
14	RGMII_10M_FULL_RI	RGMII	MII	10M	全二重	5'b01000	1'b1	1'b1	1'b1
15	RGMII_100M_HALF_RI	RGMII	MII	100M	半二重	5'b01001	1'b0	1'b1	1'b1
16	RGMII_100M_FULL_RI	RGMII	MII	100M	全二重	5'b01001	1'b1	1'b1	1'b1
17	RGMII_1G_HALF_RI	RGMII	GMII	1G	半二重	5'b01010	1'b0	1'b1	1'b1
18	RGMII_1G_FULL_RI	RGMII	GMII	1G	全二重	5'b01010	1'b1	1'b1	1'b1
19	RGMII_10M_HALF	RGMII	MII	10M	半二重	5'b01000	1'b0	1'b1	1'b0
20	RGMII_10M_FULL	RGMII	MII	10M	全二重	5'b01000	1'b1	1'b1	1'b0
21	RGMII_100M_HALF	RGMII	MII	100M	半二重	5'b01001	1'b0	1'b1	1'b0
22	RGMII_100M_FULL	RGMII	MII	100M	全二重	5'b01001	1'b1	1'b1	1'b0
23	RGMII_1G_HALF	RGMII	GMII	1G	半二重	5'b01010	1'b0	1'b1	1'b0
24	RGMII_1G_FULL	RGMII	GMII	1G	全二重	5'b01010	1'b1	1'b1	1'b0

表 8.4 Ethernet PHY のクロック I/F (Part 1)

	No.とモード名	1	2	3	4			
クロック		MII_10M_HALF	MII_10M_HALF MII_10M_FULL MII_100M_HALF		MII_100M_FULL			
リファレンス	方向		PHY へ出力					
クロック	クロック信 号 名		MII_RE	EFCLK				
	周波数 [MHz]		2	25				
送信クロック	方向		PHY か	ら入力				
	クロック信 号 名		GMII[m]_TXCL	.K (m=1~5)				
	周波数 [MHz]	2.	5	25				
受信クロック	方向	PHY から入力						
	クロック信号名	GMII[m]_RXCLK (m=1~5)						
	周波数 [MHz]	2.	5	2	5			

表 8.5 Ethernet PHY のクロック I/F (Part 2)

	No.とモード名	5	6	7	8		
クロック		RMII_10M_HALF_RI	RMII_10M_FULL_RI	RMII_100M_HALF_RI	RMII_100M_FULL_RI		
リファレンス	方向		PHY か	ら入力			
クロック	クロック信号名		GMII[m]_RXCL	K (m=1~5)			
	周波数 [MHz]		5	0			
送信クロック	方向		リファレンスク	フロックを使用			
	クロック信 号 名						
	周波数 [MHz]						
受信クロック	方向	リファレンスクロックを使用					
	クロック信 号 名						
	周波数 [MHz]						

表 8.6 Ethernet PHY のクロック I/F (Part 3)

	No.とモード名	9	10	11	12			
クロック		RMII_10M_HALF_RO	RMII_10M_FULL_RO	RMII_100M_HALF_RO	RMII_100M_FULL_RO			
リファレンス	方向	PHY へ出力						
クロック	クロック信 号 名	RMII_REFCLK						
	周波数 [MHz]	50						
送信クロック	方向	リファレンスクロックを使用						
	クロック信号名							
	周波数 [MHz]							
受信クロック	方向	リファレンスクロックを使用						
	クロック信号名							
	周波数 [MHz]							

表 8.7 Ethernet PHY のクロック I/F (Part 4)

_							
	No.とモード名	13	14	15	16		
クロック		RGMII_10M_HALF_RI	RGMII_10M_FULL_RI	RGMII_100M_HALF_RI	RGMII_100M_FULL_RI		
	方向	外部オシレータから入力					
クロック	クロック信号名	RGMII_REFCLK					
	周波数 [MHz]	125					
送信クロック	方向	PHY へ出力					
	クロック信号名	GMII[m]_TXCLK (m=1~5)					
	周波数 [MHz]	2.	5	25			
受信クロック 方向 PHY から入力							
	クロック信号名	GMII[m]_RXCLK (m=1~5)					
	周波数 [MHz]	2.	5	25			

表 8.8 Ethernet PHY のクロック I/F (Part 5)

	No.とモード名	17	18		
クロック		RGMII_1G_HALF_RI	RGMII_1G_FULL_RI		
リファレンス	方向	外部オシレー	ータから入力		
クロック	クロック信 号 名	RGMII_F	MII_REFCLK		
	周波数 [MHz]	25			
送信クロック	方向	PHY へ出力			
	クロック信 号 名	GMII[m]_TXCL	K (m=1~5)		
周波数 [MHz]			125		
受信クロック	方向	PHY から入力			
	<mark>クロック信号名 GMII[m]_RXCLK(m=1~5)</mark>				
	周波数 [MHz]	125			

表 8.9 Ethernet PHY のクロック I/F (Part 6)

	No.とモード名	19	20	21	22		
クロック		RGMII_10M_HALF	RGMII_10M_HALF RGMII_10M_FULL RGMII_100M_HA		RGMII_100M_FULL		
リファレンス	方向		_				
クロック	クロック信号名	_					
	周波数 [MHz]						
送信クロック	方向	PHY へ出力					
	クロック信号名	GMII[m]_TXCLK (m=1~5)					
	周波数 [MHz]	2.5 25					
受信クロック	方向	PHY から入力					
	クロック信号名	GMII[m]_RXCLK (m=1~5)					
	周波数 [MHz]	2.5 25					

表 8.10 Ethernet PHY のクロック I/F(Part 7)

No.とモード名		23	24				
クロック		RGMII_1G_HALF	RGMII_1G_FULL				
リファレンス 方向			_				
クロック	クロック信号名	_					
	周波数 [MHz]	_	_				
送信クロック	方向	PHYへ出力					
	クロック信号名	GMII[m]_TXCLK (m=1~5)					
	25						
受信クロック	方向	PHY から入力					
	クロック信号名	• •					
	周波数 [MHz]						

表 8.11 各モジュールのサポートモード

Ethernet I/F モード		各モジュールのサポートモード						
		A5PSW PortA/B/C/D						
No.	モード名	GMAC1/2	ストアアンド フォワード/ カットスルー	HUB モード	ETHERCAT PortA/B/C	SERCOSIII PortA/B	HSR PortA/B InterLink ^{注 1}	
1	MII_10M_HALF	0	0	×	×	×	×	
2	MII_10M_FULL	0	0	×	×	×	×	
3	MII_100M_HALF	0	0	×	×	×	×	
4	MII_100M_FULL	0	0	×	O ^{注2}	0	0	
5	RMII_10M_HALF_RI	0	0	×	×	×	×	
6	RMII_10M_FULL_RI	0	0	×	×	×	×	
7	RMII_100M_HALF_RI	0	0	×	×	×	×	
8	RMII_100M_FULL_RI	0	0	×	O ^{注3}	0	0	
9	RMII_10M_HALF_RO	0	0	×	×	×	×	
10	RMII_10M_FULL_RO	0	0	×	×	×	×	
11	RMII_100M_HALF_RO	0	0	0	×	×	×	
12	RMII_100M_FULL_RO	0	0	×	0	0	0	
13	RGMII_10M_HALF_RI	0	0	×	×	×	×	
14	RGMII_10M_FULL_RI	0	0	×	×	×	×	
15	RGMII_100M_HALF_RI	0	0	×	×	×	×	
16	RGMII_100M_FULL_RI	0	0	×	×	×	×	
17	RGMII_1G_HALF_RI	0	×	×	×	×	×	
18	RGMII_1G_FULL_RI	0	0	×	×	×	×	
19	RGMII_10M_HALF	0	0	×	×	×	×	
20	RGMII_10M_FULL	0	0	×	×	×	×	
21	RGMII_100M_HALF	0	0	×	×	×	×	
22	RGMII_100M_FULL	0	0	×	×	×	×	
23	RGMII_1G_HALF	0	×	×	×	×	×	
24	RGMII_1G_FULL	0	0	×	×	×	×	

注1. 外部ポート接続時(MODCTRL.SW_MODE[4:0]=5'b11110)のみ Port InterLink がサポートされます。

注2. ETHERCAT 使用時、入力された GMII[m]_TXCLK (m=3~5) のリファレンスクロックは MII_REFCLK の出力クロックに同期 していなければなりません。

注3. ETHERCAT 使用時、入力された GMII[m]_RXCLK (m=3~5) のリファレンスクロックは RMII_REFCLK の出力クロックに同期していなければなりません。

8.2.1 イーサネットポートの内部接続

イーサネットポートの内部接続は、イーサネットアクセサリレジスタのモードコントロールレジスタ (MODCTRL) によって、以下のようにコントロールされます。

表 8.12 イーサネットポートの内部接続

レ	1ントロール ジスタ			イーサ	ネットポートのに	内部接続					
	DCTRL. MODE[4:0]										
10 進	2 進	HSR PORTI INTERLINK	SWITCH PORTIN (A5PSW 管 理ポート)	MII_CONV1	MII_CONV2	MII_CONV3	MII_CONV4	MII_CONV5			
0	5'b00000	_	RTOS PORT	MAC1 PORT	SWITCH PORTD	SWITCH PORTC	SERCOS PORTB	SERCOS PORTA			
1	5'b00001	_	RTOS PORT	MAC1 PORT	SWITCH PORTD	SWITCH PORTC	ETHERCAT PORTB	ETHERCAT PORTA			
2	5'b00010	_	RTOS PORT	MAC1 PORT	SWITCH PORTD	ETHERCAT PORTC	ETHERCAT PORTB	ETHERCAT PORTA			
3	5'b00011	_	RTOS PORT	MAC1 PORT	SWITCH PORTD	SWITCH PORTC	SWITCH PORTB	SWITCH PORTA			
4~7	5'b00100~ 5'b00111		予約(設定禁止)								
8	5'b01000	_	RTOS PORT	MAC1 PORT	MAC2 PORT	SWITCH PORTC	SERCOS PORTB	SERCOS PORTA			
9	5'b01001	_	RTOS PORT	MAC1 PORT	MAC2 PORT	SWITCH PORTC	ETHERCAT PORTB	ETHERCAT PORTA			
10	5'b01010	_	RTOS PORT	MAC1 PORT	MAC2 PORT	ETHERCAT PORTC	ETHERCAT PORTB	ETHERCAT PORTA			
11	5'b01011	_	RTOS PORT	MAC1 PORT	MAC2 PORT	SWITCH PORTC	SWITCH PORTB	SWITCH PORTA			
12~15	5'b01100~ 5'b01111			-	予約(設定禁止)						
16	5'b10000	_	MAC2 PORT	MAC1 PORT	SWITCH PORTD	SWITCH PORTC	SERCOS PORTB	SERCOS PORTA			
17	5'b10001	_	MAC2 PORT	MAC1 PORT	SWITCH PORTD	SWITCH PORTC	ETHERCAT PORTB	ETHERCAT PORTA			
18	5'b10010	_	MAC2 PORT	MAC1 PORT	SWITCH PORTD	ETHERCAT PORTC	ETHERCAT PORTB	ETHERCAT PORTA			
19	5'b10011	_	MAC2 PORT	MAC1 PORT	SWITCH PORTD	SWITCH PORTC	SWITCH PORTB	SWITCH PORTA			
20~27	5'b10100~ 5'b11011			:	予約(設定禁止)						
28	5'b11100	_	MAC2 PORT	MAC1 PORT	SWITCH PORTD	SWITCH PORTC	HSR PORTB	HSR PORTA			
29	5'b11101	SWITCH PORTA	MAC2 PORT	MAC1 PORT	SWITCH PORTD	SWITCH PORTC	HSR PORTB	HSR PORTA			
30	5'b11110	MII_CONV3	MAC2 PORT	MAC1 PORT	SWITCH PORTD	HSR PORTI INTERLINK	HSR PORTB	HSR PORTA			
31	5'b11111	MAC2 PORT	_	MAC1 PORT	_	_	HSR PORTB	HSR PORTA			

8.2.2 PTP 用クロックの選択

PTP 用クロックはイーサネットアクセサリレジスタの PTP モードコントロールレジスタ (PTPMCTRL) によって選択されます。

「表 8.13 PTP 用クロックの選択」は各 PTP 用クロック設定を示し、「表 8.14 PTP_MODE の推奨設定」は MODCTRL.SW_MODE ビットに対する推奨値を示しています。

各モジュールの PTP 機能に関しては、R-IN Engine・イーサネット機能のユーザーズマニュアルの「6.5.7 IEEE 1588 タイムスタンプ生成のプログラミングガイドライン」および「4.5.4 タイムスタンプ機能 (TSM)」を参照してください。

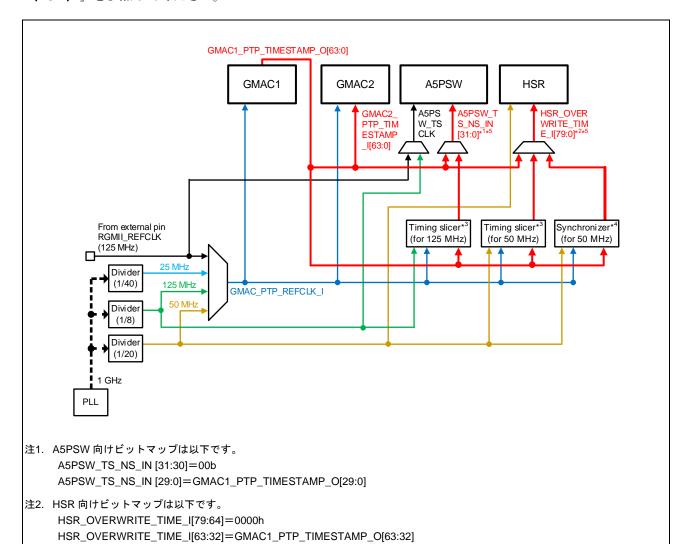


図 8.2 PTPMCTRL レジスタによる PTP 用クロックの選択

HSR_OVERWRITE_TIME_I[29:0]=GMAC1_PTP_TIMESTAMP_O[29:0]

HSR_OVERWRITE_TIME_I[31:30]=00b

注3. Timing slicer はクロック周波数変換の同期ブリッジです。 注4. Synchronizer はクロック周波数変換の非同期ブリッジです。

注5. 有効な値にするため、PWRCTRL_SWITCHCTRL レジスタの RSTN_CLK25 のリセットを解除してください。

表 8.13 PTP 用クロックの選択

PTPMCT	GMAC1	GMAC2	A5PSW		HS	HSR		
RL.PTP_ MODE [3:0]	GMAC_PTP_REFCLK_I	GMAC_PTP_REFCLK_I	PTP 用クロック (A5PSW_TSCLK)	Timing Slicer	PTP 用クロック	Synchronizer	Timing Slicer	
O 4'b0000	停止	停止	停止	無効	無効	無効	無効	
A 4'b0001	RGMII_REFCLK (外部端子からの 125MHz)	RGMII_REFCLK (外部端子からの 125MHz)	RGMII_REFCLK (外部端子からの 125MHz)	無効	50MHz (PLL ソースから)	有効	無効	
B 4'b0010	125MHz (PLL ソースから)	125MHz (PLL ソースから)	125MHz (PLL ソースから)	無効	50MHz (PLL ソースから)	無効	有効	
C 4'b0011	50MHz (PLL ソースから)	50MHz (PLL ソースから)	125MHz (PLL ソースから)	有効	50MHz (PLL ソースから)	無効	無効	
D 4'b0100	25MHz (PLL ソースから)	25MHz (PLL ソースから)	125MHz (PLL ソースから)	有効	50MHz (PLL ソースから)	無効	有効	

表 8.14 PTP_MODE の推奨設定

Mode C	ontrol Register	PTP Mode Control Register											
			PTPMCTRL.PTP_MOD	DE[3:0]の推奨値									
	OCTRL.SW	PTP タイマー	こ高精度要求時										
_M	IODE[4:0]	RGMII_REFCLK 使用時 (PTPMCTRL.RGMII_CLKSEL=1)	RGMII_REFCLK 未使用時 (PTPMCTRL.RGMII_CLKSEL=0)	PTP-Timer に低パワー要求時	PTP-Timer 未使用時								
10 進	2進	Symbol	Symbol	Symbol	Symbol								
0	5'b00000	А	В	D	0								
1	5'b00001	Α	В	D	0								
2	5'b00010	A	В	D	0								
3	5'b00011	А	В	D	0								
4~7	5'b00100~ 5'b00111	予約(設定禁止)											
8	5'b01000	А	В	D	0								
9	5'b01001	А	В	D	0								
10	5'b01010	А	В	D	0								
11	5'b01011	А	В	D	0								
12~15	5'b01100~ 5'b01111		予約(設定禁	(上)									
16	5'b10000	А	В	D	0								
17	5'b10001	А	В	D	0								
18	5'b10010	А	В	D	0								
19	5'b10011	А	В	D	0								
20~27	5'b10100~ 5'b11011		予約(設定禁	上									
28	5'b11100	В	В	С	0								
29	5'b11101	В	В	С	0								
30	5'b11110	В	В	С	0								
31	5'b11111	В	В	С	0								

PTP でのタイムスタンプ処理と構成例を以下に示します。

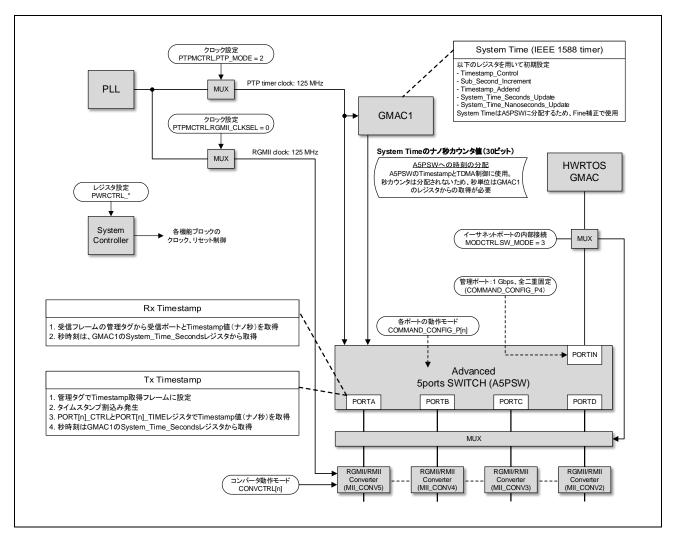


図 8.3 PTP 使用時の構成例

8.3 操作手順

8.3.1 初期化

Ethernet を使うためのシーケンス例は以下のとおりです。

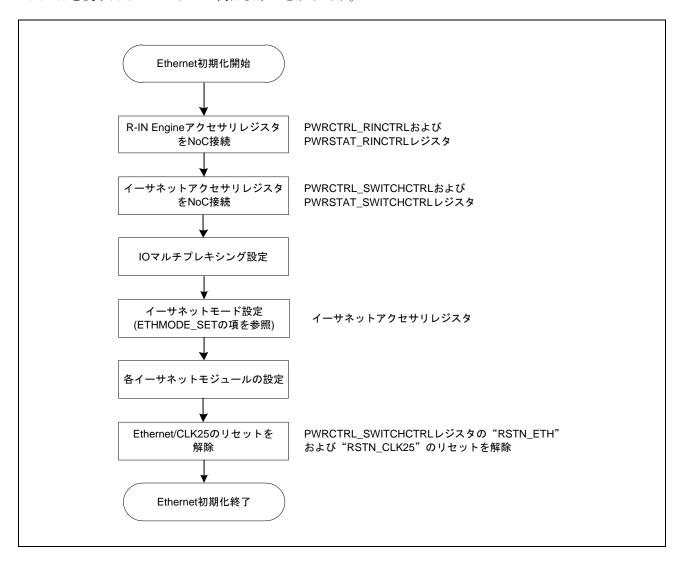
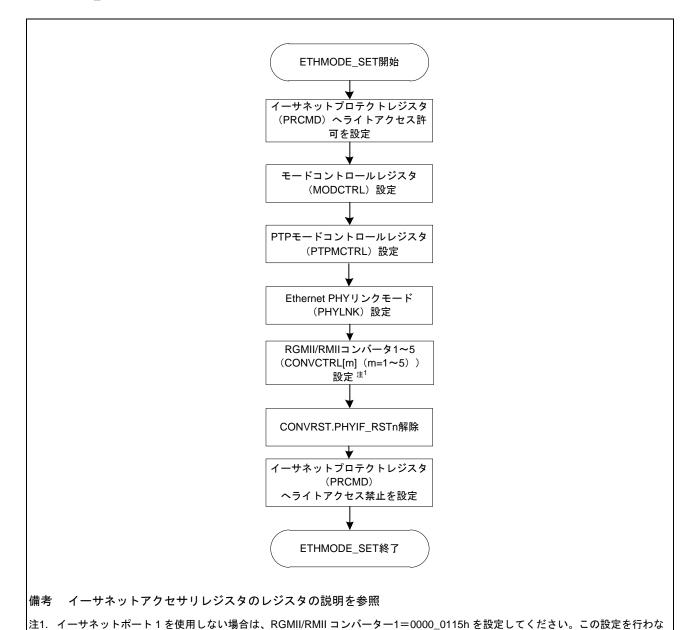



図 8.4 Ethernet の初期化のフローチャート

8.3.2 ETHMODE_SET

ETHMODE_SET 動作のため、以下のフローチャートを実施してください。

いと、PTP 回路は動作しません。たとえば、RZ/N1D-324 ではポート 1 がないため、この設定は必須です。

図 8.5 ETHMODE_SET フローチャート

8.4 使用上の注意事項

8.4.1 制限

- SERCOSIII、ETHERCAT、HSR は同時に使用できません。
- HW-RTOS GMAC と HSR は同時に使用できません。
- HSR は RZ/N1D のみ使用可能です。
- RZ/N1D-324 はポート 3、4、5 のみ使用可能です。
- RZ/N1S-196 と RZ/N1L はポート 1、4、5 のみ使用可能です。

8.4.1.1 サポートされる Ethernet 信号

表 8.15 各 PHY モードにおける Ethernet 信号

信号名	MII モード	RMII モード	RGMII モード	注釈
GMII[m]_TXCLK	TX_CLK	未使用	TXC	
GMII[m]_TXD0	TXD0	TXD0	TXD0	
GMII[m]_TXD1	TXD1	TXD1	TXD1	
GMII[m]_TXD2	TXD2	未使用	TXD2	
GMII[m]_TXD3	TXD3	未使用	TXD3	
GMII[m]_TXEN	TX_EN	TX_EN	TX_CTL	
GMII[m]_TXER	TX_ER	未使用	未使用	RZ/N1S-196、または RZ/N1L のポート 1 にはありません
GMII[m]_RXCLK	RX_CLK	REF_CLK	RXC	
GMII[m]_RXD0	RXD0	RXD0	RXD0	
GMII[m]_RXD1	RXD1	RXD1	RXD1	
GMII[m]_RXD2	RXD2	未使用	RXD2	
GMII[m]_RXD3	RXD3	未使用	RXD3	
GMII[m]_RXDV	RX_DV	CRS_DV	RX_CTL	
GMII[m]_RXER	RX_ER	RX_ER (オプション)	未使用	RZ/N1S-196、または RZ/N1L のポート 1 にはありません
GMII[m]_CRS	CRS	未使用	未使用	RZ/N1S-196、または RZ/N1L のポート 1 にはありません
GMII[m]_COL	COL	未使用	未使用	RZ/N1S-196、または RZ/N1L のポート 1 にはありません

備考 m=1~5

第9章 割り込み

9.1 概要

RZ/N1 は割り込みコントローラとして Cortex-A7 GICv2 と Cortex-M3 NVIC を持っています。

9.1.1 Cortex-A7 GICv2

GIC は多数の割り込みソースから照合、調停を行います。以下が提供されます。

- 割り込みマスク
- 割り込みの優先順位づけ
- ターゲットプロセッサへの割り込みを nIRQ と nFIQ で分配
- 割り込み状態のトラッキング
- ソフトウェアによる割り込みの生成
- セキュリティ拡張のサポート
- 仮想化拡張のサポート
- 160 の標準割り込みソースをサポート
- GIC は Arm Generic Interrupt Controller (GIC) Architecture Specification の version 2.0 に準拠

Arm ウェブサイトの "CoreLink™ GIC-400 Generic Interrupt Controller Technical Reference Manual" を参照して ください。

9.1.2 Cortex-M3 NVIC

NVICの主な機能は以下のとおりです。

- 割り込みマスク
- 割り込みの優先順位づけ
- ソフトウェアによる割り込みの生成
- 低レイテンシ割り込みを容易にします(NVIC とプロセッサコアインタフェースは密接に結合)。NVIC 多重割り込みを可能にするため、スタックされた(ネストされた)割り込みの情報を保持します。
- パワーマネージメントの管理
- 最大 256 優先度レベル付け可能な 240 の標準割り込みソースのサポート
- 外部 IO からコントロールされる NMI 割り込み

Arm ウェブサイトの "Cortex-M3 Technical Reference Manual" を参照してください。

9.2 動作

9.2.1 IRQ の同期化

RZ/N1 システムコントローラはすべてのソースからすべての IRQ 信号を受け取り、Cortex-A7 GIC、Cortex-M3 NVIC、HW-RTOS に伝達します。次の IRQ 処理カテゴリが区別されています。

- Cortex-A7 GIC には同期論理があります。
- RZ/N1 システムコントローラはすべての割り込みで Cortex-M3 と HW-RTOS 用の同期論理があります。よって、Cortex-M3 と HW-RTOS は同期化後の割り込み信号を受け取ります。
- イーサネット機能は IRQ の特定の割り込み(49~52番)を共有しています。

9.2.2 ノンマスカブル割り込み

Cortex-M3 CPU はノンマスカブル割り込み (NMI) の入力を持っています。この割り込みは IO マルチプレキシングによって外部端子に割り当て可能です。

9.2.3 Cortex-A7 と Cortex-M3 の割り込みマネージメント

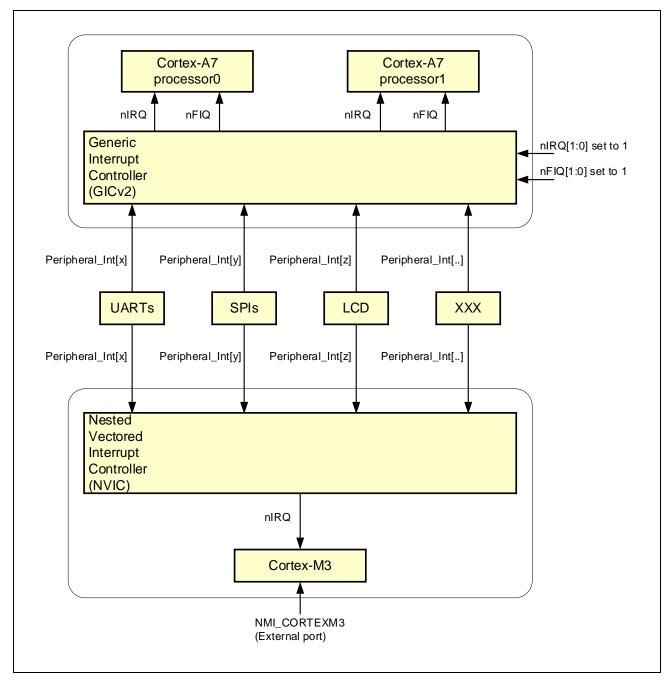


図 9.1 Cortex-A7 と Cortex-M3 の割り込みマネージメント

9.2.4 割り込み割り当てとベクタ番号

表 9.1 割り込み割り当てとベクタ番号 (1/4)

IRQ	IDO	N1D		N1S		N1L	2400
[番号]	IRQ	CA7	СМЗ	CA7	СМЗ	СМЗ	説明
0	ADC_Int	0	0	0	0	0	ADC 割り込み
1	I2C1_Int	0	0	0	0	0	I2C1 割り込み
2	I2C2_Int	0	0	0	0	0	I2C2 割り込み
3	予約	_	_	_	_	_	予約
4	予約	_	_	_	_	_	予約
5	予約	_	_	_	_	_	予約
6	UART1_Int	0	0	0	0	0	UART1 割り込み
7	UART2_Int	0	0	0	0	0	UART2 割り込み
8	UART3_Int	0	0	0	0	0	UART3 割り込み
9	予約	_	_	_	_	_	予約
10	PWM_Int	0	0	0	0	0	PWMTimer 割り込み
11	ECC_4MB_Int		_	0	0	0	4MB SRAM で ECC エラー検出および訂正不可
12	ECC_2MB_Int	0	0	0	0	0	2MB SRAM で ECC エラー検出および訂正不可
13	CM3_LOCKUP_Int	0	_	0	_	_	Cortex-M3 ロックアップ
14	CM3_TRING_Int[0]	0	0	0	0	_	トリガ割り込み 0 (Cortex-M3 のクロストリガインタフェース)
15	CM3_TRING_Int[1]	0	0	0	0	_	トリガ割り込み 1 (Cortex-M3 のクロストリガインタフェース)
16	HWRTOS_BRAMERR_Int	_	0	_	0	0	HW-RTOS GMAC バッファ RAM エリアアクセスエラー
17	HWRTOS_BUFDMA_Int	_	0	_	0	0	HW-RTOS GMAC バッファ間 DMA 転送完了
18	HWRTOS_BUFDMAERR_Int	_	0	_	0	0	HW-RTOS GMAC バッファ間 DMA エラー
19	HWRTOS_ETHMMAI_Int	_	0		0	0	HW-RTOS GMAC MII 管理アクセス完了割り込み
20	HWRTOS_ETHPPIT_Int	_	0	_	0	0	HW-RTOS GMAC ポーズパケット送信完了
21	HWRTOS_ETHDRIE_Int	_	0	_	0	0	HW-RTOS GMAC MACDMA 受信エラー
22	HWRTOS_ETHDMAIR_Int	_	0	_	0	0	HW-RTOS GMAC MACDMA 受信完了
23	HWRTOS_ETHRFE_Int	_	0	_	0	0	HW-RTOS GMAC MACDMA エラーフレーム受信完了
24	HWRTOS_ETHRFIV_Int	_	0	_	0	0	HW-RTOS GMAC RX FIFO オーバーフロー
25	HWRTOS_ETHIT_Int	_	0	_	0	0	HW-RTOS GMAC 送信完了割り込み
26	HWRTOS_ETHDTIE_Int	_	0	_	0	0	HW-RTOS GMAC MACDMA 送信エラー
27	HWRTOS_ETHDMAIT_Int	_	0	_	0	0	HW-RTOS GMAC MACDMA 送信完了
28	HWRTOS_ETHTFIU_Int	_	0	_	0	0	HW-RTOS GMAC TX FIFO アンダーフロー
29	HWRTOS_ETHTFIE_Int	_	0	_	0	0	HW-RTOS GMAC TX FIFO エラー割り込み
30	HWRTOS_Int	_	0	_	0	0	HW-RTOS 割り込み
31	HWRTOS_ETHRFI_Int	_	0	_	0	0	HW-RTOS GMAC MACDMA 有効フレーム受信完了
32	予約	_	_	_	_	_	予約
33	予約	_	_	_	_	_	予約
34	GMAC1_SBD_Int	0	0	0	0	0	GMAC1 汎用
35	GMAC1_LPI_Int	0	0	0	0	0	GMAC1 省電力
36	GMAC1_PMT_Int	0	0	0	0	0	GMAC1 電力管理
37	GMAC2_SBD_Int	0	0	0	0	0	GMAC2 汎用
38	GMAC2_LPI_Int	0	0	0	0	0	GMAC2 省電力
39	GMAC2_PMT_Int	0	0	0	0	0	GMAC2 電力管理
40	A5PSW_DLR_Int	0	0	0	0	0	A5PSW — DLR 割り込み

表 9.1 割り込み割り当てとベクタ番号 (2/4)

IRQ	IDO	N.	1D	N.	1S	N1L	=24.00
[番号]	IRQ	CA7	СМЗ	CA7	СМЗ	СМЗ	説明
41	予約	_	_	_	_	_	予約
42	A5PSW_Int	0	0	0	0	0	A5PSW
43	A5PSW_PRP_Int	0	0	0	0	_	A5PSW — PRP 割り込み
44	A5PSW_HUB_Int	0	0	0	0	0	A5PSW — 内蔵 Hub モジュール
45	A5PSW_PTRN_Int	0	0	0	0	0	A5PSW — RX パターンマッチャー
46	ETHCAT_RST_Int	0	0	0	0	0	ETHERCAT リセット割り込み
47	ETHCAT_SYNC_Int[0]	0	0	0	0	0	ETHERCAT シンク 0 割り込み
48	ETHCAT_SYNC_Int[1]	0	0	0	0	0	ETHERCAT シンク 1 割り込み
49	ETHCAT_WDT_Int SERCOS3_DIVCLK_Int	0	0	0	0	0	ETHERCAT と SERCOSIII の IRQ の間で OR されています(1 モジュールだけ排他的に使われます) ETHERCAT: WDT 割り込み SERCOSIII: Divided 通信クロック出力
50	ETHCAT_EOF_Int SERCOS3_CONCLK_Int HSR_PTP_I_IRQ	0	0	0	0	0	ETHERCAT、SERCOSIII と HSR IRQ の間で OR されています(1 モジュールだけ排他的に使われます) ETHERCAT: EOF 割り込み SERCOSIII: 通信同期制御クロック出力 HSR: PTP インタフェース割り込み
51	ETHCAT_SOF_Int SERCOS3_Int[0] HSR_CPU_I_IRQ	0	0	0	0	0	ETHERCAT、SERCOSIII と HSR IRQ の間で OR されています(1 モジュールだけ排他的に使われます) ETHERCAT: SOF 割り込み SERCOSIII: ポート 1 割り込み HSR: CPU インタフェース割り込み
52	ETHCAT_Int SERCOS3_Int[1]	0	0	0	0	0	ETHERCAT と SERCOSIII IRQs の間でマルチプレキシング(アクティブなモジュールに依存) ETHERCAT 割り込み SERCOSIII:ポート2割り込み
53	予約	_	_	_	_	_	予約
54	予約	_	_	_	_	_	予約
55	予約	_	_	_	_	_	予約
56	DMA1_Int	0	0	0	0	0	DMAC1 割り込み
57	DMA2_Int	0	0	0	0	0	DMAC2 割り込み
58	NAND_Int	0	0	0	0	0	NAND Flash Controller 割り込み
59	IPCM_Int[0]	0	0	0	0	1	Mailbox 割り込み 0
60	IPCM_Int[1]	0	0	0	0	1	Mailbox 割り込み 1
61	IPCM_Int[2]	0	0	0	0	1	Mailbox 割り込み 2
62	予約	_	_	_	_	_	予約
63	MSEBIS_Int	0	0	0	0	0	MSEBI スレーブバス割り込み
64	QSPI1_Int	0	0	0	0	0	QuadSPI1 割り込み
65	QSPI2_Int	_	_	0	0	_	QuadSPI2 割り込み
66	RTCATINTAL_Int	0	_	0	_	_	RTC(アラーム割り込み)
67	RTCATINTR_Int	0	_	0	_	_	RTC(固定周期割り込み)
68	RTCATINT1S_Int	0	_	0	_	_	RTC (1 秒割り込み)
69	SDIF1_Int	0	0	0	0	0	SDIO/SD/eMMC 1 割り込み
70	SDIF1_wkup_Int	0	0	0	0	0	SDIO/SD/eMMC 1 ウェイクアップ
71	SDIF2_Int	0	0	0	0	0	SDIO/SD/eMMC 2 割り込み
72	SDIF2_wkup_Int	0	0	0	0	0	SDIO/SD/eMMC 2 ウェイクアップ

表 9.1 割り込み割り当てとベクタ番号 (3/4)

表 9.1	割り込み割り当くとヘクク	N1D N1S			10	N1L	
IRQ [番号]	IRQ		CM3			CM3	説明
73	WDT_CA7_p0_reset_Int	0	0	0	0	_	CA7 processor0 のウォッチドッグタイマー
74	WDT_CA7_p1_reset_Int	0	0	_	_	_	CA7 processor1 のウォッチドッグタイマー
75	WDT_CM3_reset_Int	0	0	0	0	0	CM3 のウォッチドッグタイマー
76	DDRC_Int	0	0	_	_	_	DDR コントローラ
77	USB2F_EPC_Int	0	0	0	0	0	USB ファンクション
78	USB2F_Int	0	0	0	0	0	USB ファンクション
79	USB2H_BIND_Int	0	0	0	0	0	USB ホスト
80	SPI1_Int	0	0	0	0	0	SPI1 マスタ割り込み
81	SPI2_Int	0	0	0	0	0	SPI2 マスタ割り込み
82	SPI3_Int	0	0	0	0	0	SPI3 マスタ割り込み
83	SPI4_Int	0	0	0	0	0	SPI4 マスタ割り込み
84	SPI5_Int	0	0	0	0	0	SPI5 スレーブ割り込み
85	SPI6_Int	0	0	0	0	0	SPI6 スレーブ割り込み
86	UART4_Int	0	0	0	0	0	UART4 割り込み
87	UART5_Int	0	0	0	0	0	UART5 割り込み
88	UART6_Int	0	0	0	0	0	UART6 割り込み
89	UART7_Int	0	0	0	0	0	UART7 割り込み
90	UART8_Int	0	0	0	0	0	UART8 割り込み
91	予約	_	_	_	_	_	予約
92	予約	_	_	_	_	_	予約
93	予約	_	_	_	_	_	予約
94	予約	_	_	_	_	_	予約
95	CAN1_Int	0	0	0	0	0	CAN1
96	CAN2_Int	0	0	0	0	0	CAN2
97	LCDC_Int	0	0	0	0	_	LCD コントローラ割り込み
98	予約	_	_	_	_	_	予約
99	予約	_	_	_	_	_	予約
100	予約	_	_	_	_	_	予約
101	予約	_	_	_	_	_	予約
102	予約	_	_	_	_	_	予約
103	GPIO_Int[0]	0	0	0	0	0	32*3 の割り込みソースから選択(BGPIO1、2、3) ^{注1}
104	GPIO_Int[1]	0	0	0	0	0	32*3 の割り込みソースから選択(BGPIO1、2、3) ^{注1}
105	GPIO_Int[2]	0	0	0	0	0	32*3 の割り込みソースから選択(BGPIO1、2、3) ^{注1}
106	GPIO_Int[3]	0	0	0	0	0	32*3 の割り込みソースから選択(BGPIO1、2、3) ^{注1}
107	GPIO_Int[4]	0	0	0	0	0	32*3 の割り込みソースから選択(BGPIO1、2、3) ^{注1}
108	GPIO_Int[5]	0	0	0	0	0	32*3 の割り込みソースから選択 (BGPIO1、2、3) ^{注1}
109	GPIO_Int[6]	0	0	0	0	0	32*3 の割り込みソースから選択 (BGPIO1、2、3) ^{注1}
110	GPIO_Int[7]	0	0	0	0	0	32*3 の割り込みソースから選択 (BGPIO1、2、3) ^{注1}
111	予約	_	_		_	_	予約
112	TIMER1_Int[0]	0	0	0	0	0	TIMER1 のサブタイマー0 割り込み
113	TIMER1_Int[1]	0	0	0	0	0	TIMER1 のサブタイマー1 割り込み
114	TIMER1_Int[2]	0	0	0	0	0	TIMER1 のサブタイマー2 割り込み
115	TIMER1_Int[3]	0	0	0	0	0	TIMER1 のサブタイマー3 割り込み
116	TIMER1_Int[4]	0	0	0	0	0	TIMER1 のサブタイマー4 割り込み
L		1	Ĭ.	ı		ı	I .

表 9.1 割り込み割り当てとベクタ番号 (4/4)

IRQ	IDO	N ²	1D	N.	18	N1L	= 24 00
[番号]	IRQ	CA7	СМЗ	CA7	СМЗ	СМЗ	説明
117	TIMER1_Int[5]	0	0	0	0	0	TIMER1 のサブタイマー5 割り込み
118	TIMER1_Int[6]	0	0	0	0	0	TIMER1 のサブタイマー6 割り込み
119	TIMER1_Int[7]	0	0	0	0	0	TIMER1 のサブタイマー7 割り込み
120	TIMER2_Int[0]	0	0	0	0	0	TIMER2 のサブタイマー0 割り込み
121	TIMER2_Int[1]	0	0	0	0	0	TIMER2 のサブタイマー1 割り込み
122	TIMER2_Int[2]	0	0	0	0	0	TIMER2 のサブタイマー2 割り込み
123	TIMER2_Int[3]	0	0	0	0	0	TIMER2 のサブタイマー3 割り込み
124	TIMER2_Int[4]	0	0	0	0	0	TIMER2 のサブタイマー4 割り込み
125	TIMER2_Int[5]	0	0	0	0	0	TIMER2 のサブタイマー5 割り込み
126	TIMER2_Int[6]	0	0	0	0	0	TIMER2 のサブタイマー6 割り込み
127	TIMER2_Int[7]	0	0	0	0	0	TIMER2 のサブタイマー7 割り込み
128 ~ 154	予約				1		予約
155	AXIERR_IRQ	0	_	0		_	Cortex-A7 の AXI エラー割り込み
156 ~ 239	予約	×	_	×	_	_	予約

注1. BGPIO[m]_Int[31:0] (m=1、2、3) の割り込みソースから rGPIOs_Level2_Gpio_Int_[n] (n=0~7) によって選択

第10章 IO

10.1 端子機能

表 10.1 PKG 電源端子名

分類	PKG 端子名	電源	説明
電源	VDD11	(V _{DD11})	内部ロジック用の電源端子
	VDD11_CA7		
	GND	_	グラウンド端子
	VDD33	(V_{DD33})	GPIO59~GPIO0 以外の入出力端子用の電源端子
	RGMII1_VDDQ	(V_{RGMII})	GPIO11~GPIO0 用の電源端子
	RGMII2_VDDQ		GPIO23~GPIO12 用の電源端子
	RGMII3_VDDQ		GPIO35~GPIO24 用の電源端子
	RGMII4_VDDQ		GPIO47~GPIO36 用の電源端子
	RGMII5_VDDQ		GPIO59~GPIO48 用の電源端子
PLL 電源	PLL_AVDD	(V_{PLL})	PLL 用の電源端子
	PLL_AGND	_	PLL 用のグラウンド端子
USB 電源	USB_VD33	(V_{USB})	USB PHY 用の電源端子
	USB_GND	_	USB PHY 用のグラウンド端子
	USB_AVDD	(V_{USB})	USB PHY 用のアナログ電源端子
	USB_AVSS	_	USB PHY 用のアナロググラウンド端子
RTC 電源	RTC_VDD33	(V _{RTC})	RTC 用の電源端子
ADC 電源	ADC1_AVDD	(V _{ADC})	ADC1 用の電源端子
	ADC1_AGND	_	ADC1 用のグラウンド端子
	ADC2_AVDD	(V _{ADC})	ADC2 用の電源端子
	ADC2_AGND	_	ADC2 用のグラウンド端子
OTP 電源	ANF_VDD_PRG	(V _{ANFPRG})	OTP メモリプログラミング電圧入力端子
DDR PHY 電源	DVDD	(V _{DVDD})	DDR PHY コアおよび PLL 用の電源端子
	DVDDQ	(V_{DVDDQ})	DDR PHY I/O 用の電源端子
	DVSS	_	DDR PHY 用のグラウンド端子

表 10.2 PKG 端子名(1/2)

分類	PKG 端子名	入出力	Active	電源	説明
クロック	MCLK_XO	入出力	_	VDD33	水晶発振子を接続。また、MCLK_XO 端子は外部クロック
	MCLK_XI	入力	_		信号を入力することもできます。
	RTC_XO	出力	_		水晶発振子を接続
	RTC_XI	入力	_		
動作モード	CONFIG[1:0]	入力	_		デバッグインタフェース制御端子
コントロール					2'b00 : Arm-JTAG/SWD (CoreSight)
					2'b10: バウンダリスキャン(JTAG-TAP コントローラ)
					上記以外:予約 これら端子は内部プルダウン抵抗(R _{PUUD})を持っていま
					す。
	CONFIG2	入力	_		予約設定端子。1にしてください。
	TMC[2:1]	入力	_		製品テスト端子。0 にしてください。
	CTRSTBYB	入力	High		シュミットトリガの IO バッファイネーブル端子
					0 : IO バッファディセーブル(出力 : Hi-Z)
					1:IO バッファイネーブル
					"電源投入/切断シーケンス"中の IO バッファ状態を直接 制御するための端子です。
					この端子は内部プルアップ抵抗 (R _{PUUD}) を持っています。
システムコント	MRESET_N	入力	Low		シュミットトリガのマスタリセット信号入力端子
ロール	MRESET_OUT	出力	High		マスタリセット信号出力端子。MRESET_N=0 もしくはシ ステムリセットの間 1 を出力します。
	THMODE	入力	_		メインクロック入力モード選択端子
					この端子は内部プルダウン抵抗(R _{PUUD})を持っています。
デバッグインタ	JTAG_TRST_N	入力	Low		CoreSight もしくはバウンダリスキャン端子。
フェース	JTAG_TMS	入出力	_		これらの端子はプルアップ/プルダウン抵抗(R _{PUUD})を持 っています。
	JTAG_TDI	入力	_		JTAG_TRST_N、JTAG_TMS、JTAG_TDI、JTAG_TDO:
	JTAG_TDO	出力	_		プルアップ
	JTAG_TCK	入力	_		JTAG_TCK: プルダウン
DDR2/3 インタ	DDR_CLKP	出力	_	DVDDQ	差動クロック出力端子
フェース	DDR_CLKN	出力	_		CLKP — DDR Ø CK、CLKN — DDR Ø/CK
	DDR_CLKEN	出力	High		クロックイネーブル端子
	DDR_RESET_N	出力	Low		DDR3-SDRAM 用のリセット信号
	DDR_ADDR[15:0]	出力	_		アドレスバス
	DDR_BA[2:0]	出力	_		バンクアドレス
	DDR_DQ[15:0]	入出力	_		データバス
	DDR_DM1 DDR_DM0	出力	High		データマスク信号
	DDR_DQS1	入出力			差動双方向データストローブ
	DDR_DQS0	7 .1. 1			DQS[n] — DDR Ø DQS
	DDR_DQS_N1 DDR_DQS_N0	入出力	_		DQS_N[n] — DDR Ø/DQS
	DDR_WE	出力	Low		DDR の/WE
	DDR_RAS	出力	Low		DDR Ø/RAS
	DDR_CAS	出力	Low		DDR Ø/CAS
	DDR_CS1 DDR_CS0	出力	Low		チップセレクト
	DDR_ODT1 DDR_ODT0	出力	High		ODT コントロール

表 10.2 PKG 端子名(2/2)

分類	PKG 端子名	入出力	Active	電源	説明
DDR2/3 インタ フェース	DDR_MZQ	入出力	_	_	出カインピーダンス制御用外部リファレンス抵抗接続端子 DDR2: 150Ω±1%を介して GND に接続 DDR3: 120Ω±1%を介して GND に接続
	DDR_VREF	入力	_	(V _{DDR REF})	リファレンス電圧入力端子
USB インタフェース	USB_RREF	入力	_	_	リファレンス電流生成端子 RZ/N1D:1.6kΩ±1%を介して GND に接続 RZ/N1S、N1L:2.2kΩ±1%を介して GND に接続
	USB_VBUS	入力	_	USB_VD33	USB ファンクション用のシュミットトリガのポートパワー 検出端子
	USB_DP1	入出力			USB High Speed D±信号(Port1)
	USB_DM1	入出力	_		
	USB_DP2	入出力			USB High Speed D±信号(Port2)
	USB_DM2	入出力			
AD コンバータ	ADC1_VREFP	入力	_	(V _{ADC REFP})	リファレンス電圧入力端子
	ADC1_VREFN	入力	_	(V _{ADC REFM})	
	ADC1_IN[n]	入力	_	ADC1_AVDD	ADC1 用のアナログ入力端子 n=0~4、6~8
	ADC2_VREFP	入力	_	(V _{ADC REFP})	リファレンス電圧入力端子
	ADC2_VREFN	入力	_	(V _{ADC REFM})	
	ADC2_IN[n]	入力	_	ADC2_AVDD	ADC2 用のアナログ入力端子 n=0~4、6~8
リアルタイムク ロック(RTC)	RTC_PWRGOOD	入力	_	RTC_VDD33	RTC バックアップモード制御端子 0: バックアップ 1: 通常
GPIO	GPIO[n]	入出力	_	RGMII1_VDDQ	n=0~11
				RGMII2_VDDQ	n=12~23
				RGMII3_VDDQ	n=24~35
				RGMII4_VDDQ	n=36~47
				RGMII5_VDDQ	n=48~59
				VDD33	n=60~169 (最大)
					GPIO75~79、83 は外部端子コンフィグレーションにも使用されます。この機能の詳細は「7.3.2 外部端子によるコンフィグレーション」に記載されています。

表 10.3 GPIO Multiplexed 端子名(1/3)

分類	IOMuxed 信号名	入出力	Active Level	説明
Ethernet	GMII[m]_TXCLK	入出力	_	TX クロック m=1~5
RGMII/RMII/MII	GMII[m]_TXD[3:0]	出力	_	TX データ m=1~5
	GMII[m]_TXEN	出力	High	TX データイネーブル m=1~5
	GMII[m]_TXER	出力	High	TX データエラーm=1~5
	GMII[m]_RXCLK	入力	_	RX クロック m=1~5
	GMII[m]_RXD[3:0]	出力	_	RX データ m=1~5
	GMII[m]_RXDV	入力	High	RX データイネーブル m=1~5
	GMII[m]_RXER	入力	High	RX データエラーm=1~5
	GMII[m]_CRS	入力	High	キャリア検出 m=1~5
	GMII[m]_COL	入力	High	コリジョン検出 m=1~5
	RGMII_REFCLK	入力	_	RGMII 用の 125MHz 入力
	RMII_REFCLK	出力	_	RMII 用の 50MHz 出力
	MII_REFCLK_[5:0]	出力	_	MII 用の 25MHz 出力
NAND Flash	FNAND_CE_N[3:0]	出力	Low	チップイネーブル
	FNAND_IO[7:0]	入出力	_	データ
	FNAND_CLE	出力	High	コマンドラッチイネーブル
	FNAND_ALE	出力	High	アドレスラッチイネーブル
	FNAND_RE_N	出力	Low	リードイネーブル
	FNAND_WE_N	出力	Low	ライトイネーブル
	FNAND_WP_N[3:0]	出力	Low	ライトプロテクト/リセット
	FNAND_RY/BY_N[3:0]	入力	_	レディ/ビジー
QSPI	QUAD[m]_CLK	出力	_	クロック m=1、2
	QUAD[m]_IO[3:0]	入出力	_	データ m=1、2
	QUAD[m]_CS_N[3:0]	出力	Low	スレーブセレクト m=1、2
SD/MMC/SDIO	SDIO[m]_CLK	出力	_	クロック m=1、2
	SDIO[m]_CMD	入出力	_	コマンド/レスポンス m=1、2
	SDIO[m]_IO[7:0]	入出力	_	データ m=1、2
	SDIO[m]_CD_N	入力	Low	カード検出 m=1、2
	SDIO[m]_WP	入力	High	SD カードライトプロテクト m=1、2
	SDIO[m]_LEDCTRL	出力	High	LED コントロール m=1、2
LCD	LCD_PCLK	出力	_	ピクセルクロック
	LCD_HSYNC	出力	設定で選択	水平同期パルス
	LCD_VSYNC	出力	設定で選択	垂直同期パルス
	LCD_DE	出力	設定で選択	データイネーブル
	LCD_PE	出力	High	パワーイネーブル
	LCD_PWM[n]	出力		LCD LED Pulse Width Modulation 信号 n=0、1
	LCD_R[7:0]	出力	_	Red データ
	LCD_G[7:0]	出力	_	Green データ
	LCD_B[7:0]	出力	_	Blue データ

表 10.3 GPIO Multiplexed 端子名(2/3)

分類	IOMuxed 信号名	入出力	Active Level	説明
MSEBI Master	MSEBIM_ACD[31:0]	入出力	_	アドレス/制御データ/データをマルチプレクス
	MSEBIM_ALE	出力	High	アドレスラッチイネーブル
	MSEBIM_ALE1	出力	High	パラレルモード用アドレスラッチイネーブル
	MSEBIM_ALE2	出力	High	パラレルモード用アドレスラッチイネーブル
	MSEBIM_ALE3	出力	High	パラレルモード用アドレスラッチイネーブル
	MSEBIM_CLE	出力	High	アドレス/コントロールラッチイネーブル
	MSEBIM_DLE	出力	High	データラッチイネーブル
	MSEBIM_WR_N	出力	Low	ライトネーブル
	MSEBIM_RD_N	出力	Low	リードイネーブル
	MSEBIM_CLK	出力	_	クロック
	MSEBIM_WAIT_N[3:0]	入力	Low	ウェイト要求入力
	MSEBIM_DMA_RD_N[1:0]	入力	Low	DMA リードリクエスト
	MSEBIM_DMA_WR_N[1:0]	入力	Low	DMA ライトリクエスト
MSEBI Slave	MSEBIS_ACD[31:0]	入出力	_	アドレス/制御データ/データをマルチプレクス
	MSEBIS_ALE	入力	High	アドレスラッチイネーブル
	MSEBIS_CLE	入力	High	アドレス/コントロールラッチイネーブル
	MSEBIS_DLE	入力	High	データラッチイネーブル
	MSEBIS_CLK	入力	_	クロック
	MSEBIS_WAIT_N[3:0]	出力	Low	ウェイト要求出力
	MSEBIS_DMA_RD_N[1:0]	出力	Low	DMA リードリクエスト
	MSEBIS_DMA_WR_N[1:0]	出力	Low	DMA ライトリクエスト
Cortex-M3	NMI_CORTEXM3	入力	High	Cortex-M3 のノンマスカブル割り込み
ETHERCAT	CAT_LEDRUN	出力	High	RUN LED 信号
	CAT_LEDSTER	出力	High	Dual-color 状態 LED 信号
	CAT_LEDERR	出力	High	エラーLED 信号
	CAT_LINKACT[n]	出力	High	Link/Activity LED 信号 n=0~2
	CAT_SYNC[n]	出力	High	SYNC 信号 n=0、1
	CAT_LATCH[n]	入力	両エッジ	LATCH 信号 n=0、1
	CAT_MII_LINK[n]	入力	設定で選択	PHY のリンク状態 n=0~2
	CAT_RESETOUT_N	出力	Low	リセット出力
	CAT_I2CCLK	出力	_	EEPROM I ² C クロック信号
	CAT_I2CDATA	入出力	_	EEPROM I ² C データ信号
SERCOSIII	S3_LED_GN	出力	High	LED(緑)信号
	S3_LED_RD	出力	High	LED(赤)信号
	S3_ACTLEDP[m]	出力	High	Activity LED 信号 m=1、2
	S3_LINKLEDP[m]	出力	High	Link LED 信号 m=1、2
	S3_CONCLK	出力	_	通信同期制御クロック出力
	S3_DIVCLK	出力	_	Divided 通信クロック出力
	S3_MII_LINKP[m]	入力	設定で選択	PHY のリンク状態 m=1、2
	S3_PHY_RESET_N	出力	Low	PHY リセット
	S3_TESTPIN[m]	出力		DBGOCR のテスト信号出力 m=1、2
GMAC/A5PSW	MAC_PPS[n]	出力	High	GMAC1 Pulse Per Second 出力 n=0、1
	MAC_TRIG[m]	入力	Rise Edge	GMAC[m] 補助タイムスタンプトリガ入力 m=1、2
	SWITCH_MII_LINK[m]	入力	設定で選択	A5PSW PHY のリンク状態 m=2~5

表 10.3 GPIO Multiplexed 端子名(3/3)

分類	IOMuxed 信号名	入出力	Active Level	説明
MDIO	MDC[m]	出力	_	マネージメントデータクロック m=1、2
	MDIO[m]	入出力	_	マネージメントデータ I/O m=1、2
USB	USB_OC[m]	入力	Low	USB ホストの過電流状態検出 m=1、2
	USB_PPON[m]	出力	High	USB ホストのポートパワー制御 m=1、2
UART	UART[m]_RXD	入力	_	受信データ m=1~8
	UART[m]_TXD	出力	_	送信データ m=1~8
	UART[m]_CTS_N	入力	Low	送信可モデムステータス m=1~8
	UART[m]_DSR_N	入力	Low	データ設定レディモデムステータス m=1~8
	UART[m]_DCD_N	入力	Low	データキャリア検出モデムステータス m=1~8
	UART[m]_RI_N	入力	Low	リングインジケータモデムステータス m=1~8
	UART[m]_DTR_N	出力	Low	モデム制御データ端末レディ m=1~8
	UART[m]_RTS_N	出力	Low	モデム制御送信要求 m=1~8
SPIマスタ	SPI[m]_CLK	出力	_	クロック m=1~4
	SPI[m]_MOSI	出力	_	マスタ送信データ m=1~4
	SPI[m]_MISO	入力	_	スレーブ送信データ m=1~4
	SPI[m]_SS_N[n]	出力	Low	スレーブセレクト m=1~4、n=0~3
SPI スレーブ	SPI[m]_CLK	入力	_	クロック m=5、6
	SPI[m]_MOSI	入力	_	マスタ送信データ m=5、6
	SPI[m]_MISO	出力	_	スレーブ送信データ m=5、6
	SPI[m]_SS_N	入力	Low	スレーブセレクト m=5、6
BGPIO	BGPIO[m]A[n]	入出力	_	Basic GPIO[m] ポート A m=1~3、n=0~31
	BGPIO[m]B[n]	入出力	_	Basic GPIO[m] ポートB m=1~3、n=0~31
CAN	CAN[m]_RXD	入力	_	受信データ m=1、2
	CAN[m]_TXD	出力	_	送信データ m=1、2
I2C	I2C[m]_SCL	入出力	_	シリアルクロック m=1、2
	I2C[m]_SDA	入出力	_	シリアルデータ m=1、2
PWMTimer	PWM_IN[n]	入力	_	入力端子 n=0~39
	PWM_OUT[n]	出力	_	出力端子 n=0~19

10.2 未使用端子の処理

表 10.4 未使用端子の処理

端子名	処理
USB_VD33	VDD33 に接続
USB_GND	グラウンド
USB_AVDD	VDD33 に接続
USB_AVSS	グラウンド
RTC_VDD33	VDD33 に接続
ADC1_AVDD	VDD33 に接続
ADC1_AGND	グラウンド
ADC2_AVDD	VDD33 に接続
ADC2_AGND	グラウンド
MCLK_XI	グラウンド
RTC_XO	オープン
RTC_XI	グラウンド
MRESET_OUT	オープン
JTAG_TRST_N	オープンもしくは 4.7kΩ プルダウン
JTAG_TMS	オープンもしくは 4.7kΩ プルアップ
JTAG_TDI	オープンもしくは 4.7kΩ プルダウン
JTAG_TDO	オープン
JTAG_TCK	オープンもしくは 4.7kΩ プルアップもしくはプルダウン
USB_RREF	USB 使用時と同様の処理をしてください。備考の 2.を参照。
USB_VBUS	10kΩ プルダウン
USB_DP1	10kΩ プルダウン
USB_DM1	
USB_DP2	10kΩ プルダウン
USB_DM2	
ADC1_VREFP	オープン
ADC1_VREFN	
ADC1_IN[n]	オープン
ADC2_VREFP	オープン
ADC2_VREFN	
ADC2_IN[n]	オープン
RTC_PWRGOOD	VDD33 に接続
ANF_VDD_PRG	グラウンド
GPIO[n] n=0~169 (最大)	[モード設定] Level1 ファンクション:フローティング(デフォルト値)およびプルアップ(デフォルト値)/プルダウン

備考

- 1. ADC 未使用時、ADC はパワーダウンモードに設定する必要があります。
- 2. 通常のユースケースで USB_RREF はリファレンス抵抗を必要とします。USBPLL 動作のために必要です。

10.3 端子配置図

10.3.1 RZ/N1D BGA-400 パッケージ

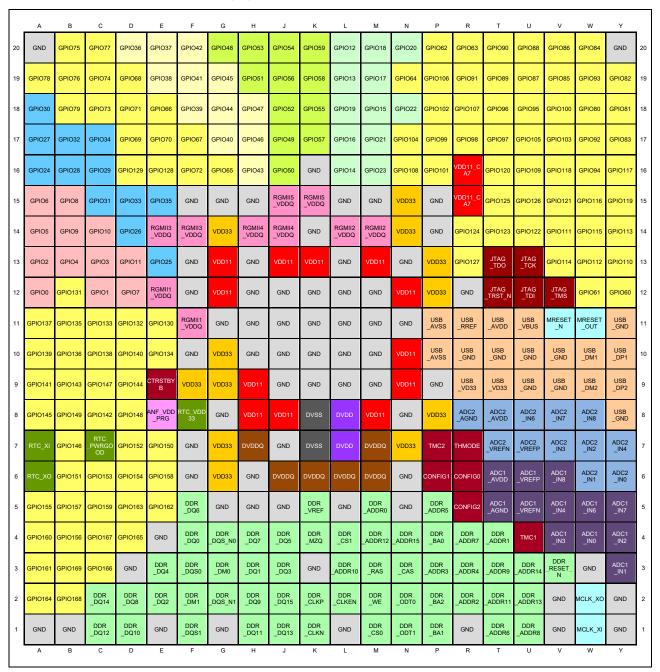


図 10.1 RZ/N1D 端子配置 BGA-400(上面図)

10.3.2 RZ/N1D BGA-324 パッケージ

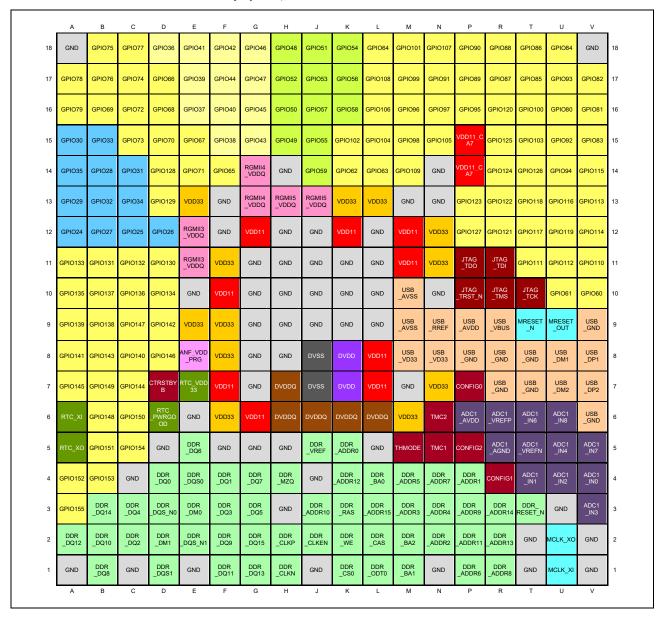


図 10.2 RZ/N1D 端子配置 BGA-324(上面図)

10.3.3 RZ/N1S BGA-324 パッケージ

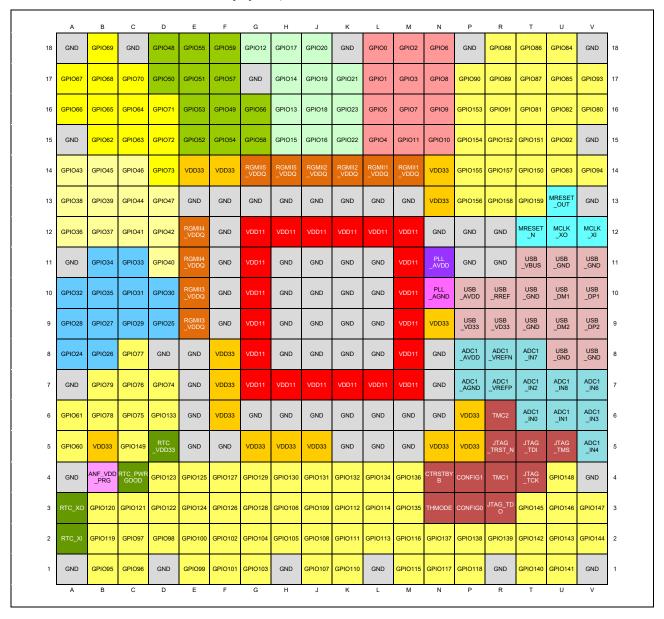


図 10.3 RZ/N1S 端子配置 BGA-324(上面図)

10.3.4 RZ/N1S BGA-196 パッケージ

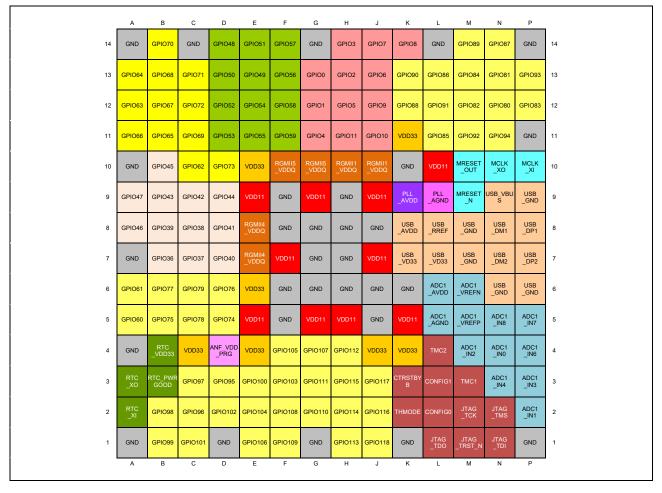


図 10.4 RZ/N1S 端子配置 BGA-196(上面図)

10.3.5 RZ/N1L BGA-196 パッケージ

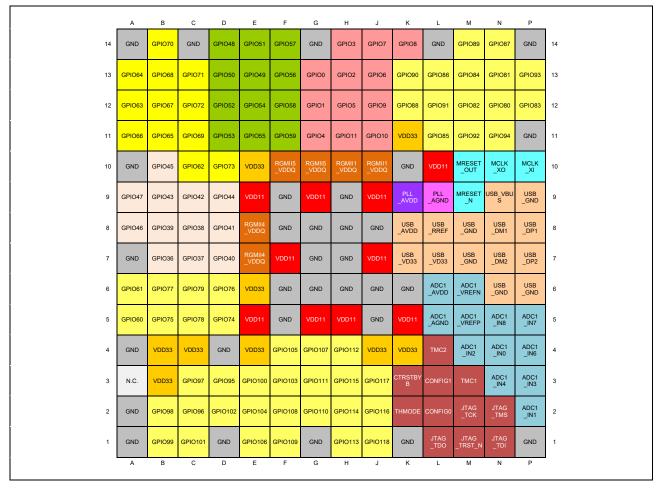


図 10.5 RZ/N1L 端子配置 BGA-196(上面図)

第11章 電気的特性

11.1 絶対最大定格

表 11.1 絶対最大定格

パラメータ		記号	条件	定格値	単位
電源電圧	ロジックコア	V_{DD11}		-0.45~+1.6	V
	I/O	V_{DD33}		-0.5 ~ +4.6	V
	I/O (RGMII)	V_{RGMII}	_	-0.5 ~ +4.6	V
	PLL	V_{PLL}	_	-0.45~+1.6	V
	USB	V_{USB}	_	-0.5 ~ +4.6	V
	ADC	V_{ADC}	_	-0.5 ~ +4.6	V
	RTC	V_{RTC}	_	-0.5 ~ +4.6	V
	DDRPHY I/O	V_{DVDDQ}		-0.5 ~ +2.5	V
	DDRPHY ⊐ 7	V_{DVDD}		-0.45~+1.6	V
	DDRPHY リファレンス	$V_{DDR\;REF}$		-0.5 ~ +2.5	V
	OTP メモリプログラミング	V_{ANFPRG}		-0.5 ~ +7.5	V
入出力電圧		V_{I}/V_{O}	$V_1 / V_0 < V_{DD33} + 0.5V$	-0.5 ~ +4.6	V
保存温度		T_{stg}	_	-55 ~ +125	°C

注 意

LSI を長期間絶対最大定格条件下に置くことは LSI の信用性に悪影響を及ぼすことがあります。絶対最大定格を超えて LSI を使用した場合、LSI の永久破壊となることがあります。パラメータは個別に適用されます。LSI は DC 特性および AC 特性で規定された範囲内で動作させる必要があります。

11.2 推奨動作条件

表 11.2 推奨動作条件

パラメータ	記号	条件	Min	Тур	Max	単位
電源電圧	V_{DD11}		1.10	1.15	1.20	V
	V_{DD33}		3.0	3.3	3.6	٧
	V_{RGMII}	RGMII モード	3.14	3.3	3.46	V
	V_{PLL}		1.10	1.15	1.20	V
	V_{USB}		3.0	3.3	3.6	٧
	V_{ADC}		3.0	3.3	3.6	V
	V _{ADC REFP}			V _{ADC}		V
	V _{ADC REFM}			0		V
	V_{RTC}	ノーマルモード	3.0	3.3	3.6	V
		$ V_{DD33}-V_{RTC} \leq 0.3$				
		バックアップモード	1.8	_	3.6	V
	V_{DVDDQ}	DDR3	1.425	1.5	1.575	V
		DDR2	1.7	1.8	1.9	V
	V_{DVDD}		1.10	1.15	1.20	٧
	$V_{\text{DDR REF}}$		V _{DVDDQ} × 0.49	V _{DVDDQ} × 0.50	V _{DVDDQ} × 0.51	٧
	V _{ANFPRG}	OTP メモリプログラミング	6.8	6.9	7.0	V
		ノーマルモード	_	0	_	V
クロック入力周波数	fosc	±50ppm ^{注 1}	_	40.0		MHz
ジャンクション温度	T _j		-40	_	110	°C

注1. EtherCAT では±25ppm

11.3 DC 特性

11.3.1 電流

表 11.3 電流

パラメータ	記号	条件		Min	Тур	Max	単位
電流ドレイン	I _{DD11}	RZ/N1D		_	_	1450	mA
		RZ/N1S、RZ/N1L	RZ/N1S、RZ/N1L			1300	mA
	I _{DD33}			_		250	mA
	I _{RGMII}	RGMII 1ch		_	_	50	mA
	I _{PLL}	RZ/N1S、RZ/N1Lの	み	_		15	mA
	I _{USB}	2ポート使用時		_		125	mA
	I _{ADC}	ADC 1 ユニット		_		12	mA
	I _{ADC REF}	ADC 1 ユニット		_		300	μΑ
	I _{RTC_NM}	ノーマルモード RTC_PCLK を供給				1.5	mA
	I _{RTC_BU}	バックアップモード T _i =0~40°C、V _{RTC} =	3.0V	_	2.0	4.0	μΑ
	I _{DVDDQ}	DDR3		_	_	210	mA
	I _{DVDD}	DDR3		_	_	140	mA
	I _{ANFPRG}	OTP メモリプログラ	ミング	_	_	30	mA
入力リーク電流	ILI	V _I =V _{DD33} もしくは G	ND	_	_	±5	μA
		V _I =内部プルアップ付	けき GND	-36		-96	μΑ
		V _i =内部プルダウンf	けき V _{DD33}	37		96	μΑ
出力 High レベル電流	−I _{OH} 注1	V _{OH} =2.4V	4mA	4	_	_	mA
			6mA	6			mA
			8mA	7.8	_	_	mA
			12mA	9.5	_	_	mA
出力 Low レベル電流	I _{OL} 注1	V _{OL} =0.4V	4mA	4		_	mA
			6mA	6			mA
			8mA	7.8			mA
			12mA	9.5	_	_	mA

注1. LSIの信頼性を確保するため、各端子の出力電流値の総和は I_{DD33}、および I_{RGMII}値を超えないことを強く推奨します。

I_{DD33}: GPIO60~GPIO169 端子の電流値の総和

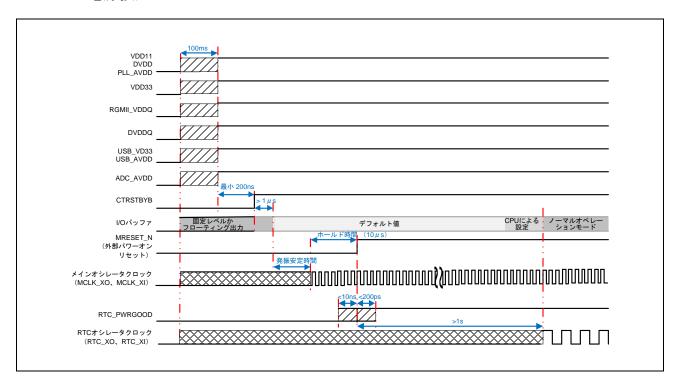
I_{RGMII}: 各チャネル(GPIO11~GPIO0、GPIO23~GPIO12、GPIO35~GPIO24、GPIO47~GPIO36、GPIO59~GPIO48) ごとの端子の電流値の総和

11.3.2 デジタル IO

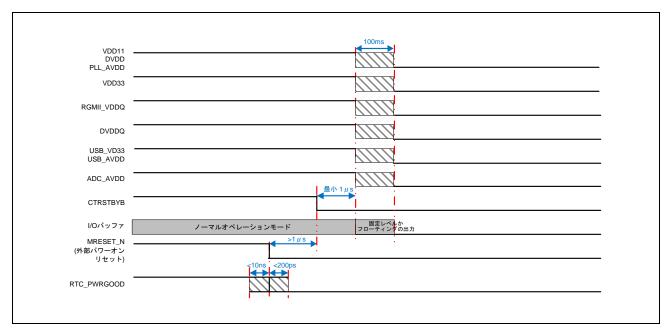
表 11.4 デジタル IO

パラメータ	記号	条件	Min	Тур	Max	単位
入力 High レベル電圧	V_{IH}	3.3V 入力	2.0	_	V _{DD33} +0.3	V
入力 Low レベル電圧	V_{IL}	3.3V 入力	-0.3	_	0.8	V
ポジティブトリガー電圧	V_P	シュミット入力	0.9	_	2.1	V
ネガティブトリガー電圧	V_N	シュミット入力	0.7	_	1.9	V
シュミットトリガのヒステリシス	V_{H1}	シュミット入力	0.2	_	1.4	V
出力 High レベル電圧	V_{OH}	I _{OH}	2.4	_	_	V
出力 Low レベル電圧	V_{OL}	I _{OL}	0	_	0.4	V
データ入力立ち上がり/立ち下がり 時間	t_{rid}/t_{fid}	_	0	_	200	ns
クロック入力立ち上がり/ 立ち下がり時間	t_{ric}/t_{fic}	_	0	_	4	ns
シュミット入力立ち上がり/ 立ち下がり時間	t _{ris} /t _{fis}	_	0	_	1	ms
プルアップ/プルダウン抵抗	R _{PUUD}		37	50	82	kΩ
入力容量	Cin	_	_	_	6.0	pF

11.3.3 DDR3/DDR2 SDRAM インタフェース


表 11.5 DDR3/DDR2 SDRAM インタフェース

パラメータ	記号	Min	Тур	Max	単位	備考
リファレンス電圧入力	V _{DDR REF}	$V_{DVDDQ} \times 0.49$	V _{DVDDQ} × 0.50	$V_{DVDDQ} \times 0.51$	V	
DC 入力論理 high	V _{DDRIH} (dc)	V _{DDR REF} +0.1	_	V_{DVDDQ}	V	注 1
DC 入力論理 low	V _{DDRIL} (dc)	0	_	V _{DDR REF} -0.1	V	注 1
DC 差動入力 high	V _{DDRIHdiff} (dc)	0.400	_	_	V	注2
DC 差動入力 low	V _{DDRILdiff} (dc)	_	_	-0.400	V	注 2
AC 入力論理 high	V _{DDRIH} (ac)	V _{DDR REF} +0.150	_	$V_{DVDDQ} + 0.5$	V	注3
AC 入力論理 low	V _{DDRIL} (ac)	-0.5	_	V _{DDR REF} - 0.150	V	注3
AC 差動入力 high	V _{DDRIHdiff} (ac)	0.500	_	_	V	注2
AC 差動入力 low	V _{DDRILdiff} (ac)	_	_	-0.500	V	注 2
AC 差動クロスポイント電圧(入力)	V _{DDRIX} (ac)	$0.5 \times V_{DVDDQ} - 0.150$	_	$0.5 \times V_{DVDDQ} + 0.150$	V	注 2
AC 差動クロスポイント電圧(出力)	V _{DDROX} (ac)	$0.5 \times V_{DVDDQ} - 0.050$	_	$0.5 \times V_{DVDDQ} + 0.050$	V	注 4


- 注1. DDR_DQ、DDR_DQS、DDR_DQS_N
- 注2. DDR_DQS、DDR_DQS_N
- 注3. DDR_DQ
- 注4. DDR_CLKP、DDR_CLKN、DDR_DQS、DDR_DQS_N

11.4 電源投入/切断シーケンス

11.4.1 電源投入

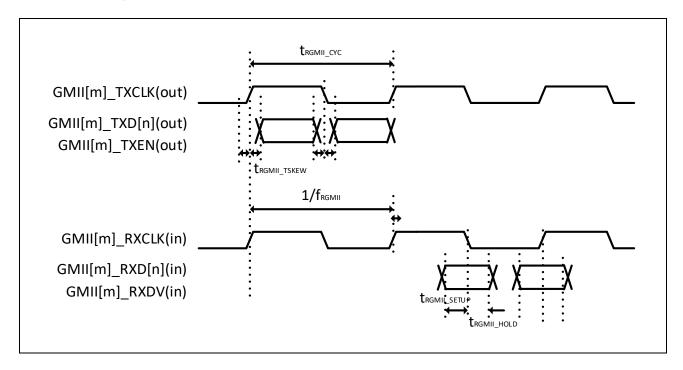
11.4.2 電源切断

注 意

メインオシレータクロックの発振安定時間を待ってからリセットを解除してください。

RTC を使用しない場合、RTC オシレータクロックのスタートアップ時間(tstart)は不要です。RTC_PWRGOOD はRTC バックアップモードの時のみタイミング制御してください。

11.5 AC タイミング特性


11.5.1 Ethernet MAC インタフェースタイミング

11.5.1.1 RGMII

表 11.6 RGMII

パラメータ	記号	条件	Min	Тур	Max	単位
GMII[m]_TXCLK/RXCLK 周波数	f _{RGMII}	±50ppm	_	125	_	MHz
GMII[m]_TXCLK/RXCLK クロックサイクル時間	t _{RGMII_CYC}	_	7.2	8	8.8	ns
信号の立ち上がり/立ち下がり時間	t _{RGMII_RISEFALL}	20%~80%			0.75	ns
GMII[m]_TXCLK/RXCLK デューティ	t _{RGMII_CLK_DUTY}	_	45	50	55	%
GMII[m]_TXD[n] GMII[m]_TXEN (TX_CTL) GMII[m]_TXCLK スキュー	t _{rgmii_} tskew	GMII[m]_TXCLK 立ち上がり/立ち下がり	-0.5		0.5	ns
GMII[m]_RXD[n] GMII[m]_RXDV(RX_CTL) セットアップ時間	t _{RGMII_} SETUP	GMII[m]_RXCLK 立ち上がり/立ち下がり	1	_	_	ns
GMII[m]_RXD[n] GMII[m]_RXDV(RX_CTL) ホールド時間	t _{RGMII_} HOLD		1			ns

備考 m=1~5、n=0~3、負荷容量 C_{L (max)} =15pF、ドライブ強度 8mA 電圧条件は V_{RGMII} に準拠する必要があります。

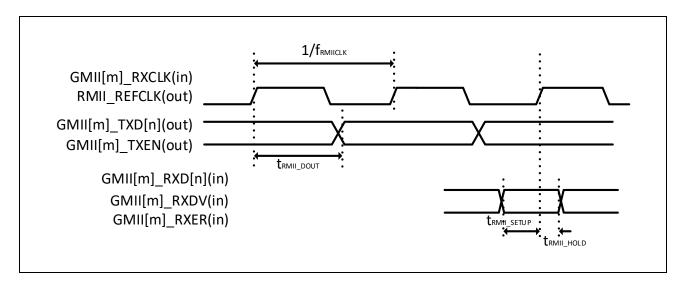

11.5.1.2 RMII

表 11.7 RMII

パラメータ	記号	条件	Min	Тур	Max	単位
GMII[m]_RXCLK/RMII_REFCLK 周波数 ^{注1}	f _{RMIICLK}	±50ppm		50		MHz
GMII[m]_RXCLK/RMII_REFCLK デューティ ^{注 1}	t _{RMII_CLK_DUTY}	_	35		65	%
GMII[m]_TXD[n]/TXEN イネーブルディレイ時間	t _{RMII_DOUT}	GMII[m]_RXCLK/RMII_REFCLK 立ち上がり ^{注1}	2		10	ns
GMII[m]_RXD[n]/RXDV/RXER セットアップ時間	t _{RMII_SETUP}		4			ns
GMII[m]_RXD[n]/RXDV/RXER ホールド時間	t _{RMII_HOLD}		2	_	_	ns

備考 $m=1\sim5$ 、 $n=0\sim1$ 、負荷容量 $C_{L~(max)}=25pF$ 、ドライブ強度 8mA

注1. リファレンスクロック入力時:GMII[m]_RXCLK、リファレンスクロック出力時:RMII_REFCLK

11.5.1.3 MII

表 11.8 MII

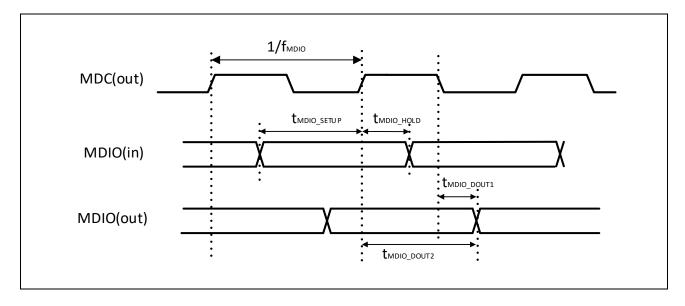
パラメータ	記号	条件	Min	Тур	Max	単位
GMII[m]_TXCLK/RXCLK 周波数	f _{MII_CLK}	±50ppm		25		MHz
GMII[m]_TXD[n]/TXEN イネーブルディレイ時間	t _{MII_DOUT}	GMII[m]_RXCLK 立ち上がり	0	_	25	ns
GMII[m]_RXD[n] /RXDV/RXER/COL/CRS セットアッ プ時間	t _{MII_SETUP}		10	_	_	ns
GMII[m]_RXD[n] /RXDV/RXER/COL/CRS ホールド時 間	t _{MII_HOLD}		10	_	_	ns

備考 m=1~5、n=0~3、負荷容量 C_{L (max)} =30pF、ドライブ強度 8mA

11.5.1.4 MDIO

表 11.9 MDIO

パラメータ	記号	条件	Min	Тур	Max	単位
MDC[m]周波数 ^{注 1}	f _{MDIO}		_	_	12.5	MHz
MDIO[m]出力遅延 ^{注2}	t _{MDIO_DOUT1}	MDC 立ち下がり	-20	_	20	ns
	t _{MDIO_DOUT2}	MDC 立ち上がり	reg_delay ×T _{A5PSW_H} _{CLK} -20	_	reg_delay ×T _{A5PSW_H} _{CLK} +20	ns
MDIO[m]入力セットアップ時間	t _{MDIO_SETUP}	MDC 立ち上がり	20	_	_	ns
MDIO[m]入力ホールド時間	t _{MDIO_HOLD}		0	_	_	ns


備考 m=1、2、負荷容量 C_{L (max)} =30pF、ドライブ強度 8mA

注1. EtherCAT からの周波数は、2.5MHz となります。

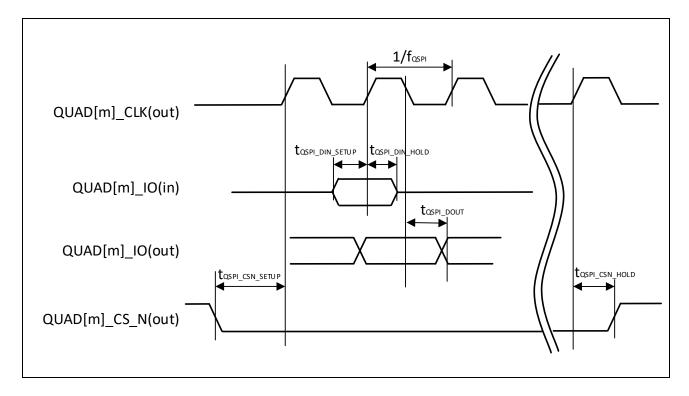
注2. A5PSW 以外: t_{MDIO_DOUT1}、A5PSW: t_{MDIO_DOUT2}

A5PSW からの出力タイミングは、MDC 立ち上がりエッジ基準となります。レジスタにより出力遅延を設定できます。

T_{ASPSW_HCLK}: A5PSW の AHB クロック周期、reg_delay: レジスタ設定による遅延サイクル数

11.5.2 メモリインタフェースタイミング

11.5.2.1 QSPI Flash タイミング


表 11.10 QSPI Flash インタフェース

パラメータ	記号	条件	Min	Тур	Max	単位
QUAD[m]_CLK 周波数 ^{注1}	f_{QSPI}	_	_		62.5	MHz
QUAD[m]_IO 入力セットアップ時間	t _{QSPI_DIN_} SETUP	QUAD[m]_CLK 立ち上がり	10-T _{REF} × D _{RD}		1	ns
QUAD[m]_IO 入力ホールド時間	t _{QSPI_DIN_HOLD}		$T_{REF} \times D_{RD}$ -3	_	_	ns
QUAD[m]_IO 遅延時間	t _{QSPI_DOUT}	QUAD[m]_CLK 立ち下がり	-3	1	4	ns
QUAD[m]_CS_N セットアップ時間	t _{QSPI_CSN_SETUP}	QUAD[m]_CLK 立ち上がり	0.5T-3			ns
QUAD[m]_CS_N ホールド時間	t _{QSPI_CSN_HOLD}		0.5T-3		_	ns

備考 m=1、2、負荷容量 C_{L (max)} =30pF、ドライブ強度 8mA

T=QUAD[m]_CLK 周期、T_{REF}=QSPI[m]_REFCLK 周期、D_{RD}=QSPI の読み出しデータキャプチャレジスタのリードディレイ設定

注1. QSPIインタフェースはレジスタ設定により内部取り込みエッジをシフトさせることができます。

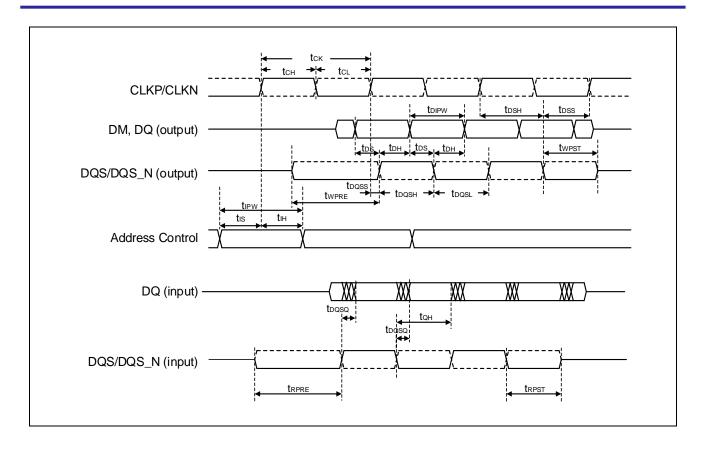
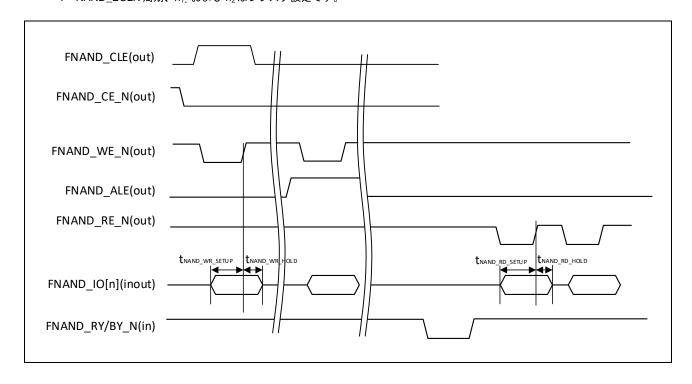

11.5.2.2 DDR3/DDR2 インタフェース

表 11.11 DDR3-1000

パラメータ	記号	Min	Тур	Max	単位	注釈
CLK サイクルタイム	t _{CK}	2000	_	_	ps	平均
CLKP/CLKN High レベル幅	t _{CH}	0.47×t _{CK} +10ps	_	0.53 × t _{CK} -10ps	t _{CK}	平均
CLKP/CLKN Low レベル幅	t _{CL}	0.47 × t _{CK} +10ps	_	0.53 × t _{CK} -10ps	t _{CK}	平均
DQ/DM セットアップ時間	t _{DS}	320	_	_	ps	DQ: 1.0V/ns、 DQS: 2.0V/ns 変換
DQ/DM ホールド時間	t _{DH}	290	_	_	ps	DQ: 1.0V/ns、 DQS: 2.0V/ns 変換
制御およびアドレスの各信号のパルス幅	t _{IPW}	1600	_	_	ps	_
DQ/DM 各信号のパルス幅	t _{DIPW}	800	_	_	ps	_
DQ/DM DQS および関連した DQ 信号の スキュー	t _{DQSQ}	_	_	245	ps	_
DQS からの DQ ホールド時間	t _{QH}	675	_	_	ps	_
ライトコマンドから最初の DQS までのラッチ遷移	t _{DQSS}	-250	_	+250	ps	_
DQS/DQS_N High パルス幅	t _{DQSH}	0.45 × t _{CK} +10ps	_	0.55 × t _{CK} -10ps	t _{CK}	_
DQS/DQS_N Low パルス幅	t _{DQSL}	0.45 × t _{CK} +10ps	_	0.55 × t _{CK} -10ps	t _{CK}	_
DQS/DQS_N 立ち下がりエッジからの CLKP/CLKN のセットアップ時間	t _{DSS}	0.325	_	_	t _{CK}	_
CLKP/CLKN から DQS/DQS_N 立ち下がりエッジのホールド時間	t _{DSH}	0.325	_	_	t _{CK}	_
ライトプリアンブル	t _{WPRE}	0.91	_	_	t _{CK}	_
ライトポストアンブル	t _{WPST}	0.31	_	_	t _{CK}	_
リードプリアンブル	t _{RPRE}	0.89			t _{CK}	_
リードポストアンブル	t _{RPST}	0.25			t _{CK}	_
アドレスおよび制御信号のセットアップ 時間	t _{IS}	670	_	_	ps	CMD、ADD: 1.0V/ns CLK: 2.0V/ns 変換
アドレスおよび制御信号のホールド時間	t _{IH}	670			ps	CMD、ADD: 1.0V/ns CLK: 2.0V/ns 変換

表 11.12 DDR2-500

パラメータ	記号	Min	Тур	Max	単位	注釈
CLK cycle time	t _{CK}	4000	_	_	ps	平均
CLKP/CLKN High レベル幅	t _{СН}	0.48 × t _{CK} +10ps	_	0.52 × t _{CK} -10ps	t _{CK}	平均
CLKP/CLKN Low レベル幅	t _{CL}	0.48×t _{CK} +10ps	_	0.52 × t _{CK} -10ps	t _{CK}	平均
DQ/DM セットアップ時間	t_{DS}	500	_	_	ps	DQ:1.0V/ns、 DQS:2.0V/ns 変換
DQ/DM ホールド時間	t _{DH}	500	_	_	ps	DQ: 1.0V/ns、 DQS: 2.0V/ns 変換
制御およびアドレスの各信号のパルス幅	t_{IPW}	0.8	_	_	t _{CK}	_
DQ/DM 各信号のパルス幅	t_{DIPW}	0.4	_	_	t _{CK}	_
DQ/DM DQS および関連した DQ 信号の スキュー	t _{DQSQ}	_		450	ps	_
DQS からの DQ ホールド時間	t_{QH}	1100	_	_	ps	_
ライトコマンドから最初の DQS までのラッチ遷移	t _{DQSS}	-0.125		+0.125	t _{CK}	_
DQS/DQS_N High パルス幅	t _{DQSH}	0.41 × t _{CK} +10ps	_	_	t _{CK}	_
DQS/DQS_N Low パルス幅	t _{DQSL}	0.41 × t _{CK} +10ps	_	_	t _{CK}	_
DQS/DQS_N 立ち下がりエッジからの CLKP/CLKN のセットアップ時間	t _{DSS}	0.325		_	t _{CK}	_
CLKP/CLKN から DQS/DQS_N 立ち下がりエッジのホールド時間	t _{DSH}	0.325	_	_	t _{CK}	_
ライトプリアンブル	t _{WPRE}	0.26	_	_	t _{CK}	_
ライトポストアンブル	t_{WPST}	0.41	_	_	t _{CK}	_
リードプリアンブル	t _{RPRE}	0.89	_	_	t _{CK}	_
リードポストアンブル	t _{RPST}	0.35	_	_	t _{CK}	_
アドレスおよび制御信号のセットアップ 時間	t _{IS}	1400	_	_	ps	CMD、ADD: 1.0V/ns CLK: 2.0V/ns 変換
アドレスおよび制御信号のホールド時間	t _{IH}	1400	_	_	ps	CMD、ADD:1.0V/ns CLK:2.0V/ns 変換



11.5.2.3 NAND Flash インタフェース

表 11.13 NAND Flash インタフェース

パラメータ	記号	条件	Min	Тур	Max	単位
ライトデータセットアップ時間	t _{NAND_WR_SETUP}	FNAND_WE_N 立ち上がり	$n_1 \times T - 6$		_	ns
ライトデータホールド時間	t _{NAND_WR_HOLD}		$n_2 \times T - 6$	_	_	ns
リードデータセットアップ時間	t _{NAND_RD_SETUP}	FNAND_RE_N 立ち上がり	10	_	_	ns
リードデータホールド時間	t _{NAND_RD_HOLD}		0	_	_	ns

備考 負荷容量 $C_{L\ (max)}=25pF$ 、ドライブ強度 8mA $T=NAND_ECLK\ 周期\ n_1,\ および\ n_2$ はレジスタ設定です。

11.5.2.4 SD/eMMC/SDIO インタフェース

表 11.14 SD バスタイミング(デフォルトモード)

パラメータ	記号	条件	Min	Тур	Max	単位
SDIO_CLK 周波数 (データ転送モード)	f _{SD}	_			25	MHz
SDIO_CLK クロック Low 幅	t _{SD_CKLO}	_	16			ns
SDIO_CLK クロック High 幅	t _{SD_CKHI}	_	16			ns
SDIO_CLK クロック立ち上がり時間	t _{SD_CKRISE}	V _{OL} ~V _{OH}	_	_	2	ns
SDIO_CLK クロック立ち下がり時間	t _{SD_CKFALL}	V _{OH} ~V _{OL}			2	ns
入力 CMD、IO セットアップ時間	t _{SD_SETUP}	SDIO_CLK 立ち上がり	4	_	_	ns
入力 CMD、IO ホールド時間	t _{SD_HOLD}		2	_	_	ns
データ転送モード中の 出力 CMD、IO 遅延時間	t _{SD_DOUT}	SDIO_CLK 立ち下がり	-2	_	11	ns

備考 負荷容量 C_{L (max)} =30pF、ドライブ強度 8mA

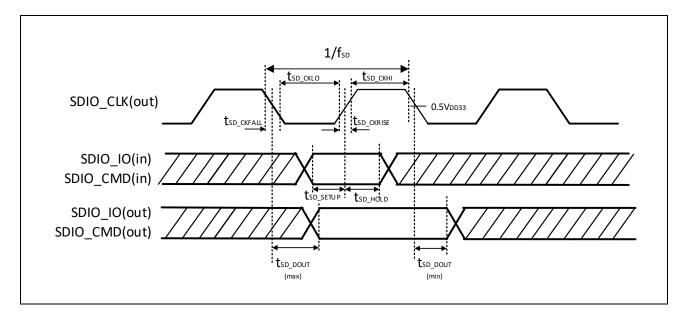
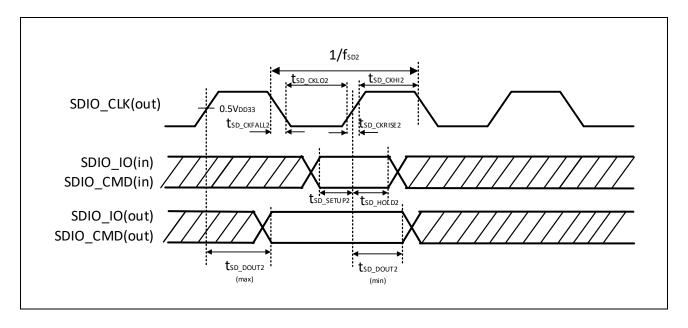
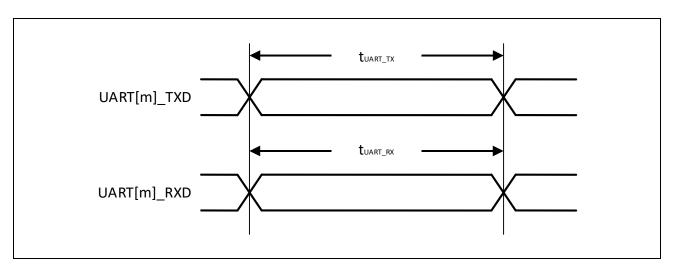



表 11.15 SD バスタイミング(ハイスピードモード)

パラメータ	記号	条件	Min	Тур	Max	単位
SDIO_CLK 周波数 (データ転送モード)	f _{SD2}	_	_	_	50	MHz
SDIO_CLK クロック Low 幅	t _{SD_CKLO2}	_	8			ns
SDIO_CLK クロック High 幅	t _{SD_CKHI2}	_	8			ns
SDIO_CLK クロック立ち上がり時間	t _{SD_CKRISE2}	V _{OL} ~V _{OH}	_		1	ns
SDIO_CLK クロック立ち下がり時間	t _{SD_CKFALL2}	V _{OH} ~V _{OL}	_		1	ns
入力 CMD、IO セットアップ時間	t _{SD_SETUP2}	SDIO_CLK 立ち上がり	4			ns
入力 CMD、IO ホールド時間	t _{SD_HOLD2}		2			ns
データ転送モード中の 出力 CMD、IO 遅延時間	t _{SD_DOUT2}	SDIO_CLK 立ち上がり	3		13	ns

備考 負荷容量 $C_{L (max)} = 25 pF$ 、ドライブ強度 8mA


11.5.3 シリアルインタフェースタイミング

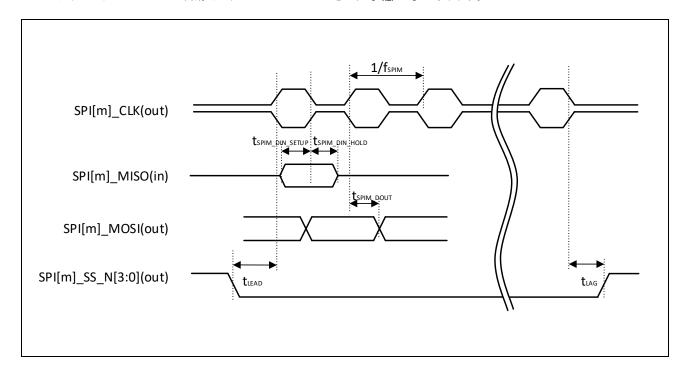
11.5.3.1 UART

表 11.16 UART

パラメータ	記号	条件	Min	Тур	Max	単位
UART[m]_TXD パルス幅	t _{UART_TX}	_	192	_	_	ns
UART[m]_RXD パルス幅	t _{UART_RX}	_	192	_	_	ns

備考 m=1~8

11.5.3.2 SPI マスタ


表 11.17 SPI マスタ

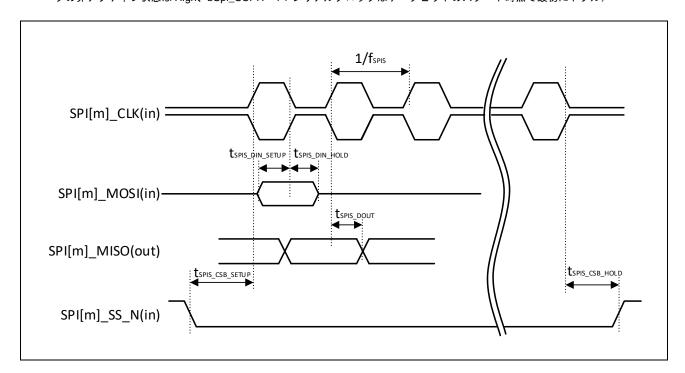
パラメータ	記号	条件	Min	Тур	Max	記号
SPI[m]_CLK 周波数 ^{注 1}	f _{SPIM}	_	_		25	MHz
SPI[m]_MISO データ入力セットアップ時間	t _{SPIM_DIN_SETUP}		20		_	ns
SPI[m]_MISO データ入力ホールド時間	t _{SPIM_DIN_HOLD}	_	0		_	ns
SPI[m]_MOSI 遅延時間	t _{SPIM_DOUT}	_	-6	_	6	ns
SPI[m]_SS_N[3:0]出力セットアップ時間	t _{LEAD}	_	(N-1) ×T _{REF} -8 ^{注2}	_	_	ns
SPI[m]_SS_N[3:0]出カホールド時間	t _{LAG}	_	(N/2+1) ×T _{REF} -6 ^{注3}	<u> </u>	_	ns

備考 m=1~4、負荷容量 C_{L (max)} =25pF、ドライブ強度 8mA

T_{REF}=リファレンスクロックの SPI[m]_SCLK 周期、N=ボーレート選択レジスタの SPI クロック分周器設定値

- 注1. SPI[m]_CLK の極性はレジスタ設定により変えることができます。デフォルト設定では、SPI[m]_CLK の立ち下がりエッジでデータ出力が始まり、立ち上がりエッジでデータ取り込みが始まります。デフォルト設定(bSpi_SCPOL=1:シリアルクロックの非アクティブ状態は High、bSpi_SCPH=1:シリアルクロックはデータビットのスタート時点で最初にトグル)
- 注2. モトローラ SPI (bSpi_SCPH=0) のときは、[(N/2-1) ×T_{REF}-8] となります。
- 注3. テキサスインスツルメンツ同期式シリアルプロトコルのときは、 [T_{REF}-6] となります。

11.5.3.3 SPI スレーブ


表 11.18 SPI スレーブ

パラメータ	記号	条件	Min	Тур	Max	単位
SPI[m]_CLK 入力周波数 ^{注 1}	f _{SPIS}			_	12.5	MHz
SPI[m]_MOSI データ入力セットアップ時間	t _{SPIS_DIN_SETUP}	ı	0	_	_	ns
SPI[m]_MOSI データ入力ホールド時間	t _{SPIS_DIN_HOLD}		3T _{REF} +4	_	_	ns
SPI[m]_MISO 遅延時間	t _{SPIS_DOUT}			_	3T _{REF} +12	ns
SPI[m]_SS_N 入力セットアップ時間	t _{SPIS_CSB_SETUP}		$3T_{REF}$	_	_	ns
SPI[m]_SS_N 入力ホールド時間	t _{SPIS_CSB_HOLD}	_	$3T_{REF}$	_		ns

備考 m=5~6、負荷容量 C_{L (max)} =25pF、ドライブ強度 8mA

T_{REF}=リファレンスクロックの SPI[m]_SCLK 周期

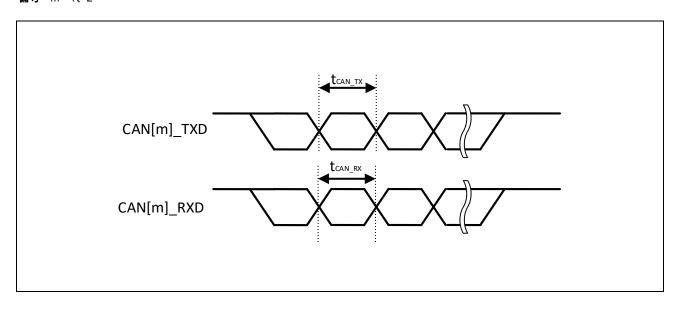
注1. SPI[m]_CLK の極性はレジスタ設定により変えることができます。デフォルト設定では、SPI[m]_CLK の立ち下がりエッジでデータ出力が始まり、立ち上がりエッジでデータ取り込みが始まります。デフォルト設定(bSpi_SCPOL=1:シリアルクロックの非アクティブ状態は High、bSpi_SCPH=1:シリアルクロックはデータビットのスタート時点で最初にトグル)

11.5.3.4 I2C

表 11.19 I2C

パラメータ	記号	条件	Min	Тур	Max	単位
I2C[m]_SCL クロック周波数	f _{SCL}	標準モード	_	_	100	kHz
		ファストモード	_	_	400	kHz
バスフリー時間	t _{SDA_BFTIME}	標準モード	4.7	_	_	μs
(ストップとスタート)		ファストモード	1.3	_	_	μs
I2C[m]_SCL ホールド時間	t _{SCL_HOLD}	標準モード	4.0	_	_	μs
(スタート時)		ファストモード	0.6	_	_	μs
I2C[m]_SCL Low 幅	t _{L_SCL}	標準モード	4.7	_	_	μs
		ファストモード	1.3	_	_	μs
I2C[m]_SCL High 幅	t _{H_SCL}	標準モード	4.0	_	_	μs
		ファストモード	0.6	_	_	μs
I2C[m]_SCL セットアップ時間	t _{SCL_SETUP_ST}	標準モード	4.7	_	_	μs
(開始時)		ファストモード	0.6	_	_	μs
I2C[m]_SDA ホールド時間	t _{SDA_HOLD}	標準モード	0	_	_	μs
		ファストモード	0	_	_	μs
I2C[m]_SDA セットアップ時間	t _{SDA_SETUP}	標準モード	250	_	_	ns
		ファストモード	100	_		μs
I2C[m]_SCL セットアップ時間	t _{SCL_SETUP}	標準モード	4.0	_	_	μs
		ファストモード	0.6	_	_	μs

備考 m=1、2



11.5.3.5 CAN

表 11.20 CAN

パラメータ	記号	条件	Min	Тур	Max	単位
CAN ボーレート	f _{CAN}		_	_	1	Mbaud
CAN[m]_TXD パルス幅	t _{CAN_TX}	_	1/f _{CAN} -5	_	1/f _{CAN} +5	ns
CAN[m]_RXD パルス幅	t _{CAN_RX}	_	1/f _{CAN} -5	_	1/f _{CAN} +5	ns

備考 m=1、2

11.5.3.6 JTAG/SWD

表 11.21 JTAG

パラメータ	記号	条件	Min	Тур	Max	単位
JTAG_TCK 入力周波数	f_{JTAG}	_	_	_	10	MHz
JTAG_TCK Low 周期	t _{JTAG_CL}	_	40	_	_	ns
JTAG_TCK High 周期	t _{JTAG_CH}	_	40	_	_	ns
JTAG_TMS/TDI セットアップ時間	t _{JTAG_SETUP}	JTAG_TCK 立ち上がり	6	_	_	ns
JTAG_TMS/TDI ホールド時間	t _{JTAG_HOLD}	JTAG_TCK 立ち上がり	6	_	_	ns
JTAG_TDO 出力遅延	t _{JTAG_DOUT}	JTAG_TCK 立ち下がり	0	_	15	ns

備考 負荷容量 C_{L (max)} =25pF、ドライブ強度 8mA(固定)

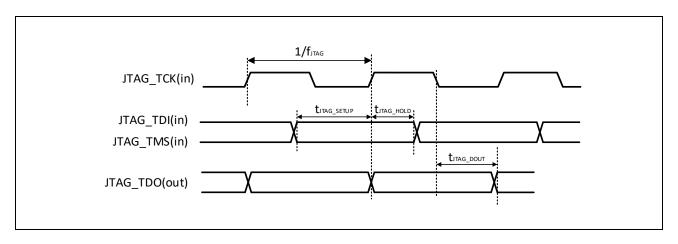
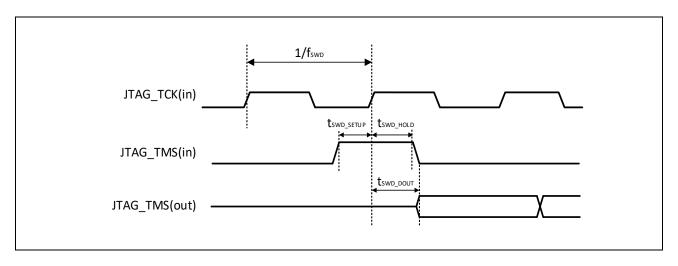
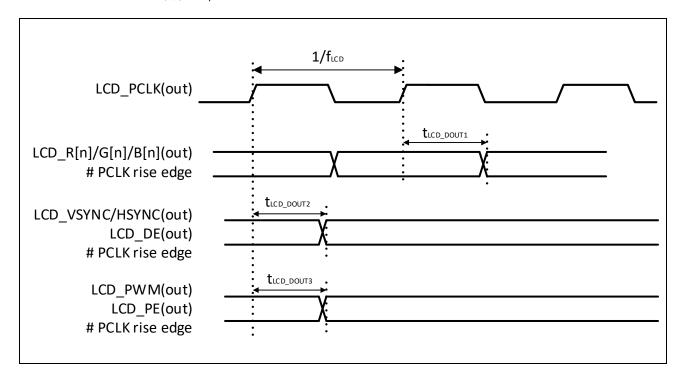



表 11.22 シリアルワイヤデバッグ (SWD)

パラメータ	記号	条件	Min	Тур	Max	単位
JTAG_TCK(SWDCLK)入力周波数	f_{SWD}	_	1		40	MHz
JTAG_TCK (SWDCLK) Low 周期	t _{SWD_CL}	_	10		_	ns
JTAG_TCK(SWDCLK)High 周期	t _{SWD_CH}	_	10		_	ns
JTAG_TMS(SWDIO)セットアップ 時間	t _{SWD_SETUP}	JTAG_TCK 立ち上がり	4	1		ns
JTAG_TMS(SWDIO)ホールド時間	t _{SWD_HOLD}	JTAG_TCK 立ち上がり	4	_	_	ns
JTAG_TMS(SWDIO)出力遅延	t _{SWD_DOUT}	JTAG_TCK 立ち上がり	2		15	ns

備考 負荷容量 C_{L (max)} =25pF、ドライブ強度 8mA(固定)



11.5.4 LCD インタフェースタイミング

表 11.23 LCD インタフェースタイミング

パラメータ	記号	条件	Min	Тур	Max	単位
LCD_PCLK 周波数	f _{LCD}	_		_	83.3	MHz
LCD_R[n]/G[n]/B[n] 出力遅延	t _{LCD_DOUT1}	LCD_PCLK 立ち上がりもしくは立ち下がり	1.5		8.5	ns
LCD_HSYNC/VSYNC LCD_DE 出力遅延	t _{LCD_DOUT2}	LCD_PCLK 立ち上がりもしくは立ち下がり	1.5	_	8.5	ns
LCD_PE LCD_PWM 出力遅延	t _{LCD_DOUT3}	LCD_PCLK 立ち上がりもしくは立ち下がり	0	_	20	ns

備考 n=0~7、負荷容量 C_{L (max)} =25pF、ドライブ強度 6mA

11.5.5 MSEBI インタフェースタイミング

表 11.24 MSEBI マスタ

パラメータ		記号	条件	Min	Тур	Max	単位
MSEBIM_CLK 周波数 ^{注1}		f _{MSEBIM}	_	_	_	62.5	MHz
MSEBIM_WAIT_N[3:0] MSEBIM_ACD[31:0]	セットアップ 時間	t _{MSEBIM_} SETUP	MSEBIM_CLK 立ち上がり	14	_	_	ns
入力	ホールド 時間	t _{MSEBIM_HOLD}	MSEBIM_CLK 立ち上がり	0	_	_	ns
MSEBIM_ACD[31:0] MSEBIM_ALE MSEBIM_ALE1 MSEBIM_ALE2 MSEBIM_ALE3 MSEBIM_DLE MSEBIM_CLE MSEBIM_WR_N MSEBIM_RD_N 出力遅延		t _{MSEBIM_} DOUT	MSEBIM_CLK 立ち上がり	0		10	ns

備考 負荷容量 C_{L (max)} =15pF、ドライブ強度 8mA

注1. 最大バースト速度は、31.25MHz です。

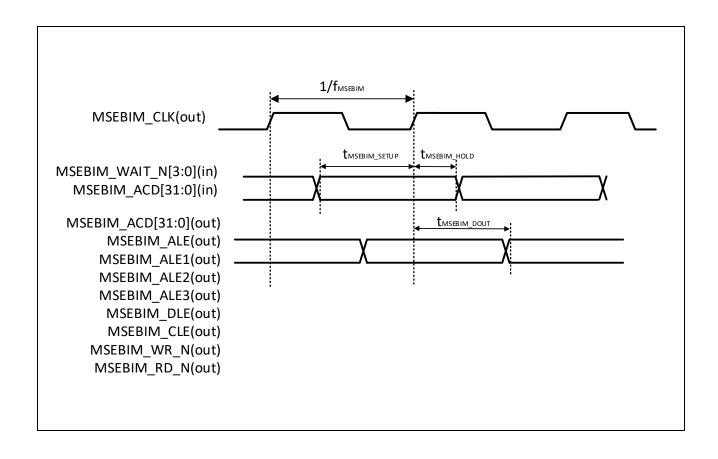
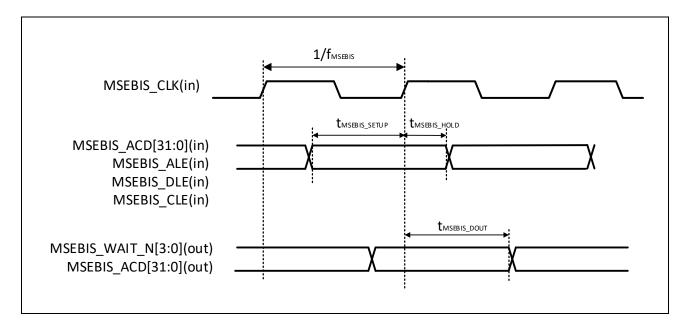



表 11.25 MSEBI スレーブ

パラメータ	7	記号	条件	Min	Тур	Max	単位
MSEBIS_CLK 周波数		f _{MSEBIS}			_	31.25	MHz
MSEBIS_WAIT_N[3:0] MSEBIS_ACD[31:0] 出力遅延		t _{MSEBIS_DOUT}	MSEBIS_CLK 立ち上がり	4	_	16	ns
MSEBIS_ACD[31:0] MSEBIS_ALE MSEBIS_DLE	セットアップ 時間	t _{MSEBIS_SETUP}	MSEBIS_CLK 立ち上がり	14	_	_	ns
MSEBIS_CLE 入力	ホールド時間	t _{MSEBIS_HOLD}	MSEBIS_CLK 立ち上がり	0	_	_	ns

備考 負荷容量 C_{L (max)} =15pF、ドライブ強度 8mA

11.6 ADC 特性

条件: V_{ADC}=V_{ADC} REFP=3.3±0.3V、V_{ADC} REFM=0V、V_{DD11}=1.15±0.05V、Rs(ソースインピーダンス)≦

300 Ω , $T_A = +25$ °C

表 11.26 ADC 特性

パラメータ	記号	条件	Min	Тур	Max	単位
分解能	RES	_	_	12	_	bit
積分非直線性	INL	_	_	±1.0	±4.0	LSB
微分非直線性	DNL	_	_	±0.3	±1.0	LSB
ゼロスケール誤差	ZSE	_	_	±2.0	±6.0	LSB
フルスケール誤差	FSE	_	_	±0.5	±1.5	LSB
ADC 入力等価容量	C_{Ain}	_	_	_	8.0	pF
ADC サンプル/ホールド入力等 価容量	C_{ASHin}	_	_	_	6.0	pF

これらの誤差は外部回路によるサンプリング誤差を含みません。さらに、 $V_{ADC\ REFP} < V_{ADC\ }$ かつ $V_{ADC\ REFM} > 0.0V$ のとき、それらはより大きくなります。

11.7 RTC オシレータ特性

表 11.27 RTC オシレータ特性

パラメータ	記号	条件	Min	Тур	Max	単位
振動周波数	F _{OSC RTC}	負荷容量 C _L =7pF	1	32.768		kHz
出力クロックデューティ	Duty _{RTC}	負荷容量 C _L =7pF	40		60	%
低電圧検出電圧 ^{注1}	L2H _{RTC}	RTC_VDD33 スルーレート<1V/1msec	2.0	2.2	2.4	V
	H2L _{RTC}		1.8	2.0	2.2	V
スタートアップ時間	t _{START}	RTC_PWRGOOD=1		1		sec

注1. RTC_VDD33 が H2L_{RTC}になったとき低電圧リセット信号がアサートされ、RTC 回路がリセットされます。

第12章 機械的特性

12.1 パッケージ情報

12.1.1 BGA-400 パッケージ

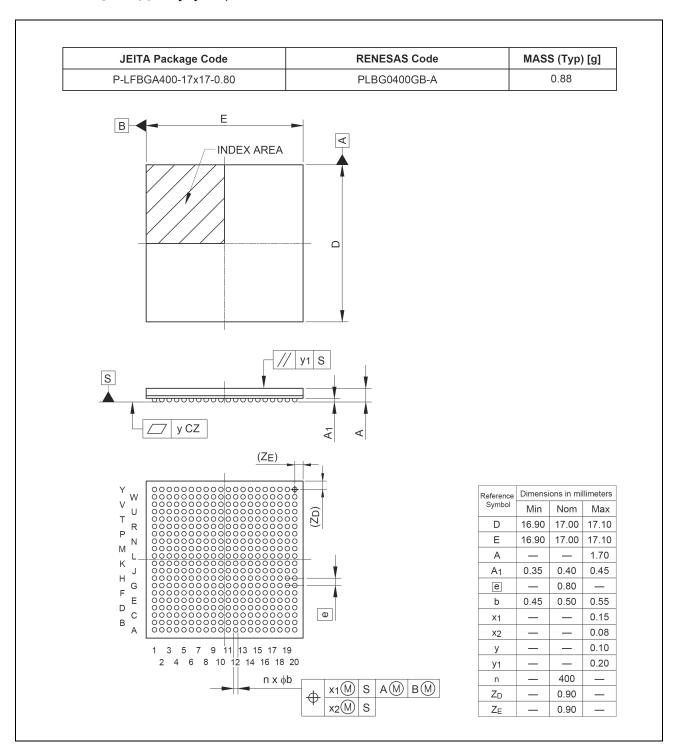
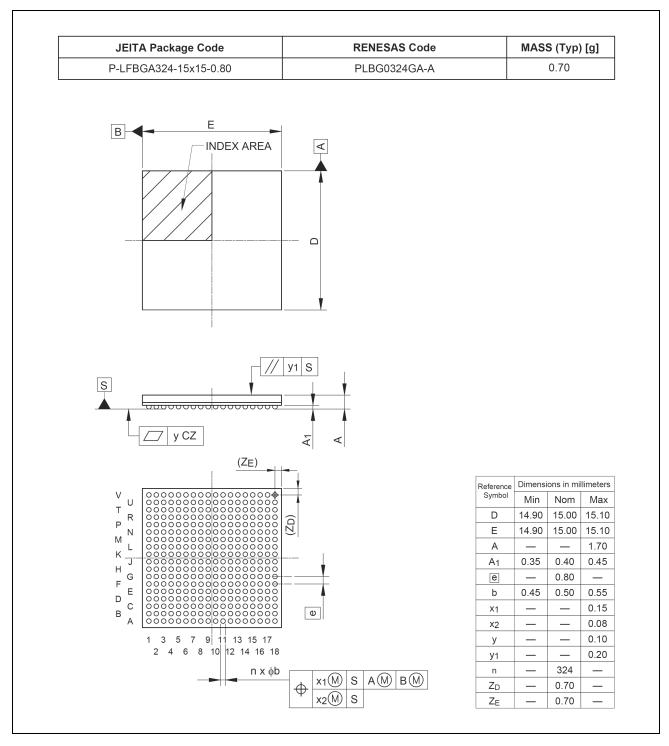
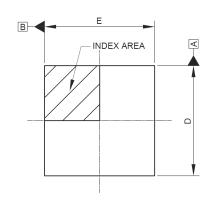
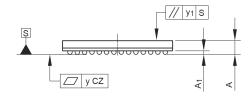
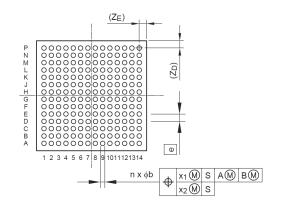


図 12.1 BGA-400 パッケージ寸法

12.1.2 BGA-324 パッケージ


図 12.2 BGA-324 パッケージ寸法

12.1.3 BGA-196 パッケージ

JEITA Package Code	RENESAS Code	MASS (Typ) [g]
P-LFBGA196-12x12-0.80	PLBG0196GA-A	0.43

Reference	Dimensi	ons in mi	llimeters
Symbol	Min	Nom	Max
D	11.92	12.0	12.08
E	11.92	12.0	12.08
Α	_	_	1.70
A ₁	0.35	0.40	0.45
е	_	0.80	_
b	0.45	0.50	0.55
X1	_	_	0.15
X2	_	_	0.08
У	_	_	0.10
У1	_	_	0.20
n	_	196	_
Z _D	_	0.80	_
ZE	_	0.80	_

図 12.3 BGA-196 パッケージ寸法

付録A 端子割り当て

表 A.1 端子割り当て(1/7)

分類	PKG 端子名	N1D 400	N1D 324	N1S 324	N1S 196	N1L 196
ODR2/3 インタフェース	DDR_ADDR0	M5	K5	_	_	_
	DDR_ADDR1	T4	P4	_	_	_
	DDR_ADDR2	R2	N2	_	_	_
	DDR_ADDR3	P3	M3	_	_	_
	DDR_ADDR4	R3	N3	_	_	_
	DDR_ADDR5	P5	M4	_	_	_
	DDR_ADDR6	T1	P1	_	_	_
	DDR_ADDR7	R4	N4	_	_	_
	DDR_ADDR8	U1	R1	_	_	_
	DDR_ADDR9	T3	P3	_	_	_
	DDR_ADDR10	L3	J3	_	_	_
	DDR_ADDR11	T2	P2	_	_	<u> </u>
	DDR_ADDR12	M4	K4	_	_	_
	DDR_ADDR13	U2	R2	_	_	_
	DDR_ADDR14	U3	R3	_	_	_
	DDR_ADDR15	N4	L3	_	_	_
	DDR_RAS	M3	K3	_	_	_
	DDR_CAS	N3	L2	_	_	_
	DDR_WE	M2	K2	_	_	_
	DDR_CS0	M1	K1	_	_	_
	DDR_CS1	L4	_	_	_	_
	DDR_BA0	P4	L4	_	_	_
	DDR_BA1	P1	M1	_	_	_
	DDR_BA2	P2	M2	_	_	_
	DDR_CLKEN	L2	J2		_	_
	DDR_ODT0	N2	L1		_	_
	DDR_ODT1	N1	_	_	_	_
	DDR_DM0	G3	E3	_	_	_
	DDR_DM1	F2	D2	_	_	_
	DDR_DQS0	F3	E4	_	_	_
	DDR_DQS_N0	G4	D3	_	_	_
	DDR_DQS1	F1	D1	_	_	_
	DDR_DQS_N1	G2	E2	_	_	_
	DDR_DQ0	F4	D4	_	_	_
-	DDR_DQ1	H3	F4		_	_
	DDR_DQ2	E2	C2	_	_	_
	DDR_DQ3	J3	F3		_	_
	DDR_DQ4	E3	C3		_	_
	DDR_DQ5	J4	G3		_	_
	DDR_DQ6	F5	E5		_	_
	DDR_DQ7	H4	G4		_	_
	DDR_DQ8	D2	B1	_	_	

表 A.1 端子割り当て(2/7)

分類	PKG 端子名	N1D 400	N1D 324	N1S 324	N1S 196	N1L 196
DDR2/3 インタフェース	DDR_DQ9	H2	F2	_	_	_
	DDR_DQ10	D1	B2	_	_	_
	DDR_DQ11	H1	F1	_	_	_
	DDR_DQ12	C1	A2	_	_	_
	DDR_DQ13	J1	G1	_	_	_
	DDR_DQ14	C2	В3	_	_	_
	DDR_DQ15	J2	G2	_	_	_
	DDR_CLKN	K1	H1	_	_	_
	DDR_CLKP	K2	H2	_	_	_
	DDR_RESET_N	V3	T3	_	_	_
	DDR_VREF	K5	J5	_	_	_
	DDR_MZQ	K4	H4	_	_	_
JSB インタフェース	USB_DP1	Y10	V8	V10	P8	P8
	USB_DM1	W10	U8	U10	N8	N8
	USB_DP2	Y9	V7	V9	P7	P7
	USB_DM2	W9	U7	U9	N7	N7
	USB_RREF	R11	N9	R10	L8	L8
	USB_VBUS	U11	R9	T11	N9	N9
RTC	RTC_XO	A6	A5	A3	A3	_
	RTC_XI	A7	A6	A2	A2	_
	RTC_PWRGOOD	C7	D6	C4	В3	_
ADC	ADC1_VREFP	U6	R6	R7	M5	M5
	ADC1_VREFN	U5	T5	R8	M6	M6
	ADC1_IN0	W4	V4	Т6	N4	N4
	ADC1_IN1	Y3	T4	U6	P2	P2
	ADC1_IN2	Y4	U4	T7	M4	M4
	ADC1_IN3	V4	V3	V6	P3	P3
	ADC1_IN4	V5	U5	V5	N3	N3
	ADC1_IN6	W5	T6	V7	P4	P4
	ADC1_IN7	Y5	V5	T8	P5	P5
	ADC1_IN8	V6	U6	U7	N5	N5
	ADC2_VREFP	U7			_	
	ADC2_VREFN	T7				_
	ADC2_IN0	Y6		_	_	_
	ADC2_IN1	W6	_	_	_	
	ADC2_IN2	W7	_	_	_	_
	ADC2_IN3	V7	_	_	_	_
	ADC2_IN4	Y7	_	_	_	
	ADC2_IN6	U8	_	_		_
	ADC2_IN7	V8				
	ADC2_IN7	W8				
	MCLK_XO	W2	U2	U12		N10
ノロック	IVIULN_AU	VV∠	02	012	N10	P10

表 A.1 端子割り当て (3/7)

分類	PKG 端子名	N1D 400	N1D 324	N1S 324	N1S 196	N1L 196
システムコントロール	MRESET_N	V11	Т9	T12	M9	M9
	MRESET_OUT	W11	U9	U13	M10	M10
	THMODE	R7	M5	N3	K2	K2
OTP	ANF_VDD_PRG	E8	E8	B4	D4	_
デバッグインタフェース	JTAG_TRST_N	T12	P10	R5	M1	M1
	JTAG_TCK	U13	T10	T4	M2	M2
	JTAG_TMS	V12	R10	U5	N2	N2
	JTAG_TDI	U12	R11	T5	N1	N1
	JTAG_TDO	T13	P11	R3	L1	L1
動作モード制御	CONFIG0	R6	P7	P3	L2	L2
	CONFIG1	P6	R4	P4	L3	L3
	CONFIG2	R5	P5		_	_
	TMC1	U4	N5	R4	M3	M3
	TMC2	P7	N6	R6	L4	L4
	CTRSTBYB	E9	D7	N4	K3	K3
GPIO	GPIO0	A12		L18	G13	G13
	GPIO1	C12	_	L17	G12	G12
	GPIO2	A13	_	M18	H13	H13
	GPIO3	C13	_	M17	H14	H14
	GPIO4	B13	_	L15	G11	G11
	GPIO5	A14	_	L16	H12	H12
	GPIO6	A15	_	N18	J13	J13
	GPIO7	D12	_	M16	J14	J14
	GPIO8	B15	_	N17	K14	K14
	GPIO9	B14	_	N16	J12	J12
	GPIO10	C14	_	N15	J11	J11
	GPIO11	D13	_	M15	H11	H11
	GPIO12	L20	_	G18	_	_
	GPIO13	L19	_	H16	_	_
	GPIO14	L16	_	H17	_	_
	GPIO15	M18	_	H15	_	_
	GPIO16	L17	_	J15	_	_
	GPIO17	M19	_	H18	_	_
	GPIO18	M20	_	J16	_	_
	GPIO19	L18	_	J17	_	_
	GPIO20	N20	_	J18	_	_
	GPIO21	M17	_	K17	_	_
	GPIO22	N18		K15	_	
	GPIO23	M16	_	K16	_	_
	GPIO24	A16	A12	A8	_	<u> </u>
	GPIO25	E13	C12	D9	_	_
	GPIO26	D14	D12	B8	_	_
	GPIO27	A17	B12	B9	_	_
	GPIO28	B16	B14	A9	_	_
	GPIO29	C16	A13	C9	_	_

表 A.1 端子割り当て(4/7)

分類	PKG 端子名	N1D 400	N1D 324	N1S 324	N1S 196	N1L 196
SPIO	GPIO30	A18	A15	D10	_	_
	GPIO31	C15	C14	C10	_	_
	GPIO32	B17	B13	A10	_	_
	GPIO33	D15	B15	C11	_	_
	GPIO34	C17	C13	B11	_	_
	GPIO35	E15	A14	B10	_	_
	GPIO36	D20	D18	A12	B7	B7
	GPIO37	E20	E16	B12	C7	C7
	GPIO38	E19	F15	A13	C8	C8
	GPIO39	F18	E17	B13	B8	B8
	GPIO40	G17	F16	D11	D7	D7
	GPIO41	F19	E18	C12	D8	D8
	GPIO42	F20	F18	D12	C9	C9
	GPIO43	H16	G15	A14	B9	B9
	GPIO44	G18	F17	C13	D9	D9
	GPIO45	G19	G16	B14	B10	B10
	GPIO46	H17	G18	C14	A8	A8
	GPIO47	H18	G17	D13	A9	A9
	GPIO48	G20	H18	D18	D14	D14
	GPIO49	J17	H15	F16	E13	E13
	GPIO50	J16	H16	D17	D13	D13
	GPIO51	H19	J18	E17	E14	E14
	GPIO52	J18	H17	E15	D12	D12
	GPIO53	H20	J17	E16	D11	D11
	GPIO54	J20	K18	F15	E12	E12
	GPIO55	K18	J15	E18	E11	E11
	GPIO56	J19	K17	G16	F13	F13
	GPIO57	K17	J16	F17	F14	F14
	GPIO58	K19	K16	G15	F12	F12
	GPIO59	K20	J14	F18	F11	F11
	GPIO60	Y12	V10	A5	A5	A5
	GPIO61	W12	U10	A6	A6	A6
	GPIO62	P20	K14	B15	C10	C10
	GPIO63	R20	L14	C15	A12	A12
	GPIO64	N19	L18	C16	A13	A13
	GPIO65	G16	F14	B16	B11	B11
	GPIO66	E18	D17	A16	A11	A11
	GPIO67	F17	E15	A17	B12	B12
	GPIO68	D19	D16	B17	B13	B13
	GPIO69	D17	B16	B18	C11	C11
	GPIO70	E17	D15	C17	B14	B14
	GPIO71	D18	E14	D16	C13	C13
	GPI072	F16	C16	D15	C12	C12
	GPI073	C18	C15	D14	D10	D10
	GPI074	C19	C17	D7	D5	D5

表 A.1 端子割り当て(5/7)

分類	PKG 端子名	N1D 400	N1D 324	N1S 324	N1S 196	N1L 196
SPIO	GPIO75	B20	B18	C6	B5	B5
	GPIO76	B19	B17	C7	D6	D6
	GPIO77	C20	C18	C8	B6	B6
	GPIO78	A19	A17	B6	C5	C5
	GPIO79	B18	A16	B7	C6	C6
	GPIO80	W18	U16	V16	N12	N12
	GPIO81	Y18	V16	T16	N13	N13
	GPIO82	Y19	V17	U16	M12	M12
	GPIO83	Y17	V15	U14	P12	P12
	GPIO84	W20	U18	U18	M13	M13
	GPIO85	V19	T17	U17	L11	L11
	GPIO86	V20	T18	T18	L13	L13
	GPIO87	U19	R17	T17	N14	N14
	GPIO88	U20	R18	R18	K12	K12
	GPIO89	T19	P17	R17	M14	M14
	GPIO90	T20	P18	P17	K13	K13
	GPIO91	R19	N17	R16	L12	L12
	GPIO92	W17	U15	U15	M11	M11
	GPIO93	W19	U17	V17	P13	P13
	GPIO94	W16	U14	V14	N11	N11
	GPIO95	U18	P16	B1	D3	D3
	GPIO96	T18	M16	C1	C2	C2
	GPIO97	T17	N16	C2	C3	C3
	GPIO98	R17	M15	D2	B2	B2
	GPIO99	P17	M17	E1	B1	B1
	GPIO100	V18	T16	E2	E3	E3
	GPIO101	P16	M18	F1	C1	C1
	GPIO102	P18	K15	F2	D2	D2
	GPIO103	V17	T15	G1	F3	F3
	GPIO104	N17	L15	G2 H2	E2	F4
	GPIO105	U17	N15		F4	
	GPIO106	P19	L16	H3	E1	E1
	GPIO107 GPIO108	R18 N16	N18	J1 J2	G4 F2	G4 F2
	GPIO108	U16	M14	J3	F1	F1
	GPIO109	Y13	V11	K1	G2	G2
	GPI0111	V14	T11	K2	G2 G3	G3
	GPIO112	W13	U11	K3	H4	H4
	GPI0113	Y14	V13	L2	H1	H1
	GPIO114	V13	V13	L3	H2	H2
	GPIO115	W14	V12	M1	H3	H3
	GPIO116	W15	U13	M2	J2	J2
	GPI0117	Y16	T12	N1	J3	J3
	GPIO118	V16	T13	P1	J1	J1
	GPIO119	Y15	U12	B2	31	31

表 A.1 端子割り当て(6/7)

分類	PKG 端子名	N1D 400	N1D 324	N1S 324	N1S 196	N1L 196
SPIO	GPIO120	T16	R16	B3	_	_
	GPIO121	V15	R12	C3	_	_
	GPIO122	U14	R13	D3	_	_
	GPIO123	T14	P13	D4	_	_
	GPIO124	R14	R14	E3	_	_
	GPIO125	T15	R15	E4	_	_
	GPIO126	U15	T14	F3	_	_
	GPIO127	R13	P12	F4	_	_
	GPIO128	E16	D14	G3	_	_
	GPIO129	D16	D13	G4	_	_
	GPIO130	E11	D11	H4	_	_
	GPIO131	B12	B11	J4	_	_
	GPIO132	D11	C11	K4		_
	GPIO133	C11	A11	D6		_
	GPIO134	E10	D10	L4	_	_
	GPIO135	B11	A10	M3	_	_
	GPIO136	B10	C10	M4	_	_
	GPIO137	A11	B10	N2	_	_
	GPIO138	C10	B9	P2	_	_
	GPIO139	A10	A9	R2	_	_
	GPIO140	D10	C8	T1		_
	GPIO141	A9	A8	U1		
	GPIO142	C8	D9	T2	_	_
	GPIO143	B9	B8	U2	_	_
	GPIO144	D9	C7	V2		1_
	GPIO145	A8	A7	T3		_
	GPIO146	B7	D8	U3		
	GPIO147	C9	C9	V3		
	GPIO148	D8	B6	U4		
	GPIO149	B8	B7	C5		
	GPIO150	E7	C6	T14		
	GPIO151	B6	B5	T15	_	
	GPIO151	D7	A4	R15		
	GPIO153	C6	B4	P16		
	GPIO154	D6	C5	P15		
				+		
	GPIO155	A5	A3 —	P14	<u> </u>	
	GPIO156	B4		P13		
	GPIO157	B5	_	R14	_	_
	GPIO158	E6		R13	_	
	GPIO159	C5		T13		
	GPIO160	A4			_	
	GPIO161	A3				
	GPI0162	E5	_			_
	GPIO163	D5				<u> -</u>
	GPIO164	A2	_	_	_	—

表 A.1 端子割り当て (7/7)

分類	PKG 端子名	N1D 400	N1D 324	N1S 324	N1S 196	N1L 196
GPIO	GPIO165	D4	_	_	_	_
	GPIO166	C3	_	_	_	_
	GPIO167	C4	_	_	_	_
	GPIO168	B2	_	_	_	_
	GPIO169	B3	_	_	_	_

表 A.2 端子割り当て(電源) (1/2)

分類	PKG 端子名	N1D 400	N1D 324	N1S 324	N1S 196	N1L 196
電源	VDD11	G13, J13, K13, M13, G12, N12, N10, H9, N9, H8, J8, M8	G12、K12、 M12、M11、 F10、L8、F7、 L7、G6	G12、H12、 J12、K12、 L12、M12、 G11、M11、 G10、M10、 G9、M9、G8、 M8、G7、H7、 J7、K7、L7、M7	L10、E9、G9、 J9、F7、J7、 E5、G5、H5、 K5	L10、E9、G9、 J9、F7、J7、 E5、G5、H5、 K5
	VDD11_CA7	R16、R15	P15、P14	_	_	_
	GND	A20、Y20、 K16、F15、 G15、H15、 L15、M15、P15、K14、 P14、F13、 H13、L13、 N13、F12、 H12、J12、 K12、L12、 M12、R12、 G11、H11、 J11、K11、 L11、M11、 N11、F10、 H10、J10、 K10、L10、 M10、J9、K9、 L9、M9、P9、 G8、N8、F7、 J7、F6、H6、N6、G5、H5、 J5、L5、N5、E4、D3、K3、 W3、V2、Y2、 A1、B1、E1、G1、L1、R1、 V1、Y1	A18, V18, H14, N14, F13, M13, N13, F12, H12, J12, L12, G11, H11, J11, K11, L11, E10, G10, H10, J10, K10, L10, N10, G9, H9, J9, K9, L9, G8, H8, G7, M7, E6, D5, F5, G5, H5, L5, C4, J4, H3, U3, T2, V2, A1, C1, E1, J1, N1, T1, V1	A18, C18, K18, P18, V18, G17, A15, V15, E13, F13, G13, H13, J13, K13, L13, M13, V13, F12, N12, P12, R12, A11, F11, H11, J11, K11, L11, F10, H10, J10, K10, L10, F9, H9, J9, K9, L9, D8, E8, H8, J8, K8, L8, N8, A7, E7, N7, E6, G6, H6, J6, K6, L6, M6, N6, E5, F5, K5, L5, M5, A4, V4, A1, D1, H1, L1, R1, V1	A14、C14、G14、L14、P14、P11、A10、K10、F9、H9、F8、G8、H8、J8、A7、G7、H7、F6、G6、H6、J6、K6、F5、J5、A4、A1、D1、G1、K1、P1	A14、C14、G14、L14、P14、P11、A10、K10、F9、H9、F8、G8、H8、J8、A7、G7、H7、F6、G6、H6、J6、K6、F5、J5、A4、A1、D1、G1、K1、P1、A2、D4
	VDD33	N15、G14、 N14、P13、 P12、G10、 G9、P8、G7、 N7、G6、F9	E13、K13、 L13、N12、 F11、N11、F9、 F8、N7、F6、 M6、E9	E14、F14、 N14、N13、 N9、F8、F7、 F6、P6、G5、 H5、J5、N5、 P5、B5	K11、E10、E6、 E4、J4、K4、C4	K11、E10、E6、 E4、J4、K4、 B3、B4、C4
	RGMII1_VDDQ	E12、F11	_	L14、M14	H10、J10	H10、J10
	RGMII2_VDDQ	L14、M14	_	J14、K14	_	_
	RGMII3_VDDQ	E14、F14	E12、E11	E10、E9	_	_
	RGMII4_VDDQ	H14、J14	G14、G13	E12、E11	E8、E7	E8、E7
	RGMII5_VDDQ	J15、K15	H13、J13	G14、H14	F10、G10	F10、G10
PLL 電源	PLL_AVDD	_	_	N11	K9	K9
	PLL_AGND	_		N10	L9	L9

表 A.2 端子割り当て(電源) (2/2)

分類	PKG 端子名	N1D 400	N1D 324	N1S 324	N1S 196	N1L 196
USB 電源	USB_VD33	R9、T9	M8、N8	P9、R9	K7、L7	K7、L7
	USB_GND	Y11、R10、 T10、U10、 V10、U9、V9、 Y8	V9、P8、R8、 T8、R7、T7、 V6	U11、V11、 T10、T9、U8、 V8	P9、M8、M7、 N6、P6	P9、M8、M7、 N6、P6
	USB_AVDD	T11	P9	P10	K8	K8
	USB_AVSS	P11、P10	M10、M9	_	_	_
RTC 電源	RTC_VDD33	F8	E7	D5	B4	_
ADC 電源	ADC1_AVDD	T6	P6	P8	L6	L6
	ADC1_AGND	T5	R5	P7	L5	L5
	ADC2_AVDD	Т8	_	_	_	_
	ADC2_AGND	R8	_	_	_	_
DDR PHY 電源	DVDD	L8、L7	K8、K7			_
	DVDDQ	H7、M7、J6、 K6、L6、M6	H7、H6、J6、 K6、L6	_	_	_
	DVSS	K8、K7	J8、J7	_	_	_

付録B IO マルチプレクシング割り当て

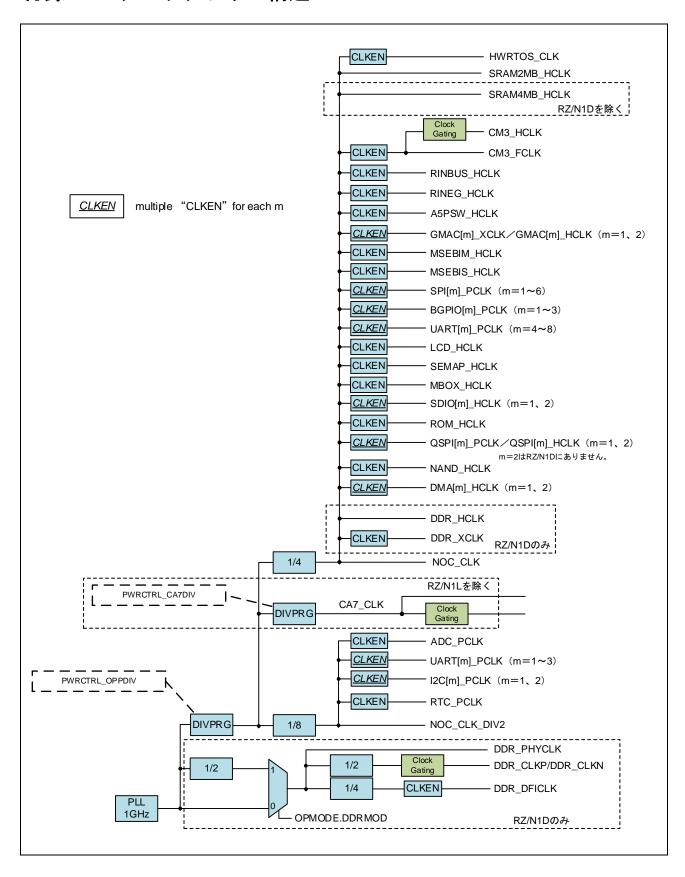
以下のテーブルに IO マルチプレクシング割り当ての一部が記載されています。記載されていない機能に関しては、専用の割り当てソフトウェアでご確認ください。

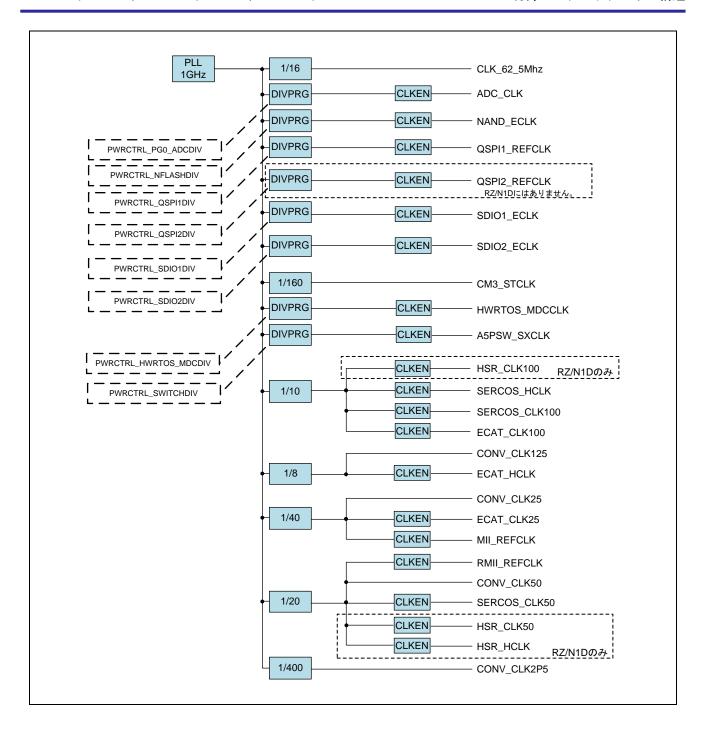
表 B.1 IO マルチプレクシング割り当て(1/4)

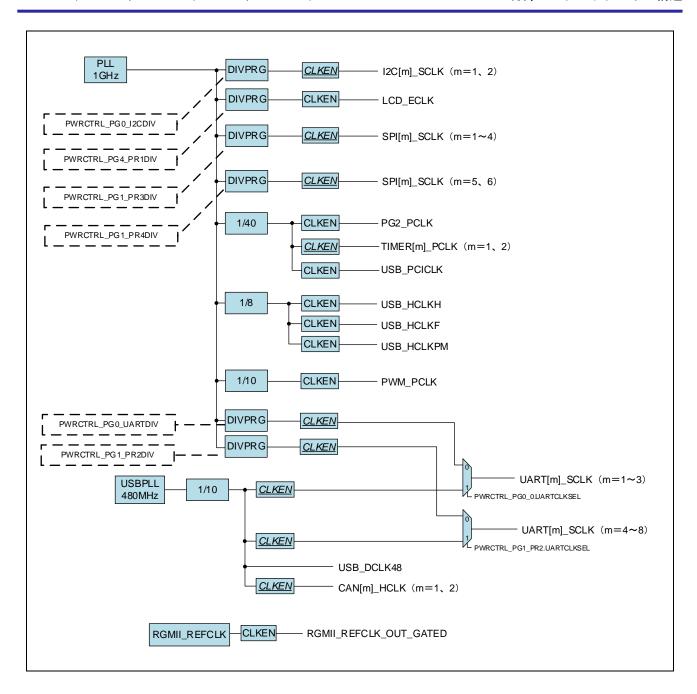
1X D.1		10	• •	- ,									
	N1D 400	N1D 324	N1S 324	N1S 196	N1L 196	Level1 Func2	Level1 Func3	Level1 Func4	Level1 Func5	Level1 Func6	Level1 Func8	Level1 Func9	Level2 Func48
GPIO0	0		0	0	0	GMII1_TXCLK							BGPIO1A[0]
GPIO1	0	_	0	0	0	GMII1_TXD0							BGPIO1B[0]
GPIO2	0	_	0	0	0	GMII1_TXD1							BGPIO1B[1]
GPIO3	0	_	0	0	0	GMII1_TXD2							BGPIO1A[1]
GPIO4	0	_	0	0	0	GMII1_TXD3							BGPIO1A[2]
GPIO5	0	_	0	0	0	GMII1_TXEN							BGPIO1B[2]
GPIO6	0	_	0	0	0	GMII1_RXCLK							BGPIO1B[3]
GPIO7	0	_	0	0	0	GMII1_RXD0							BGPIO1B[4]
GPIO8	0	_	0	0	0	GMII1_RXD1							BGPIO1B[5]
GPIO9	0	_	0	0	0	GMII1_RXD2							BGPIO1A[3]
GPIO10	0	_	0	0	0	GMII1_RXD3							BGPIO1A[4]
GPIO11	0	_	0	0	0	GMII1_RXDV							BGPIO1B[6]
GPIO12	0	_	0	_	_	GMII2_TXCLK							BGPIO1A[5]
GPIO13	0	_	0	_	_	GMII2_TXD0							BGPIO1B[7]
GPIO14	0	_	0	_	_	GMII2_TXD1							BGPIO1B[8]
GPIO15	0	_	0	_	_	GMII2_TXD2							BGPIO1A[6]
GPIO16	0	_	0	_	_	GMII2_TXD3							BGPIO1A[7]
GPIO17	0	_	0	_	_	GMII2_TXEN							BGPIO1B[9]
GPIO18	0	_	0	_	_	GMII2_RXCLK							BGPIO1B[10]
GPIO19	0	_	0	_	_	GMII2_RXD0							BGPIO1B[11]
GPIO20	0	_	0	_	_	GMII2_RXD1							BGPIO1B[12]
GPIO21	0	_	0	_	_	GMII2_RXD2							BGPIO1A[8]
GPIO22	0	_	0	_	_	GMII2_RXD3							BGPIO1A[9]
GPIO23	0	_	0	_	_	GMII2_RXDV							BGPIO1B[13]
GPIO24	0	0	0	_	_	GMII3_TXCLK							BGPIO1A[10]
GPIO25	0	0	0	_	_	GMII3_TXD0							BGPIO1B[14]
GPIO26	0	0	0	_	_	GMII3_TXD1							BGPIO1B[15]
GPIO27	0	0	0	_	_	GMII3_TXD2							BGPIO1A[11]
GPIO28	0	0	0	_	_	GMII3_TXD3							BGPIO1A[12]
GPIO29	0	0	0	_	_	GMII3_TXEN							BGPIO1B[16]
GPIO30	0	0	0	_	_	GMII3_RXCLK							BGPIO1B[17]
GPIO31	0	0	0	_	_	GMII3_RXD0							BGPIO1B[18]
GPIO32	0	0	0	_	_	GMII3_RXD1							BGPIO1B[19]
GPIO33	0	0	0	_	_	GMII3_RXD2							BGPIO1A[13]
GPIO34	0	0	0	_	_	GMII3_RXD3							BGPIO1A[14]
GPIO35	0	0	0	_	_	GMII3_RXDV							BGPIO1B[20]
GPIO36	0	0	0	0	0	GMII4_TXCLK							BGPIO1A[15]
GPIO37	0	0	0	0	0	GMII4_TXD0							BGPIO1B[21]
GPIO38	0	0	0	0	0	GMII4_TXD1							BGPIO1B[22]
GPIO39	0	0	0	0	0	GMII4_TXD2							BGPIO1A[16]
GPIO40	0	0	0	0	0	GMII4_TXD3							BGPIO1A[17]
GPIO41	0	0	0	0		GMII4_TXEN							BGPIO1B[23]
GPIO42	0	0	0	0	0	GMII4_RXCLK							BGPIO1B[24]
GPIO43	0	0	0	0	0	GMII4_RXD0							BGPIO1B[25]
GPIO44	0	0	0	0	0	GMII4_RXD1							BGPIO1B[26]
GPIO45	0	0	0	0	0	GMII4_RXD2							BGPIO1A[18]

表 B.1 IO マルチプレクシング割り当て(2/4)

表 B.1				,	_	レグンング音	1) 1 (2/4)	1			ı	1	
	N1D 400	N1D 324	N1S 324	N1S 196	N1L 196	Level1 Func2	Level1 Func3	Level1 Func4	Level1 Func5	Level1 Func6	Level1 Func8	Level1 Func9	Level2 Func48
GPIO46	0	0	0	0	0	GMII4_RXD3							BGPIO1A[19]
GPIO47	0	0	0	0	0	GMII4_RXDV							BGPIO1B[27]
GPIO48	0	0	0	0	0	GMII5_TXCLK							BGPIO1A[20]
GPIO49	0	0	0	0	0	GMII5_TXD0							BGPIO1B[28]
GPIO50	0	0	0	0	0	GMII5_TXD1							BGPIO1B[29]
GPIO51	0	0	0	0	0	GMII5_TXD2							BGPIO1A[21]
GPIO52	0	0	0	0	0	GMII5_TXD3							BGPIO1A[22]
GPIO53	0	0	0	0	0	GMII5_TXEN							BGPIO1B[30]
GPIO54	0	0	0	0	0	GMII5_RXCLK							BGPIO1B[31]
GPIO55	0	0	0	0	0	GMII5_RXD0							BGPIO2B[0]
GPIO56	0	0	0	0	0	GMII5_RXD1							BGPIO2B[1]
GPIO57	0	0	0	0	0	GMII5_RXD2							BGPIO1A[23]
GPIO58	0	0	0	0	0	GMII5_RXD3							BGPIO1A[24]
GPIO59	0	0	0	0	0	GMII5_RXDV							BGPIO2B[2]
GPIO60	0	0	0	0	0	RGMII_REFCLK	MII_REFCLK_0						BGPIO2B[3]
GPIO61	0	0	0	0	0	RMII_REFCLK	MII_REFCLK_1						BGPIO2B[4]
GPIO62	0	0	0	0	0	GMII3_TXER	FNAND_CE_N2			LCD_R1			BGPIO1A[25]
GPIO63	0	0	0	0	0	GMII3_RXER	FNAND_WP_N2			LCD_G1			BGPIO1A[26]
GPIO64	0	0	0	0	0	GMII3_CRS	FNAND_RY/BY_N2			LCD_B1			BGPIO1A[27]
GPIO65	0	0	0	0	0	GMII3_COL	FNAND_CE_N3			LCD R2			BGPIO1A[28]
GPIO66	0	0	0	0	0	GMII4_TXER	FNAND_WP_N3			LCD_G2			BGPIO1A[29]
GPIO67	0	0	0	0	0	GMII4_RXER	FNAND_RY/BY_N3			LCD_B2			BGPIO1A[30]
GPIO68	0	0	0	0	0	GMII4_CRS				LCD_R3			BGPIO1A[31]
GPIO69	0	0	0	0	0	GMII4_COL	FNAND_CE_N1			LCD_G3			BGPIO2A[0]
GPIO70	0	0	0	0	0	GMII5_TXER	FNAND_WP_N1			LCD_B3			BGPIO2A[1]
GPIO71	0	0	0	0	0	GMII5_RXER	FNAND_RY/BY_N1			LCD_R4			BGPIO2A[2]
GPIO72	0	0	0	0	0	GMII5_CRS				LCD_G4			BGPIO2A[3]
GPIO73	0	0	0	0	0	GMII5_COL		QUAD1_CS_N1		LCD_B4			BGPIO2A[4]
GPIO74	0	0	0	0	0			QUAD1_CS_N0					BGPIO2B[5]
GPIO75	0	0	0	0	0			QUAD1_IO3					BGPIO2B[6]
GPIO76	0	0	0	0	0			QUAD1_IO2					BGPIO2B[7]
GPIO77	0	0	0	0	0			QUAD1_IO1					BGPIO2B[8]
GPIO78	0	0	0	0	0			QUAD1_IO0					BGPIO2B[9]
GPIO79	0	0	0	0	0			QUAD1_CLK					BGPIO2B[10]
GPIO80	0	0	0	0	0		FNAND_ALE						BGPIO2B[11]
GPIO81	0	0	0	0	0		FNAND_CLE						BGPIO2B[12]
GPIO82	0	0	0	0	0		FNAND WE N						BGPIO2B[13]
GPIO83	0	0	0	0	0		FNAND_RE_N						BGPIO2B[14]
GPIO84	0	0	0	0	0		FNAND_IO0						BGPIO2B[15]
GPIO85	0	0	0	0	0		FNAND_IO1						BGPIO2B[16]
GPIO86	0	0	0	0	0		FNAND_IO2						BGPIO2B[17]
GPIO87	0	0	0	0	0		FNAND IO3						BGPIO2B[18]
GPIO88	0	0	0	0	0		FNAND_IO4						BGPIO2B[19]
GPIO89	0	0	0	0	0		FNAND_IO5		1	1			BGPIO2B[20]
GPIO90	0	0	0	0	0		FNAND_IO6						BGPIO2B[21]
GPIO91	0	0	0	0	0		FNAND_IO7						BGPIO2B[22]
GPIO92	0	0	0	0	0		FNAND_CE_N0		1	1			BGPIO2B[23]
GPIO92 GPIO93	0	0	0	0	0		FNAND_WP_N0						BGPIO2B[24]
GPIO94	0	0	0	0	0		FNAND_RY/BY_N0		1	1			BGPIO2B[25]
GPIO95	0	0	0	0	0				SDIO1_CMD				BGPIO2A[5]
5, 1035	0	0	0	0	0				SDIO1_CIVID	 		1	BGPIO2A[5]


表 B.1 IO マルチプレクシング割り当て (3/4)


2	N1D 400	N1D 324	N1S 324	N1S 196	N1L 196	Level1 Func2	Level1 Func3	Level1 Func4	Level1 Func5	Level1 Func6	Level1 Func8	Level1 Func9	Level2 Func48
GPIO97	0	0	0	0	0				SDIO1_IO0				BGPIO2A[7]
GPIO98	0	0	0	0	0				SDIO1_IO1				BGPIO2A[8]
GPIO99	0	0	0	0	0				SDIO1_IO2				BGPIO2A[9]
GPIO100	0	0	0	0	0				SDIO1_IO3				BGPIO2A[10]
GPIO101	0	0	0	0	0				SDIO1_IO4		MSEBIM_ALE2		BGPIO2A[11]
GPIO102	0	0	0	0	0				SDIO1_IO5		MSEBIM_ALE3		BGPIO2A[12]
GPIO103	0	0	0	0	0				SDIO1_IO6				BGPIO2A[13]
GPIO104	0	0	0	0	0				SDIO1_IO7				BGPIO2A[14]
GPIO105	0	0	0	0	0				SDIO2_CMD		MSEBIM_ACD0	MSEBIS_ACD0	BGPIO2A[15]
GPIO106	0	0	0	0	0				SDIO2_CLK		MSEBIM_ACD1	MSEBIS_ACD1	BGPIO2A[16]
GPIO107	0	0	0	0	0				SDIO2_IO0		MSEBIM_ACD2	MSEBIS_ACD2	BGPIO2A[17]
GPIO108	0	0	0	0	0				SDIO2_IO1		MSEBIM_ACD3	MSEBIS_ACD3	BGPIO2A[18]
GPIO109	0	0	0	0	0				SDIO2_IO2		MSEBIM_ALE	MSEBIS_ACD4	BGPIO2A[19]
GPIO110	0	0	0	0	0				SDIO2_IO3		MSEBIM_CLK	MSEBIS_ACD5	BGPIO2A[20]
GPIO111	0	0	0	0	0				SDIO2_IO4		MSEBIM_CLE	MSEBIS_ACD6	BGPIO2A[21]
GPIO112	0	0	0	0	0	MII_REFCLK_2			SDIO2_IO5		MSEBIM_DLE	MSEBIS_ACD7	BGPIO2A[22]
GPIO113	0	0	0	0	0				SDIO2_IO6		MSEBIM_ACD4	MSEBIS_ALE	BGPIO2A[23]
GPIO114	0	0	0	0	0				SDI02_I07		MSEBIM_ACD5	MSEBIS_CLK	BGPIO2A[24]
GPIO115	0	0	0	0	0						MSEBIM_ACD6	MSEBIS_CLE	BGPIO2A[25]
GPIO116	0	0	0	0	0						MSEBIM_ACD7	MSEBIS_DLE	BGPIO2A[26]
GPIO117	0	0	0	0	0						MSEBIM_WAIT_N0	MSEBIS_WAIT_N0	BGPIO2A[27]
GPIO118	0	0	0	0	0						MSEBIM_WAIT_N1	MSEBIS_WAIT_N1	BGPIO2A[28]
GPIO119	0	0	0	_	_								BGPIO2A[29]
GPIO120	0	0	0	_	_								BGPIO2A[30]
GPIO121	0	0	0	_	_								BGPIO2A[31]
GPIO122	0	0	0	_	_								BGPIO3A[0]
GPIO123	0	0	0	_	_								BGPIO3A[1]
GPIO124	0	0	0	_	_								BGPIO3A[2]
GPIO125	0	0	0	_	_								BGPIO3A[3]
GPIO126	0	0	0	_	_	MII_REFCLK_3							BGPIO3A[4]
GPIO127	0	0	0	_	_					LCD_PWM0			BGPIO3A[5]
GPIO128	0	0	0	_	_					LCD_PCLK			BGPIO3A[6]
GPIO129	0	0	0	_	_					LCD_HSYNC			BGPIO3A[7]
GPIO130	0	0	0	_	_					LCD_VSYNC			BGPIO3A[8]
GPIO131	0	0	0	_	_					LCD_DE			BGPIO3A[9]
GPIO132	0	0	0	_	_					LCD_PE			BGPIO3A[10]
GPIO133	0	0	0	_	_					LCD_PWM1	MSEBIM_ALE1		BGPIO3A[11]
GPIO134	0	0	0		_	MII_REFCLK_4				LCD_R5	MSEBIM_WAIT_N2	MSEBIS_WAIT_N2	BGPIO3A[12]
GPIO135	0	0	0	_	_					LCD_R0	MSEBIM_WAIT_N3	MSEBIS_WAIT_N3	BGPIO3A[13]
GPIO136	0	0	0		_					LCD_G0	MSEBIM_ACD8	MSEBIS_ACD8	BGPIO3A[14]
GPIO137	0	0	0	-	_					LCD_B0	MSEBIM_ACD9	MSEBIS_ACD9	BGPIO3A[15]
GPIO138	0	0	0	_	_					LCD_R6	MSEBIM_ACD10	MSEBIS_ACD10	BGPIO3A[16]
GPIO139	0	0	0	-	_					LCD_G6	MSEBIM_ACD11	MSEBIS_ACD11	BGPIO3A[17]
GPIO140	0	0	0	_	_					LCD_B6	MSEBIM_ACD12	MSEBIS_ACD12	BGPIO3A[18]
GPIO141 (0	0	0	_	_					LCD_R7	MSEBIM_ACD13	MSEBIS_ACD13	BGPIO3A[19]
GPIO142	0	0	0	-	_					LCD_G7	MSEBIM_ACD14	MSEBIS_ACD14	BGPIO3A[20]
GPIO143	0	0	0	_	_					LCD_B7	MSEBIM_ACD15	MSEBIS_ACD15	BGPIO3A[21]
GPIO144 (0	0	0	_	_					LCD_G5	MSEBIM_ACD16	MSEBIS_ACD16	BGPIO3A[22]
GPIO145	0	0	0	=	_	MII_REFCLK_5				LCD_B5	MSEBIM_ACD17	MSEBIS_ACD17	BGPIO3A[23]
GPIO146	0	0	0	_	_						MSEBIM_ACD18	MSEBIS_ACD18	BGPIO3A[24]
GPIO147 (0	0	0	_	_						MSEBIM_ACD19	MSEBIS_ACD19	BGPIO3A[25]


表 B.1 IO マルチプレクシング割り当て(4/4)

	N1D 400	N1D 324	N1S 324	N1S 196	961 J1N	Level1 Func2	Level1 Func3	Level1 Func4	Level1 Func5	Level1 Func6	Level1 Func8	Level1 Func9	Level2 Func48
GPIO148	0	0	0	_	_						MSEBIM_ACD20	MSEBIS_ACD20	BGPIO3A[26]
GPIO149	0	0	0	_	_			QUAD1_CS_N2			MSEBIM_ACD21	MSEBIS_ACD21	BGPIO3A[27]
GPIO150	0	0	0	_	_			QUAD1_CS_N3			MSEBIM_ACD22	MSEBIS_ACD22	BGPIO2B[26]
GPIO151	0	0	0	_	_			QUAD2_CS_N3			MSEBIM_ACD23	MSEBIS_ACD23	BGPIO2B[27]
GPIO152	0	0	0	_	_	GMII1_TXER		QUAD2_CS_N2			MSEBIM_ACD24	MSEBIS_ACD24	BGPIO2B[28]
GPIO153	0	0	0	_	_	GMII1_RXER		QUAD2_CS_N1			MSEBIM_ACD25	MSEBIS_ACD25	BGPIO2B[29]
GPIO154	0	0	0	_	_	GMII1_CRS		QUAD2_CS_N0			MSEBIM_ACD26	MSEBIS_ACD26	BGPIO2B[30]
GPIO155	0	0	0	_	_	GMII1_COL		QUAD2_IO3			MSEBIM_ACD27	MSEBIS_ACD27	BGPIO2B[31]
GPIO156	0	_	0	_	_	GMII2_TXER		QUAD2_IO2			MSEBIM_ACD28	MSEBIS_ACD28	BGPIO3A[28]
GPIO157	0	_	0	_	_	GMII2_RXER		QUAD2_IO1			MSEBIM_ACD29	MSEBIS_ACD29	BGPIO3A[29]
GPIO158	0	_	0	_	_	GMII2_CRS		QUAD2_IO0			MSEBIM_ACD30	MSEBIS_ACD30	BGPIO3A[30]
GPIO159	0	_	0	_	_	GMII2_COL		QUAD2_CLK			MSEBIM_ACD31	MSEBIS_ACD31	BGPIO3A[31]
GPIO160	0	_	_	_	_								BGPIO3B[0]
GPIO161	0	_	_	_	_								BGPIO3B[1]
GPIO162	0	_	_	_	_								BGPIO3B[2]
GPIO163	0	_	_	_	_								BGPIO3B[3]
GPIO164	0	_	_	_	_								BGPIO3B[4]
GPIO165	0	_	_	_	_								BGPIO3B[5]
GPIO166	0	_	_	_	_								BGPIO3B[6]
GPIO167	0	_	_	_	_								BGPIO3B[7]
GPIO168	0	_	_	_	_								BGPIO3B[8]
GPIO169	0	_	_	_	_								BGPIO3B[9]

付録C クロックツリー構造

改訂記録

RZ/N1Dグループ、RZ/N1Sグループ、RZ/N1Lグループ ユーザーズマニュアル アーキテクチャ・製品データ編

			改訂内容
Rev.	発行日	ページ	ポイント
0.90	2018.03.30	_	初版発行
0.95	2018.10.19	_	すべての章で表現修正、および体裁修正
		_	すべての章でセーフティ機能を削除(Clock Monitoring、Watchdog Safe 1/2、Safety Reset、Safety Filtering)
		6	このマニュアルの使い方、3. 略語および略称の説明、INTC、OTP 語句修正
		13	1.1 デバイス概要、DMA(16ch DMA→各 8ch DMA) 説明修正
		13	1.1 デバイス概要、タイマ(6×16b+2×32b→16bit×6ch, 32bit×2ch) 説明修正
		13	1.1 デバイス概要、ADC(ADC @ 1MHz→ADC(最大 1MSPS)) 説明修正
		13	1.1 デバイス概要、MSEBI(外部バスインタフェース) 説明追加
		13	1.1 デバイス概要、注 2(EtherCAT) 説明修正
		14	1.2 仕様の概要、表 1.1 仕様の概要(1/8)、CPU、L1 キャッシュ 表現修正
		14	1.2 仕様の概要、表 1.1 仕様の概要(1/8)、ウォッチドッグ 説明修正
		15	1.2 仕様の概要、表 1.1 仕様の概要(2/8)、セマフォ 説明追加
		15	1.2 仕様の概要、表 1.1 仕様の概要(2/8)、DDR2/3コントローラ 表現修正
		16	1.2 仕様の概要、表 1.1 仕様の概要(3/8)、Quad SPI(QSPI) 説明追加
		16	1.2 仕様の概要、表 1.1 仕様の概要(3/8)、SD/SDIO/eMMC(eMMC カード→eMMC、ADMA→ADMA2) 説明修正
		16	1.2 仕様の概要、表 1.1 仕様の概要(3/8)、R-IN Engine 説明修正
		17	1.2 仕様の概要、表 1.1 仕様の概要(4/8)、アドバンスト 5 ポートスイッチ(Advanced 5 Port Switch:A5PSW) 説明修正
		18	1.2 仕様の概要、表 1.1 仕様の概要(5/8)、EtherCAT スレーブコントローラ(分配→分散) 説明修正
		18	1.2 仕様の概要、表 1.1 仕様の概要(5/8)、SercosIII スレーブコントローラ 説明修正
		19	1.2 仕様の概要、表 1.1 仕様の概要(6/8)、独立した GMAC 説明修正
		20	1.2 仕様の概要、表 1.1 仕様の概要(7/8)、CAN 1、2 説明修正
		21	1.2 仕様の概要、表 1.1 仕様の概要 (8/8) 、電源電圧 (3.3V→3.3 V±0.3V、1.8V、1.5V →1.8V±0.1V、1.5V±0.075V) 、その他 説明修正
		22	1.3 製品一覧、(Peripherals SoC→Peripheral Group、その他) 説明修正
		23	1.4 ブロック図、図 1.1 RZ/N1D デュアル Cortex-A7 & Cortex-M3 図修正
		24	1.4 ブロック図、図 1.2 RZ/N1S シングル Cortex-A7 & Cortex-M3 図修正
		26	2.1.1 RZ/N1D、図 2.1 RZ/N1D(Cortex-A7)のメモリマップ(削除:Service area、追加:GIC access area) 図修正
		27	2.1.1 RZ/N1D、図 2.2 RZ/N1D(Cortex-M3)のメモリマップ(CA7 と同じ構成) 図修正
		28	2.1.2 RZ/N1S、図 2.3 RZ/N1S(Cortex-A7)のメモリマップ(追加:GIC access area) 図修正
		29	2.1.2 RZ/N1S、図 2.4 RZ/N1S(Cortex-M3)のメモリマップ (CA7 と同じ構成) 図修正
		30	2.1.3 RZ/N1L、図 2.5 RZ/N1L のメモリマップ 図修正
		31	2.2 レジスタマップサマリ、表 2.1 レジスタマップ (1/2) 説明修正
		32	2.2 レジスタマップサマリ、表 2.1 レジスタマップ(2/2) 説明修正
		34	3.1 概要、図 3.1 クロック生成のブロック図 説明修正
		35	3.2 クロックゲーティング、注意 表現修正
		37	3.5 クロック周波数変更 説明修正

			改訂内容
Rev.	発行日	ページ	ポイント
0.95	2018.10.19	37、38	3.5 クロック周波数変更、表 3.2 周波数モード SD/SDIO/eMMC(50MHz→最大 50MHz)、ADC(20MHz→最大 20MHz)、BGPIO、その他 説明修正
		39	3.5 クロック周波数変更、表 3.2 周波数モード、注 1、注 2、注 3 説明追加
		43	4.2.1 マスタリセット(電源→RTC 電源) 注意修正
		47	5.1 概要、表 5.2 IO マルチプレクスコンフィグレーション Level2 一覧 説明修正
		49	5.3.1 rGPIOs_Level1_ConfigA_[n] — GPIO[n] RGMII マルチプレキシング Level1 コンフィグレーションレジスタ(n=0~59) 注意追加
		50	5.3.2 rGPIOs_Level1_ConfigB_[n] — GPIO[n] Standard マルチプレキシング Level1 コンフィグレーションレジスタ(n=60~169(最大)) 注意追加
		51	5.3.3 rGPIOs_Level1_StatusProtect — GPIO マルチプレキシング Level1 ステータスおよびプロテクトレジスタ 注意削除
		52	5.3.4 rGPIOs_Level2_Config_[n] — GPIO[n]マルチプレキシング Level2 コンフィグレーションレジスタ(n=0~169(最大)) 注意追加
		53	5.3.5 rGPIOs_Level2_StatusProtect — GPIO マルチプレキシング Level2 ステータスおよびプロテクトレジスタ 注意削除
		56	5.3.8 rGPIOs_Level2_Gpio_Int_[n] — GPIO_Int[n]割り込みコンフィグレーションレジスタ(n=0~7)(BGPIO3→BGPIO2) 説明修正
		64	6.3.1 PWRCTRL_SWITCHDIV — A5PSW のクロック分周器コントロール、DIV(有効なレンジ:5~40→有効なレンジ:5) 説明修正
		68~70、75	6.3.5 PWRCTRL_PG1_PR3DIV — PG1 Program3 のクロック分周器コントロール、DIV (クロックモード→周波数モード)語句修正
			6.3.6~7、6.3.12 6.3.5 PWRCTRL_PG1_PR3DIV と同様な修正
		68~71、75、79	6.3.5 PWRCTRL_PG1_PR3DIV — PG1 Program3 のクロック分周器コントロール、DIV 備考追加
			6.3.6~8、6.3.12、6.3.16 6.3.5 PWRCTRL_PG1_PR3DIV と同様な修正
		80	6.3.17 PWRCTRL_SDIO1 — SDIO1 のパワーマネージメントコントロール、機能 表現 修正
		82 6.3.19 SYSSTAT — シス・ セッサ→Cortex-A7 プロセ・	6.3.19 SYSSTAT ― システムステータスフラグレジスタ、CA7_STANDBYWFIL2(プロセッサ→Cortex-A7 プロセッサ) 説明修正
		87	6.3.24 PWRCTRL_PG0_0 — PG0 のパワーマネージメントコントロール#0、 UARTCLKSEL (UART[m]_SCLK→UART[m]_SCLK (m=1~3)) 説明修正
		116	6.3.55 PWRCTRL_PG2_25MHZ — PG2 25MHz のパワーマネージメントコントロール、 SLVRDY_Q、CLKEN_Q 説明修正
		117	6.3.56 PWRCTRL_PG1_PR2 — PG1 Program2 のパワーマネージメントコントロール、UARTCLKSEL(UART[m]_SCLK の→UART[m]_SCLK の(m=4~8)) 説明修正
		122	6.3.62 RSTEN — リセットイネーブルレジスタ、SWRST_EN 説明修正
		124	6.3.64 PWRCTRL_RTC ─ RTC のパワーマネージメントコントロール、RST_RTC(リセットなし→リセット解除) 表現修正
		129	6.3.68 PWRSTAT_PG2_25MHZ — PG2 25MHz のパワーマネージメントステータス、 SCON_Q 説明修正
		139	6.3.79 RSTCTRL — リセットコントロールレジスタ、SWRST_REQ 説明修正
		140	6.3.80 CFG_USB — USB モードコンフィグレーションレジスタ、FRCLK48MOD、 DIRPD 説明修正
		141	6.3.81 OPMODE — システムとブートのコンフィグレーションレジスタ、リセット後の 値 注釈追加
		151	7.2.1 共通の特徴、RAM 要件と 2nd ステージブートイメージ 説明修正
		151	7.2.2 QSPI ブートの特徴 説明修正
		152	7.2.3 NAND ブートの特徴 説明修正
		154	7.3.2 外部端子によるコンフィグレーション、表 7.1 外部端子コンフィグレーション、コメント 説明修正
		156	7.3.5 RZ/N1L のブート 説明修正
		157	7.4.2 実装の詳細 説明追加

			改訂内容
Rev.	発行日	ページ	ポイント
0.95	2018.10.19	164、165	7.5.4 一般的な NoC のプログラミングシーケンス、表 7.3 各モジュールの接続/切断に関連したレジスタ、先頭行 説明修正
		168	8.2 サポートするモード(各モジュールのサポートモード→サポートするモード) タイトル修正
		168	8.2 サポートするモード、表 8.3 Ethernet I/F のサポートモード 説明修正
		169、170	8.2 サポートするモード、表 8.4 Ethernet PHY のクロック I/F(Part 1)~表 8.10 Ethernet PHY のクロック I/F(Part 7) 説明修正
		171	8.2 サポートするモード、表 8.11 各モジュールのサポートモード、注 2 語句修正
		172	8.2.1 イーサネットポートの内部接続(Switch Mux モード→イーサネットポートの内部接続) タイトル、説明修正
		172	8.2.1 イーサネットポートの内部接続、表 8.12 イーサネットポートの内部接続(Switch Mux モード→ イーサネットポートの内部接続) タイトル、説明修正
	-	173	8.2.2 PTP 用クロックの選択(PTP モード→ PTP 用クロックの選択) タイトル、説明 修正
		173	8.2.2 PTP 用クロックの選択、図 8.2 PTPMCTRL レジスタによる PTP 用クロックの選択(ptp_timestamp 信号の接続→PTPMCTRL レジスタによる PTP 用クロックの選択) タイトル、図修正
		174	8.2.2 PTP 用クロックの選択、表 8.13 PTP 用クロックの選択(PTP_MODE の選択 (1/2)→PTP 用クロックの選択) タイトル、説明修正
		174	8.2.2 PTP 用クロックの選択、表 8.14 PTP_MODE の推奨設定(PTP_MODE の選択(2/2)→PTP_MODE の推奨設定) タイトル修正
		175	8.3.1 初期化、図 8.3 Ethernet の初期化のフローチャート 図修正
		176	8.3.2 ETHMODE_SET、図 8.4 ETHMODE_SET フローチャート 図修正
		177	8.4.1 制限 説明修正
		177	8.4.1.1 サポートされる Ethernet 信号、表 8.15 各 PHY モードにおける Ethernet 信号 表現修正
		178	9.1.1 Cortex-A7 GICv2 説明修正
		180	9.2.3 Cortex-A7 と Cortex-M3 の割り込みマネージメント、図 9.1 Cortex-A7 と Cortex-M3 の割り込みマネージメント 図修正
		181	9.2.4 割り込み割り当てとベクタ番号、表 9.1 割り込み割り当てとベクタ番号(1/4)、 (CM3_LOCKUP_Int、IRQ32,33→予約、HWRTOS_ETHMMA_Int→ HWRTOS_ETHMMAI_Int、その他) 説明修正
	-	182	9.2.4 割り込み割り当てとベクタ番号、表 9.1 割り込み割り当てとベクタ番号 (2/4) (A5PSW_HUB_Int、A5PSW_PTRN_Int) 説明修正
		183	9.2.4 割り込み割り当てとベクタ番号、表 9.1 割り込み割り当てとベクタ番号 (3/4) 、GPIO_Int、その他 説明修正
		184	9.2.4 割り込み割り当てとベクタ番号、表 9.1 割り込み割り当てとベクタ番号、注 1 説明追加
		_	第 10 章 IO と第 11 章 電気的特性において、"OTP メモリプログラミング"に用語統一
		186	10.1 端子機能、表 10.2 PKG 端子名(1/2)、CTRSTBYB 説明修正
		190	10.1 端子機能、表 10.3 GPIO Multiplexed 端子名(3/3) 説明修正
		199	11.3.1 電流、表 11.3 電流(出力リーク電流→出力 High レベル電流) 説明修正
		199	11.3.1 電流、表 11.3 電流(I _{OH} →-I _{OH}) 表記修正
		199	11.3.1 電流、表 11.3 電流 注 1 説明追加
		200	11.3.2 デジタル IO、表 11.4 デジタル IO、入力容量 説明追加
		201	11.4.1 電源投入、DVDD、PLL_AVDD、USB_AVDD 図修正
		201	11.4.2 電源切断、DVDD、PLL_AVDD、USB_AVDD 図修正
		207	11.5.2.2 DDR3 / DDR2 インタフェース、表 11.11 DDR3 -1000(強度→記号、DQS からの DQ ホールドスキュー係数→DQS からの DQ ホールド時間) 説明修正
		208	11.5.2.2 DDR3 ∕ DDR2 インタフェース、表 11.12 DDR2-500(信号→記号、DQS からのDQ ホールドスキュー係数→DQS からの DQ ホールド時間) 説明修正

			改訂内容
Rev.	発行日	ページ	ポイント
0.95	2018.10.19	211	11.5.2.4 SD/MMC/SDIO インタフェース、表 11.14 SD バスタイミング(デフォルトモード)、条件 説明修正
		212	11.5.2.4 SD/MMC/SDIO インタフェース、表 11.15 SD バスタイミング(ハイスピードモード)、条件 説明修正
		218	11.5.3.6 JTAG/SWD、表 11.21 JTAG タイトル修正
		218	11.5.3.6 JTAG/SWD、表 11.22 シリアルワイヤデバッグ(SWD) タイトル修正
		222	11.6 ADC 特性、表 11.26 ADC 特性、入力等価容量 説明追加
		223	12.1.1 BGA-400 パッケージ、図 12.1 BGA-400 パッケージ寸法 図修正
		224	12.1.2 BGA-324 パッケージ、図 12.2 BGA-324 パッケージ寸法 図修正
		225	12.1.3 BGA-196 パッケージ、図 12.3 BGA-196 パッケージ寸法 図修正
		241	付録 C クロックツリー構造(UART[m]_SCLK→UART[m]_SCLK(m=4~8))、その他図修正
1.00	2019.03.29	_	すべての章で表記修正、および体裁修正
		23	1.3 製品ファミリ/パッケージ別機能比較 タイトル修正
		24	1.4 製品一覧、表 1.3 製品一覧 表追加
		40	3.5 クロック周波数変更、表 3.2 周波数モード(2/3)、メールボックス 説明追加
		49	5.1 概要、表 5.2 IO マルチプレクスコンフィグレーション Level2 一覧、ファンクション 番号 1 説明修正
		74	6.3.9 PWRCTRL_SDIO1DIV — SDIO1のクロック分周器コントロール、DIV 値修正
		75	6.3.10 PWRCTRL_SDIO2DIV — SDIO2 のクロック分周器コントロール、DIV 値修正
		83~147	6.3.18 PWRSTAT_SDIO1 — SDIO1 のパワーマネージメントステータス、
			同様に 6.3.21~24、6.3.26~49、6.3.53~63、6.3.65~66、6.3.69~70、6.3.72~73、6.3.76~78 説明修正
		84	6.3.19 SYSSTAT ― システムステータスフラグレジスタ 説明修正
		101	6.3.34 PWRSTAT_QSPI1 — QSPI1 のパワーマネージメントステータス 備考追加
		116	6.3.49 PWRSTAT_QSPI2 — QSPI2 のパワーマネージメントステータス 備考追加
		158	6.3.87 VERSION — プロダクトバージョンレジスタ、VERSION 説明修正
		190	9.2.4 割り込み割り当てとベクタ番号、表 9.1 割り込み割り当てとベクタ番号 (1/4) 、 HWRTOS_* 説明修正
		195	10.1 端子機能、表 10.2 PKG 端子名(1/2)、CTRSTBYB、DDR_ADDR 説明修正
		199	10.1 端子機能、表 10.3 GPIO Multiplexed 端子名(3/3)、SPI[m]_SS_N[n] 説明追加
		200	10.2 未使用端子の処理、表 10.4 未使用端子の処理、GPIO[n] 説明追加
		223	11.5.3.2 SPI マスタ、表 11.17 SPI マスタ 説明修正
		224	11.5.3.3 SPI スレーブ、表 11.18 SPI スレーブ 説明修正
		229	11.5.5 MSEBI インタフェースタイミング、表 11.24 MSEBI マスタ 説明修正
		248	付録 C クロックツリー構造、SRAM2MB_HCLK、SRAM4MB_HCLK、MBOX_HCLK 図 修正
1.10	2019.07.29		6章、8章、11章で表記修正、および体裁修正
		89	6.3.24 PWRCTRL_PG0_0 — PG0 のパワーマネージメントコントロール#0 (USBPLL→USB_DCLK48) 語句修正
		123、124	6.3.56 PWRCTRL_PG1_PR2 — PG1 Program2 のパワーマネージメントコントロール (USBPLL→USB_DCLK48)語句修正
		132	6.3.64 PWRCTRL_RTC — RTC のパワーマネージメントコントロール 説明修正
		146	6.3.77 PWRCTRL_SWITCHCTRL — イーサネットアクセサリレジスタのパワーマネージメントコントロール、RSTN_CLK25、CLKEN_A 説明修正
		152	6.3.83 DBGCON — デバッグコントロールレジスタ 表現修正
		155~157	6.3.86 CFG_DMAMUX — DMAC1 と DMAC2 のマルチプレクサレジスタ 表現統一(システム・周辺機能 1 編、11.6.2 DMA 要求の割り当て)
		158	6.3.87 VERSION — プロダクトバージョンレジスタ、VERSION 値修正、説明追記

			改訂内容
Rev.	発行日	ページ	ポイント
1.10	2019.07.29	177	8.2 サポートするモード、表 8.3 Ethernet I/F のサポートモード 表現修正
		181	8.2.1 イーサネットポートの内部接続 表現修正
		182	8.2.2 PTP 用クロックの選択、図 8.2 PTPMCTRL レジスタによる PTP 用クロックの選択 注釈追加
		_	第 11 章 電気的特性、全般的に端子名称および記号の統一
		_	第 11 章 電気的特性、全般的に表現統一(CL、IO 強度→負荷容量 CL、ドライブ強度)
		216~217	11.5.2.2 DDR3/DDR2 インタフェース 表現統一
		225	11.5.3.4 I2C、タイミングチャート 備考追加
		227	11.5.3.6 JTAG/SW、表 11.22 シリアルワイヤデバッグ(SWD)(t _{SWD_CL} →t _{SWD_CH})、タイミングチャート(t _{SWD_OUT} →t _{SWD_DOUT}) 記号統一
		229	11.5.5 MSEBI インタフェースタイミング、表 11.24 MSEBI マスタおよびタイミングチャート MSEBIM_ALE 端子名 表記統一
		230	11.5.5 MSEBI インタフェースタイミング、表 11.25 MSEBI スレーブおよびタイミングチャート、MSEBIS_WR_N、MSEBIS_RD_N 端子名 表記削除
1.20	2020.05.29	14	1.1 デバイス概要、セキュリティ機能 説明追加
		16	1.2 仕様の概要、表 1.1 仕様の概要(2/8)、ダイレクトメモリアクセスコントローラ (Direct Memory Access Controller:DMAC) 説明修正
		17	1.2 仕様の概要、表 1.1 仕様の概要(3/8)、Quad SPI(QSPI) 説明修正
		22	1.2 仕様の概要、表 1.1 仕様の概要(8/8)、セキュリティ 説明追加
		23~24	1.3 製品ファミリ/パッケージ別機能比較、表 1.2 ルネサス CPU サブシステム、セキュリティ機能 説明追加
		24	1.4 製品一覧、表 1.3 製品一覧、セキュリティ 説明追加
		36	3.1 概要、図 3.1 クロック生成のブロック図、USBCLK 図修正
		44	4.1 概要、表 4.1 リセットの種類、システムリセット 説明修正
		167	7.4.2 実装の詳細、表 7.2 SPKG フィールド、BLp_header 説明修正
		175	8.1 概要、備考 参照先修正
		210	11.4 電源投入/切断シーケンス 注意追加
		210	11.4.1 電源投入 図修正
		210	11.4.2 電源切断 図修正
1.30	2020.09.30	14	1.1 デバイス概要、周辺機能、PWMTimer 説明追加
		21	1.2 仕様の概要、表 1.1 仕様の概要(7/8)、PWMTimer 説明追加
		23	1.3 製品ファミリ/パッケージ別機能比較、表 1.2 ルネサス CPU サブシステム、 PWMTimer 説明追加
		25	1.5 ブロック図、図 1.1 RZ/N1D デュアル Cortex-A7 & Cortex-M3、PWMTimer 図修正
		26	1.5 ブロック図、図 1.2 RZ/N1S シングル Cortex-A7 & Cortex-M3、PWMTimer 図修正
		27	1.5 ブロック図、図 1.3 RZ/N1L Cortex-M3、PWMTimer 図修正
		33	2.2 レジスタマップサマリ、表 2.1 レジスタマップ (1/2) 、PWMTimer 説明追加
		36	3.1 概要、図 3.1 クロック生成のブロック図、PWMTimer 図修正
		40	3.5 クロック周波数変更、表 3.2 周波数モード (2/3) 、PWMTimer 説明追加
		48	5.1 概要、表 5.1 IO マルチプレクスコンフィグレーション Level1 一覧、ファンクション 番号 0 説明修正
		49	5.1 概要、表 5.2 IO マルチプレクスコンフィグレーション Level2 一覧、ファンクション 番号 0 説明修正
		49	5.1 概要、表 5.2 IO マルチプレクスコンフィグレーション Level2 一覧、PWMTimer 説明追加
		91	6.3.25 PWRSTAT_PG0 — PG0 のパワーマネージメントステータス、SCON_P 説明追加
		92	6.3.26 PWRCTRL_PG0_1 — PG0 のパワーマネージメントコントロール#1、 SLVRDY_P、RSTN_P、CLKEN_P 説明追加

		改訂内容	
Rev.	発行日	ページ	ポイント
1.30	2020.09.30	173	7.5.4 一般的な NoC のプログラミングシーケンス、表 7.3 各モジュールの接続/切断に関連したレジスタ (1/2) 、PWMTimer 説明追加
		190	9.2.4 割り込み割り当てとベクタ番号、表 9.1 割り込み割り当てとベクタ番号 (1/4)、PWM_Int 説明追加
		199	10.1 端子機能、表 10.3 GPIO Multiplexed 端子名(3/3)、PWMTimer 説明追加
		212	11.5.1.2 RMII、RMII_REFCLK 説明追加
		250	付録 C クロックツリー構造、PWM_PCLK 図修正
1.40	2021.02.28	18	1.2 仕様の概要、表 1.1 仕様の概要(4/8)、アドバンスト 5 ポートスイッチ(Advanced 5 Port Switch:A5PSW) 説明修正
1.50	2021.12.29	_	すべての章で表記修正、および体裁修正
		184	8.2.2 PTP 用クロックの選択、図 8.3 PTP 使用時の構成例 図追加
		211	11.4 電源投入/切断シーケンス、注意 説明追加
		211	11.4.1 電源投入 図修正
		215	11.5.1.4 MDIO、表 11.9 MDIO 注釈追加
1.60	2025.10.31	160	7.2.2 QSPI ブートの特徴 サポートされるシリアル Flash に説明追加
		196	CTRSTBYB の説明を変更

RZ/N1Dグループ、RZ/N1Sグループ、RZ/N1Lグループ ユーザーズマニュアル アーキテクチャ・製品データ編

発行年月日 2018 年 03 月 30 日 Rev.0.90

2025年10月31日 Rev.1.60

発行 ルネサス エレクトロニクス株式会社

〒135-0061 東京都江東区豊洲 3-2-24 (豊洲フォレシア)

RZ/N1D グループ、RZ/N1S グループ、RZ/N1L グループ

