QCIOT-DA7212EVZ

Click Board™

Description

The QCIOT-DA7212EVZ Click Board[™] demonstrates the functionality and performance of the <u>DA7212</u>. The DA7212 is an ultra-low power audio codec targeting portable audio devices. Comprehensive analog mixing and bypass paths to the output drivers are available.

Digital audio transfer to/from the external processor is via a bi-directional digital audio interface that supports all common sample rates and formats. The device may be operated in slave (target) or master (controller) modes using the internal PLL, which may be bypassed if not required. To fully optimize each customer application, a range of built-in filtering, equalization and audio enhancements are available. These are accessible by the processor over the I²C serial interface

The board operates as an audio development expansion for a host MCU board and allows for the development of a complete audio input/output solution by including an on-board speaker and microphone. It also includes input and output jacks to connect to external devices. The Click Board connects to a host board via the Renesas mikroBUS™ interface.

Kit Contents

QCIOT-DA7212EVZ Click Board

Features

- DA7212 audio codec (for details and specifications, see the <u>DA7212</u> product page)
- 3.5mm jack for external line-in audio
- 3.5mm jack for headphone output (or externally powered speaker output)
- Digital MEMS microphone
- Mono-channel SMD speaker
- mikroBUS™ interface for inter-board communication
- Selectable on-board or external master clock for DA7212
- Low-power PLL provides system clocking and audio sample rate flexibility
- Built-in 5-band equalizer, ALC and noise-gate functions

Figure 1. QCIOT-DA7212 Click Board

Contents

1.	Functional Description				
	1.1	Setup and Configuration			
		1.1.1	Software Installation		
		1.1.2	Kit Hardware Connections	4	
2.	Board Design			5	
	2.1	2.1 Schematic Diagrams		6	
	2.2	2.2 Bill of Materials (BOM)			
	2.3	Board	11		
3.	. Software Design			13	
	3.1	I Wav Playback Mode			
	3.2	Microp	14		
	3.3	3 Project Code Structure			
4.	. Board Test				
	4.1	Wav P	Playback Mode		
	4.2	Microp	phone Loopback Mode		
5.	Ord	Ordering Information			
6.	Revi	Revision History			

Figures

Figure 1. QCIOT-DA7212 Click Board	1
Figure 2. QCIOT-DA7212EVZ Click Board Block Diagram	3
Figure 3. QCIOT-DA7212EVZ Click Board with EK-RA2L1 MCU	4
Figure 4. QCIOT-DA7212EVZ Board Image (Top)	5
Figure 5. QCIOT-DA7212EVZ Board Image (Bottom)	5
Figure 6. DA7212 Connections Schematic	6
Figure 7. Audio Input/Output Connections Schematic	7
Figure 8. Codec Power Supply Schematic	8
Figure 9. mikroBUS Connection Schematic	9
Figure 10. Top Overlay	11
Figure 11. Top Layer	11
Figure 12. Layer 2 (GND)	11
Figure 13. Layer 3 (3V3)	11
Figure 14. Layer 4 (1V8)	12
Figure 15. Layer 5 (GND)	12
Figure 16. Bottom Layer	12
Figure 17. Bottom Overlay	12
Figure 18. Wav Playback Mode Algorithm Flowchart	13
Figure 19. Microphone Loopback Mode Algorithm Flowchart	14
Figure 20. Project Structure	15
Figure 21. Sample Code .srec File	16
Figure 22. SEGGER J-Flash Lite Tool	17

1. Functional Description

The QCIOT-DA7212EVZ Click board is intended as a quick connect prototyping solution for DA7212. Figure 2 highlights the main parts of the system.

Figure 2. QCIOT-DA7212EVZ Click Board Block Diagram

1.1 Setup and Configuration

Required or recommended user equipment:

- Renesas Evaluation Board: <u>EK-RA2L1</u>
- USB micro-B cable (provided with RA board)
- PC running Windows 10/11 with at least two USB ports.
- QCIOT-DA7212EVZ Click board

Required or recommended software:

- <u>Renesas Flexible Software Package (FSP)</u> v5.9.0 platform installation
 - Renesas <u>e² studio</u> 2025-04 or later
 - FSP 5.9.0 or later
 - GCC Arm Embedded 13.3.1 or later
- Sample code files (available on QCIOT-DA7212EVZ webpage)

Note: There are multiple code files available on the QCIOT-DA7212EVZ web page. Import the sample project **ek_ra2l1_da7212evz_example_comms_layer** to e² studio.

1.1.1 Software Installation

Visit the <u>e² studio</u> webpage for the latest version of the installer software.

1.1.2 Kit Hardware Connections

Follow these procedures to set up the kit (see Figure 3).

- 1. Ensure that the MCU development kit supports mikroBUS-type connector.
 - a. For EK-RA2L1, mikroBUS connector is available.
- 2. On the QCIOT-DA7212EVZ board, populate J1, J2, J7 (Pin 1 and 2) with jumpers to use the on-board and oscillator.
- 3. Plug in the QCIOT-DA7212EVZ board to the mikroBUS connector of EK-RA2L1. Ensure to align Pin 1 of J5 and J6 on QCIOT-DA7212EVZ and MCU kit pin 1 of J21 and J22.
- 4. Connect the EK board to the computer with a USB micro-B cable.
- 5. Short P401 and P403 on EK-RA2L1.
- 6. The device is now ready to be used in the system.

Figure 3. QCIOT-DA7212EVZ Click Board with EK-RA2L1 MCU

2. Board Design

Figure 4. QCIOT-DA7212EVZ Board Image (Top)

Figure 5. QCIOT-DA7212EVZ Board Image (Bottom)

2.1 Schematic Diagrams

Figure 6. DA7212 Connections Schematic

Figure 7. Audio Input/Output Connections Schematic

Figure 8. Codec Power Supply Schematic

Figure 9. mikroBUS Connection Schematic

2.2 Bill of Materials (BOM)

Qty	Reference Designator	Description	Manufacturer	Manufacturer Part Number
19	C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13, C15, C16, C17, C18, C20, C21	Chip Multilayer Ceramic Capacitors for General Purpose, 0201, 1.0µF, X5R, 15%, 20%, 6.3V	Murata	GRM033R60J105MEA2D
1	C14	Chip Multilayer Ceramic Capacitors for General Purpose, 0201, 10000pF, X7R, 15%, 10%, 10V	Murata	GRM033R71A103KA01D
1	C19	Chip Multilayer Ceramic Capacitors for General Purpose, 0201, 0.10µF, X5R, 15%, 10%, 6.3V	Murata	GRM033R60J104KE19D
1	DMIC1	Integrated circuit	STMicroelectronics	MP23DB02MMTR
1	IC1	Integrated circuit	Dialog Semiconductor	DA7212-01UM2
1	IC2	ISL9016IRUNCZ-T Pb-free Dual Ldo W/low Noise, High Psrr, Low lq 1.6 × 1.6 Ut	Renesas	ISL9016IRUNCZ-T
2	J1, J2	Conn Header Vert 2 Pos 2.54mm	Wurth Electronics	61300211121
2	J3, J4	3.5 mm, Stereo, Right Angle, Through Hole, 3 Conductors, 0–2 Internal Switches, Audio Jack Connector	Same Sky	SJ1-3513N
2	J5, J6	THT Vertical Pin Header WR-PHD, Pitch 2.54mm, Single Row, 8 pins	Wurth Electronics	61300811121
1	J7	Male Header, Pitch 2.54 mm, 1 × 3 Position, Height 8.38mm, Tail Length 3.18mm, RoHS, Bulk	Molex	22-28-4033
3	JMP1, JMP2, JMP3	Conn Jumper Shorting .100" Gold	Sullins	QPC02SXGN-RC
2	LED1, LED2	LED Green 0603 SMD	Vishay	TLMP1100-GS15
2	Q1, Q2	N-Channel MOSFET Transistor, 8 V VGSS, 25 V VDSS, 0.68A, -55 to 150 °C, 3-Pin SOT23, RoHS, Tape and Reel	ON Semiconductor / Fairchild	FDV303N
2	R1, R2	Chip Resistor, 100kOhm, ±1%, 0.1 W, -55 to 155 °C, 0603 (1608 Metric)	Vishay	CRCW0603100KFKEAC
2	R3, R4	RES Thick Film, 120Ω, 1%, 0.125W, 100ppm/°C, 0805	Vishay	CRCW0805120RFKEA
2	R5, R6	Chip Resistor, 47kOhm, ±1%, 0.1 W, -55 to 155 °C, 0603 (1608 Metric), RoHS, Tape and Reel	Panasonic	ERJ-3EKF4702V
1	SP1	13 mm, Square Frame, 0.7 W, 8 Ohm, Samarium Cobalt Magnet, Mylar Cone	Same Sky	CDS-13138-SMT-TR
1	Y1	XTAL Oscillator 12.288MHz ±50ppm HCMOS, TTL 3.3V 4-SMD 5mm × 3.2mm	Abracon	ASFL1-12.288MHZ-EC-T

2.3 Board Layout

Figure 10. Top Overlay

Figure 12. Layer 2 (GND)

Figure 11. Top Layer

Figure 13. Layer 3 (3V3)

Figure 14. Layer 4 (1V8)

Figure 16. Bottom Layer

Figure 15. Layer 5 (GND)

Figure 17. Bottom Overlay

3. Software Design

The following sections present an overview of the software implementation for the QCIOT-DA7212EVZ Click board, which is based on the Renesas RA Family's Flexible Software Package (FSP). The software has two modes:

- 1. Wav Playback Mode to test the Audio playback feature.
- 2. Microphone Loopback Mode to test the Microphone.

The following sections describe the two different software modes and the project's code structure.

3.1 Wav Playback Mode

Enter this mode by enabling the **PLAYBACK_MODE_WAV** macro located in the **audio_codec.h** file within **src** folder of the sample code. In this mode, perform the following steps:

- 1. Enable the LDO on the QCIOT-DA7212EVZ board.
- 2. Initialize the I²C peripheral and configure the QCIOT-DA7212EVZ Codec board
- 3. Initialize the SCI SPI for I²S interface.

When the **PLAYBACK_MODE_WAV** macro is successfully enabled, the codec board will start playing the Audio File data from the MCU.

A high-level software algorithm flowchart is shown in Figure 18.

Figure 18. Wav Playback Mode Algorithm Flowchart

3.2 Microphone Loopback Mode

Enter this mode by disabling the **PLAYBACK_MODE_WAV** macro located in the **audio_codec.h** file within the **src** folder of the sample code. In this mode, perform the following steps:

- 1. Enable the LDO on the QCIOT-DA7212EVZ board.
- 2. Initialize the I²C peripheral and configure the QCIOT-DA7212EVZ Codec board.
- 3. Initialize the SCI SPI for I²S interface.

Once the Microphone data is received, copy the microphone data to the Output Buffer and send it to the Codec to allow reading of the data.

A high-level software algorithm flowchart is shown in Figure 19.

Figure 19. Microphone Loopback Mode Algorithm Flowchart

3.3 Project Code Structure

The Quick Connect project is designed to be a highly modular solution that can be easily configured independently of other modules (if required) or ported to other end-applications.

Figure 20 shows the structure of the project in e^2 studio.

Project Explorer 🛛	😫 🍸 🖇 🗖 🗖
✓	ebug]
> 👯 Binaries	
> 🔊 Includes	
> 🔑 ra	
> 🔑 ra_gen	
Y 🔁 src	
> 🗁 Audio	
> 💽 audio_codec.c	
> 庙 audio_codec.h	
> 🖻 AudioSend.c	
> h AudioSend.h	
> 🖸 DA7212.c	
> h DA7212.h	
> 🙋 hal_entry.c	
> h rm_da7212_api.h	
> 💽 rm_da7212_ra_driver.c	
> 💽 rm_da7212.c	
> 🖻 rm_da7212.h	
> 🔁 Debug	
> 🤁 ra_cfg	
> 🤁 script	
est configuration.xml	
ek_ra2l1_da7212evz_example_comms_layer.zip	1
ek_ra2l1_da7212evz_example_comms_layer De	bug.jlink
JLinkLog.log	
i ra_cfg.txt	
> (?) Developer Assistance	

Figure 20. Project Structure

4. Board Test

4.1 Wav Playback Mode

1. Run the code in standalone mode to test the on-board speaker and headphone jack.

Note: There are multiple sample codes available on the QCIOT-DA7212EVZ web page. Import the sample code **ek_ra2l1_da7212evz_example_comms_layer** to e² studio.

2. Build the sample code in e² studio to generate the **.srec** file under the Debug folder.

Figure 21. Sample Code .srec File

3. Load the .srec file to the EK-RA2L1 MCU using the <u>SEGGER J-Flash Lite</u> tool.

SEGGER J-Flash Lite V7.96l	- 🗆 X			
File Help				
Target				
Device Interface	Speed			
R7FA2L1AB SWD	4000 kHz			
Data File (bin / hex / mot / srec /)				
g\ek_ra2l1_da7212evz_example_comms_layer.srec				
Program Device				
Log				
Data file contains 2 memory ranges: #0: 0x00000000 - 0x0003915F (233824 Bytes) #1: 0x01010018 - 0x01010033 (28 Bytes) Conecting to J-Link Connecting to target Downloading Done.				
<	>			
Ready				

Figure 22. SEGGER J-Flash Lite Tool

- 4. Connect a 5V power supply to TP7 and GND to TP9 on the EK-RA2L1. Switch on the power supply.
- 5. It should now start looping a brief piano audio clip through the speaker and the headphone jack.

4.2 Microphone Loopback Mode

1. Run the code in standalone mode to test the microphone.

Note: There are multiple sample projects located in the QCIOT-DA7212EVZ web page. Import the sample project **ek_ra2l1_da7212evz_example_comms_layer** to e² studio

 Open the sample code project in e² studio. Go to the audio_codec.h file and comment out the line //#define PLAYBACK_MODE_WAV (see Figure 23).

Figure 23. Sample Code audio_codec.h File

- 3. Rebuild the sample code in e² studio to generate the updated **.srec** file under the Debug folder. Ensure that there are zero errors and warnings.
- 4. Load the updated **.srec** file to the EK-RA2L1 MCU using the SEGGER J-Flash Lite tool.
- 5. Connect a 5V power supply to TP7 and GND to TP9 on EK-RA2L1. Switch-on the power supply.
- 6. It should now play whatever the microphone picks up through the headphone jack.

Note: This mode does not support speaker due to feedback noise from the microphone being in close proximity.

5. Ordering Information

Orderable Part Number	Description
QCIOT-DA7212EVZ	DA7212 Click Board

6. Revision History

Revision	Date	Description
1.01	Jun 16, 2025	 Updated Description and Features on page 1. Updated sections 1.1, 1.1.2, 3, and 4. Added new sections 3.1, 3.2, 4.1 and 4.2.
1.00	Jun 9, 2025	Initial release.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit <u>www.renesas.com/contact-us/</u>.