
 User Guide 

  r11an0188eu0130 Rev. 1.3  Page 1 of 53 

Sep 27, 2018  

Renesas Synergy™ Platform 

S3 Series MCU Diagnostic Software User Guide 

Introduction 

IEC 61508 is an international standard governing a range of electrical, electromechanical and electronic safety related 

systems. It defines the requirements needed to ensure that systems are designed, implemented, operated and maintained 

at the required Safety Integrity Level (SIL). Four SIL levels have been defined to indicate the risks involved in any 

particular system, with SIL4 being the highest risk level.  

At the heart of the majority of safety related systems nowadays is a sophisticated and often highly integrated 

Microcontroller (MCU). An integral part of meeting the requirements of IEC61508 is the ability to verify the correct 

operation of critical areas of the MCU. 

The Renesas Diagnostics Software is designed for use with the Synergy S3 Microcontroller Family. Tests are provided 

for coverage of the following critical areas of the MCU’s operation: The Central Processing Unit (CPU), the Embedded 

Flash ROM memory, the Embedded RAM memory, the main clock structure (Main clock oscillator, PLL, MUX 

generating ICLK), and Vcc power supply. 

The code was developed using the functional safety version 8.23.1.17132 of the IAR Embedded Workbench for ARM, 

which is certified by the TÜV SÜD certification body, and in accordance with IEC61508:2010 for use in safety related 

applications up to SIL3 level. This is also the systematic capability for the Renesas Diagnostics Software described in 

this document. 

Please note that in the code some pragmas have been added in the shape of comments (e.g. “/*LDRA_INSPECTED 90 

S Basic type declaration used. */”) which have been used to mark code lines flagged to potentially violate a specific 

MISRA rule but judged as safe. See Annex C for details about the pragmas inserted. 

Target Device 

Synergy S3 Series MCU 

Contents 

1. Common Terminology ............................................................................................................. 5 

1.1 Acronyms ................................................................................................................................................. 5 

2. Compiler Environment ............................................................................................................. 5 

2.1 C Type Implementation ........................................................................................................................... 5 

2.2 IAR Environment Settings ....................................................................................................................... 5 

3. CPU Software Test .................................................................................................................. 6 

3.1 Test Objectives ........................................................................................................................................ 6 

3.2 Software Structure ................................................................................................................................... 6 

3.2.1 API and CPU Test Environment ............................................................................................................ 8 

3.3 Software Integration Rules ...................................................................................................................... 9 

3.3.1 Code Integration .................................................................................................................................... 9 

3.3.2 Compiler Warnings .............................................................................................................................. 11 

3.3.3 Usage Conditions ................................................................................................................................ 11 

3.4 Define Directives for Software Configuration ........................................................................................ 11 

3.5 Software Package Description .............................................................................................................. 11 

3.5.1 Identification and Contents of Package ............................................................................................... 11 

3.5.2 Description of Design Files .................................................................................................................. 12 

r11an0188eu0130 
Rev. 1.3 

Sep 27, 2018 
 



Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide 

r11an0188eu00130 Rev. 1.3  Page 2 of 53 

Sep 27, 2018  

3.6 Resources Usage .................................................................................................................................. 13 

3.7 Requirements for Safety Relevant Applications .................................................................................... 15 

3.8 Diagnostic Fault Coverage and Watch Dog Usage ............................................................................... 15 

4. RAM Software Test................................................................................................................ 16 

4.1 Test Objectives ...................................................................................................................................... 16 

4.2 API and RAM Test Environment ........................................................................................................... 16 

4.3 Test Strategy ......................................................................................................................................... 17 

4.4 Software Integration Rules .................................................................................................................... 19 

4.4.1 Code Integration .................................................................................................................................. 19 

4.4.2 Usage Conditions ................................................................................................................................ 21 

4.5 Define Directives for Software Configuration ........................................................................................ 22 

4.6 Software Package Description .............................................................................................................. 22 

4.6.1 Identification and Contents of Package ............................................................................................... 22 

4.6.2 Description of Design Files .................................................................................................................. 23 

4.7 Resources Usage .................................................................................................................................. 23 

4.8 Requirements for Safety Relevant Applications .................................................................................... 24 

5. ROM Software Test ............................................................................................................... 24 

5.1 Test Objectives ...................................................................................................................................... 24 

5.2 Test Strategy ......................................................................................................................................... 24 

5.2.1 Checksum Generation using the IAR linker ........................................................................................ 24 

5.2.2 MCU CRC Peripheral .......................................................................................................................... 24 

5.3 Top Level Software Structure ................................................................................................................ 25 

5.3.1 ROM Test APIs.................................................................................................................................... 25 

5.3.2 Incremental Mode Calculation ............................................................................................................. 25 

5.4 Software Integration Rules .................................................................................................................... 26 

5.4.1 Code Integration .................................................................................................................................. 26 

5.4.2 Test Flow and Test Results Check...................................................................................................... 26 

5.4.3 Usage Conditions ................................................................................................................................ 28 

5.5 Checksum Generation Using IAR Tools................................................................................................ 28 

5.5.1 Example Checksum Generation with IAR Tools ................................................................................. 29 

5.6 Software Package Description .............................................................................................................. 30 

5.6.1 Identification and Contents of Package ............................................................................................... 30 

5.6.2 Description of Design Files .................................................................................................................. 30 

5.7 Resources Usage .................................................................................................................................. 30 

5.8 Requirements for Safety Relevant Applications .................................................................................... 31 

6. CAC Configuration Software .................................................................................................. 31 

6.1 Test Objectives ...................................................................................................................................... 31 

6.2 Test Strategy ......................................................................................................................................... 32 

6.3 CAC Configuration Software API .......................................................................................................... 32 



Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide 

r11an0188eu00130 Rev. 1.3  Page 3 of 53 

Sep 27, 2018  

6.4 Software Integration Rules .................................................................................................................... 33 

6.4.1 Code Integration .................................................................................................................................. 33 

6.4.2 Usage Conditions ................................................................................................................................ 33 

6.5 Define Directives for Software Configuration ........................................................................................ 35 

6.6 Software Package Description .............................................................................................................. 35 

6.6.1 Identification and Contents of Package ............................................................................................... 35 

6.6.2 Description of Design Files .................................................................................................................. 35 

6.7 Resources Usage .................................................................................................................................. 35 

6.8 Requirements for Safety Relevant Applications .................................................................................... 36 

7. IWDT Management Software ................................................................................................. 36 

7.1 Test Objectives ...................................................................................................................................... 36 

7.2 Test Strategy ......................................................................................................................................... 36 

7.3 IWDT Management Software APIs ....................................................................................................... 36 

7.4 Software Integration Rules .................................................................................................................... 37 

7.4.1 Code Integration .................................................................................................................................. 37 

7.4.2 Usage Conditions ................................................................................................................................ 37 

7.5 Define Directives for Software Configuration ........................................................................................ 39 

7.6 Software Package Description .............................................................................................................. 39 

7.6.1 Identification and Contents of Package ............................................................................................... 39 

7.6.2 Description of Design Files .................................................................................................................. 39 

7.7 Resources Usage .................................................................................................................................. 40 

7.8 Requirements for Safety Relevant Applications .................................................................................... 40 

8. LVD Configuration Software .................................................................................................. 40 

8.1 Test Objectives ...................................................................................................................................... 40 

8.2 Test Strategy ......................................................................................................................................... 40 

8.3 LVD Configuration Software APIs ......................................................................................................... 41 

8.4 Software Integration Rules .................................................................................................................... 41 

8.4.1 Code Integration .................................................................................................................................. 41 

8.4.2 Usage Conditions ................................................................................................................................ 41 

8.5 Define Directives for Software Configuration ........................................................................................ 41 

8.6 Software Package Description .............................................................................................................. 41 

8.6.1 Identification and Contents of Package ............................................................................................... 41 

8.6.2 Description of Design Files .................................................................................................................. 42 

8.7 Resources Usage .................................................................................................................................. 42 

8.8 Requirements for Safety Relevant Applications .................................................................................... 42 

9. Appendix A – RAM Test Algorithms ....................................................................................... 42 

9.1 Extended March C-................................................................................................................................ 43 

9.2 WALPAT ................................................................................................................................................ 43 

9.3 Word-oriented Memory Test .................................................................................................................. 43 



Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide 

r11an0188eu00130 Rev. 1.3  Page 4 of 53 

Sep 27, 2018  

10. Appendix B – CPU Test Example .......................................................................................... 45 

11. Appendix C – Pragmas report ................................................................................................ 46 

Document References .................................................................................................................. 53 

Website and Support .................................................................................................................... 54 

Revision History .............................................................................................................................. 1 

 



Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide 

r11an0188eu00130 Rev. 1.3  Page 5 of 53 

Sep 27, 2018  

1. Common Terminology 

This section defines some common terms and acronyms used throughout the document and provides references to other 

relevant Renesas documentation. 

1.1 Acronyms 

Table 1.1 Terminology and acronyms 

Acronym Description 

CRC Cyclic Redundancy Check 

LUT Look Up Table 

TS Test Segment 

TS_ID Test Segment Identifier 

WD Watch Dog 

 

2. Compiler Environment 

The Diagnostic Software code was developed using the functional safety version 8.23.1.17132 IAR Embedded 

Workbench for ARM, which is certified by the TÜV SÜD certification body, for use in safety related applications up to 

level SIL3. 

2.1 C Type Implementation 

Integer C variables are assumed to be 32-bit implemented. Please, make sure that int type has to be represented in 32-bit 

format on the target environment. 

2.2 IAR Environment Settings 

The IAR environment should be set up as specified in Table 2.1. 

Table 2.1 IAR project options 
ID Category Sub-category Setting description Comment 

1 General 

Options 
Target • Device := Renesas R7FS3A77C (S3A7) 

                 Renesas R7FS3A678 (S3A6) 
                 Renesas R7FS3A37A (S3A3) 

                 Renesas R7FS3A17C (S3A1) 

• Floating-point, Size of type ‘double’ := 32bits 

• Subnormal numbers := Treat as zero 

• Int, Size of type ‘int‘ := 32bits 

• Data model := Far 

 

2 General 

Options 

Library 

Configuration 
• Library := Normal DLIB  

3 General 

Options 
Stack/Heap • Privileged mode stack size := 0x1000 Consider this setting as typical. The 

stack size has to be greater than the 

one specified in the Resources 

Usage section. 

4 C/C++ 

Compiler 

Language1 • Language := C 

• C dialect := C99 

• Language conformance := Standard with IAR 

extensions 

 

5 C/C++ 

Compiler 
Language2 • Floating-point semantics := Strict conformance  

6 C/C++ 

Compiler 

Code • Align functions := 1 no alignment  

7 C/C++ 

Compiler 
Optimizations • Level := None  

8 Assembler Language • User symbols are case sensitive  

13 Linker Library • Automatic runtime library selection  

14 Linker Others Sub-

category 
For RAM test specific testing see Section 4 

For ROM test specific testing See section 5. 

 

15 Build For RAM test specific testing see Section 4  



Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide 

r11an0188eu00130 Rev. 1.3  Page 6 of 53 

Sep 27, 2018  

Actions For ROM test specific testing See section  5 

3. CPU Software Test 

3.1 Test Objectives 

The objective of the CPU Software Test is to verify the correct functionality of the CPU by adopting a mainly 

instruction based diagnosis, with the aim to detect permanent hardware failures of the CPU Core. 

All instructions, with the only exceptions being the BKPT, SEV, WFE, WFI and DMB instructions, are used in the 

CPU core testing scheme.  

Please see Document Reference [1] for the complete list of instructions. However, please note the primary aim is not to 

test individual instructions but to detect a hardware failure of the CPU core. 

3.2 Software Structure 

The software structure provides for two different levels of functions calls 

a. The first level is the user interface function named coreTest. 

b. The second lower level functions are named testSegment that are called by coreTest. 

 

The testSegment functions execute the actual diagnostic of the core, whilst the coreTest allows the user to select and run 

of one or more of the testSegment functions in sequence and to collect the diagnostic results. 

Up to 20 testSegment functions are available; from testSegment0 to testSegment19. Table 3.1 below provides an 

overview of the testSegment functions. 

Two types of testSegment functions are defined. 

• testSegment of type “Fixed”: 

o operand data necessary to stimulate the core and run these functions is embedded in the code. 

• testSegment of type “LUT”: 

o these functions can be called with different operand data taken from a Look Up Table. 

 

Table 3.1 Test Segment Overview 

TS_ID Function Name Objective of the Test Test Segment Type  

TS00 testSegment00 Testing of Jump instructions (using control flow) Fixed 

TS01 testSegment01 Logical instructions as AND, EOR, NOT, BIC Fixed 

TS02 testSegment02 Bit-level manipulation and test instructions as REVERSE, 

TEQ 

Fixed 

TS03 testSegment03 Floating point multiply instructions LUT 

TS04 testSegment04 Floating point addition/subtractions instructions plus 

additional floating points conversion instructions as VCVT 

and VCVTB 

LUT 

TS05 testSegment05 Floating point division instructions plus additional floating 

point instruction as VABS, VNEG and VCVT 
LUT 

TS06 testSegment06 Saturating instructions plus additional floating points 

conversion instructions as VCVT  

Fixed 

TS07 testSegment07 CPU Control Registers Fixed 

TS08 testSegment08 Integer multiply instructions using LUT data with MULS. 

(32bit results) 

LUT 

TS09 testSegment09 Divide instructions LUT 

TS10 testSegment10 Load and store using GPR only Fixed 

TS11 testSegment11 Floating point normalize and denormalized tests Fixed 

TS12 testSegment12 Load and store using floating point data registers plus 

floating point read port 0 and 1 tests 

Fixed 

TS13 testSegment13 Integer multiply using LUT data with UMUL and SMUL 

instruction. (64bit result) 

LUT 

TS14 testSegment14 FPU control register plus FPU extension registers and VSUB 

and conversion instruction 

Fixed 



Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide 

r11an0188eu00130 Rev. 1.3  Page 7 of 53 

Sep 27, 2018  

TS_ID Function Name Objective of the Test Test Segment Type  

TS15 testSegment15 Shift and rotate instructions Fixed 

TS16 testSegment16 Integer addition and subtract instructions LUT 

TS17 testSegment17 Bit field instructions plus internal core register tests Fixed 

TS18 testSegment18 Packing and unpacking instructions Fixed 

TS19 testSegment19 Floating point square root plus internal core register tests. LUT 

 

Table 3.2 reports the association of the execution progress versus the testSegment to be executed and the related data set 

for LUT testSegment.  

The execution order of the Test Segments (TSs) follows the order defined in Table 3.2 and the coreTestInit function is 

used to initialize the sequence. 

The concept is to allow the user to select how many steps shall be performed by the coreTest function, so that the user is 

able to control the execution progress of the CPU core test. In this way, in case the user has specific execution time 

constraints, he can decide how many steps execute in order to fulfil the execution time constraints 

Table 3.2 Execution steps association w.r.t. testSegment 

Execution progress Test Segment Dataset (if applicable) 

0 testSegment00 NA 

1 testSegment01 NA 

2 testSegment02 NA 

3 testSegment03 Float32_MUL_set0 

4 testSegment04 Float32_ADD_set0 

5 testSegment05 Float32_DIV_set0 

6 testSegment06 NA 

7 testSegment07 NA 

8 testSegment08 Int32_MUL_set0 

9 testSegment09 Int32_DIV_set0 

10 testSegment10 NA 

11 testSegment11 NA 

12 testSegment12 NA 

13 testSegment13 Int32_UMUL_set0 

14 testSegment14 NA 

15 testSegment15 NA 

16 testSegment16 Int32_ADD_set0 

17 testSegment17 NA 

18 testSegment18 NA 

19 testSegment19 Float32_SQRT_set0 

20 testSegment08 Int32_MUL_set1 

21 testSegment08 Int32_MUL_set2 

22 testSegment09 Int32_DIV_set1 

23 testSegment09 Int32_DIV_set2 

24 testSegment16 Int32_ADD_set1 

25 testSegment16 Int32_ADD_set2 

26 testSegment03 Int32_MUL_set0 

27 testSegment03 Int32_MUL_set1 



Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide 

r11an0188eu00130 Rev. 1.3  Page 8 of 53 

Sep 27, 2018  

28 testSegment03 Int32_MUL_set2 

29 testSegment04 Int32_ADD_set0 

30 testSegment04 Int32_ADD_set1 

31 testSegment04 Int32_ADD_set2 

 

3.2.1 API and CPU Test Environment  

All the testSegment functions are called through a main interface function named coreTest.  

The coreTest function signature is defined as follows: 

void coreTest(uint8_t steps, const uint8_t forceFail, uint32_t *result); 

Table 4 describes in more detail the input and output of each function. 

Please note by using the forceFail input it is possible to force the function to fail that is to return an error value. This 

type of software fault injection feature allows for testing of higher level fault handling mechanisms, specified at the 

application level. 

Table 3.3 coreTest Interface 

Table 

ID 

Parameter 

type 

C type Name Description 

1 Input unsigned int 8 bit steps Specify how many execution progresses have to be executed. Note that 

each execution of a LUT TS with a specific dataset count for 1 step (see 
Table 3.2 for details about association of testSegment to execution 

progress). Valid range of steps parameter is: 0 < steps < 

TOT_TESTSEGMENTS, where TOT_TESTSEGMENTS is the maximum 

number of execution progresses that could be performed in one run. 

2 Input const unsigned int 

8 bit 

forceFail When set to 0 forces the function to fail generating a failure signature that 

is the inverted value of the correct expected signature. 

All other values do not have any effect on the function behavior. 

3 Output *unsigned int 32 

bit 
result Global pass/fail result of all executed TSs: 

- 0 If at least one executed testSegment failed 

- 1 If all executed testSegments passed. 

- 2 If steps input parameter is out-of-range (see Table 3.2 for 

details about the valid range). 

 

In order to correctly use coreTest function two other functions are given: “coreTestInit” function and “getcoreTestStatus” 

function. 

The first one is the initialization function, written in C programming language, whose signature is defined as follows. 

void coreTestInit(void) 

The function has no input or output parameters, since it just initializes the different data structures needed for the 

correct execution of coreTest; in particular it resets the pointer to the next execution progress to be executed. As a 

consequence, after coreTestInit is called, the next TS to be executed will be the testSegment00 (see Table 3.2). 

The second function offers to the user the possibility to get the next execution progress which will be executed in the 

next call of coreTest function.  

The function is written in C programming language and its signature is defined as follows. 

uint8_t getcoreTestStatus(void) 

Table 3.4 describes in more details the output of the function. 

 

Table 3.4 getcoreTestStatus Interface 

Table 

ID 

Parameter 

type 

C type Name Description 



Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide 

r11an0188eu00130 Rev. 1.3  Page 9 of 53 

Sep 27, 2018  

Table 

ID 

Parameter 

type 

C type Name Description 

1 Output *unsigned int 8 

bit 

n.a. It indicates the next execution step that will be executed. 

test Segments functions are implemented with ARM Cortex-M4 assembly code with a C code interface. 

Note that the need for an HW low level control makes the use of assembler necessary, for instance when calling specific 

assembly instructions with specific parameters. 

 

Since it is possible to have two types of testSegments (Fixed or LUT) then we have the two following types of function 

signatures: 

a.  “Fixed” 

• void testSegmenty (const uint8_t forceFail, uint32_t *result) with y=00, 01, 02, 06, 07, 10, 11, 12, 

14, 15, 17, 18. 

b. “LUT” 

• void testSegmentx (const uint8_t forceFail, uint32_t *result, const uint32_t *StartDataSet, const 

uint32_t GoldSign) with x= 03, 04, 05, 08, 09, 13, 16, 19. 

 

Table 3.5 describes in more details input and output of the functions. 

Table 3.5 testSegment Interface 

Table ID testSegment type Parameter type C type Name Description 

1 LUT or Fixed input const unsigned int 8 bit forceFail When set to 0 force the TS to fail 
generating a failure signature that is 

a NOT-inverted value of the proper 

signature. 

All other values do not have any 

effect on the function behavior. 

2 LUT input const unsigned int 32 bit 

* 

StartDataSet Start address of the Look Up Table 

for the selected dataSet. 

3 LUT or Fixed output const unsigned int 32 bit GoldSign Result of signature value. 

4 LUT or Fixed output unsigned int 32 bit * result Pass/fail result of TS execution 

0 If TS failed 

1 If TS passed. 

 

3.3 Software Integration Rules  

This section provides guidelines for how to integrate the CPU test software within the user’s own project. 

3.3.1 Code Integration 

3.3.1.1  Environment for coreTest call 

Follow the instructions below to call the coreTest function. 

1. Include coreTest.h 

2. Create a variable to hold the result of the test as uint32_t result. Then the address of the variable is passed to 

coreTest function (see the example below). 

3. Define input variables to pass to coreTest 

a. uint8_t steps 

b. uint8_t forceFail 

c. uint32_t *result 

 

Example 



Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide 

r11an0188eu00130 Rev. 1.3  Page 10 of 53 

Sep 27, 2018  

#include "coreTest.h" 

 

uint8_t steps=1; 

uint32_t result=0; 

uint8_t forceFail = 11; 

 

void main 

{ 

coreTestInit(); //init index 

 

/* Launch the core test function in order to perform Diagnosis SW*/ 

coreTest(steps, forceFail, &result); 

if(result != 1) {  

 errorHandler(); /*Fault handling*/ 

} 

 

After coreTest function returns, fault detection can be done by checking the result output value as shown in the example 

above.  

A complete example of the coreTest function, which calls all testSegment is provided in   



Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide 

r11an0188eu00130 Rev. 1.3  Page 11 of 53 

Sep 27, 2018  

Appendix B – CPU Test Example. 

 

3.3.2 Compiler Warnings 

Please note that in Test Segment 17 two warnings are raised by the compiler respectively at rows 278 and 286. They are 

related to the utilization of the stack pointer as source register. The warnings come from the fact that the SP cannot 

assume an a-priori well known value, since it strongly depends on the application. Therefore its utilization could lead to 

unpredictable behaviors. 

Anyway this is not the case of this SW, because only the offset of the SP between two pre-defined assembly instruction 

blocks is used (accumulated in the signature). Since the offset value is fixed (this part of code is critical, then exceptions 

are disabled in it), the SW behavior is completely predictable.  

 

3.3.3 Usage Conditions 

Table 3.6 summarises usage conditions. 

Table 3.6 Conditions of use 

ID Topic Constraint Description 

1 Interrupt Avoid corruption of function 

context. 

When interrupting the Diagnostic SW the context of all General Purpose Registers, system 

register, including APSR and FPSCR, have to be saved and restored once returning from 

interrupt handling.  

 

See Document Reference [1] for details of the CPU register definitions. 

2 CPU mode Correct execution of the SW. Launch Diagnostic SW in privileged mode  

3 Stack Correct execution of the SW. Use Main Stack Pointer as stack pointer for the function call. 

4 Diagnostic 

coverage 
Execute all the coreTest steps 

during application SW execution. 

If a subset of coreTest steps are executed from the CPU Test the overall diagnostic 

coverage of the CPU Test will be lower than the value achieved with the full CPU Test. 

5 Interrupt Avoid corruption of function 

context. 

The following condition applies if there is an Interrupt Service Routine making use of 

floating point instructions. 

Inside the application code isolate in a critical section with interrupt disabled the part of the 

code making use of floating point instructions. 

 

3.4 Define Directives for Software Configuration 

No specific define directives are needed. 

 

3.5 Software Package Description 

This section details how to identify the supplied software package and also provides a description in tabular format for 

each design file type. 

3.5.1 Identification and Contents of Package 

The Software package version is identified as follows: 

• Revision 1.0.2 

• File list 

 

Table 3.7 CPU Software Test Package and related MD5 signatures. 

Nome File MD5 Signature 

closeTest.asm 50c2d658a53cbd2cc01dd65c96060b81 

coreTest.c d73b1c130c736f21b365fe82bf4a49cc 

coreTest.h 354338ad61d6d344ad42a6582b46454c 

globVar.h 0eec1261c9ba66b25214ebd3b5729b13 

initTest.asm 86d528b427395364b9d071b3991aba47 



Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide 

r11an0188eu00130 Rev. 1.3  Page 12 of 53 

Sep 27, 2018  

testSegment00.asm ffa26ea3e0695a1737c81167ab95c140 

testSegment00.h e7a098b362787264230173ab43907ab6 

testSegment01.asm 828822cd7a811b3701ff7722053aa1e6 

testSegment01.h 4e0d0de4d40176a2747de0217ad0d2d8 

testSegment02.asm 718e51540781736c882ca29ee847a785 

testSegment02.h 65884aca0f87bfb1a23f0f2a29ba88f6 

testSegment03.asm 64fadf7d06a0acf9c030e19d734c0bd9 

testSegment03.h 7e406791d29fe3289887ed60af5fc1f8 

testSegment04.asm 4e1e681a7d77b6c080b125de333e3f7c 

testSegment04.h 8825b9d1ca2bd456c34d8523899f73db 

testSegment05.asm 354a456ce9e98ca5cd5b52c280b17745 

testSegment05.h 8a97222eec7fae0a2594514df8d4ad2b 

testSegment06.asm c172c5123942a5c3c7a4db0741676afa 

testSegment06.h 36efb828af9b33ef3ef360efd717b510 

testSegment07.asm df3a697e716e3dbdb82a5f4a40d924a4 

testSegment07.h 688ecb7e16f64129b35f7696a1ad7c5d 

testSegment08.asm 1a2fb67f94d0bc36ce923c064e7cc86a 

testSegment08.h fa8e2c6904513c6067d58011292bb297 

testSegment09.asm 2187925108eeea813b93076dc4d64d4a 

testSegment09.h 2b0056b7fd5917187ec99846d3503f9c 

testSegment10.asm fb8018e88175106feab08d2d198d4ca8 

testSegment10.h c61233702c83f65b3346a766513053b1 

testSegment11.asm 6c314801590bad445abbe0503b3485a1 

testSegment11.h 22c072c0375dd92a7dd002c4af1378f0 

testSegment12.asm 313194fda5acf288922b9d54c6f21702 

testSegment12.h 9d01d6d1a7c2eba4bc6ab14c169f4315 

testSegment13.asm 40ee680270a3a486bbab1810b8723aea 

testSegment13.h 76c207764c711ee676ec70efa063bffd 

testSegment14.asm 36a61640cf1cad6a46a842b9c63a42eb 

testSegment14.h 663e49cef53ab71bcc5036f50e3b3587 

testSegment15.asm 1dfe95ffbcf91bfafc0941a668160836 

testSegment15.h 8a96899cecdbd157494d23105988da29 

testSegment16.asm 0a9753495c4ae7f9724f024012ba8604 

testSegment16.h 27a814c49a3d3de951eebf3b44d0646e 

testSegment17.asm 5644dc9a9f6a1d1640ae4eb3a063c4dd 

testSegment17.h 7fd2d0b9359f06ee69f910b82943846f 

testSegment18.asm f1dac4d00c4172439b02ad3d4aebb88b 

testSegment18.h 30bfeb664848f071c8afe6be4c7495a6 

testSegment19.asm dd61f120b9e697b22f1ca723e710615d 

testSegment19.h 8d88b5d41646c51b072e29cfa4723923 

testSegmentMgm.c 9024072e409bb0f57ce385324550c77f 

testSegmentMgm.h 0f5334d44e33ca6d734a609410c3da25 

 

3.5.2 Description of Design Files 

Table 3.8 Design files 



Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide 

r11an0188eu00130 Rev. 1.3  Page 13 of 53 

Sep 27, 2018  

Table ID File Name Description 

1 globVar.h This file contains the compile option definitions, through which it is possible to select which 

TSs have to be included in the SW. This file also contains the definition of the LUT, signature 

vector sizes and other constants. 

3 coreTest.h This file contains the API of the diagnostic SW. In particular contains the coreTest function 

declaration to be called by the application SW. 

4 coreTest.c This file contains the definition of coreTest function. 

 testSegmentMgm.h This file contains the API of the TS execution progress management. In particular contains the 

testSegmentMgm function declaration to be called by the coreTest function. 

 testSegmentMgm.c This file contains the definition of testSegmentMgm function. 

5 testSegmentxx.h with 

xx=0,..,19. 

This file contains the declaration of the testSegment functions. 

7 testSegmentxx.asm with 

xx=0,..,19. 

This file contains the assembler definition of the testSegment function. 

8 initTest.asm This file contains the TS signature accumulation register initialization. 

9 closTest.asm This file finalize the TS and state whether it is passed or not. 

Table 3.9 - Design files 

 

3.6 Resources Usage 

Table 3.10 provides an overview of the memory resources used by the code. 

Take care that resources related to the main file are not part of the coreTest function and then not included.  

Maximum stack usage is 0 bytes. 

Note that no dynamic memory allocation is implemented. 

Table 3.10 Memory resources 

Module ROM RAM 

Code (bytes) Data (bytes) rw data (bytes) 

coreTest.o 960 6704 0 

testSegmentMgm.o 36 0 1 

initTest.o 278 0 0 

closeTest.o 28 0 0 

testSegment00.o 1044 9 0 

testSegment01.o 1962 0 0 

testSegment02.o 844 0 0 

testSegment03.o 2120 0 0 

testSegment04.o 1838 0 0 

testSegment05.o 1656 0 0 

testSegment06.o 1908 0 0 

testSegment07.o 604 0 0 

testSegment08.o 2398 0 0 

testSegment09.o 188 0 0 

testSegment10.o 1340 0 0 

testSegment11.o 2136 0 0 



Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide 

r11an0188eu00130 Rev. 1.3  Page 14 of 53 

Sep 27, 2018  

Module ROM RAM 

Code (bytes) Data (bytes) rw data (bytes) 

testSegment12.o 6320 0 0 

testSegment13.o 976 0 0 

testSegment14.o 2056 0 0 

testSegment15.o 1642 0 0 

testSegment16.o 3908 0 0 

testSegment17.o 9254 0 0 

testSegment18.o 1266 0 0 

testSegment19.o 1578 0 0 

TOTAL (bytes) 46340 6713 1 

 

Table 3.11 details the execution time for each testSegment for all valid values of dataSet. Interrupt disable time is also 

reported when applicable. 

Table 3.11 Execution time 

testSegment dataSet Execution 

time [clock 

cycles] 

Execution 

time@48Mhz 

clock [us] 

Maximum 

interrupt Disable 

Time [clock 

cycles] 

Maximum 

interrupt Disable 

Time @48Mhz 

clock [us] 

testSegment00  679 14,15 0 0 

testSegment01  801 16,69 0 0 

testSegment02  499 10,40 0 0 

testSegment03 Float32_MUL_set0 3129 65,19 47 0,98 

testSegment03 Int32_MUL_set0 3087 64,31 47 0,98 

testSegment03 Int32_MUL_set1 3143 65,48 47 0,98 

testSegment03 Int32_MUL_set2 2987 62,23 47 0,98 

testSegment04 Float32_ADD_set0 4833 100,69 48 1 

testSegment04 Int32_ADD_set0 2225 46,35 48 1 

testSegment04 Int32_ADD_set1 2223 46,31 48 1 

testSegment04 Int32_ADD_set2 2231 46,48 48 1 

testSegment05 Float32_DIV_set0 2717 56,60 62 1,29 

testSegment06  757 15,77 35 0,73 

testSegment07  479 9,98 23 0,48 

testSegment08 Int32_MUL_set0 1757 36,60 0 0 

testSegment08 Int32_MUL_set1 1799 37,48 0 0 

testSegment08 Int32_MUL_set2 1739 36,23 0 0 

testSegment09 Int32_DIV_set0 1443 30,06 0 0 



Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide 

r11an0188eu00130 Rev. 1.3  Page 15 of 53 

Sep 27, 2018  

testSegment dataSet Execution 

time [clock 

cycles] 

Execution 

time@48Mhz 

clock [us] 

Maximum 

interrupt Disable 

Time [clock 

cycles] 

Maximum 

interrupt Disable 

Time @48Mhz 

clock [us] 

testSegment09 Int32_DIV_set1 1147 23,90 0 0 

testSegment09 Int32_DIV_set2 1289 26,85 0 0 

testSegment10  813 16,94 0 0 

testSegment11  1097 22,85 50 1,04 

testSegment12  4433 92,35 56 1,165 

testSegment13  Int32_UMUL_set0 1517 31,60 0 0 

testSegment14  996 20,75 43 0 

testSegment15  727 15,15 0 0 

testSegment16 Int32_ADD_set0 2353 49,02 0 0 

testSegment16 Int32_ADD_set1 2375 49,48 0 0 

testSegment16 Int32_ADD_set2 2123 44,23 0 0 

testSegment17  3059 63,73 27 0,56 

testSegment18  621 12,94 0 0 

testSegment19  Float32_SQRT_set0 3609 75,19 46 0,955 

Total  62687 1305,98 722 15,05 

 

3.7 Requirements for Safety Relevant Applications 

Table 3.12 lists requirements for usage in safety relevant applications. 

 

Table 3.12 Safety relevant requirements 

ID Topic Sub-topic Description 

SW_1 SW integration Function return On the return of coreTest evaluate the correctness of the execution by checking the value of 

“result”. 

SW_2 SW integration Function call When calling the coreTest function more than once take care to use different variables to 
store the outcome of the function, specifically the test result. In case the same variable is 

used consider to initialize it to zero before executing subsequent runs of the function.  

SW_3 SW integration Function environment Before calling coreTest initialize to 0 the variable used by the function to return the result 

value.  

PR_1 Project 

management 
User expertise User has to have good expertise on embedded programming on the target MCU HW 

Synergy S3 series. Expertise on assembly programming and C level/assembly interface is 

requested. 

 

3.8 Diagnostic Fault Coverage and Watch Dog Usage  

The Diagnostic coverage provided by the CPU Software Test considers that all testSegments of type Fixed are launched 

together with all testSegments of type LUT, each one called with all the supported values of the parameter dataSet, as 

detailed in Table 3.2. 

In addition the coverage considers the contribution of a Watchdog. Indeed the use of the CPU Software Test has to be 

integrated with the use of a Watchdog and Table 3.13 outlines recommendations for its usage. 



Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide 

r11an0188eu00130 Rev. 1.3  Page 16 of 53 

Sep 27, 2018  

The necessity of integrating a Watchdog is related to the fact that some hardware faults will make the control flow of 

the software not to be followed and, in such conditions, the presence of a Watchdog will effectively detect such 

deviations.  

Note also that the CPU Software Test embeds some control flow mechanisms which are required to trigger the 

activation of such faults. However, as stated above, the fault detection has to be completed by the presence of a 

Watchdog.  

Table 3.13 Recommendations on Watchdog usage 

ID Topic Description Comment 

1 WD refresh Consider a control flow monitoring for the WD refresh function: the 

refresh is done only if the control flow mechanism (e.g. proper value of 

global variable) is not respected.  

 

2 WD refresh Consider a strategy as the following: activate the WD refresh only if all 

the main tasks having a predictable and periodic timing schedule of the 

application SW are called in the proper order.  

 

 

4. RAM Software Test 

4.1 Test Objectives 

The objective of the RAM Software Test is to verify the embedded RAM memory of the MCU. 

The main features of the software tests are as follows. 

a. Whole memory check including stack(s). 

o Memory size programmable at compile time 

b. Block-wise implementation of the test. 

o Size of the block programmable at compile time  

c. Supports of two test algorithms  

o Extended March C- 

o WALPAT. 

d. Word-wise implementation of the test algorithms where the elementary cell under test is considered to be made 

up by 32 bits width. 

e. Support for destructive and non-destructive memory testing.  

 

Please note that information regarding the test algorithms is provided in Appendix B – CPU Test Example. 

 

4.2 API and RAM Test Environment 

A RAM block test is called through a main interface function named testRAM. The testRAM function signature is 

defined as follows: 

void testRAM(unsigned int index, unsigned int selectAlgorithm, unsigned int destructive) 

Table 4.1 below describes in more detail the function interface. 

Table 4.1 testRAM Interface 



Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide 

r11an0188eu00130 Rev. 1.3  Page 17 of 53 

Sep 27, 2018  

Table ID Parameter type C type Name Description 

1 Input unsigned int index Specify RAM block under test: from 0 to 

numberOfBUT-1. 

2 Input unsigned int selectAlgorithm Specify algorithm to be run on the RAM block 

under test: 

- “0” runs Extended March C- 

algorithm 

- “1” runs WALPAT 

- Other values will produce an error 

return value (i.e. resultTestRam1 = 
resultTestRam2 = 0) 

3 Input unsigned int destructive Specify the kind of test: 

- “0” means non-destructive test is 

run, RAM block content is saved in 
the buffer; 

- “1” means destructive test is run. 

Once a memory block is tested with a 

destructive procedure its content is initialized 

with all zeros. 

 

As specified in Table 4.1 index indicates the specific RAM block to be tested using the algorithm specified by 

selectAlgorithm. Each RAM block has a size in terms of double words defined by BUTSize. 

Valid values of index range between 0 and numberOfBUT-1.  

numberOfBUT indicates the number of block in which the RAM is divided and it is derived by dividing the memory 

size by the size of the block specified by the BUTSize parameter. 

Calling the function with an invalid value of the block index, that is greater than (numberOfBUT-1), will result in the 

return variables being set to 0 indicating a failed test. 

 

4.3 Test Strategy 

The scope of the RAM Software Test is to provide coverage across the whole embedded RAM, adopting a block-wise 

strategy. 

The memory size and the block size are parameters the user can select based on the device and its application needs. 

• MUTSize 

o This is the size of the memory under test expressed in number of double word. 

• BUTSize 

o This is the size of the block under test in terms of number of double word  

• numberOfBUT 

o This is the number of blocks to which the memory is divided. 

 



Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide 

r11an0188eu00130 Rev. 1.3  Page 18 of 53 

Sep 27, 2018  

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
Block number 

(numberOfBUT-1)

Block number 1

Block number 0

Block number x

(BUTSize*4) bytes

resultTestRam1

resultTestRam2

(MUTSize*4) bytes

Block number y

 

Figure 4.1 RAM block division 

 

Figure 4.1 shows how the memory is divided into a number of blocks equal to numberOfBUT. 

Each block is then identified with an index ranging from 0 to (numberOfBUT-1). 

Each block can be tested in a destructive or non-destructive manner.  

In order to support non-destructive testing, one block of the RAM is used as a buffer to store the content of the block 

under test. 

The buffer can be tested as well and this can be done with a destructive strategy before testing the other blocks. 

A memory reserved area has to be defined for the buffer in order to preserve the integrity of the application software 

after running the test.  

This can be obtained as follows 

a. Define the start address of the buffer 

i. This can be done by assigning the label addressBuffer inside the file testRAM.inc; see Section 4.3 for 

an example of usage. 

b. Define IAR linker commands to reserve the memory buffer locations 

i. Example of linker commands are provided in see section 4.4 

 

The code stores the result of the test in two unused RAM locations accessible from the application software by using 

two variables: resultTestRam1 and resultTestRam2 (see Figure 4.1).  

The result variables are located at fixed absolute addresses and they have to be placed into two different blocks. 



Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide 

r11an0188eu00130 Rev. 1.3  Page 19 of 53 

Sep 27, 2018  

This strategy has been selected to avoid the issue of not detecting a faulty block due to the fact that the result itself is 

stored in the same faulty block. 

It is worth noting that these two variables are initialized each time the RAM test function is called and the user shall 

check their values only after having called RAM test function. 

By allowing two copies of the test result to be stored into two different blocks, fault detection is still possible because at 

least one variable won’t be stored inside a faulty block. 

The location of the result variables can be fixed inside testRAM.h. 

The application level user then has to check the values of the result variable after the test is completed. 

Coding of the test result as follows 

i. resultTestRam1= resultTestRam2=1 implies the test is passed. 

ii. any other combinations means the test failed. 

 

An example of a test result check, in addition to definition of addresses for the result variables is provided in Section 4.3 

4.4 Software Integration Rules 

This section provides guidelines for how to integrate the RAM Test software within the user’s own project. 

4.4.1 Code Integration 

4.4.1.1  Define Memory Size and Block Size 

The user has to set the size of the RAM under test and the size of each of the blocks.  

This information has to be provided by the directives present in testRAM.h. 

BUTSize can have one of the values illustrated in Table 4.2 below. 

Table 4.2 Relation between BUTSize and MUTSize 

BUTSize Number of Blocks Index 

MUTSize/4 4 0, 1, 2, 3 

MUTSize/8 8 0, 1, 2, 3, 4, 5, 6, 7 

MUTSize/16 16 0, 1, 2, 3, 4, ..., 15 

MUTSize/32 32 0, 1, 2, 3, 4, ..., 31 

MUTSize/64 64 0, 1, 2, 3, 4, ..., 63 

... ... ... 

MUTSize/MUTSize MUTSize 0, 1, 2, 3, 4, ..., MUTSize-1 

 

Below is a worked example for a 192Kbyte RAM divided in blocks of 1Kbyte size each. 

//size of the RAM Memory Under Test: 192KB = 192 * 1024 bytes = 196608bytes  = 49152double words 

#define MUTSize 49152 

//size of the Block of RAM Under Test of 1KB  

#define BUTSize             (MUTSize/192)   

 

4.4.1.2  Reserve and Place Buffer  

In case the user wants to perform non-destructive tests, it is needed a buffer memory area. 

A buffer area can be reserved using the IAR linker configuration file (.icf file) and defining a variable buffer in the 

application code. 

Assuming the buffer size has to be 1Kbyte (then specify 1024 bytes in hexadecimal format 0x400) and the starting 

address of the buffer block is 0x2002FC00, then add the following two instructions:  

1. //RAM_TEST:BufferStorage definition   

2. define block BufferStorage with alignment = 1, size = 0x400 { }; 



Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide 

r11an0188eu00130 Rev. 1.3  Page 20 of 53 

Sep 27, 2018  

3. place at address mem: 0x2002FC00{ block BufferStorage }; 

 

In the file testRAM.inc make sure to align the labels addressBuffer_t and addressBuffer_w to the buffer address, in particular to the 

most four significant address bytes and the least four significant address bytes. 

 

addressBuffer_w  EQU    0xFC00 

addressBuffer_t  EQU     0x2002 

 

Please note that the RAM buffer shall be stored within the SRAM memory dedicated address range which is specified in the HW 

manual[2]. 

 

 

In addition, the user shall define a variable buffer in the application SW as a global variable and use it to force the linker to allocate it. 

In particular, considering the above example the user shall insert the following declaration: 

 

volatile unsigned int buffer[BUTSize]@ 0x2002FC00 = {0}; 

 

The user, in order to let the compiler allocate the buffer, shall use this variable, using for example the following 

instruction: 

buffer[0] = 0; 

4.4.1.3  Place Result Variables 

The SW stores the result of the test in two unused RAM locations accessible from the application code by using two 

variables (resultTestRam1 and resultTestRam2).  

These two variables have to be placed at two absolute addresses of the RAM. 

Declaration of these two variables is defined in testRAM.h file. 

Considering the case of 192KB RAM divided in blocks of 1KB each, we have for example: 

• resultTestRam1 is placed in the last double word location of the block 0; 

• resultTestRam2 is placed in the last double word location of the block 2. 

 

Code in testRAM.c file then has to be as follows: 

•  unsigned int resultTestRam1 @ 0x20000000 = (unsigned int) 0; 

•  unsigned int resultTestRam2 @ 0x20000800 = (unsigned int) 0; 

 

 4.4.1.4 Word Length 

• The chosen RAM algorithm runs using a 32 bit word length. 

 

4.4.1.5  Test Flow and Check Test Results 

It is recommended to initially run a destructive test on the buffer. Note that the buffer test has the same result if it is run 

as destructive or non- destructive; its content are lost. 

A recommended flow for the RAM Test is as follows 

1. run testRAM function on the buffer block; 

2. run testRAM function on the other blocks of the RAM. 

 

Consider the following instructions to effectively use the testRAM function. 

1. Include testRAM.h 

2. Define input variables for parameters to call testRAM 

d. index 

e. select Algorithm  

f. destructive 

3. Call testRAM 

4. Check result variables 

 



Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide 

r11an0188eu00130 Rev. 1.3  Page 21 of 53 

Sep 27, 2018  

Worked Example: 

 

#include " testRAM.h" 

 

unsigned int index = 71; 

unsigned int selectAlgorithm = 0; 

unsigned int destructive = 0; 

 

testRAM(index, selectAlgorithm, destructive); 

 

 if(!(resultTestRam1&&resultTestRam2)){ /*Fault detection*/ 

      errorHandler();   

 } 

 

After the testRAM function returns, a fault can be detected by checking the output value as shown in the example above.  

Note that the output of testRAM is stored in two locations, so if resultTestRam1 and resultTestRam2 are both equal to 1 

no faults are detected, otherwise fault handling management should start (calling of errorHandler() function in the 

above example). 

 

4.4.2 Usage Conditions 

Table 4.3 summarises usage conditions. 

                                                           

1 Not algorithm specific value, just used as example. 



Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide 

r11an0188eu00130 Rev. 1.3  Page 22 of 53 

Sep 27, 2018  

Table 4.3 Conditions of use 

ID Topic Constraint Description 

1 Interrupt Avoid corruption of function 

context. 

When interrupting the RAM Software Test the context of all General Purpose Registers, 

system register, including PSR and FAULTMASK, have to be saved and restored once 

returning from interrupt handling.  

See Document Reference [1] for details of the CPU register definitions. 

2 CPU mode Correct execution of the SW. Launch RAM Software Test in Privileged mode. 

3 Stack Avoid corruption of the stack. Test RAM blocks corresponding to stack locations in a non-destructive way. 

4 Environment Avoid corruption of variables 

used to check test results. 

In any application code other than the SW test do not overwrite values of 

resultTestRam1 and resultTestRam2 variables. 

5 Environment Avoid data lost Keep in mind that that data saved by the application inside the buffer will be lost when 

calling the RAM test. 

6 Configuration Avoid data lost Do not place the result variables (resultTestRam1 and resultTestRam2) in the same 

block as the buffer. 

7 Configuration Compliance with SW test 

strategy 

Minimum number of blocks in which RAM is divided has to be 4. 

8 Configuration Compliance with SW test 

strategy 

Range of addresses of the memory under test has to be double word aligned. 

9 Configuration Compliance with SW test 

strategy 

For BUTSize respect the following: BUTSize=MUTSize/2x with 1<x<=log2(MUTSize) 

10 Configuration Compliance with SW test 

strategy 

Place resultTestRam1 and resultTestRam2 variables in two different blocks of the 

RAM. 

11 Diagnostic 

coverage 

Use sufficient block size to 
guarantee diagnostic coverage 

value 

Both RAM Tests are giving medium coverage (90%) for permanent faults. This 
coverage value is valid under the condition that for both tests the minimum block size 

chosen for the test is not lower than 512 bytes. 

 

4.5 Define Directives for Software Configuration 

Before compiling the code it is necessary to define the size of the RAM under test, the size of the blocks into which the 

memory is divided and the word length for the executed RAM test algorithm. 

All this information is specified by the directives described in Table 4.4. 

Table 4.4 Define directives 

Directives Description 

MUTSize Indicate the size of the RAM under test. Value associated to it expresses size of the RAM in terms of 

double words. 

This setting has to be in testRAM.h 

BUTSize Indicate the size of the blocks in which the RAM is divided. Value assigned to it has to be of this type: 

MUTSize/4; MUTSize/8; MUTSize/16; MUTSize/32; ... ; MUTSize/MUTSize 

This value is always in terms of double words. 

This setting has to be in testRAM.h 

 

4.6 Software Package Description 

This section details how to identify the supplied software package, including its MD5 signature and also provides a 

description in tabular format for each design file type. 

4.6.1 Identification and Contents of Package 

The Software package version is identified as follows: 

• Revision 1.0.1 

• File list 

 

 



Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide 

r11an0188eu00130 Rev. 1.3  Page 23 of 53 

Sep 27, 2018  

Table 4.5 RAM Package and related MD5 signatures 

Nome File MD5 Signature 

extendedMarchCminus.asm aeb6759009a900302e55015424d3a658 

extendedMarchCminus.h eddc772135ebb62c03536ce7649b9b82 

testRAM.c fd62c5f03c3980735ebeb17e618fa0f8 

testRAM.h f161c9d0def145951ff3ea9a8e6230c8 

testRAM.inc 393296054a1395d1f664639a901ec2d0 

walpat.asm 6219b823cdd280d1aae4f85d6cbe2cb5 

walpat.h 7c3e9770144a6d0eeba3568fca019c07 

 

4.6.2 Description of Design Files 

Table 4.6 Design files 

Table 

ID 

File Name Description 

1 testRAM.h This file contains the API of the RAM test. In particular contains the testRAM function declaration to be 

called by the application SW. Also it contains declaration of the result variables placed at fixed absolute 

addresses and define directives 

2 testRAM.c This file contains the definition of testRAM function. 

3 extendedMarchCmi

nus.h 

This file contains the declaration of the Extended March C- algorithm function. 

4 extendedMarchCmi

nus.asm 
This file contains the definition of the Extended March C- algorithm function. 

5 walpat.h This file contains the declaration of the WALPAT algorithm function. 

6 walpat.asm This file contains the definition of the WALPAT algorithm function. 

7 testRAM.inc This file contains the definition of the patterns for the test execution. 

 

4.7 Resources Usage 

Table 4.7 provides an overview of the memory resources used by the code. 

The Maximum stack usage is 0bytes. 

Table 4.7 Memory resources 

Module ROM RAM (bytes) 

 Code (bytes) Data (bytes) 

extendedMarchCminus.o 468 0 0 

testRAM.o 120 0 8 

walpat.o 468 0 0 

Total (bytes) 1056 0 8 

 

The timing performance details in Table 4.8 below, are referenced to the test of one RAM block with a size of 1Kb. 

Table 4.8 Execution time 

Algorithm NON-Destructive 

Execution time [clock 

cycles] 

NON-Destructive 

Execution time@48MHz 

clock [us] 

Destructive 

Execution time [clock 

cycles] 

Destructive 

Execution time@48MHz 

clock [us] 

Extended March C- 93476 1947 91176 1899,50 

WALPAT 7911754 164828 7909448 164780,17 

 



Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide 

r11an0188eu00130 Rev. 1.3  Page 24 of 53 

Sep 27, 2018  

4.8 Requirements for Safety Relevant Applications  

Table 4.9 lists recommendations for usage in safety relevant applications. 

Table 4.9 Safety relevant requirements 

ID Topic Sub-topic Description 

RAM_SW_1 Test flow Buffer Before testing blocks other than buffer test the buffer with a destructive testing. 

Rationale is to avoid corruption of the test result because of a faulty buffer.   

RAM_SW_2 Configuration Number of 

blocks 

Consider to divide the memory under test into a minimum number of blocks, possibly equals to 

4. 

Rationale is to properly detect address faults mainly: the larger the block more efficient the 

address fault detection.  

 

5. ROM Software Test 

5.1 Test Objectives 

The objective of the ROM Software Test is to verify the embedded ROM memory of the MCU. 

The main features of the software tests are as follows. 

• Whole memory check. 

• Possibility to test with a block-wise strategy, generating multiple CRC signatures. 

• Support of three CRC polynomials. 

• Support of incremental mode calculation: calculation of the CRC signature can be time-wise split. 

 

5.2 Test Strategy 

The scope of the ROM Software Test is to verify the embedded ROM using a CRC technique. Error detection is 

achieved as follows: 

1. A range of ROM addresses is chosen; this step defines the block under test. 

2. A reference checksum value is calculated using the IAR linker and saved inside the memory.  

3. During the ROM Software Test execution, the hardware peripheral CRC Calculator (see Document Reference 

[2] for the peripheral details) is used to produce an actual checksum value of the ROM under test in order to 

check its integrity. 

4. The calculated Checksum value is compared with that stored in memory and an error is detected if the two 

values do not match. 

5. The previous steps are repeated for a different block of memory until the whole ROM area is covered. 

5.2.1 Checksum Generation using the IAR linker 

Before compiling the ROM Software Test, checksum generation by the IAR linker has to be enabled. 

Furthermore, the following information has to be considered. 

1. Place a checksum variable for each ROM addresses range under test  

2. Start and End addresses of the ROM without considering the location in which checksum value is placed 

3. Size and alignment of the checksum variable 

4. Initial value of the checksum variable 

5. The checksum algorithm used (chosen polynomial) 

6. Checksum variable bit order 

Further details are provided in Section 5.5 

 

5.2.2 MCU CRC Peripheral 

The CRC calculator (refer to Document Reference [2] for peripheral details) generates CRC codes for data blocks. It 

provides the use of any of the three polynomials listed below. 

• 8-bit CRC 



Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide 

r11an0188eu00130 Rev. 1.3  Page 25 of 53 

Sep 27, 2018  

1. x8+x2+x+1 

• 16-bit CRC 

2. x16+x15+x2+1 

3. x16+x12+x5+1 

5.3 Top Level Software Structure 

Two functions are used to run the CRC calculator module and generate the checksum value 

• crcHwSetup enables the CRC HW module and configures the control registers to select the selected CRC 

polynomial to be used 

• crcComputation calculates checksum on all the bytes of the selected ROM block. 

 

 

5.3.1 ROM Test APIs 

The function signatures are found below 

void crcHwSetup(unsigned int crc) 

uint16_t crcComputation(unsigned int checksumBegin, unsigned int checksumEnd, unsigned int incrMode) 

 

Table 5.1 describes more details of the interface to the functions. 

Table 5.1 ROM test APIs 

Table ID Function Parameter type C type Name Description 

1 crcHwSetup input unsigned int crc Specify the kind of CRC generating 

polynomial: 

-“0”: x8+x2+x+1 (8-bit CRC) 
-“1”: x16+x15+x2+1 (16-bit CRC) 
-“2”: x16+x12+x5+1 (16-bit CRC) 
-other values: default is 16-bit CRC 

x16+x15+x2+1 

2 crcComputation input unsigned int checksumBegin Specify ROM block start address. 

3 crcComputation input unsigned int checksumEnd Specify ROM block end address. 

4 crcComputation input unsigned int incrMode Specify the CRC calculation mode: 

-“0”: incremental mode not active 
- other values: incremental mode active 

5 crcComputation output uint16_t - The return value of the function is the 

computed checksum value. 

 

Note that within the crcComputation function  

• The CRC signature is initialized to 0xff in case of CRC_8 utilization or 0xffff in case of CRC_16 or 

CRC_16_CCITT. 

• The return value is the 1’s complement of the calculated checksum. 

 

Note also that the block size of the memory for the CRC calculation is defined by the difference between the end and 

the start addresses and it has to be a multiple of the CRC length.  

 

5.3.2 Incremental Mode Calculation 

The input parameter incrMode allows the user to split the calculation of the CRC signature for the same ROM block in 

the best way depending on the requirements of its application.  

The behaviour is summarized in Figure 5.1: 



Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide 

r11an0188eu00130 Rev. 1.3  Page 26 of 53 

Sep 27, 2018  

• the ROM block for which the CRC is to be calculated is divided in sub-blocks identified by a given set of 

addresses (3 group of addresses in the example); 

• then crcComputation is run on each set of addresses; 

• the first call of crcComputation is made with no incremental mode while the following calls need to have the 

incremental mode active in order to “accumulate” previous partial results; 

• after the last function call the total block CRC is returned. 

 

0xfffbb6ef

0xfffc06ab

0xfffc06ef

0xfabc06ef

0xfffc0611

0xfffc06ef

ROM 

block 
0xfffc06ef

0xabcc06ef

0xaafc06ef

0xfffc06aa

Block CRC

0xfffc0612

Run crcComputation on the first set of addresses with incrMode=0.

Result after this computation is an intermediate value but it is not yet 

the block CRC.

Run crcComputation on the second set of addresses with incrMode=1.

Result after this computation is another intermediate value considering also 

the elaboration on the first set of addresses but it is not yet the block CRC

Run crcComputation on the third set of addresses with incrMode=1.

Result after this computation is the Block CRC

 

Figure 5.1 Incremental mode calculation 

 

5.4 Software Integration Rules 

5.4.1 Code Integration 

Follow the instructions below to call the ROM test functions: 

1. Include crc.h 

2. Define extern variables for each CRC signatures generated by the IAR linker and placed in ROM. 

3. Define variable for input parameter of crcHwSetup: 

a. crcType 

4. Define variables for input parameter of crcComputation: 

a. checksumBegin 

b. checksumEnd 

c. incrMode 

5. Define output variable in order to store the result of the crcComputation. 

Refer to the example in Section 5.4.2.1 which explains a case in which two ROM addresses ranges are tested. 

 

5.4.2 Test Flow and Test Results Check 

The recommended test flow is as follows: 

1. Initialize the peripheral using crcHwSetup. 

2. Evaluate the checksum using crcComputation. 

3. Compare with expected checksum for error detection 

  



Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide 

r11an0188eu00130 Rev. 1.3  Page 27 of 53 

Sep 27, 2018  

5.4.2.1  Worked Example 

#include “crc.h" 

extern const uint16_t __checksum; 

 

 

  unsigned int type = 1; 

  crcHwSetup(type); 

   

  unsigned int checksumStart = 0x00000000; 

  unsigned int checksumStop = 0x000FFFFB; 

  unsigned int crcIncr = 0; 

  uint16_t crcResult;                                                

  crcResult = crcComputation(checksumStart, checksumStop, crcIncr);  

  if(crcResult != __checksum){ 

    errorHandler(); 

  } 

   

After crcComputation function returns, a fault can be detected by checking the output value as shown in the example 

above: crcResult achieved by the ROM Software Test is compared with __checksum,that is the reference value 

computed by the IAR linker. 

  



Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide 

r11an0188eu00130 Rev. 1.3  Page 28 of 53 

Sep 27, 2018  

5.4.2.2  Worked Example with Incremental Mode 

#include “crc.h" 

 

extern const uint16_t _checksum; 

 

unsigned int type; 

unsigned int checksumStart; 

unsigned int checksumStop;  

uint16_t crcResult; 

unsigned int crcIncr; 

 

  type = 1; 

  crcHwSetup(type); 

   

  crcIncr = 0; 

  checksumStart = 0x00000000; 

  checksumStop = 0x0007FFFB;               //512KB                                                 

  crcResult = crcComputation(checksumStart, checksumStop, crcIncr);  

 

  crcIncr = 1; 

  checksumStart = 0x00080000; 

  checksumStop = 0x000FFFFB;               //512KB   

  crcResult = crcComputation(checksumStart, checksumStop, crcIncr);  

 

  if(crcResult != __checksum){ 

    errorHandler(); 

  } 

 

The above example shows how the CRC for a 1MB block can be calculated with 2 cumulated runs of the 

crcComputation function. 

Note that the crcResult is compared with the value computed by the IAR linker only after the last call of the 

crcComputation function. 

The above example also shows the 2 calls of the crcComputation function are sequential, however this is not a 

definitive requirement. The calls can be executed in a different order as long as the usage conditions described in 

section 5.4.3 are maintained. 

 

5.4.3 Usage Conditions 

Table 5.2 summarises usage conditions. 

Table 5.2 Conditions of use 

ID Topic Constraint Description 

1 Interrupt Avoid corruption of function 

context. 

When interrupting the ROM Software Test the context of all General Purpose Registers, 

system register, including PSR and FAULTMASK, have to be saved and restored once 

returning from interrupt handling.  

See Document Reference 1 for details of the CPU register definitions. 

2 Incremental 

mode 

Avoid corruption of the calculated 

CRC value. 

When the incremental mode is used do not change the setting or neither use the HW 

peripheral CRC Calculator until the CRC calculation is completed. This is valid for any kind 

of SW (e.g. application SW or any interrupt handlers). 

 

5.5 Checksum Generation Using IAR Tools 

The ROM Test requires a reference checksum for each addresses range under test. The reference checksum is necessary 

for comparison with that computed by the CRC calculator. 

To ensure accurate control of the error detection performance of the code, it may be necessary to generate multiple 

checksums. 

This section shows how to use the IAR Embedded Workbench for ARM version 8.23.1.17132 to generate the checksum. 



Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide 

r11an0188eu00130 Rev. 1.3  Page 29 of 53 

Sep 27, 2018  

The process is outlined in the three steps below. 

1. Provide information to the IAR linker as to where to place checksum values. Provide also information about 

symbols for the start and end addresses of the ROM blocks under test. 

2. Use the IAR graphic interface to perform the checksum calculation. 

3. In the .icf file, define memory ranges where the checksum values should be placed. 

 

A worked example is provided below, which gives additional clarification for how to use the IAR Tools to generate the 

required CRCs. 

 

5.5.1 Example Checksum Generation with IAR Tools 

Assume the ROM Test addresses range is 

• 0x00000000- 0x000FFFFB 

 

and a checksum is required to be generated using the polynomial x16+x12+ x5+1 (16-bit CRC-16CCITT) 

1. Go to “Project > Options... > Linker > Checksum” and set the following parameters: 

a. Select “Fill unused code memory” option 

b. File pattern = 0x00 

c. Start Address = 0x00000000 

d. End address = 0x000FFFFB 

e. Select "Generate checksum" option 

f. Checksum size = 2 bytes 

g. Alignment = 1 

h. Algorithm = CRC polynomial, 0x1021 

i. Bit order = MSB 

j. Initial value = 0xFFFF 

k. Checksum unit size = 8 bit. 

 

 

 

2. In the .icf file, define memory ranges and locations of the checksums: 

define symbol __ICFEDIT_region_ROMuT_start__   = 0x00000000; 

define symbol __ICFEDIT_region_ROMuT_end__     = 0x000FFFFF; 

define region CHECKSUM_region = mem:[from __ICFEDIT_region_ROMuT_start__ to 

__ICFEDIT_region_ROMuT_end__]; 

place at end of CHECKSUM_region { ro section .checksum }; 

 

 



Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide 

r11an0188eu00130 Rev. 1.3  Page 30 of 53 

Sep 27, 2018  

 
Figure 5.2 IAR Environment Options 

 

For more information about these commands refer to Document Reference 3. 

5.6 Software Package Description 

This section details how to identify the supplied software package and also provides a description in tabular format for 

each design file type. 

5.6.1 Identification and Contents of Package 

The Software package version is identified as follows: 

• Revision 1.0.1 

• File list 

 

Table 5.3 ROM Package and related MD5 signatures. 

Nome File MD5 Signature 

crc.c d9e82f13ce28208b4d1d2ae25314037d 

crc.h a1277077fe417c19f3a844eb747d67d5 

S3A7_registers.h 81c2f1f7d053743283a1debb70f5ecc4 

 

5.6.2 Description of Design Files 

Table 5.4 Design files 

Table ID File Name Description 

1 crc.h •  

This file contains the declaration of the two functions for the crc calculator: 

• crcHwSetup: It initializes CRC module; 

• crcComputation: It runs CRC on the specified ROM block. 

 

2 crc.c This file contains the definition of the two functions declared in the file crc.h. 

3 S3A7_registers.h This file contains the definitions of the needed peripherals registers. 

 

5.7 Resources Usage 

Table 5.5 provides an overview of the memory resources used by the code. 



Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide 

r11an0188eu00130 Rev. 1.3  Page 31 of 53 

Sep 27, 2018  

Maximum stack usage is 0 bytes. 

Table 5.5 Memory resources 

Module ROM RAM (bytes) 

 Code (bytes) Data (bytes) 

crc.o 232 0 4 

Total (bytes) 232 0 4 

 

Table 5.6 illustrates the execution time for calculating a CRC using the polynomial x16+x15+x2+1 with a block size of 

4Kb. 

Table 5.6 Execution time 

Function Execution time for a ROM block size of 4Kb 

[clock cycles] 

Execution time for a 

ROM block of 4Kb 

@48MHz clock [us] 

crcComputation 49188 1024,7 

 

5.8 Requirements for Safety Relevant Applications 

Table 5.7 lists recommendations for usage in safety relevant applications. 

Table 5.7 Safety relevant requirements 

ID Topic Sub-topic Description 

ROM_SW_1 CRC type - Adopt the following CRC16 polynomial x16+x15+x2+1 

ROM_SW_2 Block length - Use a block size of 4Kbytes 

 

By following the above mentioned recommendations, it is possible to detect all single and double bit corruptions within 

one block. 

In addition, and regardless of the block size, the use of such a polynomial allows for the detection of an odd number of 

single bit error, with the following performance in relation to burst error detection, where a burst of length k 

corresponds to the presence of k consecutive corrupted bits: 

• all bursts with length equal and less than 16 bits 

• 99.997 percent of bursts of 17 bits 

• 99.998 percent of bursts with length greater than 18 bits. 

 

6. CAC Configuration Software 

6.1 Test Objectives 

The objective of the CAC Configuration Software is to configure the CAC. For safety applications this SW shall be 

used to: 

• Select PCLKB as measurement target clock for the CAC; 

• Select Sub-clock oscillator as measurement reference clock for the CAC. 

This configuration allows to detect deviations of the Main clock oscillator and PLL due to systematic or random 

hardware failures. 

 

The CAC Configuration Software also enable the Synergy S3 Oscillation Stop Detection Circuit functionality. This 

circuit, in case the main clock stops, is in charge to switch to the Middle-Speed On-Chip oscillator and generate an NMI 

interrupt. 



Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide 

r11an0188eu00130 Rev. 1.3  Page 32 of 53 

Sep 27, 2018  

6.2 Test Strategy 

The test strategy is to configure the CAC peripheral to monitor PCLKB clock using Sub-clock oscillator. 

 

If the frequency of the monitored clock deviates during runtime from a configured range two types of interrupt can be 

generated: frequency error interrupt or an overflow interrupt. The user of this module must enable these two kinds of 

interrupt and handle them. 

Note also that it is demanded to the user to enable the Sub-clock oscillator through the SOSCCR register (i.e. 

SOSCCR.SOSTP = 0b, see User Manual [1]), otherwise the monitoring will not work. 

The allowable frequency range is evaluated according to the following equations: 

CAULVR (Upper Limit Value) can be computed by rounding down the result from the following equation and 

converting it into a hexadecimal value: 

 

𝐶𝐴𝑈𝐿𝑉𝑅 = 𝑓𝑙𝑜𝑜𝑟 (

𝑃𝐶𝐿𝐾𝐵
𝐶𝐿𝐾𝑇𝐷𝐼𝑉

∗ (1 + 1 −
𝐷𝐶
100

)

𝐶𝐿𝐾𝑟𝑒𝑓
𝐶𝐿𝐾𝑅𝐷𝐼𝑉

) 

Equation 1 
 

CALLVR (Lower Limit Value) can be computed by rounding up the result from the following equation and converting 

it into a hexadecimal value: 

 

𝐶𝐴𝐿𝐿𝑉𝑅 = 𝑐𝑒𝑖𝑙 (

𝑃𝐶𝐿𝐾𝐵
𝐶𝐿𝐾𝑇𝐷𝐼𝑉

∗ (
𝐷𝐶
100

)

𝐶𝐿𝐾𝑟𝑒𝑓
𝐶𝐿𝐾𝑅𝐷𝐼𝑉

) 

Equation 2 

 

With parameters having the meaning reported in Table 6.1. 

Table 6.1 parameters description for CAULVR, CALLVR 

Parameter Description Unit 

PCLKB Frequency of the peripheral module clock B MHz 

DC Target diagnostic coverage % 

CLKref Frequency of the reference clock. This is based on the Sub-

clock oscillator frequency (32.768 kHz) considering the 

accuracy of the selected external crystal 

MHz 

CLKTDIV Division as per Measurement Target Clock Frequency 

Division Ration Select (TCSS) register 

- 

CLKRDIV Division as per Measurement Reference Clock Frequency 

Division Ration Select (RCDS) register 

- 

 

In addition to the CAC function the Synergy S3 has an Oscillation Stop Detection Circuit. If the main clock stops, the 

Middle-Speed On-Chip oscillator will automatically be used instead and an NMI interrupt will be generated. The User 

of this module must handle the NMI interrupt and check the NMISR.OSTST bit. 

 

6.3 CAC Configuration Software API 

The function signatures are found below 

void ClockMonitor_Init(double target_clock_frequency, target_clk_div_t target_clock_division, 



Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide 

r11an0188eu00130 Rev. 1.3  Page 33 of 53 

Sep 27, 2018  

reference_clk_div_t reference_clock_division, double dc, CLOCK_MONITOR_ERROR_CALL_BACK CallBack); 

 

Table 6.2 describes more details of the interface to the functions. 

Table 6.2 CAC Configuration Software APIs 

Table 
ID 

Function Paramete
r type 

C type Name Description 

1 ClockMonitor_
Init 

Input double target_clock_freque
ncy  

The target clock frequency in Hz 

2 ClockMonitor_
Init 

Input target_clk_div_t target_clock_divisio
n 

The target clock division to be 
set. 

3 ClockMonitor_
Init 

Input reference_clk_div_t reference_clock_di
vision 

The reference clock division to 
be set. 

4 ClockMonitor_
Init 

Input double dc The diagnostic coverage in 
percentage. 

5 ClockMonitor_
Init 

Input CLOCK_MONITOR_ER
ROR_CALL_BACK 

CallBack Function to be called if the main 
clock deviates from the 
allowable range. 

 

In particular, referring to formulas parameters described in Table 6.1, the function parameters are mapped as the 

following: 

• target_clock_frequency = PCLKB; 

• target_clock_division = CLKTDIV; 

• reference_clock_division = CLKRDIV; 

• dc = DC. 

 

6.4 Software Integration Rules 

This section provides guidelines for how to integrate the CAC Configuration Software within the user’s own project. 

6.4.1 Code Integration 

Follow the instructions below to call the CAC Configuration Software functions: 

1. Include clock_monitor.h 

2. Define variables for input parameters of ClockMonitor_Init: 

a. target_clock_frequency 

b. target_clock_division 

c. reference_clock_division 

d. dc 

e. CallBack 

 

Refer to the example in Section 6.4.2 which explains how to use the Diagnostic SW. 

 

6.4.2 Usage Conditions 

The monitoring of the PCLKB clock is set-up with a single function call to ClockMonitor_Init.  

For example: 



Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide 

r11an0188eu00130 Rev. 1.3  Page 34 of 53 

Sep 27, 2018  

#define TARGET_CLOCK_FREQUENCY_HZ         (3000000) // PCLKB: 3MHz (PLL 

clock/16) 

 

#define DC (90) // Diagnostic Coverage: 90% 

 

 

 

target_clk_div_t target_div = TAR_NO_DIVISION; 

reference_clk_div_t ref_div = REF_DIV_32; 

       

/*Enable Sub-Clock*/ 

PRCR_reg->PRCR = 0xA501; 

SOSCCR_reg->SOSCCR_b.SOSTP = 0; 

PRCR_reg->PRCR = 0xA500; 

       

ClockMonitor_Init(TARGET_CLOCK_FREQUENCY_HZ, target_div, ref_div, DC, 

CAC_Error_Detected_Loop); 

 

 

The clock monitoring is then performed by hardware and so there is nothing that needs to be done by software during 

the periodic tests. 

In order to enable interrupt generation by the CAC, then both Interrupt Controller Unit (ICU) and Cortex-M4 Nested 

Vectored Interrupt Controller (NVIC) shall be configured in order to handle it. 

For configuring the ICU it is necessary to set the ICU Event Link Setting Register (IELSRn) to the event signal number 

correspondent to the CAC frequency error interrupt (CAC_FERRI = 0x87) and CAC overflow (CAC_OVFI = 0x89). In 

particular, it is necessary to configure one IELSR register so that it is linked to the aforementioned CAC events:  

 

IELSRn.IELS = 0x87; // (CAC_FERRI) 

IELSRn.IELS = 0x89; // (CAC_OVFI) 

 

In addition, in order to enable the Cortex-M4 NVIC to handle the CAC interrupts, the following instructions shall be 

set: 

 

NVIC_EnableIRQ(CAC_FREQUENCY_ERROR_IRQn); 

NVIC_EnableIRQ(CAC_OVERFLOW_IRQn); 

 

Where CAC_FREQUENCY_ERROR_IRQn and CAC_OVERFLOW_IRQn are the IRQ number that shall be defined 

by the user2. 

 

If oscillation stop is detected an NMI interrupt is generated. User code must handle this NMI interrupt and check the 

NMISR.OSTST flag as shown in this example: 

                                                           

2 See Table 2-16 of “Cortex-M4 Devices: Generic User Guide”, first release, 16 December 2010 for more details about 

IRQ numbers. 



Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide 

r11an0188eu00130 Rev. 1.3  Page 35 of 53 

Sep 27, 2018  

if(1 == R_ICU->NMISR_b.OSTST) 

{ 

  Clock_Stop_Detection(); 

   

  /*Clear OSTST bit by writing 1 to NMICLR.OSTCLR bit*/ 

  R_ICU->NMICLR_b.OSTCLR = 1;  

} 

 

The OSTDCR.OSTDF status bit can then be read to determine the status of the main clock. 

 

6.5 Define Directives for Software Configuration 

No specific directive are present for CAC Configuration Software. 

 

6.6 Software Package Description 

This section details how to identify the supplied software package, including its MD5 signature and also provides a 

description in tabular format for each design file type. 

 

6.6.1 Identification and Contents of Package 

The Software package version is identified as follows: 

• Revision 1.0.2 

• File list 

 

Table 6.3 CAC Configuration Software Package and related MD5 signatures. 

Nome File MD5 Signature 

clock_monitor.c f153ca66e616dfa2db8a8e120634f905 

clock_monitor.h 430c7cae882468d4910b4921b18d568e 

S3A7_registers.h 4954a0eacdc1b4401f7899735db230cc 

 

6.6.2 Description of Design Files 

Table 6.4 Design files 

Table 

ID 

File Name Description 

1 clock_monitor.h This file contains the declaration of the ClockMonitor_Init function for the monitoring 

initialization. 

2 clock_monitor.c This file contains the definition of clock_monitor function. 

3 S3A7_registers.

h 

This file contains the definitions of the needed peripherals registers. 

 

6.7 Resources Usage 

Table 6.5 provides an overview of the memory resources used by the code. 

Maximum stack usage is 120 bytes for both the versions. 



Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide 

r11an0188eu00130 Rev. 1.3  Page 36 of 53 

Sep 27, 2018  

Table 6.5 Memory resources 

Module ROM RAM (bytes) 

 Code (bytes) Data (bytes) 

clock_monitor.o 716 16 4 

Total (bytes) 716 16 4 

Table 6.6 illustrates the execution time. 

Table 6.6 Execution time 

Function Clock Cycle Count Time measured (us) @ 48MHz 

Clock_monitor 2948 61,42 

 

 

6.8 Requirements for Safety Relevant Applications  

Please refer to the Safety Manual [4]. 

 

7. IWDT Management Software 

7.1 Test Objectives 

A watchdog is used to detect abnormal program execution. If a program is not running as expected the watchdog will 

not be refreshed by software as it is required to be and will therefore detect an error. 

 

7.2 Test Strategy 

The Independent Watchdog Timer (iWDT) module of the Synergy S3 is used for this. It includes a windowing feature 

so that the refresh must happen within a specified ‘window’ rather than just before a specified time. It can be configured 

to generate an internal reset or a NMI interrupt if an error is detected. All the configurations for iWDT can be done 

through OFS0 register whose settings are demanded to the user (see Section 7.4.2 for an example of configuration). A 

function is provided to be used after a reset to decide if the IWDT has caused the reset. 

 

7.3 IWDT Management Software APIs 

The function signatures are found below 

void IWDT_Init (void) 

void IWDT_Kick (void) 

bool IWDT_DidReset (void) 

 

Table 7.1 describes more details of the interface to the functions. 

Table 7.1 IWDT Management Software APIs 

Table ID Function Parameter type C type Name Description 

1 IWDT_DidReset output Bool N/A Returns true if the iWDT has 

timed out or not been refreshed 

correctly. This can be called 

after a reset to decide if the 

watchdog caused the reset. 

 

 



Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide 

r11an0188eu00130 Rev. 1.3  Page 37 of 53 

Sep 27, 2018  

7.4 Software Integration Rules 

7.4.1 Code Integration 

Follow the instructions below to call the IWDT Management Software functions: 

1. Include iwdt.h 

2. Define a boolean variable for output of IWDT_DidReset. 

 

Refer to the example in Section 7.4.2 which explains how to use the Diagnostic SW. 

 

7.4.2 Usage Conditions 

In order to configure the Independent Watchdog it is necessary to set coherently the OFS0 register. The following code 

can be used to set the value that has to be stored at the OFS0 memory allocation (OFS0 address = 0x00000400) 



Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide 

r11an0188eu00130 Rev. 1.3  Page 38 of 53 

Sep 27, 2018  

/* IWDT Start Mode Select */ 

#define IWDTSTRT_ENABLED  (0x00000000) 

#define IWDTSTRT_DISABLED (0x00000001) 

 

/*Time-Out Period selection*/ 

#define IWDT_TOP_128    (0x00000000) 

#define IWDT_TOP_512    (0x00000001) 

#define IWDT_TOP_1024   (0x00000002) 

#define IWDT_TOP_2048   (0x00000003) 

 

/*Clock selection. (IWDTCLK/x) */ 

#define IWDT_CKS_DIV_1  (0x00000000) // 0b0000 

#define IWDT_CKS_DIV_16 (0x00000002) // 0b0010 

#define IWDT_CKS_DIV_32 (0x00000003) // 0b0011 

#define IWDT_CKS_DIV_64 (0x00000004) // 0b0100 

#define IWDT_CKS_DIV_128 (0x0000000F) // 0b1111 

#define IWDT_CKS_DIV_256 (0x00000005) // 0b0101 

 

/*Window start Position*/ 

#define IWDT_WINDOW_START_25    (0x00000000) 

#define IWDT_WINDOW_START_50    (0x00000001) 

#define IWDT_WINDOW_START_75    (0x00000002) 

#define IWDT_WINDOW_START_NO_START (0x00000003) /*100%*/ 

 

/*Window end Position*/ 

#define IWDT_WINDOW_END_75      (0x00000000) 

#define IWDT_WINDOW_END_50      (0x00000001) 

#define IWDT_WINDOW_END_25      (0x00000002) 

#define IWDT_WINDOW_END_NO_END  (0x00000003) /*0%*/ 

 

/*Action when underflow or refresh error */ 

#define IWDT_ACTION_NMI       (0x00000000) 

#define IWDT_ACTION_RESET     (0x00000001)  

 

/*IWDT Stop Control*/ 

#define IWDTSTPCTL_COUNTING_CONTINUE (0x00000000) 

#define IWDTSTPCTL_COUNTING_STOP (0x00000001) 

 

#define BIT0_RESERVED (0x00000001) 

#define BIT13_RESERVED (BIT0_RESERVED << 13) 

#define BIT15_RESERVED (BIT0_RESERVED << 15) 

 

#define OFS0_IWDT_RESET_MASK (0xFFFF0000) 

 

/*This define is used to configure the iWDT peripheral*/ 

#define OFS0_IWDT_CFG (BIT15_RESERVED | BIT13_RESERVED | BIT0_RESERVED | 

(IWDTSTRT_ENABLED << 1) | (IWDT_TOP_1024 << 2) | (IWDT_CKS_DIV_1 << 4) | 

(IWDT_WINDOW_END_NO_END << 8) | (IWDT_WINDOW_START_NO_START << 10) | 

(IWDT_ACTION_RESET << 12) | (IWDTSTPCTL_COUNTING_CONTINUE << 14)) 

 

The value OFS0_IWDT__CFG shall be stored at the OFS0 address at compile time in order to configure the Independent 

Watchdog. In particular, the example enables the iWDT setting a time-out period of 1024 clock cycles at IWDTCLK/1 

clock frequency and counting also during sleep mode of the microcontroller. The example does not set any start/end of 

watchdog window and configure a reset in case of watchdog expiration. 

The Independent Watchdog should be initialized as soon as possible following a reset with a call to IWDT_Init: 



Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide 

r11an0188eu00130 Rev. 1.3  Page 39 of 53 

Sep 27, 2018  

/*Setup the Independent WDT.*/ 

IWDT_Init(); 

 

After this the watchdog must be refreshed regularly enough so as to stop the watchdog timing out and performing a 

reset. Note, if using windowing the refresh must not just be regular enough but also timed to match the specified 

window. A watchdog refresh is called by calling this: 

 
/*Regularly kick the watchdog to prevent it performing a reset. */ 

IWDT_Kick(); 

 

If the watchdog has been configured to generate an NMI on error detection then the user must handle the resulting 

interrupt. 

 

If the watchdog has been configured to perform a reset on error detection then following a reset the code should check if 

the IWDT caused the watchdog by calling IWDT_DidReset: 

 

if(TRUE == IWDT_DidReset()) 

{ 

  /*todo: Handle a watchdog reset.*/ 

  while(1){ 

   /*DO NOTHING*/ 

  } 

} 

 

7.5 Define Directives for Software Configuration 

No specific directive are present for IWDT Management Software. 

 

7.6 Software Package Description 

This section details how to identify the supplied software package and also provides a description in tabular format for 

each design file type. 

 

7.6.1 Identification and Contents of Package 

The Software package version is identified as follows: 

• Revision 1.0.1  

• File list 

 

Table 7.2 - iWDT Package and related MD5 signatures 

Nome File MD5 Signature 

iwdt.c 88f269058ed774c81f570571a1de1470 

iwdt.h 16413964d46e91cc1ddb39c0724d9baa 

S3A7_registers.h c14e2cbb03e58da6bc2a0af960925265 

 

7.6.2 Description of Design Files 

 



Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide 

r11an0188eu00130 Rev. 1.3  Page 40 of 53 

Sep 27, 2018  

Table 7.3 Design files 

Table ID File Name Description 

1 iwdt.h This file contains the declaration of the functions: 

• IWDT_Init: Initialise the independent watchdog timer. After calling this the 

IWDT_kick function must then be called at the correct time to prevent a watchdog 

error. If configured to produce an interrupt then this will be the Non Maskable 

Interrupt (NMI). This must be handled by user code which must check the 

NMISR.IWDTST flag; 

• IWDT_Kick: Refresh the watchdog count. 

• IWDT_DidReset: Returns true if the iWDT has timed out or not been refreshed 

correctly. This can be called after a reset to decide if the watchdog caused the reset. 

 

2 iwdt.c This file contains the definition of the two functions declared in the file iwdt.h. 

3 S3A7_registers.h This file contains the definitions of the needed peripherals registers. 

 

7.7 Resources Usage 

Table 5.5 provides an overview of the memory resources used by the code. 

Maximum stack usage is 0 bytes. 

Table 7.4 Memory resources 

Module ROM RAM (bytes) 

 Code (bytes) Data (bytes) 

iwdt.o 124 0 0 

Total (bytes) 124 0 0 

 

Table 7.5 illustrates the execution time for the specific functions. 

Table 7.5 Execution time 

Function Clock Cycles Count Time measured (us) @ 

48MHz 

IWDT_Init 26 0,54 

IWDT_Kick 19 0,4 

IWDT_DidReset 37 0,77 

 

7.8 Requirements for Safety Relevant Applications 

Please refer to the Safety Manual [4]. 

 

8. LVD Configuration Software 

8.1 Test Objectives 

The Synergy S3 has a Voltage Detection Circuit. This can be used to detect the power supply voltage (Vcc) falling 

below a specified voltage.  

8.2 Test Strategy 

The supplied sample code demonstrates using Voltage Detection Circuit 1 to generate a NMI interrupt when Vcc drops 

below a specified level. The hardware is also capable of generating a reset but this behavior is not supported in the 

sample code.  

 



Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide 

r11an0188eu00130 Rev. 1.3  Page 41 of 53 

Sep 27, 2018  

8.3 LVD Configuration Software APIs 

The function signatures are found below 

void VoltageMonitor_Init(VOLTAGE_MONITOR_LEVEL eVoltage) 

Table 8.1 describes more details of the interface to the functions. 

Table 8.1 LVD Configuration Software APIs 

Table 

ID 

Function Parameter 

type 

C type Name Description 

1 VoltageMonitor_Init input VOLTAGE_MONITOR_LEVEL  eVoltage The specified low voltage level. 
See declaration of enumerated 

type 

VOLTAGE_MONITOR_LEVEL 

in voltage.h for details. 

 

8.4 Software Integration Rules 

8.4.1 Code Integration 

Follow the instructions below to call the LVD Configuration Software functions: 

1. Include voltage.h 

2. Define variable for input parameter of VoltageMonitor_Init: 

a. eVoltage 

 

Refer to the example in Section 8.4.2 which explains how to use the Diagnostic SW. 

 

8.4.2 Usage Conditions 

The Voltage Detection Circuit is configured to monitor the main supply voltage with a call to the VoltageMonitor_Init 

function. This should be setup as soon as possible following a power on reset.  

Please note to set the LVD1SR.DET bit to 0 both before calling VoltageMonitor_init function and in NMI routine, see 

Section 8.2.2 of 2 for further details. 

Please note to set a voltage threshold eVoltage lower than the Vcc nominal value. 

The following example sets up the voltage monitor to generate an NMI if the voltage drops below 2.99V. 

VoltageMonitor_Init(VOLTAGE_MONITOR_LEVEL_4_29); 

 

If a low voltage condition is detected an NMI interrupt will be generated that the user must handle: 

 
 /*Low Voltage LVD1*/ 

 if(1 == R_ICU->NMISR_b.LVD1ST) 

 { 

  Voltage_Test_Failure(); 

   

  /*Clear LVD1ST bit by writing 1 to NMICLR.LVD1CLR bit*/ 

  R_ICU->NMICLR_b.LVD1CLR = 1; 

 } 

 

8.5 Define Directives for Software Configuration 

No specific directive are present for LVD Configuration Software. 

 

8.6 Software Package Description 

This section details how to identify the supplied software package and also provides a description in tabular format for 

each design file type. 

8.6.1 Identification and Contents of Package 



Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide 

r11an0188eu00130 Rev. 1.3  Page 42 of 53 

Sep 27, 2018  

The Software package version is identified as follows: 

• Revision 1.0.1  

• File list 

 

Table 8.2 LVD Configuration SW Package and related MD5 signatures. 

Nome File MD5 Signature 

S3A7_registers.h 782352821a80f036e8935af878ca2c53 

voltage.c 9e603c82f245436b6c5460776c5d422e 

voltage.h 216b85df72c30b33091ace537404555a 

 

8.6.2 Description of Design Files 

Table 8.3 Design files 

Table ID File Name Description 

1 voltage.h This file contains the declaration of the functions for voltage monitor: 

• VoltageMonitor_Init: Initialise and start voltage monitoring. An NMI will be 

generated if Vcc falls below the specified voltage.  

2 voltage.c This file contains the definition of the two functions declared in the file voltage.h. 

3 S3A7_registers.h This file contains the definitions of the needed peripherals registers. 

 

8.7 Resources Usage 

Table 8.4 provides an overview of the memory resources used by the code. 

Maximum stack usage is 0 bytes. 

Table 8.4 Memory resources 

Module ROM RAM (bytes) 

 Code (bytes) Data (bytes) 

voltage.o 188 0 0 

Total (bytes) 188 0 0 

 

Table 8.5 illustrates the execution time for the specific functions. 

Table 8.5 Execution time 

Function Clock Cycles Count Time measured (us) @ 

48MHz 

VoltageMonitor_Init 25243 635 

 

8.8 Requirements for Safety Relevant Applications 

Please refer to the Safety Manual [4]. 

 

 

 

9. Appendix A – RAM Test Algorithms 

The following algorithm descriptions are related to 1bit-word memory, but they can be applied to m-bit memories 

(Word-oriented memory test). The extension to m-bit word is discussed in this Appendix. 

 



Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide 

r11an0188eu00130 Rev. 1.3  Page 43 of 53 

Sep 27, 2018  

9.1 Extended March C- 

A March Test consists of a finite sequence of elements called March Elements, delimited by a pair of curling brackets 

‘{ }’.  

A March Element is a finite sequence of operations applied to a cell before moving to the next one.  

March Elements are delimited by a pair of rounded brackets ‘( )’. The next cell is defined with respect to the addressing 

order, which can be, ascending ( ↑ ) , descending ( ↓ ) or independent ( ↕ ) . An operation on a memory cell can be, 

write 0 (w0), write 1 (w1), read and verify to have read 0 (r0), read and verify to have read 1 (r1). 

Extended March C- is represented in Figure 9.1 adopting the notation described above. 

 

Figure 9.1 Extended March C- Algorithm 

The March C- algorithm detects address faults (AFs), stuck at faults (SAFs), transactional faults (TFs) and coupling 

faults (CFs) and in addition the Extended March C- algorithm also detects stuck open faults (SOFs) and data retention 

faults (DRF). Its complexity is equal to 11n where n is the number of addressing cells of the memory. 

9.2 WALPAT 

The WALPAT algorithm follows the process listed below 

1. Write 0 in all cells; 

2. For i=0 to n-1 

3. { complement cell[i]; 

a. For j=0 to n-1, j != i 

b. { read cell[j]; } 

4. read cell[i]; 

5. complement cell[i]; } 

6. Write 1 in all cells; 

7. For i=0 to n-1 

8. { complement cell[i]; 

a. For j=0 to n-1, j != i 

b. { read cell[j]; } 

9. read cell[i]; 

10. complement cell[i]; } 

 

The algorithm allows for the detection and location of address faults (AFs), stuck-at faults (SAFs), transactional faults 

(TFs), coupling faults (CFs) and sense amplifier recovery faults (SARF). Its complexity is equal to 2n2 where n is the 

number of addressing cells of the memory. 

 

9.3 Word-oriented Memory Test 

m-bit memories can be dealt with by repeating each algorithm for a number of times given by: 

⌈log2𝑚⌉ + 1 

For every iteration w1 operation writes a pattern (for instance 00000000) and w0 operation writes the complemented 

value with respect to that used for w1 (11111111). 

 

Taking into account that the code uses 32bits word access, the algorithm will be repeated 6 times and the following 6 

different patterns have to be applied: 

00000000000000000000000000000000 

00000000000000001111111111111111 

00000000111111110000000011111111 

00001111000011110000111100001111 

00110011001100110011001100110011 

01010101010101010101010101010101 



Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide 

r11an0188eu00130 Rev. 1.3  Page 44 of 53 

Sep 27, 2018  

 

  



Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide 

r11an0188eu00130 Rev. 1.3  Page 45 of 53 

Sep 27, 2018  

10. Appendix B – CPU Test Example 

#include "coreTest.h" 

 

uint8_t steps=1; 

uint32_t result=0; 

uint8_t forceFail = 11; 

 

 

void errorHandler(void); 

 

void main(void) 

{   

  coreTestInit(); //init index 

  steps=36; 

  /* Launch the core test function in order to perform Diagnosis SW*/ 

  coreTest(steps, forceFail, &result); 

  if(result != 1) {  

 errorHandler(); 

  } 

} 

 

 



 User Guide 

R11an0188eu0130 Rev. 1.3 Sep 04, 2018  

11. Appendix C – Pragmas report 

The following table reports the pragmas added in the source code to disable specific checks when using the LDRA tool. 

Related violations have been reviewed in details and judged as not requiring a change to the code. 

Table 6 Pragmas report. 

Package File Code 
Version 

Row Code (Pragma) LDRA Rule MISRA Rule 

RAM testRAM.c   1.0.1 

18 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

RAM testRAM.c   

1.0.1 19 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

RAM testRAM.c   

1.0.1 20 /*LDRA_INSPECT

ED 27 D 

Variable 

should be 

declared 

static. */ 27D R.8.7, R.8.8 

RAM testRAM.c   

1.0.1 23 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

RAM testRAM.c   

1.0.1 24 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

RAM testRAM.c   

1.0.1 25 /*LDRA_INSPECT

ED 27 D 

Variable 

should be 

declared 

static. */ 27D R.8.7, R.8.8 

RAM testRAM.c   

1.0.1 28 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

RAM testRAM.c   

1.0.1 29 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

RAM testRAM.c   

1.0.1 30 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

RAM testRAM.c   

1.0.1 33 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 



Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide 

r11an0188eu00130 Rev. 1.3 Sep 04, 2018  

Package File Code 
Version 

Row Code (Pragma) LDRA Rule MISRA Rule 

RAM testRAM.c   

1.0.1 36 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

RAM testRAM.c   

1.0.1 38 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

RAM testRAM.c   

1.0.1 40 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

RAM testRAM.c   

1.0.1 43 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

RAM testRAM.c   

1.0.1 45 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

RAM testRAM.c   

1.0.1 47 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

RAM testRAM.c   

1.0.1 61 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

RAM testRAM.c   

1.0.1 63 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

RAM testRAM.c   

1.0.1 70 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

RAM testRAM.c   

1.0.1 72 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

RAM testRAM.h   

1.0.1 26 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

RAM testRAM.h   

1.0.1 28 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 



Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide 

r11an0188eu00130 Rev. 1.3 Sep 04, 2018  

Package File Code 
Version 

Row Code (Pragma) LDRA Rule MISRA Rule 

RAM testRAM.h   

1.0.1 31 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

RAM testRAM.h   

1.0.1 32 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

RAM testRAM.h   

1.0.1 33 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

ROM crc.c 

1.0.1 21 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

ROM crc.c 

1.0.1 24 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

ROM crc.c 

1.0.1 79 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

ROM crc.c 

1.0.1 80 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

ROM crc.c 

1.0.1 81 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

ROM crc.c 

1.0.1 85 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

ROM crc.c 

1.0.1 90 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

ROM crc.c 

1.0.1 111 /*LDRA_INSPECT

ED 93 S Value 

is not of 

appropriate 

type. V9.5.0 

*/ 93S 

R.10.1, R.10.3, 
R.10.4, R.10.5, 
R.11.1 

ROM crc.h  

1.0.1 21 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 90S D.4.6 



Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide 

r11an0188eu00130 Rev. 1.3 Sep 04, 2018  

Package File Code 
Version 

Row Code (Pragma) LDRA Rule MISRA Rule 

used. */ 

ROM crc.h  

1.0.1 24 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

ROM crc.h  

1.0.1 25 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

ROM crc.h  

1.0.1 26 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

CAC 

clock_monito
r.c 

1.0.2 66 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

CAC 

clock_monito
r.c 

1.0.2 67 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

CAC 

clock_monito
r.c 

1.0.2 81 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

CAC 

clock_monito
r.c 

1.0.2 83 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

CAC 

clock_monito
r.c 

1.0.2 85 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

CAC 

clock_monito
r.c 

1.0.2 88 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

CAC 

clock_monito
r.c 

1.0.2 90 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

CAC 

clock_monito
r.c 

1.0.2 92 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

CAC 

clock_monito
r.c 

1.0.2 106 /*LDRA_INSPECT

ED 90 S Basic 90S D.4.6 



Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide 

r11an0188eu00130 Rev. 1.3 Sep 04, 2018  

Package File Code 
Version 

Row Code (Pragma) LDRA Rule MISRA Rule 

type 

declaration 

used. */ 

CAC 

clock_monito
r.c 

1.0.2 107 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

CAC 

clock_monito
r.c 

1.0.2 108 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

CAC 

clock_monito
r.c 

1.0.2 109 /*LDRA_INSPECT

ED 93 S Value 

is not of 

appropriate 

type. V9.5.0 

*/ 93S 

R.10.1, R.10.3, 
R.10.4, R.10.5, 
R.11.1 

CAC 

clock_monito
r.c 

1.0.2 110 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

CAC 

clock_monito
r.c 

1.0.2 111 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

CAC 

clock_monito
r.c 

1.0.2 116 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

CAC 

clock_monito
r.c 

1.0.2 117 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

CAC 

clock_monito
r.c 

1.0.2 118 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

CAC 

clock_monito
r.c 

1.0.2 119 /*LDRA_INSPECT

ED 93 S Value 

is not of 

appropriate 

type. */ 93S 

R.10.1, R.10.3, 
R.10.4, R.10.5, 
R.11.1 

CAC 

clock_monito
r.c 

1.0.2 122 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

CAC 

clock_monito
r.c 

1.0.2 123 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 



Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide 

r11an0188eu00130 Rev. 1.3 Sep 04, 2018  

Package File Code 
Version 

Row Code (Pragma) LDRA Rule MISRA Rule 

CAC 

clock_monito
r.c 

1.0.2 124 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

CAC 

clock_monito
r.c 

1.0.2 125 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

CAC 

clock_monito
r.c 

1.0.2 128 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

CAC 

clock_monito
r.c 

1.0.2 129 /*LDRA_INSPECT

ED 93 S Value 

is not of 

appropriate 

type. V9.5.0 

*/ 93S 

R.10.1, R.10.3, 
R.10.4, R.10.5, 
R.11.1 

CAC 

clock_monito
r.c 

1.0.2 130 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

CAC 

clock_monito
r.c 

1.0.2 131 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

CAC 

clock_monito
r.c 

1.0.2 137 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

CAC 

clock_monito
r.c 

1.0.2 138 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

CAC 

clock_monito
r.c 

1.0.2 139 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

CAC 

clock_monito
r.c 

1.0.2 140 /*LDRA_INSPECT

ED 93 S Value 

is not of 

appropriate 

type. */ 93S 

R.10.1, R.10.3, 
R.10.4, R.10.5, 
R.11.1 

CAC 

clock_monito
r.c 

1.0.2 143 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

CAC 

clock_monito
r.c 

1.0.2 144 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 90S D.4.6 



Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide 

r11an0188eu00130 Rev. 1.3 Sep 04, 2018  

Package File Code 
Version 

Row Code (Pragma) LDRA Rule MISRA Rule 

used. */ 

CAC 

clock_monito
r.c 

1.0.2 147 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

CAC 

clock_monito
r.c 

1.0.2 148 /*LDRA_INSPECT

ED 93 S Value 

is not of 

appropriate 

type. V9.5.0 

*/ 93S 

R.10.1, R.10.3, 
R.10.4, R.10.5, 
R.11.1 

CAC 

clock_monito
r.c 

1.0.2 149 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

CAC 

clock_monito
r.c 

1.0.2 150 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

CAC 

clock_monito
r.c 

1.0.2 176 /*LDRA_INSPECT

ED 93 S Value 

is not of 

appropriate 

type. V9.5.0 

*/ 93S 

R.10.1, R.10.3, 
R.10.4, R.10.5, 
R.11.1 

CAC 

clock_monito
r.c 

1.0.2 177 /*LDRA_INSPECT

ED 93 S Value 

is not of 

appropriate 

type. */ 93S 

R.10.1, R.10.3, 
R.10.4, R.10.5, 
R.11.1 

CAC 

clock_monito
r.c 

1.0.2 179 /*LDRA_INSPECT

ED 93 S Value 

is not of 

appropriate 

type. V9.5.0 

*/ 93S 

R.10.1, R.10.3, 
R.10.4, R.10.5, 
R.11.1 

CAC 

clock_monito
r.c 

1.0.2 180 /*LDRA_INSPECT

ED 93 S Value 

is not of 

appropriate 

type. */ 93S 

R.10.1, R.10.3, 
R.10.4, R.10.5, 
R.11.1 

CAC 

clock_monito
r.h  

1.0.2 59 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 

CAC 

clock_monito
r.h  

1.0.2 60 /*LDRA_INSPECT

ED 90 S Basic 

type 

declaration 

used. */ 90S D.4.6 
 

 

 



Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide 

r11an0188eu00130 Rev. 1.3 Sep 04, 2018  

 

 

 

 

 

 

Document References 

1. Cortex-M4 Devices – Generic User Guide, first release, 16/12/2010. 

2. Synergy S3 User’s Manual: Hardware, Rev. 1.30, February 2018 (Document Reference R01UM0002EU130). 

3. IAR C/C++ Development Guide Compiling and linking for Advanced RISC Machines Ltd’s ARM Cores, Fifteenth 

edition, March 2015. 

4. Safety Manual, ID=SAF_005_PIA003_S3. 

 



Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide 

r11an0188eu00130 Rev. 1.3 Sep 04, 2018  

Website and Support 

Support:  https://synergygallery.renesas.com/support 

Technical Contact Details: 

• America: https://renesas.zendesk.com/anonymous_requests/new   

• Europe: https://www.renesas.com/en-eu/support/contact.html  

• Japan: https://www.renesas.com/ja-jp/support/contact.html 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All trademarks and registered trademarks are the property of their respective owners. 

https://synergygallery.renesas.com/support
https://renesas.zendesk.com/anonymous_requests/new
https://www.renesas.com/en-eu/support/contact.html
https://www.renesas.com/ja-jp/support/contact.html


 

 

Revision History 

Rev. Date 

Description 

Page Summary 

0.1 Dec 14, 2016 All 
First version. Porting of SW User Guide of S7G2 (PA015) to 

S3A7 (PA024) 

0.2 Jan 4, 2017 References 
Moved References section at the bottom. Updated 

References format. 

0.3 Jan 26, 2017 

§4.4.1.2 

 

8.4.2 

Inserted usage condition to reserve buffer area for RAM non 

destructive tests. 

Added usage condition for LVD SW. 

0.4 Feb 9, 2017 All Updated template. 

0.5 Feb 23, 2017 

8.4.2 

 

10.4.2 

Added usage condition for LVD SW regarding LVD1SR 

register. 

Added consideration about temperature sensor slope. 

0.6 Mar 02, 2017 2.1 Updated C type implementation assumption 

0.7 Jun 09, 2017 All 

Updated MD5 signature for the final code version of each SW 

baseline. 

Updated resource usage for each SW code. 

1.0 Jun 14, 2017 All Internal approval 

      1.1 Mar 14, 2018 

4.7,5.7 

 

4.4.1 

Updated Walpat execution time and memory resources used 

by the code crc.o 

updated integration strategy of RAM test 

1.2 Jul 17, 2018 

References 

 

3.6,4.7,5.7, 

6.7,7.7,8.7 

Removed revision information from documentation 

 

Corrected Resources usage 

 

1.3 Sep 27, 2018 

All 

 

- 

 

- 

 

All 

 

 

Updated the functional safety version of the IAR Embedded 

Workbench. 

Removed “ADC14 Comparator Software” and TSN 

“Management Software” chapters. 

Updated latest release and MD5s of 

CPU,RAM,ROM,CAC,IWDT and LVD tests. 

Replaced “S3A7” Synergy name with “S3”. 

 

 



 

 

 


