Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

User's Manual

PFESiP/V850EP1

32-bit Microcontroller Dedicated to PFESiP[®] EP-1

Hardware (USB Function)

Document No. A19071EJ2V0UM00 (2nd edition) Date Published November 2009 NS

© NEC Electronics Corporation 2008, 2009 Printed in Japan [MEMO]

NOTES FOR CMOS DEVICES

(1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (MAX) and V_{IH} (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (MAX) and V_{IH} (MIN).

(2) HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to V_{DD} or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.

(3) PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.

(4) STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.

(5) POWER ON/OFF SEQUENCE

In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.

(6) INPUT OF SIGNAL DURING POWER OFF STATE

Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

PFESiP is a registered trademark of NEC Electronics Corporation in Japan, Germany, and United Kingdom.

These commodities, technology or software, must be exported in accordance with the export administration regulations of the exporting country. Diversion contrary to the law of that country is prohibited.

- The information in this document is current as of November, 2009. The information is subject to change without
 notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for
 the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in
 every country. Please check with an NEC Electronics sales representative for availability and additional
 information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage
 to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must
 incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific". The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

- (Note 1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

(M8E0909)

Major Revisions in This Edition

Location	Contents
p.85	Modification of 3.4.1 (1) MEMC_INT
p.96	Modification of 3.4.4 (3) UF0 EPNAK register (UF0EN)
pp.104, 105	Modification of 3.4.4 (11) UF0 INT status 0 register (UF0IS0)
p.122	Modification of 3.4.4 (28) UF0 DMA status 1 register (UF0DMS1)
p.203	Modification of 3.7.6 Bulk transfer in DMA mode
p.203	Modification of Figure 3-26. DMA Initialization Processing
p.204, 205	Modification of Figure 3-27. Flow Example of Bulk Transfer Processing in DMA Mode
p.212	Modification of 4.3 Clock and Reset
p.212	Modification of Table 4-2. UCLK Timings

The mark <R> shows major revised points.

The revised points can be easily searched by copying an "<R>" in the PDF file and specifying it in the "Find what:" field.

To obtain the latest documents when designing, contact an NEC sales office or a distributor.

PREFACE

- Readers
 This manual is intended for users who understand the functions of the microcontroller function chip with an on-chip V850E2 CPU core (PFESiP/V850EP1) and wish to evaluate developing PFESiP EP-1 Series products using the chip.
- **Purpose** This manual is intended to give users an understanding of the USB functions among the hardware functions of the PFESiP/V850EP1.

How to Read This Manual It is assumed that the readers of this manual have general knowledge in the fields of electrical engineering, logic circuits, microcontrollers, SRAM, page ROM, and SDRAM.

Conventions	Data significance:	Higher digits on the left and lower digits on the right
	Active low representation:	xxxZ (Z after pin or signal name)
	Note:	Footnote for item marked with Note in the text
	Caution:	Information requiring particular attention
	Remark:	Supplementary information
	Numeric representation:	Binary xxxx or xxxxB
		Decimal xxxx
		Hexadecimal xxxxH
	Prefix indicating power of 2 (add	Iress space, memory capacity):
		K (kilo): 2 ¹⁰ = 1,024
		M (mega): 2 ²⁰ = 1,024 ²
		G (giga): 2 ³⁰ = 1,024 ³
	Data type:	Word 32 bits
		Halfword 16 bits
		Byte 8 bits

Related Documents The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such. Furthermore, some of the related documents may be documents intended for specific customers, because they are prepared when each core is being developed or planned.

Documents related to PFESiP EP-1 Series

Document Name	Document No.
V850E2 Architecture User's Manual	U17135E
PFESiP EP-1 Series Design Manual	A19068E
PFESiP/V850EP1 Product Data User's Manual	A19069E
PFESiP/V850EP1 Hardware (CPU Function) User's Manual	A19070E
PFESiP/V850EP1 Hardware (USB Function) User's Manual	This manual
PFESiP/V850EP1 USB Function Sample Software Application Note	A19349E

Documents related to PFESiP EP-1 Evaluation Board

Document Name	Document No.	
PFESiP EP-1 Evaluation Board Technical Information User's Manual	A19350E	
PFESiP EP-1 Evaluation Board Lite Technical Information User's Manual	A19354E	

Documents related to development tools

Document Name	Document No.		
RX850 Pro () (Real-Time OS)	Ver. 3.21	Basics	U18165E
	Ver. 3.20	Installation	U17421E
	Ver. 3.21	Technical	U18164E
	Ver. 3.20	Task Debugger	U17422E

CONTENTS

CHAPTE	ER 1 USB FUNCTION OVERVIEW	12
1.1	Features	
1.2	Configuration	
1.3	USB Pin Functions	
1.4	USB Memory Map	
1.5	USB-related Interrupts	
1.6	USB-related I/O Register Settings	
СНАРТЕ	ER 2 USB HOST CONTROLLER	20
2.1	Overview	
2.2	PCI Host Bridge	
	2.2.1 PCI host bridge function	
	2.2.2 CPU memory space	
	2.2.3 PCI host bridge registers	22
	2.2.4 How to initialize PCI host bridge	35
2.3	OHCI Host Controller	
	2.3.1 OHCI host controller functions	
	2.3.2 PCI configuration register	37
	2.3.3 OHCI operational register	45
	2.3.4 Interrupts from USB host controller	66
СНАРТЕ	ER 3 USB FUNCTION CONTROLLER	
31	Overview	69
3.1 3.2	Overview	
3.2	CPU Memory Space	69
	CPU Memory Space Requests	69 70
3.2	CPU Memory Space Requests	
3.2 3.3	CPU Memory Space Requests	69
3.2	CPU Memory Space Requests	
3.2 3.3	CPU Memory Space Requests	69 70 70 80 80 81 85
3.2 3.3	CPU Memory Space Requests 3.3.1 Automatic requests 3.3.2 Other requests Registers 3.4.1 Function bridge registers	69 70
3.2 3.3	CPU Memory Space Requests 3.3.1 Automatic requests 3.3.2 Other requests Registers 3.4.1 Function bridge registers 3.4.2 DMA registers	69 70 70 80 80 81 85
3.2 3.3	CPU Memory Space Requests 3.3.1 Automatic requests 3.3.2 Other requests Registers 3.4.1 Function bridge registers 3.4.2 DMA registers 3.4.3 Bulk in and bulk out registers	69 70
3.2 3.3	CPU Memory Space Requests 3.3.1 Automatic requests 3.3.2 Other requests 3.3.4 Function bridge registers 3.4.3 Bulk in and bulk out registers 3.4.4 EPC Control registers	69 70 70 80 81 85 85
3.2 3.3	CPU Memory Space Requests 3.3.1 Automatic requests 3.3.2 Other requests 3.3.4 Function bridge registers 3.4.1 Function bridge registers 3.4.2 DMA registers 3.4.3 Bulk in and bulk out registers 3.4.4 EPC Control registers 3.4.5 EPC Data hold registers	69 70 70 80 81 85 85 85
3.2 3.3 3.4	CPU Memory Space Requests	69
3.2 3.3 3.4 3.5	CPU Memory Space Requests 3.3.1 Automatic requests 3.3.2 Other requests Registers 3.4.1 Function bridge registers 3.4.2 DMA registers 3.4.3 Bulk in and bulk out registers 3.4.4 EPC Control registers 3.4.5 EPC Data hold registers 3.4.6 EPC Request data register STALL Handshake or No Handshake	69 70 70 80 81 85 85
3.2 3.3 3.4 3.5 3.6	CPU Memory Space Requests 3.3.1 Automatic requests 3.3.2 Other requests Registers 3.4.1 Function bridge registers 3.4.2 DMA registers 3.4.3 Bulk in and bulk out registers 3.4.4 EPC Control registers 3.4.5 EPC Data hold registers 3.4.6 EPC Request data register STALL Handshake or No Handshake Register Values in Specific Status	69 70
3.2 3.3 3.4 3.5 3.6	CPU Memory Space Requests 3.3.1 Automatic requests 3.3.2 Other requests Registers 3.4.1 Function bridge registers 3.4.2 DMA registers 3.4.3 Bulk in and bulk out registers 3.4.4 EPC Control registers 3.4.5 EPC Data hold registers 3.4.6 EPC Request data register STALL Handshake or No Handshake Register Values in Specific Status Firmware Processing	69
3.2 3.3 3.4 3.5 3.6	CPU Memory Space Requests 3.3.1 Automatic requests 3.3.2 Other requests Registers 3.4.1 Function bridge registers 3.4.2 DMA registers 3.4.3 Bulk in and bulk out registers 3.4.4 EPC Control registers 3.4.5 EPC Data hold registers 3.4.6 EPC Request data register STALL Handshake or No Handshake Register Values in Specific Status Firmware Processing 3.7.1	69 70 70 80 81 85 85 91 92 136 151 165 166 168 170 170
3.2 3.3 3.4 3.5 3.6	CPU Memory Space Requests 3.3.1 Automatic requests 3.3.2 Other requests Registers 3.4.1 Function bridge registers 3.4.2 DMA registers 3.4.3 Bulk in and bulk out registers 3.4.4 EPC Control registers 3.4.5 EPC Data hold registers 3.4.6 EPC Request data register STALL Handshake or No Handshake Register Values in Specific Status Firmware Processing 3.7.1 Initialization processing 3.7.2 Interrupt servicing. 3.7.3 USB function main processing 3.7.4 Suspend/Resume processing	69 70 70 70 80 81 85 87 91 92 136 151 165 166 168 170 173 174 197
3.2 3.3 3.4 3.5 3.6	CPU Memory Space Requests 3.3.1 Automatic requests 3.3.2 Other requests Registers 3.4.1 Function bridge registers 3.4.2 DMA registers 3.4.3 Bulk in and bulk out registers 3.4.4 EPC Control registers 3.4.5 EPC Data hold registers 3.4.6 EPC Request data register STALL Handshake or No Handshake Register Values in Specific Status Firmware Processing 3.7.1 Initialization processing 3.7.2 Interrupt servicing 3.7.3 USB function main processing 3.7.4 Suspend/Resume processing 3.7.5 Processing after power application	69 70 70 80 81 85 87 91 92 136 151 165 166 168 170 173 174 197 200
3.2 3.3 3.4 3.5 3.6	CPU Memory Space Requests 3.3.1 Automatic requests 3.3.2 Other requests Registers 3.4.1 Function bridge registers 3.4.2 DMA registers 3.4.3 Bulk in and bulk out registers 3.4.4 EPC Control registers 3.4.5 EPC Data hold registers 3.4.6 EPC Request data register STALL Handshake or No Handshake Register Values in Specific Status Firmware Processing 3.7.1 Initialization processing 3.7.2 Interrupt servicing 3.7.3 USB function main processing 3.7.4 Suspend/Resume processing	69 70 70 80 81 85 87 91 92 136 151 165 166 168 170 173 174 197 200

СНАРТЕ	ER 4 EXTERNAL CIRCUIT CONFIGURATION	207
4.1	USB Host Controller Connection Configuration	
	4.1.1 USB signal connection	
	4.1.2 USB power supply connection	
4.2	USB Function Controller Connection Configuration	210
	4.2.1 USB signal connection	210
4.3	Clock and Reset	212
СНАРТЕ	ER 5 CAUTIONS	213
5.1	USB Port Status Transition Control	
5.2	Restriction on Number of Hub Stages	

LIST OF FIGURES

Figure	No. Title	Page
1-1	USB Configuration	
1-2	USB Memory Map	17
2-1	PCI Host Bridge Macro Initialization Procedure	
3-1	Operation of UF0E0R Register	137
3-2	Operation of UF0E0ST Register	139
3-3	Operation of UF0E0W Register	141
3-4	Operation of UF0BO1 Register	143
3-5	Operation of UF0BI1 Register	146
3-6	Operation of UF0INT1 Register	150
3-7	Flowchart of Program When Host Is Disconnected and Then Reconnected	163
3-8	Flowchart of Program When Power Is Supplied	164
3-9	Initializing Request Data Register	170
3-10	Initialization of Request Data Register	171
3-11	Setting of Interface and Endpoint	171
3-12	Setting of Interrupt	172
3-13	Interrupt Servicing	173
3-14	Automatically Processed Requests for Control Transfer	175
3-15	CLEAR_FEATURE Processing	176
3-16	SET_FEATURE Processing	177
3-17	SET_CONFIGURATION Processing	177
3-18	CPUDEC Request for Control Transfer	178
3-19	Processing for Bulk Transfer (IN) (Endpoint1)	190
3-20	Parallel Processing by Hardware	191
3-21	Normal Processing for Bulk Transfer (OUT) (Endpoint2)	192
3-22	Processing If More Data Than Expected by System Is Transmitted (Endpoint2)	194
3-23	Processing for Interrupt Transfer (IN) (Endpoint7)	196
3-24	Example of Suspend/Resume Processing	197
3-25	Example of Processing After Power Application/Power Failure	200
3-26	DMA Initialization Processing	203
3-27	Flow Example of Bulk Transfer Processing in DMA Mode	204
4-1	Configuration Outline of Pull-up, Pull-down, and Series Resistors of USB Transmission Path	207
4-2	USB Host Controller Connection Example	208
4-3	USB Function Controller Connection Example	210

Table No. Title Page 1-1 1-2 1-3 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 3-1 3-2 3-3 3-4 3-5 3-6 3-7 3-8 3-9 3-10 3-11 3-12 3-13 3-14 3-15 3-16 3-17 Firmware-Supported Standard Requests169 3-18 4-1 4-2 4-3

LIST OF TABLES

CHAPTER 1 USB FUNCTION OVERVIEW

PFESiP/V850EP1 incorporates a USB function controller and a USB host controller which comply with the Universal Serial Bus Specification.

1.1 Features

- O Complies with the Universal Serial Bus Specification.
- O USB function controller:

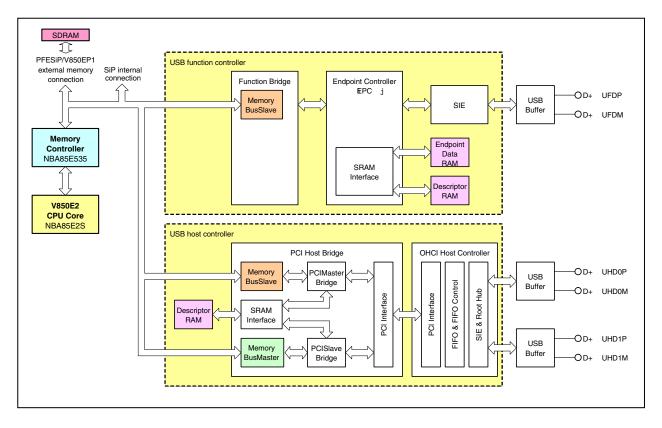
Supports 12 Mbps (full-speed) transfer. Equipped with a one-channel upstream port. Incorporates the following transfer endpoints.

Endpoint	FIFO Size (Bytes)	Transfer Type	Remark
EP0	64	Control Read/Write	
EP1	64 × 2	Bulk In	Double buffer configuration
EP2	64 × 2	Bulk Out	Double buffer configuration
EP7	8	Interrupt	

Can perform DMA transfer (two-clock transfer) of bulk in or bulk out data.

USB host controller: Supports 12 Mbps (full-speed) and 1.5 Mbps (low-speed) transfer.
 Supports the OHCI (Open Host Controller Interface) 1.0a standard.
 (The control of transitioning the USB port from disable to enable status, however, is restricted.)
 Incorporates a two-channel root hub function and is equipped with two downstream ports.
 Uses an 8 KB on-chip SRAM and an external SDRAM as shared memories.

- O Memory bus width: CPU interface....32 bits External SDRAM interface of the USB host controller....16 or 32 bits


MODE1	MODE0	Operation Mode
0	0	USB function invalid
0	1 Only USB function valid	
1	0	Only USB host valid
1	1	USB host or USB function valid

Caution When using the USB function, set the MODE0 and MODE1 pins to the appropriate modes.

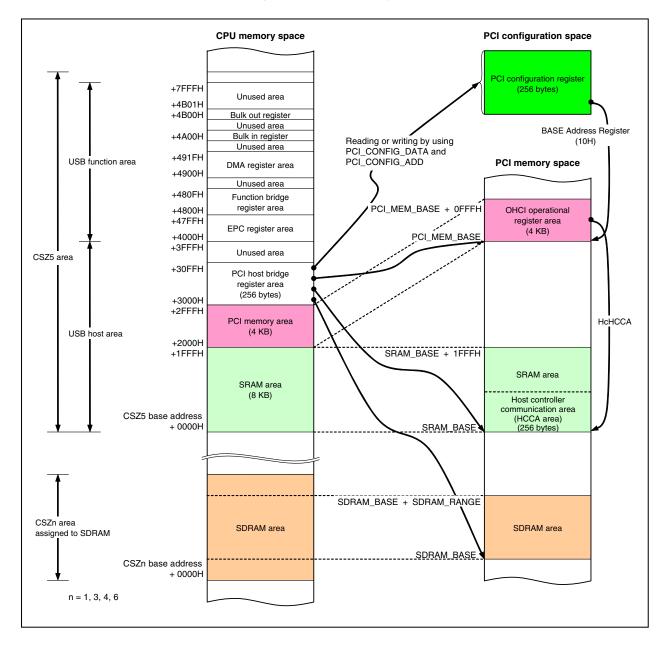
When the USB function is disabled, the clock used by the USB function controller or USB host controller is stopped. Do not change these pin settings while PFESiP/V850EP1 is operating.

1.2 Configuration

1.3 USB Pin Functions

Pin	I/O	Function	Active		
UCLK	Input	USB clock signal input			
UHD0P	I/O	USB host channel 0 data I/O (+)	-		
UHD0M	I/O	USB host channel 0 data I/O (-)	_		
UHD1P	I/O	USB host channel 1 data I/O (+)	_		
UHD1M	I/O	USB host channel 1 data I/O (-)	-		
PPON0	Output	USB host channel 0 power supply control output	High		
PPON1	Output	USB host channel 1 power supply control output	High		
OCI0	Input	USB host channel 0 overcurrent detection input			
OCI1	Input	USB host channel 1 overcurrent detection input			
UFDP	I/O	USB function data I/O (+)			
UFDM	I/O	USB function data I/O (-)			
VBUSDET	Input	USB function insertion and removal detection input			
PCLKIN	Input	USB bus bridge clock			
UCLKSEL0	Input	USB clock selection input 0: Selects XT1, XT2. 1: Selects UCLK.			
UCLKSEL1	Input	USB bus bridge clock selection input 0: Selects XT1, XT2. 1: Selects PCLKIN.			
MODE0, MODE1	Input	PFESiP/V850EP1 USB operation mode setting	-		

Table 1-1. USB Pins


1.4 USB Memory Map

Both the USB host controller and the USB function controller are assigned to the CSZ5 space. Set the CSZ5 address range (subarea) where they are placed via the CSC1 register. Set the CSZ5 area for an SRAM and an I/O via the BCT1 register, and set the bus width as 32 bits via the LBS register.

The USB host controller has an external memory bus master function, and can use any SDRAM to which any chip select signal from among CSZ1, CSZ3, CSZ4, and CSZ6 has been assigned for use as the SDRAM interface via the UCSS register. At that time, set the bus width of the SDRAM to be shared to the same bus width (16 or 32 bits) as for SDRAM_CTL, which is used in the LBS register and USB host controller.

The OHCI host controller, which is the central function of the USB host controller, is connected via the SRAM interface of the CSZ5 space and also via the internal PCI bus bridge. The CPU and the internal PCI bus bridge share the same memory, and the CPU memory space is linked to the PCI memory space. This relationship is defined by the PCI host bridge registers and the PCI configuration register, which is accessed via the PCI host bridge registers.

1.5 USB-related Interrupts

Maskable Interrupt Source					t Exception	Handler	Restored	DMA
Name	Control Register	Generating Source	Generating Unit	Priority	Code	Address	PC	Transfer Source
INTUSBH0	UHIC0 (1FFFF182H)	USBH interrupt 0 (INTA, SMMI, PME)	USB host controller (OHCI HC)	57	0410H	00000410H	Next PC	0
INTUSBH1	UHIC1 (1FFFF184H)	USBH interrupt 1 (PME)	USB host controller (OHCI HC)	58	0420H	00000420H	Next PC	0
INTUSBF0	UFIC0 (1FFFF186H)	USBF interrupt 0 (endpoint event)	USB function controller (EPC, function bridge)	59	0430H	00000430H	Next PC	0
INTUSBF1	UFIC1 (1FFFF188H)	USBF interrupt 1 (endpoint1 DMA transfer completion)	USB function controller (function bridge)	60	0440H	00000440H	Next PC	0
INTUSBF2	UFIC2 (1FFFF18AH)	USBF interrupt 2 (endpoint2 DMA transfer completion)	USB function controller (function bridge)	61	0450H	00000450H	Next PC	0
INTUSBF3	UFIC3 (1FFFF18CH)	USBF interrupt 3 (Resume)	USB function controller (SIE)	62	0460H	00000460H	Next PC	0
INTUSBF4	UFIC4 (1FFFF18EH)	USBF interrupt 4 (VBUS detection)	USB function controller external pin	63	0470H	00000470H	Next PC	0

Table 1-2. USB-related Interrupt Sources

1.6 USB-related I/O Register Settings

To use the USB function, set the peripheral I/O registers as follows.

Abbreviation	Address	Setting Value	Remark
CSC1	1FFF F062H	Assign CSZ5 to any subarea (70, 71, 72, or 73).	When using CSREMAP, map CSZ5 under the default settings. The chip select signal that is used by the USB function is fixed to CSZ5, so it cannot be changed to another CSZn.
BCT1	1FFF F482H	xx8xH	Select an SRAM or I/O for CSZ5.
LBS	1FFF F48EH	xxxx11xx xxxxxxB	The width of CSZ5 is 32 bits.
DWC1	1FFF F486H	Any value	Set the CSZ5 data wait to any value (0 to 7).
BCC	1FFF F488H	Any value	Set the CSZ5 idle state to any value (0 to 3).
ASC	1FFF F48AH	Any value	Set the CSZ5 address setting wait to any value (0 to 3).
UCSS	1FFF F8B6H	Assign the SDRAM to any chip select signal from among CSZ1, CSZ3, CSZ4, and CSZ6.	This is used by the USB host controller. Set it to the same CSZ signal as of the SDRAM that is shared with the CPU. When using CSREMAP, it is the remapped chip select signal that is assigned via UCSS.
UDMS	1FFF F8B8H	Assign two of the four channels used for DMA interface signals as DMA interface signals for USB.	This is used by the USB function controller. Channel 0 corresponds to EP1 (Bulk in) and channel 1 corresponds to EP2 (Bulk out).

Table 1-3. Peri	ipheral I/O Register S	Settings When Usin	a USB Function
	ipiloidi i o ilogiotoi t		9

When using CSREMAP, the USB function uses the address space that has been assigned to the remapped MEM_CSZn (logically equivalent to CSZn).

CHAPTER 2 USB HOST CONTROLLER

2.1 Overview

The USB host controller uses a token based protocol to transfer data to and from external function devices via the polling method.

It complies with the OHCI (Open Host Controller Interface) 1.0a standard, and is equipped with a two-channel root hub function and two downstream ports. For data transfers with external function devices, all transfer types (control, bulk, isochronous, interrupt) can be used (however, for transfers such as isochronous transfers that involve a heavy system load, a performance evaluation is needed beforehand).

2.2 PCI Host Bridge

2.2.1 PCI host bridge function

The PCI host bridge is a bridge circuit that is connected from the CPU system to the OHCI host controller, via the PCI bus, and it includes the following functions.

O PCI master cycle control

The following are issued in response to a PCI bus access request from the CPU (MEMC):

PCI Configuration Register Read/Write Single Cycle

PCI Memory Read/Write Cycle

O PCI slave cycle control

When the SDRAM area or SRAM area is accessed from the PCI bus, a PCI memory read/write cycle (burst transfer of up to eight words) is accepted.

O PCI error processing

An error interrupt is generated for a master abort, target abort, PERR# reception, or SERR# reception. (The address immediately before the error occurred is retained.)

O PFESiP/V850EP1 on-chip memory controller (NBA85E535) bus control

When access from the CPU occurs via the memory controller bus, a hardware wait (WAIT) is used to control the bus cycle.

O SRAM control

An 8 KB SRAM is incorporated as a shared memory. It is mainly used for assignment of descriptors. SRAM area access from the CPU (MEMC) and the PCI bus is arbitrated and controlled.

O SDRAM control

An SDRAM that is externally connected to PFESiP/V850EP1 is used as a shared memory. In response to SDRAM area access from the PCI bus, bus request handshaking occurs with the memory controller, after which the SDRAM is controlled. Both 16-bit and 32-bit SDRAM data widths are supported.

2.2.2 CPU memory space

The CPU memory space is divided for use as described below.

The on-chip SRAM (8 KB) and external SDRAM that are used only by the USB function are assigned as shared memories, and the PCI memory area and the PCI host bridge register area are assigned to the CPU memory space.

Base Address	Offset Address	Area
Address selected via CSZ5	0000H to 1FFFH	USB-dedicated SRAM area (8 KB)
	2000H to 2FFFH	PCI memory area (4 KB)
	3000H to 30FFH	PCI host bridge register area (256 bytes)
	3100H to 3FFFH	Reserved
CSZn selected via UCSS register	0000H to any address	SDRAM area

Table 2-1. CPU Memory Space Division

Remark n = 1, 3, 4, 6

2.2.3 PCI host bridge registers

The PCI bridge is provided with the following PCI host bridge registers. Since they are freely mapped by CSZ5, the CSZ5 start address is set as the base address.

(Register address = base address + offset address 1 + offset address 2)

They can be accessed only in 32-bit units.

Table 2-2. PCI Host Bridge Registers

Base Address	Offset Address 1	Offset Address 2	Register	Symbol	R/W
CSZ5	3000H	00H	PCI Configuration Data Register	PCI_CONFIG_DATA	R/W
start address		04H	PCI Configuration Address Register	PCI_CONFIG_ADD	R/W
		08H	PCI Control 1 Register	PCI_CONTROL1	R/W
		0CH	PCI Control 2 Register	PCI_CONTROL2	R/W
		10H	Reserved	-	-
		14H	PCI Memory Base Address Register	PCI_MEM_BASE	R/W
		18H	PCI Interrupt Status Register	PCI_INT_STATUS	R/W
		1CH	PCI Interrupt Control Register	PCI_INT_CTL	R/W
		20H	PCI Bus Error Address	PCI_ERR_ADD	R
		24H to 3FH	Reserved	-	-
		40H	SDRAM Area Base Address Register	SDRAM_BASE	R/W
		44H	SDRAM Area Address Range Register	SDRAM_RANGE	R/W
		48H	SDRAM Control Register	SDRAM_CTL	R/W
		4CH	Reserved	_	_
		50H	SRAM Area Base Address Register	SRAM_BASE	R/W
		54H to FFH	Reserved	_	-

(1) PCI Configuration Data Register

			31 to 0	Offset address	After reset
PC	I_CONFIG_DA	TA	cdata [31:0]	00H	Undefined
			R/W	-	
	Bit position	Bit name	Function		
	31 to 0 cdata The PCI configuration register can be accessed via this register. First, the PCI_CONFIG_ADD register must be set.				

(2) PCI Configuration Address Register

		31 to 0	Offset address	After reset
PCI_CONFIG_/	ADD	cadd [31:0]	04H	0000 0000H
		R/W		
Bit position	Bit name	Function		
31 to 0	cadd	These bits set the address of the PCI configuration register.		
		How to set the PCI configuration address register		
		31 11 10 8 7		210
				0 0
		IDSEL specification Function number	Register number	
		 Register number: Indicates the number of the PCI configuration regi Function number: Indicates the function number of a PCI multi functi IDSEL specification: Selects the IDSEL signal of the PCI device to be a 	on device.	
		The PCI host bridge substitutes AD [31:11] as the IDSEL signal, so configu PCI device connected to the PCI bus is set by setting only one of the bits of AD signal that is connected to the respective IDSEL pin. With PFESiP/V850EP1, since the AD31 signal is connected to the IDSEL pin cadd31 bit enables access to the PCI device (OHCI host controller).	orresponding	g to the
		How to access the PCI configuration register		
		The PCI configuration register can be accessed via the following procedure	Э.	
		 PCI_CONFIG_ADD register setting Set the address of the configuration cycle. PCI_CONFIG_DATA register setting Read access to the address set to PCI_CONFIG_ADD is achieved PCI_CONFIG_DATA register. Also, write access can be executed to PCI_CONFIG_DATA. 	, 0	ne

(3) PCI Control 1 Register

r	31						2	24	23				17	16		Offset addre
PCI_ NTROL1		pci_pa	rkcnt[7	:0]							0			pci_bpmo	de	08H
		I	R/W								R			R/W		
r	15	10	9	8	3	7	6		5	4	3		2	1	0	After rese
	0		pci_re	q_en ⁻	1	0	0	pci_	_pchken	pci_rese	t sram_	_en sdra	am_e	n mem_er	n 0	0700 0300
	R		R/V	V F	R	R	R		R/W	R/W	R/W	/ F	R/W	R/W	R	
Bit positi	on Bit	name									Function					
31 to 24	pci_park	Т 8	PCI Bus Parking Timer These bits set the time for switching to bus parking. Counting starts when FRAME# & IRDY# = 1. These bits can be left set to the default value.										RAME# = 1			
16	pci_bpm		 PCI Bus Parking Mode 0: Bus parking master is limited to this macro (default value). 1: Bus parking master is the master accessed last. This bit can be left set to the default value. 													
9	pci_req_		PCI Request Enable 0: Request invalid 1: Request valid (default value) This bit can be left set to the default value.													
5	pci_pchk	en		1: Valic	lida lat	ates es p	pa pari	ty ch	check in eck in P	PCI bus (CI bus. efault valı		alue).				
4	pci_rese	t		1: PCI	bu bu	ıs is ıs is	rel	ease	lefault va d from r ccessing		I host co	ontroller.				
3	sram_en	_	SRAM area enable 0: Access to SRAM area from PCI bus is not supported (default value). 1: Access to SRAM area from PCI bus is supported. Set (1) this bit when starting access to the SRAM from the OHCI host controller.												ler.	
2	sdram_e	n		1: Acce	ess	s to s s to s	SD SD	RAM RAM	l area fro l area fro	om PCI bu	is is supp	oorted.		fault value OHCI host (oller.
1	mem_en			1: Enal	ble	es ao es ac	cce	ess to ss to	PCI me PCI me	emory are mory area the OHC	a from Cl	PU.		alue). host contr	oller.	

(4) PCI Control2 Register

	3	1 9	:	3	7	6	4	3	2	Offset 0 address	After res			
CI_CONTRO	DL2	0	wbuf_	_busy	0	wburs	st_size[2:0]	0	rburst_size[2:0]] 0CH	0000 007			
		R	ł	3	R		R/W	R	R/W					
Bit position	E	lit name						Fun	ction					
8	wbuf_b	usy	This (SD 0: '	RAM). Vrite bu	es the	e data st as no da	ata to be wr	itten to	uffer when writing SDRAM or SRAM DRAM or SRAM.					
6 to 4	wburst_	_size[2:0]		Write B se bits s				ngth w	hen writing to the	PCI target (SDR/	AM).			
					wbu	ırst_size)	Maxim	num burst length wh	hen writing to PCI	target			
				2		1	0							
				0		0	0	Only	single transfer supported					
				0		0	1	2 burs	sts					
				0		1	0	3 burs	sts					
				0		1	1	4 burs	sts					
				1		0	0	5 burs	sts					
				1		0	1	6 burs	sts					
				1		1	0	7 burs	7 bursts					
				1		1	1	8 burs	sts (default value)					
			The	se bits c	an be	e left se	t to the defa	ult valu	IA.					
2 to 0	rburst_:	size[2:0]		Read B se bits s				ngth w	hen reading the P	CI target (SDRAI	И).			
			Г		wbu	ırst_size			um burst length w	hen reading PCI				
									,	Maxim	Maximum burst length when reading PCI target			
				2		1	0	Maxim		-	target			
				2					ingle transfer supp	ported	target			
						1	0		ingle transfer supp	ported	target			
				0		1 0	0 0	Only s	ingle transfer supp	ported				
				0 0		1 0 0	0 0 1	Only s 2 burs	ingle transfer supp sts sts	ported				
				0 0 0		1 0 0 1	0 0 1 0	Only s 2 burs 3 burs	ingle transfer supp sts sts sts	ported				
				0 0 0 0		1 0 0 1 1	0 0 1 0 1	Only s 2 burs 3 burs 4 burs	ingle transfer supp sts sts sts sts	ported				
				0 0 0 0 1		1 0 1 1 0	0 0 1 0 1 0	Only s 2 burs 3 burs 4 burs 5 burs	ingle transfer supp sts sts sts sts sts	ported				

(5) PCI Memory Base Address Register

	31		0	Offset address	After reset		
PCI_MEM_BASE		m_base[31:12]	0 14H				
		R/W		R			
Bit position	Bit name			Function			
31 to 12 m_	_base[31:12]	PCI Memory Base Address F These bits set the PCI memory from the PCI memory area.	0	ddress for the high	er addr	ess to be acc	essed

(6) PCI Interrupt Status Register

This register can be used to find the generating sources of the INTUSBH0 and INTUSBH1 signals that are output from the PCI host bridge. The interrupt sources of inta, int_smmi, and int_pme are cleared (0) at the generating sources. The interrupt sources of serr, perr, mabort, and tabort are used only when debugging, and are normally not used.

How to validate each interrupt source is explained in the description of the PCI_INT_CTL register, on the next page.

		31		12	11	10	9	8	7	4	3	2	1	0	Offset address	After rese
CI_INT_STAT	US		0		Int_ pme	Int_ smm	0	Inta	0		serr	perr	mabor t	tabort	18H	0000 0000
			R		R	R	R	R	R		R/W	R/W	R/W	R/W		
Bit position		Bit	name	9								Functio	n			
11	int_p	ome				PCI Interi 0: No int 1: Gene The interi	erruj rates	ot sour interr	rce upt by F			e PME ç	jeneratir	ig source.		
10	Int_s	mmi				PCI Interrupt SMMI Status 0: No interrupt source 1: Generates interrupt by SMMI. The interrupt source is cleared (0) at the SMMI generating source.										
8	inta					PCI Intern 0: No int 1: Intern The intern	erruj .pt g	ot sour enerat	ce ed by II		(0) at the	e INTA ç	jeneratin	ig source.		
3	serr				,	PCI Host 0: No int 1: Detec When "1" This inter	erruj ts sy is w	ot sour rstem e ritten,	ce error. the inte	rrup	t source	is clea		nally not u	ised.	
2	perr				,	PCI Host 0: No int 1: Detec When "1" This inter	erru ts pa is w	ot sour arity er ritten,	rce ror. the inte	rrup	t source	is clea	• • •	nally not u	ised.	
1	mab	ort			,	PCI Host 0: No int 1: Recei When "1" This inter	erruj ves i is w	ot sour master ritten,	ce abort. the inte	rrup	t source	is clea	• •	nally not u	ised.	
0	tabo	rt			,	PCI Host 0: No int 1: Recei When "1" This inter	erruj ves t is w	ot sour arget a ritten,	ce abort. the inte	rrup	t source	is clea	• •	nally not u	ised.	

		31	12	11		10	9	8	7	4	3	2	1	0	Offset address	After rese
PCI_INT_CT	L	()	int_pr _en		_smmi _en	0	inta _en	0		serrint _en	perrint _en	mabort nt_en	i tabortin t_en	1CH	0000 0000
		F	7	R/W	'F	R/W	R	R/W	R		R/W	R/W	R/W	R/W	-	
Bit position		Bit n	ame									Functio	on			
11	int_p	ome_e	ən		0: Inv	terrupt validate lidates	es as	s inter	rupt s		•	ult value).			
10	int_smmi_en				0: Inv	terrupt validate lidates	es as	s inter	rupt s		`	ult value).			
8	inta_en				inta_en PCI Interrupt INTA Enable 0: Invalidates as interrupt source (default value). 1: Validates as interrupt source.											
3	serrint_en				serrint_en PCI Host Bridge System Error Interrupt Enable 0: Invalidates as interrupt source (default value). 1: Validates as interrupt source. This interrupt is used only when debugging, and is normally not used.							ed.				
2	perrint_en				perrint_en PCI Host Bridge Parity Error Interrupt Enable 0: Invalidates as interrupt source (default value). 1: Validates as interrupt source. This interrupt is used only when debugging, and is normally not used.									ed.		
1	mabortint_en				0: Inv 1: Va	validate lidates	es as as i	s inter nterru	rupt s pt so	our	e.	ult value)	,	ally not use	ed.	
0	tabo	rtint_o	en		0: Inv 1: Va	validate lidates	es as as i	s inter nterru	rupt s pt so	our	e.	ult value)		ally not use	ed.	

(7) PCI Interrupt Control Register

(8) PCI Bus Error Address

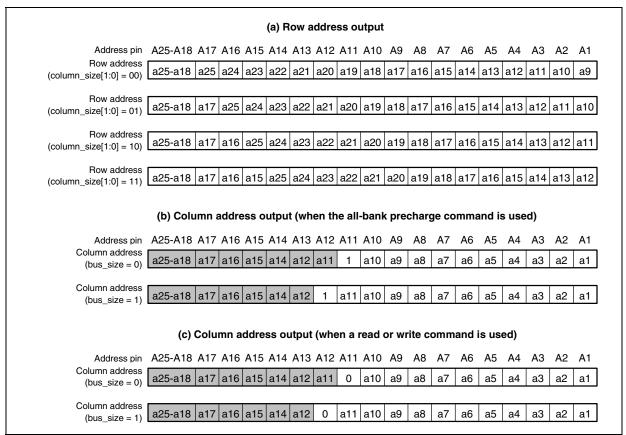
		31 to 0	Offset address	After reset	
CI_ERR_AD	D	err_adr[31:0]	20H	0000 0000	
		R			
Bit position	Bit nar	e Function			
31 to 0	err_adr[31:0]	 PCI Bus Error Address This register retains the PCI address when any of the following e SERR# input Parity error occurrence PCI bus master abort occurrence PCI bus target abort occurrence Read access clears (0) all bits. Once a bus error has occurred a set to this register, they are retained until they are read or update This function is used only when debugging, and is normally not update 	and values ha	ve been	

(9) SDRAM Area Base Address Register

	31	1	16	15	0	Offset address	After reset
SDRAM_BASE s		s_b	ase[31:16]	0		40H	0000 0000H
			R/W	R			
Bit position	Bi	it name		Function			
31 to 16	s_base[31:16]	64 KB units. This register sets the t The settings of this reg	ddress t address when accessing the SD pase address of the SDRAM area gister and the SDRAM_RANGE re ory access has occurred from the	within th gister re	e PCI space. spond to mat	

(10) SDRAM Area Address Range Register

		31		16	15	0	Offset address	After rese
DRAM_RANGE s		range[31:16]	FFFFH		44H	0000 FFFFI	
			R/W	1	R			
Bit position		Bit name			Functio	n		
31 to 16	s_ra	nge[31:16]	The	ese bits set the rang	e of the SDRAM area.	They can be set i	n 64 KB units.	
				s_range[31:16]	SDR	AM area range]
				000H	64 KB]
				:	:			
				00FH	1 MB			
				:	:			
				0FFH	16 MB			
				:	:			
				1FFH	32 MB			
			The	-	ange of the SDRAM are ress is set to the SDRAM			er is used


(11) SDRAM Control Register

The SDRAM_CTL register sets control of access to the SDRAM area.

	31 28 0											
DRAM_CTL				cycle_latency[11:0]								
		R		R/W								
	15 13	12	11	10 9	8	76	5 4	32	1	0 After rese		
	0	bus_size	0	case_la	atency[1:0]	0	wait_state[1:0]	0	column_size[1	:0] 0007 0230		
	R	R/W	R		R/W	R	R/W	R	R/W			
Bit position	n Bit name			Function								
27 to 16	cycle_lat	tency[11:0	Th to	the SDRAM	t the burst 1.	data inter	rval in BUSCLK u efault value.	units duri	ng access from	n a PCI device		
				cycle_	latency[11	:0]	SDRA	M acces	s latency			
					000H	N	o latency					
					:		:					
					007H	7:	× BUSCLK (defa	ult value)			
					:		:					
					FFFH	40	95 × BUSCLK					
12	bus_size)					the SDRAM.					
12 9, 8	bus_size		C 1): 16 bits (de : 32 bits	efault value	e)	the SDRAM.					
			C 1): 16 bits (de : 32 bits nese bits se	efault value	e) latency of	the SDRAM.	AM CAS	latency			
			C 1): 16 bits (de : 32 bits nese bits se	efault value	atency of	the SDRAM.	AM CAS	latency			
			C 1	2: 16 bits (de : 32 bits nese bits se cas_	efault value t the CAS latency[1:0	e) latency of	the SDRAM.	AM CAS	latency			
			C 1	2: 16 bits (de : 32 bits nese bits se cas_ 1	efault value t the CAS latency[1:0 0	e) latency of	the SDRAM. SDR	AM CAS	latency			
			C 1	2: 16 bits (de : 32 bits nese bits se cas_ 1 0 0 1	efault value t the CAS latency[1:0 0 0 1 0	e) latency of 1 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	the SDRAM. SDR etting prohibited AS latency = 1 AS latency = 2 (or					
			C 1	2: 16 bits (de : 32 bits nese bits se cas_ 1 0 0	efault value t the CAS latency[1:0 0 0 1	e) latency of 1 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	the SDRAM. SDR etting prohibited AS latency = 1					
		ncy[1:0]	C 1 Tr	2: 16 bits (de : 32 bits nese bits se	efault value t the CAS latency[1:0 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1 0 0 0 0	e) latency of 	the SDRAM. SDR etting prohibited AS latency = 1 AS latency = 2 (or	default va	alue)	CT operations.		
9, 8	cas_late	ncy[1:0]	C 1 Tr	2: 16 bits (de : 32 bits nese bits se	efault value t the CAS latency[1:0 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1 0 0 0 0	e) latency of <u>1</u> C C C C ing SDRA	the SDRAM. SDR etting prohibited AS latency = 1 AS latency = 2 (of AS latency = 3 M ACT \rightarrow CMD, uring ACT \rightarrow CM	default va PRE → J	Alue) ACT, CMD \rightarrow ACT, CMD \rightarrow			
9, 8	cas_late	ncy[1:0]	C 1 Tr	16 bits (de 32 bits 18 bits se cas_ 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	t the CAS	e) latency of	the SDRAM. SDR etting prohibited AS latency = 1 AS latency = 2 (of AS latency = 3 M ACT \rightarrow CMD, uring ACT \rightarrow CM	default va PRE → /	Alue) ACT, CMD \rightarrow ACT, CMD \rightarrow			
9, 8	cas_late	ncy[1:0]	C 1 Tr	16 bits (de 32 bits 18 bits se 10 10 10 10 10 10 10 10 10 10	efault value t the CAS latency[1:0 0 0 1 0 1 t a wait dur t a wait dur t ate[1:0] 0 0 1 1	e) latency of	the SDRAM. SDR etting prohibited AS latency = 1 AS latency = 2 (α AS latency = 3 M ACT \rightarrow CMD, uring ACT \rightarrow CMD, prohibited SCLK	default va PRE → /	Alue) ACT, CMD \rightarrow ACT, CMD \rightarrow			
9, 8	cas_late	ncy[1:0]	C 1 Tr	16 bits (de 22 bits 12 bits se 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	t the CAS latency[1:0 0 0 1 0 1 t a wait dur tate[1:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	e) latency of	the SDRAM. SDR etting prohibited AS latency = 1 AS latency = 2 (α AS latency = 3 M ACT \rightarrow CMD, uring ACT \rightarrow CMD, prohibited SCLK	default va PRE → / ID, PRE perations	Alue) ACT, CMD \rightarrow ACT, CMD \rightarrow			

Bit position	Bit name Function							
1, 0	column_size[1:0]	The	ese bits set	se bits set the column size of the SDRAM.				
			column_size[1:0]		SDRAM column size			
			1	0				
			0	0	8 bits (default value)			
			0	1	9 bits			
			1 0 10 bits		10 bits			
			1	1	11 bits			

The following shows the physical addresses where the address signals (A25 to A1) output during access to the SDRAM area are assigned.

Table 2-3. SDRAM Access Row Address Output

Remark When compared to the memory controller (NBA85E535) on the CPU side, different column addresses are assigned to address pins A12 and A13, and the column addresses corresponding to both the NBA85E535 and the USB host controller are up to 11 bits, and A12 and above are not used.

	:	31	13	12	0	Offset address	After reset		
SRAM_BASE		:	sram_base[31:13]	0		50H	0000 0000		
	_		R/W	R					
Bit position		Bit name		Function					
31 to 13 sram_base[31:13		base[31:13]	SRAM Area Base Address These bits set the base address when accessing the SRAM area. This register sets the base address of the SRAM area within the PCI space. The setting of this register responds to a matched address when memory access has occurred from the PCI target.						

(12) SRAM Area Base Address Register

2.2.4 How to initialize PCI host bridge

The PCI host bridge macro must be initialized via the following procedure in order to accept memory access to the PCI bus as well as access from the PCI bus to the SDRAM and SRAM areas.

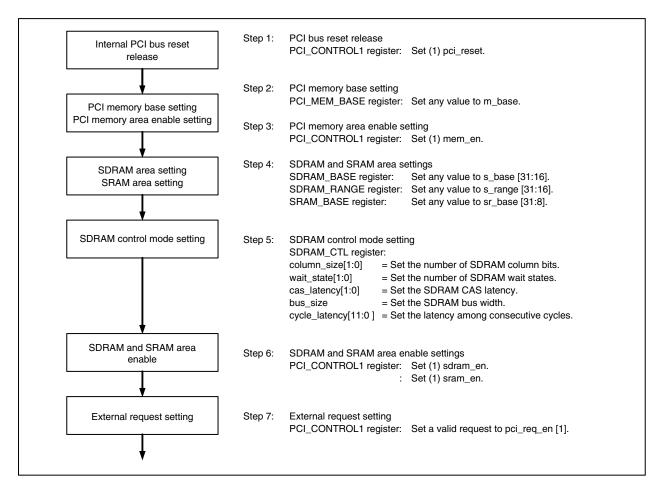


Figure 2-1. PCI Host Bridge Macro Initialization Procedure

The following becomes possible when the above initialization procedure has been completed:

- Access from the PCI_CONFIG_ADD/PCI_CONFIG_DATA register to the PCI configuration register of a PCI device (OHCI host controller)
- O Access from the CPU to the PCI memory area (OHCI operational register) of a PCI device (OHCI host controller)
- O Access from a PCI device (OHCI host controller) to the SDRAM and SRAM areas

2.3 OHCI Host Controller

2.3.1 OHCI host controller functions

The OHCI host controller is provided with the following functions.

- O Complies with the OpenHCI Specification, Release 1.0a.
- Complies with the Universal Serial Bus Specification, Revision 1.1.
 Full-speed (12 Mbps) and low-speed (1.5 Mbps) USB devices are supported.
- O Incorporates a two-channel root hub and supports two downstream ports.
- O USB clock: 48 MHz, PCI clock: 25 to 33 MHz
- O Memory space

A 4 KB PCI memory area (OHCI operational register) is assigned. A 256-byte host controller communication area (HCCA) is assigned.

O Communication with the CPU

Communicates via the operational register within the OHCI host controller and via the host controller communication area (HCCA).

There are two communication channels between the CPU and the OHCI host controller. One of these communication channels is the OHCI operational register and the target (slave) for these communications is the OHCI host controller. The BASE_Address_Register (10h) that is within the PCI configuration register is a pointer to the OHCI operational register.

Also, the OHCI operational register contains a pointer to a shared memory called the host controller communication area (HCCA), and this HCCA comprises the second communication channel. For these communications, the OHCI host controller is the master.

The descriptor information for communication is managed via the OHCI operational register and the HCCA area.

2.3.2 PCI configuration register

The PCI configuration register occupies a 256-byte register space that is incorporated in the OHCI host controller. It is accessed from the CPU system via the PCI host bridge registers (PCI_CONFIG_DATA and PCI_CONFIG_ADD).

Address	31 24	23 16	15 8	7 0										
00H	Devi	ce ID	Vend	lor ID										
04H	Sta	tus	Com	mand										
08H		Class Code		Revision ID										
0CH	BIST	Header Code	Latency Timer	Cache Line Size										
10H		Base Addre	ess Register											
14H														
18H														
1CH		Rese	erved											
20H														
24H														
28H		Rese	erved											
2CH	Subsys	stem ID	Subsystem	Vendor ID										
30H		Rese	erved											
34H		Reserved		Cap_ptr										
38H		Rese	erved											
ЗCH	Max_lat	Min_Gnt	Interrupt Pin	Interrupt Line										
40H	PN	ЛС	Next_Item_Ptr	Cap_ID										
44H	Data	DMCSR_BSE	PMO	CSR										
E0H		Rese	erved											

Table 2-4.	PCI	Configuration	Registers
------------	-----	---------------	-----------

(1) Vender ID, Device ID (Offset 00H)

31		16	15	0
	Device	ID[15:0]	Vender ID[15:0]	
R/W	F	}	R	
fter reset	003	5H	1033H	
Bit position	Bit name		Function	
31 to 16	Device ID[15:0]	This register indicates the c It is used to select the drive These bits are fixed to 0035	r for operating devices according to the PCI standard.	
15 to 0	Vender ID[15:0]	This register indicates the c It is used to select the drive These bits are fixed to 1033	r for operating devices according to the PCI standard.	

(2) Command, Status (Offset 04H)

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Detected Parity Error	Signaled System Error	Received Master Abort	Received Target Abort	Signaled Target Abort	Devsel Timing[1.0]		Data Parity Detected	Fast Back to Back Capable			Capabilities											Fast Back to Back Enable	SERR Enable	Wait Cycle Control	Parity Error Response	VGA Pallet Snoop	Memory Write and Invalidate	Special Cycle	Bus Master	Memory Space	I/O Space
R/W	R/W	R/W	R/W	R/W	R/W	R	RI	R/W	R			R											R	R/W	R	R/W	R	R	R	R/W	R/W	R
er reset	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	pos	ition	1		I	Bit n	ame	;												F	unc	tion										
31	30 S 29 F 28 F 27 S	0	Dete	cted	Par	ity E	Irro							-											ress bus		lata	pari	ty e	rror	is	
30	29			Signa	aled	Sys	tem	Err	or											•	, 	ien a e PC	-		ı eri	ror o	ccu	rs.				
29	29		F	Rece	eivec	l Ma	ster	Abo	ort		This It is	s is set	the (1)	mas whe	ter a	abor mas	t sta ster (itus ope	bit o ratio	of th on is	e m terr	aste	r. ted	upoi	na	mas	ter a	abor	t.			
28	5	Received Master Abort Received Target Abort Signaled Target Abort 25 Devsel Timing[1:0]				rt		It is	set	(1)	whe	n a	mas	ster	ope	ratio	n is	terr	ster. nina e PC	ted	•	n a '	targe	et al	oort.							
27	27 \$ 26, 25 [Signa	aled	Targ	get A	Abor	ť		It is	set	(1)	whe	n a		e op	oera	tion	is te	ermi				a ta	rget	abc	ort.					
26	6, 25		0	Devs	el Ti	imin	g[1:(D]								the e to				•	nse	spe	ed.									
24	ļ		0	Data	Par	ity D	eteo	cted			It is	cle	arec	l (0)	wh	en "	1" is	wri	ten	fron	n the	e PC	l bu	s.		nast regis		•				
23	23 I 22, 21	-ast Capa		k to	Bac	k																uppc opor										
22					_	-				Res	serv	ed (Bes	sure	to v	vrite	"0".)														
20)		C	Capa	abilit	ies					This	s bit	ind	cate	es th	nat F	owe	er M	ana	gem	ent	Мос	le is	sup	por	ted.	lt is	s fixe	ed to	01	b.	
19	20 19 to 10				_	_				Res	serv	ed (Bes	sure	to v	vrite	"0".)														
9	19 to 10		F	ast	Bac	k to	Bac	k Er	nable							ack t ce th						es n	ot s	uppo	ort "	Fast	Ва	ck to	o Ba	ck".		
8			S	SER	R Er	nable	e									enab hen			tting	a s	yste	m e	rror	to th	ne S	SERF	R sig	gnal.				
7			V	Vait	Сус	le C	ontr	ol		1	This	s is '	the	wait	сус	le co	ontro	ol er	nable	e bit						addre		-		ppir	ng.	
6			F	Parity	y Eri	ror F	Resp	ons	е		This	s is	the	pari	iy e	ror	resp	ons	e er	able	e bit										-	

(2/2)

Bit position	Bit name	Function
5	VGA Pallet Snoop	This is the VGA pallet snoop enable bit. It is fixed to "0" since the host controller does not support VGA pallet snoop.
4	Memory Write and Invalidate	This is the memory write and invalidate enable bit. It is fixed to "0" since the host controller does not support memory writing and invalidating.
3	Special Cycle	This is the special cycle enable bit. It is fixed to "0" since the host controller does not support a special cycle.
2	Bus Master	This is the bus master enable bit. It is the enable signal that is used for master access to the PCI bus, and must be set to "1" when accessing the SRAM of the system bus. Set this bit to 1b when initializing the host controller.
1	Memory Space	This is the memory space access enable bit. It is the enable signal that is used for memory access according to the PCI standard, and must be set to "1" when accessing registers. Set this bit to 1b when initializing the host controller.
0	I/O Space	This is the I/O space access enable bit. It is the enable signal that is used for I/O access according to the PCI standard, but is fixed to "0" since the host controller does not use I/O access.

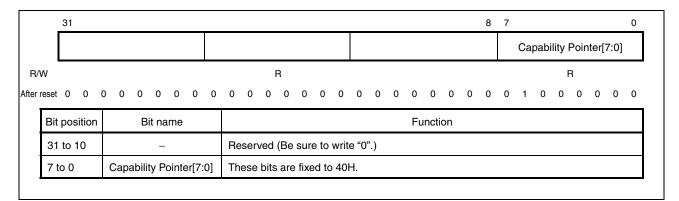
(3) Revision ID, Class Code (Offset 08H)

	31							24	23							16	15							8	7							0	
											CI	ass	Coc	de													Pov	icici		[7.0]			
			Bas	e Cl	ass	[7:0]]				Sub) Cla	ass[]	7:0]				Pro	ogra	mm	ing	I/F[7	7:0]				nev	visior	טוו	[7:0]			
R/W				F	3							F	3							F	R							F	٦				
After reset	0	0	0	0	1	1	0	0	0	0	0	0	0	0	1	1	0	0	0	1	0	0	0	0	0	1	0	0	0	0	1	0	

Bit position	Bit name	Function
31 to 24	Base Class[7:0]	This field indicates the base class according to the PCI standard. Since it is a controller for the serial peripheral bus, these bits are fixed to 0CH.
23 to 16	Sub Class[7:0]	This field indicates the sub class according to the PCI standard. Since it is a USB device, these bits are fixed to 03H.
15 to 8	Programming I/F[7:0]	This field indicates the programming interface according to the PCI standard. Since it is an OHCI-compliant USB, these bits are fixed to 10H.
7 to 0	Revision ID[7:0]	This field indicates the revision ID of the host controller. These bits are fixed to 42H.

(4) Cache Line Size • Latency Timer • Header Type • BIST (Offset 0CH)

31						24	23						16	15	14	13	12	11	10	9	8	7							0
		BIST	[7:0]	i				Hea	ıder	Туре	ə[7:C)]			La	aten	су Т	ïme	r[7:0)]			Ca	che	Line	ə Siz	ze[7	:0]	
R/W	position Bit name to 24 BIST[7:0]						R				R/W	R/WI	R/W	R/W	R/WI	R/W	R	R				R	1						
fter reset 0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
Bit po	sition		Bit	nam	ne												Fur	nctio	n										
31 to	24	BIST	[7:0]							s for are t																			
23 to	16	Hea	der Ty	ype[7:0]		Sir	ice i	t is a	s use a PC ır, bit	l de	vice,	the	se b	oits a	are f	ixed	to (ЮН.			sup	port	ed.					
15 to	15 to 8 Latency Timer[7:0] 7 to 0 Cache Line Size[7			0]				s use two k		•				cy ti	imer	to t	he s	syste	em.										
7 to 0)	Cacl	ne Lir	ne S	ize	[7:0]				s use are t		•			ach	e lin	ie si	ze to	o the	e sy	sten	1.							


(5) OHCI Base Address (Offset 10H)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
										C	ЭНС	l Ba	se /	Addr	ess	[27:(D]											Prefetchable	Tvne[1·0]		Memory Space Indicator
W R/WF	R/WI	R/W	R/W	R/W	R/W	/R/W	/R/W	/R/W	'R/W	'R/W	R/W	R/W	R/W	/R/W	R/W	'R/W	R/W	R/W	/R/W	R	R	R	R	R	R	R	R	R	R	R	F
eset 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
Bit posit	tion	I I			Bit r	name	е												F	unc	tion										
31 to 4		С	DHC	l Ba	ise /	Addı	ress	[27:	-	Set	the	bas	e ac	dica ddre: nitia	ss v	alue	of t	he c	oper	atio	nal r	egis	ter,	whi			term	nineo	d by t	the	
3	Prefetchable									tes to 0				•											y spa	ace.					
2, 1	1 Type[1:0]										ites the				-	•									on".						
0	Memory Space Indicator						This	s fiel	d in	dica	tes	that	the	fielc	l sp	ecifi	ed b	y th	e ba	ise a	addr	ess	is a	me	mor	y spa	ace				

(6) SubSystem Vender ID • SubSystemID (Offset 2CH)

	31		16 15	0
		SubSystem ID[SubSystem Vender ID[15:0]	
R/	w	R	R	
After	reset 0 0	0 0 0 0 0 1 0	0 1 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1	1
	Bit position	Bit name	Function	
	31 to 16	SubSystem ID[15:0]	This register indicates the device type. It is used to select the driver for operating devices according to the PCI standard. These bits are fixed to 0133H.	
	15 to 0	SubSystem Vender ID[15:0]	This register indicates the device vendor. It is used to select the driver for operating devices according to the PCI standard. These bits are fixed to 1033H.	

(7) Capability Pointer (Offset 34H)

(8) Interrupt Line • Interrupt Pin • Min gnt • Max Latency (Offset 3CH)

	_	31		24	23							16	15							8	7							0
		Ma	ax Latency[7:0)]			Mir	n Gr	nt[7:	:0]				I	nter	rupt	Pin	[7:0]]			lı	nteri	rupt	Line	ə[7:0)]	
R/	w							F	1							F	1							R/	w			
fter	reset	0 0	1 0 1 0	1 0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
	Bit	position	ıme												Fu	nctio	on											
	31	to 24	Max Latency		Th	ese	bits	indi	cate	e the	e ma	axim	um	late	ncy.	The	ey ai	re fiz	xed	to 2	AH.							
	23	to 16	Min Gnt[7:0]		Th	ese	bits	indi	cate	e the	e mii	nimı	um g	gran	t tim	e. T	⁻ hey	are	e fixe	ed to	01	H.						
	15	to 8	Interrupt Pin		Th	ese	bits	indi	cate	e the	e inte	erru	pt o	utpu	ıt pir	ı. Tl	ney	are	fixe	d to	01⊦	l sin	ice i	t is I	NTA	۸.		
	7 t	o 0	Interrupt Lin		Th	ese	bits	indi	cate	e the	e inte	erru	pt lir	ne. ·	They	/ are	e fixe	ed to	0 00)H.								

(9) Capability Identifier • Next Item Pointer • Power Management Capabilities (Offset 40H)

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					Pow	er N	lana	agen	nent	Ca	pabi	lities	S	1																		
			PME Support[4:0]			D2 Support	D1 Support		AUX Current[2:0]		DSI		PME CLK		Version[2:0]			Ne	xt Ite	em F	Point	ter[7	7:0]			Сар	babil	ity lo	dent	ifier[7:0]	
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
ter reset	t 0	1	1	1	1	1	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Bi	t pos	ition				Bit r	name	e												F	unc	tion										
3	1		F	PME	Su	рроі	rt[4:(D]						icate 0b																		
30	0 to 2							indic ked t				IE is	sup	por	ted I	by a	II PO	CI p	owe	er sta	ates	(D0	to E	03).								
26	6		0)2 S	Supp	ort									es th	at F	PCI p	owe	er st	ate	D2 i	s su	ippo	rted								
25	26 D2 Support This bit indicates that PCI power state D2 is support It is fixed to 1b. 25 D1 Support This bit indicates that PCI power state D1 is support It is fixed to 1b. 24 to 22 Aux Current[2:0] Assertion of PME interrupts from the D3Cold state												ippo	rted	•																	
24																																
2'	1										Mar	nage	indi eme d to	nt.	es th	nat s	peci	ial ir	itial	izati	on is	s no	t red	quire	ed ir	n orc	der t	o us	e Po	owei	r	
19	9 PME CLK 8 to 16 Version[2:0]												indi d to		es th	nat F	CLł	(is	not	requ	iired	to (gene	erate	PN	ЛЕir	nter	rupt	5.			
18											The	ese b	oits a	idica are f ntrol	fixed					•					onfig	gurat	tion	imp	eme	ente	d in	
15	5 to 8	3	٢	lext	Iter	n Pc	ointe	r[7:0)]					idica are f					t ite	m d	oes	not	exis	t.								
7	to 0		C	Capa	abilit	ty Id	entif	ier[7	7:0]					idica are f			•		nana	ager	nent	reg	jiste	r ID.								

(10) Power Management Control/Status • PMCSR Bridge Support Extensions (Offset 44H)

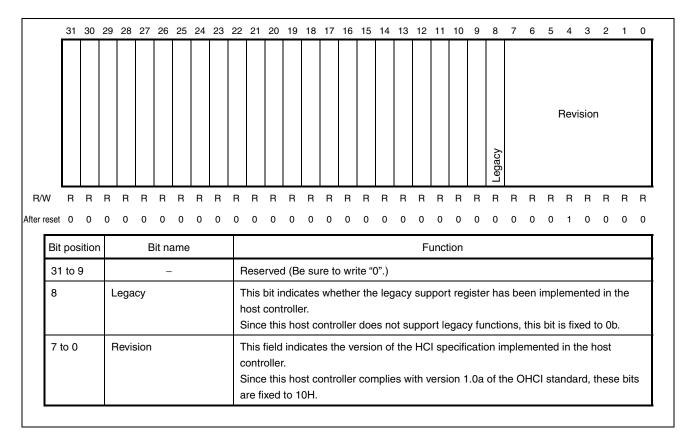
			LU			20	20	24	20	22			R Bri			10	15	14	10								5	4	3	2	1	0
				D	ata					S	uppo			-						Po	we	r Ma	inag	geme	ent	Con	troi/	Stat	us		1	
				Data	a[7:(D]			BPCC Enable	B2_B3							PME Status		Data Scale[1:0]			Data Select[3:0]		PME Enable								Power State[1:0]
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R	R	R	R	R	R	R/W	/ R	R	R	R	R	R	R/W	/R/V
er reset	t 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bi	t pos	itior	1			Bit ı	nam	е												F	uno	ction										
31										Acc	cord	ing t	to th		CI s	00H. tanda	ard,	this	fielc	l is	an (opti	onal	field	d wh	ich	is no	ot su	ippo	orteo	ł	
23	3			BPC	C E	nab	le						a br ed to	-		and	d it is	no	t sup	oport	ed	by t	he l	host	con	trolle	er.					
22	2		1	B2_	B3								a br ed to	•	bit,	and	d it is	no	t sup	oport	ed	by t	he l	host	con	trolle	er.					
15	5			PME	E Sta	atus					It is	set	(1)	to 1	b wł	nen	ME in the c hen	on	ditio	n for	PN	/IE a				net.						
14	15PME Status14, 13Data Scale[1:0]12 to 9Data Select[3:0]									Acc	cord	ing t	to th		CI s	00b. tanda	ard,	this	fielc	l is	an (opti	onal	field	d wh	ich	is no	ot su	ippo	orteo	ł	
12							Acc	cord	ing t	to th	fixeo e P0 troll	CI s	0H. tanda	ard,	this	fielc	l is	an o	opti	onal	field	d wh	ich	is no	ot su	ippo	orteo	ł				
8						Wh	en i		set t			inter PME	•					ted	at a	retu	ırn fı	rom	Pov	/er								
1,	, 0 Power State[1:0]						Thi	s fie	ld in	ndica			PCI sult,					he s	tatu	us of	[1:0)].										
													0		(C	C	0 8	State	9												
													0			1	C	1 5	State)												
													1		()	_		State													
													1		-	1	Ιг	12 F	not S	State												

2.3.3 OHCI operational register

The OHCI operational register is incorporated in the OHCI host controller and is configured of the following. For more detailed information, see the OpenHCI Specification, Release 1.0a.

In the OpenHCI Specification, Release 1.0a, port numbers are defined as [1: Port number], and this definition is followed in the descriptions below. For example, it is explained that Port [1] corresponds to host channel 0 and Port [2] corresponds to host channel 1.

Address	31 242	23 16	15 8	7 0
00H		HcRe	vision	
04H		HcCo	ontrol	
08H		HcComma	andStatus	
0CH		HcInterru	ıptStatus	
10H		HcInterru	ptEnable	
14H		HcInterru	ptDisable	
18H		HcH	CCA	
1CH		HcPeriod	CurrentED	
20H		HcContor	lHeadED	
24H		HcControl	CurrentED	
28H		HcBulk	leadED	
2CH		HcBulkC	urrentED	
30H		HcDon	eHead	
34H		HcFmI	nterval	
38H		HcFmRe	emaining	
3CH		HcFmN	lumber	
40H		HcPerio	dicStart	
44H		HcLSTh	reshold	
48H		HcRhDe	scriptorA	
4CH		HcRhDe	scriptorB	
50H		HcRh	Status	
54H		HcRhPor	rtStatus1	
58H		HcRhPo	rtStatus2	
5CH to FFH		Rese	erved	


Table 2-5. OHCI Operational Registers

Terms and abbreviations HC:

C: HostController (indicates the OHCI host controller)

- HCD: HostControllerDriver
- ED: EndPointDescriptor
- TD: TransferDescriptor
- EOP: EndOfPacket
- SOF: StartOfFrame

(1) HcRevision Register (Offset 00H)

(2) HcControl Register (Offset 04H)

	31	30	29) 28	8	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10) !	9	8	7	6	5	5	4	3	2	1	0
																							RWF		HWC	≝		HCFS		DLF	CLE	ш	PLE		CBSH
₹/W	R	R	R	R	}	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R/V	٧R	/WF	R/W	'R/V	VR/	WR/	WF	R/WI	R/W	R/W	'R/W	'R/V
r re	set 0	0	0	0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	C)	0	0	0	0	0
1	Bit po	sitior	۱			В	Bit n	ame)												F	unc	tion	I											
	31 to	11					_	_			F	Rese	rve	d (B	e su	re to	o wr	ite ")".)																
	10			Rer Ena (RV	abl	е	Vak	eUp				1: S	ets	resu	ed to ime set	sigr	nal a	is R	emo	teW	ake				ne s	sigr	nals	5.							
	9			Rer Cor (RV	nne	ect		eUp			V ii	Whe nitia 1: S	n re izat upp	mote ion. orts	ates e wa rem sup	keu iote	p is wał	sup keup	port).	ed b	by th			•••) dı	ırinç)	
	8			Inte (IR)		uptl	Rou	ıting			ŀ	t set IcIn 1: Ir	s ho erru nterr	ow to uptS rupt	ates o rep tatus occu occu	ort S. Irs V	to th via S	ne sy SMI.	/ste											000	curr	ed i	n		
	7, 6			Fur	ncti	ion		tate			٦	Γhis	field	l ind	icate	es th	ie h	ost o	cont	rolle	r op	era	ting	st	ate										
				(HC	CFS	S)[1	1:0]							Н	CFS									บร	SB :	stat	us								
															00			U	SB F	Rese	ət														
															01			U	SB F	Resu	ıme														
															10			U	SB (Ореі	ratio	nal													
															11			U	SB S	Susp	enc	ł													
											٦ t	This rans After	ope itior a h	ratin ning ardv	ionir ig sta to U vare et it 1	ate SB res	is co Res et, tl	ontro ume he L	olled via JSB	by f a re Res	the emo set s	hos te v statu	t co vake us is	ntr eup s sł	olle o w now	er d hile	rive du	er e iring	xcep g US	pt v SB	whe Su	en spe	nd s	-	
	5			Bul (BL			Enal	ble			1	1: F 0: D	erfo oes /alu	rms not e se	whe bulk perf t to t bulk	t list form this	pro bul bit b	ices Ik lis Decc	sing t pro mes	oces s val	siną id s	g. tarti	ing	fro	-	he	nex	t fr	ame	Э.					

(2/2)

Bit position	Bit name			Function
4	ControlListEnable (CLE)	1: 0: The	Performs control lis Does not perform of value set to this b	o perform control list processing. st processing. control list processing. t becomes valid starting from the next frame. st, this bit value must be 0b.
3	IsochronouseEnable (IE)	lf a wh 1: 0: Wh	n isochronous ED i ether to perform iso Performs isochrone Does not perform i	o perform isochronous ED processing. s discovered during list processing, check this bit to determine chronous ED processing. ous transfer processing. sochronous transfer processing. ed or disabled, isochronous processing is affected starting from
2	PeriodicListEnable (PLE)	1: 0: Wh	Performs periodic I Does not perform p	o perform periodic list processing. ist processing. periodic list processing. ed or disabled, periodic list processing is started or stopped
1, 0	ControlBulk ServiceRatio (CBSR)[2:0]	Du	ring processing of t	ecify the service ratio for control transfer and bulk transfer. ne periodic list, the service ratio specified via this field is sfers being performed.
			CBSR	Service ratio of bulk ED: control ED
			00	1:1
			01	2:1
			10	3:1
			11	4:1

(3) HcCommandStatus Register (Offset 08H)

	31	30		29 2	28	27	26	25	24	23	22	21	20	19	18	17 16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	(
																soc													OCR	BLF	CLF	
₹/W	V	R/\	N													R R													R/W	R/WF	R/W	R
r re	eset 0	0		0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Bit po	sitic	n			E	Bit n	ame)											Fι	unct	ion										
	31 to	18					_	-			F	Rese	erve	d (Be	e su	re to wr	ite "()".)														
	17, 1	6		٥v	eri	duli run(;)[2:	Cou	nt			li T	t is ii	ncre incre	mer	ted	to coun each tir ion cont	ne a	sch	nedu	le o	verr	un c	occu	rs.		tSta	tus	regi	ster	has	bee	эn
	15 to	4					_	-			F	Rese	erve	d (Be	e su	re to wr	ite "()".)														
	3			Ch		-	•	uest			Т	his	bit is	s use	ed to	o reques	st a o	char	nge	of co	ontro	ol rig	jht c	over	the	hos	t co	ntrol	ler.			
	2			-	IIKL		-ille	d			V V li b T	Vher Vher Vher st pr oulk l	n ad n the n the roce list p bit n	Iding e hos e val essin proce nust	TD st co ue o g st essii be	o indicat to ED in ontroller of this bi arts whe ng is con set befo gister, ar	n the star t is (en 0 ntinu re th	e bul ts p Db, t b is ied. ie di	lk lis roce oulk set.	it, th essir list p If T	is bing th proc D is onfig	it is ne bi essi fou gure	alwa ulk l ng v nd ii	ays s ist h vill r n the	set to ead not b e bu	, this be st lk lis	s bit arte st, 1	is c ed. I bis	hecl f it is set a	ked. s 1b, agair	bul n ar	, lk
	1				ontr		istFi	illed			V (l V c a T	Vhei HCE Vhei Vhei ontr gair	n ad)). n the n the ol lis n an bit n	ding e ho: e val st pro d co nust	st co ue o oces ntro be s	o indicat to ED in ontroller of this bi ssing sta l list pro set befo gister, ar	n the star t is (arts cess re th	e coi ts p)b, c whe sing ie di	ntrol roce conti n 0t is c river	list, essir rol lis o is s ontir	this ng th st pr set. nuec onfig	s bit ne co roce If Ti d. gure	is a ontro ssin D is	lway ol lis Ig wi four	t he II no nd ir	et to ad, ot be n the	this e sta e coi	bit i artec ntrol	s ch I. If list,	ecke it is 1 1b is	d. Ib, s se	эt
	0			Re	ost(ese CR	t	troll	er			V fu	Vhei unct	n thi iona	s bit ıl sta	is s te c	o start a set (1), th of the ho y the ho	ne U st co	SB	stat oller	us tr	ans	ition	s to	US	B Sı	uspe					of th	ıe

(4) HcInterruptStatus Register (Offset 0CH)

			29 2	8	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12		10	9	8	7	BHSC 9	5 ENO	4	3	2	1 0 HQM
L																												Ы	8		
W reset (R/		0 0	`	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	н/vv 0	0 N/W	6 N	6 0	0	R/WR/V
				, 	-		0	0	0		U	0	0	0	0	0	0	0	0	0	0		U	0	U	0	U	U	0	U	0 0
Bit p	ositi	on			В	lit n	ame	•		_										F	unc	lion									
31 30	30 29 to 7				rsh	- ipC	han	ge		T It s	is s et. 7 1: O 0: O	nter et (1 An S C in C in	rupt I) w SMN terr terr	t bit hen 11 int upt 1 upt 1	indio the erru nas nas	own own occi not	s tha ersi vill b urre	at ar nip c e ge d. urrec	han nera	ige ateo	requ d if t	lest	field nteri	of H upt	-IcC	omn	as oo nano is no	d Sta	atus		been
29 to						_	-			F	lese	rveo	I (B	e su	re to	o wri	te "()".)													
6	6			otH IS(Sta	tusC	Chan	ge	lt	is s 1: R 0: R	et (1 HSC HSC) w C int C int	hen erru erru	the pt h pt h	HcF as c as r	RhPo occu iot c	ortSt rred	atus rred	s ha	s be		char	nged			hanı ardw	-	soui	rce.	
5					ow	umt	ber			lt fr	is s ame 1: Fl 0: Fl	et (1 nui NO NO	I) af mbe inte inte	ter t r M rrup rrup	he H SB c t ha: t ha:	Hcca chan s oc s no	a fra Iges curr t oc	me i fror ed. curre	num n 0 t ∋d.	ber to 1	has or f		en uj 1 to	odat 0.			s ch fram	-		ch th	e
4				rec E)	OVE	erat	ble E	rror		d	etec 1: U 0: U	ted E in E in	on t terr terr	he F upt f upt f	PCI nas nas	bus. occu not (urrea	d. Irrec	ł.			or that			rela	ted	to U	SBI	nas	beer	1
3			Re: (RI		nel	Dete	ecte	d		lt re	is s	et (1 ne s D in D in	igna terr terr	hen al. It upt I upt I	it is is r nas nas	dete not s occu not e	ecte et (⁻ urrec occu	d tha I) wi d. urrec	at a hen d.	dev US	vice B Ro	on tl esur	ne U ne h	as t	bus					ting rive	

(2/2)

Bit position	Bit name	Function
2	StartOfFrame (SF)	 This interrupt bit indicates that the Hcca frame number has been updated at the start of a frame. The host controller updates the Hcca frame number while sending SOF packets. 1: SF interrupt has occurred. 0: SF interrupt has not occurred. An interrupt is cleared (0) when 1b is written to this bit.
1	Writeback Done Head (WDH)	 This interrupt bit indicates that the host controller has updated the contents of HccaDoneHead. The host controller sets (1) this bit immediately after updating HccaDoneHead, and does not update HccaDoneHead again until this bit is cleared (0). 1: WDH interrupt has occurred. 0: WDH interrupt has not occurred. An interrupt is cleared (0) when 1b is written to this bit.
0	SchedulingOverrun (SO)	 This interrupt bit indicates that a USB schedule overrun has occurred in a frame. When a USB schedule overrun has occurred, this bit is set (1) after the frame number of the next frame is updated. When it is set (1), the SchedulingOverrun bit of the HcCommandStatus register is also incremented. 1: SO interrupt has occurred. 0: SO interrupt has not occurred. An interrupt is cleared (0) when 1b is written to this bit.

(5) HcInterruptEnable Register (Offset 10H)

MIE	B/W	29 2	8 2		0 20	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6 BHSCE R/W	5 BONJ /R/W	4 Ш П	3 EDH R/W	2 IIS R/W	1 HQM R/WF	
reset 0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit posi	ition			Bit ı	name	9												F	unct	tion										
31		Ma (MI		nter	rupt	Enat	le		1: E 0: D	nab isab	les a oles	all se (ign	et in ores	terru s wri	upts ting	of 0	b).							•			80:0] 9isab		egiste	er.
30			able	hip(Chan	ge		г	⁻his 1: E 0: D ⁻his īo cle	nab isab bit c	les (bles an b	OC a (ign be se	as a ores et (1	n int wri) by	terru ting writ	ipt s of 0 ting	ouro b). 1b t	ce. o it.							terr	uptD	visab	le re	egiste	ər
29 to 7	F E ((F E				-			F	Rese	rveo	d (B	e su	re to	o wri	ite "()".)														
6		Ena	otHu able ISCI		atus(Char	ige	г	⁻his 1: E 0: D ⁻his īo cle	nab isab bit c	les l bles an b	RHS (ign be se	Ca ores et (1	s an ; wri) by	i inte ting writ	errup of 0 ting	ot so b). 1b t	ourc	e.							uptD	visab	le re	egiste	ər.
5			meN able IOE)		berO	verf	ow	г	⁻his 1: E 0: D ⁻his ⁻o cle	nab isab bit c	les l bles an b	=NC (ign be se) as ores et (1	an i wri) by	nter ting writ	rupt of 0 ting	sou b). 1b t	rce. o it.								uptD	visab	le re	egiste	ər.
4			able	vera	ıbleE	rror		г	⁻ his 1: E 0: D ⁻ his ⁻ o cle	nab isab bit c	les I oles an b	JE a (ign be se	as ai ores et (1	n int ; wri) by	erru ting writ	pt s of 0 ting	ourc b). 1b t	e. o it.							terr	uptD	visab	le re	egiste	ər.
3			able	eDe	tecte	d		г	⁻his 1: E 0: D ⁻his ⁻o cle	nab isab bit c	les l bles an b	RD a (ign be se	as a ores et (1	n int wri) by	ting ting	pt s of 0 ing	ouro b). 1b t	ce. o it.							terr	uptD	visab	le re	egiste	ər.
2			toOf able E)	Frai	me			г	This 1: E 0: D This	nab isab bit c	les : bles an b	SF a (ign be se	is ar ores et (1	n inte s wri) by	erru ting writ	pt so of 0 ting	ourc b). 1b t	e. o it.							terr	uptD	visab	le re	egiste	er.

(2/2)

Bit position	Bit name	Function
1	WritebackDoneHead Enable (WDHE)	 This bit is used to enable or disable WDH as an interrupt source. 1: Enables WDH as an interrupt source. 0: Disables (ignores writing of 0b). This bit can be set (1) by writing 1b to it. To clear (0) this bit, write 1b to the corresponding bit of the HcInterruptDisable regist
0	SchedulingOverrun Enable (SOE)	 This bit is used to enable or disable SO as an interrupt source. 1: Enables SO as an interrupt source. 0: Disables (ignores writing of 0b). This bit can be set (1) by writing 1b to it. To clear (0) this bit, write 1b to the corresponding bit of the HcInterruptDisable regist

(6) HcInterruptDisable Register (Offset 14H)

3			29 2	8	27	26	6 25	5 24	1 2	3 2	2 21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	BHSCD 9	5 ENOD	4 DED			ę	
W R/	NR/																									R/W	R/V		_		WR/V	
reset O	0		0 ()	0	0	0	0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C	0	0
Bit po	ositio	on			E	Bit r	nam	е												F	unct	ion										
31	30					iteri	rupt	Disa	able		0: (Whe regis	Disal Igno n thi ster a	oles ires is Ho are o	all s writi cInte outp	et ir ng c errup ut.	nterr of 0b otDis	rupts b.) sable	s. e reg	giste	er is	read	d, th	e cc	nter	nts c	of th	ie H	cInt	erru	uptE	nabl	
30	29 to 7			rne		ipC	han	geD	isat		0: (Whe regis This To se	Disal Igno n thi ster a bit c et (1	oles ires is He are o can t) this	OC writi clnte outp oe c s bit	as a ng c errup ut. lear , wri	an in of Ob otDis ed ((te 1	nterr 5.) sable 0) by b to	upt s e reg / wri the	sour giste ting	ce. er is 1b 1	read	d, th	e cc							-	nabl	
29 to	F						-				Rese	erve	d (B	e sı	ire to	o wr	ite "()".)														
6	F C ((Ro Dis (Rł	ab	le		atus	Cha	nge		0: (Whe regis This	Disal Igno n thi ster a bit c	oles ires is Ho are c can I	RH writi clnte outp oe c	SC a ng c errup ut. lear	as an of Ob otDis ed ((n int o.) sable 0) by	erru e reç / wri	pt so giste ting	ouro er is 1b t	e. read	d, th	e cc	nter							nabl		
5		Fra Dis (FN	ab	le	umt	berC	Ver	flow		0: (Whe regis This	Disal Igno n thi ster a bit c	oles ires is Ho are o can b	FN(writi clnte outp oe c	D as ng c errup ut. lear	an of 0b otDis ed ((inter 5.) sable 0) by	rrupt e reç / wri	t sou giste	urce er is 1b 1	read	d, th	e cc	nter							nabl		
4			Un Dis (UI	ab	le	eral	bleE	Fror			0: (Whe regis This	Disal Igno n thi ster a bit c	oles ires is Ho are c can b	UE writi cInte outp oe c	as a ng c errup ut. lear	in in of 0b otDis ed ((terru o.) sablo 0) by	upt s e reç / wri	ouro giste ting	ce. er is 1b 1	read	d, th	e cc								nabl	

Bit position	Bit name	Function
3	ResumeDetected Disable (RDD)	 This bit is used to delete RD as an interrupt source. 1: Disables RD as an interrupt source. 0: (Ignores writing of 0b.) When this HcInterruptDisable register is read, the contents of the HcInterruptEnable register are output. This bit can be cleared (0) by writing 1b to it. To set (1) this bit, write 1b to the corresponding bit of the HcInterruptEnable register.
2	StartOfFrame Disable (SFD)	 This bit is used to delete SF as an interrupt source. 1: Disables SF as an interrupt source. 0: (Ignores writing of 0b.) When this HcInterruptDisable register is read, the contents of the HcInterruptEnable register are output. This bit can be cleared (0) by writing 1b to it. To set (1) this bit, write 1b to the corresponding bit of the HcInterruptEnable register.
1	WritebackDoneHead Disable (WDHD)	 This bit is used to delete WDH as an interrupt source. 1: Disables WDH as an interrupt source. 0: (Ignores writing of 0b.) When this HcInterruptDisable register is read, the contents of the HcInterruptEnable register are output. This bit can be cleared (0) by writing 1b to it. To set (1) this bit, write 1b to the corresponding bit of the HcInterruptEnable register.
0	Scheduling Overrun Disable (SOD)	 This bit is used to delete SO as an interrupt source. 1: Disables SO as an interrupt source. 0: (Ignores writing of 0b.) When this HcInterruptDisable register is read, the contents of the HcInterruptEnable register are output. This bit can be cleared (0) by writing 1b to it. To set (1) this bit, write 1b to the corresponding bit of the HcInterruptEnable register.

(7) HcHCCA Register (Offset 18H)

	31		24	23						16	15							8	7							0
					Hcł	HCC	A[3	1:8]																		
R/	w					R/\	W																			
After	reset 0 0	0 0 0 0 0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Bit position	Bit name												Fu	nctic	n										
	31 to 8	HcHCCA[31:8]		hos The	s fiel at cor ese b	ntroll	er c nust	com t be	mun set	icat duri	ion ing i	area nitia	ı. Iliza	tion.	Th	e ho	ost c	ontr	ollei	r rec		0				۹,

(8) HcPeriodCurrentED Register (Offset 1CH)

	F	31							24	23							16	15							8	7			4	3			0
													Pei	riod	Cur	rent	ED[31:4]														
R/V	v															R																	
After re	eset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Bit	posi	tion			В	it na	ame	•												Fι	uncti	on										
	31	to 4		Pe	erioc	lCι	urre	ntE	D[31	1:4]	w	'hen	pro		sing	es th g of (eld.	•			•			•				cont	rolle	er up	date	es tł	ne	

(9) HcControlHeadED Register (Offset 20H)

	1	31						24	23							16	15							8	7			4	3			0
												Сс	ontro	lHe	adE	D[3	1:4]															
R/V	v													R	/W																	
fter r	eset	0	0 (0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ſ	Bit _I	posit	tion		В	Bit na	ame													Fι	incti	on										
	31	to 4		Cont	rolF	lead	IED	[31:	4]	То	pei	rforr	n a	con		rans	ify th sfer,														it of	

(10) HcControlCurrentED Register (Offset 24H)

	3	1						24	23							16	15							8	7			4	3			0
												Cor	ntrol	Cur	rent	ED[31:4]														
R/V	N													R	/W																	
fter r	reset C	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Bit po	ositio	n		B	Bit n	ame)												Fι	unct	ion										
	31 to	o 4		Con	trolC	Curr	rentE	ED[3	31:4]	E va lis To	his f ach alue: st, to o res ointe	time s in this sum	e pro this s fiel e a f	field field Id. tran	ssing d. To sfer	g of o bu that	cont ild a has	rol E nev	ED is v list en a	s co t, se	mpl t 00	etec 000	l, the 000	ə ho H, w	st co /hich	ontr n inc	dicat	es t	he e	end	of th	ie

(11)HcBulkHeadED Register (Offset 28H)

31					24	23							16	15							8	7			4	3			0
									E	Bulkl	lea	dED	[31:	4]															
R/W											R	/W																	
ter reset 0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit position	n	В	it na	ıme													Fι	uncti	on										
31 to 4	Bulk	Hea	dED)[31:	:4]		Тс	pe	rforr		bulk		•	-													bit c	of th	e

(12) HcBulkCurrentED Register (Offset 2CH)

31	24 23	16	15	87	4	3	0
		BulkCurrentED[31:	.4]				
R/W		R/W					
ter reset 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0) 0 0	0 0	0 0
Bit position	Bit name		Function				
31 to 4	BulkCurrentED[31:4]	This field indicates the pro Each time processing of be in this field. To build a new list, set 000 To resume a transfer that h pointer must be guarantee	ulk ED is completed, t 000000H, which indica has been aborted, the	the host control	the list, to	this fiel	

(13) HcDoneHead Register (Offset 30H)

	31							24	23							16	15							8	7			4	3			0
													Don	eHe	ead[31:4]															
R/\	v													ļ	R																	
After r	eset 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Bit po	sition			В	it na	ame													Fι	inct	ion										
	31 to	4	Г	Done	eHe;	ad[3	31:4]	1		Tł	nis fi	eld	indio	cate	s th	e ad	Idres	ss o	f Hc	Dor	юНе	ad	of th	e ho	ost d	cont	rolle	er.				

(14) HcFmInterval Register (Offset 34H)

	31	30					24	23						16	15	14	13		0 1 1 1 0 1 1 0 1 1 1 1 Function The setting values between HCD and HC. toggle this bit. Iue is reflected to the FRT bit of the why set FI field has been reflected by compa field was written and the FRT value that wa amount of data that can be transmitted or verrun. The current frame position and the second the second the frame for which a transfer can be the system bus capacity, this value is set from the system bus capacity the system bus	(
	FIT					F	SMI	PS[14:	0]									R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR											
w	R/W	R/WR	/WR/W	/R/W	R/W	R/W	R/WI	R/WR/V	VR/	NR/	WR/W	٧R	/WR/	NR/W	W R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR	R/WR/													
rese	et O	0	0 0	0	0	0	0	0 0	0	C	0	(0 0	0	0	0	1	0	1	1	1	0	1	1	0	1	1	1	1 .
в	lit pos	ition		В	it na	ıme												Fur	nctio	n									
3	31		Fran (FIT)		terva	alTo	ggle	V V H H	/he /he cFr CD	n th n H mRe is a IT v	e FI f C loa emair able t	fiel Ids nin	ld is the g reg confi	writte FI fie jister m w	en vi Id, ti heth	a H he F er t	CD, t TT v	oggl alue ewly	e thi is re set l	s bi fleo =I fi	it. cted eld	to t has	he F bee	RT en re	bit (of th	e by c	omp	
3	30 to 1	6	FSLa (FSN	•			acket	re va si	ecei alue art	ved e are ed.	with e con	ou np e t	t cau ared his c	ising to de	a so etern	hec	lule of the	overr exte	un. nt of	The the	e cu e fra	rren me	nt fra for v	me vhic	pos h a	ition tran	and sfer	the can	be
1	5, 14				-			R	ese	erve	d (Be	e s	ure t	o wri	te "0	".)													
1	3 to 0)	Fran [13:0		terva	al(FI)	s	tart	OfF	rame	e a	sab	it tim	e va	lue.													

(15) HcFmRemaining Register (Offset 38H)

	31	30												14	13												0
	FRT															FR[13:0] R R R R R R R R R R R R R R R 1 0 1 1 1 0 1 1 0 1 1 1 1 1 Function e frame setting values between HCD and HC. s 0H and the FI field value is reloaded, HC copies lue set to the FI field was also set to FR by											
R/W	R														R	R	R	R	R F	R	R	R	R	R	R	R	R
er reset	t 0	0	0 0	0 0	0	0	0	0	0 0	0	0	0	0	0 0	1	0	1	1	1 0	1	1	0	1	1	1	1	1
Bit	t pos	ition		Bit	name	9										Fu	incti	ion									
31	1		Fram (FRT	eRem)	ainin	gTog	gle	V tł	Vhen th ne FIT	ne Fl bit va	R fiel alue	ld va to th	alue nis b	becom		H ar		•	field	alue	e is r	eloa			col	oies	
													er the v RT va		set	to th	ie Fl	field	was	also	set	to F	R by	/			

(16) HcFmNumber Register (Offset 3CH)

	_	31															16	15															0
																							Fr	ame	Nur	nbe	r[15	:0]					
R/	w																								F	٦							
After	reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Bit	pos	ition			В	it na	ame													Fι	uncti	on										
	15	to ()	F	ram	ιeΝι	umb	er[1	5:0]									mbe becc							•		Э.						

(17) HcPeriodicStart Register (Offset 40H)

31												14	13													0
																	Р	ərio	dic S	Start	[13:	0]				
R/W																			R	/W						
fter reset 0 0	0 0 0 0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit position	n Bit na	me												Fu	incti	on										
31 to 14	-			F	leser	ved	(Be	sure	e to	writ	e "0	".)														
13 to 0	PeriodicStart	t[13:0	0]	ti V V P	his fi his fie Vhen Vhen riorit ettin	eld fi the the y ov g thi	rame hos Fml er th is va	e. t coi Rem ie pe lue t	ntrol naini erioc to w	ler i ng v dic li ithir	s ini /alue ist. n 10'	tiali: e is % o	zed, grea f the	the ater	valı thar	ue ir n the erval	n thi e set	s fie val	eld m ue, t	nust the I	be s Non	set b Peri	by H odic	CD. list	take	

(18) HcLSThreshold Register (Offset 44H)

	31															12	11											0
																				Hc	LSI	hre	sho	ld[11	l:0]			
R/	w																					R	w					
ter	reset 0 0	0 0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	1	0	1	0	0	0
	Bit position	Bit	t name	•												Fι	uncti	on										
	31 to 12		_			Res	serve	ed (Be	sure	e to	writ	e "0	".)														
	11 to 0	HcLSThre	eshold	[11:0)]		ring l ethei ie Fr	r a t	tran	sfer	is p	ooss	sible	in tl	ne ti	me	rem	ainiı	ng iı	n the	e fra	me.					0	d.

(19) HcRhDescriptorA Register (Offset 48H)

31 30 2			-					20										10		8	7	6	5	4	3		0
	ΡΟΤΡΟ	GT[7:0]														NOCP	OCPM	DT	NPS	PSM			Ν	NDP	[7:0]		
W R/WR/WR	/WR/WI	R/WR/V	VR/WI	R/W												R/W	R/W	R	R/W	R/W	R	R	R	R	RI	R	R
reset 1 1	1 1	1 1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0) 1	0
Bit position		Bit	name)												F	unct	tion									
31 to 24		rOnToF PGT)[7		Goo	dTin	ne							•					•				by th ms.	e ł	nost	contr	oller	
23 to 13			-				Res	erv	ed (Be s	ure	to w	/rite	"0".)												
12	NoOv (NOC	/erCurr CP)	entPi	roteo	ctior	ו	is to 1:	be Doe	sup es no	port ot su	ed. ppo	rt o	verc	urre	nt p	the c rote n fun	ction	ı fur			ectio	n fun	ctio	on c	f the	oot	hub
11	Over0 (OCP	Currenti 'M)	Protec	ction	Mod	le	lt m 1: 0:	ust Rep Rep	refle orts orts	ect th ove ove	ne sa ercui ercui	ame rren rren	e mo t sta t sta	de a tus tus	as P to ir to a	owe divid II po	rSwi dual rts s	tchi por imu	ngM ts. Itane	lode eous	sly.	en cl			ot hul (0).).	
10	Devic (DT)	еТуре						e th	ne ro							is nc d as			•				s a	lwa	ys rea	d fro	m
9	NoPo (NPS	owerSw)	vitchir	ng			port 1:	s is Pow	alw /er i:	ays	on. vays	on	whe			powe			•			orted	or	whe	ther	owe	r to
8	Powe (PSM	rSwitcl I)	hingM	/lode	•		1: 0: Port bee	Pow Pow s re n se	ver s ver s espo et (1	supp supp and c). W	ly is ly is only /hen	cor cor to S	ntroll ntroll Set/C S cle	ed i ed s leai arec	ndiv simu Por d (0)	vidua ultan tPov), po	lly fo eous ver v rts a	or por por por por por por por por por p	orts. or al n the contr	l por e Po rolleo	rts. rtPo d by	werC	on Cle	itrol l earG	ot hu Mask Ioball	bit h	
7 to 0	Numt (NDP	oerDow ?)[7:0]	vnstre	eaml	Port		hub	oft set	he h	nost are f	con ixed	troll	er.										•		l by th assi		

(20) HcRhDescriptorB Register (Offset 4CH)

31		01				10	15							01					0	
	PPCM[15	.0]										D	R[15:	UJ						
R/W	R/W												R/W							
er reset 0 0	0 0 0 0 0 0 0	0	0 (0 0	1 1	0	0	0 0	0	0	0	0	0 0	(0 0	0	0	0 0	0	
Bit position	Bit name								Fu	nctic	n									
31 to 16	PortPowerControlMask (PPCM)[15:0]	The	hese bits indicate whether a port is controlled by Set/ClearGlobalPower. hey are valid when PowerSwitchingMode has been set (1). Field																	
					t						De	escrip	otion					T		
							Rese	rved												
		-		1			Sets	device	e cor	nec	ted	to po	rt 1.	t 1.						
				2			Sets	device	e cor	nec	ted	to po	rt 2.							
				15 to	o 3		Rese	rved												
15 to 0	DeviceRemovable (DR)[15:0]	Value 1: Port is operated only by Set/ClearPortPower. 0: Port is controlled by Set/ClearGlobalPower. These bits indicate whether the host controller port is removable. Field																		
				Bi	t						De	escrip	tion							
				0			Rese	rved												
		1 Sets device connected to port							rt 1.											
		2 Sets device connected to port 2.																		
				15 te	o 3		Rese	rved												
					1 Sets device connected to port 1.															

(21)HcRhStatus Register (Offset 50H)

ead	Γ	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16 DSG	15 BMBD	14	13	12	11	10	9	8	7	6	5	4	3	2	1	DS O
/rite	CRWE														OCIC	SGP	SRWE														OCI	CGP
R/W	W														R/W	'R/W	/R/W														R	R/V
r res	et O	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
в	Bit pos	sition	F	₹/W			Bit	nan	ne												Fun	ctio	n									
3	31			_	1	ClearRemote This bit is used to clear (0) the device remote wakeup enable setting. WakeupEnable When this bit is set (1), the device remote wakeup enable setting can be cleared (CRWE) (0). Writing 0b has no effect. 0b is always output when this field is read.																										
З	30 to	18		_				_			Re	serv	ved	(Be	e sur	e to	writ	e "0	".)													
1	17			_	I		rCur cate IC)				wh bit 1	en t whe	the en it rerC	OCI t ha: Curre	l fiel s be ent s	d ha en s statu		nang 1). Is cł	ged. nang	Thi ged.	s bit									is s b to	`	'
1	16		F	1			al Po usCh		je(LF	PSC)		ice	Loc	alPo	owe	rSta	tus i	s no	ot su	ippc	orted	l, 0b	is a	lwa	ys re	ead	from	n this	s bit			
			v	V		Set0 SGI		alPo	ower		This bit is used to set the power on to all ports during global power mode. When this bit is set (1), power is set to on for all ports. In power mode for each port, the power is set to on only at ports for which the PortPowerControlMask bit has been cleared (0).																					
1	15		F	8	١	Nak	iceR eup WE)	Ena			Re 1 0 Wł sta	mot Co Co nen tus	teW nne nne this trar	/ake ect S ect S bit	Up Statu Statu is so ons	ever us C us C et (1	nt. han han) an	ge is ge is d a	s Re s no Cor	emo t Re nnec	te W emot etSta	′ake e W tus(up s 'ake Chai	ouro up s nge	ce. ouro eve	ce. nt ha	incl as o Res	ccur	red,	the	USI	З
			v	V	١	Nak	Rem œup WE)	Ena	ble		Wł	nen	this	bit		et (1	,					eWa	akeu	ıpEr	nable	e bit	can	be	set	(1).		
1	4 to	2		-				-			Re	serv	ved	(Be	e sur	e to	wri	e "0	".)													
1				_	I		rCur cator I)		t		This bit reports overcurrent status during global overcurrent detection mode. 1: Overcurrent status at port 0: Normal status at port When overcurrents are reported for individual ports, this bit is fixed to 0b.																					
C)		F	1		Loca		wer	Statu	IS	Sir	ice	Loc	alPo	owe	rSta	tus i	s no	ot su	ippc	orted	l, 0b	is a	lwa	ys re	ead	from	n this	s bit	•		
			V	V		Clea CG		bal	Pow	ower This bit is used to set the power off to all ports during global power mode. When this bit is set (1), power is set to off for all ports. In power mode for each port, the power is set to off only for ports for which the PortPowerControlMask bit has been cleared (0).																						

(22) HcRhPortStatus1/2 Register (Offset 54H / 58H)

31 30 2	9 28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	0
ad																				LSDA	PPS				PRS	POCI	PSS	
rite									PRSC	OCIC	PSSC	PESC	csc							СРР	SPP				SPR	CSS	SPS	
W R									R/WR/WR/WR/WR/W											WR/								
reset 0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 () (
Bit position	R/W	'		Bit	nam	ne												Fun	ctio	n								
31 to 21	-				_			R	lese	rveo	d (Be	e sui	re to	writ	te "0	".)												
20	_	5	Port Statu (PRS	is C		ge		т	1: Po 0: Po his t	ort r ort F oit is	reset Rese s set	t has et St (1)	s bee atus whe	en c has n a	omp s not 10 r	lete cha ns h	d. ange ardv	ed. vare	e res	set h	as b	een	con	nple	eted.			
19	_	I	Over ndic (OCI	ate					This bit is set (1) when overcurrent status has been detected at a port.1: OverCurrent status has changed.0: OverCurrent status has not changed.This bit is cleared (0) when 1b is set to it by the driver (HCD).																			
18	_	5	Port Statu (PSS	us C				 This bit indicates that a RESUME sequence has been completed. 1: RESUME has been completed. 0: Port Suspend Status has not changed. This bit is set (1) when all RESUME processing by hardware has been completed. This bit is cleared (0) when 1b is set to it by the driver (HCD). 																				
17	_	5	Port Statu (PES	ıs C		ge		T tr o	1: Pl 0: Pl his t ansi verc	ES I ES I bit is tion	has has s set ed fi ent, c	beer not ((1) rom disco	n ch char in co ena onne	ange nged onjui bled ectio	ed (l l. nctio l to o n, p	PES on w disal	i clea rith v bled r off	arec vher due , a b	d). n the e to a pubb	e sta a ha Ile, c		of a tre e erro	ever or, P	nt su PES	uch a	as ar	n ed (0)	
16	_	5	Conr Statu (CSC	ıs C		ge		 This bit is cleared (0) when 1b is set to it by the driver (HCD). This bit indicates that CCS has changed. Current Connect Status has changed. Current Connect Status has not changed. This bit is set (1) when CCS changes (by connection or disconnection). If a port reset request, a port suspend request, or a port enable request is issued during disconnection, this bit is set (1) such that the driver re-evaluates the device connection check. This bit is cleared (0) when 1b is set to it by the driver (HCD).																				
15 to 10										rvor	d (Be	2 6111	e to	writ	to "C	" \												

(2/3)

Bit position	R/W	Bit name	Function
9	R	Low Speed Device Attached (LSDA)	This bit indicates the speed of the device connected to a port.1: Low-speed device is connected.0: Full-speed device is connected.This status bit is valid only when CCS has been set.
	W	Clear Port Power (CPP)	This bit is used to turn off port power. Port power is turned off by writing 1b to this bit. Writing 0b has no effect.
8	R	Port Power Status (PPS)	This bit reflects the power supply status of a port. 1: Port power on 0: Port power off How to control port power differs according to the power switch time value.
	W	Set Port Power (SPP)	This bit is used to turn port power on during power control for each port. Port power is turned on by writing 1b to this bit. Writing 0b has no effect.
7 to 5	-	_	Reserved (Be sure to write "0".)
4	R	Port Reset Status (PRS)	This bit indicates that a reset is being issued for a downstream port. 1: Port reset in progress 0: Port reset not in progress When a 10 ms port reset operation is completed, this bit is cleared (0) while PRS0 is being set. This bit cannot be set when CSC has been cleared (0) and a device is not connected.
	W	Set Port Reset (SPR)	This bit is used to issue a port reset for a downstream port. When 1b is written to this bit, a 10 ms port reset operation is started. If a value is written to this bit after CCS has been cleared (0), CSC is set and that an attempt was made to reset a disconnected port is reported to the driver. Writing 0b has no effect.
3	R	Port Over Current Indicator (POCI)	This bit indicates that overcurrent status has occurred at a downstream port. 1: Overcurrent status at port 0: Normal status at port
	W	Clear Port Suspend (CPS)	This bit is used to end suspend status and start a resume sequence. When 1b is written to this bit, a resume sequence is started. Writing 0b has no effect. Resume is started only when PSS has been set.
2	R	Port Suspend Status (PSS)	 This bit indicates that the port status is suspend, or during a resume sequence. 1: Port status is suspended. 0: Port status is normal transfer. The port status cannot be set if the CCS bit has been cleared (0) and the device i not connected. The port is set by writing to the SPS bit. This bit is cleared (0) when the resume operation ends, the port reset operation ends, or the status transitions to USB RESUME.
	W	Set Port Suspend (SPS)	This bit is used to transition the port status to suspend. When 1b is written to this bit, the port status transitions to suspend. Writing 0b has no effect. When 1b is written to this bit, the port status transitions to suspend. If a value is written to this bit after CCS has been cleared (0), CSC is set and that an attempt was made to suspend a disconnected port is reported to the driver.

Bit position	R/W	Bit name	Function
1	R Port Enable Statu (PES)		 This bit indicates whether the port status is enable or disable. 1: Port status is enable. 0: Port status is disable. This bit cannot be set for an unconnected device for which the CCS bit has been cleared (0). The port status transitions to enable when the port reset operation ends. This bit is cleared (0) automatically by hardware when an overcurrent status, disconnection, power off, a bubble, or an error is detected.
	W Set Port Enable (SPE)		This bit is used to set (1) the PES bit. Writing 0b has no effect. Use PortReset to transition the port status. Use of the SePortEnable bit to transition the port status to enable is supported under the OHCI standard but no under the USB standard, so it is not supported in this host controller.
0	R	Current Connect Status (CCS)	This bit reflects the current connection status of a downstream port. 1: Device is connected. 0: Device is not connected.
	W	Clear Port Enable (CPE)	This bit is used to clear (0) the PES bit. Writing 1b to this bit sets the port to disabled status. Writing 0b has no effect.

2.3.4 Interrupts from USB host controller

In the USB host controller, interrupts from the OHCI host controller are merged and are reported to the system as two interrupts.

Interrupt Report Signal to System	Interrupt Report Signal Generated by OHCI Host Controller
INTUSBH0	INTA, SMMI, or PME
INTUSBH1	РМЕ

Table 2-6. Interrupts from USB Host Controller

The details of each interrupt are as follows.

(1) INTA interrupt, SMMI interrupt

(a) Interrupt reporting path

The OHCI host controller reports either an INTA interrupt or an SMMI interrupt to the system, according to the value set to the IR bit of the HcControl register, one of the OHCI operational registers. When the IR bit of the HcControl register is initialized, an INTA interrupt is selected immediately after the reset as the reporting path.

There are no differences in interrupt generating sources between INTA and SMMI, except for an OwnershipChange.

IR Bit of HcControl Register	Interrupt Report Signal
0	INTA (default value)
1	SMMI

Table 2-7. INTA and SMMI Interrupt Reporting Paths

In order to use INTA and SMMI interrupts, the inta_en and int_smmi_en bits of the PCI interrupt control register, one of the PCI host bridge registers, must be set (1).

(b) Interrupt sources

Interrupts defined by the OpenHCI standard are supported. Interrupt sources to be reported to the system are set to the HcInterruptEnable register and are reported via the interrupt path determined by the IR bit.

The interrupts sources are shown below.

Table 2-8.	INTA and	SMMI Interru	pt Sources
------------	----------	--------------	------------

Interrupt Source	Description								
Scheduling Overrun	Interrupt indicates that a USB scheduling overrun has occurred in the frame.								
Writeback DoneHead	Interrupt indicates that the host controller has completed TD and a writeback has occurred.								
Start Of Frame	Interrupt indicates that HccaFmNumber was updated at the start of the frame.								
Resume Detected	Interrupt indicates that a resume signal was detected from a USB-connected device.								
Unrecoverable Error	Interrupt indicates that an error not related to USB (PCI abort) was detected.								
Frame Number Overflow	Interrupt indicates that bit 15 of HcFmNumber has changed from 0 to 1 or from 1 to 0.								
Root Hub Status Change	Interrupt indicates that the HcRhStatus or HcRhPortStatus setting has changed. This is divided into the following specific events.								
	OverCurrentIndicateChange Indicates that overcurrent has occurred.								
	Connect Status Change Indicates that connection or disconnection has occurred in the USB bus.								
	Port EnableStatusChange Indicates that port has transitioned to disable status by a USB error.								
	Port Suspend Status Change Indicates that resume sequence has ended.								
	Port Reset Status Change Indicates that USB reset has ended.								
Ownership Change	Interrupt indicates that an ownership request has been issued. This is reported only to SMMI.								

(2) PME interrupt

PME interrupt is an interrupt signal used for power management, and is used to report to the system a change in the USB bus while there is no PCLK.

The following lists whether events and interrupts that occur in the USB bus are supported.

Event	Interrupt Occurrence
Over Current Indicate	Does not occur.
Connect	Occurs.
Disconnect	Occurs.
Resume (RemoteWakeUp)	Occurs.

Table 2-9.	PME	Interrupt	Sources
------------	-----	-----------	---------

To use a PME interrupt, the PME enable bit of the Power_Management_Control/Status register (one of the PCI configuration registers) and the int_pme_en bit of the PCI interrupt control register (one of the PCI host bridge registers) must be set (1).

CHAPTER 3 USB FUNCTION CONTROLLER

3.1 Overview

The USB function controller (USBF) uses a token based protocol to transfer data to and from external host devices via the polling method.

It complies with the Universal Serial Bus Specification and has the following features.

- O Supports 12 Mbps (full-speed) transfer.
- O Equipped with a one-channel upstream port.
- O Incorporates the following transfer endpoints.

Endpoint	FIFO Size (Bytes)	Transfer Type	Remark
EP0	64	Control Read/Write	
EP1	64 × 2	Bulk In	Double buffer configuration
EP2	64 × 2	Bulk Out	Double buffer configuration
EP7	8	Interrupt	

Table 3-1. USB Function Controller Endpoint Configuration

O Can perform DMA transfer (two-cycle single transfer mode) of bulk in or bulk out data.

3.2 CPU Memory Space

The CPU memory space is divided for use as described below. Do not access addresses that are not described as areas and are located between divided areas.

Base Address	Offset Address	Area
Address selected via CSZ5	4000H to 47FFH	EPC register area
	4800H to 480FH	Bridge register area
	4900H to 491FH	DMA register area
	4A00H	Bulk in register area
	4B00H	Bulk out register area
	4810H to 48FFH, 4920H to 49FFH, 4A01H to 4AFFH, 4B01H to 7FFFH	Reserved (access prohibited)

Table 3-2. CPU Memory Space Division

3.3 Requests

The USB includes commands called "requests" that are used to transfer requests from the host device to a function device to make the function device respond.

Requests are received at the setup stage during a control transfer, and most requests can be processed automatically by the hardware of the USB function controller (USBF).

3.3.1 Automatic requests

(1) Decode

The following tables show the request formats and correspondence between requests and decoded values.

Offset	Field Name	
0	bmRequestType	
1	bRequest	
2	wValue	Lower side
3		Higher side
4	wIndex	Lower side
5		Higher side
6	wLength	Lower side
7		Higher side

 Table 3-3.
 Request Format

Offset			De	coded Val	ue					Response	9	Data
	bmRequestType	bRequest	wVa	alue	wIn	dex	wLe	ength	Df	Ad	Cf	Stage
Request	0	1	3	2	5	4	7	6				
GET_INTERFACE	81H	0AH	00H	00H	00H	0nH	00H	01H	STALL	STALL	ACK NAK	0
GET_CONFIGURATION	80H	08H	00H	00H	00H	00H	00H	01H	ACK NAK	ACK NAK	ACK NAK	0
GET_DESCRIPTOR Device	80H	06H	01H	00H	00H	00H	ххн	XXH ^{Note 1}	ACK NAK	ACK NAK	ACK NAK	0
GET_DESCRIPTOR Configuration	80H	06H	02H	00H	00H	00H	ххн	XXH ^{Note 1}	ACK NAK	ACK NAK	ACK NAK	0
GET_STATUS Device	80H	00H	00H	00H	00H	00H	00H	02H	ACK NAK	ACK NAK	ACK NAK	0
GET_STATUS Endpoint 0	82H	00H	00H	00H	00H	00H 80H	00H	02H	ACK NAK	ACK NAK	ACK NAK	0
GET_STATUS Endpoint X	82H	00H	00H	00H	00H	\$\$H	00H	02H	STALL	STALL	ACK NAK	0
CLEAR_FEATURE Device ^{Note 2}	00H	01H	00H	01H	00H	00H	00H	00H	ACK NAK	ACK NAK	ACK NAK	×
CLEAR_FEATURE Endpoint 0 ^{Note 2}	02H	01H	00H	00H	00H	00H 80H	00H	00H	ACK NAK	ACK NAK	ACK NAK	×
CLEAR_FEATURE Endpoint X ^{Note 2}	02H	01H	00H	00H	00H	\$\$H	00H	00H	STALL	STALL	ACK NAK	×
SET_FEATURE Device ^{Note 3}	00H	03H	00H	01H	00H	00H	00H	00H	ACK NAK	ACK NAK	ACK NAK	×
SET_FEATURE Endpoint 0 ^{Note 3}	02H	03H	00H	00H	00H	00H 80H	00H	00H	ACK NAK	ACK NAK	ACK NAK	×
SET_FEATURE Endpoint X ^{Note 3}	02H	03H	00H	00H	00H	\$\$H	00H	00H	STALL	STALL	ACK NAK	×
SET_INTERFACE	01H	0BH	00H	0#H	00H	0?H	00H	00H	STALL	STALL	ACK NAK	×
SET_CONFIGURATION ^{NOIE 4}	00H	09H	00H	00H 01H	00H	00H	00H	00H	ACK NAK	ACK NAK	ACK NAK	×
SET_ADDRESS	00H	05H	ХХН	ХХН	00H	00H	00H	00H	ACK NAK	ACK NAK	ACK NAK	×

- **Notes 1.** If the wLength value is less than the prepared value, the wLength value is returned; if the wLength value is greater than the prepared value, the prepared value is returned.
 - **2.** The CLEAR_FEATURE request clears (0) UF0 device status register L (UF0DSTL) and UF0 EPn status register L (UF0EnSL) (n = 0 to 2, 7) when ACK is received in the status stage.

- **Notes 3.** The SET_FEATURE request sets (1) the UF0 device status register L (UF0DSTL) and UF0 EPn status register L (UF0EnSL) (n = 0 to 2, 7) when ACK is received in the status stage. If the E0HALT bit of the UF0E0SL register is set, a STALL response is made in the status stage or data stage of control transfer for a request other than the GET_STATUS Endpoint0 request, SET_FEATURE Endpoint0 request, and a request generated by the CPUDEC interrupt request, until the CLEAR_FEATURE Endpoint0 request is received. A STALL response to an unsupported request does not set the E0HALT bit of the UF0E0SL register to 1, and the STALL response is cleared (0) as soon as the next SETUP token has been received.
 - 4. If the wValue is not the default value, an automatic STALL response is made.
 - Cautions 1. The sequence of control transfer defined by the Universal Serial Bus Specification is not satisfied under the following conditions. The operation is not guaranteed under these conditions.
 - If an IN/OUT token is suddenly received without a SETUP stage
 - If DATA PID1 is sent in the data phase of the SETUP stage
 - If a token of 128 addresses or more is received
 - If the request data transmitted in the SETUP stage is of less than 8 bytes
 - 2. An ACK response is made even when the host transmits data other than a Null packet in the status stage.
 - 3. If the wLength value is 00H during control transfer (read) of firmware processing, a Null packet is automatically transmitted for control transfer (without data). The firmware request does not automatically transmit a Null packet.
- **Remarks 1.** O: Data stage is provided
 - Data stage is not provided
 - 2. Df: Default state, Ad: Addressed state, Cf: Configured state
 - **3.** n = 0 to 4

×:

It is determined by the setting of the UF0 active interface number register (UF0AIFN) whether a request with Interface number 1 to 4 is correctly responded to, depending on whether the Interface number of the target is valid or not.

- 4. \$\$: Valid endpoint number including transfer direction
 The valid endpoint is determined by the currently set Alternate Setting number (see 3.4.4 (36) UF0 active alternate setting register (UF0AAS), (38) UF0 endpoint 1 interface mapping register (UF0E1IM) to (40) UF0 endpoint 7 interface mapping register (UF0E7IM)).
- 5. ? and #: Value transmitted from host (?: Interface numbers, #: Alternate Setting)
- It is determined by the UF0 active interface number register (UF0AIFN) and UF0 active alternate setting register (UF0AAS) whether an Alternate Setting request corresponding to each Interface number is correctly responded to or not, depending on whether the Interface number and Alternate Setting of the target are valid or not.

(2) Processing

The processing of an automatic request in the Default state, Addressed state, and Configured state is described below.

- Default state: State in which an operation is performed with the Default address
- Addressed state: State after an address has been allocated
- Configured state: State after SET_CONFIGURATION wValue = 1 has been correctly received

(a) CLEAR_FEATURE request

A STALL response is made in the status stage if the CLEAR_FEATURE request cannot be cleared, if FEATURE does not exist, or if the target is an interface or an endpoint that does not exist. A STALL response is also made if the wLength value is other than 0.

- Default state: The correct response is made when the CLEAR_FEATURE request has been received only if the target is a device or a request for Endpoint0; otherwise a STALL response is made in the status stage.
- Addressed state: The correct response is made when the CLEAR_FEATURE request has been received only if the target is a device or a request for Endpoint0; otherwise a STALL response is made in the status stage.
- Configured state: The correct response is made when the CLEAR_FEATURE request has been received only if the target is a device or a request for an endpoint that exists; otherwise a STALL response is made in the status stage.

When the CLEAR_FEATURE request has been correctly processed, the corresponding bit of the UF0 CLR request register (UF0CLR) is set to 1, the EnHALT bit of the UF0 EPn status register L (UF0EnSL) is cleared to 0, and an interrupt is issued (n = 0 to 2, 7). If the CLEAR_FEATURE request is received when the subject is an endpoint, the toggle bit (that controls switching between DATA0 and DATA1) of the corresponding endpoint is always re-set to DATA0.

(b) GET_CONFIGURATION request

A STALL response is made in the data stage if any of wValue, wIndex, or wLength is other than the values shown in Table 3-4.

- Default state: The value stored in the UF0 configuration register (UF0CNF) is returned when the GET_CONFIGURATION request has been received.
- Addressed state: The value stored in the UF0CNF register is returned when the GET_CONFIGURATION request has been received.
- Configured state: The value stored in the UF0CNF register is returned when the GET_CONFIGURATION request has been received.

(c) GET_DESCRIPTOR request

If the subject descriptor has a length that is a multiple of wMaxPacketSize, a Null packet is returned to indicate the end of the data stage. If the length of the descriptor at this time is less than the wLength value, the entire descriptor is returned; if the length of the descriptor is greater than the wLength value, the descriptor up to the wLength value is returned.

- Default state: The value stored in UF0 device descriptor register n (UF0DDn) and UF0 configuration/interface/endpoint descriptor register m (UF0CIEm) is returned (n = 0 to 17, m = 0 to 255) when the GET_DESCRIPTOR request has been received.
- Addressed state: The value stored in the UF0DDn register and UF0CIEm register is returned when the GET_DESCRIPTOR request has been received.
- Configured state: The value stored in the UF0DDn register and UF0CIEm register is returned when the GET_DESCRIPTOR request has been received.

A descriptor of up to 256 bytes can be stored in the UF0CIEm register. To return a descriptor of more than 256 bytes, set the CDCGDST bit of the UF0MODC register to 1 and process the GET_DESCRIPTOR request by firmware.

Store the value of the total number of bytes of the descriptor set by the UF0CIEm register -1 in the UF0 descriptor length register (UF0DSCL). The transfer data is controlled by the value of this data +1 and wLength.

(d) GET_INTERFACE request

If either of wValue and wLength is other than that shown in Table 3-4, or if wIndex is other than that set by the UF0 active interface number register (UF0AIFN), a STALL response is made in the data stage.

- Default state: A STALL response is made in the data stage when the GET_INTERFACE request has been received.
- Addressed state: A STALL response is made in the data stage when the GET_INTERFACE request has been received.
- Configured state: The value stored in the UF0 interface n register (UF0IFn) corresponding to the wIndex value is returned (n = 0 to 4) when the GET_INTERFACE request has been received.

(e) GET_STATUS request

A STALL response is made in the data stage if any of wValue, wIndex, or wLength is other than the values shown in Table 3-4. A STALL response is also made in the data stage if the target is an interface or an endpoint that does not exist.

- Default state: The value stored in the target status register^{Note} is returned only when the GET_STATUS request has been received and when the request is for a device or Endpoint0; otherwise a STALL response is made in the data stage.
- Addressed state: The value stored in the target status register^{Note} is returned only when the GET_STATUS request has been received and when the request is for a device or Endpoint0; otherwise a STALL response is made in the data stage.
- Configured state: The value stored in the target status register^{Note} is returned only when the GET_STATUS request has been received and when the request is for a device or an endpoint that exists; otherwise a STALL response is made in the data stage.
 - **Note** The target status register is as follows.
 - If the target is a device: UF0 device status register L (UF0DSTL)
 - If the target is endpoint 0: UF0 EP0 status register L (UF0E0SL)
 - If the target is endpoint n: UF0 EPn status register L (UF0EnSL) (n = 1, 2, 7)

(f) SET_ADDRESS request

A STALL response is made in the status stage if either of windex or wLength is other than the values shown in Table 3-4. A STALL response is also made if the specified device address is greater than 127.

- Default state: The device enters the Addressed state and changes the USB Address value to be input to SIE into a specified address value if the specified address is other than 0 when the SET_ADDRESS request has been received. If the specified address is 0, the device remains in the Default state.
- Addressed state: The device enters the Default state and returns the USB Address value to be input to SIE to the default address if the specified address is 0 when the SET_ADDRESS request has been received. If the specified address is other than 0, the device remains in the Addressed state, and changes the USB Address value to be input to SIE into a specified new address value.
- Configured state: The device remains in the Configured state and returns the USB Address value to be input to SIE to the default address if the specified address is 0 when the SET_ADDRESS request has been received. In this case, the endpoints other than endpoint 0 remain valid, and control transfer (IN), control transfer (OUT), bulk transfer and interrupt transfer for an endpoint other than endpoint 0 are also acknowledged. If the specified address is other than 0, the device remains in the Configured state and changes the USB Address value to be input to SIE into a specified new address value.

(g) SET_CONFIGURATION request

If any of wValue, wIndex, or wLength is other than the values shown in Table 3-4, a STALL response is made in the status stage.

- Default state: The CONF bit of the UF0 mode status register (UF0MODS) is set to 1 and 1 is set to the UF0 configuration register (UF0CNF) If the specified configuration value is 1 when the SET_CONFIGURATION request has been received. If the specified configuration value is 0, the CONF bit of the UF0MODS register is cleared to 0 and 0 is set to the UF0CNF register. In other words, the device skips the Addressed state and moves to the Configured state in which it responds to the Default address.
- Addressed state: The CONF bit of the UF0MODS register is set to 1 and 1 is set to the UF0CNF register and the device enters the Configured state if the specified configuration value is 1 when the SET_CONFIGURATION request has been received. If the specified configuration value is 0, the device remains in the Addressed state.
- Configured state: The CONF bit of the UF0MODS register is cleared to 0 and 0 is set to the UF0CNF register and the device returns to the Addressed state if the specified configuration value is 0 when the SET_CONFIGURATION request has been received. If the specified configuration value is 1, the device remains in the Configured state.

If the SET_CONFIGURATION request has been correctly processed, the target bit of the UF0 SET request register (UF0SET) is set to 1, and an interrupt is issued. All Halt Features are cleared after the SET_CONFIGURATION request has been completed even if the specified configuration value is the same as the current configuration value. If the SET_CONFIGURATION request has been correctly processed, the data toggle of all endpoints is always initialized to DATA0 again (it is defined that the default status, Alternate Setting 0, is set from when the SET_CONFIGURATION request is received to when the SET_INTERFACE request is received).

(h) SET_FEATURE request

A STALL response is made in the status stage if the target is an interface or an endpoint that does not exist. A STALL response is also made if the wLength value is other than 0.

- Default state: The correct response is made when the SET_FEATURE request has been received, only if the request is for a device or Endpoint0; otherwise a STALL response is made in the status stage.
- Addressed state: The correct response is made when the SET_FEATURE request has been received, only if the request is for a device or Endpoint0; otherwise a STALL response is made in the status stage.
- Configured state: The correct response is made when the SET_FEATURE request has been received, only if the request is for a device or an endpoint that exists; otherwise a STALL response is made in the status stage.

When the SET_FEATURE request has been correctly processed, the target bit of the UF0 SET request register (UF0SET) and the EnHALT bit of the UF0 EPn status register L (UF0EnSL) are set to 1, and an interrupt is issued (n = 0 to 2, 7).

(i) SET_INTERFACE request

If wLength is other than the values shown in Table 3-4, if wIndex is other than the value set to the UF0 active interface number register (UF0AIFN), or if wValue is other than the value set to the UF0 active alternate setting register (UF0AAS), a STALL response is made in the status stage.

- Default state: A STALL response is made in the status stage when the SET_INTERFACE request has been received.
- Addressed state: A STALL response is made in the status stage when the SET_INTERFACE request
 has been received.
- Configured state: Null packet is transmitted in the status stage when the SET_INTERFACE request has been received.

When the SET_INTERFACE request is processed normally, interrupts are issued.

All the Halt Features of the endpoint linked to the target Interface are cleared (0) after the SET_INTERFACE request has been cleared. The data toggle of all the endpoints related to the target Interface number is always initialized again to DATA0. When the currently selected Alternate Setting is to be changed by correctly processing the SET_INTERFACE request, the FIFO of the endpoint that is affected is completely cleared (0), and all the related interrupt sources are also initialized.

When the SET_INTERFACE request has been completed, the FIFO of all the endpoints linked to the target Interface are cleared (0). At the same time, Halt Feature and Data PID are initialized, and the related UF0 INT status n register (UF0ISn) is cleared to 0 (n = 0 to 4). (Only Halt Feature and Data PID are cleared (0) when the SET_CONFIGURATION request has been completed.)

If the target Endpoint is not supported by the SET_INTERFACE request during DMA transfer, the DMA request signal is immediately deasserted, and the FIFO of the Endpoint that has been linked when the SET_INTERFACE request has been completed is completely cleared (0). As a result of this clearing (0) of the FIFO, data transferred by DMA is not correctly processed.

3.3.2 Other requests

(1) Response and processing

The following table shows how other requests are responded to and processed.

Table 3-5. Response and Processing of Other Requests

Request	Response and Processing
GET_DESCRIPTOR String	Generation of CPUDEC interrupt request
GET_STATUS Interface	Automatic STALL response
CLEAR_FEATURE Interface	Automatic STALL response
SET_FEATURE Interface	Automatic STALL response
all SET_DESCRIPTOR	Generation of CPUDEC interrupt request
All other requests	Generation of CPUDEC interrupt request

3.4 Registers

The USB function controller (USBF) is equipped with the following registers. Since it is provided with a bus interface of an 8-bit width, only the lower 8 bits are used for bus access (32 bits) from the CPU. Consequently, registers are assigned at an interval of four addresses.

Since the registers are freely mapped by CSZ5, the CSZ5 start address is set as the base address. (Register address = base address + offset address)

Base Address	Offset Address	Description	Symbol	R/W	Access Size	Bit Size	Reset
CSZ5 start	4800H	MEMC Bus Bridge Interrupt Control	MEMC_INT	R/W	32bit	8bit	00H
address	4804H	MEMC Bus Bridge Interrupt Enable	MEMC_INTEN	R/W	32bit	8bit	00H
	4808H	EPC Macro Control	EPC_CTR	R/W	32bit	8bit	00H

Table 3-6. Function Bridge Register

Base Address	Offset Address	Description	Symbol	R/W	Access Size	Bit Size	Reset
CSZ5 start	4900H	Endpoint 1 DMA Control1	EP1_DCR1	R/W	32bit	8bit	00H
address	4904H	Endpoint 1 DMA Control2 Bit [7:0]	EP1L_DCR2	R/W	32bit	8bit	00H
	4908H	Endpoint 1 DMA Control2 Bit [15:8]	EP1M_DCR2	R/W	32bit	8bit	00H
	490CH	Endpoint 1 DMA Control2 Bit [23:16]	EP1H_DCR2	R/W	32bit	8bit	00H
	4910H	Endpoint 2 DMA Control1	EP2_DCR1	R/W	32bit	8bit	00H
	4914H	Endpoint 2 DMA Control2 Bit [7:0]	EP2L_DCR2	R/W	32bit	8bit	00H
	4918H	Endpoint 2 DMA Control2 Bit [15:8]	EP2M_DCR2	R/W	32bit	8bit	00H
	491CH	Endpoint 2 DMA Control2 Bit [23:16]	EP2H_DCR2	R/W	32bit	8bit	00H

Table 3-7. DMA Register

Table 3-8. Bulk in/Bulk out Register

Base Address	Offset Address	Description	Symbol	R/W	Access Size	Bit Size	Reset
CSZ5 start	4A00H	BulkIn1 for DMA transfer	EP1_BULK_IN	W	32bit	8bit	00H
address	4B00H	BulkOut1 for DMA transfer	EP2_BULK_OUT	R	32bit	8bit	00H

							(1/2)
Base Address	Offset Address	Description	Symbol	R/W	Access Size	Bit Size	Reset
CSZ5 start	4000H	EP0NAK (EP0 NAK Control)	UF0E0N	R/W	32bit	8bit	00H
address	4004H	EP0NAKALL (EP0NAKALL EP0 NAK Control)	UF0E0NA	R/W	32bit	8bit	00H
	4008H	EPNAK (EP except EP0 NAK Control)	UF0EN	R/W	32bit	8bit	00H
	400CH	EPNAK Mask	UF0ENM	R/W	32bit	8bit	00H
	4010H	SNDSIE	UF0SDS	R/W	32bit	8bit	00H
	4014H	CLR Request	UF0CLR	R	32bit	8bit	00H
	4018H	SET Request	UF0SET	R	32bit	8bit	00H
	401CH	EP Status 0 (EP FIFO Status)	UF0EPS0	R	32bit	8bit	00H
	4020H	EP Status 1 (EP FIFO and USB bus Status)	UF0EPS1	R	32bit	8bit	00H
	4024H	EP Status 2 (EP Halt Status)	UF0EPS2	R	32bit	8bit	00H
	4028H to 403CH	Reserved		-	_	_	-
	4040H	INT Status 0	UF0IS0	R	32bit	8bit	00H
	4044H	INT Status 1	UF0IS1	R	32bit	8bit	00H
	4048H	INT Status 2	UF0IS2	R	32bit	8bit	00H
	404CH	INT Status 3	UF0IS3	R	32bit	8bit	00H
	4050H	INT Status 4	UF0IS4	R	32bit	8bit	00H
	4054H to 4058H	Reserved		-	-	-	-
	405CH	INT Mask 0	UF0IM0	R/W	32bit	8bit	00H
	4060H	INT Mask 1	UF0IM1	R/W	32bit	8bit	00H
	4064H	INT Mask 2	UF0IM2	R/W	32bit	8bit	00H
	4068H	INT Mask 3	UF0IM3	R/W	32bit	8bit	00H
	406CH	INT Mask 4	UF0IM4	R/W	32bit	8bit	00H
	4070H to 4074H	Reserved		-	_	_	-
	4078H	INT Clear 0	UF0IC0	W	32bit	8bit	FFH
	407CH	INT Clear 1	UF0IC1	W	32bit	8bit	FFH
	4080H	INT Clear 2	UF0IC2	W	32bit	8bit	FFH
	4084H	INT Clear 3	UF0IC3	W	32bit	8bit	FFH
	4088H	INT Clear 4	UF0IC4	w	32bit	8bit	FFH
	408CH to 4094H	Reserved		_	-	_	-
	4098H	INT & DMARQ	UF0IDR	R/W	32bit	8bit	00H
	409CH	DMA Status 0	UF0DMS0	R	32bit	8bit	00H
	40A0H	DMA Status 1	UF0DMS1	R	32bit	8bit	00H
	40A4H to 40BCH	Reserved		_	-	_	-
	40C0H	FIFO Clear 0	UF0FIC0	w	32bit	8bit	00H
	40C4H	FIFO Clear 1	UF0FIC1	w	32bit	8bit	00H
	40C8H to 40D0H	Reserved		-	_	-	-

Table 3-9. EPC Control Register

	T	1		1	[1	(2/2)
Base Address	Offset Address	Description	Symbol	R/W	Access Size	Bit Size	Reset
CSZ5 start	40D4H	Data End	UF0DEND	w	32bit	8bit	00H
address	40D8H	Reserved		-	-	-	-
	40DCH	GPR (Macro and USB I/F Control)	UF0GPR	W	32bit	8bit	00H
	40E0H to 40E4H	Reserved		-	_	-	-
	40E8H	Mode Control Reg (CPUDEC)	UF0MODC	R/W	32bit	8bit	00H
	40ECH	Reserved		-	_	-	-
	40F0H	Mode Status Reg (Configuration)	UF0MODS	R	32bit	8bit	00H
	40F4H to 40FCH	Reserved		-	_	-	-
	4100H	Active Interface No.	UF0AIFN	R/W	32bit	8bit	00H
	4104H	Active Alternate Setting	UF0AAS	R/W	32bit	8bit	00H
	4108H	Alternate Setting Status	UF0ASS	R	32bit	8bit	00H
	410CH	EP1 Interface Mapping	UF0E1IM	R/W	32bit	8bit	00H
	4110H	EP2 Interface Mapping	UF0E2IM	R/W	32bit	8bit	00H
	4114H to 4120H	Reserved		-	-	-	-
	4124H	EP7 Interface Mapping	UF0E7IM	R/W	32bit	8bit	00H
	4128H to 41FCH	Reserved		-	_	-	-

Table 3-9. EPC Control Register

Table 3-10. EPC Data Hold Register

Base Address	Offset Address	Description	Symbol	R/W	Access Size	Bit Size	Reset
CSZ5 start	4200H	EP0 Read	UF0E0R	R	32bit	8bit	Undefined
address	4204H	EP0 Length	UF0E0L	R	32bit	8bit	00H
	4208H	EP0 Setup	UF0E0ST	R	32bit	8bit	00H
	420CH	EP0 Write	UF0E0W	W	32bit	8bit	Undefined
	4210H	BulkOut1 for PIO transfer	UF0BO1	R	32bit	8bit	Undefined
	4214H	BulkOut1 Length	UF0BO1L	R	32bit	8bit	00H
	4218H to 421CH	Reserved			-	_	-
	4220H	BulkIn1 for PIO transfer	UF0BI1	W	32bit	8bit	Undefined
	4224H	Reserved		-	-	-	-
	4228H	Interrupt 1	UF0INT1	W	32bit	8bit	Undefined
	422CH to 4284H	Reserved		-	-	-	_

Base Address	Offset Address	Description	Symbol	R/W	Access Size	Bit Size	Reset
CSZ5 start	4288H	Device Status	UF0DSTL	R/W	32bit	8bit	00H
address	428CH to 4294H	Reserved		-	-	-	-
	4298H	EP0 Status	UF0E0SL	R/W	32bit	8bit	00H
	42A0H	EP1 Status	UF0E1SL	R/W	32bit	8bit	00H
	42A8H	EP2 Status	UF0E2SL	R/W	32bit	8bit	00H
	42ACH to 42CCH	Reserved		-	-	-	-
	42D0H	EP7 Status	UF0E7SL	R/W	32bit	8bit	00H
	42D4H to 42FCH	Reserved		-	-	-	-
	4300H	Address	UF0ADRS	R/W	32bit	8bit	00H
	4304H	Configuration	UF0CNF	R/W	32bit	8bit	00H
	4308H	Interface 0	UF0IF0	R/W	32bit	8bit	00H
	430CH	Interface 1	UF0IF1	R/W	32bit	8bit	00H
	4310H	Interface 2	UF0IF2	R/W	32bit	8bit	00H
	4314H	Interface 3	UF0IF3	R/W	32bit	8bit	00H
	4318H	Interface 4	UF0IF4	R/W	32bit	8bit	00H
	431CH to 433CH	Reserved		-	-	-	-
	4340H	Descriptor Length	UF0DSCL	R/W	32bit	8bit	00H
	4344H to 4388H	Device Descriptor	UF0DD0 to UF0DD17	R/W	32bit	8bit	Undefined
	438CH to 4788H	Configuration Descriptor	UF0CIE0 to UF0CIE255	R/W	32bit	8bit	Undefined
	478CH to	Reserved		-	_	-	-

Table 3-11. EPC Request Data Register

3.4.1 Function bridge registers

(1) MEMC_INT

This register indicates the interrupt source that occurred in the function bridge.

	3	1	6	5	4	3	2	1	0	Offset address	After rese		
MEMC_INT		Reserve	ed	d EPC_ INT1B		Rese	rved	EP2_ ENDINT	EP1_ ENDINT	4800H	0000 0000		
		R		R	R	F	1	RW	RW				
Bit position	В	lit name		Function									
5	EPC_I	NT1B	registe It is cle 0: No	This bit indicates whether there are any interrupts triggered by events in the UF0IS2/3 register. It is cleared (0) by the EPC register. 0: No interrupts 1: Interrupts occurred									
4	EPC_I	NTOB	registe It is cle 0: No	This bit indicates whether there are any interrupts triggered by events in the UF0IS0/1 register. It is cleared (0) by the EPC register. 0: No interrupts 1: Interrupts occurred									
1	EP2_E	NDINT	with ar	error. Thi	. ,	red (0)		nsfer is cor n "1" is writt	•	mally or abno	rmally		
0	EP1_E	NDINT	with ar		s bit is clea	red (0)		nsfer is cor n "1" is writt	•	mally or abno	rmally		

<R>

The condition and the timing when the EP2_ENDINTand EP1_ENDINT bits are set are shown below.

• DMA transfer completed normally

The bits are set (1) after the EPC register deasserts DMAREQ, and the buffers in the bridge empties.

- DMA transfer completed abnormally with an error
 - (a) The bits are set (1) after the EPC register asserts DMASTOP, and the buffers in the bridge empties when the EPC register receives a short packet.
 - (b) The bits are set (1) when EPn_TCNT is decremented every transfer to become 0.

(2) MEMC_INTEN

This register sets whether to output interrupts that occurred in the function bridge.

		31	6	5	4	32	1	0	Offset address	After reset
MEMC_INTEN		EPC_EPC_EP2_EP1_ReservedINT1BINT0BReservedENDINTENDINTENENENENEN							4804H	0000 0000
	-	R		RW	RW	R	RW	RW		
Bit position		Bit name				Fi	unction			
5	EPC	EPC_INT1EN This bit sets whether to generate an interrupt when the EPC_INT1B bit is set 1: Outputs interrupt. 0: Does not output interrupt.								
4	EPC	C_INTOEN	1: O	This bit sets whether to generate an interrupt when the EPC_INT0B bit is set. 1: Outputs interrupt. 0: Does not output interrupt.						
1	EP2_ENDINTEN This bit sets whether to generate an interrupt when the EP2_ENDINT bit is set. 1: Outputs interrupt. 0: Does not output interrupt.								ət.	
0	EP1	_ENDINTEN	1: O	utputs inter	0		rrupt when	the EP1_EN	IDINT bit is se	ət.

(3) EPC_CTR

This register controls resetting of the EPC macro.

	31	1	0	Offset address	After reset
EPC_CTR		Reserved	EPC_ RST	4808H	0000 0000H
		R	RW	-	
Bit position	Bit name	Function			
0	EPC_RST	This bit generates a reset to the EPC macro. 0: Releases reset. 1: Issues reset.			

3.4.2 DMA registers

(1) EP1_DCR1

This register is used to set control of DMA transfer of EP1.

		31	6	5	3	2	1	0	Offset address	After res
EP1_DCR1		Rese	rved	Reserv	ved	EP1_ STOPSTA	EP1_ REQSTA	EP1_ DMAEN	4900H	0000 000
		R		R		R	R	RW		
Bit position		Bit name					Function			
2	EP1_STOPSTA			from EPC. 1: Ends DI 0: Ends DI	MA tran MA tran	e status (DMA sfer by negatin sfer by clearing) automatically	g DQBI1MS o g EP1_TCNT \	f the UF0IDR r /alue of the EP	register. P1x_DCR2 reg	
1	EP1_REQSTA			This bit indicates the status of DMA requests (DQBI1MS of UF0IDR register) from EPC. 0: DMA request issued 1: No DMA requests						
0	EP1_DMAEN			0: Masks [1: Enables This bit is cle	DMA ree DMA r eared (0 ansferre	•	when the nun	•	_	_

(2) EP1x_DCR2

This register sets the DMA transfer size of EP1.

	3	31	8	7	0	Offset address	After reset
EP1L_DCR2	2		Reserved	EP1_TCNT[7:0]		4904H	0000 0000H
EP1M_DCR2	2		Reserved	EP1_TCNT[15:8]		4908H	0000 0000H
EP1H DCR2	, [Reserved	EP1_TCNT[23:16]		490CH	0000 0000H
	-		R	RW		400011	
Bit position	В	Bit name		Function			
7 to 0	EP1_T	CNT	The number of bytes to be tran This value is decremented at e. "0", the DMA transfer ends. Cautions 1. Set this bit whe	ach transfer, and when the			eaches
			to the DMAC tra 3. After a forcible	es a 1-origin setting. It is insfer size setting register termination, this is update unter BIN_TCNT within th	r DXB ed to f	3Cn (0 origin) the value at v) + 1". which

(3) EP2_DCR1

This register is used to set control of DMA transfer of EP2.

		31	6	5	3	2	1	0	Offset address	After res			
EP2_DCR1		Reser	ved	Rese	rved	EP2_ STOPSTA	EP2_ REQSTA	EP2_ DMAEN	4910H	0000 000			
		R		R R R RW									
Bit position		Bit name		Function									
2	EP2	_STOPSTA		This bit indicates the status of completion of DMA transfer from EPC. DMA transfer end source 1: Ends DMA transfer by negating DQBO1MS of the UF0IDR register. 0: Ends DMA transfer by clearing EP2_TCNT value to "0". This bit is cleared to 0 automatically the next time "1" is set to EP2_DMAEN.									
1	EP2	_REQSTA	STA This bit indicates the status of DMA requests (DQBO1MS of UF0IDR register) from EPC. 0: DMA request issued 1: No DMA requests										
0	EP2	_DMAEN		0: Masks 1: Enable This bit is c	DMA red s DMA red leared (0 transferre	•	when the nun	•	_				
				Caution	Set val	ues are not gi	aranteed afte	er a forcible te	ermination.				

(4) EP2x_DCR2

This register sets the DMA transfer size of EP2.

		31	8	7	0	Offset address	After reset
EP2L_DCR2	2		Reserved	EP2_TCNT[7:0]		4914H	0000 0000
	. Г		Reserved	EP2 TCNT[15:8]		4918H	0000 0000
EP2M_DCR2	² _		Reserved	EP2_TONT[15.8]		49160	0000 0000
EP2H_DCR2	2		Reserved	EP2_TCNT[23:16]		491CH	0000 0000H
			R	RW			
Bit position		Bit name		Function			
7 to 0	EP2_	TCNT	The number of bytes to be tran This value is decremented at e "0", the DMA transfer ends.				eaches
			to the DMAC tra 3. After a forcible	en EP2_DMAEN = 0. ses a 1-origin setting. It is ansfer size setting registe termination, this is updat punter BOUT_TCNT withir	r DXB ed to	Cn (0 origin) the value at) + 1". which

3.4.3 Bulk in and bulk out registers

(1) EP1_BULK_IN

This register writes bulk in transfer data in DMA mode (see UF0IDR).

	31	8	7	0	Offset address	After rese
EP1_BULK_I	N	Reserved	EP1_BULK_IN		4A00H	0000 0000
		R	RW			
Bit position	Bit name		Function			
7 to 0	EP1_BULK_IN[7:0]	This register writes BULK IN tra When data is written to this reg To use this register, set the add of DMAC.	ister, data is output to the I	EPC m		er DXDAn
		Caution The only supported	DMAC transfer type is to	vo-cy	cle transfer.	

(2) EP2_BULK_OUT

This register reads bulk out transfer data in DMA mode (see UF0IDR).

EP2_BULK_OUT Reserved EP2_BULK_OUT 4B00H 0000 0000 R R R R R Bit position Bit name Function Function 7 to 0 EP2_BULK_OUT[7:0] This register reads BULK_OUT transfer data for DMA transfer. It is used to read the data input from the EPC macro. To use this register, set the address of this register to address setting register DXSAn of DMAC. Caution The only supported DMAC transfer type is two-cycle transfer.		_	31		8	7	0	Offset address	After reset
Bit position Bit name Function 7 to 0 EP2_BULK_OUT[7:0] This register reads BULK_OUT transfer data for DMA transfer. It is used to read the data input from the EPC macro. To use this register, set the address of this register to address setting register DXSAn of DMAC.	EP2_BULK_O	UT		Reserved	4B00H	0000 0000H			
7 to 0 EP2_BULK_OUT[7:0] This register reads BULK_OUT transfer data for DMA transfer. It is used to read the data input from the EPC macro. To use this register, set the address of this register to address setting register DXSAn of DMAC.		-		R		R			
It is used to read the data input from the EPC macro. To use this register, set the address of this register to address setting register DXSAn of DMAC.	Bit position		Bit name			Function			
	7 to 0	EP2_	BULK_OUT[7:0]	It is used to read the data in To use this register, set the of DMAC.	put 1 add	rom the EPC macro. ress of this register to add	ress	5 5	er DXSAn

3.4.4 EPC Control registers

(1) UF0 EP0NAK register (UF0E0N)

This register controls NAK of Endpoint0 (except an automatically executed request).

This register can be read or written in 8-bit units (however, bit 0 can only be read).

It takes five USB clocks to reflect the status on this register after the UF0FIC0 and UF0FIC1 registers have been set. If it is necessary to read the status correctly, therefore, separate a write signal that accesses the UF0FIC0 and UF0FIC1 registers from a read signal that accesses the UF0EPS0, UF0EPS1, UF0EPS2, UF0E0N, and UF0EN registers by at least four USB clocks.

While NAK is being transmitted to Endpoint0 Read and Endpoint2 a write access to the EP0NKR bit is ignored.

7		6	5	4	3	2	1	0	Address	After reset
UF0E0N 0		0	0	۰ ۰	0	0		EPONKW	4000H	00H
		0	0	0	0	0	B/W	R	400011	0011
ŭ		0	0	0	0	0	H/VV	К		
Bit position	E	Bit name					Function			
1	EP	DNKR	reques data. I read by 1: T 0: D Set this some t transm	t). It is aut t is also cle y firmware ransmit NA to not trans s bit to 1 by reason even itting NAK	omatically s eared to 0 b (counter va K. mit NAK (d r firmware v n when US	set to 1 by by hardwa llue = 0). efault valu when data BF is read t is cleare	r hardware w re when the ue). I should not dy for receiv d to 0 by firr	when Endpoin data of the U be received ing data. In t	n automatical nt0 has corred JF0E0R regis from the USE his case, USI bit is also cle	ter has been bus for 3F continues
0	EP	DNKW	automa the dat The da necess the hos EODEL FIFO is EPONA 1: D 0: Th If contri data st	atically exe ta of Endpo ta of the U sary to rewr st could not D bit of the s full. As so KW bit is au to not trans ransmit NA rol transfer	cuted reque pint0 is trans F0E0W reg rite this bit of t receive da UF0DEND pon as the tomatically mit NAK. K (default w enters the t is cleared	est). This smitted an gister is re- even in th ata correct register to EODED b set to 1 a value). status sta to 0 as s	bit is autom nd the host of tained until e case of a dy. To send o 1. This bit t of the UFC tt the same ge while AC pon as the U	tatically clear correctly rece this bit is clear retransmissic a short pack is automatic DEND regist time. K cannot be JF0E0W regi	trolled (excep ed to 0 by ha pives the trans ared. Therefor on request that et, be sure to ally set to 1 w er is set to 1, correctly rece ster is cleare	rdware when smitted data. rre, it is not at is made if set the the the the

Next, the procedure of a SETUP transaction that uses IN/OUT tokens is explained below.

- (a) When IN token is used (except a request automatically executed by hardware)
- Firmware should be used to clear the PROT bit of the UF0IS1 register to 0 after receiving the CPUDEC interrupt and before reading data from the UF0E0ST register. Next, perform processing in accordance with the request and, if it is necessary to return data by an IN token, write data to the UF0E0W register. Confirm that the PROT bit of the UF0IS1 register is 0 after writing has been completed, and set the E0DED bit of the UF0DEND register to 1. The hardware sends out data at the first IN token after the EP0NKW bit has been set to 1. If the PROT bit of the UF0IS1 register is 1, it indicates that a SETUP transaction has occurred again before completion of control transfer. In this case, clear the PROT bit of the UF0IS1 register to 0 by clearing the PROT bit of the UF0IC1 register to 0, and then read data from the UF0E0ST register again. A request received can be read later.
- (b) When OUT token is used (except a request automatically executed by hardware)
 - Firmware should be used to clear the PROT bit of the UF0IS1 register after receiving the CPUDEC interrupt and before reading data from the UF0E0ST register. Confirm that the PROT bit of the UF0IS1 register is 0 before reading data from the UF0E0R register. If the PROT bit is 1, it means that invalid data is retained. Clear the FIFO by firmware (the EP0NKR bit is automatically cleared to 0). If the PROT bit of the UF0E0R register as set. When reading data from the UF0E0R register has been completed (when the counter of the UF0E0R register has been cleared to 0), the hardware automatically clears the EP0NKR bit to 0.

(2) UF0 EP0NAKALL register (UF0E0NA)

Г

This register controls NAK to all the requests of Endpoint0 except a SETUP transaction. It is also valid for automatically executed requests.

This register can be read or written in 8-bit units.

	7	6	5	4	3	2	1	0	Address	After rese			
UF0E0NA	0	0	0	0	0	0	0	EP0NKA	4004H	00H			
	0	0	0	0	0 0		0	R/W					
Bit position	E	Bit name		Function									
0	EP)NKA	(includir 1: Tra 0: Do This reg access t changed access t firmward Setting t • Imm reco • PID • The Clearing and a N Setting t	ng an auto ansmit NAI o not transmit sister is use from SIE v d. It postp from SIE is e, confirm this bit to nediately a eived o of a SET e stage has g this bit to AK respor the EPONH but it is re	matically ex X. mit NAK (due d to prevery when the data ones reflect s being mar- that this bit I is reflecte ofter USBF upper token has been char 0 is reflect s been char 0 is reflect s being (A bit to 1 i	efault value nt a conflic ata used for ting a write de. Before has been d only in th has been r ion of USB as been de nged to the red immedi g made. s reflected nediately a	quest). The e). It between r an autor e access of rewriting correctly ne followin reset and Bus Res etected e status status stately, exc in the ab	ng cases. a SETUP toke et and a SETU	ulated by firm s by firmware ited request is firmware whi ata register fro en has never to IP token has is IV token is beir	, ware. and a read s to be le an om oeen never been ng received oint0			

(3) UF0 EPNAK register (UF0EN)

This register controls NAK of endpoints other than Endpoint0.

This register can be read or written in 8-bit units (however, bits 4 and 0 can only be read).

The BKO1NK bit can be written only when the BKO1NKM bit of the UF0ENM register is 1.

The related bits are invalid if each endpoint is not supported by the setting of the UF0EnIM register (n = 1, 2, 7) and the current setting of the interface.

It takes five USB clocks to reflect the status on this register after the UF0FIC0 and UF0FIC1 registers have been set. If it is necessary to read the status correctly, therefore, separate a write signal that accesses the UF0FIC0 and UF0FIC1 registers from a read signal that accesses the UF0EPS0, UF0EPS1, UF0EPS2, UF0E0N, and UF0EN registers by at least four USB clocks.

While NAK is being transmitted to Endpoint0 Read and Endpoint2, a write access to the BKO1NK bit is ignored. Be sure to clear bits 7 to 5, 3, and 1 to "0". If it is set to "1", the operation is not guaranteed.

	7	6	5	4	3	2	1	0	Address	After reset
UF0EN	0	0	0	IT1NK	0	BKO1NK	0	BKI1NK	4008H	00H
	0	0	0	0	0	R/W	0	R		
Bit position		Bit name					Functio	n		
4	П	-1NK	It is an becor the FI IT1DE 1: I 0: ⁻	utomatically ne full as a r FO full, set END bit has Do not trans Transmit NA	set to 1 result of the IT1D been set mit NAK K (defau	lt value).	ion is st it. To se UF0DE s autom	arted when th end a short pa ND register to atically set to	acket that doe o 1. As soon a 1.	s not make
2 BKO1NK This bit is also cleared to 0 when the UF0INT1 register has been cleared. 2 BKO1NK This bit controls NAK to Endpoint2 (bulk 1 transfer (OUT)). 1: Transmit NAK. 0: Do not transmit NAK (default value). This bit is set to 1 only when the FIFO connected to the SIE side of the UF0BO1 re (64-byte FIFO of bank configuration) cannot receive data. It is cleared to 0 when a toggle operation is performed. The bank is changed (toggle operation) when the following conditions are satisfied. • Data correctly received is stored in the FIFO connected to the SIE side. • The value of the FIFO counter connected to the CPU side is 0 (completion of reading). Firmware should be used to read data of the UF0BO1L register when it has received BLKO1DT interrupt request and read as many data from the UF0BO1 register as the value of that data. To not receive data from the USB bus for some reason even if U is ready to receive data, set this bit to 1 by firmware. In this case, USBF keeps transmitting NAK until the firmware clears this bit to 0. This bit is also cleared to 0 as soon as the UF0BO1 register has been cleared.							when a n the tion of received the ter as the ven if USBF eps			

DMA request signal becomes inactive.

(1/0)

(2/2)

(4) UF0 EPNAK mask register (UF0ENM)

Г

This register controls masking a write access to the UF0EN register.

This register can be read or written in 8-bit units.

Be sure to clear bits 7 to 3, 1, and 0 to "0". If it is set to "1", the operation is not guaranteed.

_	7	6	5	4	3	2	1	0	Address	After reset	
UF0ENM	0	0	0	0	0	BKO1NKM	0	0	400CH	00H	
_	0	0	0	0	0	R/W	0	0			
Bit positio	n	Bit name				F	unction				
2	Bk	O1NKM	maske 1: D	This bit specifies whether a write access to bit 2 (BKO1NK) of the UF0EN register is masked or not. 1: Do not mask. 0: Mask (default value).							

(5) UF0 SNDSIE register (UF0SDS)

Г

This register performs manipulation such as no handshake. It can directly manipulate the pins of SIE. This register can be read or written in 8-bit units.

Be sure to clear bits 7 to 4, 2, and 1 to "0". If it is set to "1", the operation is not guaranteed.

	7	6	5	4	3	2	1	0	Address	After rese			
UF0SDS	0	0	0	0	SNDSTL	0	0	RSUMIN	4010H	00H			
	0	0	0	0	R/W	0	0	R/W					
Bit positior	1	Bit name	Function										
3	SN	IDSTL	CPUDE respons SET_IN Endpoi Howeve 1: Re 0: De This bit the nex data to respons Setting this bit receive	EC processe. If an ITERFAM ITERFAM of due for the Elespond was a spond was a s	ssing is not s unsupported CE request, the overrun of DHALT bit of t with STALL has pond with ST ed to 0 and the P token is rece EOW register made in time een made. s valid only w 1. It is autom	wValue is wValue is ne hardwa an automa he UF0E0 andshake. ALL hands ie handshake ived. To s . Dependin a, and it ma hile an firm natically cle	by the sys sent by the re sets this tically exect SL register shake (def take respondent the SN and on the set the SN and on the system and the set of the system and the system and the system and the system and the system and the s	ake. Setting the term results in the SET_CONF is bit to 1. If a socuted request er is not set to fault value). Inse to the bus IDSTL bit to 1 timing of setting to the next the ecuted request when the next	a STALL han GURATION problem occu , this bit is als 1. is other than by firmware, ng this bit, the ransfer after a is under exe s SETUP toke	dshake or urs in so set to 1. STALL when do not write e STALL a NAK cution when			
0	RS	UMIN	 This bit outputs the Resume signal onto the USB bus. Writing this bit is invalid unless the RMWK bit of the UF0DSTL register is set to 1. 1: Generate the Resume signal. 0: Do not generate the Resume signal (default value). While this bit is set to 1, the Resume signal continues to be generated. Clear this bit to 0 by firmware after a specific time has elapsed. Because the signal is internally sampled at the clock, the operation is guaranteed only while CLK is supplied. Care must be exercised when CLK of the system is stopped. 										

(6) UF0 CLR request register (UF0CLR)

This register indicates the target of the received CLEAR_FEATURE request.

This register is read-only, in 8-bit units.

This register is meaningful only when an interrupt request is generated. Each bit is set to 1 after completion of the status stage, and automatically cleared to 0 when this register is read.

The related bits are invalid if each endpoint is not supported by the setting of the UF0EnIM register (n = 1, 2, 7) and the current setting of the interface.

	7	6	5	4	3	2	1	0	Address	After reset		
UF0CLR	0	CLREP7	0	0	CLREP2	CLREP1	CLREP0	CLRDEV	4014H	00H		
	C	R	0	0	R	R	R	R				
Bit position		Bit name					Function					
6, 3 to 1	CL	.REPn	automa 1: A	These bits indicate that a CLEAR_FEATURE Endpoint n request is received and automatically processed. 1: Automatically processed 0: Not automatically processed (default value)								
0 CLRDEV This bit indicates that a CLEAR_FEATURE Device request is received and automat processed. 1: Automatically processed 0: Not automatically processed 0: Not automatically processed 0: Not automatically processed										utomatically		

(7) UF0 SET request register (UF0SET)

This register indicates the target of the automatically processed SET_XXXX (except SET_INTERFACE) request.

This register is read-only, in 8-bit units.

This register is meaningful only when an interrupt request is generated. Each bit is set to 1 after completion of the status stage, and automatically cleared to 0 when this register is read.

	7	6	5	4	3	2	1	0	Address	After reset			
UF0SET SET	CON	0	0	0	4018H	00H							
F	3	0	0	0 0 0 R 0 R									
Bit position	Bit r	name					Function	I					
7	SETCON This bit indicates that a SET_CONFIGURATION request is received and automa processed. 1: Automatically processed 0: Not automatically processed (default value) SETEP This bit indicates that a SET_FEATURE Endpoint n request (n = 0 to 2, 7) is rec and automatically processed. 1: Automatically processed 0: Not automatically processed. 0: Not automatically processed 0: Not automatically processed 0: Not automatically processed 0: Not automatically processed (default value)									omatically			
2										received			
0	SETDE	EV	proces 1: A	This bit indicates that a SET_FEATURE Device request is received and automatically processed. 1: Automatically processed 0: Not automatically processed (default value)									

(8) UF0 EP status 0 register (UF0EPS0)

This register indicates the USB bus status and the presence or absence of register data.

This register is read-only, in 8-bit units.

The related bits are invalid if each endpoint is not supported by the setting of the UF0EnIM register (n = 1, 2, 7) and the current setting of the interface.

It takes five USB clocks to reflect the status on this register after the UF0FIC0 and UF0FIC1 registers have been set. If it is necessary to read the status correctly, therefore, separate writing to the UF0FIC0 and UF0FIC1 registers from reading from the UF0EPS0, UF0EPS1, UF0EPS2, UF0E0N, and UF0EN registers by at least four USB clocks.

	7	6	5	4	3	2	1	0	Address	After reset			
UF0EPS0	0	IT1	0	BKOUT1	0	BKIN1	EP0W	EP0R	401CH	00H			
	0	R	0	R									
Bit positior	ı	Bit name		Function									
6	IT	1	bit of be cre the IT UFOIN transr 1: I	These bits indicate that data is in the UF0INT1 register (FIFO). By setting the IT1DED bit of the UF0DEND register to 1, the status in which data is in the UF0INT1 register can be created even if data is not written to the register (Null data transmission). As soon as the IT1DED bit of the UF0DEND register is set to 1 even when the counter of the UF0INT1 register is 0, this bit is set to 1 by hardware. It is cleared to 0 after correct transmission. 1: Data is in the register. 0: No data is in the register (default value).									
4	Br	OUT1	side. set to UF0B = 0). either 1: I	When the FII 1 by hardwa O1 register (It is not set to	FO config re. It is a FIFO) cor o 1 when register.	uring the UI utomatically nnected to t Null data is	F0BO1 regi cleared to he CPU sid received (to	ster is toggl 0 by hardwa e has been	connected to t led, this bit is a are when read completed (cc FIFO does not	utomatically ing the punter value			
2	Bk	(IN1	By se the U transr while to 0 w 1: I	tting the BKI F0BI1 registe nission). As	1DED bit er can be soon as t of the UFC operation register.	of the UF0D created eve he BKI1DEI)BI1 register n is perform	DEND regist n if data is D bit of the r is 0, this b ed.	ter to 1, the not written t UF0DEND r	connected to th status in which o the register (register has be by hardware.	n data is in (Null data een set to 1			

(2/2)

Bit position	Bit name	Function
1	EPOW	 This bit indicates that data is in the UF0E0W register (FIFO). By setting the E0DED bit of the UF0DEND register to 1, the status in which data is in the UF0E0W register can be created even if data is not written to the register (Null data transmission). As soon as the E0DED bit of the UF0DEND register is set to 1 even when the counter of the UF0E0W register is 0, this bit is set to 1 by hardware. It is cleared to 0 after correct transmission. 1: Data is in the register. 0: No data is in the register (default value).
0	EPOR	 This bit indicates that data is in the UF0E0R register (FIFO). It is automatically cleared to 0 by hardware when reading the UF0E0R register (FIFO) has been completed (counter value = 0). It is not set to 1 if Null data is received. 1: Data is in the register. 0: No data is in the register (default value).

(9) UF0 EP status 1 register (UF0EPS1)

This register indicates the USB bus status. This register is read-only, in 8-bit units.

	7	6	5	4	3	2	1	0	Address	After reset
UF0EPS1	RSUM	0	0	0	0	0	0	0	4020H	00H
	R	0	0	0	0	0	0	0		
Bit positi	on E	Bit name					Function			
7	RS	JM	This bit 1: Si 0: R Becaus when C The IN		gful only wh tus us (default i is internal lied. Care gnal of SIE	nen an inter value) ly performe must be ex operates e	rrupt reque ed with the rercised wh even when	st is generation clock, the clock of CLK is stop	ated. operation is gua the system is c	

(10) UF0 EP status 2 register (UF0EPS2)

This register indicates the USB bus status.

This register is read-only, in 8-bit units.

The related bits are invalid if each endpoint is not supported by the setting of the UF0EnIM register (n = 1, 2, 7) and the current setting of the interface.

	7	6	5	4	3	2	1	0	Address	After rese			
UF0EPS2	0	0	HALT7	0	0	HALT2	HALT1	HALT0	4024H	00H			
	0	0	R	0	0	R	R	R					
Bit position	E	Bit name		Function									
5, 2 to 0	HA	LTn	condition satisfied 1: En- 0: En- The SNI occurrer is receiv also clea bit is not Feature Endpoin processe is maske The HAL Endpoin SET_CO Feature request Endpoin same as Endpoin	n, such as . These b dpoint is s dpoint is n DSTL bit is nee of an o ed in this : ared to 0. cleared to is cleared to to, or SET ed by firm ed and cle . Tn bit is r t request, DNFIGUR, is cleared is correctly to, is cleared to, is cleared to, is cleared to, correctly to, is cleared to cannot	occurrence its are auto talled. ot stalled is set to 1 a overrun or status, the If Endpoin o 0 until th by firmwa FEATUR ware is rec ared to 0, not cleared Halt Featu ATION req by firmwa y processe red after th ntly set va be cleared	ce of an ove omatically s (default values soon as t reception o SNDSTL b tt0 is stalled e CLEAR_F re. If the G E Endpoint ceived due t until the new to 0 until E re is cleare uest to the is re. When the ad, the Halt he request h lue, and the d if it is set b	rrun and re eet to 1 by h le). he HALTO f an undefii it is cleared by the SE EATURE F ET_STATU 0 request is to the CPU kt SETUP t ndpoint n r d by the SI interface to he SET_IN Feature of has been pro- ese bits are because the	bit has beer ned request d to 0 and, t T_FEATURI Endpoint0 re S Endpoint0 re S Endpoint0 s received, of DEC interru oken is rece eccives the ET_INTERF which the of TERFACE of all the targe roccessed, er also cleare e STALL res	CLEAR_FEAT	equest, is result of ETUP token IALT0 bit is quest, this ved or Halt ATURE to be HALT0 bit 'URE ed, or Halt GURATION ccept ue is the vature of			

Remark n = 0 to 2, 7

(11) UF0 INT status 0 register (UF0IS0)

This register indicates the interrupt source. If the contents of this register are changed, the INTUSBF0 signal becomes active and is reported as an interrupt.

This register is read-only, in 8-bit units.

If an interrupt request (INTUSBF0) is generated from USBF, the firmware must read this register to identify the interrupt source.

Each bit of this register is forcibly cleared to 0 when 0 is written to the corresponding bit of the UF0IC0 register.

Caution In the USBF, multiple interrupt sources are ORed internally and are issued as a interrupt request (INTUSBF0).

If only one interrupt source is cleared (0), the INTUSBF0 interrupt request in PFESiP/V850EP1 may remain set (1) and new interrupts may not be started, since other interrupt sources will still be remaining.

In this case, after performing clear (0) processing for each interrupt request with the INTUSBF0 interrupt servicing routine, confirm the flag status for the UF0IS0, UF0IS1, UF0IS2, and UF0IS3 registers again, and if there are any interrupt sources with flags set to 1, perform flag clearing (only the applicable bits need to be cleared (do not perform a batch clearing)).

(1)

	7	6	5	4	3	2	1	0	Address	After rese			
UF0IS0	BUSRS	T RSUSPD	VBSOF	SHORT	DMAED	SETRQ	CLRRQ	EPHALT	4040H	00H			
	R	R	R	R	R	R	R	R					
Bit position		osition Bit name Function											
7		BUSRST	1: 6	This bit indicates that Bus Reset has occurred. 1: Bus Reset has occurred (interrupt request is generated). 0: Not Bus Reset status (default value)									
6		RSUSPD	the UI 1: F	 This bit indicates that the Resume or Suspend status has occurred. Reference bit 7 of the UF0EPS1 register by firmware. 1: Resume or Suspend status has occurred (interrupt request is generated). 0: Resume or Suspend status has not occurred (default value). 									
0: Resume or Suspend state 5 VBSOF This bit indicates that the VB 1: VBUS Off has occurred 0: VBUS Off has not occurred							t request is						
4 SHORT			INTUS 1: F 0: I Pleas end b	 This bit indicates that data is read from the FIFO of the UF0BO1 register and that the INTUSBF2 signal is active. It is valid only when the FIFO is not full in the DMA mode. 1: Received a short packet/INTUSBF2 signal is active (interrupt request is generated). 0: Did not receive a short packet/INTUSBF2 signal is not active (default value). Please confirm whether it is end operation for which Endpoint and that the DMA transfer end by the short packet happened by UF0DMS1 register by all means. At the time of next short packet transfer, this bit is not set unless UF0DMS1 register was read. 									

(2/2)

<	R	>

Bit position	Bit name	Function
3	DMAED	 This bit indicates that DMA has been completed 1: DMA has been completed (interrupt request is generated). 0: DMA has not been completed (default value). Please confirm whether it is end operation for which Endpoint and that the DMA transfe end happened by UF0DMS1 register by all means. At the time of the next DMA transfe this bit is not set unless UF0DMS1 register was read. But, this bit is not cleared (0) automatically even if UF0DMS1 register is read by firmware.
2	SETRQ	 This bit indicates that the SET_XXXX request to be automatically processed has been received and automatically processed (XXXX = CONFIGURATION or FEATURE). 1: SET_XXXX request to be automatically processed has been received (interrupt request is generated). 0: SET_XXXX request to be automatically processed has not been received (default value). This bit is set to 1 after completion of the status stage. Reference the UF0SET register to identify what is the target of the request. This bit is not automatically cleared to 0 ever if the UF0SET register is read by firmware. The EPHALT bit is also set to 1 when the SET_FEATURE Endpoint request has been received.
1	CLRRQ	 This bit indicates that the CLEAR_FEATURE request has been received and automatically processed. 1: CLEAR_FEATURE request has been received (interrupt request is generated). 0: CLEAR_FEATURE request has not been received (default value). This bit is set to 1 after completion of the status stage. Reference the UF0CLR register to identify what is the target of the request. This bit is not automatically cleared to 0 ever if the UF0CLR register is read by firmware.
0	EPHALT	 This bit indicates that an endpoint has stalled. 1: Endpoint has stalled (interrupt request is generated). 0: Endpoint has not stalled (default value). This bit is also set to 1 when an endpoint has stalled by setting firmware. Identify the endpoint that has stalled, by referencing the UF0EPS2 register. This bit is not automatically cleared to 0 even when the CLEAR_FEATURE Endpoint, SET_INTERFACE, or SET_CONFIGURATION request is received. It is not automatically cleared to 0, either, if the next SETUP token is received in case of overrun of Endpoint0. Caution Even if the EnHALT bit of the UF0EnSL register is set to 1 by firmware and this interrupt request is generated, HALT0 of the UF0EPS2 register is set to 1.
		masked and cleared to 0 between when a SET_FEATURE Endpoint0, CLEAR_FEATURE Endpoint0, or GET_STATUS Endpoint0 request, or firmware-processed request is received and when a SETUP token is received (other than the above).

<R>

(12) UF0 INT status 1 register (UF0IS1)

This register indicates the interrupt source. If the contents of this register are changed, the INTUSBF0 signal becomes active and is reported as an interrupt.

This register is read-only, in 8-bit units.

If an interrupt request (INTUSBF0) is generated from USBF, the firmware must read this register to identify the interrupt source.

Each bit of this register is forcibly cleared to 0 when 0 is written to the corresponding bit of the UF0IC0 register.

Caution In the USBF, multiple interrupt sources are ORed internally and are issued as a interrupt request (INTUSBF0).

If only one interrupt source is cleared (0), the INTUSBF0 interrupt request in PFESiP/V850EP1 may remain set (1) and new interrupts may not be started, since other interrupt sources will still be remaining.

In this case, after performing clear (0) processing for each interrupt request with the INTUSBF0 interrupt servicing routine, confirm the flag status for the UF0IS0, UF0IS1, UF0IS2, and UF0IS3 registers again, and if there are any interrupt sources with flags set to 1, perform flag clearing (only the applicable bits need to be cleared (do not perform a batch clearing)).

_	7		6	5	4	3	2	1	0	Address	After reset		
UF0IS1	0		E0IN	E0INDT	T E00DT	SUCES	STG	PROT	CPUDEC	4044H	00H		
-	0		R	R	R	R	R	R	R				
Bit posit	on		Bit name					Function	1				
6		E0	IN	hardw 1: I	 This bit indicates that an IN token for Endpoint0 has been received and that the hardware has automatically transmitted NAK. 1: IN token is received and NAK is transmitted (interrupt request is generated). 0: IN token is not received (default value). 								
5		EO	INDT	1: 1 0: 1 Data i EP0N when packe	ransmissic ransmissic s transmitte KW bit of th the host co	on from UFC on from UFC ed in synch ne UF0E0N prrectly rece s automatic	EOW regis EOW regis ronization register to vives that d ally cleare	ster is com ster is not with the IN o 1. This b lata. It is a	nsmitted from pleted (interru completed (de l token next to it is automatic ilso set to 1 ev lardware when	upt request is efault value). • the one that cally set to 1 b ven if the data	generated). set the by hardware a is a Null		

Г

(2/2)

Bit position	Bit name	Function
4	E0ODT	 This bit indicates that data has been correctly received in the UF0E0R register. 1: Data is in UF0E0R register (interrupt request is generated). 0: Data is not in UF0E0R register (default value). This bit is automatically set to 1 by hardware when data has been correctly received. At the same time, the EP0R bit of the UF0EPS0 register is also set to 1. If a Null packet has been received, this bit is not set to 1. It is automatically cleared to 0 by hardware when the firmware reads the UF0E0R register and the value of the UF0E0L register becomes 0.
3	SUCES	 This bit indicates that either a firmware-processed or hardware-processed request has been received and that the status stage has been correctly completed. 1: Control transfer has been correctly processed (interrupt request is generated). 0: Control transfer has not been processed correctly (default value). This bit is set to 1 upon completion of the status stage. It is automatically cleared to 0 by hardware when the next SETUP token is received. This bit is also set to 1 when data with Data PID of 0 (Null data) is received in the status stage of control transfer.
2	STG	 This bit is set to 1 when the stage of control transfer has changed to the status stage. It is valid for both firmware-processed and hardware-processed requests. This bit is also set to 1 when the stage of control transfer (without data) has changed to the status stage. 1: Status stage (interrupt request is generated) 0: Not status stage (default value) This bit is automatically cleared to 0 by hardware when the next SETUP token is received. It is also set to 1 when the stage of control transfer has changed to the status stage while ACK cannot be correctly received in the data stage. In this case, the EPONKW bit of the UF0E0N register is also cleared to 0 as soon as the UF0E0W register has been cleared, if the firmware is processing control transfer (read).
1	PROT	 This bit indicates that a SETUP token has been received. It is valid for both firmware-processed and hardware-processed requests. 1: SETUP token is correctly received (interrupt request is generated). 0: SETUP token is not received (default value). This bit is set to 1 when data has been correctly received in the UF0E0ST register. Clear this bit to 0 by firmware when the first read access is made to the UF0E0ST register. Clear this bit to 1 cleared to 0 by firmware, reception of the next SETUP token cannot be correctly recognized. This bit is used to accurately recognize that a SETUP transaction has been executed again during control transfer. If the SETUP transaction is re-executed during control transfer and if a second request is executed by hardware, the CPUDEC bit is not set to 1, but the PROT bit can be used for recognition of the re-execution.
0	CPUDEC	This bit indicates that the UF0E0ST register has a request that is to be decoded by firmware. 1: Firmware processed request is in UF0E0ST register (interrupt request is generated) 0: Firmware processed request is not in UF0E0ST register (default value). This bit is automatically cleared to 0 by hardware when all the data of the UF0E0ST register is read.

(13) UF0 INT status 2 register (UF0IS2)

This register indicates the interrupt source. If the contents of this register are changed, the INTUSBF0 signal becomes active and is reported as an interrupt.

This register is read-only, in 8-bit units.

If an interrupt request (INTUSBF0) is generated from USBF, the firmware must read this register to identify the interrupt source.

Each bit of this register is forcibly cleared to 0 when 0 is written to the corresponding bit of the UF0IC2 register. The related bits are invalid if each endpoint is not supported by the setting of the UF0EnIM register (n = 1, 7) and the current setting of the interface.

Caution In the USBF, multiple interrupt sources are ORed internally and are issued as a interrupt request (INTUSBF0).

If only one interrupt source is cleared (0), the INTUSBF0 interrupt request in PFESiP/V850EP1 may remain set (1) and new interrupts may not be started, since other interrupt sources will still be remaining.

In this case, after performing clear (0) processing for each interrupt request with the INTUSBF0 interrupt servicing routine, confirm the flag status for the UF0IS0, UF0IS1, UF0IS2, and UF0IS3 registers again, and if there are any interrupt sources with flags set to 1, perform flag clearing (only the applicable bits need to be cleared (do not perform a batch clearing)).

	7		6	5	4	3	2	1	0	Address	After reset
UF0IS2	0		0	BKI1IN	BKI1DT	0	0	0	IT1DT	4048H	00H
	0		0	R	R	0	0	0	R		
Bit posi	tion		Bit name					Function	ı		
5			UF0BI1 regist quest is gener	、 ·							
1: IN token is received and NAK is transmitted (interrupt request is generated). 0: IN token is not received (default value). 4 BKI1DT These bits indicate that the FIFO of the UF0BI1 register (Endpoint 1) has been toggle This means that data can be written to Endpoint 1. 1: FIFO has been toggled (interrupt request is generated). 0: FIFO has not been toggled (default value). The data written to Endpoint 1 is transmitted in synchronization with the IN token new the one that set the BKI1NK bit of the UF0EN register to 1. When the FIFO has been toggled and then data can be written from the CPU, this bit is automatically set to 1 the hardware. It is also set to 1 when the FIFO has been toggled, even if the data is a N packet. This bit is automatically cleared to 0 by hardware when the first write access made to the UF0BI1 register.										token next to has been set to 1 by ata is a Null	
0		IT1	IDT	(Endp 1: 7 0: 7 Data i IT1Nk the ho when	oint 7). Transmissic Transmissic Is transmitte I bit of the I st has corr	n is compl n is not co ed in synch JF0EN reg ectly recei te access	leted (interr ompleted (denronization gister to 1. ved that dat is made to	upt reques efault valu with the IN This bit is ta. It is au	st is generate e). I token next t automatically tomatically cl	o the one that set to 1 by ha leared to 0 by	set the ardware when

(14) UF0 INT status 3 register (UF0IS3)

This register indicates the interrupt source. If the contents of this register are changed, the INTUSBF0 signal becomes active and is reported as an interrupt.

This register is read-only, in 8-bit units.

If an interrupt request (INTUSBF0) is generated from USBF, the firmware must read this register to identify the interrupt source.

Each bit of this register is forcibly cleared to 0 when 0 is written to the corresponding bit of the UF0IC3 register. The related bits are invalid if each endpoint is not supported by the setting of the UF0EnIM register (n = 2) and the current setting of the interface.

Caution In the USBF, multiple interrupt sources are ORed internally and are issued as a interrupt request (INTUSBF0).

If only one interrupt source is cleared (0), the INTUSBF0 interrupt request in PFESiP/V850EP1 may remain set (1) and new interrupts may not be started, since other interrupt sources will still be remaining.

In this case, after performing clear (0) processing for each interrupt request with the INTUSBF0 interrupt servicing routine, confirm the flag status for the UF0IS0, UF0IS1, UF0IS2, and UF0IS3 registers again, and if there are any interrupt sources with flags set to 1, perform flag clearing (only the applicable bits need to be cleared (do not perform a batch clearing)).

	7		6	5	4	3	2	1	0	Address	After reset				
UF0IS3	0		0	0	0	BKO1FL	BKO1NL	BKO1NAK	BKO1DT	404CH	00H				
	0		0	0	0	R	R	R	R						
Bit posi	tion	Bit	name					Function							
3		BKO1	FL	(Endp 1: F 0: F 1: F	oint 2) an Received Jenerated Received ralue).	d that both t data is in bo). data is not ir n both the FI	he FIFOs of th the FIFO n the FIFO FOs of the	of the CPU Os of the UF on the SIE CPU and S	and SIE hold F0BO1 regist side of the U SIE, these bit	e UF0BO1 reg d the data. ter (interrupt re JF0BO1 regist s are automat e when the FIF	equest is er (default ically set to 1				
2 BKO1NL				UF0B 1: 1 0: 1 These empty	O1 registe Null packe Null packe bits are s They are	er (Endpoint t is received t is not rece set to 1 imm e set to 1 wh	2). I (interrupt ived (defau ediately aft	request is g ilt value). er receptioi	generated). n of a Null pa	0) has been re acket when the been comple	e FIFO is				
1		BKO1	NAK	data is in that FIFO. These bits indicate that an OUT token has been received to the UF0BO1 register (Endpoint 2) and that NAK has been returned. 1: OUT token is received and NAK is transmitted (interrupt request is generated). 0: OUT token is not received (default value).											

(2/2)

Bit position	Bit name	Function
0	BKO1DT	 These bits indicate that data has been correctly received in the UF0BO1 register (Endpoint 2). 1: Reception has been completed correctly (interrupt request is generated). 0: Reception has not been completed (default value). These bits are automatically set to 1 by hardware when data has been correctly received and the FIFO has been toggled. At the same time, BKOUT1 of the UF0EPS0 register are also set to 1. They are not set to 1 when the data is a Null packet. These bits are automatically cleared to 0 by hardware when the value of the UF0BO1L register becomes 0 as a result of reading the UF0BO1 register by firmware. These bits are automatically cleared to 0 when all the contents of the FIFO on the CPU side have been read. However, the interrupt request is not cleared if data is in the FIFO on the SIE side at this time, and the INTUSBF0 signal does not become inactive. The signal is kept active if data is successively received.

(15) UF0 INT status 4 register (UF0IS4)

This register indicates that the SET_INTERFACE request has been received and automatic processing has been performed. The interrupt report does not occur by the change in this register.

This register is read-only, in 8-bit units.

Each bit of this register is forcibly cleared (0) when 0 is written to the corresponding bit of the UF0IC4 register. The related bits are invalid if each endpoint is not supported by the setting of the UF0EnIM register (n = 1, 2, 7) and the current setting of the interface.

_	7		6	5	4	3	2	1	0	Address	After reset
UF0IS4	0		0	SETINT	0	0	0	0	0	4050H	00H
_	0		0	R	0	0	0	0	0	_	
Bit posit	on	Bi	t name					Function			
Bit position		SET	INT	automa 1: T 0: T The cu	atically pro he reques he reques	cessed. t has been t has not be ng of this bi	automatica een automa	Illy process	ed (interrup cessed (def	en received and ot request is ge ault value). UF0ASS or UI	nerated).

(16) UF0 INT mask 0 register (UF0IM0)

This register controls masking of the interrupt sources indicated by the UF0IS0 register.

This register can be read or written in 8-bit units.

Firmware can mask occurrence of an interrupt request from USBF (INTUSBF0) by writing 1 to the corresponding bit of this register.

		6	5		3	2			Address	After reset
UF0IM0	R/W	RSUSPDM	R/W	R/W	R/W	R/W	R/W	R/W	405CH	00H
Bit posi	tion	Bit name					Function			
7	B	BUSRSTM	1: N	lask	e Bus Rese k (default v					
6	F	RSUSPDM	1: N	lask	e Resume/ k (default v	·	nterrupt.			
5	V	/BSOFM	1: N	lask	e VBSOFN k (default v					
4	S	BHORTM	1: N	lask	e Short inte k (default v					
3	C	DMAEDM	1: N	lask	e DMAED k (default v					
2	S	SETRQM	1: N	lask	ie SETRQ i k (default v					
1	C	CLRRQM	1: N	lask	ie CLRRQ i k (default v					
0	E	EPHALTM	1: N	lask	e EP_Halt k (default v					

(17) UF0 INT mask 1 register (UF0IM1)

This register controls masking of the interrupt sources indicated by the UF0IS1 register.

This register can be read or written in 8-bit units.

Firmware can mask occurrence of an interrupt request from USBF (INTUSBF0) by writing 1 to the corresponding bit of this register.

-	7	6	6 5	4	3	2	1	0	Address	After reset
UF0IM1	0	E0I	NM E0INI		A SUCESM	STGM	PROTM	CPUDECM	4060H	00H
	0	R/	W R/	N R/W	R/W	R/W	R/W	R/W		
Bit positi	on	Bit na	ame				Function			
6		E0INM	Т	his bit masks t 1: Mask 0: Do not ma		·				
5		E0INDT	МТ	his bit masks t 1: Mask 0: Do not ma		·				
4		E0ODT	МТ	his bit masks t 1: Mask 0: Do not ma		·				
3		SUCES	МТ	his bit masks t 1: Mask 0: Do not ma		·				
2		STGM	Т	his bit masks t 1: Mask 0: Do not ma	-					
1		PROTM	Т	his bit masks t 1: Mask 0: Do not ma						
0		CPUDE	СМ Т	his bit masks t 1: Mask 0: Do not ma		·				

(18) UF0 INT mask 2 register (UF0IM2)

This register controls masking of the interrupt sources indicated by the UF0IS2 register.

This register can be read or written in 8-bit units.

Firmware can mask occurrence of an interrupt request from USBF (INTUSBF0) by writing 1 to the corresponding bit of this register.

The related bits are invalid if each endpoint is not supported by the setting of the UF0EnIM register (n = 1, 7) and the current setting of the interface.

Be sure to clear bits 7, 6, and 3 to 1 to "0". If it is set to "1", the operation is not guaranteed.

_	7	6	5	4	3	2	1	0	Address	After reset
UF0IM2	0	0	BKI1INM	BKI1DTM	0	0	0	IT1DTM	4064H	00H
	0	0	R/W	R/W	0	0	0	R/W		
Bit positio	n	Bit name					Functior	ı		
5	E	BKI1INM	1: N	bits mask t ⁄lask Do not mask						
4	E	BKI1DTM	1: N	bits mask t /lask Do not mask						
0	ľ	T1DTM	1: N	bits mask t /lask Do not mask						

(19) UF0 INT mask 3 register (UF0IM3)

This register controls masking of the interrupt sources indicated by the UF0IS3 register.

This register can be read or written in 8-bit units.

Firmware can mask occurrence of an interrupt request from USBF (INTUSBF0) by writing 1 to the corresponding bit of this register.

The related bits are invalid if each endpoint is not supported by the setting of the UF0EnIM register (n = 2) and the current setting of the interface.

Be sure to clear bits 7 to 4 to "0". If it is set to "1", the operation is not guaranteed.

	7	6	5	4	3	2	1	0	Address	After reset							
UF0IM3	0	0	0	0	BKO1FLM	BKO1NLM	BKO1NAKM	BKO1DTM	4068H	00H							
	0	0	0	0	R/W	R/W	R/W	R/W									
Bit posit	ion	Bit name					Function										
3 BKO1FLM These bits mask the BKO1FL interrupt. 1: Mask 0: Do not mask (default value)																	
2		BKO1NLM	1: N	These bits mask the BKO1NL interrupt. 1: Mask 0: Do not mask (default value)													
1: Mask 0: Do not mask (default value) 1 BKO1NAKM These bits mask the BKO1NK interrupt. 1: Mask 0: Do not mask (default value)																	
0		BKO1DTM	1: N	lask			These bits mask the BKO1DT interrupt. 1: Mask 0: Do not mask (default value)										

(20) UF0 INT mask 4 register (UF0IM4)

This register controls masking the SETINT indicated by the UF0IS4 register.

This register can be read or written in 8-bit units.

Firmware can mask of the SETINT by writing 1 to the corresponding bit of this register.

The related bits are invalid if each endpoint is not supported by the setting of the UF0EnIM register (n = 1, 2, 7) and the current setting of the interface.

	7	6	5	4	3	2	1	0	Address	After reset
UF0IM4	0	0	SETINTM	0	0	0	0	0	406CH	00H
	0	0	R/W	0	0	0	0	0		
Bit posi	tion	Bit name					Function			
5		SETINTM	1: Ma	ask	e SET_INT k (default v					

(21) UF0 INT clear 0 register (UF0IC0)

Г

This register controls clearing the interrupt sources indicated by the UF0IS0 register.

This register is write-only, in 8-bit units. If this register is read, the value FFH is read.

Firmware can clear an interrupt source by writing 0 to the corresponding bit of this register. Even a bit that is automatically cleared to 0 by hardware can be cleared by firmware before it is cleared by hardware. Writing 0 to a bit of this register automatically sets the bit to 1. Writing 1 is invalid.

	7	6	5	4	3	2	1	0	Address	After reset			
UF0IC0	BUSRST	C RSUSPDC	VBSOFC	SHORTC	DMAEDC	SETRQC	CLRRQC	EPHALTC	4078H	FFH			
	W	W	W	W	W	W	W	W					
Bit posi	tion	Bit name					Function						
7		BUSRSTC		it clears the Clear	e Bus Rese	et interrupt.							
6		RSUSPDC		it clears the Clear	e Resume/	Suspend in	terrupt.						
5		VBSOFC		This bit clears the VBSOFC interrupt. 0: Clear									
4		SHORTC		it clears the Clear	e Short inte	errupt.							
3		DMAEDC		it clears the Clear	e DMAED i	nterrupt.							
2		SETRQC This bit clears the SETRQ interrupt. 0: Clear											
1		CLRRQC	This b 0: C										
0		EPHALTC		it clears the Clear	e EP_Halt i	interrupt.							

(22) UF0 INT clear 1 register (UF0IC1)

This register controls clearing the interrupt sources indicated by the UF0IS1 register.

This register is write-only, in 8-bit units. If this register is read, the value FFH is read.

Firmware can clear an interrupt source by writing 0 to the corresponding bit of this register. Even a bit that is automatically cleared to 0 by hardware can be cleared by firmware before it is cleared by hardware. Writing 0 to a bit of this register automatically sets the bit to 1. Writing 1 is invalid.

	7		6	5	4	3	2	1	0	Address	After reset
UF0IC1	1		E0INC	E0INDTC	E0ODTC	SUCESC	STGC	PROTC	CPUDECC	407CH	FFH
	1		W	W	W	W	W	W	W		
Bit posit	tion		Bit name					Function			
6		E0	INC	This bi 0: C		e E0IN inter	rupt.				
5	E0INDTC This bit clears the E0INDT interrupt. 0: Clear										
4		EO	ODTC	This bi 0: C		e E0ODT in	terrupt.				
3		SU	CESC			e Success i	nterrupt.				
2		0: Clear STGC This bit clears the Stg interrupt. 0: Clear 0: Clear									
1		PR	OTC This bit clears the Protect interrupt. 0: Clear								
0		СР	UDECC		t clears the	e CPUDEC	interrupt.				

(23) UF0 INT clear 2 register (UF0IC2)

This register controls clearing the interrupt sources indicated by the UF0IS2 register.

This register is write-only, in 8-bit units. If this register is read, the value FFH is read.

Firmware can clear an interrupt source by writing 0 to the corresponding bit of this register. Even a bit that is automatically cleared to 0 by hardware can be cleared by firmware before it is cleared by hardware. Writing 0 to a bit of this register automatically sets the bit to 1. Writing 1 is invalid.

The related bits are invalid if each endpoint is not supported by the setting of the UF0EnIM register (n = 1, 7) and the current setting of the interface.

UF0IC2	7 1 1	6 1 1	5 BKI1INC W	4 BKI1DTC W	3 1 1	2 1 1	1 1 1	0 IT1DTC W	Address 4080H	After reset FFH
Bit posit	ion	Bit name					Functior	1		
5		BKI1INC		e bits clear t Clear	he BKI1IN	interrupt.				
4		BKI1DTC		e bits clear t Clear	he BKI1D	T interrupt.				
0		IT1DTC		e bits clear t Clear	he IT1DT	interrupt.				

Remark n = 1, 2

(24) UF0 INT clear 3 register (UF0IC3)

This register controls clearing the interrupt sources indicated by the UF0IS3 register.

This register is write-only, in 8-bit units. If this register is read, the value FFH is read.

Firmware can clear an interrupt source by writing 0 to the corresponding bit of this register. Even a bit that is automatically cleared to 0 by hardware can be cleared by firmware before it is cleared by hardware. Writing 0 to a bit of this register automatically sets the bit to 1. Writing 1 is invalid.

The related bits are invalid if each endpoint is not supported by the setting of the UF0EnIM register (n = 2) and the current setting of the interface.

F	7		6	5	4	3	2	1	0	Address	After reset	
UF0IC3	1		1	1	1	BKO1FLC	BKO1NLC	BKO1NAKC	BKO1DTC	4084H	FFH	
_	1 Bit position		1	1	1	W	W	W	W			
Bit positi	on	Bi	t name					Function				
3		вко	1FLC		e bits clear i Clear	the BKO1F	L interrupt.					
2		вко	1NLC		0: Clear These bits clear the BKO1NL interrupt. 0: Clear							
1		вко	1NAKC		e bits clear i Clear	the BKO1N	K interrupt					
0		BKO	1DTC		bits clear Clear	the BKO1D	T interrupt					

Remark n = 1, 2

(25) UF0 INT clear 4 register (UF0IC4)

This register controls clearing the SETINT indicated by the UF0IS4 register.

This register is write-only, in 8-bit units. If this register is read, the value FFH is read.

Firmware can clear an interrupt source by writing 0 to the corresponding bit of this register. Even a bit that is automatically cleared to 0 by hardware can be cleared by firmware before it is cleared by hardware. Writing 0 to a bit of this register automatically sets the bit to 1. Writing 1 is invalid.

The related bits are invalid if each endpoint is not supported by the setting of the UF0EnIM register (n = 1, 2, 7) and the current setting of the interface.

_	7	6	5	4	3	2	1	0	Address	After reset
UF0IC4	1	1	SETINTC	1	1	1	1	1	4088H	FFH
	1	1	W	1	1	1	1	1	-	
Bit positi	on	Bit name	9				Function			
		SETINTC	This bit 0: Cl		e SETINT.					

(26) UF0 INT & DMARQ register (UF0IDR)

This register is used to select the bulk transfer operation mode.

This register can be read or written in 8-bit units.

If data exists in either the UF0BO1 or UF0BO1 register, or if data can be written to the UF0BI1 or UF0BI2 register, this register selects whether it is reported to the firmware by an interrupt request, or whether starting DMA is requested. If starting DMA is requested, the DMA transfer mode can be selected according to the setting of bits 0 and 1.

The related bits are invalid if each endpoint is not supported by the setting of the UF0EnIM register (n = 1, 2) and the current setting of the interface.

Be sure to clear bits 7, 5, 3, and 2 to "0". If they are set to "1", the operation is not guaranteed.

Caution If the target endpoint is not supported by the SET_INTERFACE request under DMA transfer, the DMA request signal becomes inactive immediately, and the corresponding bit is automatically cleared to 0 by hardware.

	7	6	5	4	3	2	1	0	Address	After reset
UFOIDR	0	DQBI1MS	0	DQBO1MS	0	0	MODE1	MODE0	4098H	00H peration at gister) as valid. unction) as valid '1x_DCR2
L	0	R/W	0	R/W	R/W					
Bit posit	on	Bit name					Function			
			When i When i This bi	n DMA mode	, the INTU e, it sets D ically clea	SBF0 sign MAC interf red (0) by	al sets BKI1 ace signals hardware w	DT interrupts (UDMS regis /hen the valu	ter of CPU fundation	ction) as valid. c_DCR2
			1: S	tinue DMA t ets Endpoin ets Endpoin	it 1 to DM	se firmwar A mode.	e to re-set ((1).		O mode.

Bit position	Bit name			F	Function							
1,0	MODE1,	These bits s	These bits select the DMA transfer mode.									
	MODE0	MODE1	MODE2	Mode	Remark							
		1	1	Setting prohibited	Operation cannot be guaranteed.							
		1	0	Demand mode	DMA request signal becomes active as long as there is data. It becomes inactive if there is no more data.							
		0	х	Setting prohibited	Operation cannot be guaranteed.							
			X: Don't ca PFESiP/V8	-	s only the demand mode.							

(27) UF0 DMA status 0 register (UF0DMS0)

This register indicates the DMA status of Endpoint1 and Endpoint2.

This register is read-only, in 8-bit units.

The related bits are invalid if each endpoint is not supported by the setting of the UF0EnIM register (n = 1, 2) and the current setting of the interface.

	7	6	5	4	3	2	1	0	Address	After reset			
UF0DMS0	0	0	0	0	DQE2	DQE1	0	0	409CH	00H			
	0	0	0	0	R	R	0	0					
Bit position	В	it name					Function						
3	DQE	2	1: DI	This bit indicates that a DMA read request is being issued from Endpoint2 to memory. 1: DMA read request from Endpoint2 is being issued. 0: DMA read request from Endpoint2 is not being issued (default value).									
2	DQE	1	Note the bit of th immedia and the 1: DM	at, even if e UF0DEN ately and [EP1DMA MA write re	data is in E ID register DMA transfe EN bit of the	ndpoint1 (w has been se er is started e EP1_DCF ndpoint1 is	hen the Fl et to 1), the when the 1 register being issu	FO is not fue DMA reque DQBI1MS to is set to 1.	n memory to E II and after the est signal becc bit of the UF0IE ault value).	BKI1DED			

121

(2/2)

(28) UF0 DMA status 1 register (UF0DMS1)

This register indicates the DMA status of Endpoint1 and Endpoint2.

This register is read-only, in 8-bit units.

The related bits are invalid if each endpoint is not supported by the setting of the UF0EnIM register (n = 1, 2) and the current setting of the interface.

Each bit is automatically cleared to 0 when this register is read. Even when this register is read, however, bits 4 and 3 of the UF0IS0 register are not cleared to 0. If the target endpoint is no longer supported by the SET_INTERFACE request, each bit is automatically cleared to 0 by hardware.

		7	6	5	4	3	2	1	0	Address	After reset
	UF0DMS1	0	0	0	DEDE2	DSPE2	DEDE1	0	0	40A0H	00H
		0	0	0	R	R	R	0	0		
	Bit position	E	Bit name					Function			
<r></r>	4, 2	DE	DEn	stopped memor 1: Di 0: Di Be sure	d while a Dl y. MA end sig MA end sig e to read thi	MA transfe nal for End nal for End is register v	r request wa point n is a point n is in vhen the DI	as being is ctive. lactive (de MA transfe	ssued betwe fault value). er is execute		and a
<r></r>	3	DSI	PEm	m to m there is 1: A 0: A va Be sure	emory, DM/ s no more d short packe short packe lue). e to read thi	A has been ata to be tr et received et received is register p	stopped be ansferred. data for En data for En data for En	ecause the dpoint m/l dpoint m/l in a short	e received d NTUSBF2 s NTUSBF2 s packet rece	ing issued from lata is a short p signal is active. signal is inactive ption when the fer, this bit is no	acket and e (default DMA
	Remark	n = 1, 2 m = 2			UF0DMS1						

User's Manual A19071EJ2V0UM

(29) UF0 FIFO clear 0 register (UF0FIC0)

This register clears each FIFO.

This register is write-only, in 8-bit units. If this register is read, 00H is read.

Firmware can clear the target FIFO by writing 1 to the corresponding bit of this register. The bit to which 1 has been written is automatically cleared to 0. Writing 0 to the bit is invalid.

The related bits are invalid if each endpoint is not supported by the setting of the UF0EnIM register (n = 1, 7) and the current setting of the interface.

	7	6	5	4	3	2	1	0	Address	After rese			
UF0FIC0	0	0	BKI1SC	BKI1CC	0	ITR1C	EP0WC	EP0RC	40C0H	00H			
	0	0	W	W	0	W	W	W					
Bit position	I	Bit name					Function						
5	BK	IISC	1: C Writing BKI1NI The Bh	lear these bits is K bit of the U KI1NK bit is a	s invalid v JF0EN re automatic	while an IN gister set to cally cleared	token for E o 1. I to 0 by cle	ndpoint 1 is l earing the FI	egister (reset being process FO. Make sur	ed with the			
4	BK	The BKI1NK bit is automatically cleared to 0 by clearing the FIFO. Make sure that the FIFO on the CPU side is empty when these bits are used. BKI1CC These bits clear only the FIFO on the CPU side of the UF0BI1 register (reset the counter). 1: Clear											
2	1: Clear ITR1C These bits clear the UF0INT1 register (reset the counter). 1: Clear Writing these bits is invalid while an IN token for Endpoint 7 is being processed IT1NK bit of the UF0EN register set to 1. The IT1NK bit is automatically cleared to 0 by clearing the FIFO.												
1	EP	owc	t to 1.	,	g processed v FIFO.	with the							
0	EP	0RC	1: C When t	he EP0NKF	R bit of the	e UF0E0N r	egister is s	et to 1 (exce	pt when it has learing the FI				

(30) UF0 FIFO clear 1 register (UF0FIC1)

This register clears each FIFO.

This register is write-only, in 8-bit units. If this register is read, 00H is read.

Firmware can clear the target FIFO by writing 1 to the corresponding bit of this register. The bit to which 1 has been written is automatically cleared to 0. Writing 0 to the bit is invalid.

The related bits are invalid if each endpoint is not supported by the setting of the UF0EnIM register (n = 2) and the current setting of the interface.

_	7	6	5	4	3	2	1	0	Address	After reset	
UF0FIC1	0	0	0	0	0	0	BKO1C	BKO1CC	40C4H	00H	
	0	0	0	0	0	0	W	W			
Bit positio	n	Bit name					Function				
1	Bł	KO1C	1C These bits clear the FIFOs on both the SIE and CPU sides of the UF0BO1 regis (reset the counter). 1: Clear								
0 BKO1CC These bits clear only the FIFO on the CPU side of the UF0BO1 register (reset the counter). 1: Clear When the BKO1NK bit of the UF0EN register is set to 1 (except when it has been set firmware), the BKO1NK bit of the UF0EN register is set to 1 (except when it has been set firmware), the BKO1NK bit of the UF0EN register is set to 1 (except when it has been set firmware), the BKO1NK bit is automatically cleared to 0 by clearing the FIFO.								been set by			

(31) UF0 data end register (UF0DEND)

This register reports the end of writing to the transmission system.

This register can be accessed only in 8-bit units. Bit 6 can be read or written, and bits 3, 1, and 0 are writeonly. When this register is read, 0 is read from bits other than bit 6.

Firmware can start data transfer of the target endpoint by writing 1 to the corresponding bit 3, 1, and 0 of this register. The bit to which 1 has been written is automatically cleared to 0. Writing 0 to the bit is invalid.

The related bits are invalid if each endpoint is not supported by the setting of the UF0EnIM register (n = 1, 7) and the current setting of the interface.

	7	6	5	4	3	2	1	0	Address	After rese	
	0	BKI1T	0	0	IT1DEND	0	BKI1DED	E0DED	40D4H	00H	
	0	R/W	0	0	W	0	W	W			
Bit position		Bit name					Function				
6	BKI1T These bits specify whether toggling the FIFO is automatically executed if the FIF the CPU side of the UF0BI1 register becomes full as a result of DMA. 1: Automatically execute a toggle operation of the FIFO as soon as the FIFO the become full. 0: Do not automatically execute a toggle operation of the FIFO even if the FIF becomes full (default value). IT1DEND Set these bits to 1 to transmit the data of the UF0INT1 register. When these bits									-O has	
3	IT1	IT1DEND Set these bits to 1 to transmit the data of the UF0INT1 register. When these bits are set to 1, the IT1NK bit of the UF0EN register is set to 1 and data transfer is executed. 1: Transmit a short packet. 0: Do not transmit a short packet (default value). If the ITR1C bit of the UF0FIC0 register is set to 1 and then these bits are set to 1 (counter of UF0INT1 register = 0 and the IT1 of the UF0EPS0 register = 1), a Null packet (with a data length of 0) is transmitted. If data exists in the UF0INT1 register and if these bits are set to 1 (counter of UF0INT1 register ≠ 0 and the IT1 of the UF0EPS0 register = 1), a short packet is transmitted.									
1	ВК	IDED	complet BKI1NK 1: Tra 0: Do If the Br (counter If data e register If the FI the PIO not set t If the FI	ed. Whe bit of the ansmit a so not trans (I1CC bit r of UF0E xists in the \neq 0), and FO on tho or BKI11 o 1.	n these bits and e UF0EN regist short packet. smit a short packet. of the UF0FIC BI1 register = 0 ne UF0BI1 reg if the FIFO is e CPU side of bit set to 1, th e CPU side of	ter is set to acket (d C0 regis)), a Nul ister an not full the UFt the UFt	1, the FIFO et to 1, and da efault value). ter is set to 1 I packet (with d if these bits , a short pack DBI1 register Ware starts da	is toggled a ata is transfo and then th a data leng s are set to set is transm becomes fu ata transmis becomes fu	nese bits are s gth of 0) is trar 1 (counter of L	sible, the set to 1 nsmitted. JF0BI1 of DMA, with nese bits are of DMA, with	

(2/2)

Bit position	Bit name	Function
0	EODED	 Set this bit to 1 to transmit data of the UF0E0W register. When this bit is set to 1, the EP0NKW bit of the UF0E0EN register is set to 1 and data is transferred. 1: Transmit a short packet. 0: Do not transmit a short packet (default value). If the EP0WC bit of the UF0FIC0 register is set to 1 and if this bit is set to 1 (counter of UF0E0W register = 0 and BP0W of UF0EPS0 register = 1), a Null packet (with a data length of 0) is transmitted. If data exists in the UF0E0W register and if this bit is set to 1 (counter of UF0E0W register ≠ 0 and BP0W of the UF0EPS0 register = 1), and if the FIFO is not full, a short packet is transmitted.

(32) UF0 GPR register (UF0GPR)

This register resets USBF and the USB interface.

This register is write-only, in 8-bit units. If this register is read, 00H is read. Be sure to clear bits 7 to 1 to "0". Firmware can reset the USBF by writing 1 to bit 0 of this register. This bit is automatically cleared to 0 after 1 has been written to it. Writing 0 to this bit is invalid.

	7	6	5	4	3	2	1	0	Address	After reset
UF0GPR	0	0	0	0	0	0	0	MRST	40DCH	00H
Rit position	0	0	0	0	0	0	0	W		
Bit positio	n	Bit name					Function			
0	MF	IST	1: R Actuall clocks inactive Resett as rese	eset y, USBF is after this bi e. ng USBF b etting by the	it has been by the MRS e RESET p	JSB clocks set to 1 by T bit while in (hardwai	firmware the syster re reset) (after the writ	set is complete e signal has b erating has the b back to defau e MRST bit.	ecome same result

(33) UF0 mode control register (UF0MODC)

This register controls CPUDEC processing.

This register can be read or written in 8-bit units.

By setting this register, the setting of the UF0MODS register can be changed. The bit of this register is automatically cleared to 0 only at hardware reset and when the MRST bit of the UF0GRP register has been set to 1.

Even if the bit of this register has automatically been set to 1 by hardware, the setting by firmware takes precedence.

Be sure to clear bits 7 and 5 to 0 to "0". If they are set to "1", the operation is not guaranteed.

Caution This register is provided for debugging purposes. Usually, do not set this register except for verifying the operation or when a special mode is used.

	7	6	5	4	3	2	1	0	Address	After reset
UF0MODC	0	CDCGDST	0	0	0	0	0	0	40E8H	00H
	0	R/W	0	0	0	0	0	0		
Bit position		Bit name					Function			
6	C	DCGDST	process forcibly s 1: For pro 0: Au	ng. By se set to 1. rcibly chan cessing (s	tting this bit ge the GET sets the CD	t to 1, the C DESCRI CGD bit of	CDCGD bit PTOR Con the UF0M	of the UF0 figuration re ODS registe	n request to CF MODS register equest to CPUE er to 1). tion request (d	can be DEC

(34) UF0 mode status register (UF0MODS)

This register indicates the configuration status. This register is read-only, in 8-bit units.

	7	6	5	4	3	2	1	0	Address	After rese		
	0	CDCGD	0	MPACK	DFLT	CONF	0	0	40F0H	00H		
	0	R	0	R	R	R	0	0				
Bit position		Bit name					Function					
6	CD	CGD	Configu 1: Fo pr 0: Au	ration reque prcibly chang ocessing.	est. ge the GE ⁻	T_DESCRI	PTOR Cor	nfiguration re	or the GET_DE equest to CPUI ation request (c	DEC		
4	MP	ACK	1: Tra O: Tra This bit request to 0 unt If this b in 8-byt be proo the data	has been p il the USBF it is not set e units. The	cket of oth cket of 8 b cally set to processed has been to 1, the has prefore, even mware be y received.	er than 8 by ytes (defau o 1 by hardw (on normal reset (it is n ardware tra en if data of fore comple	vtes. It value). vare after completio not cleared nsfers only f more tha etion of the	the GET_DI n of the stat d to 0 by Bu y the automa n 8 bytes is e GET_DES	ESCRIPTOR D us stage). It is s Reset). atically-execute sent by the OL CRIPTOR Dev	not cleared ed request JT token to		
3	DF	LT	1: Er 0: Di This bit	indicates th nables respo sables resp is automati ponded to u	onse. onse (alwa cally set to	ays no resp o 1 by Bus F	onse) (def	,	n for all the end	points is		
2	cc	NF	This bit indicates whether the SET_CONFIGURATION request has been completed. 1: SET_CONFIGURATION request has been completed. 0: SET_CONFIGURATION request has not been completed (default value). This bit is set to 1 when Configuration value = 1 is received by the SET_CONFIGURATION request. Unless this bit is set to 1, access to an endpoint other than Endpoint0 is ignored. This bit is cleared to 0 when Configuration value = 0 is received by the SET_CONFIGURATION request. It is also cleared to 0 when Bus Reset is detected.									

(35) UF0 active interface number register (UF0AIFN)

This register sets the valid Interface number that correctly responds to the GET/SET_INTERFACE request. Because Interface 0 is always valid, Interfaces 1 to 4 can be selected. This register can be read or written in 8-bit units.

r	7	6	5	4	3	2	1	0	Address	After rese		
UF0AIFN	ADDIF	0	0	0	0	0	IFNO1	IFNO0	4100H	00H		
	R/W	0	0	0	0	0	R/W	R/W				
Bit positi	on	Bit name					Function					
7	A	DDIF	1: S 0: S	upport up upport only	to the Inter / Interface	0 (default v	er specified value).		D1 and IFNO0 ot set to 1.	bits.		
1, 0	IF	NO1,	These	bits specif	y the range	e of Interfac	e numbers	to be suppo	orted.			
	IF	NO0	IFN	IO1 II	NO0		Va	alid Interface	e No.			
				1	1	0, 1, 2, 3, 4						
				1	0	0, 1, 2, 3						
			(D	1	0, 1, 2						
			()	0	0, 1	0, 1					

(36) UF0 active alternate setting register (UF0AAS)

This register specifies a link between the Interface number and Alternate Setting.

This register can be read or written in 8-bit units.

USBF of the V850E2/ME3 can set a five-series Alternate Setting (Alternate Setting 0, 1, 2, 3, and 4 can be defined) and a two-series Alternate Setting (Alternate Setting 0 and 1 can be defined) for one Interface.

	7	6	5	4	3	2	1	0	Address	After reset					
UF0AAS A	LT2	IFAL21	IFAL20	ALT2EN	ALT5	IFAL51	IFAL50	ALT5EN	4104H	00H					
F	?/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W							
Bit position		Bit name					Function								
7, 3	5, IFALn1,		these I 1: L	 These bits specify whether an n-series Alternate Setting is linked with Interface 0. When these bits are set to 1, the setting of the IFALn1 and IFALn0 bits is invalid. 1: Link n-series Alternate Setting with Interface 0. 0: Do not link n-series Alternate Setting with Interface 0 (default value). 											
6, 5, 2, 1		,	If the li	hese bits specify the Interface number to be linked with the n-series Alternate Setting the linked Interface number is outside the range specified by the UF0AIFN register, the -series Alternate Setting is invalid (ALTnEN bit = 0).											
			IFA	Ln1 IF	ALn0		Interfac	e number to	be linked						
				1 1 Links Interface 4.											
									1 0	0	Links Interface 3.				
			(D	1	Links Interfa	ace 2.								
			(D	0	Links Interfa	ace 1.								
				Do not link a five-series Alternate Setting and a two-series Alternate Setting with the same Interface number.											
4,0	AL	TnEN	These bits validate the n-series Alternate Setting. Unless these bits are set to 1, the setting of the ALTn, IFALn1, and IFALn0 bits is invalid. 1: Validate the n-series Alternate Setting.												
,			1: V	alidate the	n-series /	Alternate Set	ttina.								

For example, when the UF0AIFN register is set to 82H and the UF0AAS register is set to 15H, Interfaces 0, 1, 2, and 3 are valid. Interfaces 0 and 2 support only Alternate Setting 0. Interface 1 supports Alternate Setting 0 and 1, and Interface 3 supports Alternate Setting 0, 1, 2, 3, and 4. With this setting, requests GET_INTERFACE wIndex = 0/1/2/3, SET_INTERFACE wValue = 0 & wIndex = 0/2, SET_INTERFACE wValue = 0/1 & wIndex = 1, and SET_INTERFACE wValue = 0/1/2/3/4 & wIndex = 3 are automatically responded to, and a STALL response is made to the other GET/SET_INTERFACE requests.

(37) UF0 alternate setting status register (UF0ASS)

This register indicates the current status of the Alternate Setting.

This register is read-only, in 8-bit units.

The value received by the SET_INTERFACE request is reflected on the UF0IFn register (n = 0 to 4) as well as on this register.

	7	6	5	4	3	2	1	0	Address	After reset		
UF0ASS	0	0	0	0	AL5ST3	AL5ST2	AL5ST1	AL2ST	4108H	00H		
	R	R	R	R	R	R	R	R				
Bit position		Bit name					Function					
3 to 1	o 1 AL5ST3 to AL5ST1	.5ST3 to	These	bits indica	ate the curre	ent status o	f the five-se	eries Alterna	te Setting.			
	AL5ST1		AL5	ST3 A	L5ST2	AL5ST1	Sele	ected Altern	ate Setting nu	mber		
			1	1 0 0 Alternate Setting 4								
			()	1	1	Alternate	Setting 3				
			0)	1	0	Alternate	Setting 2				
			0)	0	1	Alternate	Alternate Setting 1				
			0)	0	0	Alternate	Setting 0				
0	AL	2ST	Alterna 1: A		number). etting 1	t status of t	he two-serie	es Alternate	Setting (selec	sted		

(38) UF0 endpoint 1 interface mapping register (UF0E1IM)

This register specifies for which Interface and Alternate Setting Endpoint1 is valid.

This register can be read or written in 8-bit units.

The setting of this register and the Alternate Setting selected by the SET_INTERFACE request indicate whether Endpoint1 is currently valid, and the hardware determines how the

GET_STATUS/CLEAR_FEATURE/SET_FEATURE Endpoint1 request and the IN transaction to Endpoint1 are responded to, and whether the related bits are valid or invalid.

	7	6	5	4	3	2	1	0	Address	After rese				
UF0E1IM	E1EN2 R/W	E1EN1 R/W	E1EN0 R/W	E12AL1 R/W	E15AL4 R/W	E15AL3 R/W	B E15AL2 R/W	E15AL1 R/W	410CH	00H				
Bit positi	on	Bit name					Function							
7 to 5		IEN2 to IEN0	Alterna	te Setting.	The endp	oint is link		nate Setting	e two-/five-se 0. The endp ting 1 to 4.					
			E1E	N2 E1	EN1 E	1EN0		Link s	tatus					
			1		1	1	Not linked w	ith Interface						
			1		1	0								
			1		0	1	Linked with Interface 4 and Alternate Setting							
					1		0	0	Linked with Interface 3 and Alternate Setting 0					
			0		1	1	Linked with Interface 2 and Alternate Setting							
			0		1	0	Linked with I	nterface 1 a	nd Alternate	Setting 0				
			0		0	1	Linked with Interface 0 and Alternate							
							0		0	0	Not linked w	ith Interface	(default value	e)
			When these bits are set to 110 or 111, they are invalid even if the E12AL1 bit to 0. If the endpoint is linked, setting of the CONF bit of the UF0MODS register to that Endpoint1 is valid.											
4	E	12AL1	Setting 1: Va 0: Do (d	of the link alidate the p not valida efault valu	ed Interface endpoint w ate the enc e).	e are set t /hen Alteri lpoint ever	o 1. nate Setting	1 is set with nate Setting	ing and the A CONF bit = 1 1 is set with					
3 to 0		15AL4 to 15AL1	Setting 1: Va 0: De	of the link alidate the	ed Interfac endpoint w ate the enc	e are set t /hen Alteri	o n. nate Setting	n is set with	etting and the CONF bit = 1 n is set with					

(39) UF0 endpoint 2 interface mapping register (UF0E2IM)

This register specifies for which Interface and Alternate Setting Endpoint2 is valid.

This register can be read or written in 8-bit units.

The setting of this register and the Alternate Setting selected by the SET_INTERFACE request indicate whether Endpoint2 is currently valid, and the hardware determines how the GET_STATUS/CLEAR_FEATURE/SET_FEATURE Endpoint2 request and the OUT transaction to Endpoint2 are responded to, and whether the related bits are valid or invalid.

	7	6	5	4	3	2	1	0	Address	After rese						
UF0E2IM	E2EN2 R/W	E2EN1 R/W	E2EN0 R/W	E22AL1 R/W	E25AL4 R/W	E25AL3 R/W	E25AL2 R/W	E25AL1 R/W	4110H	00H						
Bit positi	on	Bit name					Function									
7 to 5		EN2 to EN0	Alterna	te Setting.	The endp	oint is linke	•	nate Setting	e two-/five-se 0. The endp ting 1 to 4.							
			E2E	N2 E2	EN1 E	2EN0		Link s	status							
			1		1	1	Not linked w	ith Interface								
			1		1	0										
			1		0	1	Linked with Interface 4 and Alternate Settin									
					1		0	0	Linked with I	Interface 3 a	nd Alternate	Setting 0				
			C		1	1	Linked with I	Interface 2 a	nd Alternate	Setting 0						
			C		1	0	Linked with I	Interface 1 a	nd Alternate	Setting 0						
			C	1	0	1	Linked with I	Interface 0 a	nd Alternate	Setting 0						
			C	1	0	0	Not linked w	ith Interface	(default value	e)						
			to 0. If the e	When these bits are set to 110 or 111, they are invalid even if the E22AL1 bit is cleared to 0. If the endpoint is linked, setting of the CONF bit of the UF0MODS register to 1 indicates that Endpoint2 is valid.												
4	E2	2AL1	Setting 1: V 0: D (0	of the linke alidate the o not valida lefault value	ed Interfacter endpoint wate the end e).	e are set to hen Alterr point ever	o 1. nate Setting n when Altern	1 is set with nate Setting	ting and the <i>F</i> CONF bit = ⁻ 1 is set with	I.						
3 to 0		5AL4 to 5AL1	Setting 1: V 0: D	of the linke alidate the	ed Interfact endpoint w ate the end	e are set to hen Alterr	o n. nate Setting	This bit is valid when the E25AL4 to E25AL1 bits are 0000. These bits validate Endpoint2 when the five-series Alternate Setting and the Alternate Setting of the linked Interface are set to n. 1: Validate the endpoint when Alternate Setting n is set with CONF bit = 1. 0: Do not validate the endpoint even when Alternate Setting n is set with CONF bit = 1.								

(40) UF0 endpoint 7 interface mapping register (UF0E7IM)

This register specifies for which Interface and Alternate Setting Endpoint7 is valid.

This register can be read or written in 8-bit units.

The setting of this register and the Alternate Setting selected by the SET_INTERFACE request indicate whether Endpoint7 is currently valid, and the hardware determines how the

GET_STATUS/CLEAR_FEATURE/SET_FEATURE Endpoint7 request and the IN transaction to Endpoint7 are responded to, and whether the related bits are valid or invalid.

	7	6	5	4	3	2	1	0	Address	After rese		
UF0E7IM	E7EN2 R/W	E7EN1 R/W	E7EN0 R/W	E72AL1 R/W	E75AL4 R/W	E75AL3 R/W	E75AL2 R/W	E75AL1 R/W	4124H	00H		
Bit positi	on	Bit name					Function					
7 to 5	E7	EN2 to EN0	Alterna	te Setting.	The endp	oint is link	•	nate Setting	ne two-/five-se 0. The endp tting 1 to 4.			
			E7E	N2 E7	EN1 E	7EN0		Link	ink status			
			1		1	1	Not linked w	ith Interface				
			1		1	0						
			1		0	1	Linked with Interface 4 and Alternate Setti					
					1		0	0	Linked with I	nterface 3 a	Ind Alternate	Setting 0
			0		1	1 Linked with Interface 2 and Alternate Setting						
					0	0 1 0 Linked with Interface 1 and Altern						e Setting 0
			0		0	1	Linked with I	nterface 0 a	and Alternate	Setting 0		
			0		0	0	Not linked with Interface (default value)					
			to 0. If the e		inked, sett		·		the E72AL1 b			
4	E7	2AL1	Setting 1: Va 0: Do (d	of the link alidate the o not valida efault valu	ed Interfacter endpoint wate the enc e).	e are set t vhen Altern Ipoint ever	o 1. nate Setting	1 is set with nate Setting	ting and the A CONF bit = 1 1 is set with	l.		
3 to 0		5AL4 to 5AL1	Setting 1: Va 0: De	of the link alidate the	ed Interfac endpoint w ate the enc	e are set t /hen Alterr	o n. nate Setting	n is set with	etting and the CONF bit = 1 n is set with	l.		

3.4.5 EPC Data hold registers

(1) UF0 EP0 read register (UF0E0R)

The UF0E0R register is a 64-byte FIFO that stores the OUT data sent from the host in the data stage of control transfer to/from Endpoint0.

This register is read-only, in 8-bit units. A write access to this register is ignored.

The hardware automatically transfers data to the UF0E0R register when it has received the data from the host. When the data has been correctly received, the E0ODT bit of the UF0IS1 register is set to 1. The UF0E0L register holds the quantity of the received data, and an interrupt request (INTUSBF0) is issued. The UF0E0L register always updates the length of the received data while it is receiving data. If the final transfer is correct reception, the interrupt request is generated. If the received to 0 and the interrupt request is not generated.

The data held by the UF0E0R register must be read by firmware up to the value of the amount of data read by the UF0E0L register. Check that all data has been read by using the EP0R bit of the UF0EPS0 register (the EP0R bit = 0 when all data has been read). If the value of the UF0E0L register is 0, the EP0NKR bit of the UF0E0N register is cleared to 0, and the UF0E0R register is ready for reception. The UF0E0R register is cleared when the next SETUP token has been received.

Caution Read all the data stored. Clear the FIFO to discard some data.

_	7	6	5	4	3	2	1	0	Address	After reset			
UF0E0R	E0R7	E0R6	E0R5	E0R4	E0R3	E0R2	E0R1	E0R0	4200H	Undefined			
-	R	R	R	R	R	R	R	R					
Bit positi	on	Bit name					Function						
7 to 0		DR7 to DR0		These bits store the OUT data sent from the host in the data stage of control transfer to/from Endpoint0.									

The operation of the UF0E0R register is illustrated below.

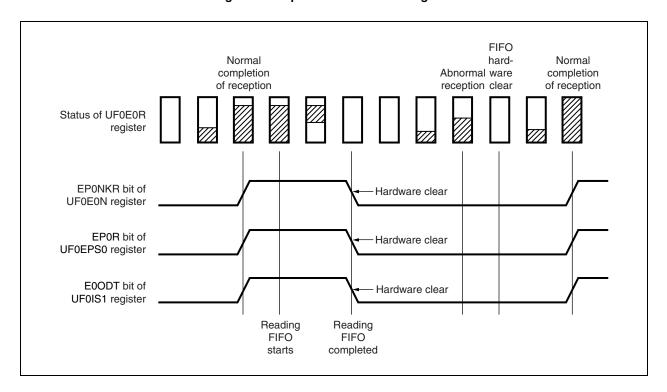


Figure 3-1. Operation of UF0E0R Register

(2) UF0 EP0 length register (UF0E0L)

The UF0E0L register stores the data length held by the UF0E0R register.

This register is read-only, in 8-bit units. A write access to this register is ignored.

The UF0E0L register always updates the length of the received data while it is receiving data. If the final transfer is abnormal reception, the UF0E0L register is cleared to 0 and the interrupt request is not generated. The interrupt request is generated only when the reception is normal, and the firmware can read as many data from the UF0E0R register as the value read from the UF0E0L register. The value of the UF0E0L register is decremented each time the UF0E0R register has been read.

-	7	6	5	4	3	2	1	0	Address	After reset
UF0E0L	E0L7	E0L6	E0L5	E0L4	E0L3	E0L2	E0L1	E0L0	4204H	00H
-	R	R	R	R	R	R	R	R		
Bit posit	ion	Bit name					Function			
7 to 0		E0L7 to E0L0	0R register.							

(3) UF0 EP0 setup register (UF0E0ST)

The UF0E0ST register holds the SETUP data sent from the host.

This register is read-only, in 8-bit units. A write access to this register is ignored.

The UF0E0ST register always writes data when a SETUP transaction has been received. The hardware sets the PROT bit of the UF0IS1 register when it has correctly received the SETUP transaction. It sets the CPUDEC bit of the UF0IS1 register in the case of a firmware-processed request. Then an interrupt request (INTUSBF0) is issued.

Caution In the case of firmware-processed request, be sure to read the request in 8-byte units. If it is not read in 8-byte units, the subsequent requests cannot be correctly decoded. The read counter of the UF0E0ST register is not cleared even when Bus Reset is received. Always read this counter in 8-byte units regardless of whether Bus Reset is received or not.

Because the UF0E0ST register always enables writing, the hardware overwrites data to this register even if a SETUP transaction is received while the data of the register is being read. Even if the SETUP transaction cannot be correctly received, the CPUDEC interrupt request and Protect interrupt request are not generated, but the previous data is discarded. If a SETUP token of less than 8 bytes is received, however, the received SETUP token is discarded, and the previously received SETUP data is retained. If the SETUP token is received more than once when control transfer is executed once, be sure to check the PROT bit of the UF0IS1 register under the conditions below. If PROT bit = 1, read the UF0E0ST register again because the SETUP transaction has been received more than once.

<1> If a request is decoded by firmware and the UF0E0R register is read or the UF0E0W register is written
<2> When preparing for a STALL response for the request to which the decode result does not correspond

Caution Be sure to read all the stored data. The UF0E0ST register is always updated by the request in the SETUP transaction.

_	7	6	5	4	3	2	1	0	Address	After reset
UF0E0ST	E0S7	E0S6	E0S5	E0S4	E0S3	E0S2	E0S1	E0S0	4208H	00H
-	R	R	R	R	R	R	R	R		
Bit positio	on	Bit name					Function			
7 to 0	E0S7 to E0S0 These bits hold the SETUP data sent from the host.									

The operation of the UF0E0ST register is illustrated below.

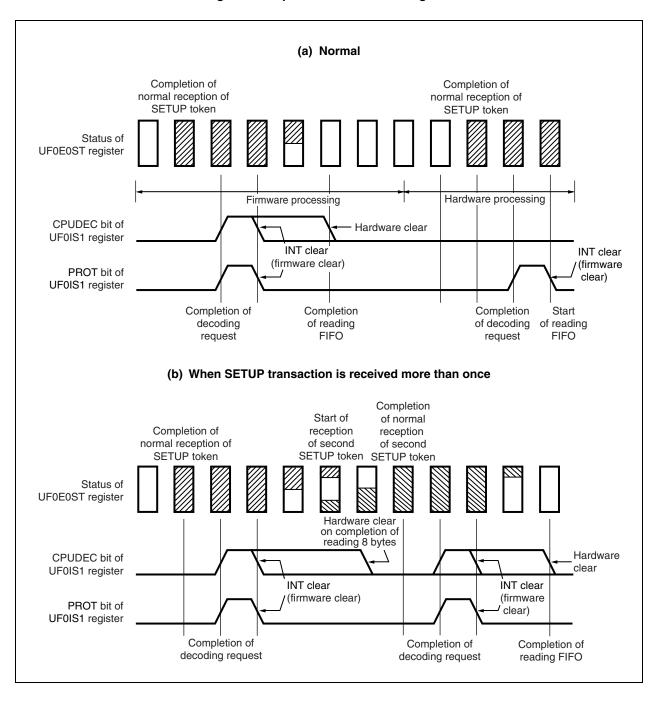
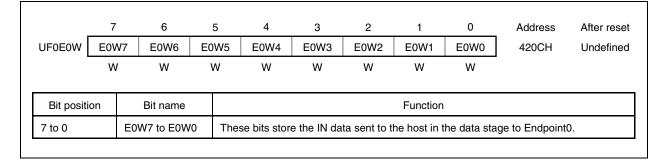
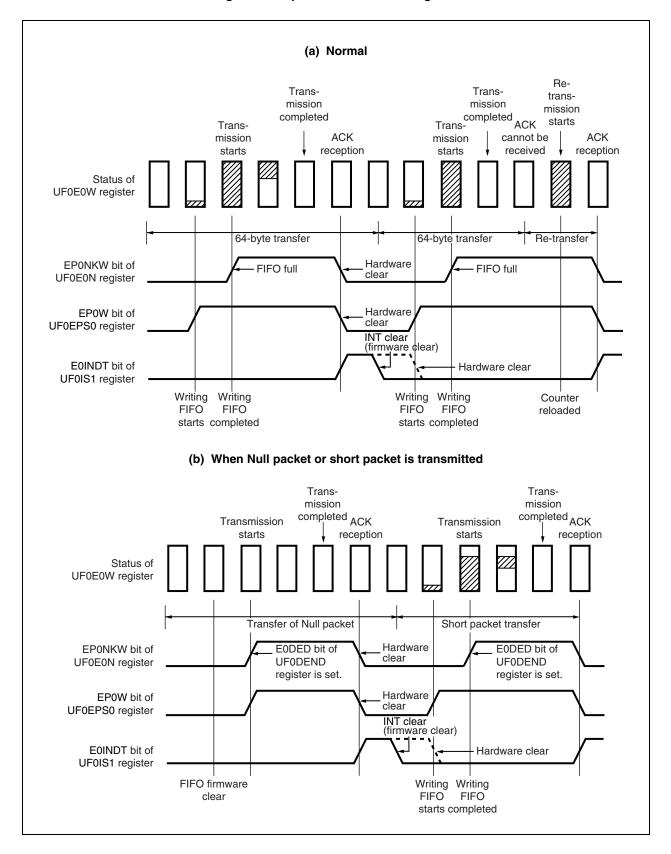


Figure 3-2. Operation of UF0E0ST Register

(4) UF0 EP0 write register (UF0E0W)


The UF0E0W register is a 64-byte FIFO that stores the IN data (passes it to SIE) sent to the host in the data stage to Endpoint0.

This register is write-only, in 8-bit units. When this register is read, 00H is read.


The hardware transmits data to the USB bus in synchronization with an IN token only when the EP0NKW bit of the UF0E0N register is set to 1 (when NAK is not transmitted). When data is transmitted and when the host correctly receives the data, the EP0NKW bit of the UF0E0N register is automatically cleared to 0 by hardware. A short packet is transmitted when data is written to the UF0E0W register and the E0DED bit of the UF0END register is set to 1 (EP0W bit of the UF0EPS0 register = 1 (data exists)). A Null packet is transmitted when the UF0EOW register is cleared and the E0DED bit of the UF0DEND register is set to 1 (EP0W bit of the UF0EDD bit of the UF0DEND register is set to 1 (EP0W bit of the UF0EDD bit of the UF0DEND register is set to 1 (EP0W bit of the UF0EDD bit of the UF0DEND register is set to 1 (EP0W bit of the UF0EDD bit of the UF0DEND register is set to 1 (EP0W bit of the UF0EPS0 register = 1 (data exists)).

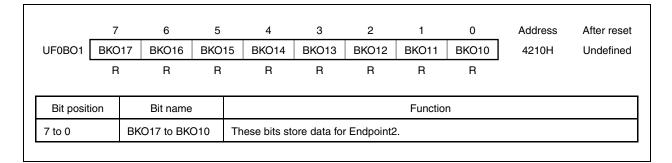
The UF0E0W register is cleared to 0 when the next SETUP token is received while transmission has not been completed yet. If the stage of control transfer (read) changes to the status stage while ACK has not been correctly received in the data stage, the UF0E0W register is automatically cleared to 0. At the same time, it is also cleared to 0 if the EP0NKW bit of the UF0E0N register is 1.

If the UF0E0W register is read while no data is in it, 00H is read.

The operation of the UF0E0W register is illustrated below.

(5) UF0 bulk out 1 register (UF0BO1)

The UF0BO1 register is a 64-byte \times 2 FIFO that stores data for Endpoint2. This register consists of two banks of 64-byte FIFOs each of which performs a toggle operation and repeatedly connects the buses on the SIE and CPU sides. The toggle operation takes place when data is in the FIFO on the SIE side and when no data is in the FIFO on the CPU side (counter value = 0).


This register is read-only, in 8-bit units. A write access to this register is ignored.

When the hardware receives data for Endpoint2 from the host, it automatically transfers the data to the UF0BO1 register. When the register correctly receives the data, a FIFO toggle operation occurs. As a result, the BKO1DT bit of the UF0IS3 register is set to 1, the quantity of the received data is held by the UF0BO1L register, and an interrupt request or DMA request is issued to the CPU. Whether the interrupt request or DMA request is issued to the UF0IDR register. In DMA mode, it is read via the EP2_BULK_OUT register.

Read the data held by the UF0BO1 register by firmware, up to the value of the amount of data read by the UF0BO1L register. When the correct received data is held by the FIFO connected to the SIE side and the value of the UF0BO1L register reaches 0, the toggle operation of the FIFO occurs, and the BKO1NK bit of the UF0EN register is automatically cleared to 0. If data greater than the value of the UF0BO1L register is read and if the FIFO toggle condition is satisfied, the toggle operation of the FIFO occurs. As a result, the next packet may be read by mistake. Note that, if the toggle condition is not satisfied, the first data is repeatedly read.

If overrun data is received while data is held by the FIFO connected to the CPU side, Endpoint2 stalls, and the FIFO on the CPU side is cleared.

When the UF0BO1 register is read while no data is in it, an undefined value is read.

Caution Be sure to read all the data stored in this register.

The operation of the UF0BO1 register is illustrated below.

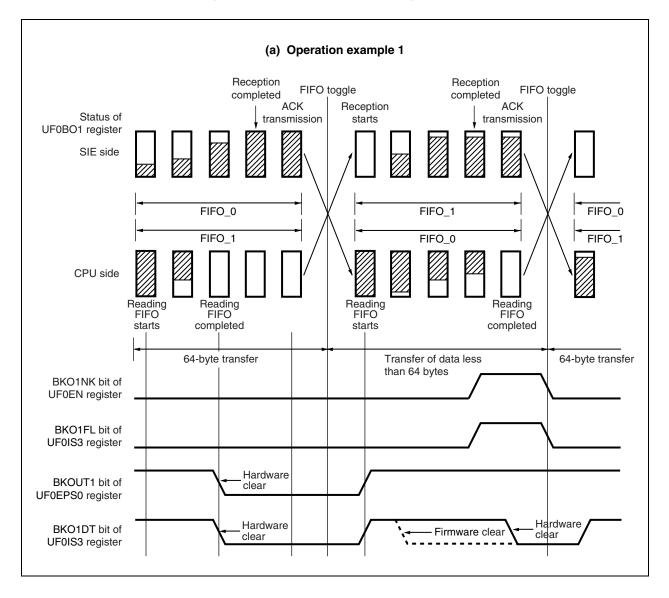


Figure 3-4. Operation of UF0BO1 Register (1/2)

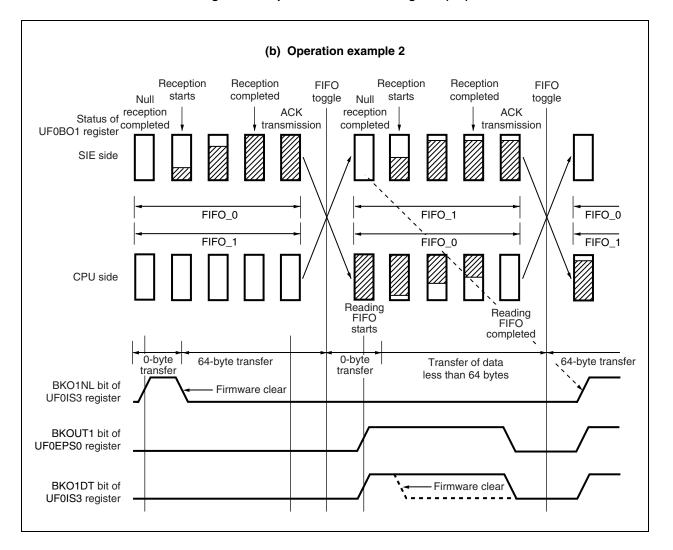


Figure 3-4. Operation of UF0BO1 Register (2/2)

(6) UF0 bulk out 1 length register (UF0BO1L)

The UF0BO1L register stores the length of the data held by the UF0BO1 register.

This register is read-only, in 8-bit units. A write access to this register is ignored.

The UF0BO1L register always updates the received data length while it is receiving data. If the final transfer is abnormal reception, the UF0BO1L register is cleared to 00H, and an interrupt request is not generated. Only if the reception is normal, the interrupt request is generated, and firmware can read as much data from the UF0BO1 register as the value read from the UF0BO1L register. The value of the UF0BO1L register is decremented each time the UF0BO1 register has been read.

	7	6	5	4	3	2	1	0	Address	After reset
UF0BO1L	BKO1L7	BKO1L6	BKO1L5	BKO1L4	BKO1L3	BKO1L2	BKO1L1	BKO1L0	4214H	00H
	R	R R		R	R	R	R	R		
Bit positi	on	Bit name Function								
7 to 0	BK	O1L7 to BK		The data length (sum of SIE side and CPU side) retained in the UF0BO1 re is stored into these bits.						

(7) UF0 bulk in 1 register (UF0BI1)

The UF0BI1 register is a 64-byte \times 2 FIFO that stores data for Endpoint1. This register consists of two banks of 64-byte FIFOs each of which performs a toggle operation and repeatedly connects the buses on the SIE and CPU sides. The toggle operation takes place when no data is in the FIFO on the SIE side and when the FIFO on the CPU side is correctly written (FIFO full or BKI1DED bit of the UF0DEND register = 1).

This register is write-only, in 8-bit units. When this register is read, 00H is read.

The hardware transmits data to the USB bus in synchronization with the IN token for Endpoint1 only when the BKI1NK bit of the UF0EN register is set to 1 (when NAK is not transmitted). The address at which data is to be written or read is managed by the hardware. Therefore, firmware can transmit data to the host only by writing the data to the UF0BI1 register sequentially. A short packet is transmitted when data is written to the UF0BI1 register and the BKI1DED bit of the UF0DEND register is set to 1 (BKIN1 bit of UF0EPS0 register = 1 (data exists)). A Null packet is transmitted when the UF0BI1 register is cleared and the BKI1DED bit of the UF0EPS0 register = 1 (data exists)). A fiter data is transmitted normally, FIFO toggle operation is started, the BKI1DT bit of the UF0IS2 register is set to 1, and an interrupt request is issued to the CPU. An interrupt request or DMA request can be selected by using the DQBI1MS bit of the UF0IDR register. In DMA mode, it is read via the EP1_BULK_IN register.

	N	BKI16 W	BKI15 W	BKI14 W	BKI13 W	BKI12 W	BKI11 W	BKI10 W	4220H	Undefined
Bit position 7 to 0	DI	Bit name		hese bits sto	re data far	Fada siati	Functior	1		

The operation of the UF0BI1 register is illustrated below.

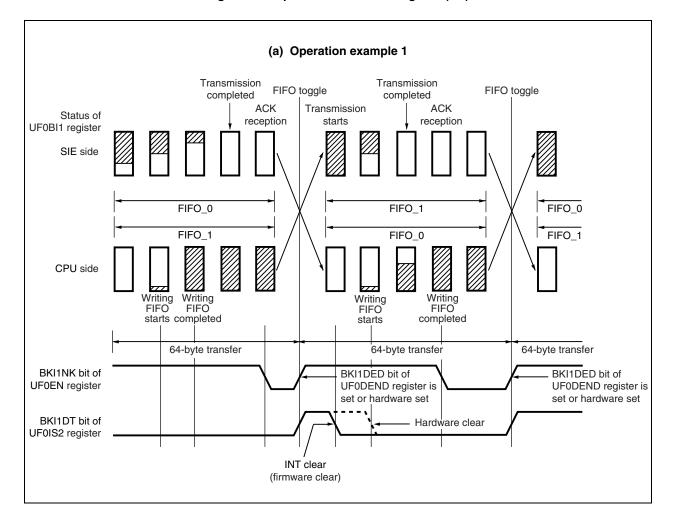


Figure 3-5. Operation of UF0BI1 Register (1/3)

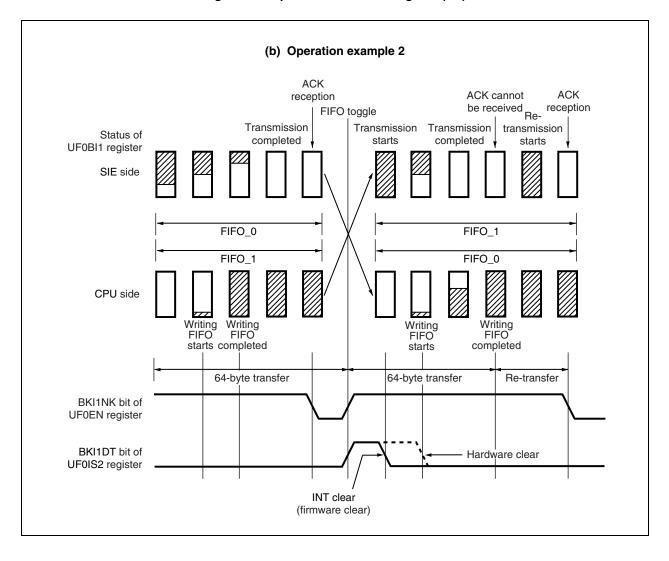


Figure 3-5. Operation of UF0BI1 Register (2/3)

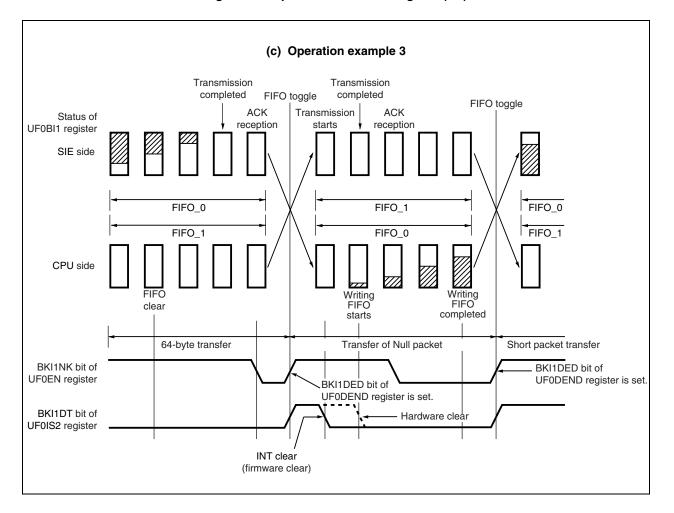
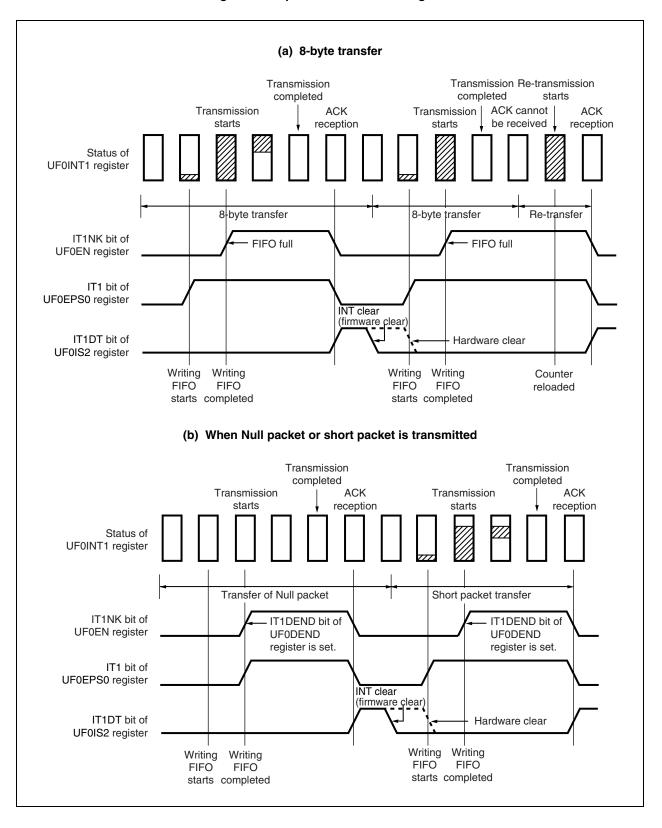


Figure 3-5. Operation of UF0BI1 Register (3/3)

(8) UF0 interrupt 1 register (UF0INT1)


The UF0INT1 register is an 8-byte FIFO that stores data for Endpoint7 (to be passed to SIE).

This register is write-only, in 8-bit units. When this register is read, 00H is read.

The hardware transmits data to the USB bus in synchronization with the IN token for Endpoint7 only when the IT1NK bit of the UF0EN register is set to 1 (when NAK is not transmitted). When the data is transmitted and the host correctly receives it, the IT1NK bit of the UF0EN register is automatically cleared to 0 by hardware. A short packet is transmitted when data is written to the UF0INT1 register and the IT1DEND bit of the UF0EPS0 register = 1 (data exists)). A Null packet is transmitted when the UF0INT1 register is set to 1 (IT1 bit of the UF0EPS0 register = 1 (data exists)). A Null packet is transmitted when the UF0EPS0 register = 1 (data exists)).

_	7	6	5	4	3	2	1	0	Address	After reset
UF0INT1	IT17	IT16	IT15	IT14	IT13	IT12	IT11	IT10	4228H	Undefined
_	W	w w w w w w								
Bit positi	on	Bit name					Function			
7 to 0	IT	17 to IT10	These	These bits store data for Endpoint7.						

The operation of the UF0INT1 register is illustrated below.

3.4.6 EPC Request data register

(1) UF0 device status register L (UF0DSTL)

This register stores the value that is to be returned in response to the $\ensuremath{\mathsf{GET_STATUS}}$ Device request.

This register can be read or written in 8-bit units.

The hardware automatically transmits the contents of this register to the host when it has received the GET_STATUS Device request.

	7	6	5	4	3	2	1	0	Address	After rese
UF0DSTL	0	0	0	0	0	0	RMWK	SFPW	4288H	00H
	0	0	0	0	0	0	R/W	R/W		
Bit position	E	Bit name					Function			
Bit position Bit name Function 1 RMWK This bit specifies whether the remote wakeup function of the device is used. 1: Enabled 0: Disabled If the device supports a remote wakeup function, this bit is set to 1 by hardwa the SET_FEATURE Device request has been received, and is cleared to 0 by when the CLEAR_FEATURE Device request has been received. If the device support a remote wakeup function, make sure that the SET_FEATURE Device not issued from the host.									y hardware e does not	
0	SFF	PW	not issued from the host. This bit indicates whether the device is self-powered or bus-powered. 1: Self-powered 0: Bus-powered							

(2) UF0 EP0 status register L (UF0E0SL)

This register stores the value that is to be returned in response to the GET_STATUS Endpoint0 request. This register can be read or written in 8-bit units. Note, however, that data can be written to this register only when the EP0NKA bit is set to 1.

A write access to this register is ignored while a USB-side access to Endpoint0 is being received.

When the E0HALT bit is set to 1 by firmware, it is not reflected until the next SETUP token is received if the control transfer immediately before is for the SET_FEATURE Endpoint0, CLEAR_FEATURE Endpoint0, GET_STATUS Endpoint0 request, or an firmware-processed request.

The hardware automatically transmits the contents of this register to the host when it has received the GET_STATUS Endpoint0 request. If Endpoint0 has stalled, the UF0E0W and UF0E0R registers are cleared, and the EP0NKW and EP0NKR bits of the UF0E0N register are cleared to 0.

_	7	6	5	4	3	2	1	0	Address	After reset			
UF0E0SL	0	0	0	0	0	0	0	E0HALT	4298H	00H			
	0 0 0 0 0 0 R/W												
Bit position	E	Bit name					Function						
0	EOH	IALT	1: St 0: No This bit receive	alled ot stalled is set to 1 d, and clea	ared to 0 by	re when the	e SET_FE when the	EATURE Endp CLEAR_FEA	•				

(3) UF0 EP1 status register L (UF0E1SL)

This register stores the value that is to be returned in response to the GET_STATUS Endpoint1 request.

This register can be read or written in 8-bit units. Note, however, that data can be written to this register only when the EP0NKA bit is set to 1.

If an error occurs in Endpoint1, the E1HALT bit is set to 1. A write access to this register is ignored while a USB-side access to Endpoint1 is being received.

The hardware automatically transmits the contents of this register to the host when it has received the GET_STATUS Endpoint1 request. If Endpoint1 has stalled, the UF0BI1 register is cleared and the BKI1NK bit of the UF0EN register is cleared to 0.

Because writing this register is always masked when transfer to Endpoint1, rather than control transfer, is executed, be sure to check this register to see if data has been correctly written to it.

	7	6	5	4	3	2	1	0	Address	After reset			
UF0E1SL	0	0	0	0	0	0	0	E1HALT	42A0H	00H			
	0	0	0	0 0 0 0 0 R/W									
Bit position	E	Bit name					Function						
0	E1H	HALT	1: St 0: No This bit receive SET_C	alled ot stalled is set to 1 d. It is clea ONFIGUR	ared to 0 by ATION requ	re when the v hardware uest, or the	e SET_FE when the SET_INT	EATURE Endp CLEAR_FEA ERFACE requ	TURE Endpoi uest for the In	int1 request, terface to			

(4) UF0 EP2 status register L (UF0E2SL)

This register stores the value that is to be returned in response to the GET_STATUS Endpoint2 request. This register can be read or written in 8-bit units. Note, however, that data can be written to this register only when the EP0NKA bit is set to 1.

If an error occurs in Endpoint2, the E2HALT bit is set to 1. A write access to this register is ignored while a USB-side access to Endpoint2 is being received.

The hardware automatically transmits the contents of this register to the host when it has received the GET_STATUS Endpoint2 request. If Endpoint2 has stalled, the UF0BO1 register is cleared and the BKO1NK bit of the UF0EN register is cleared to 0.

Because writing this register is always masked when transfer to Endpoint2, rather than control transfer, is executed, be sure to check this register to see if data has been correctly written to it.

	7	6	5	4	3	2	1	0 E2HALT	Address 42A8H	After rese 00H
	0	0	0	0	0	0	0	R/W	427(011	0011
Bit position	n E	Bit name					Function			
0	E2H	IALT	1: Si 0: No This bit receive SET_C	alled ot stalled is set to 1 d. It is clea ONFIGUR	by hardwa ared to 0 by ATION requ	v hardware uest, or the	e SET_FE when the SET_INT	EATURE Endp CLEAR_FEA ERFACE requisived. DATA P	TURE Endpoi uest for the In	nt2 request, terface to

(5) UF0 EP7 status register L (UF0E7SL)

This register stores the value that is to be returned in response to the GET_STATUS Endpoint7 request.

This register can be read or written in 8-bit units. Note, however, that data can be written to this register only when the EP0NKA bit is set to 1.

If an error occurs in Endpoint7, the E7HALT bit is set to 1. A write access to this register is ignored while a USB-side access to Endpoint7 is being received.

The hardware automatically transmits the contents of this register to the host when it has received the GET_STATUS Endpoint7 request. If Endpoint7 has stalled, the UF0INT1 register is cleared and the IT1NK bit of the UF0EN register is cleared to 0.

Because writing this register is always masked when transfer to Endpoint7, rather than control transfer, is executed, be sure to check this register to see if data has been correctly written to it.

	7	6	5	4	3	2	1	0	Address	After reset				
UF0E7SL	0	0 0 0 0 0 E7HALT 42D0H 0 0 0 0 0 R/W 42D0H												
	0	0	0	0 0 0 0 0 R/W										
Bit position	E	Bit name					Function							
0	E7ŀ	HALT	1: St 0: No This bit receive SET_C	alled ot stalled is set to 1 d. It is clea ONFIGUR	ared to 0 by ATION requ	re when the v hardware uest, or the	e SET_FE when the SET_INT	ATURE Endp CLEAR_FEA ERFACE requ	TURE Endpoi uest for the In	int7 request, terface to				

(6) UF0 address register (UF0ADRS)

This register stores the device address.

This register is read-only, in 8-bit units.

The device address sent by the SET_ADDRESS request is analyzed and the resultant value is automatically written to this register. If the SET_ADDRESS request is processed by firmware, the value of this register is reflected as the device address when the SUCCESS signal is received in the status stage.

Caution Do not write to this register. Operation is not guaranteed if writing to this register is performed.

_	7	6	5	4	3	2	1	0	Address	After reset
UF0ADRS	0	ADRS6	ADRS5	ADRS4	ADRS3	ADRS2	ADRS1	ADRS0	4300H	00H
	0	R	R R R R R							
Bit positior	n	Bit name					Function			
6 to 0		ORS6 to ORS0	These bits hold the device address of SIE.							

(7) UF0 configuration register (UF0CNF)

This register stores the value that is to be returned in response to the GET_CONFIGURATION request. This register is read-only, in 8-bit units.

When the SET_CONFIGURATION request is received, its wValue is automatically written to this register. Only 00H or 01H is taken as the wValue value. A STALL response is performed when a value other than 00H or 01H has been received.

When a change of the value of this register from 00H to other than 00H is detected, the CONF bits of the UF0MODS register are set to 1.

Caution Do not write to this register. Operation is not guaranteed if writing to this register is performed.

_	7	6	5	4	3	2	1	0	Address	After reset
UF0CNF	0	0	0	0	0	0	0	CONF0	4304H	00H
-	0	0 0 0 0 0 0 0 CONFO 0 0 0 0 0 R								
Bit positio	on Bit name Function									
0 CONF0 These bits hold the data to be returned in response to the request.								se to the GE	LCONFIGUR	ATION

(8) UF0 interface 0 register (UF0IF0)

This register stores the value that is to be returned in response to the GET_INTERFACE wIndex = 0 request. This register is read-only, in 8-bit units.

When the SET_INTERFACE request is received, its wValue is automatically written to this register.

If the SET_INTERFACE request is processed by firmware, wIndex and wValue are decoded, and the setting of endpoint is automatically changed. At this time, the status bit of the target endpoint and DPID are automatically cleared to 0, depending on the setting. The FIFO is not cleared automatically.

Caution Do not write to this register. Operation is not guaranteed if writing to this register is performed.

UF0IF0	7 0 0	6 0 0	5 0 0	4 0 0	3 0 0	2 IF02 B	1 IF01 B	0 IF00 B	Address 4308H	After reset 00H
Bit posi	-	Bit name		0	0		Function			
2 to 0		IF02 to IF00 These bits hold the data to be returned in response to GET_INTERFACE wIndex = request.								

(9) UF0 interface 1 to 4 registers (UF0IF1 to UF0IF4)

These registers store the value that is to be returned in response to the GET_INTERFACE wIndex = n request (n = 1 to 4).

These registers are read-only, in 8-bit units.

When the SET_INTERFACE request is received, its wValue is automatically written to these registers.

These registers are invalidated according to the setting of the UF0AIFN and UF0AAS registers.

If the SET_INTERFACE request is processed by firmware, windex and wValue are decoded, and the setting of endpoint is automatically changed. At this time, the status bit of the target endpoint and DPID are automatically cleared to 0, depending on the setting. The FIFO is not cleared automatically.

Caution Do not write to this register. Operation is not guaranteed if writing to this register is performed.

	7		6	5	4	3	2	1	0	Address	After reset
UF0IF1	0		0	0	0	0	IF12	IF11	IF10	430CH	00H
•	0		0	0	0	0	R	R	R		
UF0IF2	0		0	0	0	0	IF22	IF21	IF20	4310H	00H
-	0		0	0	0	0	R	R	R		
UF0IF3	0		0	0	0	0	IF32	IF31	IF30	4314H	00H
	0		0	0	0	0	R	R	R		
UF0IF4	0		0	0	0	0	IF42	IF41	IF40	4318H	00H
	0		0	0	0	0	R	R	R		
Bit posit	ion		Bit name					Function			
2 to 0		IFr	n2 to IFn0	These reque		INTERFACE w	Index = n				
Remark	x n =	1 to	o 4								

(10) UF0 descriptor length register (UF0DSCL)

This register stores the length of the value that is to be returned in response to the GET_DESCRIPTOR Configuration request. The value of this register is the number of bytes of all the descriptors set by the UF0CIEn register minus 1 (n = 0 to 255). The total descriptor length that is to be returned in response to the GET_DESCRIPTOR Configuration request is determined according to the value of this register.

This register can be read or written in 8-bit units. However, data can be written to this register only when the EP0NKA bit is set to 1.

Processing of wLength is automatically controlled. If this register is set to 00H, it means that the descriptor to be returned is 1 byte long. If the register is set to FFH, a descriptor length of 256 bytes is returned. When a descriptor exceeding 256 bytes in length is used, set the CDCGDST bit of the UF0MODC register to 1 and process the GET_DESCRIPTOR request by firmware (at this time, the CDCGD bit of the UF0MODS register is also set to 1).

	7	6	5	4	3	2	1	0	Address	After reset
UF0DSCL	DPL7	DPL6	DPL5	DPL4	DPL3	DPL2	DPL1	DPL0	4340H	00H
-	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Bit position Bit name Function										
7 to 0	DP DP	L7 to L0	These bits set the value of the number of bytes of all the descriptors to be returned in response to the GET_DESCRIPTOR Configuration request minus 1.							

(11) UF0 device descriptor registers 0 to 17 (UF0DD0 to UF0DD17)

These registers store the value to be returned in response to the GET_DESCRIPTOR Device request. These registers can be read or written in 8-bit units. However, data can be written to these registers only when the EP0NKA bit is set to 1.

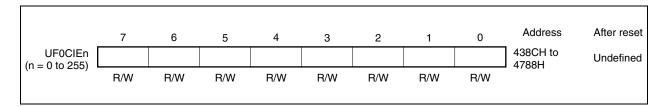
- Cautions 1. To rewrite this register, set the EP0NKA bit of the UF0E0NA register to 1 before reading the register contents, and rewrite the register contents after confirming that the bit has been set, in order to prevent conflict between a read access by SIE and a write access.
 - 2. Use the value defined by USB Specification Ver. 2.0 and the latest Class Specification as the set value.

	7	6	5	4	3	2	1	0	Address	After reset
UF0DDn (n = 0 to 17)									See Table 3-12.	Undefined
	R/W	_								

Symbol	Address	Field Name	Contents
UF0DD0	4344H	bLength	Size of this descriptor
UF0DD1	4348H	bDescriptorType	Device descriptor type
UF0DD2	434CH	bcdUSB	Value below decimal point of Rev. number of USB specification
UF0DD3	4350H		Value above decimal point of Rev. number of USB specification
UF0DD4	4354H	bDeviceClass	Class code
UF0DD5	4358H	bDeviceSubClass	Subclass code
UF0DD6	435CH	bDeviceProtocol	Protocol code
UF0DD7	4360H	bMaxPacketSize0	Maximum packet size of Endpoint0
UF0DD8	4364H	idVendor	Lower value of vendor ID
UF0DD9	4368H		Higher value of vendor ID
UF0DD10	436CH	idProduct	Lower value of product ID
UF0DD11	4370H		Higher value of product ID
UF0DD12	4374H	bcdDevice	Lower value of device release number
UF0DD13	4378H		Higher value of device release number
UF0DD14	437CH	iManufacturer	Index of string descriptor describing manufacturer
UF0DD15	4380H	iProduct	Index of string descriptor describing product
UF0DD16	4384H	ISerialNumber	Index of string descriptor describing device serial number
UF0DD17	4388H	BNumConfigurations	Number of settable configurations

(12) UF0 configuration/interface/endpoint descriptor registers 0 to 255 (UF0CIE0 to UF0CIE255)

These registers store the value to be returned in response to the GET_DESCRIPTOR Configuration request. These registers can be read or written in 8-bit units. However, data can be written to these registers only when the EP0NKA bit is set to 1.


Descriptor information of up to 256 bytes can be stored in these registers. Store each descriptor in the order of Configuration, Interface, and Endpoint (see **Table 3-13**). If there are two or more Interfaces, repeatedly store the data following the Interface descriptor.

Address	Descriptor Stored
438CH to 43ACH	Configuration descriptor (9 bytes)
43B0H to 43D0H	Interface descriptor (9 bytes)
43D4H to 43ECH	Endpoint1 descriptor (7 bytes)
43F0H to 4408H	Endpoint2 descriptor (7 bytes)
:	:
xxxxH	Interface descriptor (9 bytes)
xxxxH + 9	Endpoint1 descriptor (7 bytes)
xxxxH + 16	Endpoint2 descriptor (7 bytes)
:	:

Table 3-13. Mabbillu UI UFUCIEII neulsiel	Table 3-13.	Mapping of UF0CIEn Register
---	-------------	-----------------------------

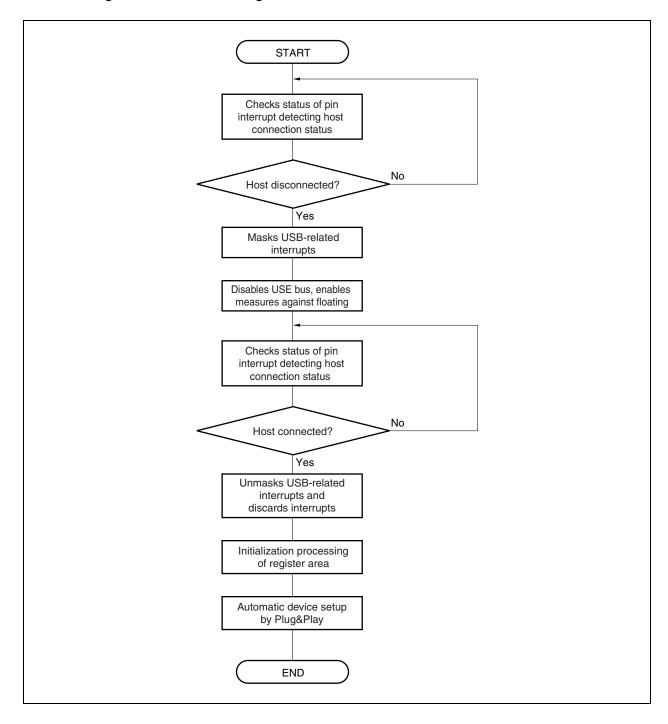
The range of the valid data that can be set to these registers varies according to the setting of the UF0DSCL register. In addition to the descriptors listed in Table 3-14, descriptors peculiar to classes and vendors can also be stored.

- Cautions 1. To rewrite this register, set the EP0NKA bit of the UF0E0NA register to 1 before reading the register contents, and rewrite the register contents after confirming that the bit has been set, in order to prevent conflict between a read access by SIE and a write access.
 - 2. Use the value defined by USB Specification Ver. 2.0 and the latest Class Specification as the set value.

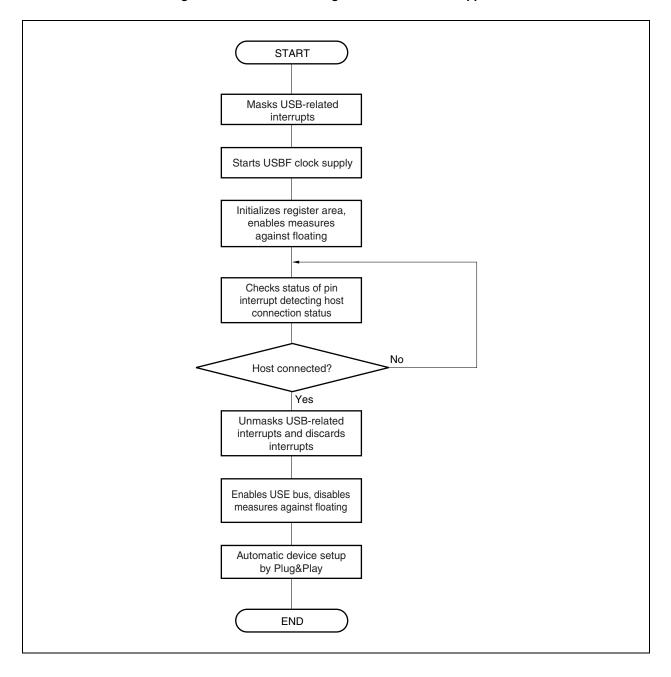
Table 3-14. Data of UF0CIEn Register

(a) Configuration descriptor (9 bytes)

Offset	Field Name	Contents
0	bLength	Size of this descriptor
1	bDescriptorType	Descriptor type
2	wTotalLength	Lower value of the total number of bytes of Configuration, all Interface, and all Endpoint descriptors
3		Higher value of the total number of bytes of Configuration, all Interface, and all Endpoint descriptors
4	bNumInterface	Number of Interfaces
5	bConfigurationValue	Value to select this Configuration
6	iConfiguration	Index of string descriptor describing this Configuration
7	bmAttributes	Features of this Configuration (self-powered, without remote wakeup)
8	MaxPower	Maximum power consumption of this Configuration (unit: mA)


(b) Interface descriptor (9 bytes)

Offset	Field Name	Contents			
0	bLength	Size of this descriptor			
1	bDescriptorType	Descriptor type			
2	bInterfaceNumber	Value of this Interface			
3	bAlternateSetting	Value to select alternate setting of Interface			
4	bNumEndpoints	Number of usable Endpoints			
5	bInterfaceClass	Class code			
6	bInterfaceSubClass	Subclass code			
7	bInterfaceProtocol	Protocol code			
8	Interface	Index of string descriptor describing this Interface			


(c) Endpoint descriptor (7 bytes)

Offset	Field Name	Contents			
0	bLength	Size of this descriptor			
1	bDescriptorType	Descriptor type			
2	bEndpointAddress	Address/transfer direction of this Endpoint			
3	bmAttributes	Transfer type			
4	wMaxPaketSize	Lower value of maximum number of transfer data			
5		Higher value of maximum number of transfer data			
6	bInterval	Transfer interval			

The following flowcharts illustrate the program execution when the host is disconnected and then reconnected, and the program execution when power is supplied.

3.5 STALL Handshake or No Handshake

Errors of USBF are defined to be handled as follows.

Transfer Type	Transaction	Target Packet	Error Type	Function Response	Processing
Control transfer/	IN/OUT/SETUP	Token	Endpoint not supported	No response	None
bulk transfer/ interrupt transfer			Endpoint transfer direction mismatch	No response	None
			CRC error	No response	None
			Bit stuffing error	No response	None
Control transfer/	OUT/SETUP	Data	Timeout	No response	None
bulk transfer			PID check error	No response	None
			Unsupported PID (other than Data PID)	No response	None
			CRC error	No response	Discard received data
			Bit stuffing error	No response	Discard received data
	OUT	Data	Data PID mismatch	ACK	Discard received data
Control transfer (SETUP stage)	SETUP	Data	Overrun	No response	Discard received data
Control transfer (data stage)	OUT	Data	Overrun	No response ^{Note 1}	Set SNDSTL bit of UF0SDS register to 1 and discard received data
Control transfer (status stage)	OUT	Data	Overrun	ACK or no response ^{Note 2}	Set SNDSTL bit of UF0SDS register to 1 and discard received data
Bulk transfer	OUT	Data	Overrun	No response ^{Note 1}	Set EnHALT bit of UF0EnSL register (n = 0 to 2, 7) to 1
Control transfer/ bulk transfer/	IN	Handshake	PID check error	-	Hold transferred data and re-transfer data ^{Note 3}
interrupt transfer			Unsupported PID (other than ACK PID)	_	Hold transferred data and re-transfer data ^{Note 3}
			Timeout	_	Hold transferred data and re-transfer data

Table 3-15.	Errors of USE	Function
-------------	---------------	-----------------

Notes 1. A STALL response is made to re-transfer by the host.

- 2. An ACK response is made if the transfer data is of less than MaxPacketSize and the data received in the status stage is discarded. If MaxPacketSize is exceeded, no response is made, the SNDSTL bit of the UF0SDS register is set to 1, and the received data is discarded.
- **3.** If an OUT transaction indicating a change from the data stage to the status stage is received during control transfer, an error is not handled and it is assumed that reception has been correctly completed.

Cautions 1. It is judged by the Alternate Setting number currently set whether the target Endpoint is valid or invalid.

2. For the response to the request included in control transfer to/from Endpoint0, see 3.3 Requests.

3.6 Register Values in Specific Status

Register Name	After CPU Reset	After Bus Reset
UF0E0N register	00H	Value is held.
UF0E0NA register	00H	Value is held.
UF0EN register	00H	Value is held.
UF0ENM register	00H	Value is held.
UF0SDS register	00H	Value is held.
UF0CLR register	00H	Value is held.
UF0SET register	00H	Value is held.
UF0EPS0 register	00H	Value is held.
UF0EPS1 register	00H	Value is held.
UF0EPS2 register	00H	Value is held.
UF0IS0 register	00H	Value is held.
UF0IS1 register	00H	Value is held.
UF0IS2 register	00H	Value is held.
UF0IS3 register	00H	Value is held.
UF0IS4 register	00H	Value is held.
UF0IM0 register	00H	Value is held.
UF0IM1 register	00H	Value is held.
UF0IM2 register	00H	Value is held.
UF0IM3 register	00H	Value is held.
UF0IM4 register	00H	Value is held.
UF0IC0 register	FFH	Value is held.
UF0IC1 register	FFH	Value is held.
UF0IC2 register	FFH	Value is held.
UF0IC3 register	FFH	Value is held.
UF0IC4 register	FFH	Value is held.
UF0IDR register	00H	Value is held.
UF0DMS0 register	00H	Value is held.
UF0DMS1 register	00H	Value is held.
UF0FIC0 register	00H	Value is held.
UF0FIC1 register	00H	Value is held.
UF0DEND register	00H	Value is held.
UF0GPR register	00H	Value is held.
UF0MODC register	00H	Value is held.
UF0MODS register	00Н	Bit 2 (CONF): Cleared (0), Other bits: Value is held.
UF0AIFN register	00H	Value is held.
UF0AAS register	00H	Value is held.
UF0ASS register	00H	00H
UF0E1IM register	00H	Value is held.
UF0E2IM register	00H	Value is held.

Table 3-16. Register Values in Specific Status (1/2)

Register Name	After CPU Reset	After Bus Reset	
UF0E3IM register	00H	Value is held.	
UF0E4IM register	00H	Value is held.	
UF0E7IM register	00H	Value is held.	
UF0E8IM register	00H	Value is held.	
UF0E0R register	Undefined ^{Note 1}	Value is held.	
UF0E0L register	00H Value is held.		
UF0E0ST register	00H	00H	
UF0E0W register	Undefined ^{Note 1}	Value is held.	
UF0BO1 register	Undefined ^{Note 1}	Value is held.	
UF0BO1L register	00H	Value is held.	
UF0BO2 register	Undefined ^{Note 1}	Value is held.	
UF0BO2L register	00H	Value is held.	
UF0BI1 register	Undefined ^{Note 1}	Value is held.	
UF0BI2 register	Undefined ^{Note 1}	Value is held.	
UF0INT1 register	Undefined	Value is held.	
UF0INT2 register	Undefined	Value is held.	
UF0DSTL register	00H	00H	
UF0E0SL register	00H	00H	
UF0E1SL register	00H	00H	
UF0E2SL register	00H	00H	
UF0E3SL register	00H	00Н	
UF0E4SL register	00H	00H	
UF0E7SL register	00H	00H	
UF0E8SL register	00H	00H	
UF0ADRS register	00H	00H	
UF0CNF register	00H	00H	
UF0IF0 register	00H	00H	
UF0IF1 register	00H	00H	
UF0IF2 register	00H	00H	
UF0IF3 register	00H	00H	
UF0IF4 register	00H	00H	
UF0DSCL register	00H	Value is held.	
UF0DDn register (n = 0 to 17)	Note 2	Note 2	
UF0CIEn register (n = 0 to 255)	Note 2	Note 2	

- **Notes 1.** This register can be cleared by the RESET signal because its write pointer, counter, and read pointer are cleared when the RESET signal becomes active, in the same manner as clearing by the UF0FICn register, as the register is controlled by FIFO.
 - 2. This register cannot be cleared. Because data can be written to it by firmware, however, any value can be written to the register (before doing so, however, be sure to set the EP0NKA bit of the UF0E0NA register to 1).

3.7 Firmware Processing

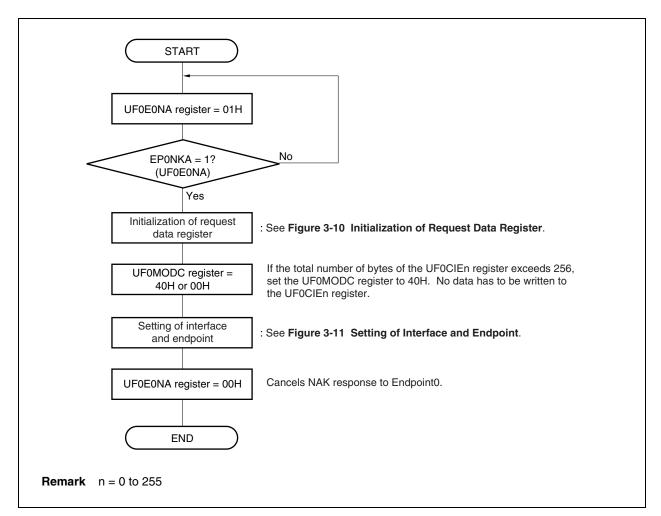
The following firmware processing is performed.

- Setting processing on device side for the SET_CONFIGURATION, SET_INTERFACE, SET_FEATURE, and CLEAR_FEATURE requests during enumeration processing
- Analysis and processing of XXXXStandard, XXXXClass, and XXXXVendor requests not subject to automatic processing
- O Reading data following bulk-transferred OUT token from receive buffer
- O Writing data to be returned in response to bulk-transferred IN token
- O Writing data to be returned in response to interrupt-transferred token

The following table lists the requests supported by firmware.

Request	Reception Side	Processing/ Frequency	Explanation	
CLEAR_FEATURE	Interface	Automatic STALL response	It is considered that this request does not come to Interface because there is no function selector value, though it is reserved for bmRequestType. When this request is received, the hardware makes an automatic STALL response.	
SET_FEATURE	Interface	Automatic STALL response	It is considered that this request does not come to Interface because there is no function selector value, though it is reserved for bmRequestType. When this request is received, the hardware makes an automatic STALL response.	
GET_DESCRIPTOR	String	Firmware	Returns the string descriptor. When this request is received by the SETUP token, the hardware generates the CPUDEC interrupt request for firmware. Ffirmware decodes the contents of the request from the CPUDEC interrupt request, and writes the data to be returned to the host, to the UF0E0W register.	
SET_DESCRIPTOR	Device	Firmware	Rewrites the device descriptor. When this request is received by the SETUP token, the hardware generates the CPUDEC interrupt request for firmware. Firmware decodes the contents of the request from the CPUDEC interrupt request, and the writes the data for the next control transfer (OUT) to the UF0DDn register (n = 0 to 17).	
SET_DESCRIPTOR	Configuration	Firmware	Rewrites the configuration descriptor. When this request is received by the SETUP token, the hardware generates the CPUDEC interrupt request for firmware. Firmware decodes the contents of the request from the CPUDEC interrupt request, and the writes the data for the next control transfer (OUT) to the UF0CIEn register (n = 0 to 255).	
SET_DESCRIPTOR	String	Firmware	Rewrites the string descriptor. When this request is received by the SETUP token, the hardware generates the CPUDEC interrupt request for firmware. Firmware decodes the contents of the request from the CPUDEC interrupt request, and loads the data for the next control transfer (OUT).	
Other	NA	Firmware	When this request is received by the SETUP token, the hardware generates the CPUDEC interrupt request for firmware. Firmware decodes the contents of the request from the CPUDEC interrupt request, and performs the necessary processing.	

Table 3-17. Firmware-Supported Standard Requests	Table 3-17.	Firmware-Su	pported	Standard	Requests
--	-------------	-------------	---------	----------	----------

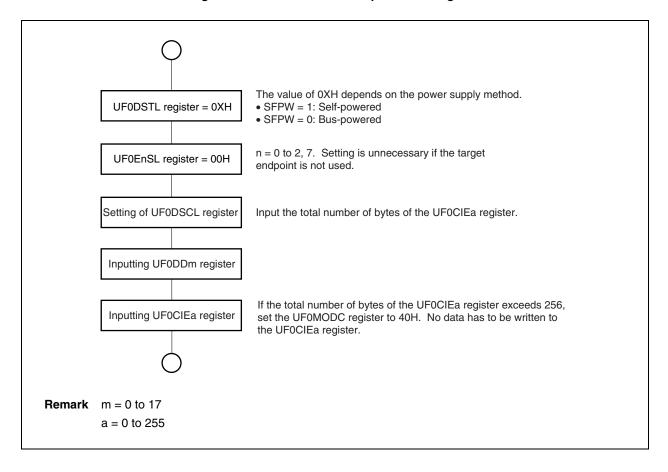

3.7.1 Initialization processing


Initialization processing is executed in the following two ways.

- Initialization of request data register
- Setting of interrupt

When the request data register is initialized, data for the GET_XXXX request to which a value is to be automatically returned is written and an endpoint is allocated to an interface. In the interrupt settings, the interrupt sources that do not have to be checked can be masked by using the UF0IMn register (n = 0 to 4).

The following flowcharts illustrate the above processing.



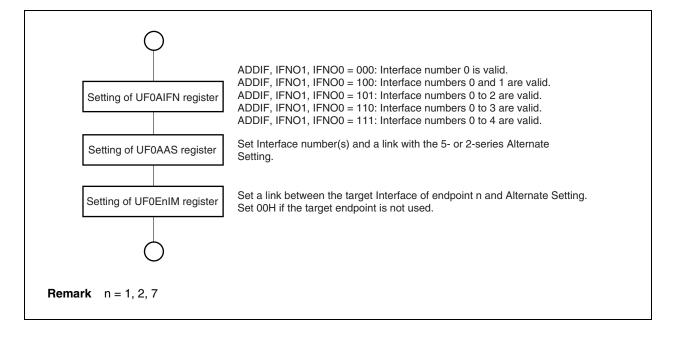
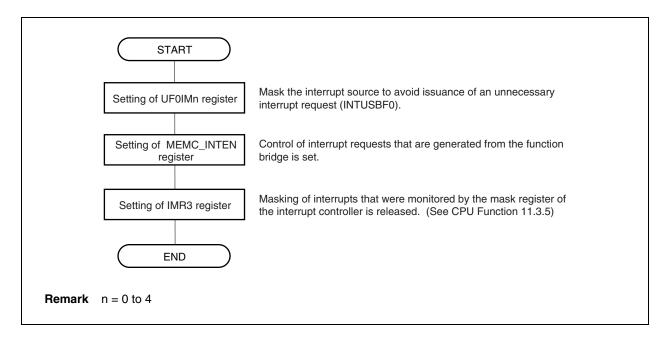
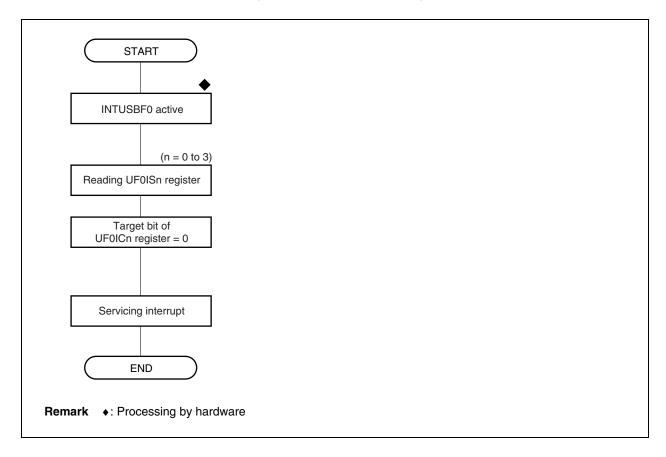



Figure 3-10. Initialization of Request Data Register



3.7.2 Interrupt servicing

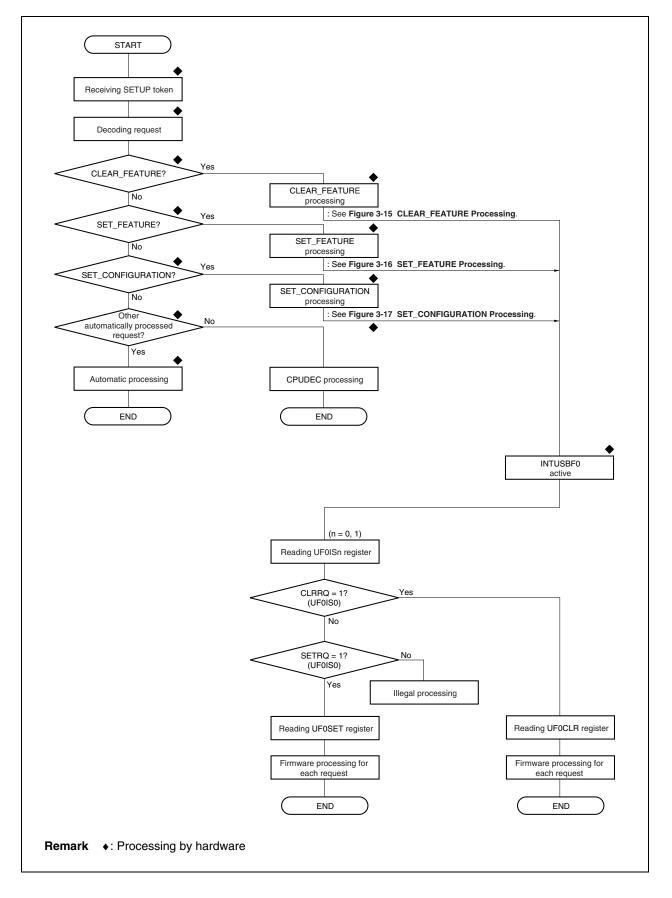
The following flowchart illustrates how an interrupt is serviced.

Figure 3-13. Interrupt Servicing

The following bits of the UF0ISn register are automatically cleared by hardware when a given condition is satisfied (n = 1 to 4).

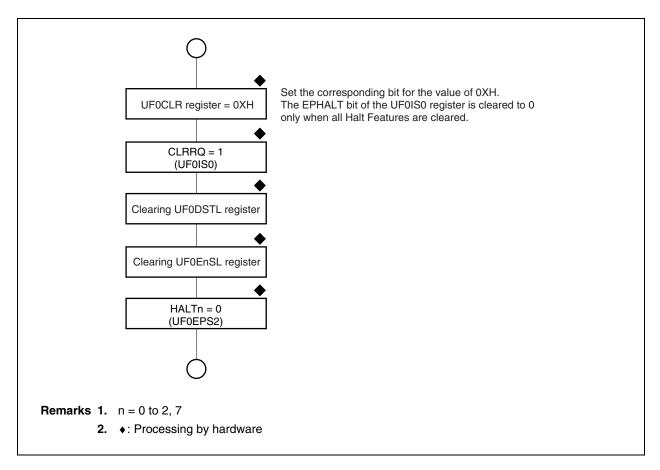
- E0INDT, E0ODT, SUCES, STG, and CPUDEC bits of UF0IS1 register
- BKI2DT, BKI1DT, IT2DT, and IT1DT bits of UF0IS2 register
- BKO2FL, BKO2DT, BKO1FL, and BKO1DT bits of UF0IS3 register

Because clearing an interrupt source by the UF0ICn register is given a lower priority than setting an interrupt source by hardware, the interrupt source may not be cleared depending on the timing (n = 0 to 4).

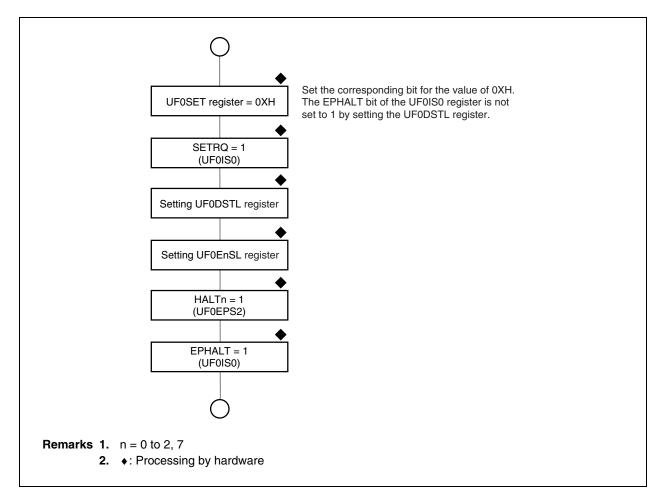

3.7.3 USB function main processing

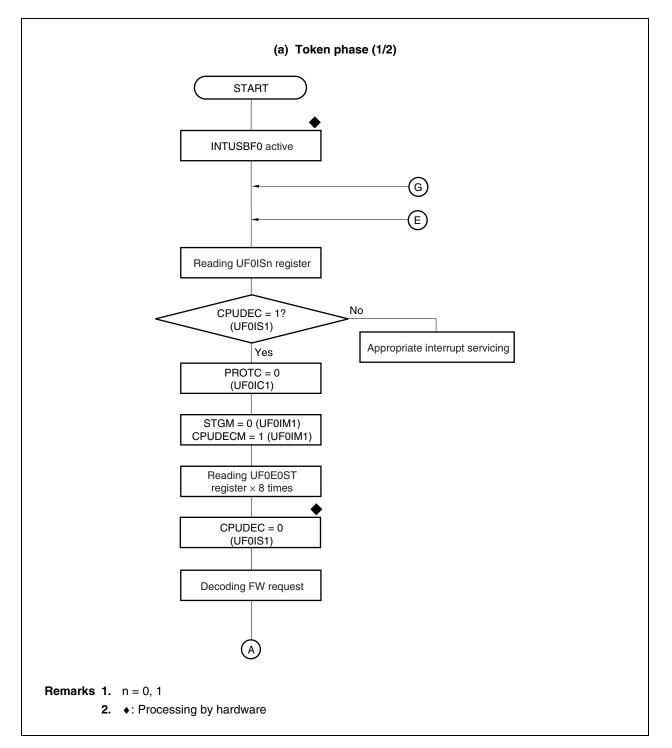
USB function main processing involves processing USB transactions. The types of transactions to be processed are as follows.

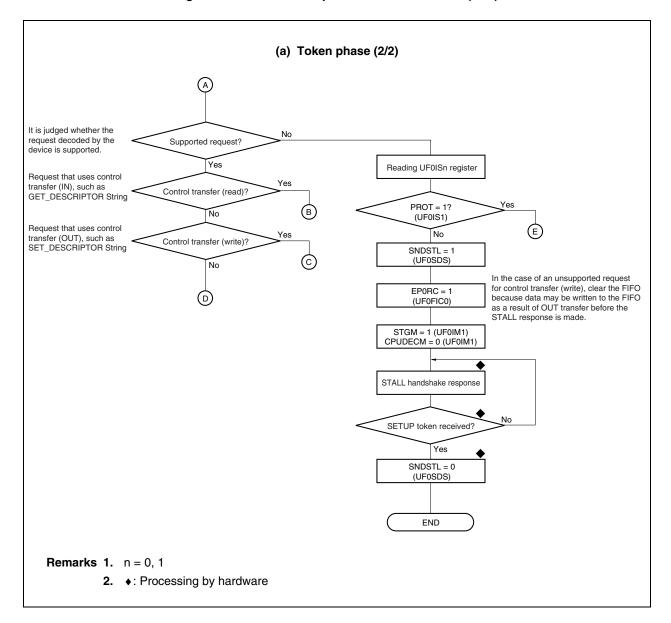
- Fully automatically processed request for control transfer
- Automatically processed requests for control transfer (SET_CONFIGURATION, SET_INTERFACE, SET_FEATURE, CLEAR_FEATURE)
- CPUDEC request for control transfer
- Processing for bulk transfer (IN)
- Processing for bulk transfer (OUT)
- Processing for interrupt transfer (IN)


Processing for endpoint n involves writing or reading for data transfer. The flowchart shown below is for PIO.

- (1) Fully automatically processed request for control transfer Because the fully automatically processed request for control transfer is executed by hardware, it cannot be referenced by firmware. Therefore, firmware does not have to perform any special processing for this request.
- (2) Automatically processed requests for control transfer (SET_CONFIGURATION, SET_INTERFACE, SET_FEATURE, CLEAR_FEATURE) Processing to write a register for automatically processed requests for control transfer, such as SET_CONFIGURATION, SET_INTERFACE, SET_FEATURE, and CLEAR_FEATURE requests, is automatically executed by hardware, but an interrupt request is issued for recognition on the device side. This processing may be ignored if there is no special processing to be executed. The flowcharts are shown below.







(3) CPUDEC request for control transfer

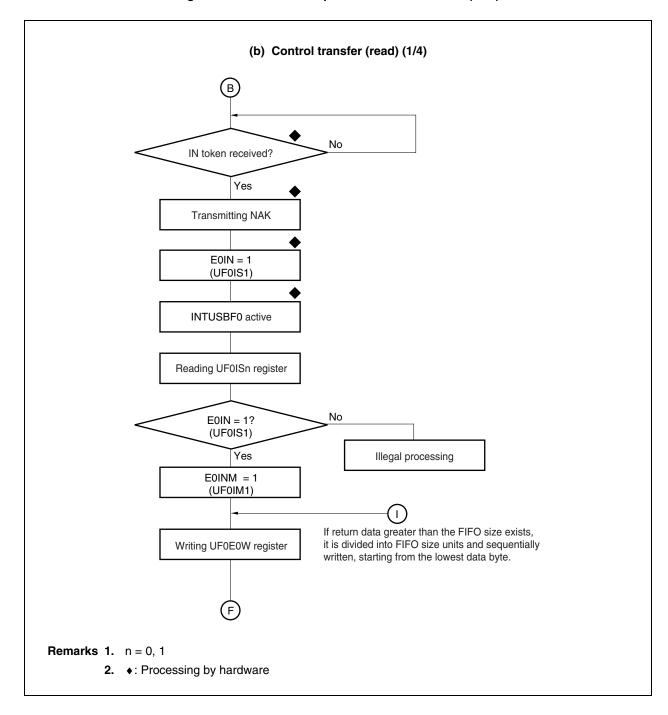
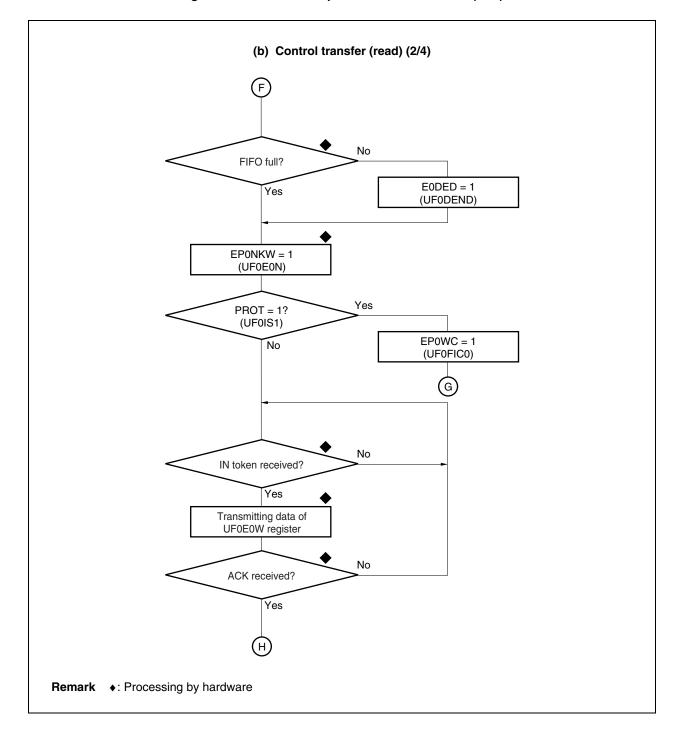
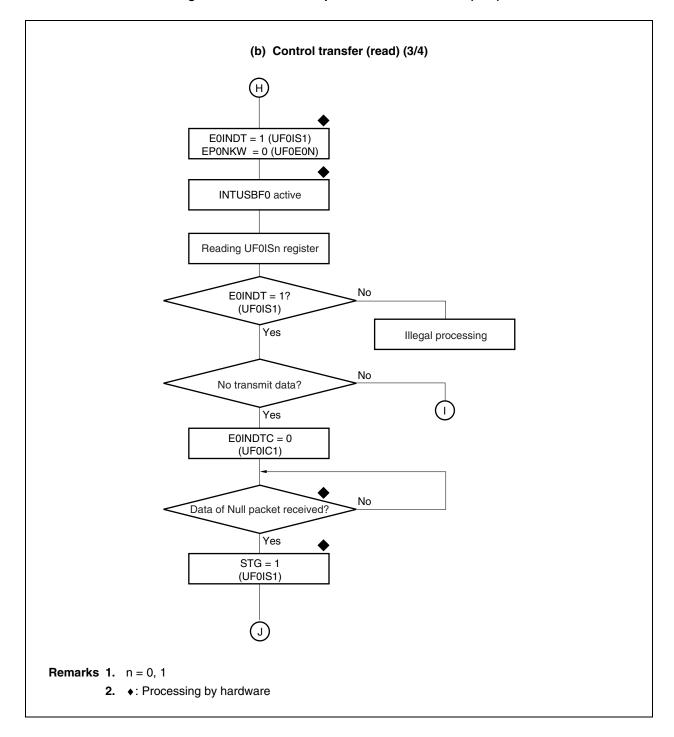
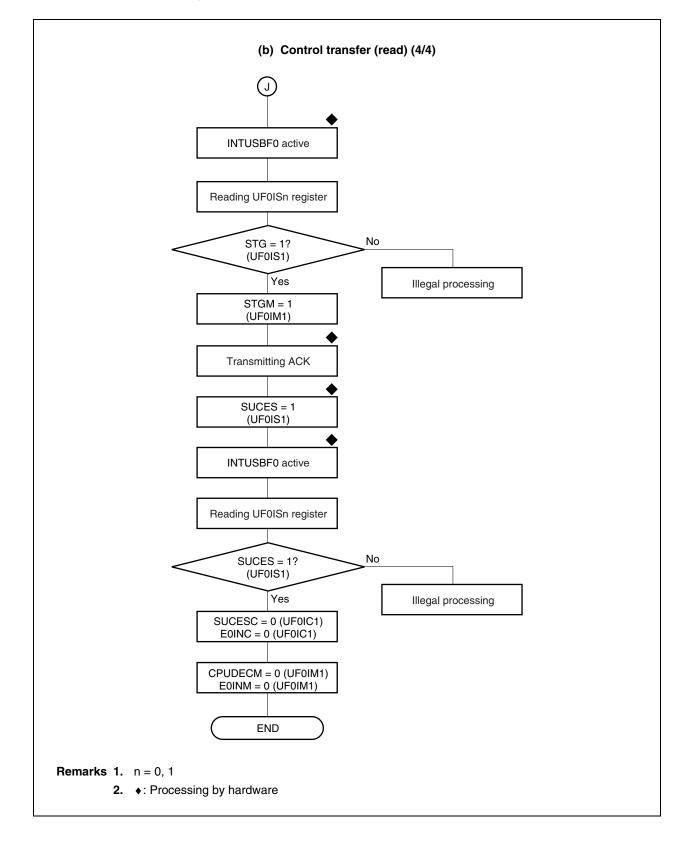
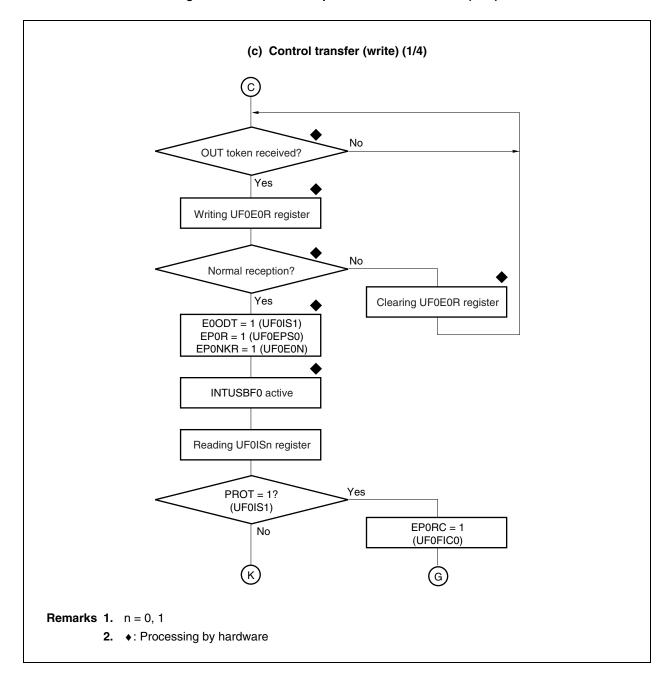
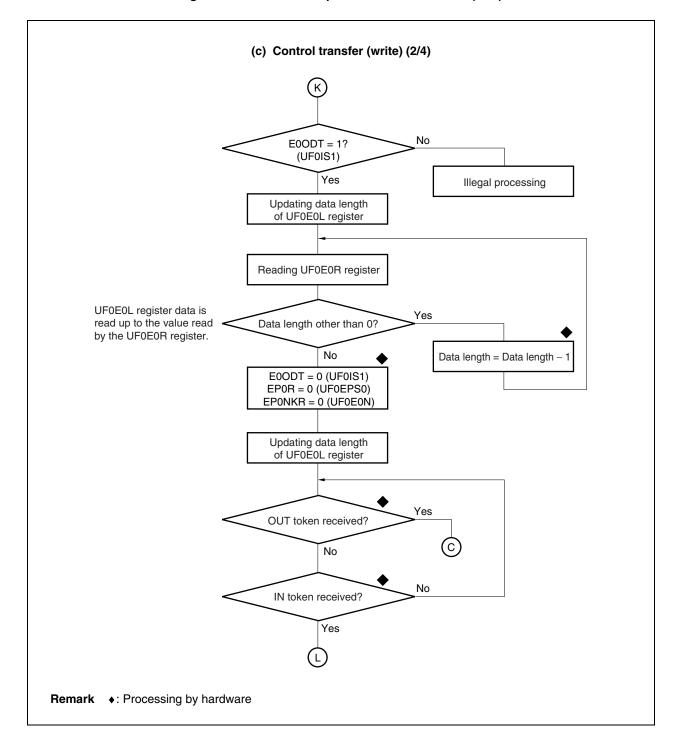
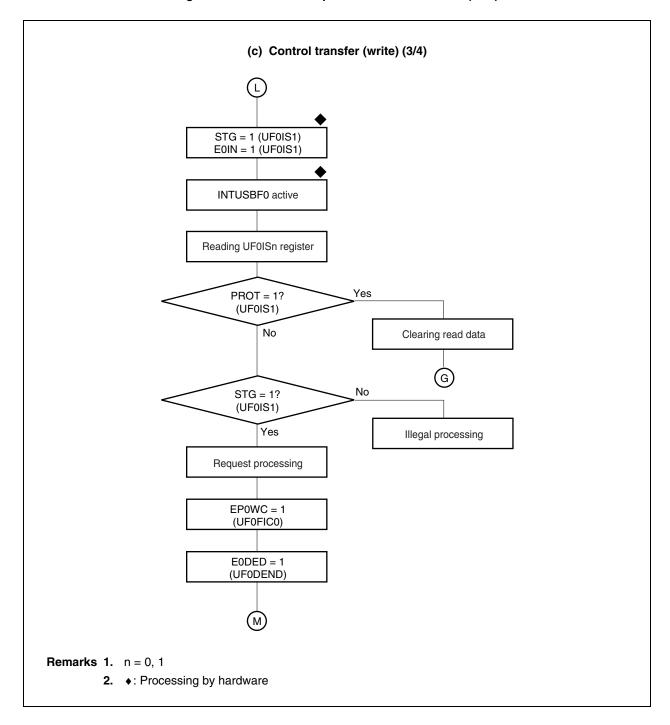
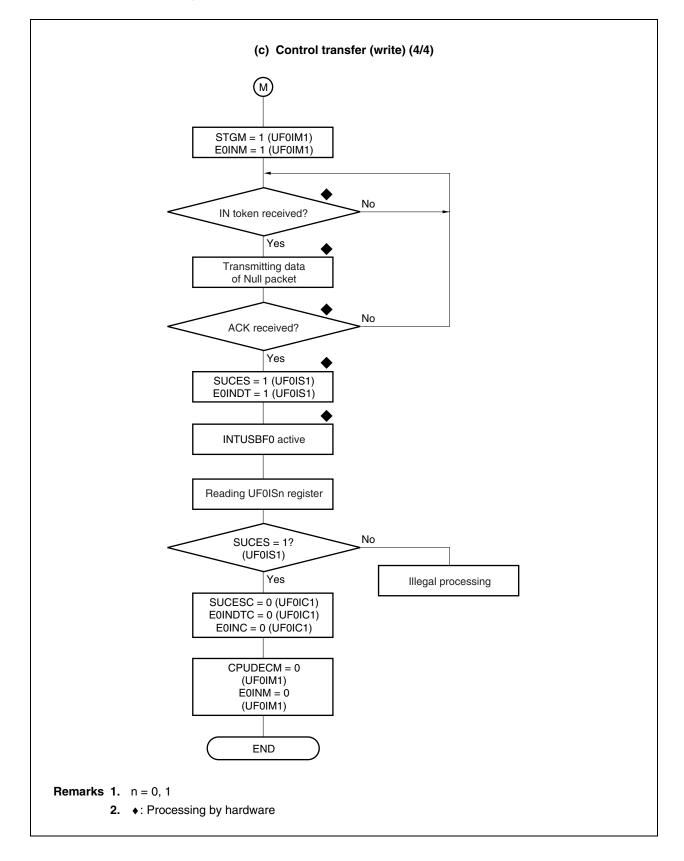

The CPUDEC request can be classified into three types of processing: control transfer (write), control transfer (read), and control transfer (without data). Control transfer (write) indicates a request that uses the OUT transaction in the data stage (e.g., SET_DESCRIPTOR), and control transfer (read) indicates a request that uses the IN transaction in the data stage (e.g., GET_DESCRIPTOR). Control transfer (without data) indicates a request that has no data stage (e.g., SET_CONFIGURATION). The flowcharts are shown below.

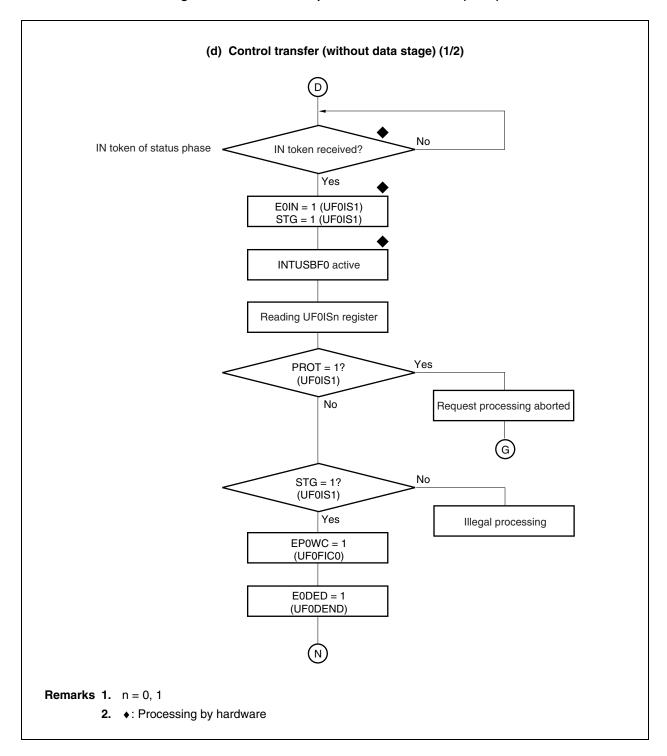
Figure 3-18. CPUDEC Request for Control Transfer (2/12)

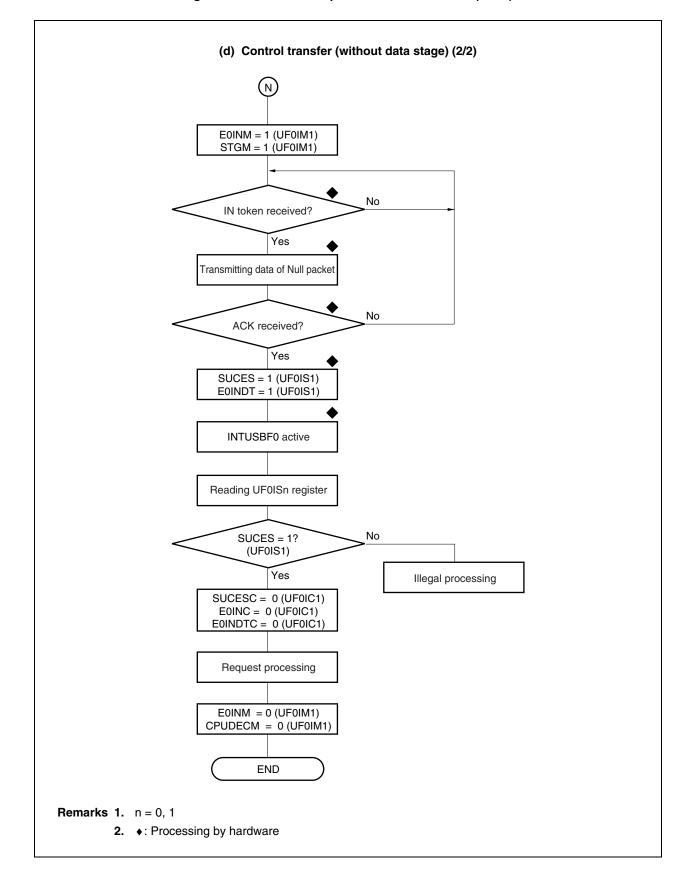




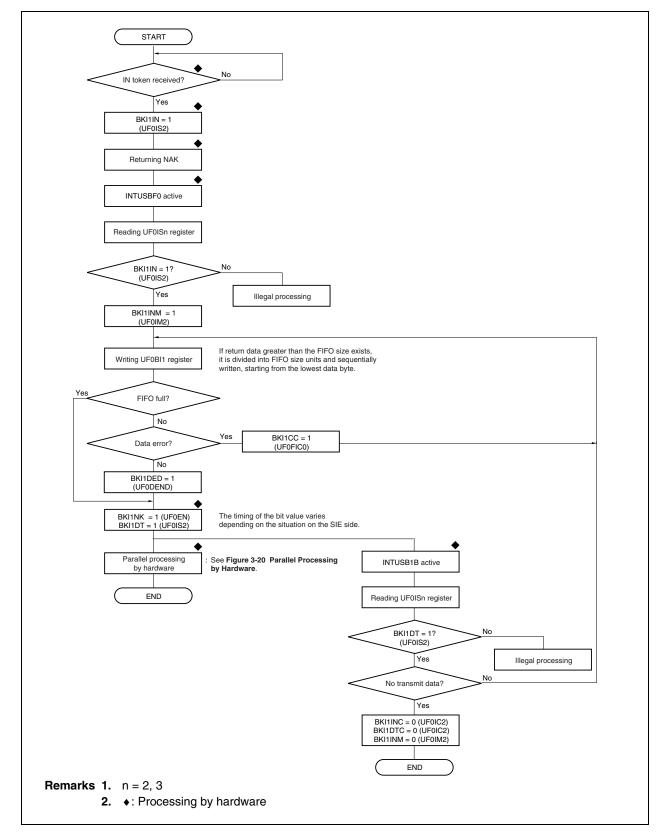

Figure 3-18. CPUDEC Request for Control Transfer (4/12)






Figure 3-18. CPUDEC Request for Control Transfer (9/12)



(4) Processing for bulk transfer (IN)

Bulk transfer (IN) is allocated to Endpoint1. The flowcharts how Endpoint1 is controlled are shown below.

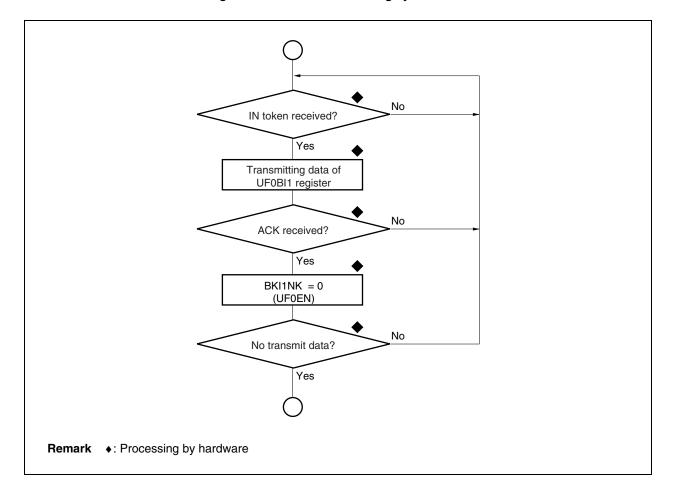
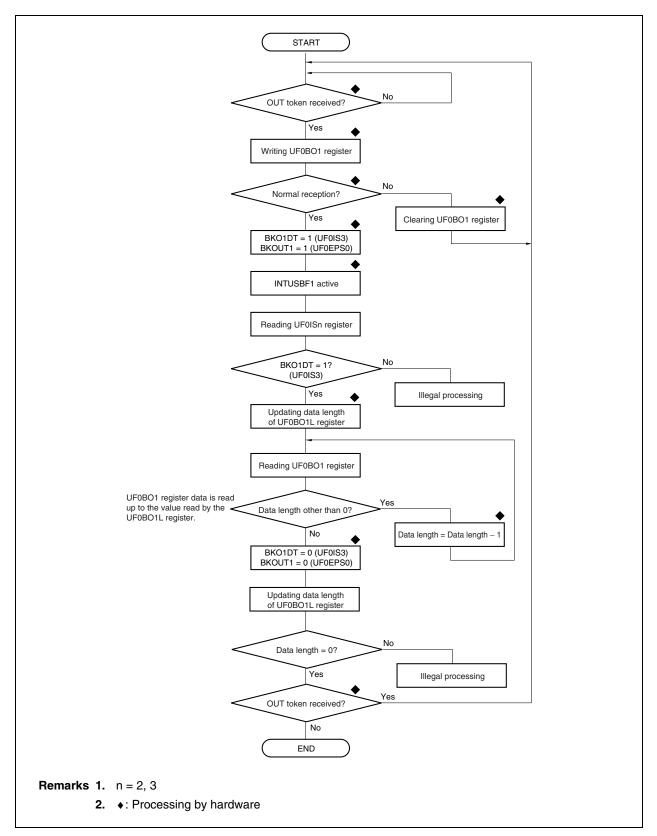
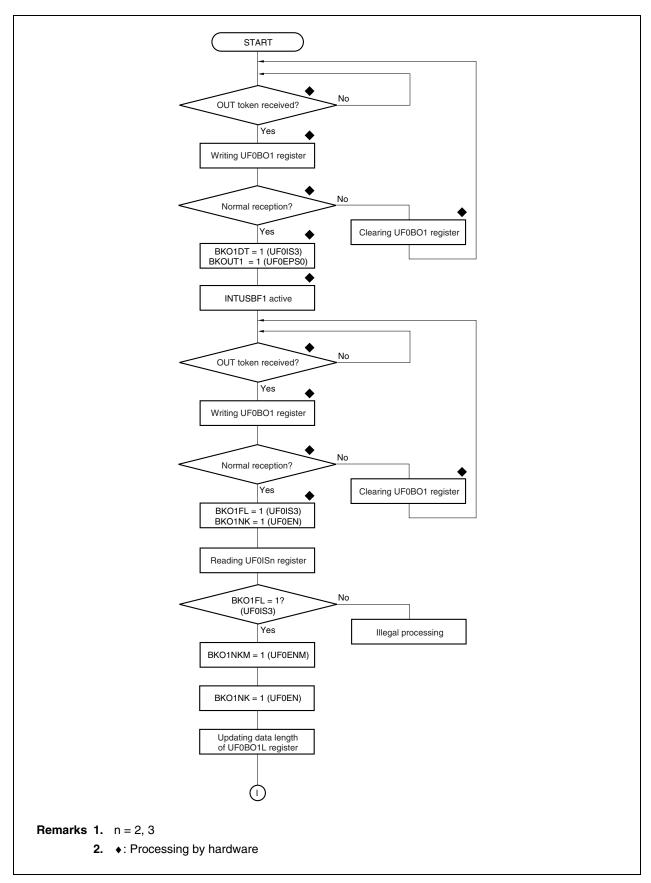
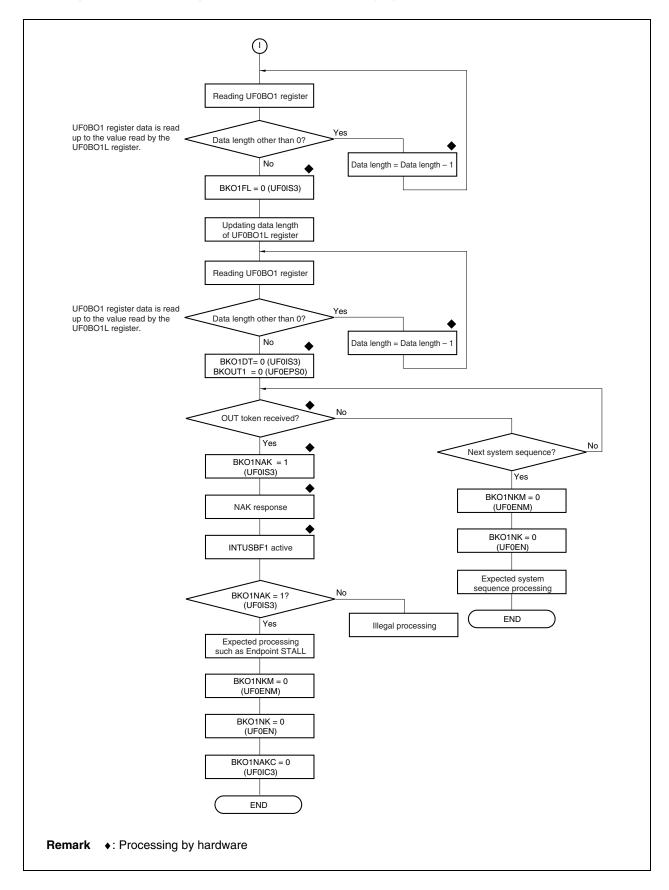
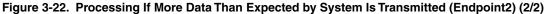


Figure 3-20. Parallel Processing by Hardware

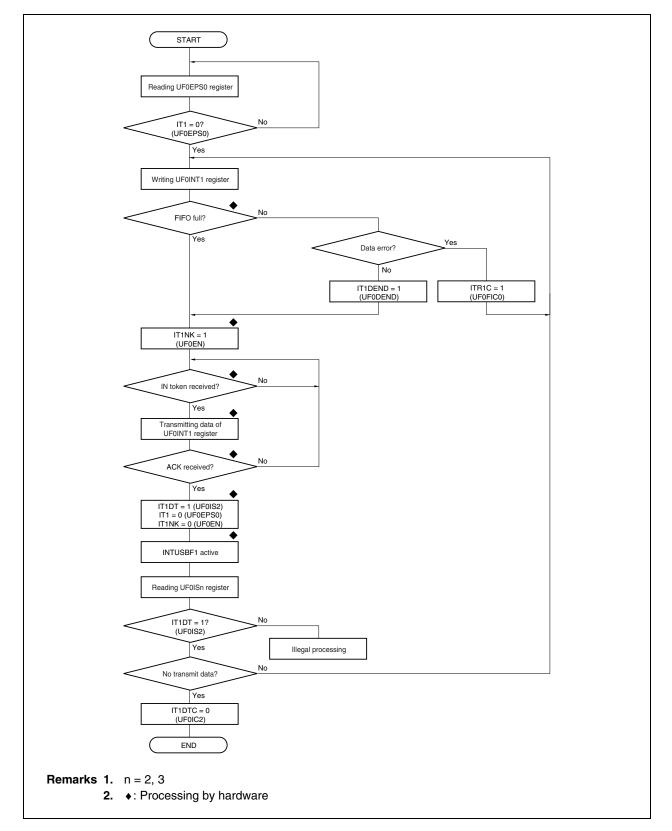
(5) Processing for bulk transfer (OUT)

Bulk transfer (OUT) is allocated to Endpoint2. The flowchart how Endpoint2 is controlled is shown below.


Figure 3-21. Normal Processing for Bulk Transfer (OUT) (Endpoint2)

During bulk transfer (OUT), more data may be transmitted from the host than expected by the system. Endpoint2 for bulk transfer (OUT) of the V850E2/ME3 consist of two 64-byte buffers so that NAK responses are suppressed as much as possible and data can be read from the CPU side even while the bus side is being accessed as the transfer rate of the USB bus increases. Consequently, if the host sends more data than expected by the system, up to 128 bytes of extra data may be automatically received in the worst case. In this case, change the control flow from that of the normal processing of Endpoint2 to the flow illustrated below when the quantity of data expected by the system has decreased to two packets. The flowcharts how Endpoint2 is controlled are shown below.



(6) Processing for interrupt transfer (IN)

Interrupt transfer (IN) is allocated to Endpoint7. The flowchart how Endpoint7 is controlled is shown below.

3.7.4 Suspend/Resume processing

How Suspend/Resume processing is performed differs depending on the configuration of the system. One example is given below.

Figure 3-24. Example of Suspend/Resume Processing (1/3)

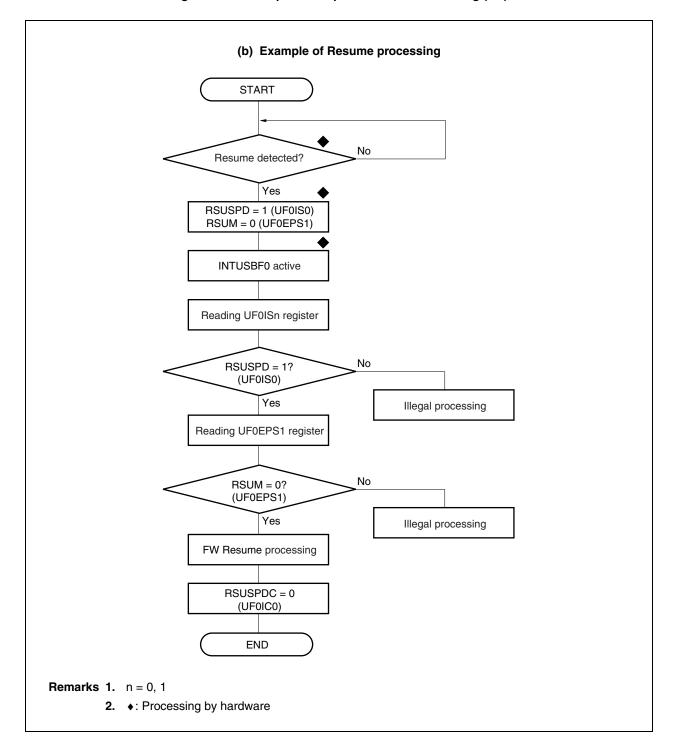
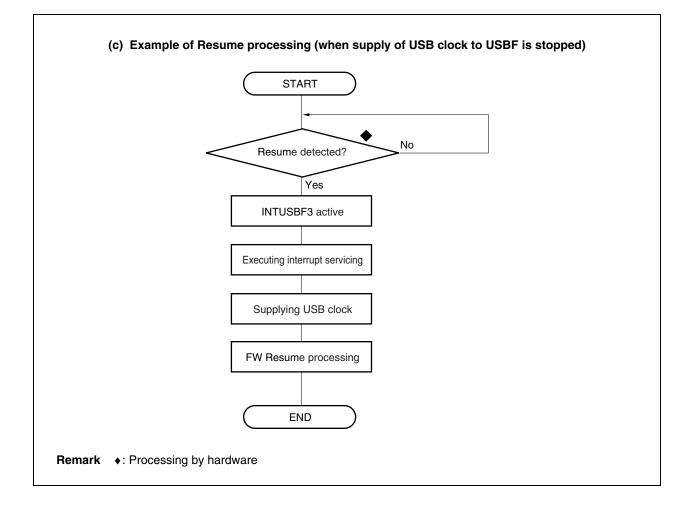
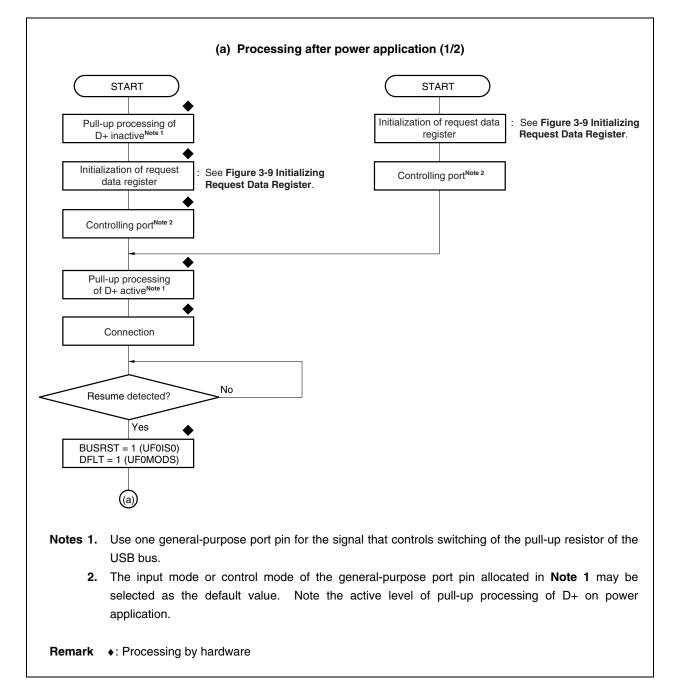
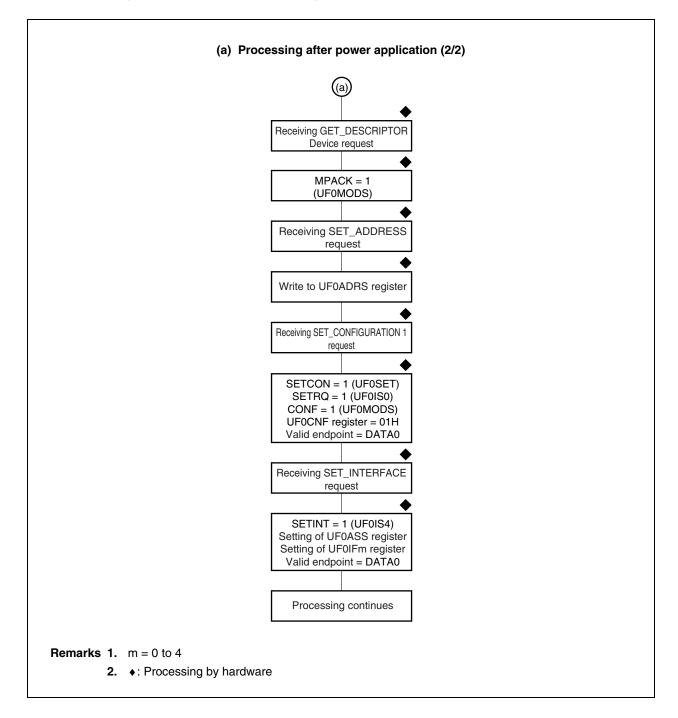
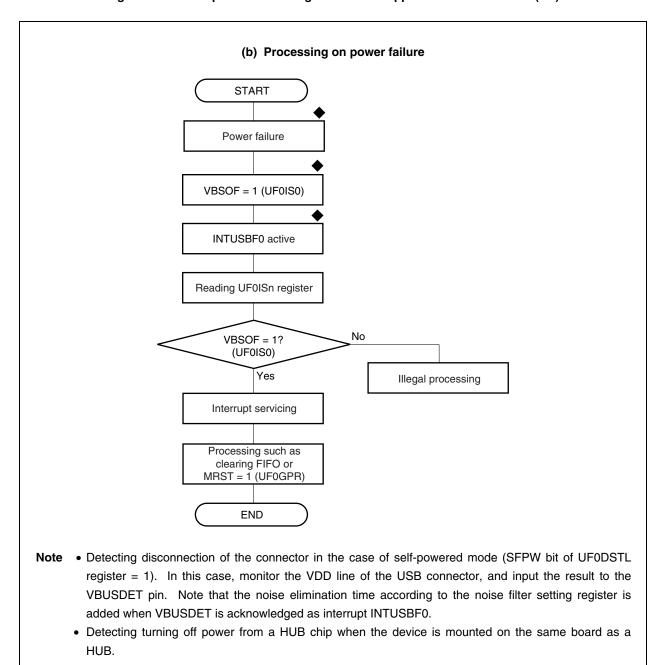



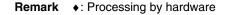
Figure 3-24. Example of Suspend/Resume Processing (2/3)





3.7.5 Processing after power application


The processing to be performed after power application differs depending on the configuration of the system. One example is given below.



3.7.6 Bulk transfer in DMA mode

Endpoint1 and Endpoint2 are provided with an interface that is used as the transfer target I/O of the DMA controller (DMAC) incorporated in PFESiP/V850EP1 and performs bulk transfer operations. Before using the interface, the interface on the DMAC side must be assigned to it during initialization processing. An example is shown below in Figure 3-26. For details of the DMAC register, see **8.4 Control Registers** in PFESiP/V850EP1 Hardware (CPU Function) User's Manual, and for details of the UDMS register, see **10.6 DMA Interface Signals for USB Connections** in PFESiP/V850EP1 Hardware (CPU Function) User's Manual.

A transfer operation is started according to instructions from the host, and firmware uses interrupts to capture transfers. Figure 3-27 shows an example of the processing flow corresponding to the start instructions issued from the host using IN tokens and OUT tokens. After an interrupt is accepted and settings on the DMAC side are made, the operation is switched to DMA mode by the DQBI1MS or DQBO1MS bit of the UF0IDR register, and to start transfer using hardware is allowed by releasing the EP1_DCR1 or EP2_DCR1 mask bit. The transfer data is read or written via the EP1_BULK_IN and EP2_BULK_OUT registers, which are used only for DMA. The end of a transfer is captured using the INTUSBF1 and INTUSBF2 signal or INTUSBF0 signal. Afterward, toggle any FIFO that is not full and clear the interrupt source and end status.

The processing flow of the bulk-only method of a storage class, which is started differently, is almost identical. For details, see the application note entitled USB Function Sample Software.

<R>

Figure 3-26. DMA Initialization Processing

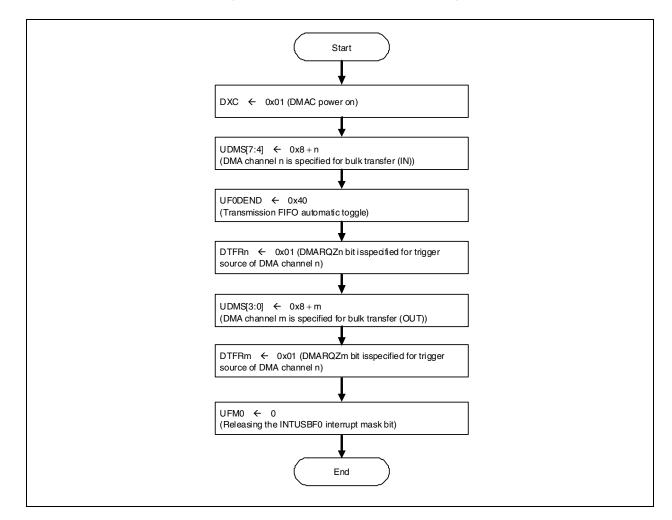
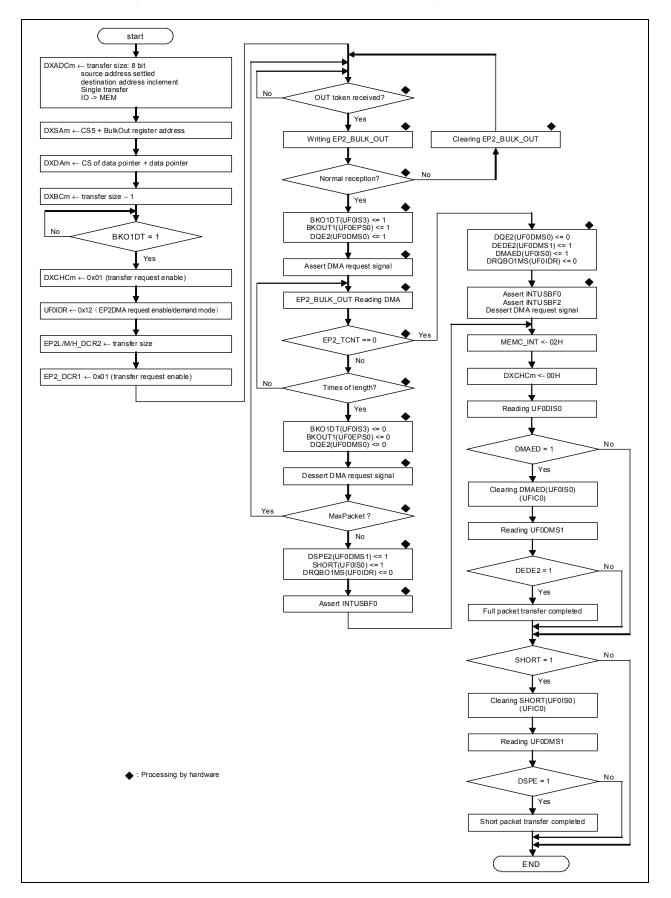



Figure 3-27. Flow Example of Bulk Transfer Processing in DMA Mode (1/2)

start DXADCn ← transfer size: 8 bit source address inclement destination address settled Single transfer MEM -> IO Yes FIFO full No $\mathsf{DXDAn} \leftarrow \mathsf{CS5} + \mathsf{BulkIn} \text{ register address}$ DQE(UF0DMS0) <= 1 $\mathsf{DXSAn} \leftarrow \mathsf{CS}$ of data pointer + data pointer Assert DMA request signal DXBCn ← transfer size – 1 ٠ Yes EP1_TCNT == 0 $DXCHCn \leftarrow 0x01$ (transfer request enable) No CPU FIFO empty Yes EP1_BULK_IN Writing DMA $\text{UF0IDR} \leftarrow \text{0x42} \text{ (EP1DMA request enable/demand mode)}$ No No BKI1T (UF0DEND) = EP1L/M/H_DCR2 ← transfer size No FIFO full Yes Yes $EP1_DCR1 \leftarrow 0x01 \text{ (transfer request enable)}$ BKI1DT(UF0IS2) <= 0 BKI1NK(UF0EN) <= 0 DQDE1(UF0DMS0) <= 0 DEDE1(UF0DMS1) <= 1 DQE1(UF0DMS0) <= 0 DEDE1(UF0DMS1) <= 1 DMAED(UF0IS0) <= 1 DRQB11MS(UF0IDR) <= 0 BKI1T(UF0DEND) = Yes DMAED(UF0IS0) <= 1 DRQB01MS(UF0IDR) <= 0 BK11DT(UF0IS2) <= 1 BK11NK(UF0EN) <= 1 DQE1(UF0DMS0) <= 0 F ٠ Assert INTUSBF0 Assert INTUSBF1 Deassert DMA request signal Transfer processing (Figure 3-20) ¥ MEMC_INT <- 01H Deassert DMA request signal DXCHCn <- 00H ¥ Reading UF0IS0 No DMAED = 1 Yes Clearing DMAED(UF0IS0) (UFIC0) Reading UF0DMS1 DEDE1 = 1 Yes Reading UF0DMS1 : Processing by hardware END

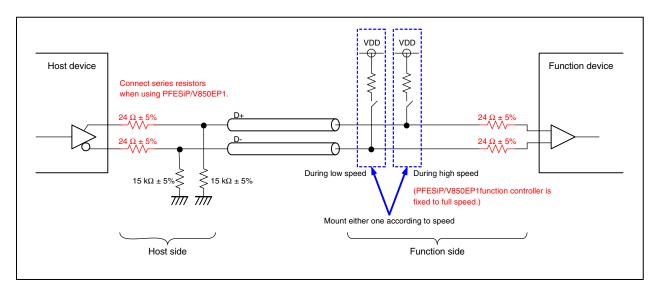
3.7.7 Interrupts from USB function controller

In the USB function controller, interrupts from the EPC, bridge, or an external source are merged and are reported to the system as five interrupts.

The interrupt controller uses edge detection to recognize when any of these five interrupts has occurred. Consequently, when performing interrupt servicing for INTUSBF0 to INTUSBF2, always clear all of the interrupt sources at the start of interrupt servicing. If any interrupt sources remain, new interrupts may not be started.

Interrupt Signal	Status Register			Generating Source		
	Register Name	bit	Abbreviation of Source			
INTUSBF0	UF0IS0	7	BUSRST	Bus reset occurrence		
		6	RSUSPD	Status transition to Resume or Suspend		
···		5	VBSOF	VBUS OFF detection		
		4	SHORT	Short packet issuance (during DMA transfer)		
		3	DMAED	End of DMA transfer		
		2	SETRQ	End of control transfer to be automatically processed		
		1	CLRRQ	CLEAR_FEATURE request reception and end of automatic processing		
		0	EPHALT	Endpoint stall		
	UF0IS1	6	E0IN	EP0 NAK response (IN token)		
		5	E0INDT	End of transmission from UF0E0W register (end of IN transaction)		
		4	E0ODT	Normal data reception by UF0E0R register (end of OUT transaction)		
		3	SUCES	Normal end of control transfer		
		2	STG	Transition to status stage by control transfer		
		1	PROT	SETUP token reception		
		0	CPUDEC	SETUP token reception (reception of request other than auto response)		
	UF0IS2	5	BKI1IN	EP1 NAK response (IN token)		
		4	BKI1DT	Occurrence of FIFO toggle operation (data can be written to EP1)		
		0	IT1DT	End of EP7 transmission		
	UF0IS3	3	BKO1FL	Received data found in both FIFOs of UF0BOn register		
		2	BKO1NL	Null packet reception (EP2)		
		1	BKO1NAK	EP1 NAK response (OUT token)		
		0	BKO1DT	End of EP2 data reception		
	MEMC_INT	0	EP1_ENDINT	End of DMA transfer (EP1)		
		1	EP2_ENDINT	End of DMA transfer (EP2)		
INTUSBF1	MEMC_INT	0	EP1_ENDINT	End of DMA transfer (EP1)		
INTUSBF2	MEMC_INT	1	EP2_ENDINT	End of DMA transfer (EP2)		
INTUSBF3				Occurrence of Resume status [SIE]		
INTUSBF4				VBUS ON detection [external signal]		

Table 3-18.	Interrupts from	USB Function	Controller
-------------	-----------------	---------------------	------------


See 3.7 Firmware Processing for descriptions of firmware processing for each interrupt report.

CHAPTER 4 EXTERNAL CIRCUIT CONFIGURATION

During a USB transmission, when the host controller and function controller are at opposite ends of communication, USB signals (D+ and D-) must be connected with pull-up or pull-down resistors so that the other party of communication can be recognized. With PFESiP/V850EP1, series resistors must also be connected.

Since PFESiP/V850EP1 is not incorporated with these pull-up, pull-down, or series resistors, connect them to PFESiP/V850EP1 externally.

The following is an outline of the USB transmission path configuration. Details of the external configuration are described below in each item.

Figure 4-1. Configuration Outline of Pull-up, Pull-down, and Series Resistors of USB Transmission Path

4.1 USB Host Controller Connection Configuration

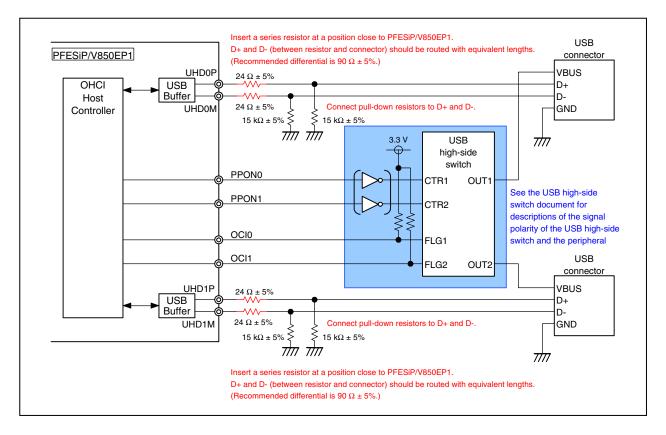


Figure 4-2. USB Host Controller Connection Example

4.1.1 USB signal connection

(1) Connection of series resistor to D+ and D-

Connect resistors rated at 24 $\Omega \pm 5\%$ in series to the D+ and D- pins (UHD0P, UHD0M, UHD1P, and UHD1M) of the PFESiP/V850EP1 USB host controller. If these are not connected, the impedance rating cannot be met and the output waveform may become distorted.

Place series resistors as close as possible to PFESiP/V850EP1, and route with equivalent length so that the D+ and D- impedances from the series resistor to the USB connectors are equivalent. (Recommended differential is 90 $\Omega \pm 5\%$.)

(2) D+ and D- pull-down connections

Pull-down the D+ and D- pins (UHD0P, UHD0M, UHD1P, and UHD1M) to GND at 15 k Ω ±5%. In this case, the configuration is the same as when no function devices are connected.

4.1.2 USB power supply connection

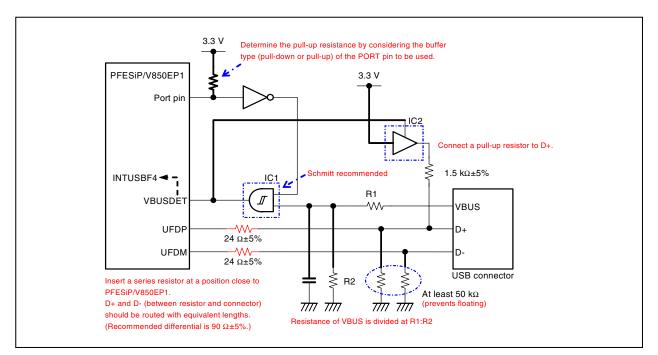
(1) Overcurrent detection and power supply control

PFESiP/V850EP1 does not incorporate with an overcurrent detection circuit or a power supply controller. To enable the system to support these functions, connect an external configuration of circuits to the OCI and PPON pins.

The following shows operations related to the OCI and PPON signals that are used in external circuit control for overcurrent protection and power supply control of the USB ports

Pin	I/O	Level	Description	
OCI	Input	1 Overcurrent is not detected.		
		0	Overcurrent is detected.	
PPON	Output	1	Power supply to VBUS is turned on.	
		0	Power supply to VBUS is turned off.	

Table 4-1. OCI and PPON Signal Description


Figure 4-2 shows examples of connections for overcurrent detection and power supply (VBUS) control. Although this depends on the configuration of connections to the USB connectors, this enables the VBUS of the port to be stopped to reduce power consumption when the USB bus is not being used. If the opposing USB function device is a bus-powered type, use of a high-side switch, as shown in the connection examples, is recommended.

(2) Specification for VBUS control based on root hub register setting conditions

Control of the PPS bit that is used to control the VBUS changes according to the values set to the HcRhDescriptorA and HcRhDescriptorB registers (root hub control registers).

When the VBUS is controlled for each port, the NoPowerSwitching bit and the PortSwitchingMode bit must be set to "1".

4.2 USB Function Controller Connection Configuration

4.2.1 USB signal connection

(1) Connection of series resistor to D+ and D-

Connect resistors rated at 24 Ω ±5% in series to the D+ and D- pins (UFDP and UFDM) of the PFESiP/V850EP1 USB function controller. If these are not connected, the impedance rating cannot be met and the output waveform may become distorted.

Place series resistors as close as possible to PFESiP/V850EP1, and route with equivalent length so that the D+ and D- impedances from the series resistor to the USB connectors are equivalent. (Recommended differential is 90 $\Omega \pm 5\%$.)

(2) Pull-up control of D+

Since PFESiP/V850EP1 has a full-speed (FS) function controller, pull up the D+ pin (UFDP) to the 3.3 V power supply, using 1.5 k Ω ±5%.

To prohibit connection report (D+ pull-up) to the USB host/HUB (such as while higher priority processing or initialization processing is under execution), the system must control pulling up of D+ via a general-purpose port. As shown in the circuit example in Figure 4-3, control the pull-up control signal of D+ and VBUS input signal by using a general-purpose port and USB cable VBUS (AND circuit). In Figure 4-3, pulling up D+ is prohibited when the general-purpose port is high level (secure the high level of the general-purpose port pin by pulling it up because the port pin is in the input mode by default).

Use as IC2, shown in Figure 4-3, an IC to which voltage can be applied when the system power supply is off.

(3) Detecting USB cable connection/disconnection

The USB function controller requires a VBUSDET signal that recognizes connection and disconnection, because the state of the USB function controller is managed by hardware. As shown in Figure 4-3, divide the resistance of the VBUS signal and connect it to VBUSDET via IC1. (Do not connect VBUS (5 V) directly to VBUSDET). Voltage (5 V) is applied from the USB host/HUB, if the USB cable VBUS is connected to the USB host/HUB when power to the function controller is turned off. Therefore, use as IC1, shown in Figure 4-3, an IC to which voltage can be applied when the system power supply is off.

When disconnecting the USB cable in the circuit in Figure 4-3, the VBUSDET signal may become unstable while the VBUS voltage is dropping. Therefore, it is recommended to use a Schmitt buffer for IC1, shown in Figure 4-3.

(4) Preventing floating during initialization or non-use

To avoid a floating status during initialization or non-use, pull down the D+ and D- pins by using at least 50 $k\Omega$.

4.3 Clock and Reset

UCLK is required for both the USB function controller and the USB host controller. Supply a signal of 48 MHz
<R> ±1500 ppm as UCLK. If the precision of UCLK deteriorates, the transmit data will not meet the USB standard.

Table 4-2. UCLK Timings

Item	Symbol	MIN.	TYP	MAX.	Unit
UCLK frequency	φ_{s}	–1500 ppm	48	+1500 ppm	MHz
UCLK high-level width	tнws	8.0	-	-	ns
UCLK low-level width	t∟ws	8.0	-	-	ns

Only the USB host controller requires PCLKIN in order to use the PCI interface. Supply a signal of 25 to 33 MHz as PCLKIN.

Item	Symbol	MIN.	TYP	MAX.	Unit
PCLK frequency	$arphi_{ m s}$	25	_	33	MHz
PCLK high-level width	tHWS	9.0	-	-	ns
PCLK low-level width	t∟ws	9.0	-	-	ns

Table 4-3. PCLK Timings

The reset for the USB function controller and USB host controller is shared with the CPU system reset. Supply PCLKIN when resetting, including when resetting the USB host controller. The reset time is at least 60 ns.

<R>

CHAPTER 5 CAUTIONS

5.1 USB Port Status Transition Control

Under the OHCI standard, if a port is disabled by a bus error, there are two ways the HCD can transition the port to enabled state.

- <1> Set (1) the SetPortEnable bit of the HcRhPortStatus [1:2] register
- <2> When the port reset signal has been asserted and the corresponding port reset has ended by setting (1) the SetPortReset bit of the HcRhPortStatus [1:2] register

Although only <2> above is supported under the Universal Serial Bus Specification, Revision 1.1, either <1> or <2> can be selected when using this host controller. When <2> is selected, the software should be designed so that control which transitions ports to enabled states is performed via the SetPortReset bit.

5.2 Restriction on Number of Hub Stages

A restriction exists concerning the number of hub stages as they relate to inter packet delay. When using a hub that has the maximum (worst) delay value permitted by the USB standard, and with all connections made using 5-meter cables, the maximum number of hub stages is three. This maximum number of stages becomes five when using 3-meter cables or a hub with a normal delay value.

 Published by:
 NEC Electronics Corporation (http://www.necel.com/)

 Contact:
 http://www.necel.com/support/