Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

RENESAS

MOS INTEGRATED CIRCUIT μ **PD780065**

8-BIT SINGLE-CHIP MICROCONTROLLER

DESCRIPTION

The μ PD780065 is a product of the μ PD780065 Subseries in the 78K/0 Series. It is ideal for controlling CD-TEXT supporting audio equipment. Since it incorporates 5 KB of RAM, it is also ideal for control operations that require memory.

A flash memory version (μ PD78F0066) that can be operated using the same power supply voltage range as that of the mask ROM version as well as a variety of development tools are also available.

Detailed function descriptions are provided in the following user's manuals. Be sure to read them before designing.

μPD780065 Subseries User's Manual: U13420E 78K/0 Series User's Manual Instructions: U12326E

FEATURES

- Internal ROM: 40 KB
- Internal high-speed RAM: 1024 bytes
- Internal expansion RAM: 4096 bytes
- Buffer RAM: 32 bytes
- Minimum instruction execution time can be changed from high speed (0.24 μ s) to ultra-low speed (122 μ s).
- I/O ports: 60
- 8-bit resolution A/D converter: 8 channels
- Serial interface: 4 channels
 - 3-wire serial I/O mode: 1 channel
 - 3-wire serial I/O mode (a maximum 32-byte automatic transmit/receive function is incorporated.): 1 channel
 - 2-wire serial I/O mode: 1 channel
- UART mode: 1 channel
- Timer: 5 channels
 - 16-bit timer/event counter: 1 channel
 - 8 bit timer/event counter: 2 channels
 - Watch timer: 1 channel
 - Watchdog timer: 1 channel
- Power supply voltage: VDD = 2.7 to 5.5 V

APPLICATIONS

CD-TEXT supported car audios

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

***** ORDERING INFORMATION

Part Number	Package			
μPD780065GC-×××-8BT	80-pin plastic QFP (14×14)			
μPD780065GC-×××-8BT-A	80-pin plastic QFP (14 $ imes$ 14)			

Remarks 1. $\times\!\times\!\times$ indicates ROM code suffix.

2. Products with "-A" at the end of the part number are lead-free products.

78K/0 SERIES LINEUP

The products in the 78K/0 Series are listed below. The names enclosed in boxes are subseries names.

Remark VFD (Vacuum Fluorescent Display) is referred to as FIP[™] (Fluorescent Indicator Panel) in some documents, but the functions of the two are same.

The major functional differences between the subseries are listed below.

	Function	ROM		Tin	ner			10-Bit		Serial Interface	I/O	Vdd MIN.	External
Subseries	Name	Capacity	8-Bit	16-Bit	Watch	WDT	A/D	A/D	D/A			Value	Expansion
Control	μPD78075B	32 K to 40 K	4 ch	1 ch	1 ch	1 ch	8 ch	—	2 ch	3 ch (UART: 1 ch)	88	1.8 V	\checkmark
	μPD78078	48 K to 60 K											
	μ PD78070A	—									61	2.7 V	
	μPD780058	24 K to 60 K	2 ch							3 ch (time division UART: 1 ch)	68	1.8 V	
	μ PD78058F	48 K to 60 K								3 ch (UART: 1 ch)	69	2.7 V	
	μPD78054	16 K to 60 K										2.0 V	
	μPD780065	40 K to 48 K							_	4 ch (UART: 1 ch)	60	2.7 V	
	μPD780078	48 K to 60 K		2 ch			—	8 ch		3 ch (UART: 2 ch)	52	1.8 V	
	μPD780034A	8 K to 32 K		1 ch						3 ch (UART: 1 ch)	51		
	μPD780024A						8 ch	-					
	μPD78014H									2 ch	53		
	μPD78018F	8 K to 60 K											
	μPD78083	8 K to 16 K								1 ch (UART: 1 ch)	33		—
Inverter control	μPD780988	16 K to 60 K	3 ch	Note	—	1 ch	_	8 ch	—	3 ch (UART: 2 ch)	47	4.0 V	\checkmark
VFD drive	μPD780208	32 K to 60 K	2 ch	1 ch	1 ch	1 ch	8 ch		—	2 ch	74	2.7 V	_
	μPD780232	16 K to 24 K	3 ch	_	—		4 ch				40	4.5 V	
	μPD78044H	32 K to 48 K	2 ch	1 ch	1 ch		8 ch			1 ch	68	2.7 V	
	μPD78044F	16 K to 40 K								2 ch			
LCD drive	µPD780338	48 K to 60 K	3 ch	2 ch	1 ch	1 ch	—	10 ch	1 ch	2 ch (UART: 1 ch)	54	1.8 V	—
	μPD780328										62		
	μPD780318										70		
	μPD780308	48 K to 60 K	2 ch	1 ch			8 ch	—	—	3 ch (Time division UART: 1 ch)	57	2.0 V	
	μPD78064B	32 K								2 ch (UART: 1 ch)			
	μPD78064	16 K to 32 K											
	μPD780948	60 K	2 ch	2 ch	1 ch	1 ch	8 ch	-	_	3 ch (UART: 1 ch)	79	4.0 V	\checkmark
supported	μPD78098B	40 K to 60 K		1 ch					2 ch		69	2.7 V	
Meter control	μPD780958	48 K to 60 K	4 ch	2 ch	—	1 ch	_	—	_	2 ch (UART: 1 ch)	69	2.2 V	
Dash board	μPD780852	32 K to 40 K	3 ch	1 ch	1 ch	1 ch	5 ch	_	_	3 ch (UART: 1 ch)	56	4.0 V	_
control	μPD780824	32 K to 60 K								2 ch (UART: 1 ch)	59		

Note 16-bit timer: 2 channels 10-bit timer: 1 channel

OVERVIEW OF FUNCTIONS

1	Item	Function			
Internal	ROM	40 KB			
memory	High-speed RAM	1024 bytes			
	Expansion RAM	4096 bytes			
	Buffer RAM	32 bytes			
Memory space		64 KB			
General-purpos	se registers	8 bits \times 32 registers (8 bits \times 8 registers \times 4 banks)			
Minimum instru	ction execution time	On-chip minimum instruction execution time variable function			
	When main system clock selected	0.24 μs/0.48 μs/0.95 μs/1.91 μs/3.81 μs (at 8.38 MHz operation)			
	When subsystem clock selected	122 μs (at 32.768 kHz operation)			
Instruction set		 16-bit operation Multiplication/division (8 bits × 8 bits, 16 bits ÷ 8 bits) Bit manipulation (set, reset, test, Boolean operation) BCD correction, etc. 			
I/O ports		CMOS I/O: 60			
A/D converter		8-bit resolution \times 8 channels			
Serial interface		 3-wire serial I/O mode: 3-wire serial I/O mode (MAX. 32-byte on-chip automatic transmission/ reception function): 2-wire serial I/O mode: UART mode: 	1 channel 1 channel 1 channel 1 channel		
Timer		 16-bit timer/event counter: 1 channel 8-bit timer/event counter: 2 channels Watch timer: 1 channel Watchdog timer: 1 channel 			
Timer outputs		3 (8-bit PWM output capable: 2)			
Clock output		65.5 kHz, 131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.10 MHz, 4.19 MHz, 8.38 MHz (main system clock: at 8.38 MHz operation) 32.768 kHz (subsystem clock: at 32.768 kHz operation)			
Vectored interr	upt Maskable	Internal: 14, external: 4			
sources	Non-maskable	Internal: 1			
Software		1			
Power supply v	voltage	V _{DD} = 2.7 to 5.5 V			
Operating amb	ient temperature	$T_{A} = -40 \text{ to } +85^{\circ}\text{C}$			
Package		80-pin plastic QFP (14×14)			

CONTENTS

	1.	PIN CONFIGURATION (TOP VIEW)	7
	2.	BLOCK DIAGRAM	9
	3.	PIN FUNCTIONS	10
		3.1 Port Pins	10
		3.2 Non-Port Pins	11
		3.3 Pin I/O Circuits and Recommended Connection of Unused Pins	13
	4.	MEMORY SPACE	15
	5.	FEATURES OF PERIPHERAL HARDWARE	16
		5.1 Ports	16
		5.2 Clock Generator	16
		5.3 Timer/Event Counter	17
		5.4 Clock Output Controller	21
		5.5 A/D Converter	22
		5.6 Serial Interface	23
	6.	INTERRUPT FUNCTIONS	28
	7.	EXTERNAL DEVICE EXPANSION FUNCTION	31
	8.	STANDBY FUNCTION	31
	9.	RESET FUNCTION	31
	10	. INSTRUCTION SET	32
*	11.	ELECTRICAL SPECIFICATIONS	34
	12	. PACKAGE DRAWING	54
*	13	. RECOMMENDED SOLDERING CONDITIONS	55
	AP	PPENDIX A. DEVELOPMENT TOOLS	56
	AP	PPENDIX B. RELATED DOCUMENTS	59

1. PIN CONFIGURATION (TOP VIEW)

+ 80-pin plastic QFP (14 \times 14)

Cautions 1. Connect the IC (internally connected) pin directly to Vsso or Vsso. 2. Connect the AVss pin to Vsso.

Remark When the μPD780065 is used in application fields that require reduction of the noise generated from inside the microcontroller, the implementation of noise reduction measures, such as supplying voltage to V_{DD0} and V_{DD1} individually and connecting V_{SS0} and V_{SS1} to different ground lines, is recommended.

A8 to A15:	Address bus	PCL:	Programmable clock
AD0 to AD7:	Address/data bus	RD:	Read strobe
ANI0 to ANI7:	Analog input	RESET:	Reset
ASCK0:	Asynchronous serial clock	RxD0:	Receive data
ASTB:	Address strobe	SCK1, SCK30, SCK31:	Serial clock
AVREF:	Analog reference voltage	SDIO30:	Serial data input/output
AVss:	Analog ground	SI1, SI31:	Serial input
BUSY:	Busy	SO1, SO31:	Serial output
IC:	Internally connected	STB:	Strobe
INTP0 to INTP3:	External interrupt input	TI00, TI01, TI50, TI51:	Timer input
P00 to P07:	Port 0	TO0, TO50, TO51:	Timer output
P20 to P27:	Port 2	TxD0:	Transmit data
P30 to P37:	Port 3	VDD0, VDD1:	Power supply
P40 to P47:	Port 4	Vsso, Vss1:	Ground
P50 to P57:	Port 5	WAIT:	Wait
P64 to P67:	Port 6	WR:	Write strobe
P70 to P77:	Port 7	X1, X2:	Crystal (main system clock)
P80 to P84:	Port 8	XT1, XT2:	Crystal (subsystem clock)
P90 to P92:	Port 9		

2. BLOCK DIAGRAM

3. PIN FUNCTIONS

3.1 Port Pins

Pin Name	I/O	Function	After Reset	Alternate Function
P00 to P03	I/O	Port 0 8-bit I/O port.	Input	INTP0 to INTP3
P04 to P07	I/O	Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by software.		—
P20	I/O	Port 2	Input	TI00/TO0
P21		8-bit I/O port.		TI01
P22		Input/output can be specified in 1-bit units.		TI50/TO50
P23		Use of an on-chip pull-up resistor can be specified by software.		TI51/TO51
P24 to P27				
P30 to P37	I/O	Port 3 8-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by software.	Input	_
P40 to P47	I/O	Port 4 8-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by software.	Input	AD0 to AD7
P50 to P57	I/O	Port 5 8-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by software.	Input	A8 to A15
P64	I/O	Port 6	Input	RD
P65		4-bit I/O port.		WR
P66		Input/output can be specified in 1-bit units.		WAIT
P67		Use of an on-chip pull-up resistor can be specified by software.		ASTB
P70	I/O	Port 7	Input	PCL
P71		8-bit I/O port.		ASCK0
P72	1	Input/output can be specified in 1-bit units.		TxD0
P73		Use of an on-chip pull-up resistor can be specified by software.		RxD0
P74	1			SCK30
P75				SDIO30
P76, P77				
P80	I/O	Port 8	Input	STB
P81	1	5-bit I/O port.		BUSY
P82		Input/output can be specified in 1-bit units.		SCK1
P83		Use of an on-chip pull-up resistor can be specified by software.		SO1
P84	1			SI1
P90	I/O	Port 9	Input	SCK31
P91	1	3-bit I/O port.		SO31
P92	1	Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by software.		SI31

3.2 Non-Port Pins (1/2)

Pin Name	I/O	Function	After Reset	Alternate Function
INTP0 to INTP3	Input	External interrupt request input by which the valid edge (rising edge, falling edge, or both rising edge and falling edge) can be specified	Input	P00 to P03
TI00	Input	External count clock input to 16-bit timer/event counter 0 Capture trigger signal input to capture register (CR01) of 16-bit timer/event counter	Input	P20/TO0
TI01		Capture trigger signal input to capture register (CR00) of 16-bit timer/event counter		P21
TI50		External count clock input to 8-bit timer/event counter 50		P22/TO50
TI51		External count clock input to 8-bit timer/event counter 51		P23/TO51
TO0	Output	16-bit timer/event counter 0 output	Input	P20/TI00
TO50		8-bit timer/event counter 50 output (can be used for 8-bit PWM output)		P22/TI50
TO51	1	8-bit timer/event counter 51 output (can be used for 8-bit PWM output)		P23/TI51
SI1	Input	Serial interface SIO1 serial data input	Input	P84
SI31	Input	Serial interface SIO31 serial data input		P92
SO1	Output	Serial interface SIO1 serial data output	Input	P83
SO31	Output	Serial interface SIO31 serial data output		P91
SDIO30	I/O	Serial interface SIO30 serial data input/output	Input	P75
SCK1	I/O	Serial interface SIO1 serial clock input/output	Input	P82
SCK30		Serial interface SIO30 serial clock input/output	Input	P74
SCK31		Serial interface SIO31 serial clock input/output	Input	P90
BUSY	Input	Busy input for serial interface SIO1 automatic transmission/reception	Input	P81
STB	Output	Strobe output for serial interface SIO1 automatic transmission/reception	Input	P80
RxD0	Input	Serial data input for asynchronous serial interface	Input	P73
TxD0	Output	Serial data output for asynchronous serial interface	Input	P72
ASCK0	Input	Serial clock input for asynchronous serial interface	Input	P71
PCL	Output	Clock output (for trimming of main system clock and subsystem clock)	Input	P70
AD0 to AD7	I/O	Lower address/data bus for expanding memory externally	Input	P40 to P47
A8 to A15	Output	Higher address bus for expanding memory externally	Input	P50 to P57
RD	Output	Strobe signal output for read operation of external memory	Input	P64
WR	Output	Strobe signal output for write operation of external memory	Input	P65
WAIT	Input	Inserting wait for accessing external memory	Input	P66
ASTB	Output	Strobe output which externally latches address information output to port 4 and port 5 to access external memory	Input	P67
ANI0 to ANI7	Input	A/D converter analog input	Input	_

3.2 Non-Port Pins (2/2)

Pin Name	I/O	Function	After Reset	Alternate Function
AVREF	Output	A/D converter reference voltage input (can be used for analog power supply)	-	
AVss	_	A/D converter ground potential. Make this pin the same potential as $V_{\mbox{\scriptsize SS0}}$ or $V_{\mbox{\scriptsize SS1}}.$	-	_
RESET	Input	System reset input	-	_
X1	Input	Connecting crystal resonator for main system clock oscillation	—	—
X2	-	-		—
XT1	Input	Connecting crystal resonator for subsystem clock oscillation	_	—
XT2	-		—	_
VDD0	-	Positive power supply for ports	-	_
VDD1	-	Ground potential of ports	-	_
Vsso	-	Positive power supply (except ports)	—	—
Vss1	-	Ground potential (except ports)	-	_
IC	-	Internally connected. Connect this pin directly to Vsso or Vss1.	—	—

*

3.3 Pin I/O Circuits and Recommended Connection of Unused Pins

The I/O circuit type of each pin and recommended connections of unused pins are shown in Table 3-1. For the I/O circuit configuration of each type, refer to Figure 3-1.

Pin Name	I/O Circuit Type	I/O	Recommended Connections of Unused Pins
P00/INTP0 to P03/INTP3	8-C	I/O	Input: Independently connect to Vsso via a resistor.
P04 to P07			Output: Leave open.
P20/T100/TO0			Input: Independently connect to VDD0 or VSS0 via a
P21/T101			resistor.
P22/TI50/TO50			Output: Leave open.
P23/TI51/TO51			
P24 to P27			
P30 to P37			
P40/AD0 to P47/AD7	5-H		Input: Independently connect to VDD0 via a resistor. Output: Leave open.
P50/A8 to P57/A15			Input: Independently connect to VDD0 or VSS0 via a
P64/RD			resistor.
P65/WR			Output: Leave open.
P66/WAIT			
P67/ASTB			
P70/PCL			
P71/ASCK0	8-C		
P72/TxD0	5-H		
P73/RxD0	8-C		
P74/SCK30			
P75/SDIO30	5-H		
P76, P77	8-C		
P80/STB	5-H		
P81/BUSY	8-C		
P82/SCK1			
P83/SO1	5-H		
P84/SI1	8-C		
P90/SCK31			
P91/SO31	5-H		
P92/SI31	8-C		
ANI0 to ANI7	7-B	Input	Independently connect to VDD0 or Vsso.
XT1	16		Connect to VDD0.
XT2			Leave open.
RESET	2	Input	_
AVREF	—	_	Connect to Vsso or Vssi.
AVss			
IC			Directly connect to Vsso or Vss1.

Table 3-1. Pin I/O Circuit Types and Recommended Connection of Unused Pins

Figure 3-1. Pin I/O Circuits

4. MEMORY SPACE

Figure 4-1 shows the memory map of the μ PD780065.

Figure 4-1. Memory Map

5. FEATURES OF PERIPHERAL HARDWARE

5.1 Ports

There are 60 CMOS I/O ports.

Name	Pin Name	Function
Port 0	P00 to P07	I/O port. Input/output can be specified in 1-bit units.
Port 2	P20 to P27	Use of an on-chip pull-up resistor can be specified by software.
Port 3	P30 to P37	
Port 4	P40 to P47	
Port 5	P50 to P57	
Port 6	P64 to P67	
Port 7	P70 to P77	
Port 8	P80 to P84	
Port 9	P90 to P92	

Table 5-1. Port Functions

5.2 Clock Generator

A system clock generator is incorporated.

The minimum instruction execution time can be changed.

- 0.24 μs/0.48 μs/0.95 μs/1.91 μs/3.81 μs (main system clock: at 8.38 MHz operation)
- 122 μs (subsystem clock: at 32.768 kHz operation)

5.3 Timer/Event Counter

Five timer/event counter channels are incorporated.

- 16-bit timer/event counter: 1 channel
- 8-bit timer/event counter: 2 channels
- Watch timer: 1 channel
- Watchdog timer: 1 channel

Table 5-2. Operations of Timer/Event Counter

		16-Bit Timer/ Event Counter 0	8-Bit Timer/ Event Counter 50, 51	Watch Timer	Watchdog Timer
Ор	eration mode				
	Interval timer	1 channel	2 channels	1 channel ^{Note 1}	1 channel ^{Note 2}
	External event counter	1 channel	2 channels	_	_
Function					
	Timer output	1 output	2 outputs	_	_
	PWM output	_	2 outputs	_	_
	PPG output	1 output	_	_	_
	Pulse width measurement	2 inputs	—	_	_
	Square wave output	1 output	2 outputs	_	_
	Interrupt source	2	2	2	1

Notes 1. The watch timer can perform both watch timer and interval timer functions at the same time.

2. The watchdog timer has the watchdog timer and interval timer functions. However, use the watchdog timer by selecting either the watchdog timer function or the interval timer function.

Figure 5-2. Block Diagram of 16-bit Timer/Event Counter 0

Figure 5-3. Block Diagram of 8-bit Timer/Event Counter 50

Figure 5-4. Block Diagram of 8-bit Timer/Event Counter 51

Figure 5-5. Block Diagram of Watch Timer

5.4 Clock Output Controller

A clock output controller (CKU) is incorporated.

Clocks with the following frequencies can be output as a clock output.

- 65.5 kHz/131 kHz/262 kHz/524 kHz/1.05 MHz/2.10 MHz/4.19 MHz/8.38 MHz (main system clock: at 8.38 MHz operation)
- 32.768 kHz (subsystem clock: at 32.768 kHz operation)

5.5 A/D Converter

An A/D converter of 8-bit resolution \times 8 channels is incorporated.

Figure 5-8. Block Diagram of A/D Converter

5.6 Serial Interface

Four serial interface channels are incorporated.

- Serial interface UART0: 1 channel
- Serial interface SIO1: 1 channel
- Serial interface SIO30: 1 channel
- Serial interface SIO31: 1 channel

(1) Serial interface UART0

Serial interface UART0 has two modes, asynchronous serial interface (UART) mode and infrared data transfer mode.

Asynchronous serial interface (UART) mode

This mode enables full-duplex operation wherein one byte of data is transmitted and received after the start bit.

The on-chip dedicated UART baud rate generator enables communication using a wide range of selectable baud rates. In addition, a baud rate can be also defined by dividing the clock input to the ASCK0 pin. The dedicated UART baud rate generator can also be used to generate a MIDI-standard baud rate (31.25 Kbps).

Infrared data transfer mode

This mode enables pulse output and pulse reception in data format.

This mode can be used for office equipment applications such as personal computers.

Figure 5-9. Block Diagram of Serial Interface UART0

(2) Serial interface SIO1

Serial interface SIO1 has a 3-wire serial I/O mode and a 3-wire serial I/O mode with an auto-transmit/receive function.

• 3-wire serial I/O mode (MSB/LSB-first switching is possible)

This mode performs 8-bit data transfer via 3 lines: a serial clock line (SCK1), serial output line (SO1), and serial input line (SI1).

This mode can transmit and receive data simultaneously and allows the processing time of data transfer to be reduced.

Since MSB-first or LSB-first is supported for the first bit of the 8-bit data for serial transfer, it is possible to connect the μ PD780065 to both MSB-first devices and LSB-first devices.

3-wire serial I/O mode is effective when connecting to a peripheral I/O that incorporates a clock synchronous serial interface or a display controller, etc.

• 3-wire serial I/O mode with auto-transmit/receive function

This mode has the same functions as the 3-wire serial I/O mode above, but with an added auto transmit/ receive function.

A maximum of 32 bytes of data can be transmitted/received in this mode. This function allows hardwarebased data transmission/reception to and from devices for OSD (On Screen Display) and devices that incorporate display controllers/drivers independently from the CPU. This mode, therefore, can reduce the burden on software.

Figure 5-10. Block Diagram of Serial Interface SIO1

(3) Serial interface SIO30

Serial interface SIO30 has a 2-wire serial I/O mode.

• 2-wire serial I/O mode (fixed as MSB first)

This is an 8-bit data transfer mode using two lines: a serial clock line ($\overline{SCK30}$) and a data I/O line ($\overline{SDIO30}$). The first bit in 8-bit data in the serial transfer is fixed as MSB.

The 2-wire serial I/O mode is useful for connection to a peripheral I/O that incorporates a clocked serial interface, a display controller, etc.

(4) Serial interface SIO31

Serial interface SIO31 has a 3-wire serial I/O mode.

• 3-wire serial I/O mode (fixed as MSB first)

This is an 8-bit data transfer mode using three lines: a serial clock line (SCK31), serial output line (SO31), and serial input line (SI31).

Since simultaneous transmit and receive operations are enabled in the 3-wire serial I/O mode, the processing time for data transfer is reduced.

The first bit in 8-bit data in the serial transfer is fixed as MSB.

The 3-wire serial I/O mode is useful for connection to a peripheral I/O device that incorporates a clocked serial interface, a display controller, etc.

Figure 5-12. Block Diagram of Serial Interface SIO31

6. INTERRUPT FUNCTIONS

1

The interrupt function consists of 20 interrupt sources and three interrupt types, as shown below.

- · Non-maskable: 1
- Maskable: 18
- Software:

Interrupt	Default		Interrupt Source	Internal/	Vector Table	Basic
Туре	Priority ^{Note 1}	Name	Trigger	External	Address	Configuration Type ^{Note 2}
Non- maskable	_	INTWDT	Watchdog timer overflow (watchdog timer mode 1 selected)	Internal	0004H	(A)
Maskable	0	INTWDT	Watchdog timer overflow (interval timer mode selected)			(B)
	1	INTP0	Pin input edge detection	External	0006H	(C)
	2	INTP1			0008H	
	3	INTP2			000AH	
	4	INTP3			000CH	
	5	INTSER0	Generation of serial interface UART0 reception error	Internal	000EH	(B)
	6	INTSR0	End of serial interface UART0 reception		0010H	
	7	INTST0	End of serial interface UART0 transmission		0012H	
	8	INTCSI30	End of serial interface SIO30 transfer		0014H	
	9	INTCSI31	End of serial interface SIO31 transfer		0016H	
	10	INTCSI1	End of serial interface SIO1 transfer		0018H	
	11	INTTM00	Match of TM0 and CR00 (when CR00 is specified as compare register) or TI01 pin valid edge detection (when CR00 is specified as capture register)		001AH	
	12	INTTM01	Match of TM0 and CR01 (when CR01 is specified as compare register) or TI00 pin valid edge detection (when CR01 is specified as capture register)		001CH	
	13	INTTM50	Match of TM50 and CR50		001EH	
	14	INTTM51	Match of TM51 and CR51		0020H	
	15	INTWTI	Reference time interval signal from watch timer		0022H	
	16	INTWT	Watch timer overflow		0024H	
	17	INTAD0	End of conversion by A/D converter		0026H	
Software	_	BRK	BRK instruction execution	_	003EH	(D)

Table 6-1. Interrupt Source List

Notes 1. The default priority is a priority order when two or more maskable interrupt requests are generated simultaneously. 0 is the highest and 17 is the lowest.

- 2. Basic configuration types (A) to (D) correspond to (A) to (D) in Figure 6-1, respectively.
- ★ **Remark** Two watchdog timer interrupt sources (INTWDT): a non-maskable interrupt and a maskable interrupt (internal), are available, either of which can be selected.

Figure 6-1. Basic Configuration of Interrupt Function (1/2)

(A) Internal non-maskable interrupt

(B) Internal maskable interrupt

(C) External maskable interrupt (INTP0 to INTP3)

Figure 6-1. Basic Configuration of Interrupt Function (2/2)

(D) Software interrupt

- IF: Interrupt request flag
- IE: Interrupt enable flag
- ISP: In-service priority flag
- MK: Interrupt mask flag
- PR: Priority specification flag

7. EXTERNAL DEVICE EXPANSION FUNCTION

The external device expansion function is for connecting external devices to areas other than the internal ROM, RAM, and SFRs. Ports 4 to 6 are used for external device connection.

8. STANDBY FUNCTION

The following two standby modes are available for further reduction of system current consumption.

- HALT mode: In this mode, the CPU operation clock is stopped. The average current consumption can be reduced by intermittent operation by combining this mode with the normal operation mode.
- STOP mode: In this mode, oscillation of the main system clock is stopped. All the operations performed on the main system clock are suspended, and only the subsystem clock is used, resulting in extremely small power consumption. This can be used only when the main system clock is operating (the subsystem clock oscillation cannot be stopped).

- **Note** The current consumption can be reduced by stopping the main system clock. When the CPU is operating on the subsystem clock, set bit 7 (MCC) of the processor clock control register (PCC). The STOP instruction cannot be used.
- Caution When the main system clock is stopped and the device is operating on the subsystem clock, wait until the oscillation stabilization time has been secured by the program before switching back to the main system clock.

9. RESET FUNCTION

The following two reset methods are available.

- External reset by RESET signal input
- Internal reset by watchdog timer program loop time detection

10. INSTRUCTION SET

(1) 8-bit instructions

MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, ROR4, ROL4, PUSH, POP, DBNZ

Second operand First operand	#byte	A	r ^{Note}	sfr	saddr	!addr16	PSW	[DE]	[HL]	[HL + byte] [HL + B] [HL + C]	\$addr16	1	None
A r	ADD ADDC SUB SUBC AND OR XOR CMP	MOV ADD ADDC	MOV XCH ADD SUB SUBC AND OR XOR CMP	MOV XCH	MOV XCH ADD SUB SUBC AND OR XOR CMP	MOV XCH ADD SUB SUBC AND OR XOR CMP	MOV	MOV XCH	MOV XCH ADD SUB SUBC AND OR XOR CMP	MOV XCH ADD SUB SUBC AND OR XOR CMP		ROR ROL RORC ROLC	INC DEC
		SUB SUBC AND OR XOR CMP									DDNZ		
B, C sfr		MOV									DBNZ		
saddr	MOV ADD ADDC SUB SUBC AND OR XOR CMP	MOV MOV									DBNZ		INC DEC
laddr16	14014	MOV											
PSW	MOV	MOV											PUSH POP
[DE]		MOV											
[HL]		MOV											ROR4 ROL4
[HL + byte] [HL + B] [HL + C]		MOV											
Х													MULU
С													DIVUW

Note Except r = A

(2) 16-bit instructions

MOVW, XCHW, ADDW, SUBW, CMPW, PUSH, POP, INCW, DECW

Second operand First operand	#word	AX	rp ^{Note}	sfrp	saddrp	laddr16	SP	None
AX	ADDW SUBW CMPW		MOVW XCHW	MOVW	MOVW	MOVW	MOVW	
rp	MOVW	MOVW ^{Note}						INCW, DECW PUSH, POP
sfrp	MOVW	MOVW						
saddrp	MOVW	MOVW						
!addr16		MOVW						
SP	MOVW	MOVW						

Note Only when rp = BC, DE or HL

(3) Bit manipulation instructions

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR

Second operand First operand	A.bit	sfr.bit	saddr.bit	PSW.bit	[HL].bit	СҮ	\$addr16	None
A.bit						MOV1	BT BF BTCLR	SET1 CLR1
sfr.bit						MOV1	BT BF BTCLR	SET1 CLR1
saddr.bit						MOV1	BT BF BTCLR	SET1 CLR1
PSW.bit						MOV1	BT BF BTCLR	SET1 CLR1
[HL].bit						MOV1	BT BF BTCLR	SET1 CLR1
СҮ	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1			SET1 CLR1 NOT1

(4) Call instruction/branch instructions

CALL, CALLF, CALLT, BR, BC, BNC, BZ, BNZ, BT, BF, BTCLR, DBNZ

Second operand First operand	AX	laddr16	laddr11	[addr5]	\$addr16
Basic instruction	BR	CALL BR	CALLF	CALLT	BR, BC, BNC BZ, BNZ
Compound instruction					BT, BF BTCLR DBNZ

(5) Other instructions

ADJBA, ADJBS, BRK, RET, RETI, RETB, SEL, NOP, EI, DI, HALT, STOP

***** 11. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (T_A = 25° C)

Parameter	Symbol	Condition	Ratings	Unit	
Supply voltage	Vdd		-0.3 to +6.5	V	
	AVREF			-0.3 to VDD + 0.3	V
	AVss			-0.3 to +0.3	V
Input voltage	Vı	P00 to P07, P20 to P27, P30 to P P50 to P57, P64 to P67, P70 to P P90 to P92, X1, X2, XT1, XT2, R	-0.3 to V _{DD} + 0.3	V	
Output voltage	Vo		-0.3 to VDD + 0.3	V	
Analog input voltage	Van	ANI0 to ANI7	Analog input pin	AVss - 0.3 to AVREF0 + 0.3 and - 0.3 to VDD + 0.3	V
Output current,	Іон	Per pin	-10	mA	
high		Total for P00 to P07, P20 to P27 P50 to P57, P64 to P67, P80 to P	-15	mA	
		Total for P70 to P77	-15	mA	
Output current, low	_{OL} Note	Per pin for P00 to P07, P20 to P27, P30 to P37,	Peak value	20	mA
		P40 to P47, P64 to P67, P70 to P77, P80 to P84, P90 to P92	rms value	10	mA
		Per pin for P50 to P57	Peak value	30	mA
			rms value	15	mA
		Total for P00 to P07, P20 to P27,	Peak value	50	mA
		P30 to P37, P40 to P47, P64 to P67, P80 to P84, P90 to P92	rms value	20	mA
		Total for P70 to P77	Peak value	20	mA
			rms value	10	mA
		Total for P50 to P57	Peak value	100	mA
			rms value	70	mA
Operating ambient temperature	ΤΑ			-40 to +85	°C
Storage temperature	Tstg			-65 to +150	°C

Note The rms value should be calculated as follows: [rms value] = [Peak value] $\times \sqrt{\text{Duty}}$

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
Parameter	Symbol	Conditions			TYP.	MAX.	Unit
Input capacitance	CIN	f = 1 MHz Unmeasured pins returned to 0 V.				15	pF
I/O capacitance	Сю	f = 1 MHz Unmeasured pins returned to 0 V.	P00 to P07, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P84, P90 to P92			15	pF

Capacitance (TA = $25^{\circ}C$, VDD = Vss = 0 V)

Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.

Main System Clock Oscillator Characteristics (TA = -40 to +85°C, VDD = 2.7 to 5.5 V)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic	X1 X2 IC	Oscillation	V _{DD} = 4.5 to 5.5 V	1.0		8.38	MHz
resonator		frequency (fx) ^{Note 1}		1.0		5.0	
		Oscillation	After VDD reaches			4	ms
	↓↓ <i>m</i>	stabilization time ^{Note 2}	oscillation voltage range MIN.				
Crystal	X1 X2 10	Oscillation	VDD = 4.5 to 5.5 V	1.0		8.38	MHz
resonator		frequency (fx) ^{Note 1}		1.0		5.0	
		Oscillation	V _{DD} = 4.5 to 5.5 V			10	ms
		stabilization time ^{Note 2}				30	
External		X1 input	V _{DD} = 4.5 to 5.5 V	1.0		8.38	MHz
clock	X1 X2	frequency (fx)Note 1				5.0	
		X1 input	V _{DD} = 4.5 to 5.5 V	50		500	ns
		high-/low-level width (txн, tx∟)		85		500	

Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.2. Time required to stabilize oscillation after reset or STOP mode release.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- · Always make the ground point of the oscillator capacitor the same potential as Vss1.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.
- 2. When the main system clock is stopped and the system is operating on the subsystem clock, wait until the oscillation stabilization time has been secured by the program before switching back to the main system clock.

Cautions 1. When using the main system clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator	XT2 XT1 IC	Oscillation frequency (fxT) ^{Note 1}		32	32.768	35	kHz
		Oscillation	V _{DD} = 4.5 to 5.5 V		1.2	2	s
		stabilization timeNote 2				10	
External clock	XT2 XT1	XT1 input frequency (f _{XT}) ^{Note 1}		32		38.5	kHz
	μPD74HCU04	XT1 input high-/low-level width (tхтн, txть)		5		15	μs

Subsystem Clock Oscillator Characteristics (T_A = -40 to +85°C, V_{DD} = 2.7 to 5.5 V)

Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.
2. Time required to stabilize oscillation after VDD reaches oscillation voltage range MIN.

Cautions 1. When using the subsystem clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss1.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.
- 2. The subsystem clock oscillator is designed as a low-amplitude circuit for reducing current consumption, and is more prone to malfunction due to noise than the main system clock oscillator. Particular care is therefore required with the wiring method when the subsystem clock is used.

Recommended Oscillator Constant

		Frequency	Recommende	d Circuit Constant	Oscillation V	Voltage Range
Manufacturer	Part Number	(MHz)	C1 (pF)	C2 (pF)	MIN. (V)	MAX. (V)
Murata Mfg.	CSB1000J	1.00	100	100	2.7	5.5
Co., Ltd.	CSA2.00MG040	2.00	100	100	2.7	5.5
	CST2.00MG040	2.00	On-chip	On-chip	2.7	5.5
	CSA3.58MG	3.58	30	30	2.7	5.5
	CST3.58MGW	3.58	On-chip	On-chip	2.7	5.5
	CSA4.19MG	4.19	30	30	2.7	5.5
	CST4.19MGW	4.19	On-chip	On-chip	2.7	5.5
	CSA5.00MG	5.00	30	30	2.7	5.5
	CST5.00MGW	5.00	On-chip	On-chip	2.7	5.5
	CSA8.00MTZ	8.00	30	30	2.7	5.5
	CST8.00MTW	8.00	On-chip	On-chip	2.7	5.5
	CSA8.00MTZ093	8.00	30	30	2.7	5.5
	CST8.00MTW093	8.00	On-chip	On-chip	2.7	5.5
	CSA8.38MTZ	8.38	30	30	2.7	5.5
	CST8.38MTW	8.38	On-chip	On-chip	2.7	5.5
	CSA8.38MTZ093	8.38	30	30	2.7	5.5
	CST8.38MTW093	8.38	On-chip	On-chip	2.7	5.5

Main system clock: Ceramic resonator (T_A = -40 to $+85^{\circ}$ C)

Caution The oscillator constant and oscillation voltage range indicate conditions of stable oscillation. Oscillation frequency precision is not guaranteed. For applications requiring oscillation frequency precision, the oscillation frequency must be adjusted on the implementation circuit. For details, contact directly the manufacturer of the resonator used.

DC Characteristics (TA = -40 to +85°C, VDD = 2.7 to 5.5 V)

Parameter	Symbol	Conditio	ns	MIN.	TYP.	MAX.	Unit
Output current,	Іон	Per pin				-1	mA
high		All pins				-15	mA
Output current, low	lol	Per pin for P00 to P07, P20 to P40 to P47, P64 to P67, P70 to P90 to P92				10	mA
		Per pin for P50 to P57				15	mA
		Total for P00 to P07, P20 to P2 P40 to P47, P64 to P67, P80 to				20	mA
		Total for P50 to P57				70	mA
		Total for P70 to P77				10	mA
Input voltage, high VIH1 VIH2	VIH1	P04 to P07, P20 to P27, P30 to P50 to P57, P64 to P67, P70, F P83, P91	, , ,	0.7Vdd		Vdd	V
	VIH2	P00 to P03, P71, P73 to P75, F RESET	0.8Vdd		VDD	V	
	VIH3	X1, X2		Vdd - 0.5		VDD	V
	VIH4	XT1, XT2	V _{DD} = 4.5 to 5.5 V	0.8VDD		VDD	V
				0.9VDD		VDD	V
Input voltage, Iow	VIL1	P04 to P07, P20 to P27, P30 to P50 to P57, P64 to P67, P70, F P83, P91	0		0.3Vdd	V	
	VIL2	P00 to P03, P71, P73 to P75, F RESET	0		0.2VDD	V	
	VIL3	X1, X2		0		0.4	V
	VIL4	XT1, XT2	V _{DD} = 4.5 to 5.5 V	0		0.2VDD	V
				0		0.1VDD	V
Output voltage,	Vон1	VDD = 4.5 to 5.5 V, IOH = -1 mA		Vdd - 1.0		VDD	V
high		Іон = -100 <i>µ</i> А		Vdd - 0.5		VDD	V
Output voltage, low	Vol1	P50 to P57	$V_{DD} = 4.5$ to 5.5 V, lol = 15 mA		0.4	2.0	V
		P00 to P07, P20 to P27, P30 to P37, P40 to P47, P64 to P67, P70 to P77, P80 to P84, P90 to P92	$V_{DD} = 4.5$ to 5.5 V, IoL = 1.6 mA			0.4	V
	VOL2	lol = 400 μA				0.5	V

Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Input leakage current, high	Цінт	Vin = Vdd	P00 to P07, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P84, P90 to P92, RESET			3	μΑ
	Ілна		X1, X2, XT1, XT2			20	μA
Input leakage current, low	ILIL1	Vin = 0 V	P00 to P07, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P84, P90 to P92, RESET			-3	μA
	ILIL2		X1, X2, XT1, XT2			-20	μA
Output leakage current, high	Ігон	Vout = Vdd				3	μA
Output leakage current, low	Ilol	Vout = 0 V				-3	μA
Software pull-up resistance	R		P27, P30 to P37, P40 to P47, P67, P70 to P77, P80 to P84,	15	30	90	kΩ

Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.

Parameter	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Power supply current ^{Note 1}	IDD1	8.38 MHz crystal oscillation	$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note 2}}$	When A/D converter is stopped		5.5	11	mA
		operating mode		When A/D converter is operating		6.5	13	mA
		5.00 MHz crystal oscillation	$V_{\text{DD}} = 3.0 \text{ V} \pm 10\%^{\text{Note 2}}$	When A/D converter is stopped		2	4	mA
	operating mode		When A/D converter is operating		3	6	mA	
	Idd2	crystal oscillation	$V_{\text{DD}} = 5.0 \text{ V} \pm 10\%^{\text{Note 2}}$	When peripheral functions are stopped		1.1	2.2	mA
	HALT mode		When peripheral functions are operating			4.7	mA	
		5.00 MHz crystal oscillation	$V_{\text{DD}} = 3.0 \text{ V} \pm 10\%^{\text{Note 2}}$	When peripheral functions are stopped		0.35	0.7	mA
		HALT mode		When peripheral functions are operating			1.7	mA
	Іддз	32.768 kHz cryst		$V_{\text{DD}}=5.0~V\pm10\%$		40	80	μA
		operating mode ^N	lote 3	$V_{\text{DD}}=3.0~V\pm10\%$		20	40	μA
	IDD4	32.768 kHz crystal oscillation HALT mode ^{Note 3}		$V_{\text{DD}} = 5.0 \text{ V} \pm 10\%$		30	60	μA
				$V_{\text{DD}}=3.0~V\pm10\%$		6	18	μA
	IDD5	XT1 = VDD STOF		$V_{\text{DD}} = 5.0 \text{ V} \pm 10\%$		0.1	30	μA
		When feedback	resistor is not used	$V_{\text{DD}}=3.0~V\pm10\%$		0.05	10	μA

Notes 1. Total current through the internal power supply (VDD0, VDD1), including the peripheral operation current (except the current through pull-up resistors of ports and the AVREF pin).

2. When the processor clock control register (PCC) is set to 00H.

3. When main system clock operation is stopped.

AC Characteristics

Parameter	Symbol	Con	ditions	MIN.	TYP.	MAX.	Unit
Cycle time	Тсч	Operating with	$4.5~V \le V_{\text{DD}} \le 5.5~V$	0.24		16	μs
(Minimum instruction		main system clock	$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	0.4		16	μs
execution time)		Operating with subsyst	stem clock	103.9Note 1	122	125	μs
TI00, TI01 input high-/low-level width	tтiнo, tтi∟o	$3.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	$3.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$				μs
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 3.5 \text{ V}$		2/f _{sam} + 0.2 ^{Note 2}			μs
TI50, TI51 input frequency	ft15			0		4	MHz
TI50, TI51 input high-/low-level width	t⊤iH5, t⊤iL5			100			ns
Interrupt request input high-/low-level width	tinth, tintl	INTP0 to INTP3		1			μs
RESET low-level width	trsl			10			μs

(1) Basic Operation (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 2.7 to 5.5 V)

Notes 1. Value when the external clock is used. When a crystal resonator is used, it is 114 μ s (MIN.).

2. Selection of $f_{sam} = fx$, fx/4, fx/64 is possible using bits 0 and 1 (PRM00, PRM01) of prescaler mode register 0 (PRM0). However, if the TI00 valid edge is selected as the count clock, the value becomes $f_{sam} = fx/8$.

TCY vs. VDD (main system clock operation)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
ASTB high-level width	t asth		0.3tcr		ns
Address setup time	tads		20		ns
Address hold time	tadh		6		ns
Data input time from address	tadd1			(2 + 2n) toy - 54	ns
	tadd2			(3 + 2n) toy - 60	ns
Address output time from $\overline{RD} \downarrow$	trdad		0	100	ns
Data input time from $\overline{RD} \downarrow$	trdd1			(2 + 2n) tcr - 87	ns
	trdd2			(3 + 2n) tcr - 93	ns
Read data hold time	t RDH		0		ns
RD low-level width	tRDL1		(1.5 + 2n) toy - 33		ns
	trdl2		(2.5 + 2n) toy - 33		ns
Input time from $\overline{RD} \downarrow$ to $\overline{WAIT} \downarrow$	trdwt1			tcy - 43	ns
	trdwt2			tcy – 43	ns
Input time from $\overline{WR}{\downarrow}$ to $\overline{WAIT}{\downarrow}$	twrwt			tcy – 25	ns
WAIT low-level width	twr∟		(0.5 + n) tcr + 10	(2 + 2n) tor	ns
Write data setup time	twos		60		ns
Write data hold time	twdн		6		ns
WR low-level width	twRL1		(1.5 + 2n) toy - 15		ns
Delay time from ASTB \downarrow to $\overline{RD}\downarrow$	t ASTRD		6		ns
Delay time from ASTB \downarrow to $\overline{WR}\downarrow$	tastwr		2tcy – 15		ns
Delay time from RD↑ to ASTB↑ at external fetch	t rdast		0.8tcy - 15	1.2tcv	ns
Address hold time from RD↑ at external fetch	trdadh		0.8tcy - 15	1.2tcy + 30	ns
Write data output time from \overline{RD}^\uparrow	trowd		40		ns
Write data output time from $\overline{WR} \!\!\downarrow$	twrwd		10	60	ns
Address hold time from \overline{WR}^\uparrow	twradh		0.8tcy - 15	1.2tcy + 30	ns
Delay time from $\overline{WAIT}\uparrow$ to $\overline{RD}\uparrow$	twrrd		0.8tcy	2.5tcy + 25	ns
Delay time from WAIT↑ to WR↑	twrwn		0.8tcy	2.5tcr + 25	ns

(2) Read/Write Operation (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 4.5 to 5.5 V)

Remarks 1. tcy = Tcy/4

- 2. n indicates the number of waits.
- **3.** $C_{L} = 100 \text{ pF}$ (C_{L} indicates the load capacitance of the AD0 to AD7, A8 to A15, \overline{RD} , \overline{WR} , \overline{WAIT} , and ASTB pins.)

(2) Read/Write Operation (TA = -40 to +85°C, VDD = 2.7 to 4.5 V)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
ASTB high-level width	tasth		0.3tcy		ns
Address setup time	tads		30		ns
Address hold time	tadh		10		ns
Input time from address to data	tadd1			(2 + 2n) tcr - 108	ns
	tadd2			(3 + 2n) tcr - 120	ns
Output time from $\overline{\text{RD}} {\downarrow}$ to address	trdad		0	200	ns
Input time from $\overline{\text{RD}} {\downarrow}$ to data	tRDD1			(2 + 2n) tcr - 148	ns
	trdd2			(3 + 2n) tcr - 162	ns
Read data hold time	trdh		0		ns
RD low-level width	tRDL1		(1.5 + 2n) tcr - 40		ns
	trdl2		(2.5 + 2n) tcr - 40		ns
Input time from $\overline{\text{RD}} {\downarrow}$ to $\overline{\text{WAIT}} {\downarrow}$	trdwt1			tcy – 75	ns
	trdwt2			tcy - 60	ns
Input time from $\overline{WR} {\downarrow}$ to $\overline{WAIT} {\downarrow}$	twrwt			tcy - 50	ns
WAIT low-level width	tw⊤∟		(0.5 + 2n) tcr + 10	(2 + 2n) tor	ns
Write data setup time	twos		60		ns
Write data hold time	twoн		10		ns
WR low-level width	twRL1		(1.5 + 2n) tcr - 30		ns
Delay time from ASTB \downarrow to $\overline{\text{RD}}\downarrow$	t astrd		10		ns
Delay time from ASTB \downarrow to $\overline{\rm WR} \downarrow$	t astwr		2tcy - 30		ns
Delay time from RD↑ to ASTB↑ at external fetch	trdast		0.8tcy - 30	1.2tcy	ns
Hold time from RD↑ to address at external fetch	trdadh		0.8tcy - 30	1.2tcy + 60	ns
Write data output time from $\overline{\text{RD}} \uparrow$	trowd		40		ns
Write data output time from $\overline{\text{WR}} {\downarrow}$	twrwd		20	120	ns
Hold time from $\overline{WR} {\uparrow}$ to address	twradh		0.8tcy - 30	1.2tcy + 60	ns
Delay time from $\overline{\text{WAIT}}\uparrow$ to $\overline{\text{RD}}\uparrow$	twrrd		0.5tcy	2.5tcy + 50	ns
Delay time from \overline{WAIT} to \overline{WR}	twrwn		0.5tcr	2.5tcr + 50	ns

Remarks 1. tcy = Tcy/4

- 2. n indicates the number of waits.
- **3.** $C_{L} = 100 \text{ pF}$ (C_{L} indicates the load capacitance of the AD0 to AD7, AD8 to AD15, \overline{RD} , \overline{WR} , \overline{WAIT} , and ASTB pins.)

(3) Serial Interface (TA = -40 to $+85^{\circ}$ C, VDD = 2.7 to 5.5 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK3n cycle time	tKCY1	V _{DD} = 4.5 to 5.5 V	954			ns
			1600			ns
SCK3n high-/	tkh1, tkL1	V _{DD} = 4.5 to 5.5 V	tксү1/2 — 50			ns
low-level width			tксү1/2 – 100			ns
SI3n setup time	tsik1	V _{DD} = 4.5 to 5.5 V	100			ns
(to SCK3n↑)			150			ns
Sl3n hold time (from SCK3n↑)	tksii		400			ns
Delay time from SCK3n↓ to SO3n output	tkso1	C = 100 pF ^{Note}			300	ns

(a) SIO3n 3-wire serial I/O mode (SCK3n... Internal clock output)

Note C is the load to SO3n output capacitance of the SCK3n and SO3n output lines.

(b) SIO3n 3-wire serial I/O mode (SCK3n... External clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK3n cycle time	tксү2	V _{DD} = 4.5 to 5.5 V	800			ns
			1600			ns
SCK3n high-/	tkh2, tkl2	V _{DD} = 4.5 to 5.5 V	400			ns
low-level width			800			ns
Sl3n setup time (to SCK3n↑)	tsik2		100			ns
Sl3n hold time (from SCK3n↑)	tksı2		400			ns
Delay time from SCK3n↓ to SO3n output	tkso2	C = 100 pF ^{Note}			300	ns

Note C is the load capacitance of the SO3n output line.

Remark n = 0, 1

- (3) Serial Interface (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 2.7 to 5.5 V)
 - (c) SIO1 3-wire serial I/O mode (SCK1... Internal clock output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tксүз		800			ns
SCK1 high-/ low-level width	tкнз, tкLз		tксү1/2 — 50			ns
SI1 setup time (to SCK1↑)	tsiкз		100			ns
SI1 hold time (from SCK1↑)	tksis		400			ns
Delay time from SCK1↓ to SO1 output	tкsoз	C = 100 pF ^{Note}			300	ns

Note C is the load capacitance of the $\overline{SCK1}$ and SO1 output lines.

(d) SIO1 3-wire serial I/O mode (SCK1... External clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tксү4		800			ns
SCK1 high-/ low-level width	tkh4, tkl4		400			ns
SI1 setup time (to SCK1↑)	tsıĸ4		100			ns
SI1 hold time (from SCK1↑)	tksi4		400			ns
Delay time from SCK1↓ to SO1 output	tkso4	C = 100 pFNote			300	ns
SCK1 rise/fall time	tr, tr				1	μs

Note C is the load capacitance of the SO1 output line.

(e) UART mode (dedicated baud-rate generator output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		V _{DD} = 4.5 to 5.5 V			131031	bps
					78125	bps

(f) UART mode (external clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
ASCK0 cycle time	tксүъ	V _{DD} = 4.5 to 5.5 V	800			ns
			1600			ns
ASCK0 high-/low-level width	tкн5,	V _{DD} = 4.5 to 5.5 V	400			ns
	tĸL5		800			ns
Transfer rate		V _{DD} = 4.5 to 5.5 V			39063	bps
					19531	bps

(g) UART mode (infrared data transfer mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		V _{DD} = 4.5 to 5.5 V			131031	bps
Bit rate allowable error		V _{DD} = 4.5 to 5.5 V			±0.87	%
Output pulse width		VDD = 4.5 to 5.5 V	1.2		0.24/fbr ^{Note}	μs
Input pulse width		V _{DD} = 4.5 to 5.5 V	4/fx			μs

Note fbr: Specified baud rate

AC Timing Measurement Points (Excluding X1, XT1 Inputs)

Clock Timing

TI Timing

Interrupt Request Input Timing

RESET Input Timing

Read/Write Operation

External fetch (no wait):

External fetch (wait insertion):

External data access (no wait):

External data access (wait insertion):

Serial Transfer Timing

SIO3n 3-wire serial I/O mode:

$\textbf{Remark} \quad n = 0, \ 1$

SIO1 3-wire serial I/O mode:

UART mode (external clock input):

A/D Converter Characteristics (T_A = -40 to +85°C, V_{DD} = AV_{DD} = AV_{REF} = 2.7 to 5.5 V, AV_{SS} = V_{SS} = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bit
Overall error ^{Note}					±0.6	%FSR
Conversion time	tconv		19		96	μs
Analog input voltage	VIAN		0		AVREF	V
Resistance between AV _{REF} and AV _{SS}	Rref	When A/D converter not operating	20	40		kΩ

Note Excludes quantization error ($\pm 1/2$ LSB). This value is indicated as a ratio to the full-scale value.

• Analog input pin input impedance

[Equivalent circuit]

[Parameter value]

[TYP.]

					[]
AVDD [V]	R1 [kΩ]	R2 [kΩ]	C1 [pF]	C2 [pF]	C3 [pF]
2.7	12	8.0	3.0	3.0	2.0
4.5	4	2.7	3.0	1.4	2.0

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention power supply voltage	Vdddr		1.6		5.5	V
Data retention power supply current	Idddr	Subsystem clock stop (XT1 = VDD) and feedback resistor disconnected		0.1	30	μΑ
Release signal set time	t SREL		0			μs
Oscillation stabilization time	twait	Release by RESET		2 ¹⁷ /fx		S
		Release by interrupt request		Note		S

Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (T_A = -40 to +85°C)

Note Selection of 2¹²/fx and 2¹⁴/fx to 2¹⁷/fx is possible using bits 0 to 2 (OSTS0 to OSTS2) of the oscillation stabilization time select register (OSTS).

Data Retention Timing (STOP Mode Release by RESET)

Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Request Signal)

12. PACKAGE DRAWING

* 80-PIN PLASTIC QFP (14x14)

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
Α	17.20±0.20
В	14.00±0.20
С	14.00±0.20
D	17.20±0.20
F	0.825
G	0.825
Н	0.32±0.06
I	0.13
J	0.65 (T.P.)
К	1.60±0.20
L	0.80±0.20
М	$0.17\substack{+0.03 \\ -0.07}$
N	0.10
Р	1.40±0.10
Q	0.125±0.075
R	$3^{\circ + 7^{\circ}}_{-3^{\circ}}$
S	1.70 MAX.
	P80GC-65-8BT-1

Remark The external dimensions and materials of the ES version are the same as those of the mass-produced version.

13. RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions.

For soldering methods and conditions other than those recommended below, contact an NEC Electronics sales representative.

For technical information, see the following website.

Semiconductor Device Mount Manual (http://www.necel.com/pkg/en/mount/index.html)

Table 13-1. Surface Mounting Type Soldering Conditions

(1) μ PD780065GC- \times ××-8BT: 80-pin plastic QFP (14 × 14)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Two times or less	IR35-00-2
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: Two times or less	VP15-00-2
Wave soldering	Solder bath temperature: 260°C max., Time: 10 seconds max., Count: Once, Preheating temperature: 120°C max. (package surface temperature)	WS60-00-1
Partial heating	Pin temperature: 350°C max., Time: 3 seconds max. (per pin row)	—

(2) μ PD780065GC-×××-8BT-A: 80-pin plastic QFP (14 × 14)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 260°C, Time: 60 seconds max. (at 220°C or higher), Count: 3 times or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 20 to 72 hours)	IR60-207-3
Wave soldering	For details, contact an NEC Electronics sales representative.	—
Partial heating	Pin temperature: 350°C max., Time: 3 seconds max. (per pin row)	_

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

Remark Products with "-A" at the end of the part number are lead-free products.

APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for developing systems using the μ PD780065 Subseries. Refer to (5) Cautions on using development tools.

(1) Language processing software

RA78K0	Assembler package common to the 78K/0 Series
CC78K0	C compiler package common to the 78K/0 Series
DF780066	Device file for the μ PD780065 Subseries
CC78K0-L	C compiler library source file common to the 78K/0 Series

(2) Flash memory writing tools

	Flashpro III	Dedicated flash programmer for microcontrollers incorporating flash memory
	(Part number: FL-PR3, PG-FP3)	
*	FA-80GC	Adapter for flash memory writing

(3) Debugging tools

• When using IE-78K0-NS in-circuit emulator

	IE-78K0-NS	In-circuit emulator common to the 78K/0 Series
	IE-70000-MC-PS-B	Power supply unit for the IE-78K0-NS
*	IE-78K0-NS-PA	Performance board to enhance/extend the functions of the IE-78K0-NS
	IE-70000-98-IF-C	Adapter necessary when a PC-9800 series computer (except notebook-type PC) is used as the host machine (C bus supported)
*	IE-70000-CD-IF-A	PC card and interface cable necessary when a PC-9800 series notebook-type PC is used as the
		host machine (PCMCIA socket supported)
	IE-70000-PC-IF-C	Adapter necessary when an IBM PC/AT TM compatible is used as the host machine (ISA bus supported)
*	IE-70000-PCI-IF-A	Adapter necessary when a PC incorporating a PCI bus is used as the host machine
	IE-780066-NS-EM4 ^{Note}	Emulation board to emulate the μ PD780065 Subseries
	IE-78K0-NS-P01	I/O board necessary when emulating the μ PD780065 Subseries
	NP-80GC	Emulation probe for an 80-pin plastic QFP (GC-8BT type)
	EV-9200GC-80	Conversion socket to connect the board of the target system for an 80-pin plastic QFP (GC-8BT
		type) and NP-80GC
	ID78K0-NS	Integrated debugger for the IE-78K0-NS
	SM78K0	System simulator common to the 78K/0 Series
*	DF780066	Device file for the μ PD780065 Subseries

Note Under development

• When using IE-78001-R-A in-circuit emulator

	IE-78001-R-A	In-circuit emulator common to the 78K/0 Series	
*	IE-70000-98-IF-C	Adapter necessary when a PC-9800 series computer (except notebook-type PC) is used as the host machine (C bus supported)	
*	IE-70000-PC-IF-C	Adapter necessary when an IBM PC/AT compatible is used as the host machine (ISA bus supported)	
*	IE-70000-PCI-IF-A	Adapter necessary when a PC incorporating a PCI bus is used as the host machine	
	IE-78000-R-SV3	Interface adapter and cable necessary when an EWS is used as the host machine	
	IE-780066-NS-EM4 ^{Note}	Emulation board to emulate the μ PD780065 Subseries	
	IE-78K0-NS-P01	I/O board necessary when emulating the μ PD780065 Subseries	
*	IE-78K0-R-EX1	Emulation probe conversion board necessary when the IE-780066-NS-EM4 + IE-78K0-NS-P01 is used in the IE-78001-R-A	
	EP-78230GC-R	Emulation probe for an 80-pin plastic QFP (GC-8BT type)	
	EV-9200GC-80	Conversion socket to connect the board of the target system for an 80-pin plastic QFP (GC-8BT type) and EP-78230GC-R	
	ID78K0	Integrated debugger for the IE-78001-R-A	
	SM78K0	System simulator common to the 78K/0 Series	
*	DF780066	Device file for the μ PD780065 Subseries	

Note Under development

(4) Real-time OS

RX78K0	Real-time OS for the 78K/0 Series
MX78K0	OS for the 78K/0 Series

★ (5) Cautions on using development tools

- The ID78K0-NS, ID78K0, and SM78K0 are used in combination with the DF780066.
- The CC78K0 and RX78K0 are used in combination with the RA78K0 and DF780066.
- FL-PR3, FA-80GC, and NP-80GC are products of Naito Densei Machida Mfg. Co., Ltd. (TEL: +81-44-822-3813).
- Refer to the **Single-chip Microcontroller Development Tool Selection Guide (U11069E)** for information on third party development tools.
- · Host machines and OSs compatible with the software are as follows:

Host Machine [OS]	PC	EWS
Software	PC-9800 series [Japanese Windows™] IBM PC/AT compatibles [Japanese/English Windows]	HP9000 series 700 [™] [HP-UX [™]] SPARCstation [™] [SunOS [™] , Solaris [™]] NEWS [™] (RISC) [NEWS-OS [™]]
RA78K0	√Note	\checkmark
CC78K0	√Note	\checkmark
ID78K0-NS	\checkmark	_
ID78K0	\checkmark	\checkmark
SM78K0	\checkmark	_
RX78K0	\sqrt{Note}	\checkmark
MX78K0	\sqrt{Note}	\checkmark

Note DOS based software

* *

APPENDIX B. RELATED DOCUMENTS

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Documents Related to Devices

Document Name	Document No.
μ PD780065 Subseries User's Manual	Under preparation
µPD780065 Data Sheet	This document
µPD78F0066 Data Sheet	Under preparation
78K/0 Series User's Manual Instruction	U12326E

Documents Related to Development Tools (User's Manuals)

Document Name		Document No.
RA78K0 Assembler Package	Operation	U11802E
	Language	U11801E
	Structured Assembly Language	U11789E
CC78K/0 C Compiler	Operation	U11517E
	Language	U11518E
IE-78K0-NS In-Circuit Emulator		U13731E
IE-78001-R-A In-Circuit Emulator		To be prepared
IE-780066-NS-EM4 Emulation Board	IE-780066-NS-EM4 Emulation Board	
EP-78230 Emulation Probe		EEU-1515
SM78K0S, SM78K0 System Simulator Ver. 2.10 or Later Windows Based	Operation	U14611E
SM78K Series System Simulator Ver. 2.10 or Later	External Part User Open Interface Specifications	To be prepared
ID78K0-NS Integrated Debugger Ver. 2.00 or Later Windows Based	Operation	U14379E
ID78K0-NS, ID78K0S-NS Integrated Ver. 2.20 or Later Windows Based	Operation	U14910E
ID78K0 Integrated Debugger EWS Based	Reference	_
ID78K0 Integrated Debugger Windows Based	Reference	U11539E
	Guide	U11649E

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

Documents Related to Embedded Software (User's Manuals)

Document Name		Document No.
78K/0 Series Real-time OS	Basics	U11537E
	Installation	U11536E
OS for 78K/0 Series MX78K0	Basics	U12257E

Other Related Documents

	Document Name	Document No.
*	SEMICONDUCTOR SELECTION GUIDE - Products & Packages - (CD-ROM)	X13769E
	Semiconductor Device Mount Manual	Note
	Quality Grades on NEC Semiconductor Devices	
	NEC Semiconductor Device Reliability/Quality Control System	C10983E
	Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892E

Note See the "Semiconductor Device Mount Manual" website (http://www.necel.com/pkg/en/mount/index.html).

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

NOTES FOR CMOS DEVICES -

1 VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (MAX) and V_{IH} (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (MAX) and V_{IH} (MIN).

(2) HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.

③ PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.

④ STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.

5 POWER ON/OFF SEQUENCE

In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current.

The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.

(6) INPUT OF SIGNAL DURING POWER OFF STATE

Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC Electronics product in your application, please contact the NEC Electronics office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- Ordering information
- Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

[GLOBAL SUPPORT] http://www.necel.com/en/support/support.html

NEC Electronics America, Inc. (U.S.) NEC Electronics (Europe) GmbH NEC Electronics Hong Kong Ltd. Santa Clara, California Duesseldorf, Germany Hong Kong Tel: 2886-9318 Tel: 408-588-6000 Tel: 0211-65030 800-366-9782 Sucursal en España **NEC Electronics Hong Kong Ltd.** Madrid, Spain Seoul Branch Tel: 091-504 27 87 Seoul, Korea Tel: 02-558-3737 Succursale Française Vélizy-Villacoublay, France NEC Electronics Shanghai Ltd. Tel: 01-30-675800 Shanghai, P.R. China Tel: 021-5888-5400 Filiale Italiana Milano, Italy **NEC Electronics Taiwan Ltd.** Tel: 02-66 75 41 Taipei, Taiwan Tel: 02-2719-2377 • Branch The Netherlands Eindhoven, The Netherlands **NEC Electronics Singapore Pte. Ltd.** Tel: 040-2654010 Novena Square, Singapore Tel: 6253-8311 Tyskland Filial Taeby, Sweden Tel: 08-63 87 200 United Kingdom Branch

Milton Keynes, UK Tel: 01908-691-133

FIP and IEBus are trademarks of NEC Electronics Corporation.

Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/ or other countries.

PC/AT is a trademark of International Business Machines Corporation.

HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

SunOS and Solaris are trademarks of Sun Microsystems, Inc.

NEWS and NEWS-OS are trademarks of Sony Corporation.

These commodities, technology or software, must be exported in accordance with the export administration regulations of the exporting country. Diversion contrary to the law of that country is prohibited.

- The information in this document is current as of August, 2005. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
- "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

NEC

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).