カタログ等資料中の旧社名の扱いについて

2010年4月1日を以ってNECエレクトロニクス株式会社及び株式会社ルネサステクノロジが合併し、両社の全ての事業が当社に承継されております。従いまして、本資料中には旧社名での表記が残っておりますが、当社の資料として有効ですので、ご理解の程宜しくお願い申し上げます。

ルネサスエレクトロニクス ホームページ (http://www.renesas.com)

2010年4月1日 ルネサスエレクトロニクス株式会社

【発行】ルネサスエレクトロニクス株式会社 (http://www.renesas.com)

【問い合わせ先】http://japan.renesas.com/inquiry

ご注意書き

- 1. 本資料に記載されている内容は本資料発行時点のものであり、予告なく変更することがあります。当社製品のご購入およびご使用にあたりましては、事前に当社営業窓口で最新の情報をご確認いただきますとともに、当社ホームページなどを通じて公開される情報に常にご注意ください。
- 2. 本資料に記載された当社製品および技術情報の使用に関連し発生した第三者の特許権、著作権その他の知的財産権の侵害等に関し、当社は、一切その責任を負いません。当社は、本資料に基づき当社または第三者の特許権、著作権その他の知的財産権を何ら許諾するものではありません。
- 3. 当社製品を改造、改変、複製等しないでください。
- 4. 本資料に記載された回路、ソフトウェアおよびこれらに関連する情報は、半導体製品の動作例、応用例を説明するものです。お客様の機器の設計において、回路、ソフトウェアおよびこれらに関連する情報を使用する場合には、お客様の責任において行ってください。これらの使用に起因しお客様または第三者に生じた損害に関し、当社は、一切その責任を負いません。
- 5. 輸出に際しては、「外国為替及び外国貿易法」その他輸出関連法令を遵守し、かかる法令の定めるところにより必要な手続を行ってください。本資料に記載されている当社製品および技術を大量破壊兵器の開発等の目的、軍事利用の目的その他軍事用途の目的で使用しないでください。また、当社製品および技術を国内外の法令および規則により製造・使用・販売を禁止されている機器に使用することができません。
- 6. 本資料に記載されている情報は、正確を期すため慎重に作成したものですが、誤りがないことを保証するものではありません。万一、本資料に記載されている情報の誤りに起因する損害がお客様に生じた場合においても、当社は、一切その責任を負いません。
- 7. 当社は、当社製品の品質水準を「標準水準」、「高品質水準」および「特定水準」に分類しております。また、各品質水準は、以下に示す用途に製品が使われることを意図しておりますので、当社製品の品質水準をご確認ください。お客様は、当社の文書による事前の承諾を得ることなく、「特定水準」に分類された用途に当社製品を使用することができません。また、お客様は、当社の文書による事前の承諾を得ることなく、意図されていない用途に当社製品を使用することができません。当社の文書による事前の承諾を得ることなく、「特定水準」に分類された用途または意図されていない用途に当社製品を使用したことによりお客様または第三者に生じた損害等に関し、当社は、一切その責任を負いません。なお、当社製品のデータ・シート、データ・ブック等の資料で特に品質水準の表示がない場合は、標準水準製品であることを表します。

標準水準: コンピュータ、OA 機器、通信機器、計測機器、AV 機器、家電、工作機械、パーソナル機器、産業用ロボット

高品質水準: 輸送機器(自動車、電車、船舶等)、交通用信号機器、防災・防犯装置、各種安全装置、生命 維持を目的として設計されていない医療機器(厚生労働省定義の管理医療機器に相当)

特定水準: 航空機器、航空宇宙機器、海底中継機器、原子力制御システム、生命維持のための医療機器(生命維持装置、人体に埋め込み使用するもの、治療行為(患部切り出し等)を行うもの、その他直接人命に影響を与えるもの)(厚生労働省定義の高度管理医療機器に相当)またはシステム

- 8. 本資料に記載された当社製品のご使用につき、特に、最大定格、動作電源電圧範囲、放熱特性、実装条件その他諸条件につきましては、当社保証範囲内でご使用ください。当社保証範囲を超えて当社製品をご使用された場合の故障および事故につきましては、当社は、一切その責任を負いません。
- 9. 当社は、当社製品の品質および信頼性の向上に努めておりますが、半導体製品はある確率で故障が発生したり、使用条件によっては誤動作したりする場合があります。また、当社製品は耐放射線設計については行っておりません。当社製品の故障または誤動作が生じた場合も、人身事故、火災事故、社会的損害などを生じさせないようお客様の責任において冗長設計、延焼対策設計、誤動作防止設計等の安全設計およびエージング処理等、機器またはシステムとしての出荷保証をお願いいたします。特に、マイコンソフトウェアは、単独での検証は困難なため、お客様が製造された最終の機器・システムとしての安全検証をお願いいたします。
- 10. 当社製品の環境適合性等、詳細につきましては製品個別に必ず当社営業窓口までお問合せください。ご使用に際しては、特定の物質の含有・使用を規制する RoHS 指令等、適用される環境関連法令を十分調査のうえ、かかる法令に適合するようご使用ください。お客様がかかる法令を遵守しないことにより生じた損害に関して、当社は、一切その責任を負いません。
- 11. 本資料の全部または一部を当社の文書による事前の承諾を得ることなく転載または複製することを固くお断りいたします。
- 12. 本資料に関する詳細についてのお問い合わせその他お気付きの点等がございましたら当社営業窓口までご 照会ください。
- 注 1. 本資料において使用されている「当社」とは、ルネサスエレクトロニクス株式会社およびルネサスエレクトロニクス株式会社がその総株主の議決権の過半数を直接または間接に保有する会社をいいます。
- 注 2. 本資料において使用されている「当社製品」とは、注 1 において定義された当社の開発、製造製品をいいます。

MOS**集積回路** MOS Integrated Circuit

μPD17934A

ディジタル・チューニング・システム用専用ハードウエア内蔵 4 ピット・シングルチップ・マイクロコントローラ

- ★ µPD17934Aは,ディジタル・チューニング・システム用ハードウエアを内蔵した4ビット・シングルチップCMOSマイクロコントローラです。
- μ PD17934Aは、電源電圧0.9 Vの超低電圧で230 MHzまで動作するプリスケーラ、PLL周波数シンセサイザ、中間周波数 (IF) カウンタおよびLCDコントローラ / ドライバを 1 チップに納めたディジタル・チューニング・システム (DTS) 用低電圧 4 ビットCMOSマイクロコントローラです。

したがって,1チップで高性能なポータブル・セット用ディジタル・チューニング・システムを構成することができます。

特徵

★ プログラム・メモリ(ROM)

16 Kバイト (8192×16ビット)

汎用データ・メモリ (RAM)

448×4ビット

命令実行時間

53.3 μ sec (75 kHz水晶振動子使用)

PLL周波数シンセサイザ内蔵

デュアル・モジュラス・プリスケーラ(230 MHz MAX.),

プログラマブル・ディバイダ,位相比較器,チャー

ジ・ポンプ

周辺ハードウエア

汎用入出力ポート,LCDコントローラ/ドライバ,

シリアル・インタフェース, A/Dコンバータ,

BEEP出力, 周波数カウンタ

割り込み

外部:1本

内部:3本

RESET端子によるリセット

低消費電力

電源電圧: VDD = 0.9~1.8 V

★ オーダ情報

オーダ名称

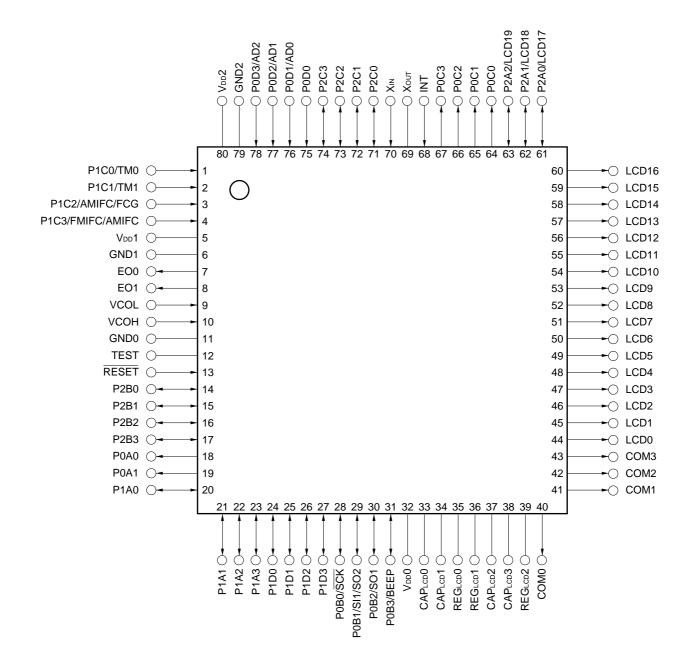
パッケージ

μ PD17934AGK- × × × -BE9

80ピン・プラスチックTQFP (ファインピッチ) (12x12)

備考 ×××はROMコード番号です。

本資料の内容は、予告なく変更することがありますので、最新のものであることをご確認の上ご使用ください。


機能概要

項	目	機能					
プログラム・メ	ベモリ(ROM)	16 Kバイト (8192×16ビット)					
汎用データ・メ	Kモリ(RAM)	448×4ビット					
命令実行時間		53.3 µ s(75 kHz水晶振動子使用)					
汎用ポート		・入出力ポート:20本					
		37本 ・入力ポート : 11本(内 3 本はLCDセグメント端子と兼用)					
		・出力ポート : 6本					
スタック・レベ	ベル	・アドレス・スタック : 15レベル(スタック操作可)					
		・割り込みスタック : 4 レベル (スタック操作可)					
ベクタ割り込み	<i></i>	・外部:1本(INT)					
(マスカブル害	刊り込み)	・内部:3本(ベーシック・タイマ0,8ビット・タイマ,シリアル・インタフェース)					
タイマ		3チャネル					
		・ベーシック・タイマ 0 (125 ms)					
		・ベーシック・タイマ 1 (8 ms, 32 ms)					
		・8 ビット・タイマ(イベント・カウンタ付き)					
A/Dコンバータ		8 ビット分解能×3チャネル					
LCDコントロ-	-ラ / ドライバ	・20セグメント , 4 コモン					
		・1/4デューティ,1/2バイアス,フレーム周波数 62.5 Hz,駆動電圧 VLCD1 = 3.0 V TYP.					
		・兼用セグメント端子:3本(1本ごとに汎用入力ポートとして使用可能)					
シリアル・イン	/タフェース	1 チャネル (3 線式 / 2 線式モード選択可能)					
PLL周波数	分周方式	・直線分周方式 (VCOL端子)					
シンセサイザ		2 種類					
	基準周波数	6 種類選択可能(1, 3, 5, 6.25, 12.5, 25 kHz)					
	チャージ・ポンプ	エラー・アウト出力: 2 本 (EO0, EO1端子)					
	位相比較器	プログラムによりアンロック検出可能					
中間周波数(IF	・) カウンタ	周波数測定 J ・AMIFC端子 400 kHz~2 MHz					
		・FMIFC端子 10~11 MHz					
		外部ゲート幅測定(FCG端子)					
BEEP出力		1 本(1.5 kHz, 3 kHz)					
リセット		・RESET端子によるリセット					
		・ウォッチドッグ・タイマ・リセット					
		電源投入時1回のみ設定可能:4096命令,8192命令,未使用を選択					
		・スタック・ポインタ・オーバフロー / アンダフロー・リセット					
		電源投入時1回のみ設定可能:割り込みスタック,アドレス・スタックを選択					
電源電圧		V _{DD} = 0.9 ~ 1.8 V					
パッケージ		80ピン・プラスチックTQFP(ファインピッチ)(12x12)					

端子接続図 (Top View)

★ 80ピン・プラスチックTQFP (ファインピッチ) (12x12)

 μ PD17934AGK- \times \times -BE9

端子名称

P1A0-P1A3

: ポート1A

 AD0-AD2
 : A/Dコンバータ入力
 P1C0-P1C3
 : ポート1C

 AMIFC
 : AM中間周波数カウンタ入力
 P1D0-P1D3
 : ポート1D

BEEP : BEEP出力 P2A0-P2A2 : ポート2A

CAPLCD0-CAPLCD3: LCD駆動電圧用コンデンサ接続P2B0-P2B3: ポート2BCOM0-COM3: LCDコモン出力P2C0-P2C3: ポート2C

EO0, EO1 : エラー・アウト出力 REGLCD0-REGLCD2: LCD駆動用レギュレータ出力

FCG : 外部ゲート・カウンタ入力 RESET : リセット入力

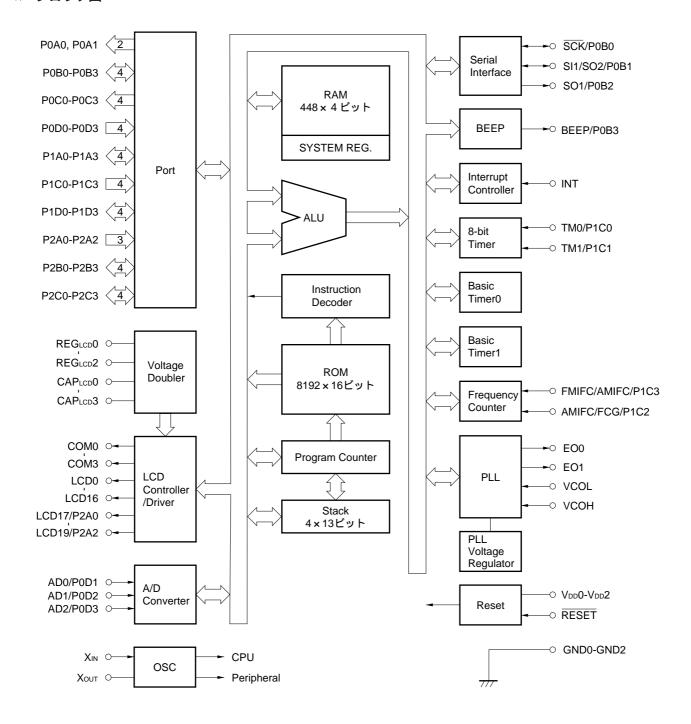
FMIFC : FM中間周波数カウンタ入力 SCK : 3 線式シリアル・クロック入出力

 GND0-GND2
 : グランド
 SI1
 : 3線式シリアル・データ入力

 INT
 : 外部割り込み入力
 SO1, SO2
 : 3 線式シリアル・データ出力

LCD0-LCD19 : LCDセグメント出力 TEST : テスト用入力

 P0A0, P0A1
 : ポート0A
 TM0, TM1
 : タイマ・イベント入力


 P0B0-P0B3
 : ポート0B
 VCOH, VCOL
 : PLL用局部発振入力

POC0-POC3 : ポートOC V_{DD}0-V_{DD}2 : 電源

P0D0-P0D3 : ポート0D XIN, Xout : 水晶振動子接続

★ プロック図

目 次

1.端	子機	能 11
1	. 1	端子機能一覧 11
1	. 2	端子の等価回路 14
1	. 3	未使用端子の処理 18
1	. 4	TEST端子の使用上の注意 19
2.ブ	゚゚ログ	プム・メモリ (ROM) 20
2	. 1	プログラム・メモリ概要 20
2	. 2	プログラム・メモリ 21
2	. 3	プログラム・カウンタ 22
2	. 4	プログラムの流れ 22
2	. 5	プログラム・メモリ使用時の注意 25
3.ア	'ドレ	·ス・スタック (ASK) 26
3	. 1	アドレス・スタック概要 26
3	. 2	アドレス・スタック・レジスタ(ASR) 26
3	. 3	スタック・ポインタ (SP) 28
3	. 4	アドレス・スタックの動作 29
3	. 5	アドレス・スタック使用時の注意 30
4.デ	ータ	・メモリ (RAM) 31
4	. 1	データ・メモリ概要 31
4	. 2	データ・メモリの構成と機能 33
4	. 3	データ・メモリのアドレシング 35
4	. 4	データ・メモリ使用時の注意 36
5.シ	゚ステ	ム・レジスタ (SYSREG) 37
5	. 1	システム・レジスタ概要 37
5	. 2	システム・レジスター覧 38
5	. 3	アドレス・レジスタ(AR) 39
5	. 4	ウインドウ・レジスタ(WR) 41
5	. 5	バンク・レジスタ (BANK) 42
5	. 6	インデクス・レジスタ(IX)とデータ・メモリ・ロウ・アドレス・ポインタ(MP:メモリ・ポインタ)
		43
5	. 7	ジェネラル・レジスタ・ポインタ(RP) 45
5	. 8	プログラム・ステータス・ワード(PSWORD) 47
6.ジ	゙゙゙゙゙゙ェネ	ラル・レジスタ (GR) 49
		ジェネラル・レジスタ概要 49
		ジェネラル・レジスタ 49
6	3	各命今におけるジェネラル・レジスタのアドレス生成 50

50

6.4	ジェネラル・レジスタ使用時の注意
7 . ALU (Arithmetic Logic Unit) プロック 51
7.1	ALUブロック概要 51
7.2	各ブロックの構成と機能 52
7.3	ALU処理命令一覧 52
7.4	ALU使用時の注意 56
8.レジス	タ・ファイル (RF) とコントロール・レシ
8.1	レジスタ・ファイル概要 57
0 2	しぶフタ・ファイルの構成と機能 50

·ジスタ ... 57

- 8.2 レジスタ・ファイルの構成と機能 ... 58
- 8.3 コントロール・レジスタと入力/出力選択レジスタ ... 59
- 8.4 LCDセグメント・レジスタ ... 69
- 8.5 コントロール・レジスタ使用時の注意 ... 69

9. データ・バッファ (DBF) ... 70

- 9.1 データ・バッファ概要 ... 70
- 9.2 データ・バッファ ... 71
- 9.3 周辺ハードウエアとデータ・バッファー覧 ... 72
- 9.4 データ・バッファ使用時の注意 ... 74

10. データ・バッファ・スタック ... 75

- 10.1 データ・バッファ・スタック概要 ... 75
- 10.2 データ・バッファ・スタック・レジスタ ... 75
- 10.3 データ・バッファ・スタック・ポインタ ... 77
- 10.4 データ・バッファ・スタックの動作 ... 78
- 10.5 データ・バッファ・スタックの使用方法 ... 79
- 10.6 データ・バッファ・スタック使用時の注意 ... 79

11.汎用ポート ... 80

- 11.1 汎用ポート概要 ... 80
- 11.2 汎用入出力ポート (P0B, P1A, P1D, P2B, P2C) ... 82
- 11.3 汎用入力ポート (POD, P1C, P2A) ... 91
- 11.4 汎用出力ポート(POA, POC) ... 94

12.割り込み ... 96

- 12.1 割り込みブロック概要 ... 96
- 12.2 割り込み制御ブロック ... 98
- 12.3 割り込みスタック・レジスタ ... 104
- 12.4 スタック・ポインタ,アドレス・スタック・レジスタとプログラム・カウンタ ... 108
- 12.5 割り込みイネーブル・フリップフロップ (INTE) ... 108
- 12.6 割り込み受け付け動作 ... 109
- 12.7 割り込み受け付け後の動作 ... 114

	12.10	内部割り込み 117
13 .	タイ	マ 118
		タイマ概要 118
		ベーシック・タイマ 0 119
		ベーシック・タイマ 1 123
		タイマ 0 129
	. /5 =	Aville de 100
14		ンパータ 136
		A/Dコンバータ概要 136
		入力切り替えブロック 137
		比較電圧生成およびコンペア・ブロック 139
		比較タイミング・チャート 141
	14. 5	A/Dコンバータの使用方法 142
	14. 6	A/Dコンバータ使用時の注意 146
	14. 7	リセット時の状態 146
15 .	. シリア	プル・インタフェース 147
	15. 1	シリアル・インタフェース概要 147
	15. 2	クロック入出力制御ブロックおよびデータ入出力制御ブロック 148
	15.3	クロック制御ブロック 151
	15.4	クロック・カウンタ 151
	15. 5	プリセッタブル・シフト・レジスタ 152
	15. 6	ウエイト制御ブロック 152
	15. 7	シリアル・インタフェースの動作 153
	15.8	データ設定時およびデータ読み込み時の注意 157
	15. 9	動作モードと各部の動作概要 158
	15.10	リセット時の状態 160
16	PII周	波数シンセサイザ 161
		ルー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
		入力切り替えブロックおよびプログラマブル・ディバイダ 162
		基準周波数発生器 166
		<u> </u>
		PLLディスエーブル状態 172
		PLL周波数シンセサイザの使用方法 173
	16. /	リセット時の状態 177
17	. 中間周	波数(IF)カウンタ 178
	17. 1	中間周波数 (IF) カウンタ概要 178
	17. 2	入力切り替えブロックおよびゲート時間制御ブロック 179
8		データ・シート U13778JJ2V0DS

12.8 割り込み処理ルーチンからの復帰処理 ... 114

12.9 外部 (INT端子)割り込み ... 115

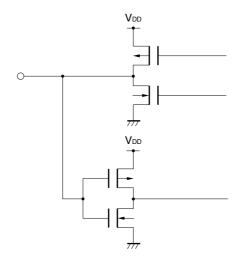
	17.3	スタート / ストップ制御ブロックおよびIFカウンタ 182
	17.4	IFカウンタの使用方法 189
	17.5	外部ゲート・カウンタの使用方法 191
	17. 6	リセット時の状態 192
18.	BEEP	193
	18. 1	BEEP概要 193
	18. 2	BEEPの出力波形 195
	18.3	リセット時の状態 196
19.	LCD 🗖	ント ローラ/ドライバ 197
	19. 1	LCDコントローラ / ドライバ概要 197
	19. 2	LCD駆動電圧生成プロック 198
	19.3	LCDセグメント・レジスタ 199
	19.4	セグメント信号 / 汎用入力ポート切り替えブロック 201
	19.5	コモン信号出力,セグメント信号出力タイミング制御ブロック 203
	19.6	コモン信号およびセグメント信号出力波形 204
	19.7	LCDコントローラ / ドライバの使用方法 206
	19.8	リセット時の状態 208
20.	スタン	パイ 209
	20. 1	スタンバイ機能概要 209
	20. 2	ホールト機能 210
	20.3	クロック・ストップ機能 216
	20.4	ホールトおよびクロック・ストップ時のデバイス動作 218
	20.5	ホールト状態およびクロック・ストップ状態中の各端子の処理上の注意 218
21.	リセッ	h 221
	21.1	リセットの概要 221
	21. 2	RESET端子によるリセット 222
	21.3	WDT & SPリセット 223
22.	命令セ	ット 229
	22. 1	命令セット概要 229
	22. 2	凡 例 230
	22. 3	命令一覧表 231
	22.4	アセンブラ(RA17K)組み込みマクロ命令 233
23.	予約シ	ンポル 234
	23. 1	データ・バッファ (DBF) 234
	23. 2	システム・レジスタ (SYSREG) 234
	23. 3	LCDセグメント・レジスタ 235
	23.4	ポート・レジスタ 236

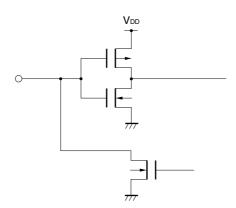
- 23.5 レジスタ・ファイル (コントロール・レジスタ) ... 237
- 23.6 周辺ハードウエア・レジスタ ... 239
- 23.7 その他 ... 239
- 24. 電気的特性 ... 240
- 25.外形図 ... 244
- 26. 半田付け推奨条件 ... 245
- 付録A.水晶振動子を接続するときの注意 ... 246
- 付録B. 開発ツール ... 247

1.端子機能

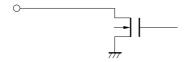
1.1 端子機能一覧

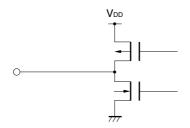
端子番号	記号		機能		出力形式			
1	P1C0/TM0	ポート1C , タイマ・イベント	入力,AM/FMのIFカウンタ(周	波数カウント用)入	-			
2	P1C1/TM1	カです。						
3	P1C2/AMIFC/	P1C0-P1C3						
	FCG	4 ビットの入力ポート						
4	P1C3/FMIFC/	TM0, TM1						
	AMIFC	タイマ・イベント入力						
		AMIFC						
		AM用のIFカウンタ入力端子						
		FMIFC						
		FM用のIFカウンタ入力端子						
		FCG						
		 IFカウンタのゲート・カウン	ント入力端子					
		リセッ	ット時	クロック・ストップ時				
		RESET端子によるリセット	WDT&SPリセット					
		入力 (P1C0-P1C3)	入力 (P1C0-P1C3)	入力 (P1C0-P1C3)				
80	V _{DD} 2	電源です。同電位を供給してください。						
5	V _{DD} 1	VDD2:A/Dコンバータのコン						
32	V _{DD} 0	Vpp1:PLLの電源です。						
		Vpp0:上記を除くすべての						
79	GND2	グランドです。			-			
6	GND1							
11	GND0							
7	EO0	PLL周波数シンセサイザのチャ	ァージ・ポンプからの出力です。	,	CMOS			
8	EO1	局部発振の分周周波数と基準原	司波数の位相差比較結果を出力	します。	3ステート			
		リセッ	ソト時	クロック・ストップ時				
		RESET端子によるリセット	WDT&SPリセット					
		ハイ・インピーダンス出力	ハイ・インピーダンス出力	ハイ・インピーダンス出力				
9	VCOL	PLLの局部発振(VCO)周波数	数の入力です。		-			
10	VCOH	VCOL						
		・プログラムでHF, MFモー	ド選択時,アクティブ。それ以	外のときはプルダウ				
		ン。						
		VCOH						
		・プログラムでVHFL, VHFI	Hモード選択時,アクティブ。	それ以外のときはプ				
		ルダウン。						
	これらの端子の入力は交流アンプとなっているため,入力信号の直流分はコンラ							
		ンサでカットしてください。						
12	TEST	テスト用入力端子です。必ず(GNDに直接接続してください。		-			
13	RESET	リセット入力です。			-			

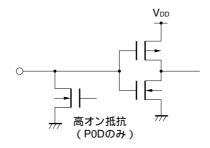

端子番号	記号		出力形式					
14	P2B0	4 ビットの入出力ポートです。		CMOS				
		1 ビット単位で入力 / 出力設況	プッシュプル					
17	P2B3	リセッ						
		RESET端子によるリセット	WDT&SPリセット					
		入力	入力	保持				
18	P0A0	2 ビットの出力ポートです。			N-chオープン・			
19	P0A1	リセッ	ット時	クロック・ストップ時	ドレーン			
		RESET端子によるリセット	WDT&SPリセット					
		ロウ・レベルを出力	ロウ・レベルを出力	保持				
20	P1A0	4 ビットの入出力ポートです。			N-chオープン・			
		1 ビット単位で入力 / 出力設	定が可能です。		ドレーン			
23	P1A3	リセッ	ソト時	クロック・ストップ時				
		RESET端子によるリセット	WDT&SPリセット					
		入力	入力	保持				
24	P1D0	4 ビットの入出力ポートです。			N-chオープン・			
		1 ビット単位で入力 / 出力設況	定が可能です。		ドレーン			
27	P1D3	リセッ	クロック・ストップ時					
		RESET端子によるリセット	WDT&SPリセット					
		入力	保持					
28	P0B0/SCK	P0Bおよびシリアル・インタフ	POBおよびシリアル・インタフェースの入出力とBEEP出力です。					
	P0B1/SI1/SO2	P0B3-P0B0			プッシュプル			
31	P0B2/SO1	・4 ビットの入出力ポート						
	P0B3/BEEP	・ 1 ビット単位で入力 / 出力の	の設定可能					
		BEEP						
		・BEEP出力						
		SO1, SO2, SI1						
		シリアル・インタフェース 1 0	D 3 線式または 2 線式シリアルI	/O選択時の , シリア				
		ル・データ出力 , シリアル・:	データ入力					
		SCK						
		・シリアル・クロック入出力						
		リセッ	ット時	クロック・ストップ時				
		RESET端子によるリセット	WDT&SPリセット					
		入力 (P0B3-P0B0)	入力 (P0B3-P0B0)	保持				
33	CAPLCD0	LCD駆動用電源を作るための	, ダブラ回路用のコンデンサを	接続する端子です。	-			
34	CAPLCD1	CAPLCD0-CAPLCD1間, CAPLCD						
37	CAPLCD2	続してください。						
38	CAPLCD3							
35	REGLCD0	LCD駆動用電源のレギュレー	タ出力端子です。		-			
36	REGLCD1	0.1 μ FのコンデンサでGNDに	接続してください。					
39	REGLCD2							

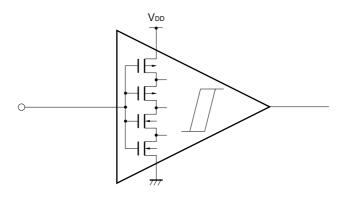

端子番号	記号		出力形式					
40	СОМО	LCDコントローラ / ドライバの	カコモン信号を出力します。 カコモン信号を出力します。		CMOS			
		リセッ	ノト時	クロック・ストップ時	3ステート			
43	СОМЗ	RESET端子によるリセット	WDT&SPリセット					
		ロウ・レベルを出力	ロウ・レベルを出力	ロウ・レベルを出力				
44	LCD0	LCDコントローラ / ドライバの	Dセグメント信号出力です。		CMOS			
					プッシュプル			
60	LCD16							
61	P2A0/LCD17	ポート2A入力,およびLCDコ	ぱート2A入力,およびLCDコントローラ/ドライバのセグメント信号の出力で					
	P2A1/LCD18	す。						
63	P2A2/LCD19	P2A0-P2A2						
		3 ビットの入力ポート						
		LCD17-LCD19						
		LCDセグメント出力						
		リセッ	ット時	クロック・ストップ時				
		RESET端子によるリセット	WDT&SPリセット					
		入力 (P2A2-P2A0)	入力 (P2A2-P2A0)	保持				
64	P0C0	4 ビットの出力です。	4 ビットの出力です。					
		リセッ	プッシュプル					
67	P0C3	 RESET端子によるリセット	WDT&SPリセット					
		ロウ・レベルを出力						
68	INT	エッジ検出のベクタ割り込み。	入力です。		-			
		エッジは立ち上がり、立ち下が	がりの選択が可能です。					
69	Хоит	水晶振動子の接続用端子です。			-			
70	Xin							
71	P2C0	4 ビットの入出力ポートです。			CMOS			
		1 ビット単位で入力 / 出力設定	定が可能です。		プッシュプル			
74	P2C3	リセッ	ット時	クロック・ストップ時				
		 RESET端子によるリセット	WDT&SPリセット					
		入力	入力	保持				
75	P0D0	ポート0D入力,A/Dコンバーク	タ入力 , HALT, STOP解除信号.	 入力です。	-			
	P0D1/AD0	P0D0-P0D3						
78	P0D2/AD1	4 ビットの入力ポート						
	P0D3/AD2	AD0-AD2						
		A/Dコンバータのアナログ <i>入</i>	カ					
		HALT, STOP解除						
		ハイ・レベル入力によりモ・	ードを解除					
		リセッ	ソト時	クロック・ストップ時				
		RESET端子によるリセット	WDT&SPリセット					
		プルダウン抵抗付き入力	プルダウン抵抗付き入力	保持				
		(P0D3-P0D0)	(P0D3-P0D0)					

1.2 端子の等価回路

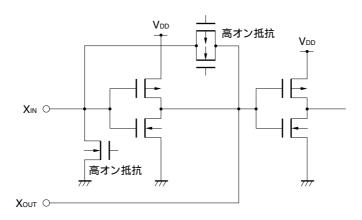

(1) P0B (P0B3/BEEP, P0B2/SO1, P0B1/SI1/SO2, P0B0/SCK)
P2B (P2B3, P2B2, P2B1, P2B0)
P2C (P2C3, P2C2, P2C1, P2C0)


(2) P1A (P1A3, P1A2, P1A1, P1A0) P1D (P1D3, P1D2, P1D1, P1D0)

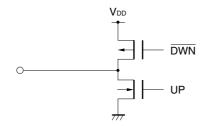

(3) POA (POA1, POA0) (出力)



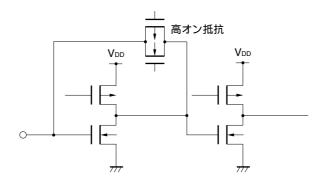
(4) POC (POC3, POC2, POC1, POC0) (出力)

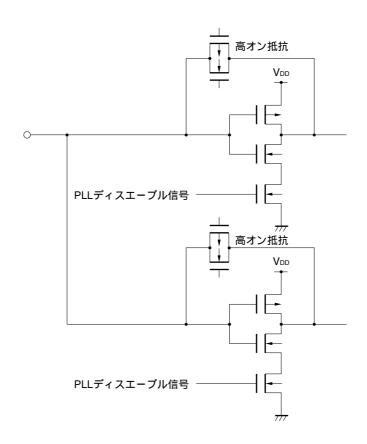


(5) P0D (P0D3/AD2, P0D2/AD1, P0D1/AD0, P0D0)
P1C (P1C3/FMIFC/AMIFC, P1C2/AMIFC/FCG, P1C1/TM1, P1C0/TM0) (入力)
P2A (P2A2/LCD19, P2A1/LCD18, P2A0/LCD17)



(7) XOUT(出力), XIN(入力)


(8) EO1, EO0 (出力)


(9) COM3-COM0(出力)

(10) VCOH(入力)

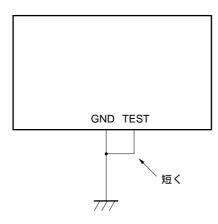
(11) VCOL(入力)

1.3 未使用端子の処理

未使用端子には,次に示すような処置を推奨します。

表1-1 未使用端子の処理

	端子名	入出力方式	未使用時の推奨処理
ポー	P0D3/AD2-P0D1/AD0, P0D0	入力	各端子ごとに抵抗を介して,GNDに接続してください。 ^{注1}
· ト 端 子	P1C3/FMIFC/AMIFC ^{注2}		
学	P1C2/AMIFC/FCG ^{注2}		
	P1C1/TM1		ポートに設定して,各端子ごとに抵抗を介して,VooまたはGNDに
	P1C0/TM0		接続してください。
	P0A1, P0A0	出力	ソフトウエアでロウ・レベル出力に設定して,オープンにしてくだ
	P0C3-P0C0		さい。
	P0B3/BEEP	入出力 ^{注 3}	ソフトウエアで汎用入力ポートに設定して,各端子ごとに抵抗を介
	P0B2/SO1		して,VppまたはGNDに接続してください。
	P0B1/SI1/SO2		
	P0B0/SCK		
	P1A3-P1A0		
	P1D3-P1D0		
	P2A2/LCD19		
	P2A1/LCD18		
	P2A0/LCD17		
	P2B3-P2B0		
	P2C3-P2C0		
ポー	EO1	出力	オープンにしてください。
1 .	EO0		
ト以外の端子			
端子	INT	入力	抵抗を介して,GNDに接続してください。 ^{注1}
	TEST	-	GNDに直接接続してください。
	VCOH	入力	ソフトウエアでPLLディスエーブルに設定して,オープンにしてく
	VCOL		ださい。


- 注1.外部でプルアップ(抵抗を介してVooに接続)またはプルダウン(抵抗を介してGNDに接続)する場合,高い抵抗値でプルアップまたはプルダウンすると,その端子はハイ・インピーダンスに近くなるためポートの消費(貫通)電流が増えますので注意してください。応用回路にもよりますが,プルアップまたはプルダウン抵抗値は,数十k 程度が一般的です。
 - 2. 汎用入力ポートではハイ・インピーダンス状態でも消費電流は増加しない回路になっています。 AMIFC, FMIFC, FCGには設定しないでください。設定すると消費電流が増えます。
 - 3.入出力ポートは, RESET端子によるリセット時, ウォッチドッグ・タイマまたはスタック・オーバフロー/アンダ・フロー・リセット時, クロック・ストップ時, 汎用入力ポートとなります。

1.4 TEST 端子の使用上の注意

TEST端子にVddを印加すると,テスト・モードに設定されてしまいます。このため,必ず配線長を極力短くしてGND端子に直接接続してください。

TEST端子とGND端子間の配線の引き回しが長い場合や,TEST端子に外来ノイズが加わった場合などで,TEST端子とGND端子間に電位差が生じたときには,お客様のプログラムが正常に動作しないことがあります。

2 . プログラム・メモリ (ROM)

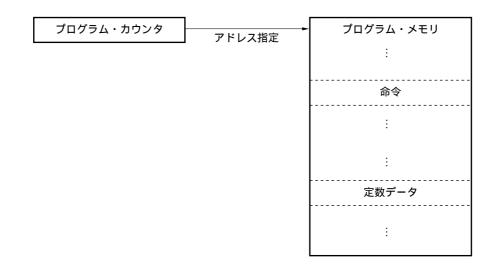

2.1 プログラム・メモリ概要

図2-1に,プログラム・メモリの概要を示します。

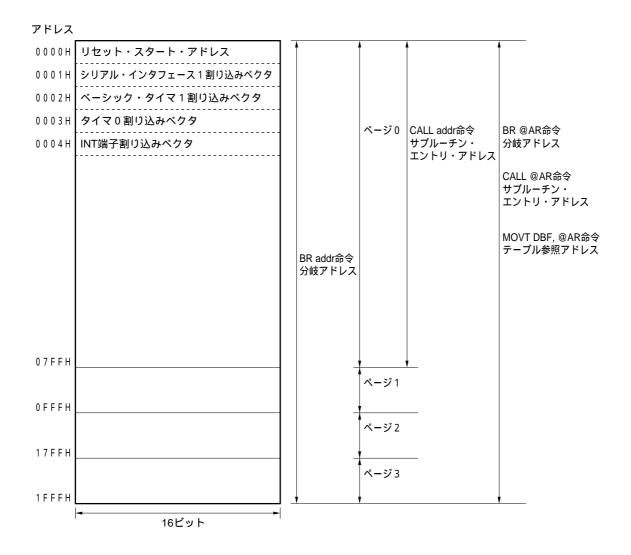
図2 - 1 に示すように,プログラム・メモリのアドレスは,プログラム・カウンタにより指定します。 プログラム・メモリは,大別して次の2つの機能があります。

- ・プログラムを格納しておく
- ・定数データを格納しておく

図2-1 プログラム・メモリの概略

★ 2.2 プログラム・メモリ

図2-2に,プログラム・メモリの構成を示します。


図2-2に示すように,プログラム・メモリは,次のように構成されています。

μPD17934A:8192×16ビット(0000H-1FFFH番地)

"命令"はすべて16ビット長の"1語命令"であるため、プログラム・メモリの1つの番地に1つの命令を格納することができます。

定数データは、テーブル参照命令を使用して、データ・バッファにプログラム・メモリの内容を読み込みます。

図2-2 プログラム・メモリの構成

2.3 プログラム・カウンタ

2.3.1 プログラム・カウンタの構成

図2-3にプログラム・カウンタの構成を示します。

図2 - 3に示すように,プログラム・カウンタは,13ビットのバイナリ・カウンタで構成されています。さらに,ビット11およびビット12は,ページを示します。

プログラム・カウンタは,プログラム・メモリのアドレスを指定します。

図2-3 プログラム・カウンタの構成

PC ₁₂	PC ₁₁	PC ₁₀	PC ₉	PC8	PC ₇	PC ₆	PC₅	PC ₄	РС₃	PC ₂	PC ₁	PC ₀
~-	-ジ											
4	PC											

2.4 プログラムの流れ

プログラムの流れは,プログラム・メモリのアドレスを指定するプログラム・カウンタによって制御されます。 次に,各命令実行時の動作を示します。

図2-4に,各命令実行時にプログラム・カウンタに設定される値を示します。

また,表2-1に,割り込み受け付け時のベクタ・アドレスを示します。

2.4.1 分岐命令

(1)直接分岐("BR addr")

直接分岐命令の分岐先アドレスは、プログラム・メモリの全アドレスです。

(2)間接分岐("BR@AR")

★ 間接分岐命令の分岐先アドレスは,プログラム・メモリの全アドレス(0000H-1FFFH番地)です。

"5.3 アドレス・レジスタ(AR)"も参照してください。

2.4.2 サブルーチン

(1)直接サブルーチン・コール ("CALL addr ")

直接サブルーチン・コール命令で呼び出せるサブルーチンの先頭アドレスは,ページ 0 内(0000H-07FFH番地)です。

(2)間接サブルーチン・コール (CALL @AR)

間接サブルーチン・コール命令で呼び出せるサブルーチンの先頭アドレスは,プログラム・メモリの全アドレ

- ★ ス (0000H-1FFFH番地)です。
 - "5.3 アドレス・レジスタ (AR)"も参照してください。

2.4.3 テーブル参照

- ★ テーブル参照命令("MOVT DBF, @AR")で参照できるアドレスは,プログラム・メモリの全アドレス(0000H-1FFFH番地)です。
 - " **5.3 アドレス・レジスタ (**AR **)** " および " **9.2.2 テーブル参照命令 (** " MOVT DBF, **@**AR " **)** " も参照してください。

図2-4 各命令におけるプログラム・カウンタの値

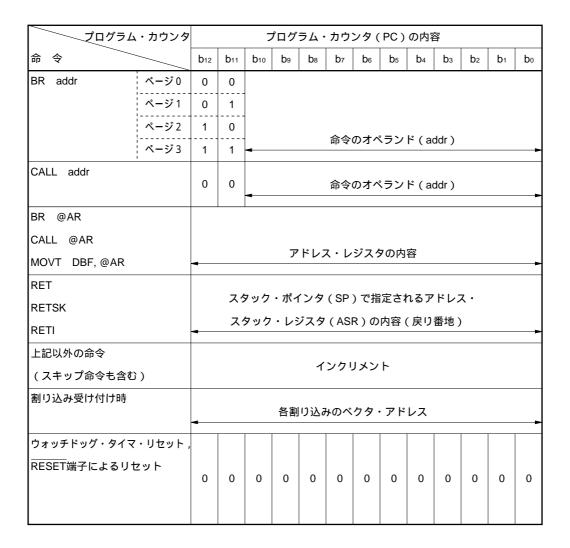


表2-1 割り込みベクタ・アドレス

順位	内部 / 外部	割り込み要因	ベクタ・アドレス
1	外部	INT端子	0004H
2	内部	タイマ 0	0003H
3	"	ベーシック・タイマ 1	0002H
4	"	シリアル・インタフェース 1	0001H

★ 2.5 プログラム・メモリ使用時の注意

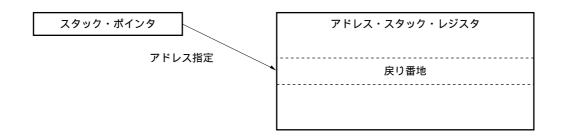
プログラム・メモリ・アドレスは0000H-1FFFH番地です。次のことに注意してください。

・1FFFH番地に命令を書き込むときは,必ず分岐命令を書き込んでください。

3. アドレス・スタック (ASK)

3.1 アドレス・スタック概要

図3-1に,アドレス・スタックの概要を示します。


アドレス・スタックは,スタック・ポインタおよびアドレス・スタック・レジスタで構成されています。

アドレス・スタック・レジスタのアドレスは,スタック・ポインタにより指定します。

アドレス・スタックは,サブルーチン・コール命令実行時,割り込み受け付け時などに戻り番地を退避します。

また、テーブル参照命令実行時も、アドレス・スタックを使用します。

図3-1 アドレス・スタック概要

3.2 アドレス・スタック・レジスタ (ASR)

図3-2に,アドレス・スタック・レジスタの構成を示します。

アドレス・スタック・レジスタは,13ビット×16個のレジスタASR0-ASR15で構成されています。ただし,ASR15にはレジスタがなく,実際には13ビット×15個のレジスタ(ASR0-ASR14)で構成されています。

アドレス・スタックは,サブルーチン・コール時,割り込み受け付け時およびテーブル参照命令実行時に,戻り番地を格納します。

図3-2 アドレス・スタック・レジスタの構成

3.3 スタック・ポインタ(SP)

3.3.1 スタック・ポインタの構成と機能

図3-3に,スタック・ポインタの構成と機能を示します。

スタック・ポインタは,4ビットのバイナリ・カウンタで構成されています。

スタック・ポインタは,アドレス・スタック・レジスタのアドレスを指定します。

スタック・ポインタは,レジスタ操作命令により,直接,値を読み込んだり書き込んだりすることもできます。

図3-3 スタック・ポインタの構成と機能

名 称	-	フラグ記号			アドレス	Read/Write
	рз	b ₂	b ₁	b ₀		
スタック・ポインタ	$\overline{}$				01H	R/W
(SP)	S	S	S	S		
	Р	Р	Р	Р		
	3	2	1	0		
	$\overline{}$					

		١,		
			-	アドレス・スタック・レジスタ(ASR)のアドレスを指定
0	0	0	0	アドレス 0 (ASR0)
0	0	0	1	アドレス 1 (ASR1)
0	0	1	0	アドレス 2 (ASR2)
0	0	1	1	アドレス3(ASR3)
0	1	0	0	アドレス4 (ASR4)
0	1	0	1	アドレス 5 (ASR5)
0	1	1	0	アドレス 6 (ASR6)
0	1	1	1	アドレス7(ASR7)
1	0	0	0	アドレス 8 (ASR8)
1	0	0	1	アドレス 9 (ASR9)
1	0	1	0	アドレス10 (ASR10)
1	0	1	1	アドレス11 (ASR11)
1	1	0	0	アドレス12 (ASR12)
1	1	0	1	アドレス13 (ASR13)
1	1	1	0	アドレス14 (ASR14)
1	1	1	1	設定禁止

リセッ	RESET端子によるリセット	1	1	1	1	
ト時	WDT & SPリセット	1	1	1	1	
クロック・ストップ時			保 持			

RESET端子によるリセット: RESET端子によるリセット時

WDT&SPリセット : ウォッチドッグ・タイマおよびスタック・ポインタ・リセット時

クロック・ストップ : クロック・ストップ命令実行時

3.4 アドレス・スタックの動作

3.4.1 サブルーチン・コール命令 (" CALL addr ", " CALL @AR ") およびリターン命令 (" RET ", " RETSK ")

サブルーチン・コール命令が実行されると,スタック・ポインタの値を - 1 し,スタック・ポインタで指定されるアドレス・スタック・レジスタに戻り番地を格納します。

リターン命令が実行されると,スタック・ポインタで指定されるアドレス・スタック・レジスタの内容(戻り番地) をプログラム・カウンタに復帰し,スタック・ポインタの値を+1します。

3.4.2 テーブル参照命令 (" MOVT DBF, @AR ")

テーブル参照命令が実行されると,スタック・ポインタの値を - 1 し,スタック・ポインタで指定されるアドレス・スタック・レジスタに戻り番地を格納します。

次に,アドレス・レジスタで指定されるプログラム・メモリの内容をデータ・バッファに読み出し,スタック・ポインタで指定されるアドレス・スタック・レジスタの内容(戻り番地)をプログラム・カウンタに復帰したあと,スタック・ポインタの値を+1します。

3.4.3 **割り込み受け付け時とリターン命令(** "RETI")

割り込みが受け付けられると,スタック・ポインタの値を - 1 し,スタック・ポインタで指定されるアドレス・スタック・レジスタに戻り番地を格納します。

リターン命令が実行されると,スタック・ポインタで指定されるアドレス・スタック・レジスタの内容(戻り番地) をプログラム・カウンタに復帰し,スタック・ポインタの値を+1します。

3.4.4 アドレス・スタック操作命令 ("PUSH AR", "POP AR")

"PUSH"命令が実行されると,スタック・ポインタの値を - 1 し,スタック・ポインタで指定されるアドレス・スタック・レジスタにアドレス・レジスタの内容を転送します。

"POP"命令が実行されると,スタック・ポインタで指定されるアドレス・スタック・レジスタの内容をアドレス・レジスタに転送し,スタック・ポインタの値を+1します。

NEC

3.5 アドレス・スタック使用時の注意

3.5.1 ネスティング・レベルとオーバフロー時の動作

スタック・ポインタがOFHのときのアドレス・スタック・レジスタ (ASR15)の値は"不定"です。

したがって,スタック操作を行わない状態で15レベルを越えるサブルーチン・コールや割り込みを使用すると, "不定"な番地へ復帰するため使用しないでください。

3.5.2 アドレス・スタックのオーパフローまたはアンダフロー検出によるリセット

アドレス・スタックのオーバフローまたはアンダフローの検出によりリセットを発生させることを,プログラムにより選択できます。リセットが発生するとプログラムは0番地からスタートし,コントロール・レジスタの一部を初期化します。

また, RESET端子によるリセット時は, このリセット機能が有効になっています。詳しくは "21 . **リセット**"を参照してください。

4 . データ・メモリ (RAM)

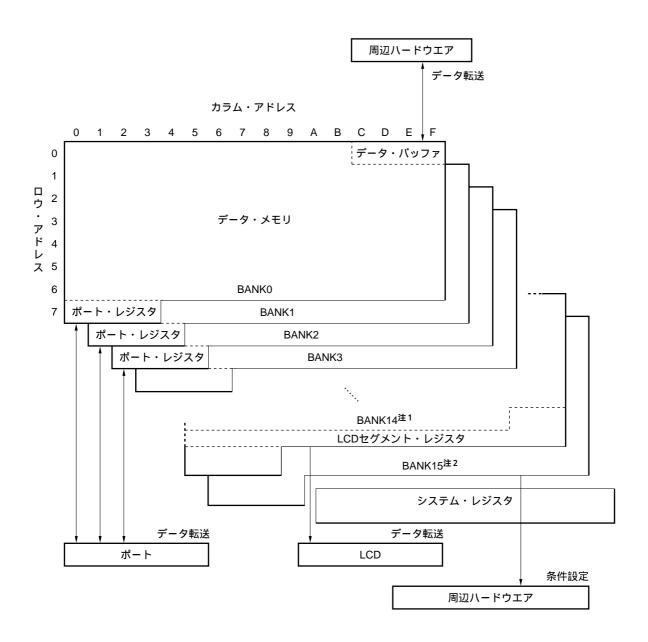

4.1 データ・メモリ概要

図4-1に,データ・メモリの概要を示します。

図4 - 1に示すように,データ・メモリ上には,システム・レジスタ,データ・バッファ,ポート・レジスタ,LCD セグメント・レジスタおよびコントロール・レジスタが配置されています。

データ・メモリは,データの格納,周辺ハードウエアとのデータ転送,ポートとのデータ転送およびCPUの制御を行います。

図4-1 データ・メモリの概要

- 注1.BANK14の5CH-6FHには,LCDセグメント・レジスタが割り当てられています。
 - **2** . BANK15の00H-6FHには,コントロール・レジスタが割り当てられています。なお,60H-6FHにはポート入力 / 出力選択レジスタが割り当てられています。
- 注意1.BANK15の31H番地はテスト・モード用領域になっていますので,絶対に何も書き込まないでください。
 - 2.BANK4からBANK14の5BHまではありません。

4.2 データ・メモリの構成と機能

図4-2に,データ・メモリの構成を示します。

図4 - 2 に示すように,データ・メモリは,複数のバンクに分割されており,各バンクは,ロウ・アドレス7H,カラム・アドレス0FHの計128ニブルで構成されています。

データ・メモリは,機能別に次の4.2.1-4.2.6に示すブロックに分けられます。

データ・メモリの内容は,データ・メモリ操作命令を実行することにより,4ビットの演算,比較,判断および転送が1命令で行えます。

表4-1に,データ・メモリ操作命令を示します。

4.2.1 システム・レジスタ (SYSREG)

システム・レジスタは,アドレス74H-7FH番地に割り当てられています。

システム・レジスタは,バンクに無関係に割り当てられているため,どのバンクであってもアドレス74H-7FH番地には,同一のシステム・レジスタが存在します。

詳細は, "5.システム・レジスタ(SYSREG)"を参照してください。

4.2.2 データ・バッファ (DBF)

データ・バッファは,BANKOのアドレスOCH-OFH番地に割り当てられています。

詳細は, "9.データ・バッファ(DBF)"を参照してください。

4.2.3 ポート・レジスタ

ポート・レジスタは, BANKO-BANK2のアドレス70H-73H番地に割り当てられています。

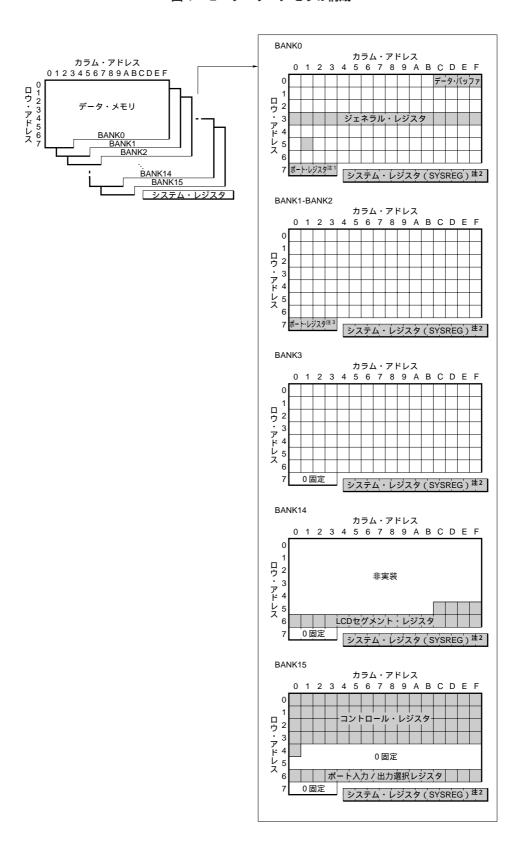
詳細は, "11. 汎用ポート"を参照してください。

4.2.4 コントロール・レジスタ,ポート入力/出力選択レジスタ

コントロール・レジスタはBANK15のアドレス00H-6FH番地に割り当てられています。そのうち,ポート入力/出力 選択レジスタはBANK15のアドレス60H-6FH番地に割り当てられています。また,コントロール・レジスタのBANK15 のアドレス00H-3FH番地は,レジスタ・ファイルのアドレス00H-3FH番地と重なっています。

詳細は , " 8 . レジスタ・ファイル (RF) とコントロール・レジスタ " を参照してください。

4.2.5 LCDセグメント・レジスタ


LCDセグメント・レジスタはデータ・メモリのBANK14のアドレス5CH-6FH番地の計20二ブルで構成されています。 詳細は"8.4 LCD**セグメント・レジスタ**"および"19.LCD**コントローラ/ドライバ**"を参照してください。

4.2.6 汎用データ・メモリ

汎用データ・メモリは,データ・メモリからシステム・レジスタ,ポート・レジスタ,コントロール・レジスタ,ポート入力/出力選択レジスタ,LCDセグメント・レジスタを除いた部分に割り当てられています。

BANKO-BANK3の各112ニブルの計448ニブルから構成されます。

図4-2 データ・メモリの構成

- 注1.70Hの上位2ビットは0固定です。
 - 2.同一のシステム・レジスタが存在しています。
 - 3.BANK1の71Hと, BANK2の70Hの上位1ビット, 73Hはすべて0固定です。
- 注意 1 . BANK15の31H番地はテスト・モード用領域になっていますので , 絶対に何も書き込まないでください。
 - 2 . BANK4からBANK14の5BHまではありません。

機 令 能 演算 加算 ADD ADDC 減算 SUB SUBC 論理 AND OR XOR 比較 SKE SKGE SKLT **SKNE** 転送 MOV LD ST 判断 SKT SKF

表4-1 データ・メモリ操作命令一覧

4.3 データ・メモリのアドレシング

図4-3に,データ・メモリのアドレス指定を示します。

データ・メモリのアドレスは,バンク,ロウ・アドレスおよびカラム・アドレスで指定します。

ロウ・アドレスおよびカラム・アドレスはデータ・メモリ操作命令で直接指定しますが,バンクは,バンク・レジスタの内容で指定します。

バンク・レジスタについては, "5.システム・レジスタ(SYSREG)"を参照してください。

 バンク
 ロウ・アドレス
 カラム・アドレス

 b_3 b_2 b_1 b_0 b_2 b_1 b_0 b_3 b_2 b_1 b_0

 データ・メモリ・アドレス
 バンク・レジスタ
 命令のオペランド

図4-3 データ・メモリのアドレス指定

4.4 データ・メモリ使用時の注意

4.4.1 RESET端子によるリセット時

RESET端子によるリセット時は,汎用データ・メモリの内容は"不定"です。 必要に応じて,イニシャライズしてください。

4.4.2 実装されていないデータ・メモリに対する注意

実装されていないデータ・メモリのアドレスに対してデータ・メモリ操作命令の読み込み命令を実行すると,不定なデータが読み込まれます。

なお,書き込み命令を行っても何も変化しません。

5.システム・レジスタ(SYSREG)

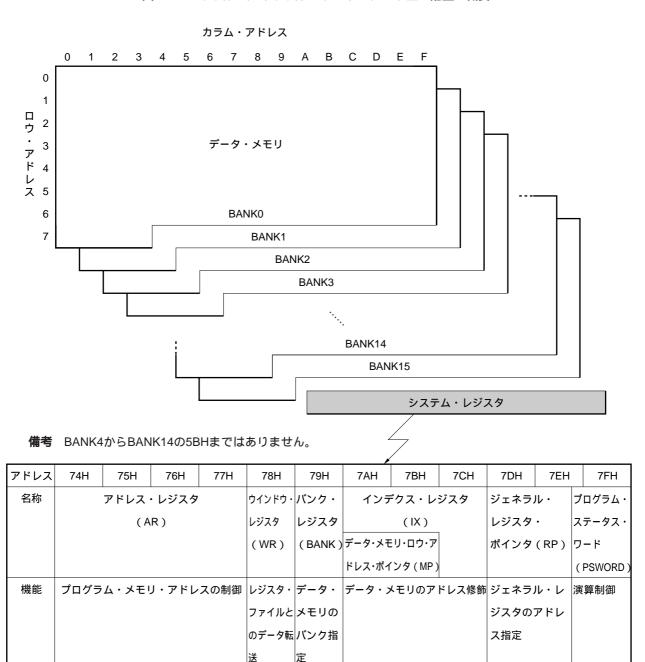

5.1 システム・レジスタ概要

図5-1に,システム・レジスタのデータ・メモリ上の配置と概要を示します。

図5 - 1に示すように,システム・レジスタは,データ・メモリ・アドレスの74H-7FH番地にバンクとは無関係に配置されています。つまり,どのバンクであっても,74H-7FH番地には同一のシステム・レジスタが存在しています。システム・レジスタは,データ・メモリ上に配置されているため,すべてのデータ・メモリ操作命令で操作することができます。

システム・レジスタは,機能別に7種類のレジスタで構成されています。

図5-1 システム・レジスタのデータ・メモリ上の配置と概要

37

5.2 システム・レジスタ一覧

図5-2に,システム・レジスタの構成を示します。

図5-2 システム・レジスタの構成

アドレス	74H	75H	76H	77H	78H	79H	7AH	7BH	7CH	7DH	7EH	7FH
名称						システム	・レジスタ					
		アドレス・	・レジスタ		ウインドウ・	バンク・	インテ	デ クス・レ	ジスタ	ジェネラ	ル・	プログラム・
		(A	R)		レジスタ	レジスタ		(IX)	_	レジスタ	•	ステータス・
					(WR)	(BANK)	データ・メモ	リ・ロウ・ア		ポインタ	(RP)	ワード
							ドレス・ポイ	′ンタ(MP)				(PSWORD)
記号	AR3	AR2	AR1	AR0	WR	BANK	IXH	IXM	IXL	RPH	RPL	PSW
							MPH	MPL				
ビット	b ₃ b ₂ b ₁ b ₀	b ₃ b ₂ b ₁ b ₀	b3 b2 b1 b0	b3 b2 b1 b0	b3 b2 b1 b0	b ₃ b ₂ b ₁ b ₀	b ₃ b ₂ b ₁ b ₀	b3 b2 b1 b0	b3 b2 b1 b0	b3 b2 b1 b0	b3 b2 b1	b ₀ b ₃ b ₂ b ₁ b ₀
データ							М	(IX				BCCZI
				-	-	-	Р	(MD)		(RP		СМҮХ
			1 1 1	1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	E	(MP)		1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1	D P E

5.3 アドレス・レジスタ (AR)

5.3.1 アドレス・レジスタの構成

図5-3に,アドレス・レジスタの構成を示します。

図 5 - 3 に示すように , アドレス・レジスタは , システム・レジスタの74H-77H番地 (AR3-AR0) の16ビットで構成されています。

図5-3 アドレス・レジスタの構成

	アドレス		74	4H			75	5H			76	6H			7	7H	
	名称						アト	・レス	・レ	ジスク	7 (Al	۲)					
	記号		AR3			AR2					Al	R1			Al	R0	
	ビット	bз	b ₂	b ₁	b ₀	bз	b ₂	b ₁	b ₀	bз	b ₂	b ₁	b ₀	bз	b ₂	b ₁	b ₀
	データ	M S B	S														L S B
リセッ	RESET端子によるリセット		0			0			0				0				
ト 時	WDT&SPリセット		0			0			0					(0		
ク	ロック・ストップ時		保持			保持			保持				保持				

RESET端子によるリセット: RESET端子によるリセット時

WD&SPリセット : ウォッチドッグ・タイマおよびスタック・ポインタ・リセット時

クロック・ストップ : クロック・ストップ命令実行時

5.3.2 アドレス・レジスタの機能

アドレス・レジスタは , テーブル参照命令 (" MOVT DBF, @AR ") ,スタック操作命令 (" PUSH AR " , " POP AR ") ,間接分岐命令 (" BR @AR ") および間接サブルーチン・コール命令 (" CALL @AR ") 実行時に , プログラム・メモリ・アドレスの指定を行います。

アドレス・レジスタには, " 1 " ずつインクリメントできる専用命令("INC AR") が用意されています。 次の(1)-(5)に,各命令を実行したときの動作を説明します。

(1) テーブル参照命令("MOVT DBF, @AR")

アドレス・レジスタの内容で指定されるプログラム・メモリ・アドレスの定数データ (16ビット) を , データ・ バッファに読み出します。

★ アドレス・レジスタで指定できる定数データの格納番地は,0000H-1FFFH番地です。

(2) スタック操作命令("PUSH AR", "POP AR")

"PUSH AR"命令を実行したときは,スタック・ポインタを - 1 し, - 1 されたスタック・ポインタで指定されるアドレス・スタック・レジスタに,アドレス・レジスタ(AR)の内容を転送します。

"POP AR"命令を実行したときは、スタック・ポインタで指定されるアドレス・スタック・レジスタの内容をアドレス・レジスタに転送して、スタック・ポインタを + 1 します。

(3)間接分岐命令("BR@AR")

アドレス・レジスタの内容で指定されるプログラム・メモリ・アドレスへ分岐します。

★ アドレス・レジスタで指定できる分岐アドレスは,0000H-1FFFH番地です。

(4)間接サブルーチン・コール命令("CALL@AR")

アドレス・レジスタの内容で指定されるプログラム・メモリ・アドレスのサブルーチンを,コールできます。

★ アドレス・レジスタで指定できるサブルーチンの先頭アドレスは,0000H-1FFFH番地です。

(5) アドレス・レジスタ・インクリメント命令("INC AR")

アドレス・レジスタの内容を,"1"ずつインクリメントします。

5.3.3 アドレス・レジスタとデータ・パッファ

アドレス・レジスタは,周辺ハードウエアの一部として,データ・バッファを介してのデータ転送ができます。 詳細は, "9.データ・バッファ(DBF)"を参照してください。

5.3.4 アドレス・レジスタ使用時の注意

アドレス・レジスタは、16ビットで構成されていますので、最大FFFFH番地まで指定できます。

- ★ しかし,プログラム・メモリが存在するのは0000H-1FFFH番地です。
- ★ したがって,アドレス・レジスタに設定する最大値は1FFFH番地までとしてください。

5.4 ウインドウ・レジスタ (WR)

5.4.1 ウインドウ・レジスタの構成

図5-4にウインドウ・レジスタの構成を示します。

図5 - 4に示すように, ウインドウ・レジスタはシステム・レジスタの78H番地(WR)の4ビットで構成されています。

アドレス 78H 名称 ウインドウ・レジスタ (WR) WR 記号 ビット рз b_2 b_0 データ Μ S S В В 不定 保持 クロック・ストップ時

図5-4 ウインドウ・レジスタの構成

5.4.2 ウインドウ・レジスタの機能

ウインドウ・レジスタは後述するレジスタ・ファイル(RF)とのデータ転送に使用します。

レジスタ・ファイルとのデータ転送は専用命令である "PEEK WR, rf" および "POKE rf, WR" 命令により操作します (rf: レジスタ・ファイルのアドレス)。

次の(1)および(2)に,各命令を実行したときの動作を説明します。

"8. レジスタ・ファイル (RF) とコントロール・レジスタ"も参照してください。

(1) "PEEK WR, rf"命令

"f"でアドレス指定されるレジスタ・ファイルの内容を, ウインドウ・レジスタに転送します。

(2) "POKE rf, WR "命令

ウインドウ・レジスタの内容を , " ff " でアドレス指定されるレジスタ・ファイルに転送します。

5.5 バンク・レジスタ (BANK)

5.5.1 パンク・レジスタの構成

図5-5に,バンク・レジスタの構成を示します。

図 5 - 5 に示すように , バンク・レジスタはシステム・レジスタの79H番地 (BANK) の 4 ビットで構成されています。

アドレス 79H バンク・レジスタ 名称 (BANK) BANK 記号 ビット Ьз b₂ **b**₁ **b**₀ データ L М S S В В リー セ RESET端子によるリセット 0 WDT&SPリセット 0 クロック・ストップ時 保持

図5-5 パンク・レジスタの構成

5.5.2 パンク・レジスタの機能

バンク・レジスタは,データ・メモリのバンクを指定します。

表5-1に,バンク・レジスタの値とデータ・メモリのバンク指定を示します。

バンク・レジスタはシステム・レジスタ上に存在しているため,現在指定されているバンクに関係なく書き換えることができます。

つまり、バンク・レジスタを操作する場合は、そのときのバンクの状態は関係ありません。

表5-1 データ・メモリのバンク指定

バン	/ク・	レジ	スタ	データ・メモリの
	(BA	NK)		バンク
bз	b ₂	b ₁	bo	
0	0	0	0	BANK0
0	0	0	1	BANK1
0	0	1	0	BANK2
0	0	1	1	BANK3
1	1	1	0	BANK14
1	1	1	1	BANK15

備考 BANK4からBANK14の00H-5BHまではありません。

注意 データ・メモリの実装領域は製品によって異なります。詳しくは"図4-2 データ・メモリの構成"を参照してください。

5.6 インデクス・レジスタ(IX)とデータ・メモリ・ロウ・アドレス・ポインタ(MP:メモリ・ポインタ)

5.6.1 インデクス・レジスタとデータ・メモリ・ロウ・アドレス・ポインタの構成

図5-6に,インデクス・レジスタとデータ・メモリ・ロウ・アドレス・ポインタの構成を示します。

図 5 - 6 に示すように , インデクス・レジスタは , システム・レジスタの7AHの下位 3 ビット (IXH) と7BH, 7CH (IXM, IXL) の計11ビットからなるインデクス・レジスタ (IX) と , 7FH (PSW) の最下位ビットにあるインデクス・イネーブル・フラグ (IXE) から構成されています。

データ・メモリ・ロウ・アドレス・ポインタ (メモリ・ポインタ) は7AH (MPH) の下位 3 ビットと7BH (MPL) の計 7 ビットからなるデータ・メモリ・ロウ・アドレス・ポインタ (MP) と,7AH (MPH) の最上位ビットにあるデータ・メモリ・ロウ・アドレス・ポインタ・イネーブル・フラグ (メモリ・ポインタ・イネーブル・フラグ:MPE) から構成されています。

すなわちインデクス・レジスタの上位 7 ビットとデータ・メモリ・ロウ・アドレス・ポインタは共用していること になります。

図5-6 インデクス・レジスタとデータ・メモリ・ロウ・アドレス・ポインタの構成

アドレス 7AH 7BH 7CH 7EH

アドレス		7	ΑН			71	вн			70	СН			71	ΞH			71	-H	
名称				イン	/デク	ス・	レジフ	スタ (IX)							プロ・	グラム	ゝ・ス	テーク	タス・
		メ	モリ	・ポイ	ンタ	(MP	')									ワー	ド(P	SWC	RD)	
記号		۱X	ΚH			۱>	ΚM			D	ΚL							PS	SW	
		M	PH			М	PL													
ビット	bз	b ₂	b ₁	b ₀	bз	b ₂	b ₁	b ₀	bз	b ₂	b ₁	b ₀	bз	b ₂	b ₁	b ₀	bз	b ₂	b ₁	b ₀
データ	M P E	M S B M S B		M	Р	Ľ	X	L S B				L S B								I X E
リセ RESET端子によるリセット		(0				0				0									0
ット 時 WDT&SPリセット		(0				0				0									0
クロック・ストップ時		保	持			保	持			保	持									保

保:保持

43

5.6.2 インデクス・レジスタとデータ・メモリ・ロウ・アドレス・ポインタの機能

インデクス・レジスタとデータ・メモリ・ロウ・アドレス・ポインタは , データ・メモリのアドレスを修飾します。 次の (1) および (2) に , それぞれの機能を示します。

また,インデクス・レジスタには," 1 " ずつインクリメントする専用命令("INC IX ")が用意されています。 アドレス修飾の詳細については," 7.ALU (Arithmetic Logic Unit) プロック " を参照してください。

(1) インデクス・レジスタ(IX)

データ・メモリ操作命令を実行したときに,データ・メモリ・アドレスを,インデクス・レジスタの内容により修飾します。

ただし,IXEフラグが"1"にセットされているときのみ有効になります。

アドレス修飾の方法は,データ・メモリのバンクとロウ・アドレスおよびカラム・アドレスをインデクス・レジスタの内容とOR演算し,その演算結果(実アドレスと呼ぶ)で指定されるデータ・メモリに対して命令を実行します。

インデクス・レジスタによるアドレス修飾は,すべてのデータ・メモリ操作命令が対象になります。 また,次の命令は,インデクス・レジスタの修飾対象となりません。

INC	AR	RORC	r
INC	IX	CALL	addr
MOVT	DBF, @AR	CALL	@AR
PUSH	AR	RET	
POP	AR	RETSK	
PEEK	WR, rf	RETI	
POKE	rf, WR	El	
GET	DBF, p	DI	
PUT	p, DBF	STOP	S
BR	addr	HALT	h
BR	@AR	NOP	

(2) データ・メモリ・ロウ・アドレス・ポインタ (MP)

ジェネラル・レジスタ間接転送命令(" MOV @r, m ", " MOV m, @r ") を実行したときに , 間接転送先のアドレスを修飾します。

ただし, MPEフラグが"1"にセットされているときのみ有効になります。

アドレス修飾の方法は,間接転送先のバンクとロウ・アドレスを,データ・メモリ・ロウ・アドレス・ポインタの内容で置き換えます。

ジェネラル・レジスタ間接転送命令以外は、アドレス修飾の対象になりません。

(3) インデクス・レジスタ・インクリメント命令("INCIX")

インデクス・レジスタの内容を"1"ずつインクリメントします。

インデクス・レジスタは,10ビットで構成されていますので,インデクス・レジスタの内容が"3FFH"のときに"INC IX"命令を実行すると, "000H"になります。

5.7 ジェネラル・レジスタ・ポインタ (RP)

5.7.1 ジェネラル・レジスタ・ポインタの構成

図5-7に,ジェネラル・レジスタ・ポインタの構成を示します。

図 5 - 7 に示すように , ジェネラル・レジスタ・ポインタはシステム・レジスタの7DH番地 (RPH) の 4 ビットと 7EH番地 (RPL) の上位 3 ビットの計 7 ビットで構成されています。

図5-7 ジェネラル・レジスタ・ポインタの構成

_										
	アドレス		7[DΗ			78	ΞH		
	名称	ジェ	ネラノ	レ・レ	ジスケ	タ・オ	ペイン	タ		
		(RF)							
	記号		RI	PH			R	PL		
	ビット	bз	b ₂	b ₁	bo	bз	b ₂	b ₁	b ₀	
	データ	М						L	В	
		S						S	С	
		В						В	D	
		-						_	i	
リセッ	RESET端子によるリセット		(0			(0		
ット時	WDT&SPリセット		(0				0		
ク	ロック・ストップ時		保	持		保持				

5.7.2 ジェネラル・レジスタ・ポインタの機能

ジェネラル・レジスタ・ポインタは、データ・メモリ上のジェネラル・レジスタを指定します。

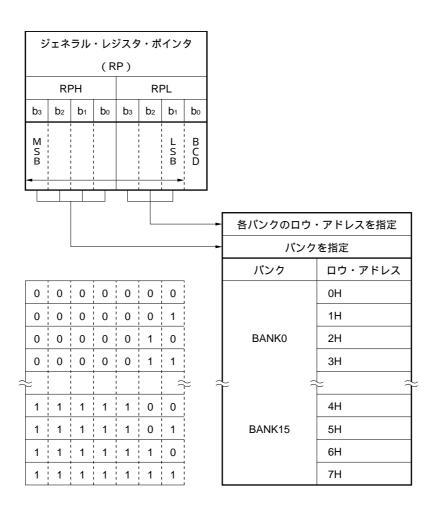

図5 - 8 に,ジェネラル・レジスタ・ポインタで指定されるジェネラル・レジスタのアドレスを示します。

図 5 - 8 に示すように,ジェネラル・レジスタ・ポインタの上位 4 ビット(RPH:7DH番地)でバンクを指定し, 下位 3 ビット(RPL:7EH番地)でロウ・アドレスを指定します。

ジェネラル・レジスタ・ポインタの有効ビットは 7 ビットであるため, すべてのバンクのすべてのロウ・アドレス (0H-7H番地)をジェネラル・レジスタに指定できます。

ジェネラル・レジスタの動作の詳細は, "6.ジェネラル・レジスタ(GR)"を参照してください。

図5-8 ジェネラル・レジスタ・ポインタで指定されるジェネラル・レジスタのアドレス

備考 BANK4からBANK14の5BHまではありません。

5.7.3 ジェネラル・レジスタ・ポインタ使用時の注意

ジェネラル・レジスタ・ポインタであるアドレス7EH番地 (RPL)の最下位ビットは,プログラム・ステータス・ワードのBCDフラグに割り当てられています。

したがって, RPLを書き換える場合は, BCDフラグの値に注意してください。

и PD17934A

5.8 プログラム・ステータス・ワード (PSWORD)

5.8.1 プログラム・ステータス・ワードの構成

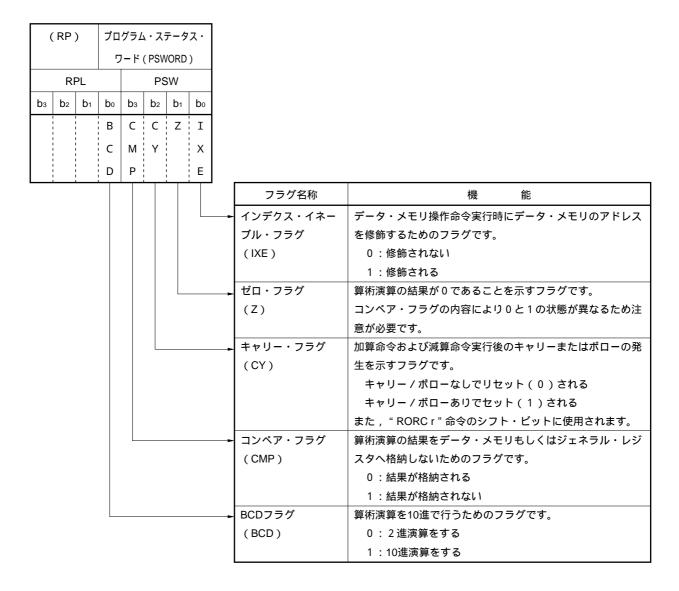
図5-9にプログラム・ステータス・ワードの構成を示します。

図5 - 9に示すように,プログラム・ステータス・ワードはシステム・レジスタの7EH番地(RPL)の最下位ビットと7FH番地(PSW)の4ビットの計5ビットで構成されています。

プログラム・ステータス・ワードはさらに 1 ビットずつ機能が分かれており,それぞれBCDフラグ(BCD),コンペア・フラグ(CMP),キャリー・フラグ(CY),ゼロ・フラグ(Z)およびインデクス・イネーブル・フラグ (IXE) から構成されています。

図5-9 プログラム・ステータス・ワードの構成

	アドレス		71	<u></u>			71	-H		
	名称				プロ・	グラム	٠٨	テーク	タス・	
					ワー	ド(P	swc	RD)		
	記号		R	PL			PS	SW		
	ビット	bз	b ₂	b ₁	b ₀	bз	b ₂	b ₁	b ₀	
	データ				В	С	С	Z	I	
					С	М	Υ		Х	
					D	Р			Ε	
					! ! !					
リセ	RESET端子によるリセット		(0			(0		
リセット時	WDT&SPリセット			0				0		
ク	ロック・ストップ時		保	持	保持					


5.8.2 プログラム・ステータス・ワードの機能

プログラム・ステータス・ワードはALU(Arithmetic Logic Unit)での演算および転送命令の条件を設定したり演算 結果の状態を示すためのレジスタです。

表5-2に,プログラム・ステータス・ワードの各フラグの機能概要を示します。

詳しい動作については"7.ALU (Arithmetic Logic Unit)プロック"を参照してください。

表5-2 プログラム・ステータス・ワードの各フラグの機能概要

5.8.3 プログラム・ステータス・ワード使用時の注意

プログラム・ステータス・ワードに対して算術演算(加算および減算)命令を行うと,算術演算の "結果"が格納されます。

たとえば,キャリーが発生するような演算を実行しても,算術演算の結果が0000BであればPSWには0000Bが格納されます。

6.ジェネラル・レジスタ (GR)

6.1 ジェネラル・レジスタ概要

図6-1に,ジェネラル・レジスタの概要を示します。

図6 - 1 に示すように,ジェネラル・レジスタはジェネラル・レジスタ・ポインタによって,データ・メモリ上に指定されます。

ジェネラル・レジスタを指定するバンクおよびロウ・アドレスは,ジェネラル・レジスタ・ポインタで設定します。 ジェネラル・レジスタは,データ・メモリ間で,データ転送や演算に使用します。

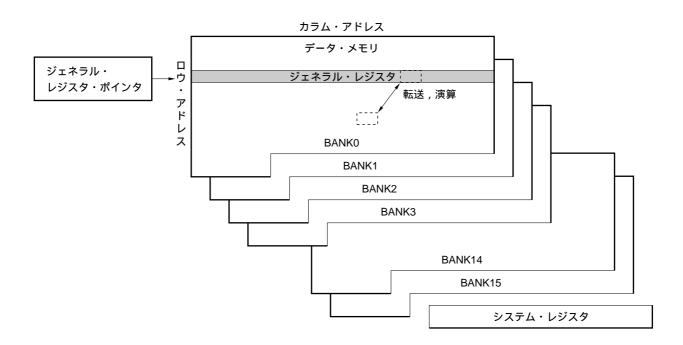


図6-1 ジェネラル・レジスタの概要

備考 BANK4からBANK14の5BHまではありません。

6.2 ジェネラル・レジスタ

ジェネラル・レジスタは,データ・メモリ上の同一ロウ・アドレスである16ニブル (16×4ビット)で構成されます。

ジェネラル・レジスタ・ポインタ,およびジェネラル・レジスタに指定できるバンクとロウ・アドレスの範囲については,"5.7 ジェネラル・レジスタ・ポインタ(RP)"を参照してください。

ジェネラル・レジスタに指定されている同一ロウ・アドレスの16二ブルは,データ・メモリとの間で演算や転送を1命令で行います。

つまり, 1命令でデータ・メモリ同士の演算や転送が可能になります。

ジェネラル・レジスタは,ほかのデータ・メモリと同様に,データ・メモリ操作命令で制御することができます。

6.3 各命令におけるジェネラル・レジスタのアドレス生成

6.3.1 および 6.3.2 に各命令実行時のジェネラル・レジスタのアドレス生成を示します。

各命令の動作についての詳細は, "7.ALU (Arithmetic Logic Unit) プロック"を参照してください。

6.3.1 加算("ADD r, m", "ADDC r, m"), 減算("SUB r, m", "SUBC r, m"),

論理演算 ("AND r, m ", "OR r, m ", "XOR r, m "),

直接転送 ("LD r, m ", "ST m, r ") ,

回転処理 (" RORC r ") 命令

表 6-1 に , 命令のオペランド " r " で指定されるジェネラル・レジスタのアドレスを示します。命令のオペランド " r " は , カラム・アドレスのみを指定します。

		バン	ノク		ロウ	・アド	レス	カラ	5Δ·	アドレ	ノス
	b 3	b ₂	b ₁	b ₀	b ₂	b ₁	b ₀	bз	b ₂	b ₁	b ₀
ジェネラル・レジスタ・アドレス	ジェ [;] -	ネラル	・・レシ	ブ スタ	・ポイ	ンタの)内容	•	!	•	

表 6 - 1 ジェネラル・レジスタのアドレス生成

6.3.2 間接転送 (" MOV @r, m ", " MOV m, @r ") 命令

表 6 - 2 に , 命令のオペランド " r " で指定されるジェネラル・レジスタのアドレスおよび " @ r " で指定される間接転送アドレスを示します。

		バン	ノク		ロウ	・アド	レス	カラ	ラム・	アドレ	ノス
	bз	b ₂	b ₁	b ₀	b ₂	b ₁	bo	bз	b ₂	b ₁	b ₀
ジェネラル・レジスタ・アドレス	ジェニ	ネラル	・・レシ	ジスタ	・ポイ	ンタの)内容 -	•		r	•
間接転送アドレス	4	デ	ータ・	メモ	リと同]—	_	4	rのI	内容	•

表 6 - 2 ジェネラル・レジスタのアドレス生成

6.4 ジェネラル・レジスタ使用時の注意

6.4.1 ジェネラル・レジスタのロウ・アドレス

ジェネラル・レジスタのロウ・アドレスは,ジェネラル・レジスタ・ポインタで指定されるため,現在指定されているバンクとジェネラル・レジスタのバンクが異なる場合があるので注意してください。

6.4.2 ジェネラル・レジスタとイミーディエト・データとの演算

ジェネラル・レジスタとイミーディエト・データとの演算命令はありません。

ジェネラル・レジスタとイミーディエト・データとの演算命令を行うためには,ジェネラル・レジスタではなく, データ・メモリとして扱う必要があります。

7 . ALU (Arithmetic Logic Unit) プロック

7.1 ALU**ブロック概要**

図7-1に,ALUブロックの概要を示します。

図 7 - 1 に示すように , ALUブロックは , ALU , 一時記憶レジスタ A , B , プログラム・ステータス・ワード , 10進補正回路およびデータ・メモリ・アドレス制御回路から構成されています。

ALUは,データ・メモリ上の4ビット・データの演算,判断,比較,回転および転送を行います。

データ・バス アドレス 一時記憶 一時記憶 プログラム・ 制御 レジスタA レジスタB ステータス・ワード キャリー / ボロー / ゼロ検出 インデクス修飾 10進 / 格納指定 メモリ・ポインタ ALU ・算術演算 ・論理演算 ・ビット判断 ・比較判断 ・回転処理 ・転送 データ・メモリ

10進補正

図7-1 ALU プロック概要

7.2 各プロックの構成と機能

7.2.1 ALU

ALUは,プログラムにより指定された命令により,4ビットの算術演算,論理演算,ビット判断,比較判断,回転処理および転送を行います。

7.2.2 一時記憶レジスタAおよびB

一時記憶レジスタAおよびBは,A ビットのデータを一時的に蓄わえておくレジスタです。

このレジスタは、命令実行時に自動的に使用され、プログラムで制御することはできません。

7.2.3 プログラム・ステータス・ワード

プログラム・ステータス・ワードは, ALUの動作制御, および状態を格納します。

プログラム・ステータス・ワードについては, " 5.8 プログラム・ステータス・ワード (PSWORD) "を参照してください。

7.2.4 10進補正回路

算術演算時に,プログラム・ステータス・ワードのBCDフラグが"1"にセットされていると,10進補正回路により算術演算結果を10進数に変換します。

7.2.5 アドレス制御回路

アドレス制御回路は,データ・メモリのアドレスを指定します。

このとき,インデクス・レジスタやデータ・メモリ・ロウ・アドレス・ポインタによるアドレスの修飾も制御します。

7.3 ALU 処理命令一覧

表7-1に,各命令実行時のALU動作一覧を示します。

表7-2に,インデクス・レジスタとデータ・メモリ・ロウ・アドレス・ポインタによる,データ・メモリ・アドレスの修飾を示します。

表 7 - 3 に , 10進演算時の10進補正データを示します。

表7-1 ALU 処理命令動作一覧

A	命	令		プログラ	ラム・ステータス・ワ	ード(PSWORD)に	こよる動作の違い	アドレ	ス修飾
lυ			BCDフ	CMPフ	演算動作	CYフラグの動作	Zフラグの動作	インデクス	メモリ・
機能			ラグの値	ラグの値					ポインタ
加算	ADD	r, m	0	0	2 進演算	キャリーまたはボ	演算の結果0000Bでセット	あり	なし
**		m, #n4		 	結果を格納する	ローでセット	0000B以外はリセット		
	ADDC	r, m	0	1	2 進演算	発生しなければり	演算の結果0000Bで状態保持		
		m, #n4		 	結果を格納しない	セット	0000B以外はリセット		
減算	SUB	r, m	1	0	10進演算		演算の結果0000Bでセット		
#		m, #n4		 	結果を格納する		0000B以外はリセット		
	SUBC	r, m	1	1	10進演算		演算の結果0000Bで状態保持		
		m, #n4		 	結果を格納しない		0000B以外はリセット		
論理	OR	r, m	任意	任意	変わらない	以前の状態を保持	以前の状態を保持	あり	なし
論理演算		m, #n4	(保持)	· ·(保持)					
	AND	r, m		 					
		m, #n4		l I					
	XOR	r, m		l I					
		m, #n4		 					
判断	SKT	m, #n	任意	· 任意	変わらない	以前の状態を保持	以前の状態を保持	あり	なし
	SKF	m, #n	(保持)	(リセット)					
比較	SKE	m, #n4	任意	· · 任意	変わらない	以前の状態を保持	以前の状態を保持	あり	なし
	SKNE	m, #n4	(保持)	(保持)					
	SKGE	m, #n4		 					
	SKLT	m, #n4		l I					
転送	LD	r, m	任意	任意	変わらない	以前の状態を保持	以前の状態を保持	あり	なし
	ST	m, r	(保持)	(保持)					
	MOV	m, #n4		 					
		@r, m		 					あり
		m, @r		 					
回転	RORC	r	任意	任意	変わらない	ジェネラル・レジ	以前の状態を保持	なし	なし
			(保持)	(保持)		スタのb₀の値			

表7 - 2 インデクス・レジスタとデータ・メモリ・ロウ・アドレス・ポインタによるデータ・メモリ・アドレスの 修飾および間接転送アドレスの修飾

IXE	MPE	rで指定されるジ:	ェネラル・レ	ジスタ・アドレス	mで指定される	データ・メ	モリ・アドレス	@rで指定さ	れる間接転	送アドレス
		バンク	ロウ・	カラム・	バンク	ロウ・	カラム・	バンク	ロウ・	カラム・
			アドレス	アドレス		アドレス	アドレス		アドレス	アドレス
		b ₃ b ₂ b ₁ b ₀	b ₂ b ₁ b ₀	b ₃ b ₂ b ₁ b ₀	b ₃ b ₂ b ₁ b ₀	b ₂ b ₁ b ₀	b ₃ b ₂ b ₁ b ₀	b ₃ b ₂ b ₁ b ₀	b ₂ b ₁ b ₀	b ₃ b ₂ b ₁ b ₀
0	0					 	 		1 1 1 1	1 1 1
		RP		r	BANK		m	BANK	m _R	(r)
				,	,			,		
0	1					 	1 1 1		 	1
			同上			同上	1 1 1 1	MP	! ! !	(r)
			 			 	 	,		
1	0				BANK		m	BANK	m _R	
			同上		Log	•	OR			DR
					-	IX	 	IXH, IX	XIVI ¦ ►	(r)
1	1					 	! ! !		 	
			同上			同上		MP	-	(r)
						 	1 1 1		1 1 1	1 1 1

BANK : バンク・レジスタ

IX: インデクス・レジスタ

IXE : インデクス・イネーブル・フラグ

IXH : インデクス・レジスタのビット10-ビット8
 IXM : インデクス・レジスタのビット7-ビット4
 IXL : インデクス・レジスタのビット3-ビット0
 m : mR, mcで示されるデータ・メモリ・アドレス

mr : データ・メモリ・ロウ・アドレス (上位) mc : データ・メモリ・カラム・アドレス (下位)

MP : データ・メモリ・ロウ・アドレス・ポインタ

MPE : メモリ・ポインタ・イネーブル・フラグ

RP : ジェネラル・レジスタ・ポインタ

(×) : × でアドレスされる内容

×:m,rなどのダイレクト・アドレス

: ジェネラル・レジスタ・カラム・アドレス

表7-3 10進補正データ

演算結果	16	進加算	10	進加算
	CY	演算結果	CY	演算結果
0	0	0000B	0	0000B
1	0	0001B	0	0001B
2	0	0010B	0	0010B
3	0	0011B	0	0011B
4	0	0100B	0	0100B
5	0	0101B	0	0101B
6	0	0110B	0	0110B
7	0	0111B	0	0111B
8	0	1000B	0	1000B
9	0	1001B	0	1001B
10	0	1010B	1	0000B
11	0	1011B	1	0001B
12	0	1100B	1	0010B
13	0	1101B	1	0011B
14	0	1110B	1	0100B
15	0	1111B	1	0101B
16	1	0000B	1	0110B
17	1	0001B	1	0111B
18	1	0010B	1	1000B
19	1	0011B	1	1001B
20	1	0100B	1	1110B
21	1	0101B	1	1111B
22	1	0110B	1	1100B
23	1	0111B	1	1101B
24	1	1000B	1	1110B
25	1	1001B	1	1111B
26	1	1010B	1	1100B
27	1	1011B	1	1101B
28	1	1100B	1	1010B
29	1	1101B	1	1011B
30	1	1110B	1	1100B
31	1	1111B	1	1101B

演算結果	16	進減算	10	進減算
	CY	演算結果	CY	演算結果
0	0	0000B	0	0000B
1	0	0001B	0	0001B
2	0	0010B	0	0010B
3	0	0011B	0	0011B
4	0	0100B	0	0100B
5	0	0101B	0	0101B
6	0	0110B	0	0110B
7	0	0111B	0	0111B
8	0	1000B	0	1000B
9	0	1001B	0	1001B
10	0	1010B	1	1100B
11	0	1011B	1	1101B
12	0	1100B	1	1110B
13	0	1101B	1	1111B
14	0	1110B	1	1100B
15	0	1111B	1	1101B
- 16	1	0000B	1	1110B
- 15	1	0001B	1	1111B
- 14	1	0010B	1	1100B
- 13	1	0011B	1	1101B
- 12	1	0100B	1	1110B
- 11	1	0101B	1	1111B
- 10	1	0110B	1	0000B
- 9	1	0111B	1	0001B
- 8	1	1000B	1	0010B
- 7	1	1001B	1	0011B
- 6	1	1010B	1	0100B
- 5	1	1011B	1	0101B
- 4	1	1100B	1	0110B
- 3	1	1101B	1	0111B
- 2	1	1110B	1	1000B
- 1	1	1111B	1	1001B

備考 の部分は、10進補正が正しく行われません。

7.4 ALU**使用時の注意**

7.4.1 プログラム・ステータス・ワードへの演算使用時の注意

プログラム・ステータス・ワードに対して算術演算を行うと,プログラム・ステータス・ワードには算術演算の結果が格納されます。

プログラム・ステータス・ワードの中のCYフラグおよびZフラグは,通常,算術演算の結果によりセットまたはリセットされますが,プログラム・ステータス・ワード自身に算術演算が行われると,算術演算結果が格納されてしまい,キャリー,ボローおよびゼロの判定ができないことになります。

ただし、CMPフラグがセットされているときは、算術演算の結果が格納されないため、CYフラグおよびZフラグは通常通りセットまたはリセットされます。

7.4.2 10進演算使用時の注意

10進演算は,演算結果が次の範囲になる場合にかぎり実行できます。

- (1)加算の結果が,10進で0~19であること
- (2)減算の結果が,10進で0~9または-10~-1であること

この範囲以外で10進演算を行うと, CYフラグがセットされ, 演算結果は1010B(0AH)以上の値になります。

8. レジスタ・ファイル (RF) とコントロール・レジスタ

8.1 レジスタ・ファイル概要

図8-1に,レジスタ・ファイルの概要を示します。

図8 - 1 に示すように , レジスタ・ファイルは , データ・メモリのBANK15のアドレス00H-3FH番地上に存在するコントロール・レジスタと , BANKレジスタで指定されているデータ・メモリと重なった部分から構成されています。

コントロール・レジスタは、周辺ハードウエアの条件設定などを行います。

レジスタ・ファイル上のデータは, ウインドウ・レジスタを介して読み込みおよび書き込みを行います。

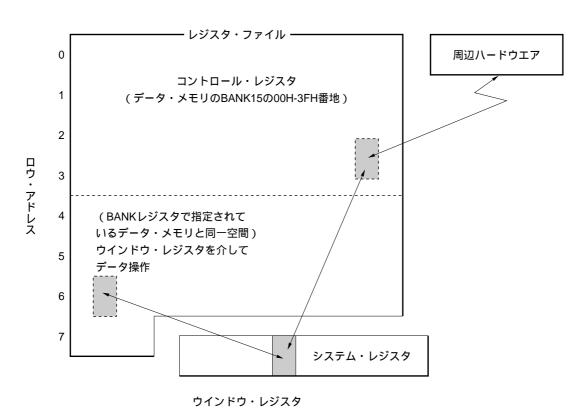


図8-1 レジスタ・ファイルの概要

8.2 レジスタ・ファイルの構成と機能

図8-2に、レジスタ・ファイルの構成とデータ・メモリの関係を示します。

レジスタ・ファイルは,データ・メモリと同様に4ビット単位でアドレスが割り当てられており,ロウ・アドレスが0H-7Hで,カラム・アドレスが0H-0FHの計128二ブルになります。

アドレス00Hから3FH番地まではBANK15のアドレス00H-3FH番地と重なっておりコントロール・レジスタと呼び, 周辺ハードウエアの条件設定を行います。

アドレス40Hから7FH番地までは,BANKレジスタで指定されているデータ・メモリと重なっています。

つまり,レジスタ・ファイルの40H-7FH番地は,データ・メモリのそのとき選択されているバンクのアドレス40Hから7FH番地と同じメモリが存在しています。

したがって、アドレス40Hから7FH番地は、レジスタ・ファイル操作命令("PEEK WR, rf"、"POKE rf, WR")により操作できる点を除けば、通常のデータ・メモリと同じです。ただし、BANK15の40H-6FH番地にはポート入力/ 出力選択レジスタを含むコントロール・レジスタが割り当てられています(詳しくは8.3 コントロール・レジスタと入力/出力選択レジスタを参照してください)。

また,BANK14の5CH-6FH番地にはLCDセグメント・レジスタが割り当てられています(詳しくは8.4 LCD**セグ** メント・レジスタを参照してください)。



図8-2 レジスタ・ファイルの構成とデータ・メモリの関係

注意 BANK15の31H番地はテスト・モード用領域になっていますので,絶対に何も書き込まないでください。

備考 BANK4からBANK14の5BHはありません。

8.2.1 レジスタ・ファイル操作命令 (" PEEK WR, rf ", " POKE rf, WR ")

レジスタ・ファイルのデータの読み込みおよび書き込みは,システム・レジスタの中のウインドウ・レジスタを介して行います。次に各命令の動作を示します。

(1) "PEEK WR, rf"

ウインドウ・レジスタに, "rf"でアドレス指定されるレジスタ・ファイルのデータを読み込む。

(2) "POKE rf, WR"

" rf " でアドレス指定されるレジスタ・ファイルに,ウインドウ・レジスタのデータを書き込む。

8.3 コントロール・レジスタと入力/出力選択レジスタ

図8-3にコントロール・レジスタの構成を示します。

入力/出力選択レジスタを含むコントロール・レジスタはデータ・メモリのBANK15のアドレス00H-6FH番地の計 112二ブル(112×4ビット)から構成されています。そのうちBANK15のアドレス00H-3FH番地はレジスタ・ファイルのアドレス00H-3FH番地と重なっています。また,アドレス60H-6FH番地は入力/出力選択レジスタになっています。

ただし,コントロール・レジスタのうち実際に使用しているのは38二ブルです。残りの74二ブルは未使用レジスタで読み出しおよび書き込みは禁止されています。

各コントロール・レジスタは 1 = プルずつ属性を持っており、それぞれ読み込み書き込み可能(R/W)、読み込み専用(R)、書き込み専用(W) および読み込んだときリセットされる(R&Reset)の 4 種類があります。

読み込み専用(RおよびR&Reset)レジスタに書き込みを行っても何も変化しません。

書き込み専用(W)レジスタを読み込むと"不定"の値が読み込まれます。

また , 1 ニブルの中の 4 ビット・データのうち , " 0 "に固定されているビットは , 読み込んだときは常に " 0 " となり , 書き込みを行っても " 0 "を保持します。

未使用レジスタの74二ブルは,内容を読み込むと不定の値が読み込まれ,書き込みを行っても何も変化しません。 なおBANK15の31H番地はテスト・モード用領域になっていますので,絶対に何も書き込まないでください。 表8 - 1にコントロール・レジスタの周辺ハードウエア制御機能一覧を示します。

図8-3 コントロール・レジスタの構成(00H-3FH番地)(1/4)

(BANK	15)								
カラム・	アドレス								
ロウ・ アドレス	項目	0	1	2	3	4	5	6	7
0	名称		スタック・	ウォッチドッグ・	ウォッチドッグ・	データ・バッファ・	スタック・オーバフ		MOVTビット
(8) ^{注1}			ポインタ	タイマ・クロック	タイマ・カウンタ・	スタック・ポインタ	ロー/アンダフロ		選択
				選択	リセット		ー・リセット選択		
	記号		(S S P P 3 2 1 1 1 1 1 1 1 1 1	0 0 W D T T C K K K I 11 0	W 0 0 0 D	0 (DBFSPP) (DBFSPP	0 0 S S S P P R R S S S S S S S S		0 0 M M 0 0 V V V V V V V V
	Read/		R/W	R/W	W & Reset	R	R/W		R/W
	Write								
1	名称	PLLモード選択	PLL基準周波数	PLLアンロック		BEEPクロック		ウォッチドッグ・タイ	ベーシック・タイ
(9) ^{注1}			選択	FF		選択		マ / スタック・ポインタのリセット状態検出	マのキャリー
	記号	P P P P L L L L L L	0 P P P P P P P P P	0 0 0 P 		0 B B B E E E E E F P P P P C C E K K K E K K E K K		0 0 0 W D T T C Y Y I I I I I I I I	0 0 0 B
	Read/	R/W	R/W	R & Reset		R/W		R & Reset	R & Reset
	Write								
2	名称	FCGチャネル	IFカウンタ・	IFカウンタ・	IFカウンタ・	A/Dコンバー	A/Dコンバー		
(A) ^{注1}		選択	ゲート	モード選択	コントロール	タ・チャネル	タ・モード選		
			状態検出			選択	択		
	記号	0 0 0 F C C C C C C C C C C	0 0 0 F C G O S I T		0 0 I I F C R R S R S R S R S R S R S C C C C C C C C C	0 0 A D C C C C C C C C C	0 0 A A D C C C C C C C C C		
	Read/	R/W	R	R/W	W	R/W	R	R/W	R/W
	Write								
3	名称								
(B) ^{注1}			注2						
	記号 1								
	Read/								
	Write								

注1.()内は,アセンブラを使用する際の番地です。

2.BANK15の31H番地はテスト・モード用領域になっていますので,絶対に何も書き込まないでください。

図8-3 コントロール・レジスタの構成(00H-3FH番地)(2/4)

8	9	Α	В	С	D	E	F
システム・レジス							
タの割り込みスタ							
ック・ポインタ							
(SYSRSPO) (SYSRSPO) (SYSRSPO) (SYSRSPO) RSPO2) R							
ベーシック・				シリアルI/O1	シリアルI/O1		割り込みエッ
タイマ 1 クロ				クロック	モード選択		ジ選択
ック選択							
0 1 0 1 B 1				0 0 S S S I I I I I I I	0 S S S S I I I I I I		0 0 0 I
R/W				R/W	R/W		R/W
			タイマ 0 カウ ンタ・クロッ ク選択	タイマ 0 モー ド選択	割り込み許可	割り込み許可2	割り込み許可3
			T T T T T T T T T T T T T T T T T T T	T 0 0 0 0 0 M 0 0 0 0			
				シリアル・イン	ベーシック・イン	タイマ 0 割り	INT0端子
				タフェース 1	ターバル・タイマ	込み要求	割り込み要求
				割り込み要求	1割り込み要求		
				0 0 0 I 	0 0 0 R R Q I B I I M I I 1	0 0 0 I R Q T M 0	N R R R O I I
				R/W	R/W	R/W	R/W

図8-3 コントロール・レジスタの構成(40H-6FH番地)(3/4)

(BANK	(15)								
	・アドレス								
ロウ・ アドレス		0	1	2	3	4	5	6	7
アドレス 4	項目名称	LCDモード選	1		3	+	,	0	,
4	台彻	択							
		3/(
	記号	1 , 0 , 0 , 1							
	記写	L 0 0 L C C D E B N C							
		B N							
		K	1 1 1	1 1 1	1 1 1	1 1 1	1 1 1	1 1 1	1 1 1
	Read/	R/W	1 1 1	1 1 1	1 1 1	1 1 1	1 1 1	1 1 1	1 1 1
	Write								
5	名称								
	記号	1 1	1 1 1	1 1 1	1 1	1 1 1	1 1 1	1 1 1	1 1 1
	Read/								
	Write								
6	名称								
	記号	1 1 1	1 1 1	1 1 1	1 1 1	1 1 1	1 1 1		
		1 1 1	1 1 1	1 1 1	1 1 1	1 1 1		1 1 1	1 1 1
			1 1 1	1 1 1		1 1 1		1 1 1	1 1 1
			1 1 1	1 1 1		1 1 1		1 1 1	
	Read/						1		
	Write						1		

図8-3 コントロール・レジスタの構成(40H-6FH番地)(4/4)

8	9	A	В	C	D	E	F
	LCDポート	ポート0Dプル	ポート2C	ポート2B	ポート1D	ポート1A	ポート0B
	切り替え	ダウン抵抗選択	ビットI/O選択	ビットI/O選択	ビットI/O選択	ビットI/O選択	ビットI/O選択
	0 L L L L C C C C C C	P P P P O O O D D D D D D D	P P P P 2 2 2 C C C C C C C	P P P P 2 2 2 2 8 8 8 8 8 8	P P P P 1 1 1 1 D D D D D D	P P P P 1 1 1 1 1 1	P P P P O O O O O O
	R/W	R/W	R/W	R/W	R/W	R/W	R/W

表8-1 コントロール・レジスタの周辺ハードウエア制御機能一覧(1/5)

周辺八	コントロー	-ル・1	 /ジス <u> </u>	タ	周辺ハードウ	エア制御機能		リセッ	ット時	クロ
ハードウエア	名 称	番地 (BANK15)	Read/ Write	b3 b2 b1 b0	機能	0	定 値	よるリセット	てではこもいや108	クロック・ストップ時
スタック	スタック・ポインタ	01H	R/W	(SP3) (SP2) (SP1) (SP0)				F	F	保 持
	システム・レジスタ の割り込みスタッ ク・ポインタ	08H	R	0 (SYSRSP2) (SYSRSP1) (SYSRSP0)				5	5	保 持
	データ・バッファ・ スタック・ポインタ	04H	R	0 0 (DBFSP1) (DBFSP0)	" 0 '固定 データ・バッファ・スタック の多重レベルを検出	-000 0レベル 1レベル 0 1		0	0	保 持
	スタック・オーバフロー / アンダフロー・リセット 選択	05H	R/W	0 0 SPRSEL1 SPRSEL0	" 0 '固定	 リセット禁止	 リセット有効	3	保持	保持
ウォッチドッグ・タイマ	ウォッチドッグ・タ イマ・クロック選択 ウォッチドッグ・タイ マ・カウンタ・リセット	02H 03H	R/W W & Reset	0 (WDTCK1) (WDTCK0) WDTRES 0 0	" 0 " 固定 ウォッチドッグ・タイマのクロックを選択 (電源投入後一度だけ設定可能) ウォッチドッグ・タイマ・カウンタをリセット " 0 '固定	O O O 使用しない 4096命令 O 1 無効	1 1 1 設定禁止 8192命令 0 1 書き込むとリセット	不 定	保持不定	保持 不定
	WDT & SPリセット状態検出	16H	R & Reset	0 0 0 WDTCY	 ウォッチドッグ・タイマ / スタッ ク・ポインタのリセットの検出	 リセット要求なし	 リセット要求あり	0	1	保 持

表8-1 コントロール・レジスタの周辺ハードウエア制御機能一覧 (2/5)

周辺	オर 0 コントロー			1	周辺ハードウエア		リセッ	ノト時	クロッ
周辺ハードウエア	名 称	番地 (BANK15)	Read/ Write	b ₃ b ₂ 記号 b ₁	機能	設 定 値	よるリセット	そないもい多108	ック・ストップ時
 				b ₀		0 1	ト学に	イカット	プ 時
M 0 V T	MOVTビット選択	07H	R/W	0	" 0 " 固定		0	0	保持
'				MOVTSEL1 MOVTSEL0	MOVT命令による転送ビットを設定 (8ビット転送時は0EH,0FHのみに転送)	OO			
シリ	シリアルI/O1	1CH	R/W	0	" 0 固定 "	01 1 0	0	0	0
アル・	クロック選択			0 SIO1CK1	 シリアル・インタフェース 1	0 - 0 - 1 - 1			
インタフェ				SIO1CK0	のシフト・クロックの設定	外部クロック 12.5 kHz 18.75 kHz 37.5 kHz (75 kHz MAX.) O 1 O 1			
フェー	シリアルI/O1	1DH	R/W	0	" 0 " 固定		0	0	0
ス	モード選択			SIO1MOD SIO1HIZ	SI1/SO2端子の切り替え設定 P0B2/SO1端子の状態を設定				
				SIO1TS	 動作開始,停止の設定	出力端子 			
P L	PLLモード選択	10H	R/W	PLLSCNF	スワロ・カウンタの下位ビットを設定	最下位ビットを0 最下位ビットを1 	0	0	0
L周波数シンセサ				PLLMD2 PLLMD1	PLLの分周モードを設定	2:設定禁止 3:HF 4:VHFL 5:設定禁止			
シン				PLLMD0		6: VHFH 7: 設定禁止			
セサイザ	PLL基準周波数選択	11H	R/W	0 PLLRFCK2	" 0 " 固定 PLLの基準周波数を設定		7	7	7
				PLLRFCK1		3:6.25 kHz 4:12.5 kHz 5:25 kHz			
	PLLアンロックFF	12H	R&	PLLRFCK0	" 0 " 固定	6:ディスエーブル 7:ディスエーブル	不	不	/ ₽
	PLLYDUWVFF	12Π	Reset	0 0 	0 回化		定	定	保持
				0 PLLUL	アンロックFFの状態を検出	 			
В	BEEP / 汎用ポート端	14H	R/W	0	" 0 " 固定		0	0	0
B E E P	子機能選択			BEEP0SEL	POB3/BEEP端子の機能を選択	BEEP			
				BEEP0CK1	BEEP端子の設定	O O 1 1 O D D D D D D D D D D D D D D D D D D			
				BEEP0CK0		0 1 0 1			
タイマ	ベーシック・タイマ 0キャリー	17H	R &	0	" 0 " 固定		0	保持	保持
			1.0001	0				য়ব	াব
				BTM0CY	ベーシック・タイマ O キャリーFFの検出	FFリセット FFセット	1		
	ベーシック・タイマ 1クロック選択	18H	R/W	0	" 0 " 固定		0	0	保持
				0					,,
				BTM1CK0	ベーシック・タイマののクロック選択	31.25 Hz(32 ms) 125 Hz(8 ms)			

備考 不:不定 保:保持

表8-1 コントロール・レジスタの周辺ハードウエア制御機能一覧(3/5)

周辺	コントロ-	-ル・1	ノジス ?	タ タ	周辺ハードウ	エア制御機能		リセッ	ノト時	2 2
周辺ハードウエア	名 称		Read/ Write	b ₃ b ₂ 記号 b ₁	機能	設 5	定値	よるリセット	7 6年にもい参上口8	クロック・ストップ時
ア				b ₀		0	1	に	ト	時
タイ	タイマ 0 カウンタ・	2BH	R/W	TM0EN	タイマ 0 カウンタのスター	ストップ	スタート	0	0	0
イマ	クロック選択				ト / ストップを設定					
				TM0RES	タイマ 0 カウンタのリセットを設定	変化しない	リセット			
				TM0CK1	タイマ 0 カウンタの基本ク	0 0 TM1	1 1 75 kHz 25 kHz			
				TM0CK0	ロックを設定	0 1	(13.3 µs) (40 µs) 0 1			
	タイマ0モード選択	2CH	R/W	TM0OVF	タイマ 0 オーバフロー検出	オーバフローなし	オーバフローあり	0	0	0
				TM0GCEG	ゲート・クローズ入力信号	立ち上がりエッジ	立ち下がりエッジ			
					のエッジを設定					
				TM0G0EG	ゲート・オープン入力信号					
					のエッジを設定					
				TM0MD	タイマ0のモジュロ・カウンタ/	モジュロ・カウンタ	ゲート・カウンタ			
					ゲート・カウンタの切り替え					
割	割り込みエッジ選択	1FH	R/W	0	" 0 " 固定			0	0	保
割り込み				0						持
"				0						
				IEG0	割り込み発行エッジを設定	ー ー ー ー ー ー ー ー 立ち上がりエッジ				
					(INT端子)					
	割り込み許可	2FH	R/W	IPSIO1	シリアル・インタフェース	割り込み禁止	割り込み許可	0	0	保
					1の割り込み許可を設定					持
				IPBTM1	ベーシック・インターバ					
					ル・タイマ1の割り込み許					
					可を設定					
				IPTM0						
				IP0	INT端子の割り込み許可を設定					
	シリアル・インタフェ	3СН	R/W	0	" 0 " 固定			0	0	保
	ース1割り込み要求			0						持
				0						
				IRQSIO1	シリアル・インタフェース	 割り込み要求なし	割り込み要求あり			
					1 の割り込み要求検出					
	ベーシック・インター	3DH	R/W	0	" 0 " 固定		I	0	0	保
	バル・タイマ 1 割り込			0						持
	み要求			0						
				IRQBTM1	ベーシック・インターバル・	 割り込み要求なし		1		
					タイマ1の割り込み要求検出					
	タイマ0割り込み要求	3EH	R/W	0	" 0 " 固定		I	0	0	保
				0						持
				0						
				IRQTM0	 タイマ O の割り込み要求検出	├	 割り込み要求あり	1		
Ц_			1			1				

表8-1 コントロール・レジスタの周辺ハードウエア制御機能一覧(4/5)

周辺	コントロー	-ル・1	,ジス <i>?</i>	タ	周辺ハードウ	エア制御機能	リセッ	ノト時	クロ
周辺ハー ドウエア	名 称		Read/ Write	b3 b2 記号 b1 b0	機能	設 定 値	よるリセット	トですいもい※108	クロック・ストップ時
割り	INT0端子割り込み要求	3FH	R/W	INT0	INT0端子の状態を検出	ロウ・レベル ハイ・レベル	不	不	不
込み				0	" 0 " 固定 ·		0	0	保持
				IRQ0	INT0端子の割り込み要求検出	割り込み要求なし割り込み要求あり			
IFカウンタ	FCGチャネル選択	20H	R/W	0	" 0 " 固定		0	0	0
				FCGCH0	FCGとして使用する端子を設定	FCGを使用しない FCGを使用する			
	IFカウンタ・ゲート状態検出	21H	R	0	" 0 " 固定		0	0	0
				IFCGOSTT	IFカウンタのゲート状態を検出	クローズ オープン			
	IFカウンタ・モード選択	22H	R/W	IFCMD1 IFCMD0	IFカウンタのモード設定 IFカウンタのゲート時間お	0 0 1 1 FCG AMIFC FMIFC AMIFC2 0 1 0 1 1 1	0	0	0
				IFCCK1 IFCCK0	よびFCGのカウント周波数 を設定	1 ms, 4 ms, 8 ms, オープン, 25 kHz 75 kHz 設定禁止 設定禁止 0 1 0 1			
	IFカウンタ・ コントロール	23H	W	0	" 0 " 固定		0	0	0
				IFCSTRT	IFカウンタのカウント・スタートを設定	何も変化しない カウンタをスタート			
				IFCRES	IFカウンタのデータ・リセットを設定	何も変化しない カウンタをリセット			
A/ロコンバー	A/Dコンバータ・チャ ネル選択	24H	R/W	0 0 	" 0 " 固定 A/Dコンバータとして使用す		0	0	
ハータ				ADCCITI	る端子を選択	1: P0D1/AD0端子			
				 ADCCH0		2:P0D2/AD1端子			
						3:P0D3/AD2端子			
	A/Dコンバータ・モー ド選択	25H	R	0	" 0 " 固定		0	0	0
				ADCSTRT ADCCMP	A/Dコンバータの動作状態を検出 	変換終了 変換中			 保
L	LCDモード選択	40H	R/W	LCDDBCK	LCD用ダブラの動作クロックを設定	75 kHz 5 kHz	0	0	0
LCDドライバ	· ·			0	" 0 " 固定	<u> </u>			
/				LCDEN	すべてのLCD表示のオン / オフを設定	表示オフ 表示オン			
/#±=		/D +±			-3 / CIX/L				

備考 不:不定 保:保持

表8-1 コントロール・レジスタの周辺ハードウエア制御機能一覧 (5/5)

周辺	コントロール・レ	ジスタ	の周辺	レジスタ	周辺ハードウ	エア制御機能		リセッ	ノト時	クロッ
周辺ハー ドウエア	名 称		Read/ Write	b ₃ b ₂ 記号 b ₁	機能	設	定 値	よるリセット端子に	7 6付にすいや108	ック・ストップ時
ア				b ₀		0	1	ト子	ام ا	時
L	LCDポート・セレクト	69H	R/W	0	" 0 " 固定			0	0	0
D F				LCD19SEL	 P2A2/LCD19端子の機能を選択	ーーーーーー 汎用入力ポート	LCDセグメント	0	0	保
Dドライバ				LCD18SEL	P2A1/LCD18端子の機能を選択					持
				LCD17SEL	P2A0/LCD17端子の機能を選択					
入出	ポート0D	6AH	R/W	P0DPLD3	POD3端子のプルダウン抵抗切り替え	プルダウン抵抗使用	プルダウン抵抗未使用	0	0	保
入出力ポー	プルダウン抵抗選択			P0DPLD2						持
				P0DPLD1						
				P0DPLD0	PODO端子のプルダウン抵抗切り替え					
	ポート2CビットI/O選択	6BH	R/W	P2CBIO3	P2C3端子の入力/出力選択	入力	出力	0	0	保
				P2CBIO2	P2C2端子の入力/出力選択					持
				P2CBIO1						
				P2CBIO0	P2C0端子の入力/出力選択					
	ポート2BビットI/O選択	6CH	R/W	P2BBIO3	P2B3端子の入力 / 出力選択	入力	出力	0	0	保
				P2BBIO2	P2B2端子の入力 / 出力選択					持
				P2BBIO1	P2B1端子の入力 / 出力選択					
				P2BBIO0	P2B0端子の入力/出力選択					
	ポート1DビットI/O選択	6DH	R/W	P1DBIO3	P1D3端子の入力 / 出力選択	入力	出力	0	0	保
				P1DBIO2	P1D2端子の入力 / 出力選択					持
				P1DBIO1	P1D1端子の入力 / 出力選択					
				P1DBIO0	P1D0端子の入力 / 出力選択					
	ポート1AビットI/O選択	6EH	R/W	P1AB103	P1A3端子の入力 / 出力選択	入力	出力	0	0	保
				P1ABIO2	P1A2端子の入力 / 出力選択					持
				P1ABIO1	P1A1端子の入力 / 出力選択					
				P1ABIO0	P1A0端子の入力 / 出力選択					
	ポート0BビットI/O選択	6FH	R/W	P0BBIO3	P0B3端子の入力/出力選択	入力	出力	0	0	保
				P0BBIO2	P0B2端子の入力 / 出力選択					持
				P0BBIO1	P0B1端子の入力 / 出力選択					
				P0BBIO0	P0B0端子の入力/出力選択					

8.4 LCDセグメント・レジスタ

LCDセグメント・レジスタはデータ・メモリのBANK14のアドレス5CH-6FH番地の計20二ブル(20×4 ビット)から構成されています(詳しくは "19 . LCD**コントローラ / ドライバ**"を参照してください)。

8.5 コントロール・レジスタ使用時の注意

コントロール・レジスタ (BANK15のアドレス00H-6FH番地)の書き込み専用レジスタ (W), 読み込み専用レジスタ (R) および未使用レジスタを操作するときは次の (1)-(4) に示す点に注意が必要です。

- (1)書き込み専用レジスタを読み込むと"不定な値"が読み込まれます。
- (2)読み込み専用レジスタに書き込みを行っても何も変化しません。
- (3)未使用部分を読み込むと"不定な値"が読み込まれます。また,書き込みを行っても何も変化しません。
- (4) BANK15の31H番地はテスト・モード用領域になっていますので,絶対に何も書き込まないでください。

9. データ・バッファ (DBF)

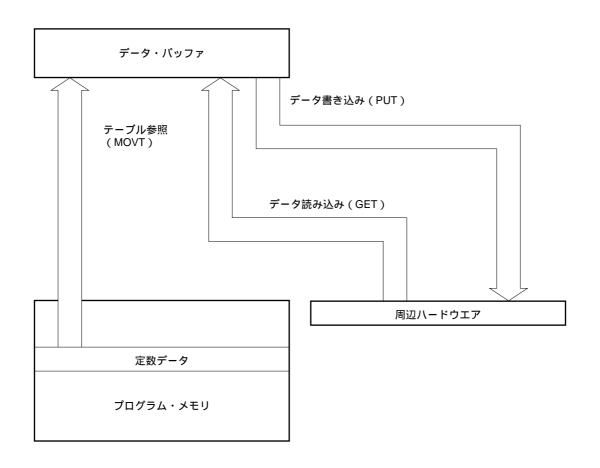

9.1 データ・バッファ概要

図9-1に,データ・バッファの概要を示します。

データ・バッファは,データ・メモリ上に配置されており,次に示す2つの機能があります。

- ・プログラム・メモリ上の定数データの読み込み(テーブル参照)機能
- ・周辺ハードウエアとのデータ転送機能

図9-1 データ・バッファの概要

9.2 データ・バッファ

9.2.1 データ・バッファの構成

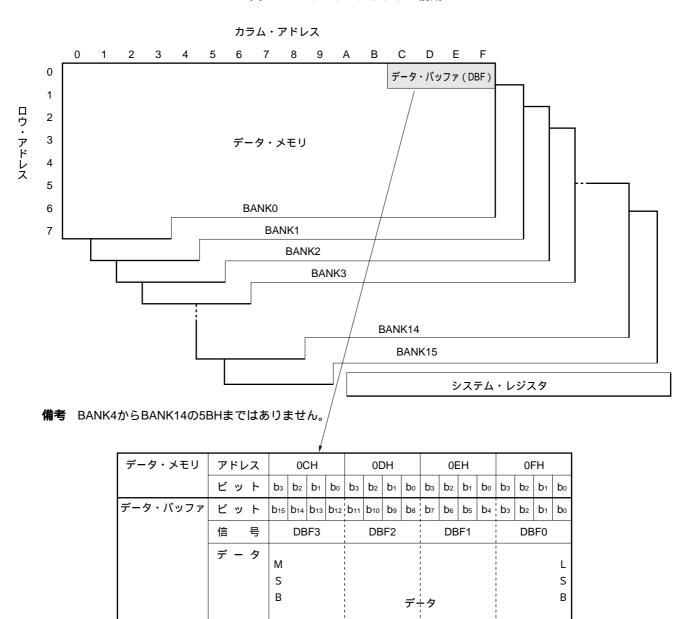

図9-2に,データ・バッファの構成を示します。

図9 - 2 に示すように , データ・バッファは , データ・メモリ上のアドレスBANK0の0CH-0FH番地の計16ビットで構成されています。

16ビットのデータは , アドレス0CH番地のビット 3 をMSBとし , アドレス0FH番地のビット 0 をLSBとして構成されています。

データ・バッファは,データ・メモリ上に配置されているため,すべてのデータ・メモリ操作命令で操作できます。

図9-2 データ・バッファの構成

9.2.2 テーブル参照命令("MOVT DBF, @AR ")

アドレス・レジスタの内容によってアドレス指定されるプログラム・メモリの内容を,データ・バッファに読み込みます。

テーブル参照命令の転送ビットは,コントロール・レジスタのMOVT選択レジスタ(07H番地)によって指定することができます。

8 ビット転送時はDBF1, 0に読み込まれます。

テーブル参照命令実行時は, スタックが1レベル使用されます。

テーブル参照が可能なプログラム・メモリ・アドレスは,プログラム・メモリの全アドレスです。

9.2.3 周辺ハードウエア制御命令 ("PUT ", "GET ")

次に, "PUT" および "GET" 命令の動作を示します。

(1) GET DBF, p

データ・バッファに, pでアドレス指定される周辺レジスタのデータを読み込む。

(2) PUT p, DBF

pでアドレス指定される周辺レジスタに,データ・バッファのデータを設定する。

9.3 周辺ハードウエアとデータ・バッファ一覧

表9-1に周辺ハードウエアとデータ・バッファの機能一覧を示します。

表9-1 周辺ハードウエアとデータ・バッファの関係 (1/2)

周辺ハードウエア	データ・バッ	ファとデータ	転送を行う周	辺レジスタ		
	名 称	記号	周辺	PUT命令 /	入出力	実用
			アドレス	GET命令の可否	ビット	ビット
A/Dコンバータ	A/Dコンバータ・データ・レジスタ	ADCR	02H	PUT/GET	8	8
シリアル・インタフェース 1	プリセッタブル・シフト・レジスタ1	SIO1SFR	04H	PUT/GET	8	8
タイマ 0	タイマ 0 モジュロ・レジスタ	тмом	1AH	PUT/GET	8	8
	タイマ 0 カウンタ	тмос	1BH	GET	8	8
アドレス・レジスタ	アドレス・レジスタ	AR	40H	PUT/GET	16	16
データ・バッファ・スタック	DBFスタック	DBFSTK	41H	PUT/GET	16	16
PLL周波数シンセサイザ ^注	PLLデータ・レジスタ	PLLR	42H	PUT/GET	16	16
周波数カウンタ	IFCデータ・レジスタ	IFC	43H	GET	16	16

注 PLL周波数シンセサイザのプログラマブル・カウンタは17ビットで構成されており,そのうちの上位16ビットは PLLデータ・レジスタ(PLLR)を示し,最下位ビットはコントロール・レジスタのPLLSCNFフラグ(10H番地の3ビット目)に割り付けられています。

詳しくは"16.PLL周波数シンセサイザ"を参照してください。

表9-1 周辺ハードウエアとデータ・バッファの関係 (2/2)

周辺ハードウエア	リセッ	ット時	クロ	機能
	リセット端子によるリセット	WDT&SPリセット	ロック・ストップ	
A/Dコンバータ	0	0	保持	A/Dコンバータの比較電圧V _{ADCREF} データを設定
シリアル・インタフェース 1	不定	不定	保持	シリアル・アウト・データの設定およびシリアル・イン・データの
				読み込み
タイマ 0	FF	FF	FF	タイマ 0 のモジュロ・レジスタ値を設定
	0	0	0	タイマ 0 カウンタの計数値の読み込み
アドレス・レジスタ	0	0	保持	アドレス・レジスタとのデータ転送
データ・バッファ・スタック	不定	不定	保持	データ・バッファのデータを退避
PLL周波数シンセサイザ	不定	不定	保持	PLLの分周値(N値)を設定
周波数カウンタ	0	0	0	周波数カウンタの計数値の読み込み

9.4 データ・バッファ使用時の注意

データ・バッファを介して周辺ハードウエアとデータ転送を行うとき、未使用周辺アドレスや書き込み専用周辺レジスタ(PUTのみ)および読み込み専用周辺レジスタ(GETのみ)に対して、次に示す点に注意が必要です。

- ・書き込み専用レジスタを読み込むと"不定な値"が読み込まれます。
- ・読み込み専用レジスタに書き込みを行っても何も変化しません。
- ・未使用アドレスを読み込むと"不定な値"が読み込まれます。また,書き込みを行っても何も変化しません。

10. データ・バッファ・スタック

10.1 データ・バッファ・スタック概要

図10 - 1 に,データ・バッファ・スタックの概要を示します。

図10 - 1 に示すように,データ・バッファ・スタックは,データ・バッファ・スタック・ポインタおよびデータ・バッファ・スタック・レジスタで構成されています。

データ・バッファ・スタックは , " PUT " および " GET " 命令によりデータ・バッファの内容を退避および復帰します。

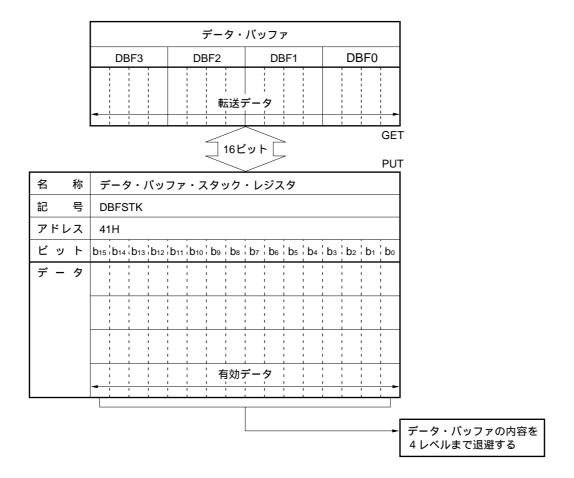
したがって,割り込み受け付け時などにデータ・バッファの内容を1命令で退避できます。

アドレス指定 アルス指定 DBF

図10-1 データ・バッファ・スタック概要

10.2 データ・バッファ・スタック・レジスタ

図10 - 2 に , データ・バッファ・スタック・レジスタの構成を示します。


図10 - 2に示すように,データ・バッファ・スタック・レジスタは,16ビット×4個のレジスタで構成されています。

"PUT"命令を実行することによりデータ・バッファの内容を退避し、"GET"命令を実行することにより退避したデータを復帰します。

最大4レベルまで続けて退避することができます。

図10 - 2 データ・バッファ・スタック・レジスタの構成

10.3 データ・バッファ・スタック・ポインタ

データ・バッファ・スタック・ポインタはデータ・バッファ・スタック・レジスタの多重レベルを検出します。 すなわち,データ・バッファ・スタックに "PUT" 命令が実行されると + 1 され, "GET" 命令が実行されると - 1 されます。

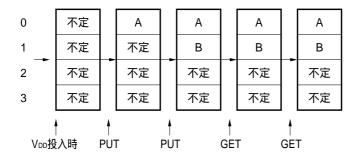
データ・バッファ・スタック・ポインタは読み込みだけ可能であり,書き込みはできません。 次にデータ・バッファ・スタック・ポインタの構成と機能を示します。

名 称	7	ラク	ブ記・		アドレス	Read/Write	
	bз	b ₂	b ₁	b ₀			
データ・バッファ・	0	0	Ô	Ô	04H	R	
スタック・ポインタ		 	В	В			
		 	F	F			
		! ! !	s	s			
		 	Р	Р			
			1	0			
						データ・バッファ	・スタックの多重レベルを検出
			0	0	0レベル		
			0	1	1レベル		
			1	0	2レベル		
			1	1	3レベル		
					" 4 7 田宁		
					" 0 " 固定		
光 RESET端子によるリセット	0	0	0	0			
RESET端子によるリセット WDT & SPリセット			0	0			
クロック・ストップ時	,	,	保	持			

10.4 データ・バッファ・スタックの動作

図10 - 3 に , データ・バッファ・スタックの動作を示します。

図10 - 3 に示すように, PUT命令が実行されると, スタック・ポインタで指定されるデータ・バッファ・スタック・レジスタにデータ・バッファの内容を転送し, スタック・ポインタを + 1 します。


GET命令が実行されると,スタック・ポインタで指定されるデータ・バッファ・スタック・レジスタの内容をデータ・バッファに転送し,スタック・ポインタを - 1 します。

したがって,スタック・ポインタの初期値は 0 であるため一度書き込みを行うと 1 になり, 4 回行うと 0 になるため注意してください。

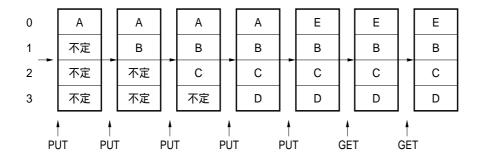

4 レベルを越える書き込み(PUT)を行うと最初のデータははき出されてしまうため注意が必要です。

図10-3 データ・バッファ・スタックの動作

(a)書き込みが4レベルを越えないとき

(b) 書き込みが4レベルを越えるとき

10.5 データ・バッファ・スタックの使用方法

次にプログラム例を示します。

例 INT割り込みルーチンでデータ・バッファとアドレス・レジスタの内容を退避する(データ・バッファとアドレ ス・レジスタ)は割り込みで自動的には退避されない)。

START:

: リセット・アドレス BR INITIAL

; 割り込みベクタ・アドレス NOP ; SI0

; ベーシック・タイマ1 NOP

; TMO NOP

INTINT: : INT端子割り込みベクタ・アドレス (0004H)

> DBFSTK, DBF; DBFの内容をデータ・バッファ・スタック(DBFSTK)の PUT

> > 1レベル目に退避

GET DBF, AR アドレス・レジスタ (AR) の内容をDBFに転送

DBFSTK, DBF; さらにARの内容をデータ・バッファ・スタックの2レ PUT

:ベル目に退避

処理B : INT割り込み処理

DBF、DBFSTK : データ・バッファ・スタックの2レベル目をデータ・バッファに復帰し, **GET**

: さらにデータ・バッファの内容をアドレス・レジスタに復帰する PUT AR, DBF

GET DBF, DBFSTK ; データ・バッファ・スタックの 1 レベル目をデータ・バッファに復帰

ΕI RETI

INITIAL:

SET1 IP0

ΕI

LOOP:

処理A

BR L00P

END

10.6 データ・バッファ・スタック使用時の注意

データ・バッファ・スタックは割り込み受け付け時に自動的に退避されません。 したがって, ソフトウエアで退避 してください。

また,データ・メモリのBANKO以外が指定されている場合でも, "PUT"および"GET"命令でデータ・バッファ (BANKOに存在する)の内容を退避および復帰することができます。

 b_0

P0D0

11.汎用ポート

汎用ポートは,外部回路へのハイ・レベル,ロウ・レベルまたはフローティング信号の出力および外部回路のハイ・レベル,ロウ・レベル信号の読み出しを行います。

11.1 汎用ポート概要

表11 - 1 に,各ポートとポート・レジスタの関係を示します。

P0D0

75

汎用ポートは,入出力ポート,入力ポート,出力ポートに分類されます。

入出力ポートは 1 ビット (1 端子) で入力 / 出力を設定できます (ビットI/Oポート)。各入出力ポートの入力 / 出力の設定は , BANK15のポート入力 / 出力選択レジスタ (60H-6FH) により行います。

ポート 端 データ設定方法 番 号 記号 入出力 ポート・レジスタ (データ・メモリ) バンク アドレス 記号 ビット記号 (予約語) 対象端子なし ポート0A BANK0 70H P0A 出力 bз 対象端子なし b_2 P0A1 19 b₁ P0A1 P0A0 P0A0 bo 18 ポート0B 31 P0B3 入出力 71H P0B bз P0B3 (ビット//0) P0B2 30 P0B2 b_2 29 P0B1 b_1 P0B1 P0B0 P0B0 28 b_0 ポート0C 出力 72H P0C P0C3 67 P0C3 Ьз P0C2 66 P0C2 b_2 65 P0C1 b₁ P0C1 64 P0C0 b_0 P0C0 ポート0D 73H P0D 78 P0D3 入力 bз P0D3 77 P0D2 b_2 P0D2 b_1 P0D1 76 P0D1

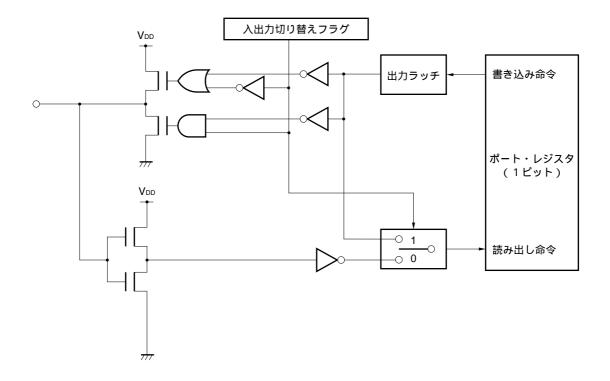
表11 - 1 各ポート(端子)とポート・レジスタの関係(1/2)

表11 - 1 各ポート (端子) とポート・レジスタの関係 (2/2)

ポート		端	 7		デー	- 夕設定方法					
	番号	記号	入出力	ポート・レジスタ (データ・メモリ)							
				バンク	アドレス	記号	ビット記号 (予約語)				
ポート1A	23	P1A3	入出力	BANK1	70H	P1A	b ₃ P1A3				
	22	P1A2	(ビット//0)				b ₂ P1A2				
	21	P1A1					b ₁ P1A1				
	20	P1A0					b ₀ P1A0				
ポート1C	4	P1C3	入力		72H	P1C	b ₃ P1C3				
	3	P1C2					b ₂ P1C2				
	2	P1C1					b ₁ P1C1				
	1	P1C0					b ₀ P1C0				
ポート1D	27	P1D3	入出力		73H	P1D	b ₃ P1D3				
	26	P1D2	(ビット//0)				b ₂ P1D2				
	25	P1D1					b ₁ P1D1				
	24	P1D0					bo P1D0				
ポート2A	対象端子な	:し 	入力		70H	P2A	b ₃				
	63	P2A2					b ₂ P2A2				
	62	P2A1					b ₁ P2A1				
	61	P2A0					b ₀ P2A0				
ポート2B	17	P2B3	入出力	BANK2	71H	P2B	b ₃ P2B3				
	16	P2B2	(ビット//0)				b ₂ P2B2				
	15	P2B1					b ₁ P2B1				
	14	P2B0					b₀ P2B0				
ポート2C	74	P2C3	入出力		72H	P2C	b ₃ P2C3				
	73	P2C2	(ビット//0)				b ₂ P2C2				
	72	P2C1					b ₁ P2C1				
	71	P2C0					b ₀ P2C0				
-	対象端子な	i U	-	BANK3	70H-73H	-	" 0 " 固定				
				BANK15 ^注							

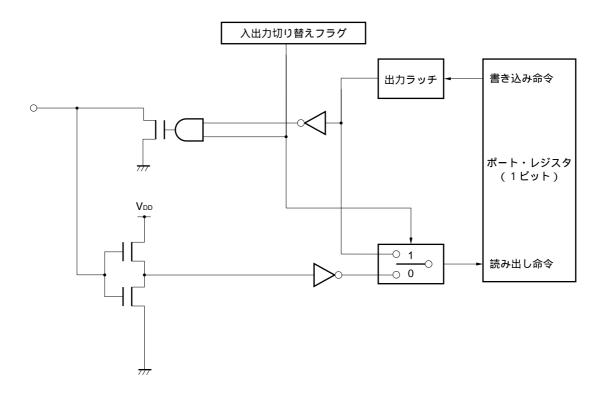
注 BANK4からBANK14の5BHまではありません。

11.2 汎用入出力ポート (P0B, P1A, P1D, P2B, P2C)


11.2.1 入出力ポートの構成

次の(1)および(2)に入出力ポートの構成を示します。

(1) P0B (P0B3, P0B2, P0B1, P0B0)


P2B (P2B3, P2B2, P2B1, P2B0)

P2C (P2C3, P2C2, P2C1, P2C0)

(2) P1A (P1A3, P1A2, P1A1, P1A0) P1D (P1D3, P1D2, P1D1, P1D0)

11.2.2 入出力ポートの使用方法

入出力ポートは , コントロール・レジスタのP0B, P1A, P1D, P2B, P2Cの各I/O選択レジスタにより入力および出力の設定を行います。

これらはすべて,ビットI/Oであるため,1ビット単位で入力/出力を設定できます。

出力データの設定および入力データの読み出しは,それぞれ対応するポート・レジスタにデータを書き込むかデータを読み出す命令を実行することにより行います。

- 11.2.3 に各ポートのI/O選択レジスタの構成を示します。
- 11.2.4 および11.2.5 に,入力および出力ポートとして使用する方法を示します。
- 11.2.6に,入出力ポートのリセット時の状態を示します。

11.2.3 入出力ポートのI/O選択レジスタ

入出力ポートのI/O選択レジスタを次に示します。

- ・ポート0BビットI/O選択レジスタ
- ・ポート1AビットI/O選択レジスタ
- ・ポート1DビットI/O選択レジスタ
- ・ポート2BビットI/O選択レジスタ
- ・ポート2CビットI/O選択レジスタ

各I/O選択レジスタは,各端子の入力/出力を設定します。

次の(1)-(5)に構成と機能を示します。

(1)ポートOBビットI/O選択レジスタ

名 称	-	7ラ:	グ記・	号	アドレス	Read/Write	
	bз	b ₂	b ₁	b ₀			
ポート0BビットI/O選択	Р	Р	Р	Р	(BANK15)	R/W	
	0	0	0	0	6FH		
	В	В	В	В			
	В	В	В	В			
	I	I	I	1			
	0	0	0	0			
	3	2	1	0			
						ポート	トの入力/出力を設定
				0	P0B0端子を入	力モードに設定	
				1	P0B0端子を出	力モードに設定	
						ポート	トの入力/出力を設定
			0	1	P0B1端子を入	力モードに設定	
			1		P0B1端子を出	力モードに設定	
						ポート	トの入力 / 出力を設定
		0	1		P0B2端子を入		
		1	-		P0B2端子を出	力モードに設定	
			,			- 1 .º 1	トの入力 / 出力を設定
		7			DoDo₩7+1		- の人力/ 山力を設定
	0	-				力モードに設定	
	1	<u>.</u>			P0B3端子を出	力モードに設定	
ス RESET端子によるリセッ	F 0	0	0	0			
リース RESET端子によるリセット WDT & SPリセット	0	0	0	0			
クロック・ストップ時		保	持	•			

(2)ポート1AビットI/O選択レジスタ

名 称	7	ラ!	ブ記・	号	アドレス	Read/Write	
	bз	b ₂	b ₁	b ₀			
ポート1AビットI/O選択	Р	Р	Р	Р	(BANK15)	R/W	
	1	1	1	1	6EH		
	Α	Α	Α	Α			
	B	В	B .	B .			
	0	0	0	0			
	3	2	1	0			
				_		ポート	
				0	P1Δ0端子を λ		07(7), H7) CRAC
				1		<u> </u>	
				<u>'</u>	1 17040 7 2 11	// I I CIXXE	
			L	,		ポート	~の入力/出力を設定
			0		P1A1端子を入	力モードに設定	
			1	 	P1A1端子を出	力モードに設定	
						ポート	
		0	1		P1A2端子を入		
		1				力モードに設定	
		<u>. </u>	;			77 1 1012/2	
I		1		-		ポート	~の入力 / 出力を設定
	0	! ! !			P1A3端子を入	力モードに設定	
	1	1 1 1			P1A3端子を出	力モードに設定	
以 RESET端子によるリセット	0	0	0	0]		
RESET端子によるリセット ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・			0				
クロック・ストップ時		_	上 持	<u> </u>			

(3)ポート1DビットI/O選択レジスタ

名 称	7	7ラ!	ブ記-	号	アドレス	Read/Write	
	bз	b ₂	b ₁	b ₀			
ポート1DビットI/O選択	Р	Р	Р	Р	(BANK15)	R/W	
	1	1	1	1	6DH		
	D	D	D	D			
	В	В	В				
	1		1				
	3	2	0	0			
	7						
							- > 1
				_			~の入力 / 出力を設定
				0		カモードに設定	
				1	P1D0端子を出	力モードに設定	
						ポート	~の入力/出力を設定
			0	1	P1D1端子を入	カモードに設定	
			1	1	P1D1端子を出	力モードに設定	
						ポート	~の入力 / 出力を設定
		0	1		P1D2端子を入		
		1	1		P1D2端子を出	力モードに設定	
						ポート	
	0	1			P1D3端子を入		
	1	1			P1D3端子を出	力モードに設定	
リラ RESET端子によるリセット	0	0	0	0]		
り ト WDT & SPリセット		0	i .	i			
クロック・ストップ時			持				

(4)ポート2BビットI/O選択レジスタ

	名 称	7	フラク	ブ記・	号	アドレス	Read/Write	
		рз	b ₂	b ₁	b ₀	•		
ポ	ート2BビットI/O選択	Р	Р	Р	Р	(BANK15)	R/W	
		2	2	2	2	6CH		
		В	В	В	В			
		В	В	В	В			
		I	I	ı	I			
		0	0	0	0			
		3	2	1	0			
							ポート	トの入力/出力を設定
					0	P2B0端子を入	力モードに設定	
					1	P2B0端子を出	力モードに設定	
							ポート	トの入力/出力を設定
				0	1	P2B1端子を入	カモードに設定	
				1	1	P2B1端子を出	力モードに設定	
							ポート	トの入力 / 出力を設定
			0	1		 P2B2端子を入		
			1	i		P2B2端子を出	カモードに設定	
				J	_		ポ ー !	トの入力/出力を設定
		0	7			P2R3従 子 を λ		
		1	-					
		'				FZD3姉丁で山	カモードに設定	
Å.	RESET端子によるリセット	0	0	0	0			
リセット時	WDT & SPリセット	0	0	0	0			
ク	ロック・ストップ時		保	持	•			

(5)ポート2CビットI/O選択レジスタ

名 称	7	7ラ!	ブ記・	号	アドレス	Read/Write	
	рз	b ₂	b ₁	b ₀			
ポート2CビットI/O選択	Р	Р	Р	Р	(BANK15)	R/W	
	2	2	2	2	6BH		
	С	С	С	С			
	В	В	В	В			
	I	I	ı	I			
	0	0	0	0			
	3	2	1	0			
						ポート	- の入力 / 出力を設定
				0	P2C0端子を入	カモードに設定	
				1	P2C0端子を出	力モードに設定	
						ポート	~の入力/出力を設定
			0	1	P2C1端子を入		
			1	-	P2C1端子を出	カモードに設定	
				, _			- の入力 / 出力を設定
			1		D000#2+)		- の人別/山川を設定
		0	i.			力モードに設定	
		1	,		P2C2端子を出	力モードに設定	
				-		ポート	- の入力 / 出力を設定
	0	1			P2C3端子を入	力モードに設定	
	1				P2C3端子を出	力モードに設定	
ソ RESET端子によるリセット	0	: 0	0	0			
RESET端子によるリセット WDT & SPリセット	 		0				
クロック・ストップ時		保	持				

11.2.4 入出力ポートを入力ポートとして使用する場合

各ポートのI/O選択レジスタにより,入力として使用する端子を選択します。

このとき, P0B, P1A, P1D, P2B, P2Cは1ビット単位で入力/出力の設定ができます。

入力ポートに指定された端子はフローティング(Hi-Z)状態になり,外部信号の入力待ちになります。

入力データの読み出しは、各端子に対応するポート・レジスタに対して読み出し命令(SKT命令など)を実行することにより行います。

ポート・レジスタは各端子にハイ・レベルが入力されているときは" 1 "が読み出され,ロウ・レベルが入力されているときは" 0 "が読み出されます。

入力ポートに指定されているポート・レジスタに対して書き込み命令(MOV命令など)を実行すると,出力ラッチの内容が書き換えられます。

11.2.5 入出力ポートを出力ポートとして使用する場合

各ポートのI/O選択レジスタにより,出力として使用する端子を選択します。

このとき, P0B, P1A, P1D, P2B, P2Cは1ビット単位で入力/出力の設定ができます。

出力ポートに指定された端子は出力ラッチの内容を各端子から出力します。

出力データの設定は,各端子に対応するポート・レジスタの内容に対して書き込み命令(MOV命令など)を実行することにより行います。

各端子にハイ・レベルを出力するときは"1"を書き込み,ロウ・レベルを出力するときは"0"を書き込みます。 また,入力ポートに指定することによりフローティング(Hi-Z)状態にすることができます。

出力ポートに指定されているポート・レジスタに対して読み出し命令(SKT命令など)を実行すると,出力ラッチの内容が読み出されます。

11.2.6 入出力ポートのリセット時の状態

(1) RESET端子によるリセット時

すべて入力ポートに指定されます。 出力ラッチの内容は"0"にリセットされます。

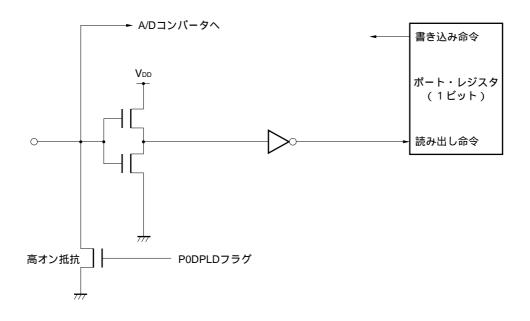
(2) WDT & SPリセット時

すべて入力ポートに指定されます。 出力ラッチの内容は"0"にリセットされます。

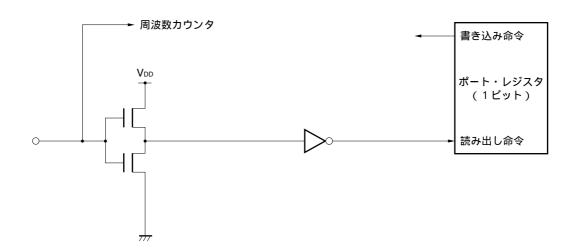
(3)クロック・ストップ時

入力/出力の設定は保持されます。 出力ラッチの内容も保持されます。

(4)ホールト状態中


以前の状態を保持します。

11.3 汎用入力ポート (P0D, P1C, P2A)


11.3.1 入力ポートの構成

次の(1)および(2)に入力ポートの構成を示します。

(1) POD (POD3, POD2, POD1, POD0)

(2) P1C (P1C3, P1C2, P1C1, P1C0) P2A (P2A2, P2A1, P2A0)

11.3.2 入力ポートの使用方法

入力データの読み出しは、各端子に対応するポート・レジスタに対して読み出す命令(SKT命令など)を実行することにより行います。

ポート・レジスタは,各端子にハイ・レベルが入力されているときは"1"が読み出され,ロウ・レベルが入力されているときは"0"が読み出されます。

ポート・レジスタに対して書き込み命令(MOV命令など)を実行しても何も変化しません。

PODは,ソフトウエアで切り替え可能なプルダウン抵抗を内蔵しており,ビット単位で指定可能です。"0"を書き込むとプルダウン抵抗が接続され,"1"で切り離します。

11.3.3 ポート0Dプルダウン抵抗選択レジスタ

ポート0Dプルダウン抵抗選択レジスタは, P0D3-P0D0端子のプルダウン抵抗の使用/未使用を設定します。 次に構成と機能を示します。

・ポートODプルダウン抵抗選択レジスタ

名 称	7	ラク	ブ記 [・]	号	アドレス	Read/Write	
	bз	b ₂	b ₁	b ₀			
ポート0Dプルダウン抵抗選択	Р	Р	Р	Р	(BANK15)	R/W	
	0	0	0	0	6AH		
	D	D	D	D			
	P L	P L	P L	P L			
	D	D	D	D			
	3	2	1	0			
				-		P0D0端	子のプルダウン抵抗選択
				0	P0D0端子のプ	ルダウン抵抗を	使用
				1	P0D0端子のプ	ルダウン抵抗を	未使用
						P0D1端音	
			0	1	P0D1端子のプ	ルダウン抵抗を	使用
			1	1 	P0D1端子のプ	ルダウン抵抗を	未使用
				_		P0D2端	
		0] 		P0D2端子のプ	ルダウン抵抗を	使用
		1	1		P0D2端子のプ	ルダウン抵抗を	未使用
						P0D3端-	
	0	1			P0D3端子のプ	ーーーー ルダウン抵抗を	
	1	1 ! !			P0D3端子のプ	ルダウン抵抗を	未使用
ソ RESET端子によるリセット	0	0	0				
RESET端子によるリセット		_	0	:			
時 WDT は3F 9 ピット クロック・ストップ時			上 持				

11.3.4 入力ポートのリセット時の状態

(1) RESET端子によるリセット時

すべて入力ポートに指定されます。 PODの内蔵プルダウン抵抗はすべて接続状態となります。

(2) WDT & SP**リセット時**

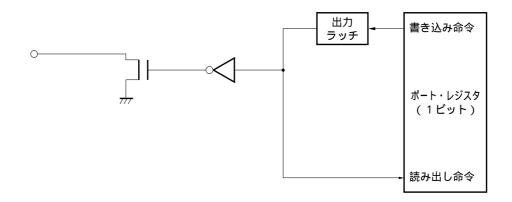
すべて入力ポートに指定されます。 PODの内蔵プルダウン抵抗はすべて接続状態となります。

(3) クロック・ストップ時

すべて入力ポートに指定されます。 PODの内蔵プルダウン抵抗は以前の状態を保持します。

(4)ホールト状態中

以前の状態を保持します。



11.4 汎用出力ポート (POA, POC)

11.4.1 出力ポートの構成

次に出力ポートの構成を示します。

(1) POA (POA1, POA0)

(2) POC (POC3, POC2, POC1, POC0)

11.4.2 出力ポートの使用方法

出力ポートは出力ラッチの内容を各端子から出力します。

出力ポートの設定は,各端子に対応するポート・レジスタに対して書き込み命令(MOV命令など)を実行することにより行います。

各端子にハイ・レベルを出力するときは"1"を書き込み,ロウ・レベルを出力するときは"0"を書き込みます。ただし,POA端子はN-chオープン・ドレーン出力のため,ハイ・レベル出力時はフローティングになります。このため外部にプルアップ抵抗が必要です。

ポート・レジスタに対して読み出し命令(SKT命令など)を実行すると,出力ラッチの内容が読み出されます。

11.4.3 出力ポートのリセット時の状態

(1) RESET端子によるリセット時

出力ラッチの内容を出力します。

出力ラッチの内容は"0"にリセットされます。

(2) WDT & SP**リセット時**

出力ラッチの内容を出力します。 出力ラッチの内容は"0"にリセットされます。

(3) クロック・ストップ時

出力ラッチの内容を出力します。 出力ラッチの内容は保持されます。

(4)ホールト状態中

出力ラッチの内容を出力します。 出力ラッチの内容は保持されます。

12.割り込み

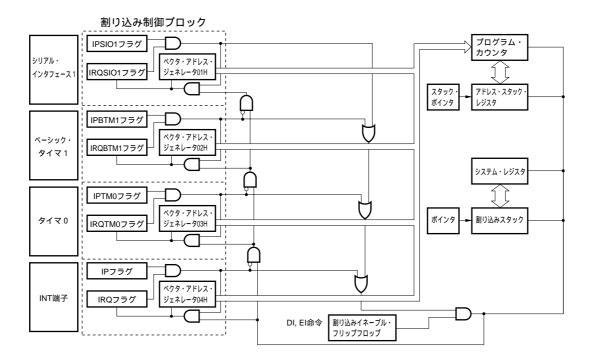
12. 1 割り込みブロック概要

図12-1に,割り込みブロックの概要を示します。

図12 - 1 に示すように,割り込みブロックは,各周辺ハードウエアから出力された割り込み要求により,現在実行しているプログラムを一時中断し,ベクタ・アドレスへ分岐します。

割り込みブロックは,各周辺ハードウエアごとの"割り込み要求処理ブロック",すべての割り込みを許可する"割り込みイネーブル・フリップフロップ",割り込みが受け付けられたときに制御される"スタック・ポインタ","アドレス・スタック・レジスタ","プログラム・カウンタ"および"割り込みスタック"から構成されています。

各周辺ハードウエアの"割り込み制御ブロック"は,各割り込み要求を検出する"割り込み要求フラグ(IRQ×××)",各割り込みごとの許可を設定する"割り込み許可フラグ(IP×××)"および割り込み受け付け時のベクタ・アドレスを指定する"ベクタ・アドレス・ジェネレータ(VAG)"から構成されています。


μPD17934には,次の4種類のマスカブル割り込みがあります。

- ・INT端子の割り込み
- ・タイマ 0 , ベーシック・タイマ 1 割り込み
- ・シリアル・インタフェース 1 割り込み

割り込み受け付け後、決められたアドレスに移り、処理を続けます。

図12 - 1 割り込みブロック概要

12.2 割り込み制御ブロック

割り込み制御ブロックは各周辺ハードウエアごとに設けられており,それぞれの割り込み要求の有無,割り込みの許可および割り込み受け付け時のベクタ・アドレスの生成を行います。

12.2.1 割り込み要求フラグ (IRQ×××) の構成と機能

各割り込み要求フラグは,各周辺ハードウエアから割り込み要求が発行されるとセット(1)され,割り込みが受け付けられるとリセット(0)されます。

また,各割り込み要求フラグに,直接"1"を書き込んだ場合も,割り込み要求が発行されたことと同等になります。

割り込みが許可されていない場合などに,これらの割り込み要求フラグを検出することにより,各割り込み要求の 発行状態を検出することができます。

一度このフラグがセットされると,対応する割り込みが受け付けられるか,またはウインドウ・レジスタを介して "0"が書き込まれるまでリセットされません。

複数の割り込み要求が同時に発行された場合でも,受け付けられなかった割り込みに対応する割り込み要求フラグはリセットされません。

図12-2~図12-5に各割り込み要求レジスタの構成と機能を示します。

名 称 フラグ記号 アドレス Read/Write b₃ | b₂ | b₁ | b₀ シリアル・インタフェース 1 | 0 | 0 | 0 | 1 | (BANK15) R/W R 3СН 割り込み要求 Q S 1 0 1 シリアル・インタフェース 1 の割り込み要求発行状態を設定 0 割り込み要求なし 割り込み要求あり " 0 " 固定

図12 - 2 シリアル・インタフェース1割り込み要求レジスタの構成

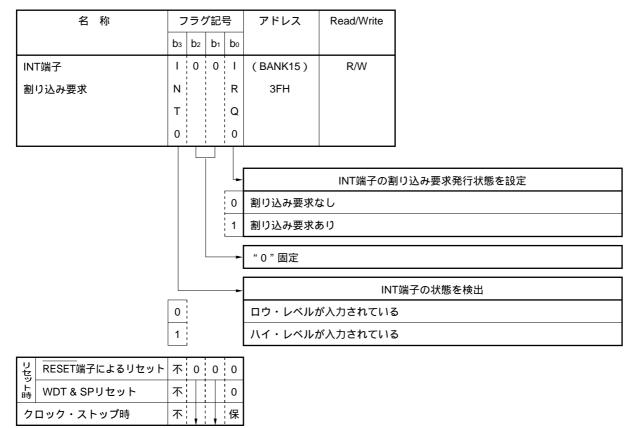
リセッ	RESET端子によるリセット	0	0	0	0
ト時	WDT & SPリセット				0
ク	ロック・ストップ時				保

保:保持

図12 - 3 ベーシック・タイマ 1割り込み要求レジスタの構成

名 称	7	フラク	ブ記・	号	アドレス	Read/Write		
	bз	b ₂	b ₁	b ₀				
ベーシック・タイマ 1	0	0	0	1	(BANK15)	R/W		
割り込み要求				R	3DH			
		1	1	Q				
				В				
				Т				
				М				
		! ! !	! ! !	1				
	_	T						
				_	べ・	ーシック・タイ	1 の割り込み要求発行状態	を設定
				0	割り込み要求な	まし		
				1	割り込み要求も	あり		
				-	" 0 " 固定			
リ RESET端子によるリセット	0	0	0	0				
ド 時 WDT & SPリセット				0				
クロック・ストップ時		,	<u> </u>	保				

保:保持


図12 - 4 タイマ 0 割り込み要求レジスタの構成

名 称	フラグ記号				アドレス	Read/Write	
	рз	b ₂	b ₁	b ₀			
タイマ 0	0	0	0	T	(BANK15)	R/W	
割り込み要求			:	R	3EH		
				Q			
		! ! !	ı	Т			
		 		М			
				0			
				-		タイマ 0 の割	削り込み要求発行状態を設定
0					割り込み要求な		
				1	割り込み要求を	あり	
				-	" 0 " 固定		
リ RESET端子によるリセット	0	0	0	0			
RESET端子によるリセット WDT & SPリセット				0			
クロック・ストップ時		,		保			

保:保持

図12 - 5 INT端子割り込み要求レジスタの構成

不:不定 保:保持

12.2.2 **割り込み許可フラグ (IP×××) の機能と構成**

各割り込み許可フラグは,各周辺ハードウエアごとの割り込みの許可を設定します。 割り込みが受け付けられるためには,次に示す条件をすべて満たす必要があります。

- ・各割り込み許可フラグにより割り込みが許可されていること
- ・対応する割り込み要求フラグにより割り込み要求が発行されていること
- ・EI命令(すべての割り込みの許可)が実行されていること

割り込み許可フラグはレジスタ・ファイル上の割り込み許可レジスタに配置されています。 図12 - 6 に割り込み許可レジスタの構成を示します。

図12-6 割り込み許可レジスタの構成

名 称	フラグ	記号	アドレス	Read/Write						
	b ₃ b ₂	b ₁ b ₀								
割り込み許可	1 1	1 1	(BANK15)	R/W						
	PP	PP	2FH							
	SB	ТО								
	ΙТ	м								
	ОМ	0								
	1 1									
		TT	I							
		_		INT端子	への割り込み許可を設定					
		0	割り込みの禁止	<u> </u>						
		1	割り込みの許可							
			タイマ 0 への割り込み許可を設定							
		0	割り込みの禁止							
		1	割り込みの許可	可						
		-		ベーシック・タ	イマ1への割り込み許可を設定					
	0		割り込みの禁止	Ŀ						
			割り込みの許可							
		-	シリ	リアル・インタフ						
	0		割り込みの禁止	<u> </u>						
	├									

12.2.3 ベクタ・アドレス・ジェネレータ (VAG)

各周辺ハードウエアからの割り込みを受け付けたときに、受け付けた割り込み要因に対するプログラム・メモリの 分岐アドレス(ベクタ・アドレス)を生成します。

表12-1に,各割り込み要因に対するベクタ・アドレスを示します。

表12-1 割り込み要因とベクタ・アドレス

割り込み要因	ベクタ・アドレス				
INT端子	0004H				
タイマ 0	0003H				
ベーシック・タイマ 1	0002H				
シリアル・インタフェース 1	0001H				

12.3 割り込みスタック・レジスタ

12.3.1 割り込みスタック・レジスタの構成と機能

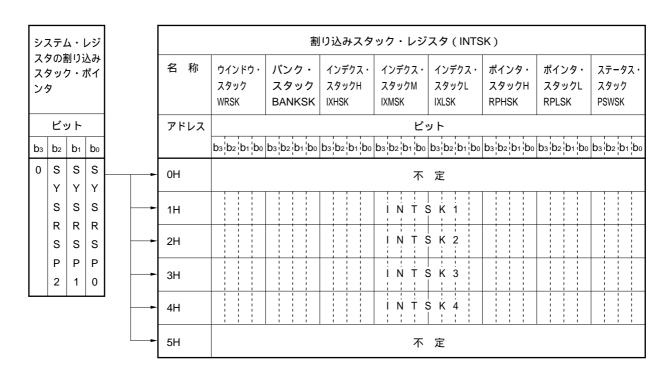
図12 - 7 に , 割り込みスタック・レジスタの構成を示します。

割り込みスタックは、割り込み受け付け時に、次に示すシステム・レジスタ(アドレス・レジスタ(AR)は除く)の内容を退避します。

- ・ウインドウ・レジスタ (WR)
- ・バンク・レジスタ (BANK)
- ・インデクス・レジスタ(IX)
- ・ジェネラル・レジスタ・ポインタ(RP)
- ・プログラム・ステータス・ワード (PSWORD)

割り込みが受け付けられ,上記のシステム・レジスタの内容が割り込みスタックに退避されると,ウインドウ・レジスタを除く上記のシステム・レジスタの内容は,"0"にリセットされます。

割り込みスタックは,上記のシステム・レジスタの内容を4レベルまで退避することができます。


したがって,多重割り込みを4レベルまで行うことができます。

割り込みスタック・レジスタの内容は、割り込みリターン命令(RETI命令)が実行されると、システム・レジスタに復帰されます。

RESET端子によるリセット時は,割り込みスタック・レジスタの内容は不定です。

クロック・ストップ命令実行時は以前の内容を保持します。

図12 - 7 割り込みスタック・レジスタの構成

12.3.2 システム・レジスタの割り込みスタック・ポインタ

システム・レジスタの割り込みスタック・ポインタは,割り込みの多重レベルを検出します。割り込みスタック・ポインタは読み出しだけ可能であり,書き込みはできません。

次にシステム・レジスタの割り込みスタック・ポインタの構成と機能を示します。

名 称	フラグ記号			アドレス	Read/Write					
	b ₃ b ₂	b ₁	b ₀							
システム・レジスタの割り 込みスタック・ポインタ		Υ	Υ	08H	R					
	R	S R S	R							
	2	1)	0							
				シス	 、テム・レジスタ	 の割り込みスタックのレベルを検出				
	0	0	0	使用不可						
	0	0	1	4 レベル (IN7	ΓSK1)					
	- }	1	! 	3 レベル (INTSK2) 2 レベル (INTSK3) 1 レベル (INTSK4)						
		0	1							
	1	0	1	0 レベル						
			-	" 0 " 固定						

リセッ	RESET端子によるリセット	0		1	0	1
ト時	WDT & SPリセット			1	0	1
ク	ロック・ストップ時			保	持	

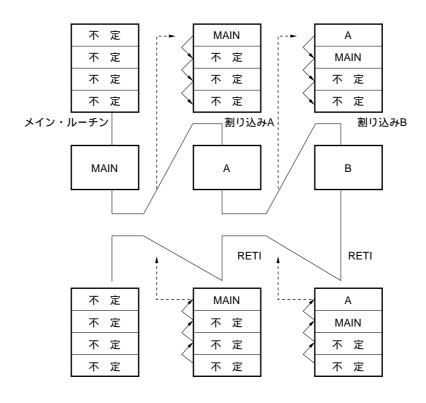

12.3.3 割り込みスタック動作

図12 - 8 に , 割り込みスタックの動作を示します。

4 レベルを越える多重割り込み受け付け時は、最初に退避した内容がはき出されてしまうため、プログラムにより 退避する必要があります。

図12-8 割り込みスタックの動作(1/2)

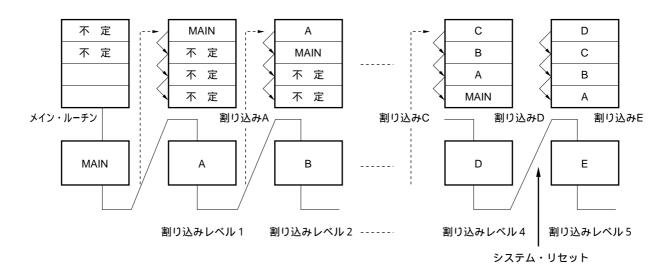

(a)割り込みが4レベル以下のとき

図12-8 割り込みスタックの動作(2/2)

(b)割り込みが5レベル以上のとき

注意 割り込みレベル5の割り込みが受け付けられた時点で,システム・リセットがかかります。

ただし,割り込みスタックのオーバフロー/アンダフローによる,ノンマスカブル割り込みのリセット設定フラグISPRESフラグが"1"に設定されている必要があります。またこのフラグはシステム・リセット後の値は"1"であり,システム・リセット後,1回だけ書き込みが可能です。

12.4 スタック・ポインタ,アドレス・スタック・レジスタとプログラム・カウンタ

アドレス・スタック・レジスタは、割り込み処理ルーチンからの復帰時の戻り番地を退避します。

スタック・ポインタはアドレス・スタック・レジスタのアドレスを指定します。

割り込みが受け付けられるとスタック・ポインタの値を - 1 し , そのときのプログラム・カウンタの値をスタック・ポインタで指定されるアドレス・スタック・レジスタに退避します。

次に,割り込み処理ルーチンの処理を実行したあと,割り込みリターン命令(RETI命令)が実行されると,スタック・ポインタで指定されるアドレス・スタック・レジスタの内容をプログラム・カウンタに復帰し,スタック・ポインタの値を+1します。

"3.アドレス・スタック(ASK)"も参照してください。

12.5 割り込みイネーブル・フリップフロップ (INTE)

割り込みイネーブル・フリップフロップは,4種類のマスカブル割り込みの許可を設定します。

このフリップフロップがセットされていると,すべての割り込みが許可されます。また,リセットされていると,すべての割り込みが禁止されます。

このフリップフロップのセットおよびリセットは,専用命令であるEI命令(セット)およびDI命令(リセット)で行います。

EI命令は, EI命令の次の命令が実行された時点でこのフリップフロップをセットし, DI命令は, DI命令実行中にこのフリップフロップをリセットします。

割り込みが受け付けられると、このフリップフロップは自動的にリセットされます。

RESET端子によるリセット時,ウォッチドッグ・タイマ,スタック・オーバフロー/アンダフロー・リセット時は, このフリップフロップはリセットされます。クロック・ストップ時は,以前の状態を保持します。

12.6 割り込み受け付け動作

12.6.1 割り込み受け付け動作と優先順位

割り込みを受け付けるまでの動作を次に示します。

- (1) 各周辺ハードウエアは,割り込み条件が満足される(たとえばINT端子に立ち下がり信号が入力される)と, 各割り込み要求プロックに割り込み要求信号を出力する。
- (2) 各割り込み要求ブロックは,各周辺ハードウエアからの割り込み要求信号を受け付けると,対応する割り込み要求フラグ(たとえばINT端子であればIRQ0フラグ)を"1"にセットする。
- (3) 各割り込み要求フラグが"1"にセットされたときに,各割り込み要求フラグに対応する割り込み許可フラグ(たとえばIRQ0フラグであればIP0フラグ)が"1"にセットされていると,各割り込み要求ブロックから "1"を出力する。
- (4) 各割り込み要求ブロックから出力された信号は、割り込みイネーブル・フリップフロップの出力とORされ、割り込み受け付け信号を出力する。

この割り込みイネーブル・フリップフロップは , EI命令により" 1 "にセットされ , DI命令により" 0 "にリセットされる。

割り込みイネーブル・フリップフロップが" 1 "にセットされているときに,各割り込み要求処理ブロックから" 1 "が出力されると,割り込みが受け付けられる。

図12 - 1 に示したように,割り込みが受け付けられると,割り込みイネーブル・フリップフロップの出力は,AND 回路を介して各割り込み要求ブロックへ入力されます。

各割り込み要求ブロックへ入力された信号により,各割り込み要求フラグに対応する割り込み要求フラグが"0"にリセットされ,かつ各割り込みに対応するベクタ・アドレスが出力されます。

このとき,割り込み要求ブロックから"1"が出力されていると,割り込み受け付け信号は次段に伝達されませんので,同時に複数の割り込み要求が発行されたときは,次に示す優先順位で割り込みが受け付けられます。

割り込み許可フラグが" 1 "にセットされていなければ,その割り込み要因に対応する割り込みは受け付けられません。

したがって,割り込み許可フラグを" 0 "にリセットしておくことにより,ハードウエア優先順位の高い割り込みを禁止することができます。

割り込み要因	優先順位
INT端子	1
タイマ 0	2
ベーシック・タイマ 1	3
シリアル・インタフェース 1	4

表12-2 割り込み優先順位

12.6.2 割り込み受け付け時のタイミング・チャート

図12 - 9 に , 割り込み受け付け時のタイミング・チャートを示します。

図12 - 9の(1)は,1種類の割り込みによるタイミング・チャートです。

(1)の(a)は,割り込み要求フラグが最後に"1"にセットされた場合のタイミング・チャートであり,(1)の(b)は,割り込み許可フラグが最後に"1"にセットされた場合のタイミング・チャートです。

どちらの場合も,割り込みの受け付けは,割り込み要求フラグ,割り込みイネーブル・フリップフロップおよび割り込み許可フラグのすべてが"1"にセットされた時点で行われます。

最後にセットされたフラグまたはフリップフロップが "MOVT DBF, @AR" 命令の第 1 命令サイクル, またはスキップ条件を満足した命令の場合は, それぞれ "MOVT DBF, @AR" 命令の第 2 命令サイクルおよびスキップした命令(NOP命令になる)を実行したあと, 割り込みが受け付けられます。

割り込みイネーブル・フリップフロップのセットは、EI命令が実行された次の命令サイクルで行われます。

したがって、EI命令の実行サイクルで割り込み要求フラグがセットされた場合にも、EI命令の次の命令を実行してから割り込みが受け付けられます。

図12-9の(2)は、複数の割り込みを使用するときのタイミング・チャートを示します。

複数の割り込みを使用するときは、割り込み許可フラグがすべてセットされていれば、ハードウエアで優先されている割り込みから順に受け付けられますが、プログラムで割り込み許可フラグを設定することにより、ハードウエアの優先度を変えることができます。

なお,図12-9に示した"割り込みサイクル"とは,割り込みが受け付けられてから割り込み要求フラグのリセット,ベクタ・アドレスの指定,プログラム・カウンタの退避などを行うための特別なサイクルであり,1命令実行時間に相当する53.3 µ sを必要とします。

詳しくは, "12.7 割り込み受け付け後の動作"を参照してください。

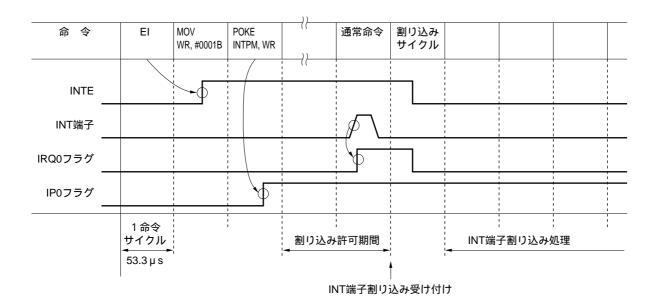
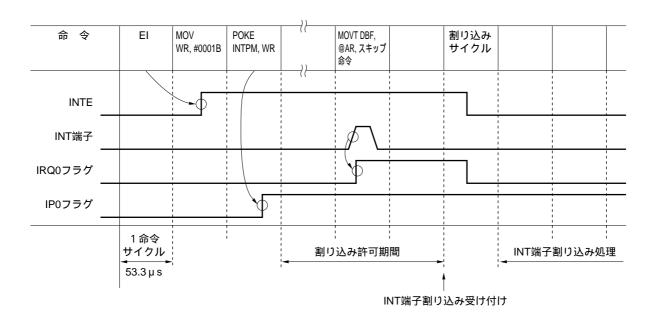


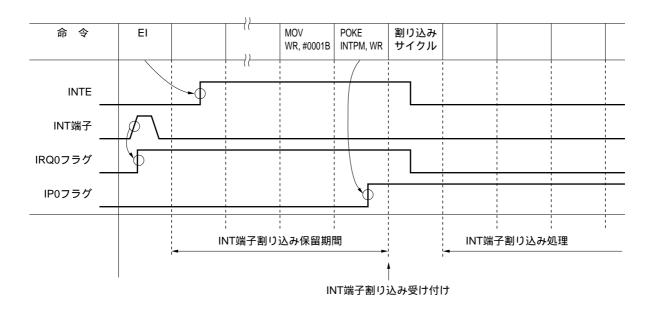
図12 - 9 割り込み受け付けタイミング・チャート (1/3)


(1)1種類の割り込み(例:INT端子の立ち上がり)を使用時

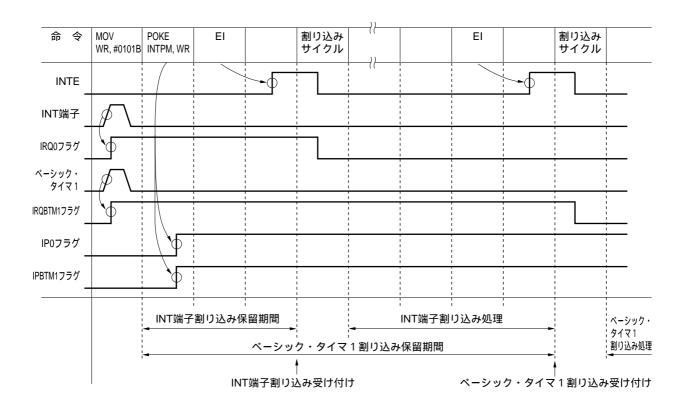
(a)割り込みフラグ(IP×××)による割り込みマスク時間がない場合

割り込み受け付け時が "MOVT" 命令およびスキップ条件を満たした命令でない通常命令の場合

割り込み受け付け時が"MOVT"命令か,または"スキップ条件を満たした命令"の場合



111


図12 - 9 割り込み受け付けタイミング・チャート (2/3)

(b)割り込み許可フラグによる割り込み保留期間がある場合

(2)複数の割り込み(例:INT端子,ベーシック・タイマ1の2種類)を使用時

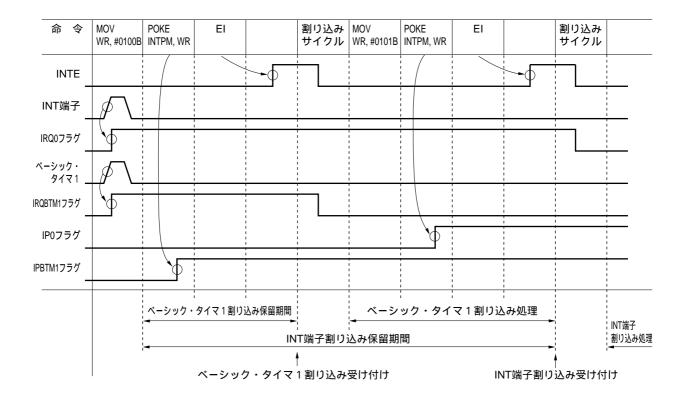

(a) ハードウエア優先

図12 - 9 割り込み受け付けタイミング・チャート (3/3)

(b) ソフトウエア優先

12.7 割り込み受け付け後の動作

割り込みが受け付けられると、次に示す処理が順次自動的に実行されます。

- (1)割り込みイネーブル・フリップフロップおよび受け付けられた割り込み要求に対応する割り込み要求フラグを"0"にリセットする。つまり,割り込み禁止状態になる。
- (2) スタック・ポインタの内容を 1 する。
- (3) プログラム・カウンタの内容を, スタック・ポインタで指定されるアドレス・スタック・レジスタへ退避する。

このときのプログラム・カウンタの内容は,割り込みが受け付けられた時点の次のプログラム・メモリ・アドレスになる。

たとえば、分岐命令であれば分岐先のアドレスとなり、サブルーチン・コール命令であればコール先のアドレスになる。スキップ命令でスキップ条件が満たされたときは、次の命令をNOP命令として実行したあとに割り込みが受け付けられるため、プログラム・カウンタの内容はスキップした命令の次のアドレスになる。

- (4)システム・レジスタ(アドレス・レジスタを除く)の内容を,割り込みスタックへ退避する。
- (5)受け付けられた割り込みに対応するベクタ・アドレス・ジェネレータの内容を,プログラム・カウンタに転送する。つまり,割り込み処理ルーチンへ分岐する。

上記 (1)-(5)の処理は,通常の命令の実行を伴わない特別な1命令サイクル (53.3 μ s) の時間が必要になります。

この命令サイクルを"割り込みサイクル"と呼びます。

つまり,割り込みが受け付けられてから,対応するベクタ・アドレスへ分岐するまでに 1 命令サイクル (53.3 μ s) の時間が必要になります。

12.8 割り込み処理ルーチンからの復帰処理

割り込み処理ルーチンから,割り込みが受け付けられたときの処理へ復帰させるには,割り込みリターン命令(RETI命令)を使用します。

RETI命令が実行されると、次に示す処理が順次自動的に実行されます。

- (1) スタック・ポインタで指定されるアドレス・スタック・レジスタの内容を,プログラム・カウンタに復帰する。
- (2)割り込みスタックの内容を,システム・レジスタに復帰する。
- (3) スタック・ポインタの内容を+1する。

上記(1)-(3)の処理は, RETI命令が実行される1命令サイクル(53.3 μs)中に処理されます。

RETI命令と,サブルーチン・リターン命令であるRET命令およびRETSK命令との違いは,上記(2)のバンク・レジスタおよびインデクス・レジスタの復帰動作の違いのみです。

12.9 外部 (INT端子) 割り込み

12.9.1 外部割り込み概要

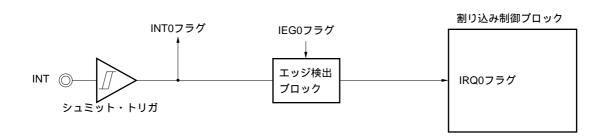
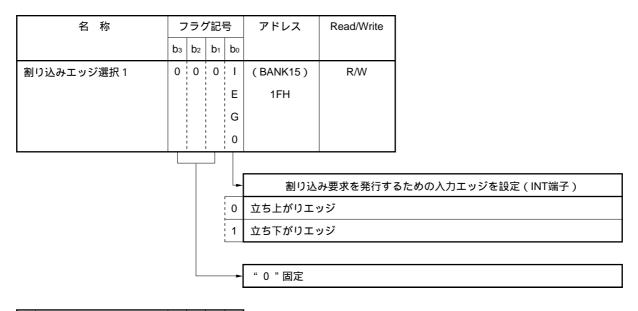

図12 - 10に,外部割り込みの概要を示します。

図12 - 10に示すように,外部割り込みは,INT端子に加えられた信号の立ち上がりまたは立ち下がりエッジにより,割り込み要求を発行します。

INT端子の立ち上がりおよび立ち下がりのどちらで割り込み要求を発行するかは、プログラムにより独立して設定できます。

INT端子は,ノイズによる誤動作を防ぐためシュミット・トリガ入力となっています。また,100 ns未満のパルス入力は受け付けません。

図12-10 外部割り込みの概要



12.9.2 エッジ検出プロック

エッジ検出ブロックは,割り込みエッジ選択レジスタによりINT端子の割り込み要求を発行する入力信号エッジ(立ち上がりまたは立ち下がりエッジ)を設定します。

図12 - 11に割り込みエッジ選択レジスタの構成と機能を示します。

図12-11 割り込みエッジ選択レジスタの構成

リセッ	RESET端子によるリセット	()	C)	C)	0
ト時	WDT & SPリセット							0
ク	ロック・ストップ時	,			, ;	,	,	保

保:保持

注意 外部入力は,約100 ns遅れますので注意してください。

表12 - 3	IEGフラグの変更による割り込み要求の発行	Ŧ
---------	-----------------------	---

IEG0フラグの変化	INT端子の状態	割り込み要求発行の有無	割り込み要求フラグの状態
1 0	ロウ・レベル	発行されない	以前の状態を保持
(立ち下がり)(立ち上がり)	ハイ・レベル	発行される	" 1 " にセットされる
0 1	ロウ・レベル	発行される	" 1 " にセットされる
(立ち上がり)(立ち下がり)	ハイ・レベル	発行されない	以前の状態を保持

12.9.3 割り込み制御ブロック

INTOフラグによりINT端子に入力された信号レベルを検出することができます。

INTOフラグは割り込みとは無関係にセットまたはリセットされるため,割り込み機能を使用しない場合INT端子は1ビットの入力ポートとして使用できます。

なお、割り込みを許可していなければ、割り込み要求フラグを読み込むことにより立ち上がりまたは立ち下がりエッジを検出できる汎用ポートとして使用できます。

ただし、この場合は割り込み要求フラグは自動的にリセットされませんので、プログラムによりリセットする必要があります。

"12.2.1 割り込み要求フラグ (IRQ×××) の構成と機能"も参照してください。

12.10 内部割り込み

内部割り込みには,次に示す3系統があります。

- ・タイマ0
- ・ベーシック・タイマ1
- ・シリアル・インタフェース1

12.10.1 タイマ0,ベーシック・タイマ1割り込み

一定時間ごとに割り込み要求を発行します。

詳しくは, "13.タイマ"を参照してください。

12.10.2 シリアル・インタフェース 1 割り込み

シリアル出力またはシリアル入力動作終了時に,割り込み要求を発行することができます。

詳しくは, "15.シリアル・インタフェース"を参照してください。

13.タイマ

タイマは、プログラム実行上の時間管理に使用します。

13.1 タイマ概要

図13 - 1 に,タイマの概要を示します。

タイマは次の3系統で構成されています。

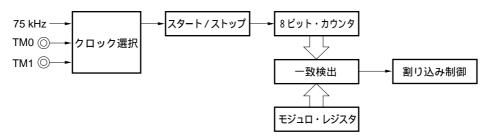
- ・ベーシック・タイマ0,1
- ・タイマ0


ベーシック・タイマ 0 , 1 は , 一定時間ごとにセットされるフリップフロップの状態をプログラムにより検出します。

タイマ 0 はモジュロ方式のタイマで割り込みを使用できます。

各タイマのクロックは, いずれもシステム・クロック(75 kHz)を分周して作られています。

図13-1 タイマ概要


(1)ペーシック・タイマ0

(2)ペーシック・タイマ1

(3) タイマ0

13.2 ベーシック・タイマ0

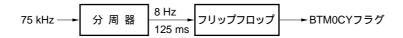

13.2.1 ペーシック・タイマ 0 概要

図13 - 2 にベーシック・タイマ 0 の概要を示します。

ベーシック・タイマ 0 は,一定時間ごと(125 ms)にセットされるBTM0CYフラグをプログラムにより検出することにより,タイマとして使用します。

RESET端子によるリセット後,最初にBTM0CYフラグを読み出すと,必ず" 1 "が読み出され,その後は125 msごとに" 1 "がセットされます。

図13 - 2 ペーシック・タイマ 0 概要

備考 BTMOCY (ベーシック・タイマ 0 キャリー・レジスタのビット 0 : **図**13 - **3**参照) フリップフロップの状態を検出

13. 2. 2 フリップフロップおよびBTM0CYフラグ

フリップフロップは , 一定時間ごと (125 ms) にセットされ , ベーシック・タイマ 0 キャリー・レジスタのBTM0CY フラグによりその状態を検出します。

BTM0CYフラグを読み出すと,BTM0CYフラグは"0"にリセットされます(Read & Reset)。

BTMOCYフラグはRESET端子によるリセット時は,必ず"1"にセットされます。

図13 - 3 にベーシック・タイマ 0 キャリー・レジスタの構成を示します。

図13 - 3 ベーシック・タイマ0キャリー・レジスタの構成

名 称	フ	フラグ記号			アドレス	Read/Write					
	Ьз	b ₂	b ₁	b ₀							
ベーシック・タイマ 0	0	0	0	В	(BANK15)	R & Reset					
キャリー				Т	17H						
				М							
			! ! !	0							
				С							
				Υ							
				_		フリップス	'ロップの状態を検出する				
				0	フリップフロッ	ップはセットされ	ていない				
				1	フリップフロップはセットされている						
					" 0 " 固定						

Į	ノヒッ	 RESET端子によるリセット	0)	0		0	1
H.	ト 寺	WDT & SPリセット				1		保
	クロ	ロック・ストップ時	,	,	ļ	1111	,	保

保:保持

13.2.3 ペーシック・タイマ0使用例

次にプログラム例を示します。

このプログラムは,処理Aを1秒ごとに実行します。

例

LOOP:

SKT1 BTMOCY ; BTMOCYフラグが"0"ならNEXTへ分岐

BR NEXT

ADD M1,#1 ; M1に1を加算

SKE M1,#08H ; M1が"8"(1秒経過)なら処理Aを実行

BR NEXT MOV M1,#0

処理A

NEXT:

処理 B ; 処理 B を実行してLOOPへ分岐

BR LOOP

13.2.4 ペーシック・タイマ0の誤差

ベーシック・タイマ 0 の誤差には、BTMOCYフラグの検出時間による誤差があります。

BTM0CYフラグの検出時間による誤差

BTM0CYフラグを検出する時間は,BTM0CYフラグがセットされる時間よりも短くする必要があります。

つまり,BTM0CYフラグを検出する時間間隔をtcheckとし,BTM0CYフラグがセットされる時間間隔(125 ms)をtsetとすると,tcheckとtsetは,次に示す関係である必要があります。

tcheck < tset

このとき,図13-4に示すように,BTM0CYフラグを検出するときのタイマの誤差は,次に示すようになります。

0 < 誤差 < tset

図13 - 4 BTM0CYフラグの検出時間によるベーシック・タイマ 0 の誤差

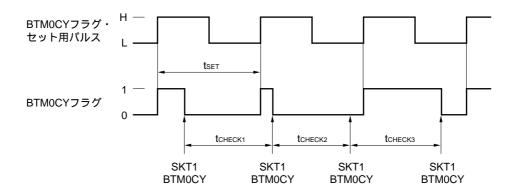
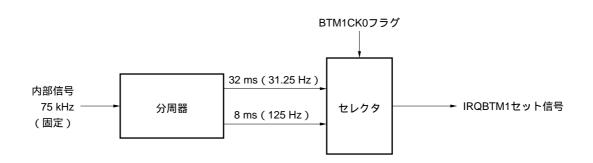


図13 - 4に示すように,まず でBTM0CYフラグを検出すると,"1"であるため,タイマを更新します。 次に で検出すると,"0"であるため, で再度検出するまでタイマは更新されません。 つまり,このときタイマは,tcheck3の時間だけ長くなることになります。

13.3 ペーシック・タイマ1

13.3.1 ペーシック・タイマ1概要


図13 - 5 にベーシック・タイマ 1 の概要を示します。

ベーシック・タイマ1は、一定時間ごとに割り込み要求を発行し、IRQBTM1フラグをセット(1)します。

IRQBTM1フラグをセットする時間間隔の設定は,ベーシック・タイマ1クロック選択レジスタのBTM1CK0フラグにより行います。図13 - 6にベーシック・タイマ1クロック選択レジスタの構成を示します。

ベーシック・タイマ 1 による割り込みは, EI命令が実行されており, かつIPBTM1フラグがセットされているときに, IRQBTM1フラグがセットされると受け付けられます(12.**割り込み**参照)。

図13 - 5 ペーシック・タイマ 1 概要

備考 BTM1CK0(割り込みエッジ選択レジスタのビット1:**図**13 - **6**参照) IRQBTM1フラグをセットする時間間隔を設定

13.3.2 クロック選択プロック

クロック選択プロックは,システム・クロック(75 kHz)を分周し,BTM1CK0フラグにより,IRQBTM1フラグをセットする時間間隔を設定します。

図13 - 6 にベーシック・タイマ 1 クロック選択レジスタの構成を示します。

図13 - 6 ベーシック・タイマ1クロック選択レジスタの構成

名 称	7	ラク	ブ記 [・]	号	アドレス	Read/Write		
	bз	b ₂	b ₁	b ₀				
ベーシック・タイマ 1	0	0	0	В	(BANK15)	R/W		
クロック選択				Т	18H			
				М				
				1				
		! !		С				
				κ				
				0				
				_		IRQBTM1フライ	をセットする時間間隔を	設定
				0	32 ms (31.25	Hz)		
				1	8 ms (125 Hz)		
		L		-	" 0 " 固定			
				1				
リ RESET端子によるリセット	0	0	0	0				

 サラト
 RESET端子によるリセット 0 0 0 0

 WDT & SPリセット
 0 0

 クロック・ストップ時
 人 人 保

保:保持

13.3.3 ベーシック・タイマ1の使用例

次にプログラム例を示します。

例

```
M1
      MEM
            0.10H
                     :80msのカウンタ
            0002H
BTIMER1 DAT
                      ; ベーシック・タイマ1の割り込みベクタ・アドレスのシンボル定義
      BR
            START
                     ; STARTに分岐
                      ; プログラム・アドレス (0002H)
ORG
      BTIMER1
      ADD
            M1,#0001B
                     ; M1に1を加算
                     ; CYフラグをテスト
      SKT1
            CY
                      : キャリーが出なければリターン
      BR
            EI RETI
      MOV
            M1,#0110B
             Α
EI RETI:
      ΕI
      RETI
START:
      MOV
            M1,#0110B
                     ; M1の内容を6にイニシャライズ
      BANK1
      SET1
                     ;組み込みマクロ
            BTM1CK0
                      ;ベーシック・タイマ1割り込み用パルスを8msに設定
                      ; ベーシック・タイマ1による割り込みの許可を設定
      SET1
            IPBTM1
      ΕI
                      ; すべての割り込みの許可を設定
L00P:
      BANK0
       処 理
              В
      BR LOOP
```

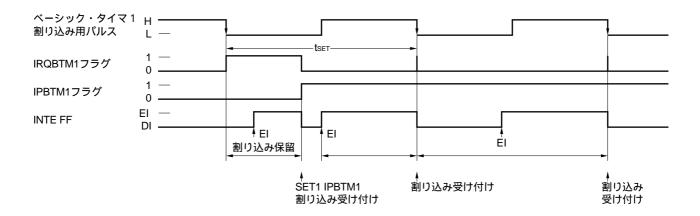
このプログラムは,処理Aを80 msごとに実行します。

このとき注意する点は、割り込みが受け付けられると自動的にDI状態となることと、DI状態であってもIRQBTM1フラグはセット(1)されるということです。

つまり,処理Aの時間が8ms以上かかると "RETI"命令で復帰してもすぐに割り込みが受け付けられてしまい,処理Bは実行されなくなってしまいます。

13.3.4 ペーシック・タイマ1の誤差

13. **3**. **3**で説明したように, EI命令が実行されており, かつベーシック・タイマ1による割り込みが許可されていれば, ベーシック・タイマ1割り込み用パルスが立ち下がるたびに割り込みが受け付けられます。


したがって,ベーシック・タイマ1の誤差は,次の操作を行ったときのみ発生します。

- ・ベーシック・タイマ1による割り込みを許可したときの最初の割り込み受け付け時
- ・IRQBTM1フラグをセットする時間間隔を変更したとき、つまり割り込み用パルスを変更したときの、最初の割り込み受け付け時
- ・IRQBTM1フラグに書き込み操作を行ったとき

図13 - 7 に各操作時の誤差を示します。

図13 - 7 ベーシック・タイマ1の誤差 (1/2)

(a) ベーシック・タイマ 1 による割り込みを許可したとき

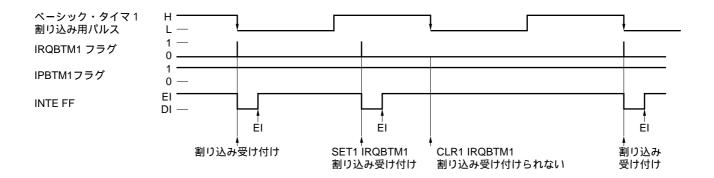
上記 点でIPBTM1フラグをセットしてベーシック・タイマ 1 による割り込みを許可すると即座に割り込みが受け付けられます。

このときの誤差は - tsetになります。


次の 点で "EI" 命令により割り込みを許可すると 点のベーシック・タイマ 1 割り込み用パルスの立ち下がりで割り込みがかかります。

このときの誤差は - tset < 誤差 < 0 になります。

図13-7 ペーシック・タイマ1の誤差 (2/2)


(b) ベーシック・タイマ 1 割り込み用パルスを切り替えたとき

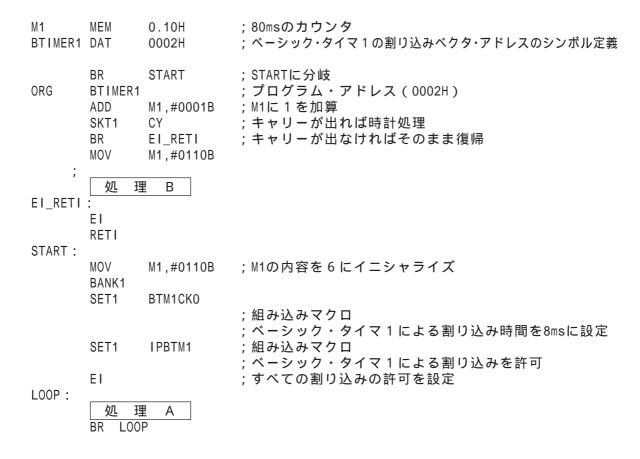
でベーシック・タイマ 1 割り込み用パルスをBに変更してもベーシック・タイマ 1 割り込み用パルスが立ち下がらないため,次の で割り込みが受け付けられます。

でベーシック・タイマ 1 割り込み用パルスをAに変更するとベーシック・タイマ 1 割り込み用パルスが立ち下がるため,即座に割り込みが受け付けられます。

(c) IRQBTM1フラグを操作したとき

でIRQBTM1フラグをセット(1)すると即座に割り込みが受け付けられます。

でIRQBTM1フラグのクリア (0)とベーシック・タイマ 1 割り込み用パルスの立ち下がりが重なると割り込みは受け付けられません。



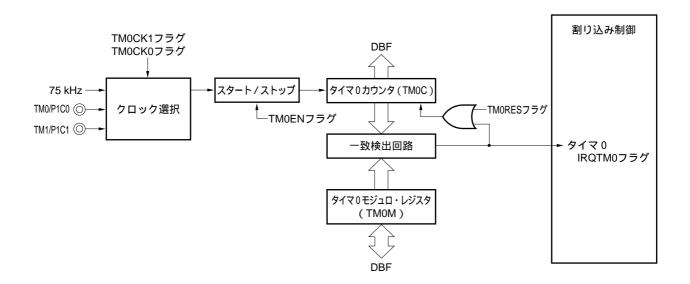
13.3.5 ベーシック・タイマ1使用時の注意

ベーシック・タイマ1を使用して,一度電源電圧が投入(パワーオン・リセット)されたあと常に一定の間隔で処理を行わせるようなプログラム,たとえば時計用のプログラムなどを作成するときは,ベーシック・タイマ1による割り込み処理時間を一定時間以内に終了させる必要があります。

次の例をもとに説明します。

例

この例では,処理Aを実行しながら80 msごとに処理Bを実行します。


13.4 タイマ0

13.4.1 タイマ0概要

図13 - 8 にタイマ 0 の概要を示します。

タイマ 0 は , 基本クロック (75 kHz, 25 kHzまたは外部クロック (TM0, TM1)) を 8 ビットのカウンタでカウント し , カウント値とあらかじめセットされている設定値を比較することによりタイマとして使用します。

図13-8 タイマ0概要

- **備考1**. TM0CK1, TM0CK0 (タイマ 0 カウンタ・クロック選択レジスタのビット 1 , ビット 0 : **図**13 **9**参照) 基本クロック周波数設定
 - **2**. TM0EN (タイマ 0 カウンタ・クロック選択レジスタのビット 3: **図**13 **9**参照) タイマ 0 のスタート / ストップを設定
 - **3**. TMORES (タイマ 0 カウンタ・クロック選択レジスタのビット 2:**図**13 **9**参照) タイマ 0 カウンタのリセットを制御

129

13.4.2 クロック選択,スタート/ストップ制御

クロック選択ブロックは,タイマ0カウンタを動作させるための基本クロックを選択します。

基本クロックは,TM0CK1およびTM0CK0フラグにより4種類を選択できます。

スタート / ストップ・ブロックは , TM0ENフラグにより , タイマ 0 カウンタに入力する基本クロックのスタート / ストップを制御します。

図13 - 9に各フラグの構成と機能を示します。

13.4.3 カウント・プロック

カウント・ブロックは,基本クロックをタイマ0カウンタでカウントし,カウント値の読み出しや,タイマ0モジュロ・レジスタの値と一致したときに割り込み要求を発行します。

TMORESフラグにより,タイマ0カウンタをリセットできます。

タイマ0カウンタはタイマ0モジュロ・レジスタの値と一致すると自動的にリセットされます。

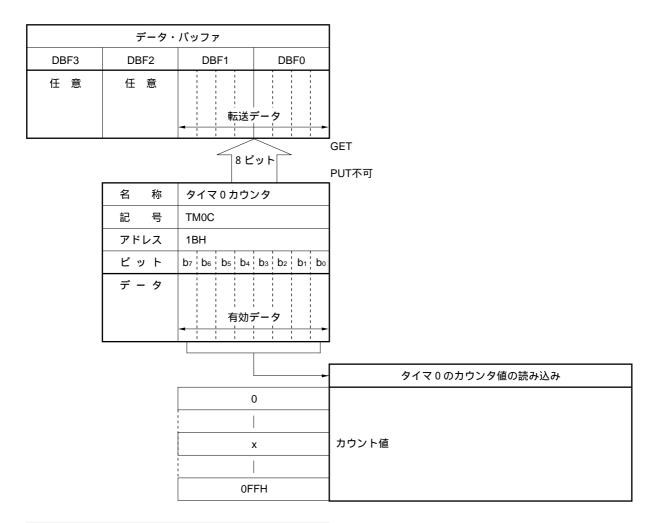
タイマ0カウンタの値はデータ・バッファを介して読み出しができます。

タイマ0モジュロ・レジスタの値はデータ・バッファを介して書き込みができます。

図13 - 9 にタイマ 0 カウンタ・クロック選択レジスタの構成を示します。

図13-10にタイマ0カウンタの構成を示します。

図13 - 11にタイマ 0 モジュロ・レジスタの構成を示します。


図13 - 9 タイマ 0 カウンタ・クロック選択レジスタの構成

名 称	-	7ラ:	ブ記 [・]	号	アドレス	Read/Write				
	bз	b ₂	b ₁	b ₀						
タイマ 0 カウンタ・	Т	Т	Т	Т	(BANK15)	R/W				
クロック選択	М	М	М	М	2BH					
	0	0	0	0						
	E	R	С	С						
	N	E	κ	κ						
		s	1	0						
						タイマ 0 カワ	ウンタの基本クロックを設定			
0 0					TM0					
			0	1	TM1					
			1	0	75 kHz (13.3	μs)				
			1	1	25 kHz (40 μ s	s)				
				-	9.	イマ 0 カウンタを	Eリセットする(書き込み時有効)			
		0			変化しない					
		1			カウンタをリ1	フット				
			_							
				-		タイマ 0 の	スタート / ストップを設定			
	0				ストップ					
	1	-			スタート					
		-								
リ RESET端子によるリセット	0	0	0	0						
ト 時 WDT & SPリセット										
クロック・ストップ時	,									

注意 TMORESフラグ読み込み時は,常に0が読み込まれます。

図13-10 タイマ0カウンタの構成

リセッ	RESET端子によるリセット	0	0	0	0	0	0	0	0
ト時	WDT & SPリセット	0	0	0	0	0	0	0	0
ク	ロック・ストップ時	0	0	0	0	0	0	0	0

図13 - 11 タイマ0モジュロ・レジスタの構成

	データ・	バッファ								
DBF3	DBF2	DBF1	DBF0							
任 意	任意	転送き	転送データ							
		₹8 Ľ	゚ット□	GET PUT						
	名 称	タイマ 0 モジュ	ュロ・レジスタ							
	記号	TMOM								
	アドレス	1AH								
	ビット	b ₇ b ₆ b ₅ b ₄	b ₃ b ₂ b ₁ b ₀							
	データ	有効力	データ							
			-	タイマ 0 のモジュロ・データを設定						
		(0	設定禁止						
		•	1							
)	x	 モジュロ・カウンタ値						
		0F	FH							

リセッ	RESET端子によるリセット	1	1	1	1	1	1	1	1
ト時	WDT & SPリセット	1	1	1	1	1	1	1	1
ク	ロック・ストップ時	1	1	1	1	1	1	1	1

13.4.4 タイマ 0 の使用例

(1)モジュロ・タイマ

モジュロ・タイマは,一定時間ごとにタイマ0割り込みをかけて時間管理に使用します。

次にプログラム例を示します。

このプログラムは処理 B を400 µ sごとに実行します。

TMODATA DAT 0009H ; カウント・データ = 10

START:

BR INITIAL ; リセット・アドレス

; 割り込みベクタ・アドレス

 NOP
 ; \$I01

 NOP
 ; BTM1

 BR
 INT_TMO
 ; TMO

 NOP
 ; INT

INITIAL:

INITFLG NOT TMOEN, TMORES, TMOCK1, TMOCKO

; (ストップ), (リセット), (基本クロック = $40 \mu s$)

MOV DBFO, #TMODATA

MOV DBF1, #TMODATA SHR4 AND OFH

PUT TMO, DBF

SET1 TMOEN ; START

SET1 IPTMO ; タイマ 0 の割り込み許可

ЕΙ

LOOP:

処理 A

BR LOOP

INT_TMO:

PUT DBFSTK, DBF ; データ・バッファの退避

処理 B

GET DBF, DBFSTK

ΕI

RETI ; リターン

END

13.4.5 タイマ0の誤差

タイマ0は,次に示す場合に最大1基本クロック分の誤差が生じます。

(1)カウンタのスタート/ストップ時

カウンタのスタート/ストップはTM0ENフラグのセットで行われます。

したがって , TM0ENフラグのセット時に 0 ~ + 1 クロック分誤差が生じ , リセット時に - 1 ~ 0 クロック分の 誤差が生じます。

トータルで±1カウント分の誤差が生じます。

(2)カウンタ動作中のリセット時

カウンタをリセットしたときに0~+1クロック分誤差が生じます。

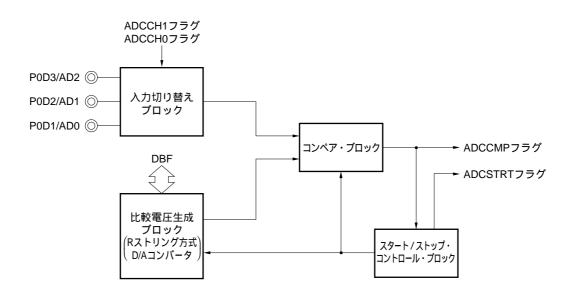
(3)カウンタ動作中の基本クロック切り替え時

切り替わったクロックの0~+1クロック分誤差が生じます。

14. A/D**コンバータ**

14. **1** A/D**コンパータ概要**

図14 - 1にA/Dコンバータの概要を示します。


A/Dコンバータは, AD2-AD0端子に入力されているアナログ電圧と内部の比較電圧を比較し, 比較結果をソフトウエ

★ アで判断することによって,8ビットのディジタル信号に変換します。

比較結果はADCCMPフラグによって検出します。

比較方法は,逐次比較方式を採用しています。

図14 - 1 A/Dコンパータ概要

備考1.ADCCH1, ADCCH0(A/Dコンバータ・チャネル選択レジスタのビット1,ビット0:**図**14-**3**参照) A/Dコンバータとして使用する端子を選択

- **2**.ADCCMP(A/Dコンバータ・モード選択レジスタのビット0:**図**14 **5**参照) 比較結果の検出
- **3**.ADCSTRT (A/Dコンバータ・モード選択レジスタのビット1:**図**14 **5**参照) 動作状態を検出

14.2 入力切り替えプロック

図14-2に入力切り替えブロックの構成を示します。

入力切り替えブロックは,ADCCH1,ADCCH0フラグにより使用する端子を選択します。A/Dコンバータとして同時に使用できる端子は1端子しかありません。P0D1/AD0-P0D3/AD2端子のどれか1本がA/Dコンバータに選択されている場合は,他の2本は強制的に入力ポートになります。

P0D1/AD0-P0D3/AD2端子はBANK15のP0DPLD1-P0DPLD3フラグによりプルダウン抵抗のオン / オフが選択できます。したがって,P0D1/AD0-P0D3/AD2端子をA/Dコンバータとして使用する場合は,外部からのアナログ入力電圧を正しく検出するために必ずこれらのプルダウン抵抗をオフにしてください(詳しくは"11.3.3 ポート0Dプルダウン抵抗選択レジスタ"を参照してください)。

図14 - 3 にA/Dコンバータ・チャネル選択レジスタの構成を示します。

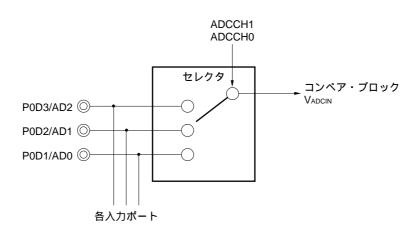


図14-2 入力切り替えブロックの構成

図14 - 3 A/Dコンパータ・チャネル選択レジスタの構成

名 称	7	ラク	ブ記・	号	アドレス	Read/Write							
	bз	b ₂	b ₁	b ₀									
A/Dコンバータ・	0	0	Α	Α	(BANK15)	R/W							
チャネル選択			D	D	24H								
			С	С									
			С	С									
			Н	Н									
			1	0									
							•						
				-		A/Dコンバー	タとして使用する端子を設定						
			0	0	A/Dコンバータ	'を使用しない(汎用入力ポート)						
			0	1	P0D1/AD0端子	<u>.</u>							
			1	0	P0D2/AD1端子	<u>2</u>							
			1	1	P0D3/AD2端子								
				-	" 0 " 固定								

リセッ	 RESET端子によるリセット	0		0	0	0
ト時	WDT & SPリセット			0	0	0
ク	ロック・ストップ時	,	,	!	录	· 诗

14.3 比較電圧生成およびコンペア・ブロック

図14 - 4に比較電圧生成ブロックおよびコンペア・ブロックの構成を示します。

比較電圧生成ブロックは,A/Dコンバータ基準電圧設定レジスタに設定された8ビットのデータによりタップ・デコーダを切り替え,256種類の比較電圧VADCREFを生成します。

つまり,Rストリング方式のD/Aコンバータになっています。

Rストリング方式の電源は,デバイスのVDDと同電位です。

コンペア・ブロックは,端子から入力された電圧VADCINと比較電圧VADCREFの大小を判断します。

コンパレータによる比較は,ADCSTRTフラグに書き込んだ時点で行われます。A/Dコンバータの1回の比較時間は2命令実行時間(106.6 µs)になります。

また,ADCSTRTフラグの内容を読み出すことによって,そのときのコンパレータの動作状態を確認することができます。

比較結果は, ADCCMPフラグによって検出します。

図14 - 5 にA/Dコンバータ・モード選択レジスタの構成を示します。

1/2 VDD VADCIN ADCCMP 2 pF コンパレータ DBF VADCREF フラグ A/Dコンバータ基準電圧 設定レジスタ (ADCR) タップ・デコーダ 254 255 V_{DD} $\frac{1}{2}R$ $\frac{3}{2}R$ R R スタート / ストップ・ コントロール・ブロック ►ADCSTRTフラグ

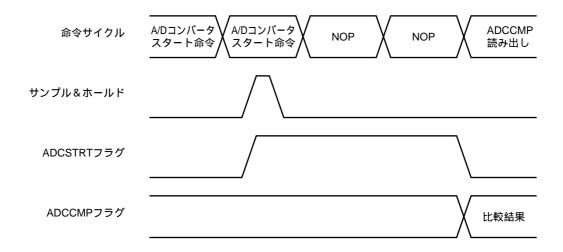
図14-4 比較電圧生成およびコンペア・プロックの構成

図14 - 5 A/Dコンパータ・モード選択レジスタの構成

名 称	7	7ラ!	ブ記-	号	アドレス	Read/Write		
	bз	b ₂	b ₁	b ₀				
A/Dコンバータ・	0	0	Α	Α	(BANK15)	R/W		
モード選択			D	D	25H			
			С	С				
		!	s	С				
		 	т	М				
			R	Р				
			Т					
				_		A/Dコン	バータの比較結果を検出	
				0	VADCIN < VADCRE	:F		
				1	Vadcin > Vadcre	F		
				-		A/Dコン	バータの動作状態を検出	
			0	1	変換終了			
			1		変換中			
				,				
					" 0 " 固定			
ユ RESET端子によるリセット	0	0	0	0				

ſ	リセッ	RESET端子によるリセット	()	()	0	0
	ト 時	WDT & SPリセット					0	0
ſ	ク	ロック・ストップ時	,		,	,	0	保

保:保持



14.4 比較タイミング・チャート

ADCSTRTフラグをセットしたあと, 2 命令実行後にADCSTRTフラグが 0 にリセットされます。この時点で,比較結果(ADCCMPフラグ)を読み出すことが可能となります。

図14 - 6 にタイミング・チャートを示します。

図14 - 6 A/Dコンパータ比較動作のタイミング・チャート

14.5 A/Dコンパータの使用方法

14.5.1 1つの比較電圧との比較方法

次にプログラム例を示します。

例 ADO端子の入力電圧VADCINと比較電圧VADCREF(127.5/256 VDD)を比較し、VADCIN < VADCREFならAAAへ分岐し、VADCIN > VADCREFならBBBへ分岐する。

ADCR7	FLG	0.0EH.3	; DBFの各ビットをADCRのラ	データ設定フラグとして定義
ADCR6	FLG	0.0EH.2		
ADCR5	FLG	0.0EH.1		
ADCR4	FLG	0.0EH.0		
ADCR3	FLG	0.0FH.3		
ADCR2	FLG	0.0FH.2		
ADCR1	FLG	0.0FH.1		
ADCR0	FLG	0.0FH.0		
BANK15 INITFLG	NOT PODPLD3, NC	T PODPLD2,	PODPLD1, NOT PODPLD0	; POD1端子のプルダウン抵抗をオフ
BANK0				
	, NOT ADCCH1, AD			;ADO端子をA/Dコンバータに設定
	ADCR7, NOT ADCR			;
		ADCR2, NOT	ADCR1, NOT ADCRO	; ; ;
PUT	ADCR, DBF			;比較電圧VADCREFの設定
SET1 AD	CSTRI			; A/D変換の開始
NOP				; 2 命令分のウエイト
NOP	ADOOND			・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
SKT1	ADCCMP			; 比較結果の判定

BR

BR

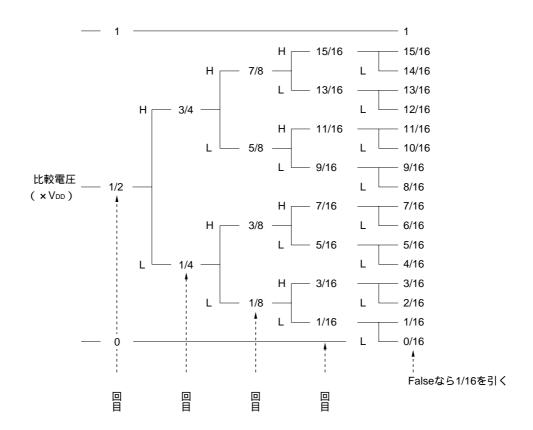
AAA BBB

14.5.2 パイナリ・サーチ方法による逐次比較

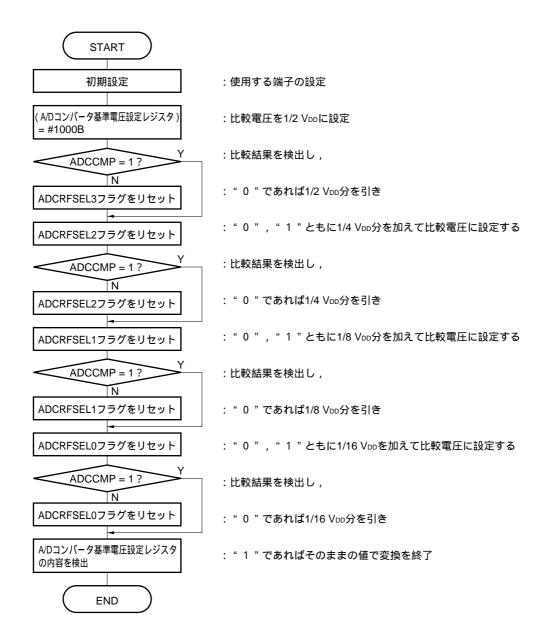
A/Dコンバータは1回の比較では、1つの比較電圧としか比較できません。

すなわち、入力電圧をディジタル信号に変換するためには、逐次比較をプログラムで行う必要があります。

このとき,入力電圧によって逐次比較プログラムの処理時間が異なっていると,他の処理プログラムとの関係で好ましくない場合があります。


したがって,次の(1)-(3)に示すようなバイナリ・サーチ方法を使用すると便利です。

(1) パイナリ・サーチの概念


次にバイナリ・サーチの概念を示します。

まず比較電圧に1/2Vpdを設定し、比較結果がTrue (ハイ・レベルが入力されている)であれば1/4Vpd分の電圧を加え、False (ロウ・レベルが入力されている)であれば1/4Vpd分の電圧を引き比較します。

同様に順次1/8Vpb, 1/16Vpbまで比較し, 4回目まで終了した時点でFalseであれば1/16Vpbを引いて終了します。

(2) パイナリ・サーチ方法のフロー・チャート

(3) バイナリ・サーチ方式のプログラム例

```
START:
   BANK1
                                                      ;ADO端子を選択
   INITFLG NOT ADCCH1, ADCCH0
                                                       ; ADO端子のプルダウン抵抗をオフ
   INITFLG PODPLD1
   INITFLG NOT ADCRFSEL3, ADCRFSEL2, ADCRFSEL1, ADRFSEL0
                                                      ;比較電圧に7.5/16Vppを設定
   SET1
          ADCSTRT
                                                       ; A/Dコンパレータ動作開始
   NOP
                                                       ;2ウエイト
   NOP
                                                      : ADCCMPを検出し,
   SKF1
          ADCCMP
   SET1
          ADCRFSEL3
                                                       0 なら7.5/16V励を加え
                                                       3.5/16VDDを引く
   CLR1
          ADCRFSEL2
                                                       A/Dコンパレータ動作開始
   SET1
          ADCSTRT
   NOP
                                                       ;2ウエイト
   NOP
   SKF1
          ADCCMP
                                                      ; ADCCMPを検出し,
   SET1
          ADCRFSEL2
                                                      ; 0 なら3.5/16Vppを加え
   CLR1
          ADCRFSEL1
                                                       ; 1.5/16VDDを引く
                                                       ; A/Dコンパレータ動作開始
   SET1
          ADCSTRT
                                                       2ウエイト
   NOP
   NOP
                                                      ; ADCCMPを検出し,
   SKF1
          ADCCMP
                                                       ; 0 なら1.5/16V励を加え
   SET1
          ADCRFSEL1
   CLR1
          ADCRFSELO
                                                       ; 0.5/16Vppを引く
   SET1
          ADCSTRT
                                                       ; A/Dコンパレータ動作開始
   NOP
                                                      ; 2ウエイト
   NOP
   SKF1
          ADCCMP
                                                      ; ADCCMPを検出し,
                                                      ; 0 なら0.5/16Vpbを加える
   SET1
          ADCRFSELO
```

END:

14.6 A/D**コンパータ使用時の注意**

14.6.1 A/D**コンパータ選択時の注意**

P0D1/AD0-P0D3/AD2端子のどれか1本をA/Dコンバータとして使用すると,ほかの2本は強制的に入力ポートになります。P0D1/AD0-P0D3/AD2端子はBANK15のP0DPLD1-P0DPLD3フラグによりプルダウン抵抗のオン/オフが選択できます。したがって,P0D1/AD0-P0D3/AD2端子をA/Dコンバータとして使用する場合は,外部からのアナログ入力電圧を正しく検出するために必ずこれらのプルダウン抵抗をオフにしてください。

14.7 リセット時の状態

14. **7**. **1** RESET 端子によるリセット時

P0D1/AD0-P0D3/AD2端子はすべて汎用入力ポートに設定されます。 P0D1-P0D3端子にはプルダウン抵抗が接続されます。

14.7.2 WDT & SPリセット時

P0D1/AD0-P0D3/AD2端子はすべて汎用入力ポートに設定されます。 P0D1-P0D3端子にはプルダウン抵抗が接続されます。

14.7.3 クロック・ストップ時

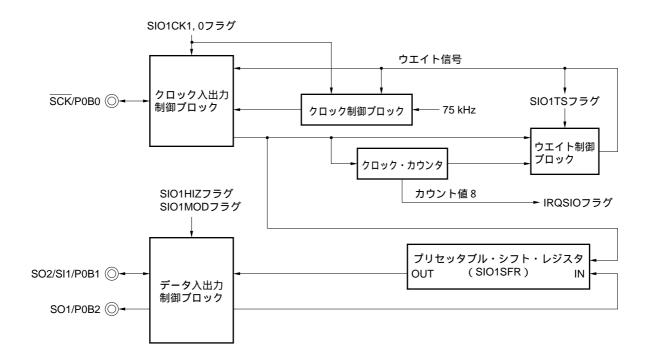
A/Dコンバータに設定されている端子はそのまま保持します。 P0D1-P0D3端子のプルダウン抵抗は以前の状態を保持します。

14.7.4 ホールト時

A/Dコンバータに設定されている端子はそのまま保持します。 P0D1-P0D3端子のプルダウン抵抗は以前の状態を保持します。

15.シリアル・インタフェース

15.1 シリアル・インタフェース概要


図15 - 1 にシリアル・インタフェースの概略を示します。

シリアル・インタフェースは,2線式または3線式のシリアルI/O方式が使用できます。

2線式はSCK端子およびSO2/SI1端子を使用します。

3線式はSCK端子, SI1端子およびSO1端子を使用します。

図15-1 シリアル・インタフェース概略

- **備考1**.SIO1CK1,0(シリアルI/Oクロック選択レジスタのビット1,0:**図**15-**2**参照) シフト・クロックを設定
 - 2. SIO1TS (シリアルI/Oモード選択レジスタのビット0:**図**15-3参照) 通信の動作開始 / 停止を設定
 - 3. SIO1HIZ (シリアルI/Oモード選択レジスタのビット1:**図**15 3参照) SO1/P0B2端子の機能を設定
 - **4** . SIO1MOD (シリアルI/Oモード選択レジスタのビット3:**図**15 **3**参照) SO2/SI1/P0B1端子の入力 / 出力の切り替え

15.2 クロック入出力制御プロックおよびデータ入出力制御プロック

クロック入出力制御ブロックおよびデータ入出力制御ブロックは,シリアル・インタフェースの使用端子(2線式または3線式),送受信動作の制御,およびシフト・クロックの選択を行います。

クロック入出力制御ブロックおよびデータ入出力制御ブロックを制御するフラグは,シリアルI/Oクロック選択レジスタおよびシリアルI/Oモード選択レジスタに配置されています。

図15 - 2 にシリアルI/Oクロック選択レジスタの構成と機能を示します。

図15 - 3 にシリアルI/Oモード選択レジスタの構成と機能を示します。

また,表15-1に示すように,各端子の設定にはシリアル・インタフェースの制御フラグのほかに,各端子の入出力設定フラグも操作する必要があります。表15-1に各制御フラグによる各端子の設定状態を示します。

SIO1CK1, 0フラグにより,内部クロック(マスタ)および外部クロック(スレーブ)動作を選択します。

SIO1HIZフラグはSO1/P0B2端子をシリアル・データ出力として使用するかを選択します。

SIO1MODフラグはSO2/SI1/P0B1端子をシリアル・データ入力(SI1端子)として使用するか,シリアル・データ出力(SO2端子)として使用するかの切り替えを行います。

フラグ記号 Read/ アドレス 名 称 bз b₂ b₁ | b₀ Write S S (BANK15) 1 -1 1CH シリアル1/0 0 0 0 | 0 クロック選択 1 1 R/W レジスタ С C Κ Κ 0 1 シリアル・インタフェースのシフト・クロックを設定 0 | 0 外部クロック 12.5 kHz 1 0 18.75 kHz 内部クロック 37.5 kHz 1 | 1

" 0 " 固定

図15-2 シリアルI/Oクロック選択レジスタの構成

カケッ	RESET端子によるリセット	()	()	0	0
ト 時	WDT&SPリセット					0	0
クロ]ック・ストップ時					0	0

図15-3 シリアルI/Oモード選択レジスタの構成

67 1h	•	フラク	ブ記号	를	71117	Read/	
名 称	bз	b ₂	b ₁	bo	アドレス	Write	
		S	s	s	(BANK15)		
		ı	1	1	1DH		
シリアル1/0		0	0	0			
モード選択	0	1	1	1		R/W	
レジスタ		М	Н	Т			
		0	1	S			
		D	Z	!			
							ル通信の動作開始 / 停止を設定
				0	動作停止(ウ	エイト状態)	
				1	動作開始		
				-			0B2/SO1端子の機能を設定
			0	÷	汎用入出力ポ		
			1	;	シリアル・デ	ータ出力端子	
			1				/SI1/SO2端子の機能の切り替え
		0	-		シリアル・デ	ータ入力端子	(SI1端子)として使用
		1	,		シリアル・デ	ータ出力端子	(SO2端子)として使用
				-	" 0 " 固定		
			1		1		
リ RESET端子によるリセット	0	0	0	0			
ト 時 WDT&SPリセット			0	0			
クロック・ストップ時	ļ	,	0	0			

表15-1 各制御フラグによる各端子の設定状態

	シ	リアル・イン	ノタフ	フェースの各	制御	フラ	グ	各端子の入出力設定フラグ				の入出力設定フラグ
通信方式	I 0 1	 シリアル 入出力 切り替え 	S I O 1 H I Z	シリアル・ ・インタフ ・ ・エース端 ・ ・子設定	S I O 1 C K 1	S I O 1 C K O	 クロック設定 	端子名	P 0 B B I O 2	P 1 0 1 B 1 B 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C	P 0 B B I O	端子の設定状態
3線式シリ		 		I I	0	0	」 外部クロック	P0B0/SCK	l I	 	0	ウエイト中 : 汎用入力ポート
アルI/O ^{注 1}		 		 		l I	 		l I	 		ウエイト解除中:外部クロック入力
および		I I		 		l I	 		 	 	1	汎用出力ポート
2線式シリ		 		1	0	1	I I 内部クロック		l		0	汎用入力ポート
アルI/O ^{注 2}		1		 	1	0] 				1	ウエイト中 : 内部クロック出力待ち
		 		1	1	1 1	1 !		 	' 		ウエイト解除中:内部クロック出力
	0	入力		i I			1	P0B1/SI1/		0		ウエイト中 : 汎用入力ポート
		' 「 (受信)				' 		SO2	' 			ウエイト解除中:シリアル入力
				 		 			 	1 1		汎用出力ポート
	1	出力		l I		l I	 		 	0		ウエイト中 : シリアル出力待ち
		」(送信)		1		l I	I I			1 1		ウエイト解除中:シリアル出力
		 	0	1 汎用入出力		l	1	P0B2/SO1	0			汎用入力ポート
		1 		゙゚゚゚゚゚゚゚゚゚゚゚゠゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚		 	1 		1			汎用出力ポート
		1 	1	シリアル		 	1 		0			ウエイト中 : シリアル出力待ち
				出力		 			1	 		ウエイト解除中:シリアル出力

注1.3線式シリアルI/O方式を使用する場合には,必ずSIO1MOD=0およびSIO1HIZ=1に設定してください。

^{2.2}線式シリアルI/O方式を使用する場合には,必ずSIO1HIZ=0に設定してください。

15.2.1 2線式/3線式の設定方法

2線式シリアル・インタフェースは, SCK/P0B0端子とSO2/SI1/P0B1端子の2本を使用します。

SCK/P0B0端子をシフト・クロック入出力端子として,SO2/SI1/P0B1端子をシリアル・データ入出力端子として使用します。シリアル・インタフェースに使用しないSO1/P0B2端子は,SIO1HIZフラグにより汎用入出力ポートに設定します。

これにより2線式シリアル・インタフェースとなります。

3 線式シリアル・インタフェースは, SCK/P0B0端子, SO1/P0B2端子, およびSO2/SI1/P0B1端子の 3 本を使用します。

SCK/P0B0端子をシフト・クロックの入出力端子として,SO1/P0B2端子をシリアル・データ出力端子,SO2/SI1/P0B1端子をシリアル・データ入力端子として使用します。

2 線式のときとは異なり, SO1/P0B2端子は, SIO1HIZフラグによりシリアル・データ出力端子に設定します。また, SO2/SI1/P0B1端子は, SIO1MODフラグによりシリアル・データ入力端子に設定します。

これにより3線式シリアル・インタフェースとなります。

15.2.2 2線式シリアル・インタフェースのデータ入出力の切り替え

2線式シリアル・インタフェースでは,SO2/SI1/P0B1端子をシリアル・データの入出力に使用します。

SO2/SI1/P0B1端子をシリアル・データ入力端子(SI1端子)として使用するか,シリアル・データ出力端子(SO2端子)として使用するかの切り替えは,SIO1MODフラグによって行います(**図**15 - **3** シリアル/Oモード選択レジスタの構成参照)。

15.3 クロック制御ブロック

クロック制御プロックは,内部クロック使用時(マスタ動作)のクロックの生成およびクロック出力タイミングの制御を行います。

内部クロックの周波数fscは,シリアルI/Oクロック選択レジスタのSIO1CK0, SIO1CK1フラグにより設定します。 図15 - 2 にシリアルI/Oクロック選択レジスタの構成と機能を示します。

クロック生成タイミングについては,15.7 **シリアル・インタフェースの動作**を参照してください。

15.4 クロック・カウンタ

クロック・カウンタは,シフト・クロック端子(SCK/P0B0端子)から出力または入力するシフト・クロックをカウントします。

クロック・カウンタは,クロック用端子の状態を直接読み込むため,内部クロックであるのか外部クロックであるのかは判断できません。

クロック・カウンタの内容は直接プログラムで内容を読み込むことはできません。

クロック・カウンタの動作およびタイミング・チャートについては15.**7 シリアル・インタフェースの動作**を参照してください。

15.5 プリセッタブル・シフト・レジスタ

プリセッタブル・シフト・レジスタは,シリアル・アウト・データの書き込みおよびシリアル・イン・データの読 み込みを行うための8ビットのシフト・レジスタです。

プリセッタブル・シフト・レジスタへのデータの書き込みおよびデータの読み出しは,データ・バッファを介してPUT命令とGET命令で行います。

プリセッタブル・シフト・レジスタは、シリアル・データ入出力端子から、シフト・クロックの立ち下がりに同期して最上位ビット(MSB)の内容を出力(送信動作時)し、シフト・クロックの立ち上がりに同期してデータを最下位ビット(LSB)に読み込みます。

図15 - 4にプリセッタブル・シフト・レジスタの構成と機能を示します。

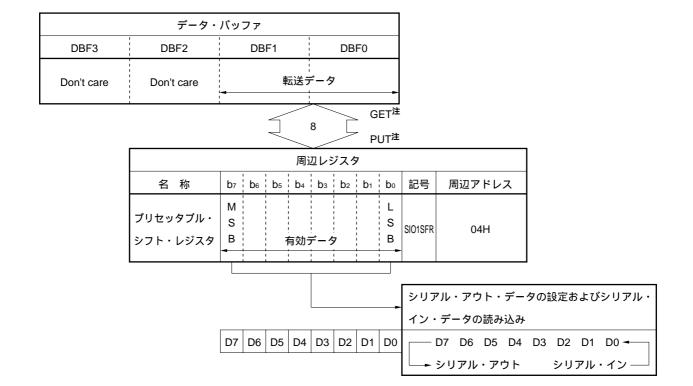


図15-4 プリセッタブル・シフト・レジスタの構成

注 シリアル通信中にPUTまたはGET命令を実行するとデータが破壊される場合があります。詳しくは15.8 データ 設定時およびデータ読み込み時の注意を参照してください。

15.6 ウエイト制御ブロック

ウエイト制御ブロックは通信の休止(ウエイト)およびその解除を制御します。

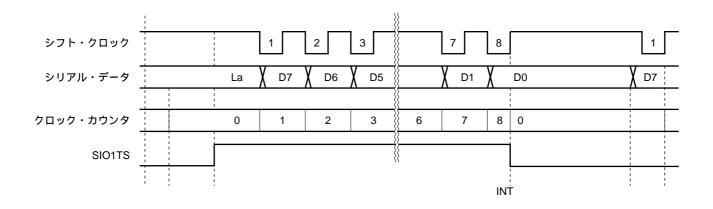
シリアルI/Oモード選択レジスタのSIO1TSフラグにウエイトの解除を設定することにより,シリアル通信がスタートします。

ウエイトが解除され,通信がスタートし,クロック・カウンタが"8"のときにシフト・クロックが立ち上がると 再びウエイト状態になります。

通信状態はSIO1TSフラグにより検出できます。つまり, SIO1TSフラグに"1"を設定したあとにSIO1TSフラグの 状態を検出することにより, 通信状態を検出できます。

ウエイト解除中にSIO1TSフラグに"0"を書き込むとウエイト状態になります。これを強制ウエイトと呼びます。 シリアルI/Oモード選択レジスタの構成と機能については図15 - 3を参照してください。

15.7 シリアル・インタフェースの動作


次にシリアル・インタフェースの各動作タイミングについて説明します。

2線式の場合も3線式の場合も,各動作のタイミングは同じです。

15.7.1 タイミング・チャート

図15 - 5 にタイミング・チャートを示します。

図15-5 シリアル・インタフェースのタイミング・チャート

備考 初期状態(汎用入力ポート)

汎用入出力ポートによるスタート条件生成

ウエイト解除

ウエイト・タイミング

汎用入力ポートに設定

汎用入出力ポートによるストップ条件生成

15.7.2 クロック・カウンタの動作

クロック・カウンタの初期値は"0"で,以後クロック用端子の立ち下がりが検出されるごとにインクリメントされます。"8"までにカウントされると,次のクロック用端子の立ち上がりで"0"にリセットされます。クロック・カウンタが"0"にリセットされた時点でシリアル通信はウエイトします。

次にクロック・カウンタのリセット条件を示します。

パワーオン・リセット時

クロック・ストップ命令実行時

SIO1TSフラグに"0"が書き込まれたとき

ウエイト解除中で,かつクロック・カウンタが"8"のときにシフト・クロックが立ち上がったとき

15.7.3 ウエイト動作と注意

ウエイトが解除されると次のクロックの立ち下がりでシリアル・データを出力し(送信動作時),8クロックまでウエイト解除状態になります。

8 クロック出力後は,シフト・クロック端子をハイ・レベルにしてクロック・カウンタおよびプリセッタブル・シフト・レジスタの動作を停止します。

ウエイト解除中でかつシフト・クロック端子がハイ・レベルの期間に,プリセッタブル・シフト・レジスタのデータ書き込みおよび読み込みを行うと正しいデータが設定されないので注意してください。

ウエイト解除中でかつシフト・クロック端子がロウ・レベルの期間に,プリセッタブル・シフト・レジスタのデータ書き込みを行うと, "PUT"命令が実行された時点でシリアル・データ出力端子にMSBの内容が出力されます。

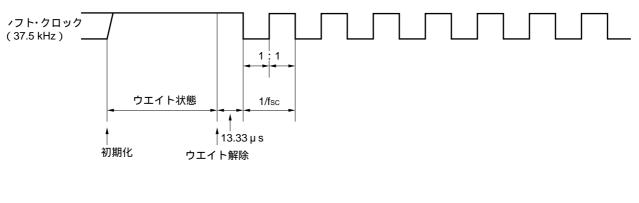
ウエイト解除中に強制ウエイトを行うと, SIO1TSフラグに"0"が書き込まれた時点で即座にウエイト状態になります。

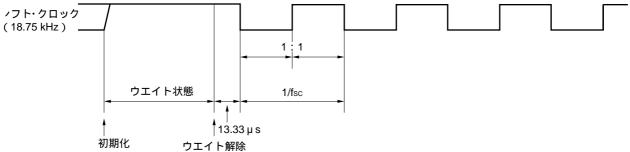
15.7.4 割り込み要求発行タイミング

8クロック送信(受信)時に割り込み要求が発行されます。

15.7.5 シフト・クロック生成タイミング

(1)初期状態からのウエイト解除時


初期状態とは、内部クロック動作を選択し、かつP0B0/SCK端子をハイ・レベル出力に設定した時点を指します。


ウエイト状態中は,シフト・クロック端子にハイ・レベルを出力します。

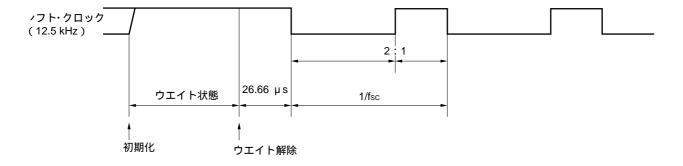
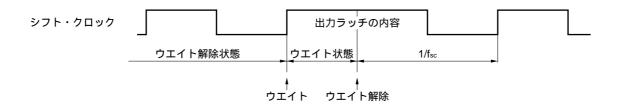
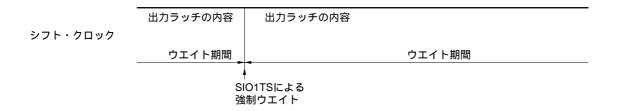

ウエイトの解除とクロックの選択を同時に行うこともできます。

図15-6 シリアル・インタフェースのシフト・クロック生成タイミング(1/4)



(2)ウエイト動作を行ったとき

(a) 8 クロック目でウエイトしたとき (通常動作)


図15-6 シリアル・インタフェースのシフト・クロック生成タイミング(2/4)

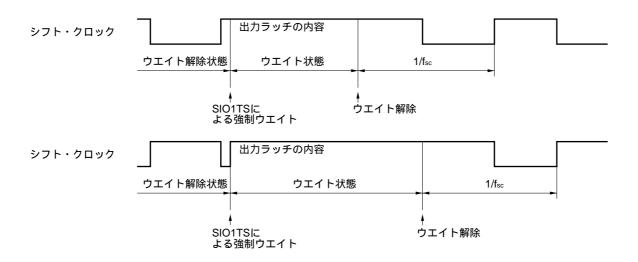

(b) ウエイト中に強制ウエイトしたとき

図15 - 6 シリアル・インタフェースのシフト・クロック生成タイミング(3/4)

(c) ウエイト解除中に強制ウエイトしたとき

図15 - 6 シリアル・インタフェースのシフト・クロック生成タイミング(4/4)

(d) ウエイト解除中にウエイト解除したとき

クロック出力波形は変化しません。クロック・カウンタもリセットされません。ただし,ウエイト解除中に クロック周波数は変更しないでください。

15.8 データ設定時およびデータ読み込み時の注意

プリセッタブル・シフト・レジスタへのデータの設定は, "PUT SIO1SFR, DBF"命令で行います。

また,データの読み込みは "GET DBF, SIO1SFR" 命令で行います。

データの設定およびデータの読み込みはウエイト状態中に行ってください。ウエイト解除状態中はシフト・クロック端子の状態により正しくデータの設定および読み込みができない場合があります。

次にデータの設定および読み込みのタイミングと注意を示します。

表15-2 プリセッタブル・シフト・レジスタのデータ読み込みおよびデータ書き込み動作と注意

PU ⁻	T/GET実行時	シフト・クロック端子の	プリセッタブル・シフト・レジスタの動作
の状		状態	
호	読み込み時	外部クロック時	正常読み込み
ウエイト状態	(GET)	フローティング	
状態	書き込み時	内部クロック時	正常書き込み
	(PUT)	出力ラッチの値	データの出力は次にウエイトが解除されてシフト・クロックが立ち下がったときに
		通常ハイ・レベルで使	MSBの内容を出力する(送信動作時)
		用する	
			クロック
			データ MSB
			↑ PUT SIO1SFR, DBF ウエイト解除
ウエ	読み込み時	ロウ・レベル	正常読み込み
エイト解除状態	(GET)	ハイ・レベル	正常に読み込めない
解除			SIO1SFRの内容が破壊される
状 態	書き込み時	ロウ・レベル	正常に書き込めない
	(PUT)		SIO1SFRの内容が破壊される
		ハイ・レベル	正常書き込み
			データの出力はPUT命令を実行した時点でMSBの内容を出力する
			クロック・カウンタはリセットされない
			クロック
			データ <u>MSB</u>
			PUT COASED DRE
			PUT SIO1SFR, DBF

15.9 動作モードと各部の動作概要

表15 - 3 , 表15 - 4 に動作モードと各部の動作概要を示します。

表15-3 3線式シリアルI/O方式動作概要

	動作モード	スレーブ動作(SIO10	CK1 = SIO1CK0 = 0)	マスタ動作(SIO1CK1	= SIO1CK0 = 0以外)						
		ウエイト中	ウエイト解除中	ウエイト中	ウエイト解除中						
項目		(SIO1TS = 0)	(SIO1TS = 1)	(SIO1TS = 0)	(SIO1TS = 1)						
各端子の状態	SCK/P0B0	P0BBIO0 = 0 のとき	P0BBIO0 = 0 のとき	P0BBIO0 = 0 のとき	P0BBIO0 = 0 のとき						
		汎用入力ポート	外部クロック入力	汎用入力ポート	汎用入力ポート						
		P0BBIO0 = 1 のとき	P0BBIO0 = 1 のとき	P0BBIO0 = 1 のとき	P0BBIO0 = 1 のとき						
		汎用出力ポート	汎用出力ポート	内部クロック出力待ち	内部クロック出力						
	S1I/SO2/P0B1		SIO1M	IOD = 0							
		P0BBI01 = 0のとき	P0BBIO1 = 0のとき	P0BBIO1 = 0 のとき	P0BBIO1 = 0のとき						
		汎用入力ポート	シリアル入力	汎用入力ポート	シリアル入力						
		P0BBIO1 = 1 のとき	P0BBIO1 = 1 のとき	P0BBIO1 = 1 のとき	P0BBIO1 = 1 のとき						
		汎用出力ポート	汎用出力ポート	汎用出力ポート	汎用出力ポート						
	SO1/P0B2		SIO1F	HIZ = 1							
		 シリアル出力待ち	シリアル出力	 シリアル出力待ち	シリアル出力						
クロック・カウン	タ	SCK端子の立ち下がり	でインクリメント								
プリセッタブル・	出力	SIO1HIZ = 0 のとき									
シフト・レジスタ		出力されない									
の動作		SIO1HIZ = 1 のとき									
		 SCK端子の立ち下がりごとに,MSBからシフトしてSO1端子から出力									
	入力	SIO1MOD = 0 のとき									
		 SCK端子の立ち上がりごとに,LSBからシフトしてSI1端子の状態を入力									
		ただし , SI1端子が出	力ポートに設定されて	いる場合は,出力ラッチ	の内容が入力される						

表15-4 2線式シリアルI/O方式動作概要

	動作モード	スレーブ動作(SIO10	CK1 = SIO1CK0 = 0)	マスタ動作(SIO1CK1	I = SIO1CK0 = 0以外)							
		ウエイト中	ウエイト解除中	ウエイト中	ウエイト解除中							
項目		(SIO1TS = 0)	(SIO1TS = 1)	(SIO1TS = 0)	(SIO1TS = 1)							
各端子の状態	SCK/P0B0	P0BBIO0 = 0 のとき	P0BBIO0 = 0 のとき	P0BBIO0 = 0 のとき	P0BBIO0 = 0 のとき							
		汎用入力ポート	外部クロック入力	汎用入力ポート	汎用入力ポート							
		P0BBIO0 = 1のとき	P0BBIO0 = 1のとき	P0BBIO0 = 1のとき	P0BBIO0 = 1のとき							
		汎用出力ポート	汎用出力ポート	内部クロック出力待ち	内部クロック出力							
	SI1/SO2/P0B1		SIO1M	IOD = 0								
		P0BBI01 = 0 のとき	P0BBIO1 = 0のとき	P0BBIO1 = 0 の とき	P0BBIO1 = 0のとき							
		汎用入力ポート	シリアル入力	汎用入力ポート	シリアル入力							
		P0BBIO1 = 1 のとき	P0BBIO1 = 1 のとき	P0BBIO1 = 1 のとき	P0BBIO1 = 1 のとき							
		汎用出力ポート	汎用出力ポート	汎用出力ポート	汎用出力ポート							
			SIO1M	IOD = 1								
		P0BBIO1に関係なく	P0BBIO1に関係なく	P0BBIO1に関係なく	P0BBIO1に関係なく							
		シリアル出力待ち	シリアル出力	シリアル出力待ち	シリアル出力							
	SO1/P0B2	SIO1HIZ = 0										
		P0BBIO2 = 0 のとき	P0BBIO2 = 0 のとき	P0BBIO2 = 0 のとき	P0BBIO2 = 0のとき							
		汎用入力ポート	シリアル入力	汎用入力ポート	シリアル入力							
		P0BBIO2 = 1 のとき	P0BBIO2 = 1 のとき	P0BBIO2 = 1 のとき	P0BBIO2 = 1 のとき							
		汎用出力ポート	汎用出力ポート	汎用出力ポート	汎用出力ポート							
			SIO1I	HIZ = 1								
		P0BBIO2に関係なく	P0BBIO2に関係なく	P0BBIO2に関係なく	P0BBIO2に関係なく							
		シリアル出力待ち	シリアル出力	シリアル出力待ち	シリアル出力							
クロック・カウング	タ	SCK端子の立ち下がり	でインクリメント									
プリセッタブル・	出力	SIO1SEL = 1のとき										
シフト・レジスタ		SCK端子の立ち下が	りごとに,MSBからシフ	フトしてSO2端子から出	カ							
の動作	入力	SIO1SEL = 0のとき	SIO1SEL = 0 のとき									
		ただし,SI1端子が出	dカポートに設定されて	いる場合は,出力ラッチ	の内容が入力される							

15.10 リセット時の状態

15.10. **1** RESET 端子によるリセット時

P0B0/SCK端子, P0B1/SI1/SO2, P0B2/SO1端子は汎用入力ポートに設定されます。 プリセッタブル・シフト・レジスタの内容は不定になります。

15.10. 2 WDT&SPリセット時

P0B0/SCK端子, P0B1/SI1/SO2, P0B2/SO1端子は汎用入力ポートに設定されます。 プリセッタブル・シフト・レジスタの内容は不定になります。

15.10.3 クロック・ストップ時

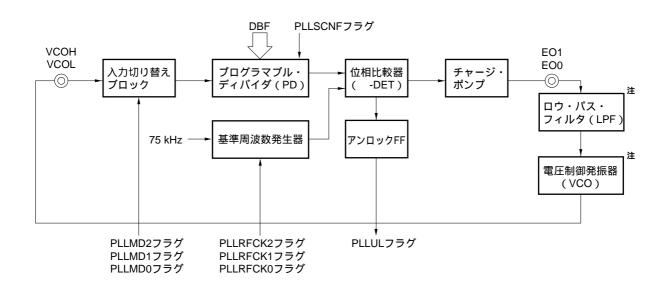
各端子は設定されている状態を保持します。 プリセッタブル・シフト・レジスタの内容は以前の状態を保持します。

15.10.4 ホールト時

各端子は設定されている状態を保持します。

内部クロックはHALT命令実行時の状態で出力を停止します。

外部クロックを使用している場合はHALT命令を実行しても動作を継続します。


16. PLL**周波数シンセサイザ**

PLL (Phase Locked Loop) 周波数シンセサイザは, MF (Medium Frequency) , HF (High Frequency) および VHF (Very High Frequency) 帯の周波数を位相差比較方式により一定周波数にロックさせるために使用します。

16.**1** PLL**周波数シンセサイザ概要**

図16 - 1 にPLL周波数シンセサイザの概要を示します。外部にロウ・パス・フィルタ(LPF),電圧制御発振器(VCO)を接続することによりPLL周波数シンセサイザを構成できます。

PLL周波数シンセサイザは,VCOH端子またはVCOL端子から入力された信号をプログラマブル・ディバイダで分周し,基準周波数との位相差をEOOおよびEO1端子から出力します。

図16 - 1 PLL**周波数シンセサイザ概要**

注 外部回路です。

- **備考1**.PLLMD2, PLLMD1, PLLMD0 (PLLモード選択レジスタのビット2, ビット1, ビット0:**図**16-**3**参照) PLL周波数シンセサイザの分周方式を設定
 - **2**.PLLSCNF(PLLモード選択レジスタのビット3:**図**16 **3**参照) スワロ・カウンタの最下位ビットの設定
 - **3**.PLLRFCK2-PLLRFCK0(PLL基準周波数選択レジスタのビット2-ビット0:**図**16-**6**参照) PLL周波数シンセサイザの基準周波数frを設定
 - **4.** PLLUL (PLLアンロックFFレジスタのビット 0: **図**16 **9**参照) PLLアンロックFF状態の検出

16.2 入力切り替えブロックおよびプログラマブル・ディバイダ

16.2.1 入力切り替えプロックおよびプログラマブル・ディバイダの構成と機能

図16 - 2に入力切り替えブロックおよびプログラマブル・ディバイダの構成を示します。

入力切り替えブロックは, PLL周波数シンセサイザの入力端子および分周方式を選択します。

入力端子にはVCOH端子とVCOL端子が選択できます。

選択された端子は中間電位(約1/2 Vpp)になります。選択されていない端子は内部でプルダウンされます。

これらの端子の入力は交流アンプとなっていますので,入力信号の直流分は端子に直列に挿入するコンデンサでカットしてください。

分周方式には直接分周方式とパルス・スワロ方式が選択できます。

プログラマブル・ディバイダは,スワロ・カウンタおよびプログラマブル・カウンタに設定された値により各分周 方式による分周を行います。

使用する入力端子と分周方式の選択は, PLLモード選択レジスタにより行います。

図16 - 3 にPLLモード選択レジスタの構成を示します。

プログラマブル・ディバイダへの分周値の設定は、データ・バッファを介してPLLデータ・レジスタにより行います。

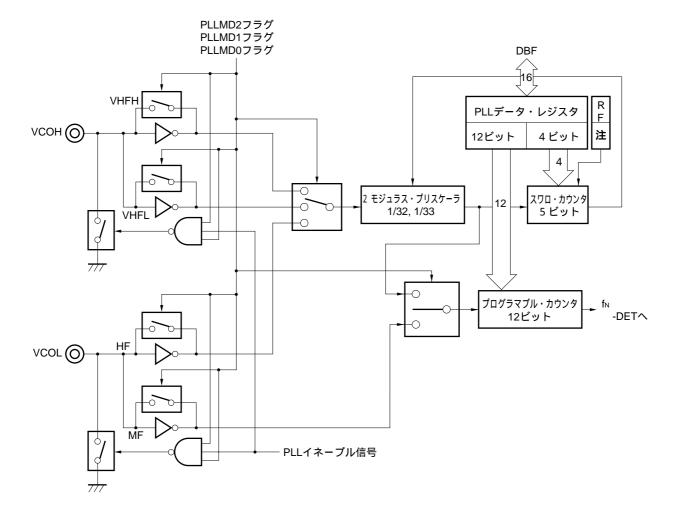


図16-2 入力切り替えブロックおよびプログラマブル・ディバイダの構成

注 PLLSCNFフラグ

図16 - 3 PLLモード選択レジスタの構成

名 称	7	ラク	ブ記号	를 -	アドレス	Read/Write				
	bз	b ₂	b ₁	bo						
PLLモード選択	Р	Р	Р	Р	(BANK15)	R/W				
	L	L	L	L	10H					
	L	L	L	L						
	S	М	М	М						
	С	D	D	D						
	N	2	1	0						
	F	! ! !								
			L	-		PLL周波数シン	セサイザの分周方式を設定する			
		0	0	0	VCOL, VCOH	VCOL, VCOH端子ディスエーブル				
		0	0	1	直接分周(VCOL端子 MFモード)					
		0	1	0	設定禁止					
		0	1	1	パルス・スワロ	I(VCOL端子	HFモード)			
		1	0	0	パルス・スワロ	I(VCOH端子	VHFLモード)			
		1	0	1	設定禁止					
		1	1	0	パルス・スワロ	」(VCOH端子	VHFHモード)			
		1	1	1	設定禁止					
	L			-		スワロ・カウ	ウンタの最下位ビットの設定			
	0	1			最下位ビットを	±0にする				
	1	, , , ,			最下位ビットを	±1にする				

リセッ	 RESET端子によるリセット	0	0	0	0
ト時	WDT & SPリセット	0	0	0	0
ク	ロック・ストップ時	0	0	0	0

16.2.2 各分周方式の概要

(1)直接分周方式 (MF)

VCOL端子を使用します。

VCOH端子はプルダウンされます。

直接分周方式は、プログラマブル・カウンタのみで分周を行います。

(2)パルス・スワロ方式 (HF)

VCOL端子を使用します。

VCOH端子はプルダウンされます。

パルス・スワロ方式は,スワロ・カウンタおよびプログラマブル・カウンタで分周を行います。

(3) パルス・スワロ方式 (VHFL, VHFH)

VCOH端子を使用します。

VCOL端子はプルダウンされます。

パルス・スワロ方式は、スワロ・カウンタおよびプログラマブル・カウンタで分周を行います。

(4) VCOL, VCOH端子ディスエーブル

VCOL端子およびVCOH端子のみ内部でプルダウンされ,ほかのブロックは動作します。

16.2.3 プログラマブル・ディバイダとPLLデータ・レジスタ

プログラマブル・ディバイダは,スワロ・カウンタおよびプログラマブル・カウンタで構成されており,それぞれ5ビットおよび12ビットの17ビット・バイナリ・ダウン・カウンタになっています。

PLLデータ・レジスタの上位12ビットにプログラマブル・カウンタ,下位4ビットにスワロ・カウンタの上位4ビットが配置されており,データ・バッファを介してデータの設定を行います。

スワロ・カウンタの最下位ビットは,コントロール・レジスタのPLLSCNFフラグにデータを設定します。

分周する値は"N値"と呼びます。

各分周方式時の分周値(N値)の設定については16.6 PLL周波数シンセサイザの使用方法を参照してください。

(1) PLLデータ・レジスタとデータ・バッファ

図16 - 4 にPLLデータ・レジスタとデータ・バッファの関係を示します。

直接分周方式時は上位12ビットが有効になり、パルス・スワロ方式時は17ビットすべて有効になります。

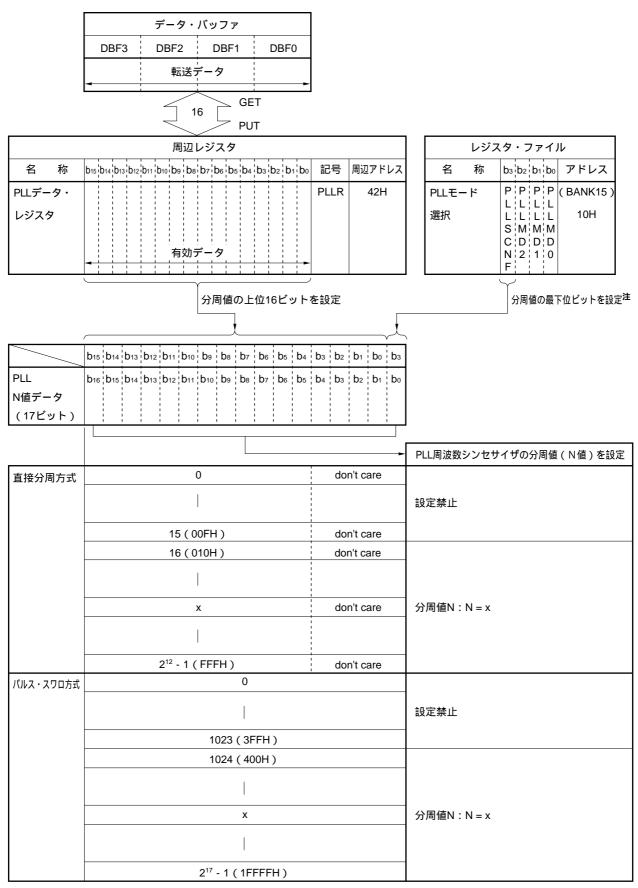
直接分周方式時は12ビットすべてがプログラマブル・カウンタに設定されます。

パルス・スワロ方式時は上位12ビットがプログラマブル・カウンタに設定され,下位5ビットがスワロ・カウンタに設定されます。

(2) プログラマブル・ディバイダの分周値Nと分周出力周波数の関係

PLLデータ・レジスタに設定された値 " N " と , プログラマブル・ディバイダにより分周されて出力される信号 の周波数 " f n " は次のようになります。

詳しくは,16.6 PLL周波数シンセサイザの使用方法を参照してください。


(a) 直線分周方式時 (MF)

$$f_N = \frac{f_{IN}}{N} \qquad N: 12 Ey F$$

(b) パルス・スワロ方式時 (HF, VHFL, VHFH)

図16 - 4 PLL周波数シンセサイザの分周値(N値)の設定方法

注 PLLSCNFフラグの値は,PLLデータ・レジスタ(PLLR)に書き込み命令(PUT)が実行された時点で転送されます。したがって,PLLデータ・レジスタに書き込み命令を行う前にPLLSCNFフラグにデータをセットしておく必要があります。

16.3 基準周波数発生器

図16 - 5 に基準周波数発生器の構成を示します。

基準周波数発生器は,水晶発振の75 kHzを分周してPLL周波数シンセサイザの基準周波数 " f_r "を発生します。 基準周波数 f_r は 1 , 3 , 5 , 6.25 , 12.5 , 25 kHzの 6 種類を選択できます。

基準周波数frの選択はPLL基準周波数選択レジスタにより行います。

図16 - 6 にPLL基準周波数選択レジスタの構成と機能を示します。

図16-5 基準周波数発生器の構成



図16 - 6 PLL基準周波数選択レジスタの構成

名 称	7	ラク	ブ記り	号	アドレス	Read/Write	
	Ьз	b ₂	b ₁	b ₀			
PLL基準周波数選択	0	Р	Р	Р	(BANK15)	R/W	
		L	L	L	11H		
		L	L	L			
		R	R	R			
		F	F	F			
		С	С	С			
		K	K	K			
	<u> </u>	2	1	0			
				_		PLL周波数シン	セサイザの基準周波数frを設定
			0		1 kHz		
		0	0	1	3 kHz		
		0	1	0	5 kHz		
		0	1	1	6.25 kHz		
			0		12.5 kHz		
			0		25 kHz		
		1	1	0	PLLディスエ-	-ブル	
		1	1	1	PLLディスエ-	-ブル	
				ı			
				-	" 0 " 固定		
リー RESET端子によるリセット	0	1	1	1			

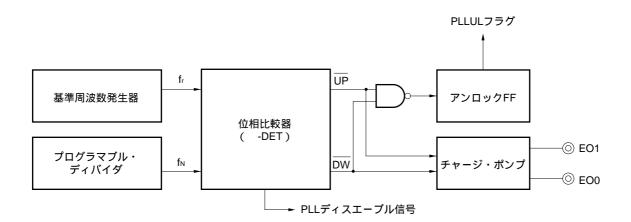
カヤッ	 RESET端子によるリセット	0	1	1	1
ト時	WDT & SPリセット	0	1	1	1
ク	ロック・ストップ時	0	1	1	1

備考 PLL基準周波数選択レジスタによりPLLディスエーブルを選択したときは、VCOH端子、VCOL端子が内部で プルダウンされます。また、EO1端子、EO0端子はフローティングとなります。

16.4 位相比較器 (-DET) , チャージ・ポンプおよびアンロックFF

16.4.1 位相比較器, チャージ・ポンプおよびアンロックFFの構成

図16 - 7 に位相比較器,チャージ・ポンプおよびアンロックFFの構成を示します。


位相比較器は,プログラマブル・ディバイダの分周周波数出力 " f_N " と基準周波数発生器の基準周波数出力 " f_r " の位相を比較し,アップ要求信号 (UP) およびダウン要求信号 (DW) を出力します。

チャージ・ポンプは位相比較器の出力をエラー・アウト端子(EO1端子およびEO0端子)から出力します。

アンロックFFは, PLL周波数シンセサイザのアンロック状態を検出します。

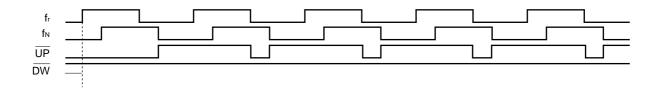
16.4.2-16.4.4 にそれぞれ位相比較器,チャージ・ポンプおよびアンロックFFの動作を示します。

図16 - 7 位相比較器 , チャージ・ポンプおよびアンロックFFの構成

16.4.2 位相比較器の機能

図16 - 7 に示したように位相比較器は、プログラマブル・ディバイダの分周出力 " f_N " と基準周波数 " f_r " の位相を比較し、アップ要求信号およびダウン要求信号を出力します。

すなわち,分周周波数fnが基準周波数frより低い周波数であればアップ要求を出力し,分周周波数fnが基準周波数frより高い周波数であればダウン要求を出力します。


図16 - 8 に基準周波数fr, 分周周波数fn, アップ要求信号, ダウン要求信号の関係を示します。

PLLディスエーブル時は,アップ要求およびダウン要求ともに出力されません。

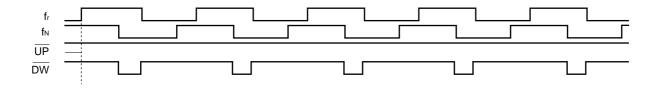
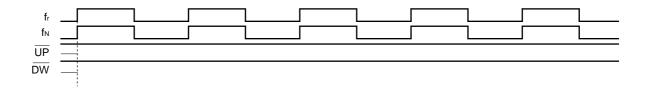
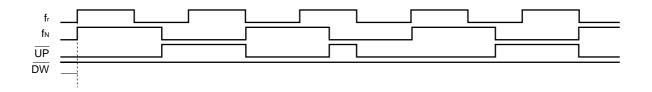

アップ要求およびダウン要求はそれぞれチャージ・ポンプおよびアンロックFFへ入力されます。

図16 - 8 fr, fn, UP, DW信号の関係


(a) fnがfrより位相が遅れているとき


(b) fnがfrより位相が進んでいるとき

(c) fnとfrの位相が同じとき

(d)fnがfrより周波数が低いとき

16.4.3 チャージ・ポンプ

図16 - 7 に示したようにチャージ・ポンプは,位相比較器からのアップ要求信号およびダウン要求信号をエラー・アウト端子(EO1端子およびEO0端子)から出力します。

したがって,エラー・アウト端子の出力と分周周波数fnおよび基準周波数fnの関係は次のようになります。

基準周波数fr > 分周周波数fnのとき:ロウ・レベル出力 基準周波数fr < 分周周波数fnのとき:ハイ・レベル出力 基準周波数fr = 分周周波数fnのとき:フローティング

16.4.4 アンロックFF

図16 - 7 に示したようにアンロックFFは,位相比較器のアップ要求信号およびダウン要求信号から,PLL周波数シンセサイザのアンロック状態を検出します。

すなわち,アンロック状態中はアップ要求またはダウン要求信号のどちらか一方がロウ・レベルを出力するため, このロウ・レベル信号によりアンロック状態を検出します。

アンロック状態であると,アンロックFFがセット(1)されます。

アンロックFFは,そのとき選択されている基準周波数frの周期でセットされます。また,PLLアンロックFFレジスタの内容を読み込む(PEEK命令)とリセットされます(Read & Reset)。

したがって,アンロックFFの検出は基準周波数frの周期1/frより長い周期で検出する必要があります。

アンロックFFの状態は, PLLアンロックFFレジスタにより検出します。図16 - 9 にPLLアンロックFFレジスタの構成を示します。

このレジスタは読み出し専用レジスタであり, "PEEK" 命令でウインドウ・レジスタに内容を読み出すことにより リセットされます。

また,アンロックFFは基準周波数frの周期でセットされるため,このレジスタをウインドウ・レジスタに読み込む場合は,基準周波数の周期1/frより長い周期で読み込む必要があります。

位相比較器のアップ , ダウン要求信号のディレイは , 0.8 μ s-1.0 μ sで固定されています。

図16 - 9 PLL**アンロック**FF**レジスタの構成**

名 称	フ	ラク	ブ記 [・]	号	アドレス	Read/Write				
	bз	b ₂	b ₁	b ₀						
PLLアンロックFF	0	0	0	Р	(BANK15)	R & Reset				
				L	12H					
			 	L						
			 	U						
			! !	L						
				-		アンロ	ックFFのキ	犬態を検出	ļ	
				0	アンロックFF	= 0 : PLLロック	状態			
				1	アンロックFF	= 1 : PLLアンロ	ック状態			
				-	" 0 " 固定					

リセッ	 RESET端子によるリセット	0	0	0	不
ト時	WDT & SPリセット				不
ク	ロック・ストップ時				保

不:不定 保:保持

16.5 PLLディスエーブル状態

PLL周波数シンセサイザは,PLL基準周波数選択レジスタ(RFアドレス11H番地)によりPLLディスエーブルが選択されているときに動作を停止します。

表16 - 1 に各PLLディスエーブル条件時の各ブロックの動作を示します。

また、PLLモード選択レジスタにより、VCOL、VCOH端子ディスエーブル状態を選択したときは、VCOL端子および VCOH端子のみ内部でプルダウンされ、ほかのブロックは動作します。

RESET端子によるリセット時はPLLディスエーブルになります。

表16 - 1 各PLLディスエーブル条件時の各プロックの動作

条件	PLL基準周波数選択レジスタ = 0111B	PLLモード選択レジスタ = 0000B
各ブロック	(PLLディスエーブル)	(VCOH, VCOLディスエーブル)
VCOL,	内部でプルダウン	内部でプルダウン
VCOH端子		
プログラマブル・	分周停止	動作する
ディバイダ		
基準周波数発生器	出力停止	動作する
位相比較器	出力停止	動作する
チャージ・ポンプ	エラー・アウト端子をフローティ	動作する
	ング	ただし入力がないため通常は口
		ウ・レベルを出力する

16.6 PLL周波数シンセサイザの使用方法

PLL周波数シンセサイザを制御するためには次に示すデータが必要です。

(1) 分周方式 : 直接分周 (MF), パルス・スワロ (HF, VHFL, VHFH)

(2)使用端子: VCOL, VCOH端子

(3)基準周波数:fr (4)分周値:N

16.6.1 から16.6.3 に各分周方式 (MF, HF, VHFL, VHFH) 時のPLLデータ設定方法を示します。

16.6.1 直接分周方式 (MF)

(1) 分周方式の選択

PLLモード選択レジスタにより直接分周方式を選択します。

(2)使用端子

直接分周方式を選択するとVCOL端子が動作可能になります。

(3)基準周波数f_rの設定

PLL基準周波数選択レジスタにより基準周波数を設定します。

(4) 分周値Nの計算方法

次のように計算します。

$$N = \frac{f_{VCOL}}{f_{r}}$$

fvcoL: VCOL端子の入力周波数

fr : 基準周波数

(5) PLLデータ設定例

次に示すMWバンドの放送局を受信するためのデータ設定方法を示します。

受信周波数:1422 kHz (MWバンド)

基準周波数: 3 kHz 中間周波数: +450 kHz

分周値Nは

$$N = \frac{f_{VCOL}}{f_r} = \frac{1422 + 450}{3} = 624 \text{ (10 ig.)}$$
$$= 270 \text{H (16 ig.)}$$

PLLデータ・レジスタ, PLLモード選択レジスタおよびPLL基準周波数選択レジスタへのデータは次のように設定します。

PLLデータ・レジスタ(PLLR)												
0	0	1	0	0	1	1	1	0	0	0	0	don't care
2			-	7				<u> </u>				

PLLモード選択	PLL基準周波数			
注1 レジスタ	選択レジスタ			
注2 001	0 0 0 1			
MF	3 kHz			

注1.PLLSCNFフラグ

2 . don't care

16.6.2 パルス・スワロ方式 (HF)

(1) 分周方式の選択

PLLモード選択レジスタによりパルス・スワロ方式を選択します。

(2)使用端子

パルス・スワロ方式を選択するとVCOL端子が動作可能になります。

(3)基準周波数f_rの設定

PLL基準周波数選択レジスタにより基準周波数を設定します。

(4) 分周値Nの計算方法

次のように計算します。

$$N = \frac{f_{VCOL}}{f_{r}}$$

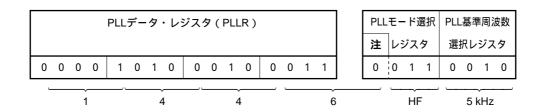
fvcoL: VCOL端子の入力周波数

fr : 基準周波数

(5) PLLデータ設定例

次に示すSWバンドの放送局を受信するためのデータ設定方法を示します。

受信周波数: 25.50 MHz (SWバンド)


基準周波数: 5 kHz 中間周波数: +450 kHz

分周値Nは

$$N = \frac{f_{VCOL}}{f_r} = \frac{25500 + 450}{5} = 5190 (10 \text{ ib})$$

= 1446H (16 \text{ib})

PLLデータ・レジスタ, PLLモード選択レジスタおよびPLL基準周波数選択レジスタへのデータは次のように設定します。

注意 パルス・スワロ方式を選択した場合は分周値Nは17ビットとなり,そのスワロ・カウンタの最下位ビットは PLLモード選択レジスタのビット3 (PLLSCNF)に存在します。このため分周値Nとして「1446H」を設定する場合,実際にPLLデータ・レジスタに設定する値は「0A23H」となります。

注 PLLSCNFフラグ

16.6.3 パルス・スワロ方式 (VHFL, VHFH)

(1) 分周方式の選択

PLLモード選択レジスタによりパルス・スワロ方式を選択します。

(2)使用端子

パルス・スワロ方式を選択するとVCOH端子が動作可能になります。

(3)基準周波数f_rの設定

PLL基準周波数選択レジスタにより基準周波数を設定します。

(4) 分周値Nの計算方法

次のように計算します。

$$N = \frac{f_{VCOH}}{f_r}$$

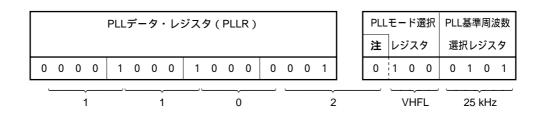
fvcon: VCOH端子の入力周波数

fr : 基準周波数

(5) PLLデータ設定例

次に示すFMバンドの放送局を受信するためのデータ設定方法を示します。

受信周波数:98.15 MHz (FMバンド)


基準周波数: 25 kHz 中間周波数: +10.7 MHz

分周値Nは

$$N = \frac{f_{VCOH}}{f_r} = \frac{98.15 + 10.7}{0.025} = 4354 (10 \text{ m})$$
$$= 1102H (16 \text{ m})$$

PLLデータ・レジスタ, PLLモード選択レジスタおよびPLL基準周波数選択レジスタへのデータは次のように設定します。

注意 パルス・スワロ方式を選択した場合は分周値Nは17ビットとなり,そのスワロ・カウンタの最下位ビットはPLLモード選択レジスタのビット3(PLLSCNF)に存在します。このため分周値Nとして「1102H」を設定する場合,実際にPLLデータ・レジスタに設定する値は「0881H」となります。

注 PLLSCNFフラグ

なお、PLLSCNFフラグは、必ずPLLデータ・レジスタ(PLLR)に書き込み命令(PUT)を行う前にデータをセット しておく必要があります。

例

SET1	PLLSCNF		
MOV	DBF0,	#0	
MOV	DBF1,	#4	
MOV	DBF2,	#4	
PUT	PLLR,	DBF	

16.7 リセット時の状態

16.7.1 RESET 端子によるリセット時

PLL基準周波数選択レジスタが0111BにイニシャライズされるためPLLディスエーブル状態になります。

16.7.2 WDT & SPリセット時

PLL基準周波数選択レジスタが0111BにイニシャライズされるためPLLディスエーブル状態になります。

16.7.3 クロック・ストップ時

PLL基準周波数選択レジスタが0111BにイニシャライズされるためPLLディスエーブル状態になります。

16.7.4 ホールト状態中

設定されている状態を保持します。

17. 中間周波数 (IF) カウンタ

17. 1 中間周波数 (IF) カウンタ概要

図17 - 1 にIFカウンタの概要を示します。

IFカウンタは,主に放送局検出用として,チューナから出力される中間周波数(IF: Intermediate Frequency)の計数に使用します。

IFカウンタには,外部入力信号の中間周波数をカウントするIFカウンタ機能と,外部入力信号のパルス幅を検出する外部ゲート・カウンタ (FCG: Frequency Counter for external Gate signal)機能があります。

IFカウンタ機能は, P1C2/AMIFC/FCG端子またはP1C3/FMIFC/AMIFC端子に入力された周波数を16ビットのカウンタで一定時間(1ms,4ms,8ms,オープン)カウントします。

外部ゲート・カウンタ機能は,P1C2/AMIFC/FCG端子に入力された信号の立ち上がりから次の立ち上がりまでの期間に,内部クロック(25 kHz,75 kHz)の周波数を16ビット・カウンタでカウントします。

IFカウンタ機能および外部ゲート・カウンタ機能は同時には使用できません。

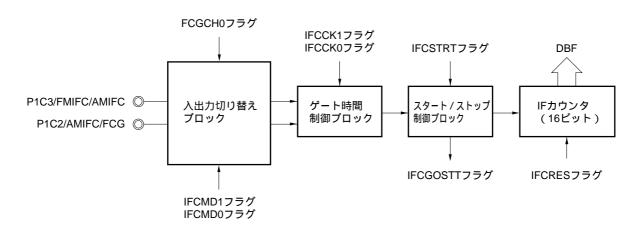


図17 - 1 IFカウンタ概要

- **備考1**.FCGCH0(FCGチャネル選択レジスタのビット0:**図**17-**4**参照) 外部ゲート・カウンタとして使用する端子を選択
 - **2.** IFCMD1, IFCMD0 (IFカウンタ・モード選択レジスタのビット3, ビット2:**図**17 **3**参照) IFカウンタおよび外部ゲート・カウンタの機能を選択
 - 3.IFCCK1, IFCCK0(IFカウンタ・モード選択レジスタのビット1,ビット0:**図**17-3参照) IFカウンタのゲート時間および外部ゲート・カウンタの基準周波数を選択
 - **4**.IFCSTRT (IFカウンタ・コントロール・レジスタのビット1:**図**17 **6**参照) IFカウンタおよび外部ゲート・カウンタのカウント・スタートを制御
 - **5**. IFCGOSTT (IFカウンタ・ゲート状態検出レジスタのビット0:**図**17 **7**参照) IFカウンタのゲートの開閉を検出
 - **6**. IFCRES (IFカウンタ・コントロール・レジスタのビット 0: **図**17 **6**参照) IFカウンタのカウント値をリセット

17.2 入力切り替えブロックおよびゲート時間制御ブロック

図17 - 2 に入力切り替えブロックおよびゲート時間制御ブロックの構成を示します。

入力切り替えブロックは,IFカウンタ入力切り替えブロックおよびFCG入力切り替えブロックから構成されています。

IFカウンタ入力切り替えブロックは、IFカウンタ・モード選択レジスタにより、周波数カウンタをIFカウンタとして使用するか外部ゲート・カウンタとして使用するかを選択します。IFカウンタとして使用する場合は、P1C3/FMIFC/AMIFC端子およびP1C2/AMIFC/FCG端子から使用する端子およびカウント・モードを選択します。P1C3/FMIFC/AMIFC端子およびP1C2/AMIFC/FCG端子のうち、IFカウンタとして使用しない端子は汎用入力ポートとなります。

FCG入力切り替えブロックは,周波数カウンタを外部ゲート・カウンタとして使用するとき,FCGチャネル選択レジスタにより,P1C2/AMIFC/FCG端子を外部ゲート・カウンタとして使用するか汎用入力ポートとして使用するかを選択します。このとき,P1C3/FMIFC/AMIFC端子は汎用入力ポートとなります。

ゲート時間制御ブロックは、IFカウンタ・モード選択レジスタにより、IFカウンタとして使用する場合のゲート時間および、外部ゲート・カウンタとして使用する場合のカウント周波数を選択します。

図17 - 3 にIFカウンタ・モード選択レジスタの構成を示します。

図17 - 4 にFCGチャネル選択レジスタの構成を示します。

IFCMD1フラグ FCGCH0フラグ IFCMD0フラグ FCG セレクタ 0 ゲート信号 \bigcirc ゲート信号発生器 IFCCK1フラグ スタート / ストップ セレクタ IFCCK0フラグ 制御ブロックへ 1/2 周波数発生器 P1C3/FMIFC/AMIFC -0 0 周波数 P1C2/AMIFC/FCG **FMIFC** AMIFC

図17-2 入力切り替えブロックおよびゲート時間制御ブロックの構成

図17-3 IFカウンタ・モード選択レジスタの構成

名 称	7	ラク	が記り		アドレス	Read/Write	
	рз	b ₂	b ₁	b ₀			
IFカウンタ・モード選択	I	ı	ı	ı	(BANK15)	R/W	
	F	F	F	F	22H		
	С	С	С	С			
	М	М	С	С			
	D	D	K	κ			
	1	0	1	0			
				-	IFカウンタの	ゲート時間およ	び外部ゲート・カウンタの基準周波数を設定
					IFカウン	/タのゲート時間	外部ゲート・カウンタの基準周波数
			0	0	1 ms		25 kHz
			0	1	4 ms		75 kHz
			1	0	8 ms		設定禁止
			1	1	オープン		設定禁止
			ı	-	IF	カウンタおよびタ	ト部ゲート・カウンタの機能を選択
	0	0			外部ゲート・カ	カウンタ(FCG))
		1			IFカウンタ (A	MIFC端子,AMI	IFカウント・モード)
	1	0			IFカウンタ (F	MIFC端子,FMI	Fカウント・モード 1/2分周)
	1	1			IFカウンタ (F	MIFC端子,AMI	Fカウント・モード)
For I				,	Ī		
リセス RESET端子によるリセット		0		_			
ト WDT & SPリセット	0	0	0	0			
クロック・ストップ時	0	0	0	0			

注意 IFカウンタ機能および外部ゲート・カウンタ機能は同時に使用できません。

図17 - 4 FCGチャネル選択レジスタの構成

名 称	7	ラク	ブ記り	号	アドレス	Read/Write	
	bз	b ₂	b ₁	b ₀			
FCGチャネル選択	0	0	0	F	(BANK15)	R/W	
			! !	С	20H		
			! !	G			
			! ! !	С			
			! !	Н			
			! !	0			
				_		FCGとし	して使用する端子を設定
				0	FCGを使用した	ない(汎用入力な	ポート)
				1	P1C2/AMIFC/I	FCG端子	
				-	" 0 " 固定		
V RESET端子によるリセット ト B WDT & SPリセット	0	0	0	0			
ト 時 WDT & SPリセット			0	0			
クロック・ストップ時	ļ		0	0			

17.3 スタート/ストップ制御プロックおよびIFカウンタ

17.3.1 スタート/ストップ制御ブロックおよびIFカウンタの構成

図17 - 5 にスタート/ストップ制御ブロックおよびIFカウンタの構成を示します。

スタート/ストップ制御ブロックは,周波数カウンタのカウント・スタートの設定およびカウント終了の検出を行います。

カウントのスタートは, IFカウンタ・コントロール・レジスタにより行います。

カウント終了の検出はIFカウンタ・ゲート状態検出レジスタにより行います。ただし,外部ゲート・カウンタ機能を使用しているときには,IFカウンタ・ゲート状態検出レジスタによるカウント終了の検出はできません。

図17 - 6 にIFカウンタ・コントロール・レジスタの構成を示します。

図17 - 7 にIFカウンタ・ゲート状態検出レジスタの構成を示します。

17.3.2 および17.3.3 にIFカウンタ機能時および外部ゲート・カウンタ機能時のゲート動作を示します。

IFカウンタは,IFカウンタ機能時および外部ゲート・カウンタ機能時の入力周波数をアップ・カウントする16ビットのバイナリ・カウンタです。

IFカウンタ機能時は,内部ゲート信号によりゲートがオープンしている間に,端子に入力された周波数をカウントします。AMIFカウント・モードではそのままカウントしますが,FMIFカウント・モードでは端子に入力された周波数を1/2分周してカウントします。

外部ゲート・カウンタ機能時は,端子に入力された信号によりゲートがオープンしている間に,内部周波数をカウントします。

IFカウンタはFFFFHまでカウントするとカウンタをリセットされるまでFFFFHの状態を保持します。

カウント値の読み込みは,データ・バッファを介してIFカウンタ・データ・レジスタ(IFC)により行います。

カウント値のリセットはIFカウンタ・コントロール・レジスタにより行います。

図17 - 8 にIFカウンタ・データ・レジスタの構成を示します。

図17 - 5 スタート/ストップ制御ブロックおよびIFカウンタの構成

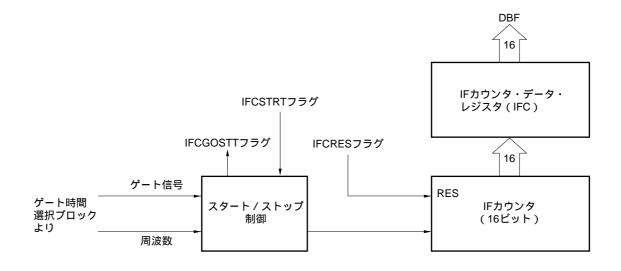


図17 - 6 IFカウンタ・コントロール・レジスタの構成

名 称	-	7ラ!	ブ記 [・]	를 -	アドレス	Read/Write	
	Ьз	b ₂	b ₁	b ₀			
IFカウンタ・コントロール	0	0	ı	ı	(BANK15)	W	
			F	F	23H		
		1	С	С			
		!	s	R			
			Т	Ε			
		1	R	S			
		!	Т				
	L	\vdash					
				L	IFカウンケ	タおよび外部ゲ-	- ト・カウンタのデータ・リセットを設定
				0	何も変化しま†	せん	
				1	カウンタをリヤ	セット	
			L		IFカウンタ	′および外部ゲー	ト・カウンタのカウント・スタートを設定
			0	!	何も変化しま1	せん	
			1	 	カウントをスク	タート	
				-	" 0 " 固定		
					•		
リーRESET端子によるリセット	0	0	0	0			

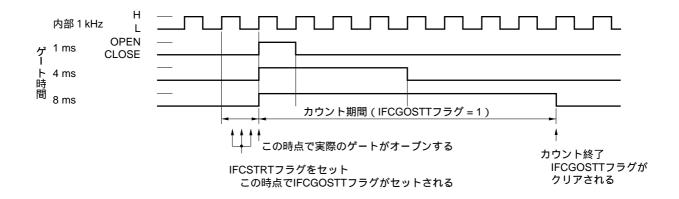
リセッ	RESET端子によるリセット	()	()	0	0
、 ト 時	WDT & SPリセット					0	0
ク	ロック・ストップ時	,	,	,	,	0	0

図17-7 IFカウンタ・ゲート状態検出レジスタの構成

名 称	7	ラク	ブ記り	를	アドレス	Read/Write	
	Ьз	b ₂	b ₁	b ₀			
IFカウンタ・ゲート状態検出	0	0	0	ı	(BANK15)	R	
				F	21H		
		! ! !	! ! !	С			
		! ! !	! !	G			
		! !	: ! !	0			
		! !	! !	S			
				Т			
	Ļ	! !	<u>: </u>	Т			
				L_		IFカウンタのゲ	ートの開閉を検出する
					IFカ	ウンタ機能時 	外部ゲート・カウンタ機能時
				0	IFCSTRTフラ	グに"1"をセット	- し P1C2/AMIFC/FCG端子の入力に関係
					てから,ゲー	トが閉まるまでセッ	ト なく,IFCSTRTフラグに" 1 "をセ
				1	(1)される		ットしたあと,ゲートがオープンして
							いる間セット(1)される
		L		-	" 0 " 固定		
					•		
リ RESET端子によるリセット	0	0	0	0			
ト 時 WDT & SPリセット				0			

- 注意1.IFCGOSTTフラグがセット(1)されているときは、IFカウンタ・データ・レジスタ(IFC)の内容をデータ・パッファに読み込まないでください。
 - 2.外部ゲート・カウンタ (FCG) 機能のゲートの開閉はIFCGOSTTフラグでは行えません。外部ゲート・カウンタのゲートの開閉はIFCSTRTフラグで行ってください。

クロック・ストップ時


17.3.2 IFカウンタ機能時のゲート動作

(1)ゲート時間に1,4,8 msを選択した場合

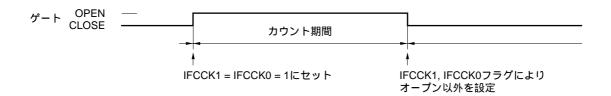
次に示すようにIFCSTRTフラグをセット(1)したあとの内部 1 kHz信号の立ち上がりから,それぞれ 1 ms, 4 ms, 8 msの期間だけゲートをオープンします。

このゲートがオープンしている間に,端子から入力されている周波数を16ビット・カウンタでカウントします。 ゲートが閉まるとIFCGOSTTフラグがクリア(0)されます。

IFCGOSTTフラグはIFCSTRTフラグをセットした時点で自動的にセット(1)されます。

(2)ゲート時間にオープンを選択した場合

次に示すようにIFCCK1, IFCCK0フラグによりオープンを選択した場合は,オープンを選択した時点でゲートがオープンします。

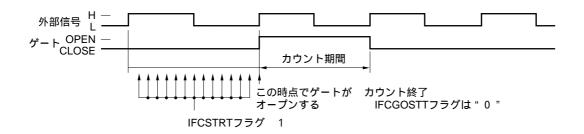

このゲートがオープンしている間にIFCSTRTフラグによりカウントのスタートを設定すると不定時間後にゲートが閉じてしまいます。

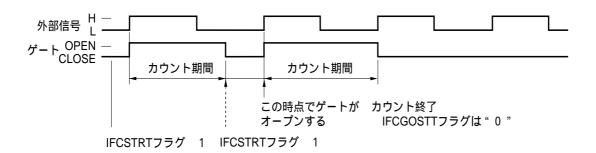
したがってゲート時間にオープンを使用する場合は,IFCSTRTフラグをセット(1)しないでください。 ただし,IFCRESフラグによりカウンタをリセットすることは可能です。

ゲート時間にオープンを選択した場合のゲートの開閉は次の(a) および(b) に示す 2 通りの方法があります。

(a) IFCCK1, IFCCK0フラグによりゲート時間にオープン以外を設定し直す。

(b) IFCMD1, IFCMD0フラグにより使用している端子を非選択にする。


この方法はゲートはオープンしたままであり、端子からの入力を禁止することによりカウントを中断します。


17.3.3 外部ゲート・カウンタ機能時のゲート動作

次に示すようにIFCSTRTフラグをセット(1)したあとの端子に入力されている信号の立ち上がりからその次の立ち上がりの期間だけゲートをオープンします。

このゲートがオープンしている間に,内部の周波数 (25 kHz, 75 kHz)を16ビット・カウンタでカウントします。 IFCGOSTTフラグはIFCSTRTフラグをセットしたあとの外部信号の立ち上がりからその次の立ち上がりまでの期間 だけセット (1)されます。

ゲートがオープンしている間にリセット,スタートした場合

17.3.4 16ビット・カウンタの機能と動作

16ビット・カウンタは、ゲート時間内に入力された周波数をアップ・カウントします。

16ビット・カウンタのリセットはIFカウンタ・コントロール・レジスタのIFCRESフラグに" 1 "を書き込むことにより行います。

16ビット・カウンタはFFFFHまで計数するとカウンタがリセットされるまでFFFFHの状態を保持します。

次の(1)および(2)にIFカウンタ機能および外部ゲート・カウンタ機能時の動作を示します。

IFカウンタ・データ・レジスタの値を読み込む場合は、データ・バッファを介して読み込みます。

図17 - 8 にIFカウンタ・データ・レジスタの構成と機能を示します。

(1) IFカウンタ機能時

P1C2/AMIFC/FCG端子またはP1C3/FMIFC/AMIFC端子に入力された周波数をゲートがオープンしている間カウントします。

ただし,P1C3/FMIFC/AMIFC端子に入力されたFMIFカウント・モード内は周波数を1/2分周してカウントしま す。

次に,カウント値"x(10進)"と入力周波数(ffmlfc, famlfc)の関係を示します。

$$f_{FMIFC} = \frac{X}{f_{GATE}} \times 2 (kHz)$$
 tgate: ゲート時間 (1 ms, 4 ms, 8 ms)

AMIFC

(2) 外部ゲート・カウンタ (FCG) 機能時

P1C2/AMIFC/FCG端子に入力された信号によりゲートがオープンしている間,内部周波数をカウントします。次に,カウント値" \times (10進)"と入力信号のゲート幅 t_{GATE} の関係を示します。

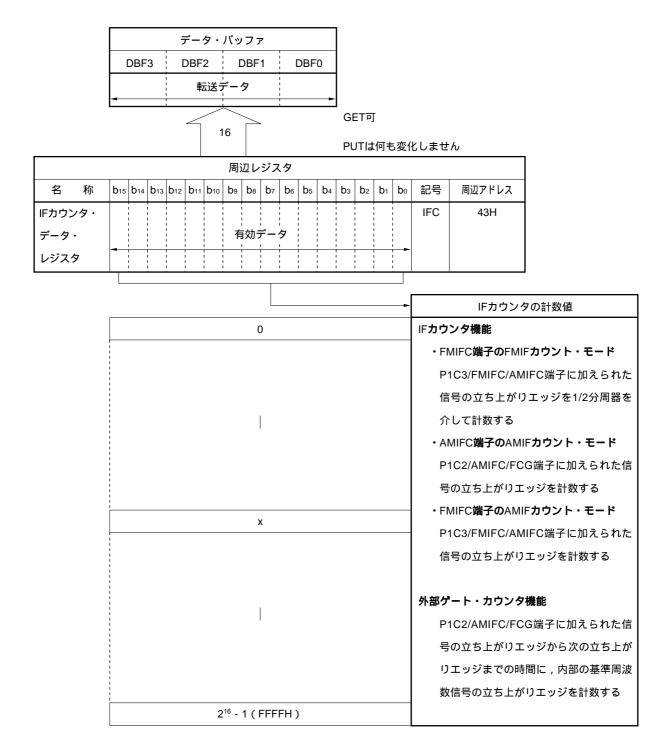


図17-8 IFカウンタ・データ・レジスタの構成

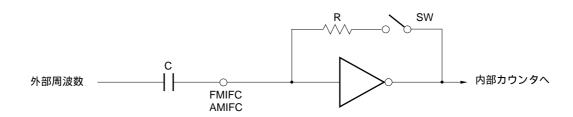
IFカウンタ・データ・レジスタはFFFFHまでカウントするとカウンタがリセットされるまでFFFFHの状態を保持します。

17.4 IFカウンタの使用方法

17.4.1-17.4.3 にIFカウンタのハードウエア使用方法,プログラム例およびカウント誤差を示します。

17.4.1 IFカウンタのハードウエア使用方法

図17 - 9 にP1C2/AMIFC/FCG端子およびP1C3/FMIFC/AMIFC端子を使用するときのブロック図を示します。


図17 - 9 に示すように, IFカウンタは交流アンプを内蔵した入力端子になるため, 入力信号は直流分をコンデンサ C でカットしてください。

P1C2/AMIFC/FCG端子およびP1C3/FMIFC/AMIFC端子がIFカウンタ機能に選択されると,スイッチSWがオンして各端子の電圧が約1/2 Vppになります。

このとき、十分に中間電圧に立ち上がっていないと、交流アンプが正常動作範囲にないため、IFカウントが正常に行われない場合があります。

したがって,各端子をIFカウンタとして指定してからカウントをスタートするまでに十分なウエイト時間を設けてください。

図17 - 9 各端子のIFカウント機能プロック図

17.4.2 IFカウンタのプログラム例

次にIFカウンタのプログラム例を示します。

例に示すように,P1C2/AMIFC/FCG端子またはP1C3/FMIFC/AMIFC端子をIFカウンタに設定する命令を実行してから,カウントをスタートするまでに,ウエイト時間を設けてください。

これは,17.**4.1**でも説明したように,各端子をIFカウンタに選択したときに,すぐに内蔵交流アンプが正常動作状態にならない場合があるためです。

例 P1C3/FMIFC端子(FMIFカウント・モード)で周波数をカウントする場合(ゲート時間は8ms)

INITELG IECMD1. NOT IECMD0. IECCK1. NOT IECCK0

;FMIFC端子(FMIFカウント・モード)を選択し,ゲート時間を8msに設定

ウエイト ; 内蔵交流アンプ安定時間

SET1 IFCRES ; カウンタのリセット SET1 IFCSTRT ; カウント・スタート

LOOP:

SKT1 IFCGOSTT ; ゲートの開閉を検出

BR READ ; ゲートが閉じればREAD: へ分岐

処理 A ; この処理 A ではIFカウンタのデータを読み込まないでください。

BR LOOP

READ:

GET DBF, IFC ; IFカウンタ・データ・レジスタの値をデータ・バッファへ読み込む。

17.4.3 IFカウンタの誤差

IFカウンタの誤差にはゲート時間の誤差とカウント誤差があります。

次の(1)および(2)にそれぞれを示します。

(1)ゲート時間の誤差

IFカウンタのゲート時間は,システム・クロック周波数である75 kHzを分周して作り出しています。 したがって75 kHzが" + x "ppmずれていると,ゲート時間は" - x "ppmずれることになります。

(2)カウント誤差

IFカウンタは入力された信号の立ち上がりエッジで周波数をカウントします。

したがって,ゲートがオープンしたときに端子にハイ・レベルが入力されていると1パルス分余分にカウント します。

ただし,ゲートが閉じるときは,端子の状態によりカウントすることはありません。 すなわちカウント誤差としては,"+1,-0"になります。

17.5 外部ゲート・カウンタの使用方法

17.5.1 外部ゲート・カウンタのプログラム例

次に外部ゲート・カウンタ機能のプログラム例を示します。

例 P1C2/AMIFC/FCG端子を外部ゲート入力として使用する場合

INITELG NOT IECMD1. NOT IECMD0. IECCK1. NOT IECCK0

;外部ゲート・カウンタ機能を選択し,ゲート時間を8msに設定

INITFLG FCGCHO ;外部ゲート入力としてFCG端子を選択

SET1 IFCRES ; カウンタのリセット SET1 IFCSTRT ; カウント・スタート

LOOP:

SKF1 IFCGOSTT ; ゲート開閉の検出

BR READ ; ゲートが閉じていればREAD: へ分岐

処理 A ; この処理 A ではIFカウンタのデータを読み込まないでください。

BR LOOP

READ:

GET DBF, IFC ; IFカウンタ・データ・レジスタの値をデータ・バッファへ読み込む。

17.5.2 外部ゲート・カウンタの誤差

外部ゲート・カウンタの誤差には内部周波数の誤差とカウント誤差があります。

次の(1)および(2)にそれぞれを示します。

(1)内部周波数の誤差

外部ゲート・カウンタの内部周波数は , システム・クロック周波数である75 kHzを分周して作り出しています。 したがって75 kHzが" + x " ppmずれていると , 内部周波数は同様に" + x " ppmずれることになります。

(2)カウント誤差

外部ゲート・カウンタは内部周波数の立ち上がりエッジで周波数をカウントします。

したがって,ゲートがオープンしたとき(端子の入力が立ち上がったとき)に,内部周波数がロウ・レベルであると1パルス分余分にカウントします。

ただし,ゲートが閉じるとき(次に端子の入力が立ち上がったとき)は,内部周波数のカウント・レベルによりカウントすることはありません。

すなわちカウント誤差としては, "+1,-0"になります。

17.6 リセット時の状態

17.6.1 RESET **端子によるリセット時**

P1C2/AMIFC/FCG端子, P1C3/FMIFC/AMIFC端子は汎用入力ポートに設定されます。

17.6.2 WDT & SP**リセット時**

P1C2/AMIFC/FCG端子, P1C3/FMIFC/AMIFC端子は汎用入力ポートに設定されます。

17.6.3 クロック・ストップ時

P1C2/AMIFC/FCG端子, P1C3/FMIFC/AMIFC端子は汎用入力ポートに設定されます。

17.6.4 ホールト状態時

P1C2/AMIFC/FCG端子, P1C3/FMIFC/AMIFC端子はホールト直前の状態を保持します。

18 . BEEP

18. **1** BEEP概要

図18 - 1 にBEEPの概要を示します。

BEEPは, P0B3/BEEP端子から1.5 kHzまたは3 kHzのクロックを出力します。

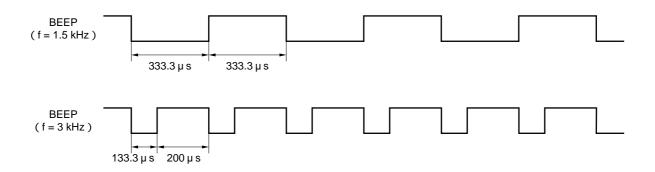
出力切り替えブロックは,BEEP0SELフラグにより汎用入出力ポートにするかBEEP出力にするかを選択し,BEEPクロック選択レジスタのBEEP0CK0フラグおよびBEEP0CK1フラグにより,P0B3/BEEP端子の出力を1.5 kHzにするか3 kHzにするか,またはBEEP端子の出力レベルを選択します。

クロック生成プロックは, POB3/BEEP端子に出力する1.5 kHzまたは3 kHzのクロックを生成します。

図18 - 2にBEEPクロック選択レジスタの構成と機能を示します。

図18 - 1 BEEPの概要

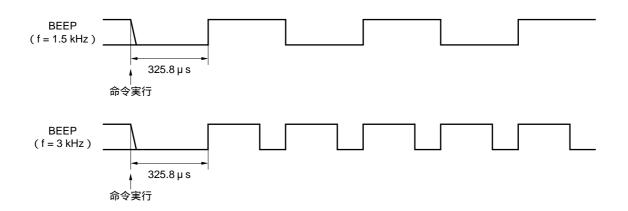
図18 - 2 BEEPクロック選択レジスタの構成と機能


5 16		フラク	ブ記号	-		Read/	
名 称	bз	b ₂	b ₁	b ₀	アドレス	Write	
BEEP クロック選択 レジスタ	0	B E E P O S E L	E P O C K	E E P O C	(BANK15) 14H	R/W	
		0	1	1		出力 出力 ック出力 7出力 汎用	子の設定(BEEPOSEL = 1のとき) 引入出力ポートとBEEPの選択 カポートとして使用 して使用

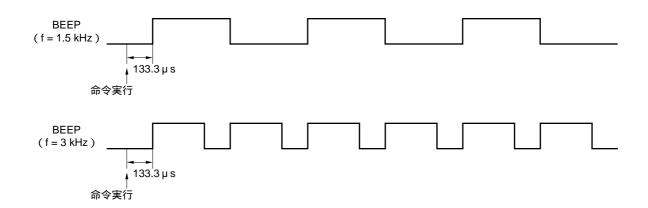
カケッ	RESET端子によるリセット	0	0	0	0
ト 時	WDT & SPリセット	0	0	0	0
クロ]ック・ストップ時	0	0	0	0

18. **2** BEEP**の出力波形**

(1) f = 1.5 kHzおよびf = 3 kHzの出力波形


例 3 kHzのクロックをP0B3/BEEP端子から出力するプログラム

BANK1 ; MOV BANK, #0001Bと同等


MOV 14H, #0011B ; データ・メモリ14H番地に0011Bを書き込む

;BEEP端子から3kHzを出力

(2)命令実行後, P0B3/BEEP端子からクロックが出力されるまでの最大時間

(3)命令実行後, POB3/BEEP端子からクロックが出力されるまでの最小時間

18.3 リセット時の状態

18. **3**. **1** RESET 端子によるリセット時

POB3/BEEP端子は汎用入力ポートに設定されます。

18.3.2 WDT&SPリセット時

P0B3/BEEP端子は汎用入力ポートに設定されます。

18.3.3 クロック・ストップ時

POB3/BEEP端子は汎用入出力ポートに設定されます。

18.3.4 ホールト状態時

P0B3/BEEP端子は以前の状態をそのまま保持します。

19. LCDコントローラ/ドライバ

LCD (Liquid Crystal Display) コントローラ / ドライバは , セグメント信号出力との組み合わせにより最大60ドットのLCD表示を行うことができます。

19.1 LCDコントローラ/ドライバ概要

図19 - 1 にLCDコントローラ / ドライバの概要を示します。

LCDコントローラ / ドライバは,コモン信号出力端子(COM0-COM3端子)とセグメント信号出力端子(LCD0-LCD19端子)の組み合わせにより,最大60ドットの表示を行います。

駆動方式は1/4デューティ,1/2バイアス,フレーム周波数は62.5 Hz,駆動電圧はVLcDです。

なお,セグメント信号出力端子のうちLCD17-LCD19の3本は汎用入力ポートとして使用することができます。汎用入力ポートについては11.3 **汎用入力ポート(**P0D, P1C, P2A**)**を参照してください。

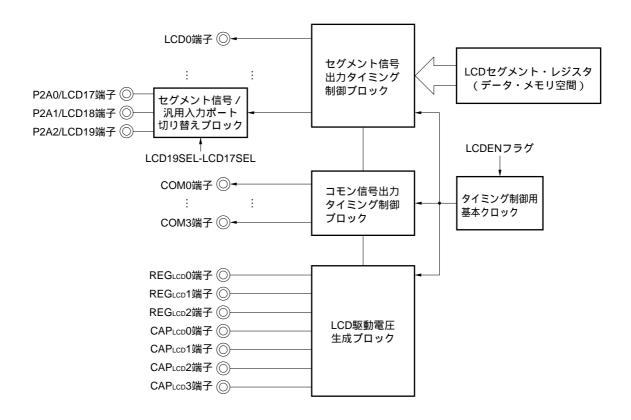


図19 - 1 LCDコントローラ/ドライバの概要

備考1.LCDEN(LCDモード選択レジスタのビット0:**図**19-**8**参照)

すべてのLCD表示のオン/オフを設定

2.LCD19SEL-LCD17SEL(LCDポート・セレクト・レジスタのビット 2-0: **図**19 - 6参照)

19.2 LCD 駆動電圧生成プロック

LCD駆動電圧生成ブロックは,LCDを駆動させるための電圧を生成します。

μPD17934Aでは,外付けのダブラ回路からLCD駆動電圧を供給します。ダブラ回路を構成するためには,CAPLCD0,CAPLCD1,CAPLCD2,CAPLCD3,REGLCD0,REGLCD1,REGLCD2端子にコンデンサを接続してください。

図19 - 2 にダブラ回路の構成例を示します。3.0 V (TYP.) の電圧を使用するためには,図19 - 2 に示すように接続してください。

また,ダブラ回路を動作させるためには,LCDモード選択レジスタのLCDENフラグを"1"にセットする必要があります。LCDENフラグを"1"にセットしないと,LCD駆動電圧生成ブロックは動作しません。LCDENフラグについては,19.5 コモン信号出力,セグメント信号出力タイミング制御ブロックを参照してください。

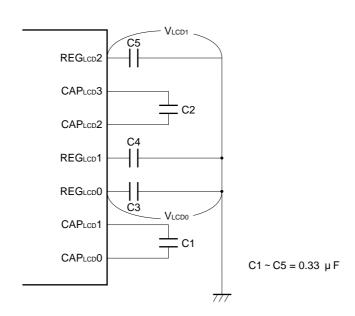


図19-2 ダブラ回路の構成

備考 ()内は端子番号です。

ダブラ回路の構成上, C1, C2, C3, C4, C5の値を変えることによりLCD駆動電圧(VLCD1, VLCD0)の値が異なってくるため注意が必要です。

19.3 LCDセグメント・レジスタ

LCDセグメント・レジスタは、LCDの点消灯するドット・データを設定します。

図19 - 3にLCDセグメント・レジスタのデータ・メモリ上の配置と構成を示します。

LCDセグメント・レジスタはデータ・メモリ上に配置されているため,すべてのデータ・メモリ操作命令で制御できます。

LCDセグメント・レジスタは 1 二ブルで 4 ドットの表示データ (点消灯データ)を設定できます。このとき,LCDセグメント・レジスタが" 1 "に設定されているとLCD表示ドットが点灯し, " 0 "に設定されているドットが消灯します。

図19 - 4にLCDセグメント・レジスタとLCD表示ドットの関係を示します。

図19 - 3 LCDセグメント・レジスタのデータ・メモリ上の配置と構成

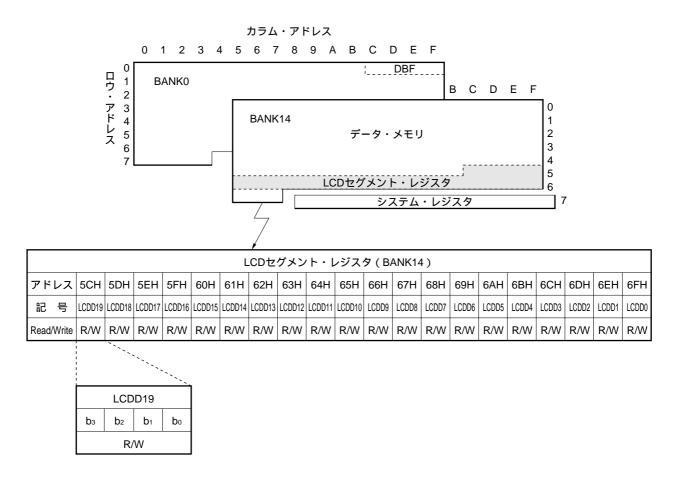


図19 - 4 LCDセグメント・レジスタとLCD表示ドットの関係

	LCDセグメント・レジスタ(BANK14))_							\neg													
アドレス		50	Н			5[DH			5E	Н			5F	Н			60	ЭН			61	Н			62	2H	(61	ΞH			6F	-H	
記号		LCD	D19			LCE	DD18	3		LCD	D17	7		LCDD16			LCDD15				LCDD14				LCDD13			3		LCI	DD1			LC	DD0	
ビット	bз	b ₂	b ₁	b ₀	bз	b ₂	b ₁	b ₀	Ьз	b ₂	b ₁	b ₀	Ьз	b ₂	b ₁	b ₀	bз	b ₂	b ₁	b ₀	рз	b ₂	b ₁	bo	Ьз	b ₂	b ₁	by) D3	b ₂	b ₁	b ₀	Ьз	b ₂	b ₁	b ₀
表示ドット	Α	В	С	D	Α	В	С	D	Ε	F	G	Н	Α	В	С	D	Е	F	G	Н	Α	В	С	D	Е	F	G	н	A	В	С	D	Ε	F	G	Н
COM3端子			A			-(A			_(E			_(A			_(E				A			-(E			(A			_(E	
COM2端子			В			_(В				F				В			—(F			_	В			_(F	\ -((_(В				F	
COM1端子			С			_(С				G				С			_(G				c			_(G	_(_(С				G	
COM0端子	端子 D D			Н				D				Н				D				H (D				Н							
	LCI	D19/F	 2A2端	子	LCE)18/F	। Р2А1	端子	LCI)17/P	2A0	端子	L	CD1	· 6端·	子	L	CD1	」 5端 ⁻	子	LO	CD1	4端-	7	L	CD1	 3端 ⁻	子〉	۱ (.CD	- 1端 -	7	L	.CD(」 0端 -	፫

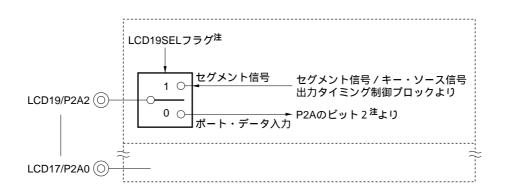

19.4 セグメント信号/汎用入力ポート切り替えブロック

図19 - 5 にセグメント信号 / 汎用入力ポート切り替えブロックの構成を示します。

セグメント信号 / 汎用入力ポート切り替えブロックは,LCDポート・セレクト・レジスタのLCD19SEL-LCD17SELフラグにより,各端子をセグメント信号出力として使用するか,汎用入力ポートとして使用するかを設定します。各フラグが"1"のときはセグメント信号出力に設定され,"0"のときは汎用入力ポートに設定されます。

図19 - 6 にLCDポート・セレクト・レジスタの構成を示します。

図19-5 セグメント信号/汎用入力ポート切り替えブロックの構成

注 LCD19/P2A2端子ではLCD19SELフラグおよびP2Aのビット2, LCD18/P2A1端子ではLCD18SELフラグおよびP2Aのビット1, LCD17/P2A0端子ではLCD17SELフラグおよびP2Aのビット0

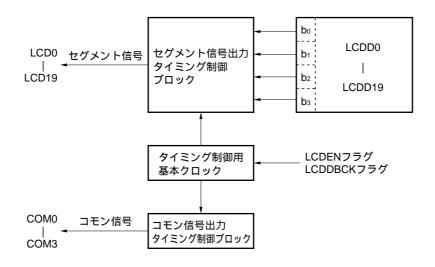
図19 - 6 LCDポート・セレクト・レジスタの構成

67 Th		フラク	グ記号	큵		Read/	
名 称	bз	b ₂	b ₁	b ₀	アドレス	Write	
LCDポート・セレクト・ レジスタ	0	C D 1 9 S E	1 8 S	C D 1 7 S E	69H	R/W	
					1.0	ロセガィント	 ~信号出力端子と汎用入力ポートの選択
				0			〜――――――――――――――――――――――――――――――――――――
				1			
				<u>. </u>	200177127	103111] ELO	BE DO CENT
					LC	Dセグメント	 〜信号出力端子と汎用入力ポートの選択
			0		LCD18/P2	A1端子を汎	用入力ポートとして使用
			1		LCD18/P2	A1端子をLC	Dセグメントとして使用
		_	7	-			〜信号出力端子と汎用入力ポートの選択 ニュー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
		0	-				用入力ポートとして使用
		1			LCD19/P2	A2端子をLC	Dセグメントとして使用
				-	" 0 " 固定	?	

カセッ	RESET端子によるリセット	()	0	0	0
ト時	WDT&SP リセット			0	0	0
クロ]ック・ストップ時	,		保	保	保

保:保持

19.5 コモン信号出力,セグメント信号出力タイミング制御プロック


図19 - 7にコモン信号出力およびセグメント信号出力タイミング制御ブロックの構成を示します。 コモン信号出力タイミング制御ブロックは, COM0-COM3端子のコモン信号出力タイミングを制御します。 セグメント信号出力タイミング制御ブロックは, LCD0-LCD19端子のセグメント信号出力タイミングを制御します。 コモン信号, セグメント信号は, LCDモード選択レジスタのLCDENフラグを"1"に設定すると出力されます。 LCDENフラグを"0"に設定するとすべてのLCD表示を消灯することができます(図19 - 8参照)。 LCD表示を行わないときは, COM0-COM3端子, LCD0-LCD19端子はロウ・レベルを出力します。 LCDDBCKフラグは通常動作時,"0"に設定してください。

LCDDBCKフラグを"1"に設定すると,LCD駆動電圧生成用ダブラ回路用のクロックが75 kHzから5 kHzに変更されます。これによりHALT命令実行時の消費電流を低減することが可能になります(24.電気的特性を参照)。

ただしこのダブラ回路により内部LCD出力ポートの出力電流能力が減少しますので,ご使用となるLCDパネルとの評価を十分に行ってください。

注意 電源投入時にはLCDDBCKがリセットされるので,電源投入後128 msまでは必ず75 kHzとなります。

図19-7 コモン信号出力,セグメント信号出力タイミング制御ブロックの構成

フラグ記号 Read/ 名 称 アドレス b₁ b₀ bз b₂ Write L L С С D LCDモード選択 (BANK15) D 0 | 0 i D R/W В レジスタ 40H С Ε Κ Ν すべてのLCD表示のオン/オフを設定 0 表示オフ(セグメント,コモン出力端子はすべてロウ・レベル出力) 1 表示オン " 0 " 固定 LCD用ダブラの動作クロックを設定 0 ¦ ダブラ・クロック75 kHzで動作 1 ダブラ・クロック5 kHzで動作 RESET端子によるリセット 0 0 0 0 0 ト 時 WDT & SPリセット 0 0 0 O

図19 - 8 LCDモード選択レジスタの構成

19.6 コモン信号およびセグメント信号出力波形

クロック・ストップ時

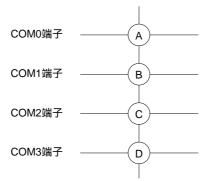
図19 - 9にコモン信号およびセグメント信号出力波形の一例を示します。

0 0 0

0

μ PD17934Aでは,1/4デューティ,1/2バイアス(電圧平均化法)の駆動方式でフレーム周波数62.5 Hzの信号を出力します。

コモン信号出力は,COM0-COM3端子から互いに1/8の位相差を持った3レベル(GND, VLCD0, VLCD1)の電圧を出力します。つまり,コモン信号はVLCD0を中心に±1/2 VDDの電圧を出力することになり,この表示方法を1/2バイアス駆動方式と呼びます。


セグメント信号出力は,各セグメント信号出力端子から表示ドットに対応した位相を持った2レベル(GND, VLcon)の電圧を出力します。図19-9に示すように,1本のセグメント端子で4個の表示ドット(A,B,C,D)を点消灯させるため,各ドットの点消灯の組み合わせから16通りの位相を出力することができます。

各表示ドットは,コモン信号とセグメント信号の電位差がVLCD1になると点灯します。

つまり, 各表示ドットが点灯するデューティは1/4となります。

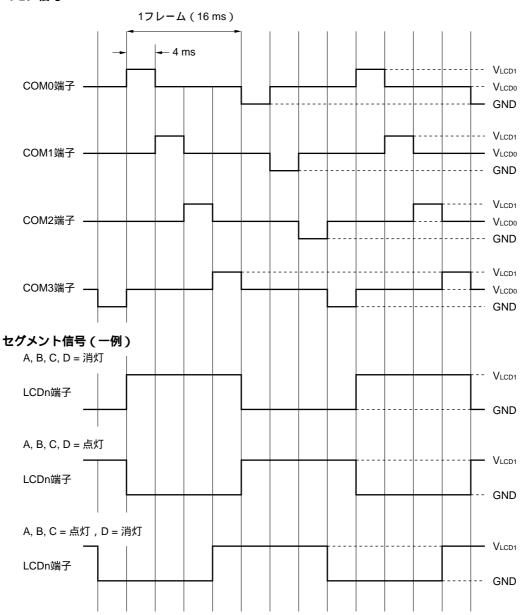

この表示方式を1/4デューティ表示方式と呼び,フレーム周波数は62.5 Hzになります。

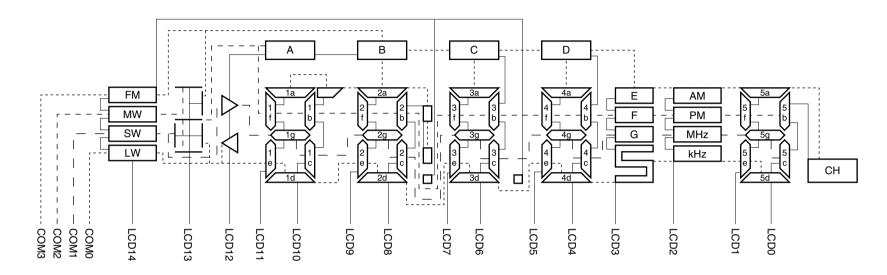
図19-9 コモン信号およびセグメント信号出力波形

各セグメント信号出力端子 (LCDn端子)

コモン信号

19.7 LCDコントローラ/ドライバの使用方法

図19 - 10にLCD0-LCD14端子を使用したLCDパネルの結線例を示します。


また,図19-10に示したLCD0,LCD1端子の7セグメントを点灯させるプログラム例を次に示します。

例

```
: プリセット・ナンバの格納エリア
PMNO
       MEM
               0.01H
СН
       FLG
               LCDD0.3
                                       ;LCDD0レジスタの上位1ビットを'CH'表示用と
                                       ;してシンボル定義
                                       ; LCDセグメント テーブル・データ
LCDDATA:
               0000000000000000B
       DW
                                       ; BLANK
                                       ; 1
       DW
               000000000000110B
                                       : 2
       DW
               0000000010110101B
       DW
               0000000010100111B
                                       ; 3
       DW
                                       ; 4
               000000001100110B
       DW
                                       : 5
               0000000011100011B
       DW
                                       ; 6
               0000000011110011B
                                       ; 7
       DW
               000000010000110B
       DW
               0000000011110111B
                                       ; 8
       DW
               0000000011100111B
                                       ; 9
       MOV
               ARO, #.DL.LCDDATA SHR 12 AND OFH
               AR1, #.DL.LCDDATA SHR 8 AND OFH
       MOV
               AR2, #.DL.LCDDATA SHR 4 AND OFH
       MOV
       MOV
               AR3, #.DL.LCDDATA
                                        AND OFH
               DBFO, ARO
       LD
               DBF1, AR1
       LD
               DBF2, AR2
       LD
       LD
               DBF3, AR3
               DBFO, PMNO
       ADD
       ADDC
               DBF1, #0
       ADDC
               DBF2, #0
       ADDC
               DBF3, #0
               ARO, DBFO
       ST
       ST
               AR1, DBF1
       ST
               AR2, DBF2
               AR3, DBF3
       ST
                                       ; テーブル参照命令
       MOVT
               DBF,@AR
       BANK1
       ST
               LCDDO, DBF0
       ST
               LCDD1, DBF1
       SET1
               СН
       SET1
               LCDEN
                                       ; LCD ON
```

データ・シート U13778JJ2V0DS

図19 - 10 LCDパネルの結線例 (LCD0-LCD14を使用した場合)

セグメント端子およびコモン端子とLCDパネル表示の対応表(LCD0-LCD14端子を使用した場合)

セグメント端子コモン端子	L C D 14	L C D 13	L C D 12	L C D 11	L C D 10	L C D 9	L C D 8	L C D 7	L C D 6	L C D 5	L C D 4	L C D 3	L C D 2	L C D	L C D 0
СОМЗ	FM		В	1a		2a	:	За	С	4a	D	E	АМ	5a	СН
COM2	MW		А	1f	1b	2f	2b	3f	3b	4f	4b	F	РМ	5f	5b
COM1	SW		\triangleright	1g	1c	2g	2c	3g	3с	4g	4c	G	MHz	5g	5c
СОМО	LW		\triangleleft	1e	1d	2e	2d	Зе	3d	4e	4d		kHz	5e	5d

19.8 リセット時の状態

19.**8**.**1** RESET 端子によるリセット時

LCD0-LCD16端子はロウ・レベルを出力します。

LCD17/P2A0-LCD19/P2A2端子は汎用入力ポートに設定されます。

COM0-COM3端子はロウ・レベルを出力します。

したがって,LCD表示はオフします。

LCDセグメント・レジスタの内容は不定になります。

19.8.2 WDT&SPリセット時

LCD0-LCD16端子はロウ・レベルを出力します。

LCD17/P2A0-LCD19/P2A2端子は汎用入力ポートに設定されます。

COM0-COM3端子はロウ・レベルを出力します。

したがって,LCD表示はオフします。

LCDセグメント・レジスタの内容は不定になります。

19.8.3 クロック・ストップ時

LCD0-LCD16端子はロウ・レベルを出力します。

LCD17/P2A0-LCD19/P2A2端子のLCDセグメントに設定されている端子はそのまま保持します。

COM0-COM3端子はロウ・レベルを出力します。

したがって,LCD表示はオフします。

LCDセグメント・レジスタの内容は,以前の状態が保持されます。

19.8.4 ホールト状態中

LCD0-LCD19端子はセグメント信号を出力します。

COM0-COM3端子はコモン信号を出力します。

LCDセグメント・レジスタの内容は,以前の状態が保持されます。

20. スタンバイ

スタンバイ機能は、バックアップ時にデバイスの消費電流を減少させる目的で使用します。

20.1 スタンパイ機能概要

図20 - 1にスタンバイ・ブロックの概要を示します。

スタンバイ機能はデバイスの動作を一部またはすべて停止させることによりデバイスの消費電流を削減します。 スタンバイ機能には次の2つがあり,用途に応じて使い分けることができます。

- ・ホールト機能
- ・クロック・ストップ機能

ホールト機能は,専用命令である"HALT h"命令でCPUの動作を停止させることにより,デバイスの消費電流を削減します。

クロック・ストップ機能は,専用命令である "STOPs"命令で発振回路の発振を停止させることにより,デバイスの消費電流を削減します。

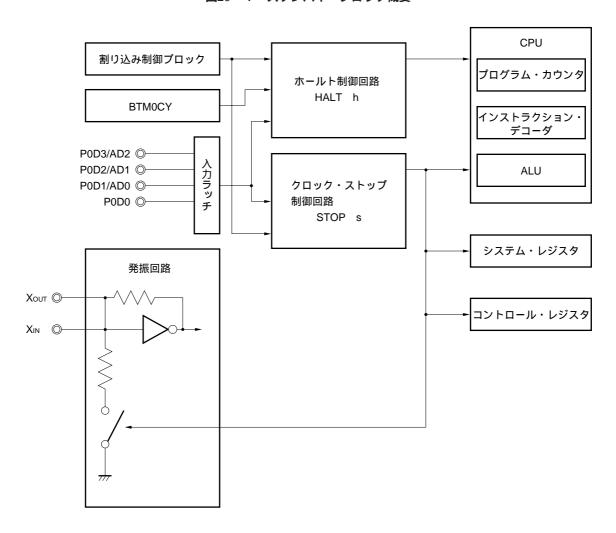


図20-1 スタンバイ・ブロック概要

20.2 ホールト機能

20.2.1 ホールト機能概要

ホールト機能は、"HALTh"命令を実行することによりCPUの動作クロックを停止します。

"HALT h"命令が実行されると、以後ホールト状態が解除されるまでプログラムは停止したままになります。したがって、ホールト状態中のデバイス消費電流はCPUの動作電流分だけ減少します。

ホールト状態からの解除はベーシック・タイマ 0 キャリーFF,割り込みおよびポート入力(POD)により行います。 解除条件は"HALT h"命令のオペランドである"h"により指定します。

20.2.2 ホールト状態

ホールト状態中はCPUの動作がすべて停止します。すなわちプログラムの実行が"HALTh"命令で停止している状態になります。ただし,周辺ハードウエアは"HALTh"命令以前に設定されている動作をそのまま継続します。

各周辺ハードウエアの動作については"20.4 ホールトおよびクロック・ストップ時のデバイス動作"を参照してください。

20.2.3 ホールト解除条件

図20 - 2 にホールト解除条件を示します。

ホールト解除条件は, "HALTh"命令のオペランド "h"で指定する4ビット・データにより設定します。

ホールト状態は, オペランド"h"に"1"で指定された条件が満たされると解除されます。

ホールト状態が解除されると,"HALTh"命令の次の命令からプログラムを実行します。ただし,割り込みによる解除を指定した場合には,割り込み許可(IP×××=1)されていてかつ割り込み要因が発行(IRQ×××=1)されたとき,割り込みイネーブル状態"EI",ディスエーブル状態"DI"のどちらに指定されているかでホールト解除後のプログラム動作が異なりますので注意が必要です。

また,このとき一度に複数の解除条件が設定されていると,設定されている条件のどれか1つでも満たされればホールト状態は解除されます。

ホールト解除条件"h"に0000Bが設定されると,どの解除条件も設定されません。このときデバイスにリセットがかるとホールト状態が解除されます。

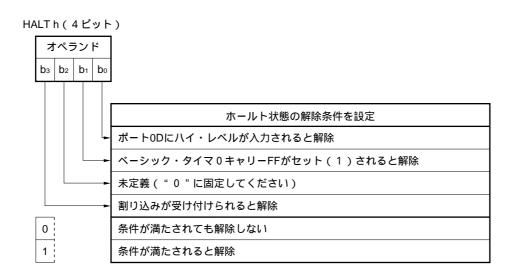
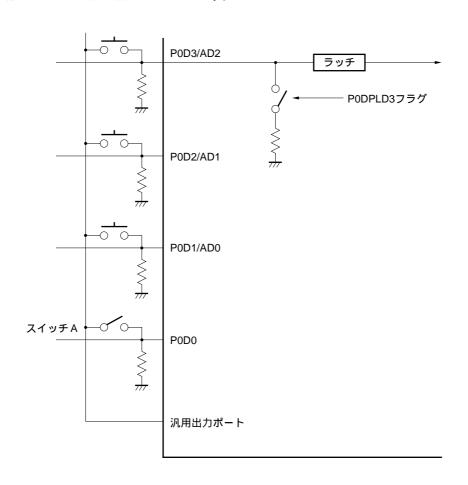


図20 - 2 ホールト解除条件

20. 2. 4 入力ポート (POD) によるホールト解除

入力ポートによるホールト解除条件は, "HALT 0001B"命令で設定します。


入力ポートによるホールト解除条件を設定すると,P0D0-P0D3端子の4本のうちどれか1本にでもハイ・レベルが入力されたときにホールト状態を解除します。

P0D0-P0D3端子はA/Dコンバータ入力端子AD0-AD2端子と兼用端子となっており(ただしP0D0を除く),A/Dコンバータ入力端子として選択されている場合にはホールト解除されません。

次に使用例を示します。

・キー・マトリクスとして使用する場合

P0D0-P0D3端子は,1ビット単位で切り替えが可能なプルダウン抵抗付き汎用入力ポートです。したがって,ソフトウエアで内部プルダウン抵抗を指定した場合には,この例のような外付け抵抗を削除できます(RESET端子によるリセット時は内部プルダウン抵抗が指定されています)。

キー・ソース信号用の汎用出力ポートをハイ・レベルにしたあとに, " HALT 0001B" 命令を実行します。

このとき,上図に示すスイッチAのようにオルタネート・スイッチを用いていると,スイッチAが閉じている間は常にP0D0端子にハイ・レベルが加わるため,ホールト状態はただちに解除されてしまいます。十分注意してください。

20.2.5 ベーシック・タイマ0キャリーFFによるホールト解除

ベーシック・タイマ 0 キャリーFFによるホールト解除は、"HALT 0010B"命令で設定します。

ベーシック・タイマ 0 キャリーFFによるホールト解除が設定されると,ベーシック・タイマ 0 キャリーFFがセット (1) されると同時にホールト状態が解除されます。

ベーシック・タイマ 0 キャリーFFは,BTM0CYフラグと 1 対 1 に対応しており,一定時間ごと(125 ms)にセットされます。したがって,一定時間ごとにホールト状態を解除することができます。

例 125 msごとにホールト状態を解除し,処理Aを実行する。

HLTTMR DAT 0010B ;シンボル定義

LOOP:

HALT HLTTMR ; ホールト解除条件をベーシック・タイマ 0 キャリーFFのセットに設定

SKT1 BTMOCY ; 組み込みマクロ

BR LOOP ; BTMOCYフラグがセットされていなければLOOPへ分岐

処理 A ; キャリーが出れば処理 A を実行

BR LOOP

20.2.6 割り込みによるホールト解除

割り込みによるホールト解除は "HALT 1000B" 命令で設定します。

割り込みによるホールト解除が設定されると、割り込みが受け付けられると同時にホールト状態が解除されます。

割り込み要因には,12.**割り込み**で説明したように複数の要因があります。したがって,どの割り込み要因でホールト解除するかはあらかじめプログラムで指定しておく必要があります。

また,割り込みが受け付けられるためには,各割り込み要因からの割り込み要求の発行以外に各割り込みごとの許可(割り込み許可フラグのセット)を設定しておく必要があります。

したがって,割り込み要求が発行されてもその割り込みが許可されていなければ割り込みは受け付けられず,ホールト状態も解除されません。

割り込みの受け付けによりホールト状態が解除されると,プログラムの流れは各割り込みのベクタ・アドレスへ移ります。

割り込みの処理後は,RETI命令を実行するとプログラムの流れはHALT命令の次の命令に復帰します。

また,すべての割り込みが禁止(DI状態)されていれば,割り込み許可(IP $\times \times \times = 1$)かつ割り込み要因の発行 (IRQ $\times \times \times \times = 1$) によりホールト状態が解除されプログラムの流れはHALT命令の次の命令へ移ります。

例 タイマ 0 , INT端子の割り込みによるホールト解除

この例では、タイマ 0 による割り込み受け付け時にはホールト状態を解除して処理 B を実行し、INT端子による割り込み受け付け時には処理 A を実行します。

またホールト状態が解除されるたびに処理Cを実行します。

HLTINT DAT 1000B ; シンボル定義 START: ; アドレス0000H

BR MAIN

;***割り込みベクタ・アドレス***

NOP ; SIO1

NOP ; ベーシック・タイマ 1

BR INTTMO ; タイマ 0 割り込み処理に分岐 INTP: ; INT端子割り込み処理に分岐

; INT端子割り込みベクタ・アドレス(0004H)

処理 A ; INT端子による割り込み処理

E I RET I

INTTMO:

処理B ; タイマ 0 による割り込み処理

E I RET I

MAIN:

INITFLG TMOCK1,TMOCK0 ; タイマ 0 カウント・クロックを40 µ sに設定

MOV DBF1,#0 MOV DBF0,#32H

PUT TMOM, DBF ; タイマ 0 割り込みの時間間隔を2 msに設定

SET2 TMORES, TMOEN ; タイマ 0 のリセット, スタート

SET2 IPTMO, IPO ; INT端子およびタイマ 0 の割り込みを許可

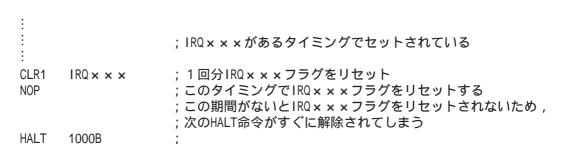
LOOP:

処理 C ; メイン・ルーチン処理

EI ; すべての割り込みを許可

HALT HLTINT ;割り込みによるホールト解除の設定

, BR LOOP


ホールト状態中に同時にINT端子による割り込み要求とタイマ 0 による割り込み要求が発行された場合は,ハードウエア優先順位の高いINT端子の処理 A を実行します。

処理Aの実行後, "RETI"が実行されると の "BR LOOP"命令に復帰しますが"BR LOOP"命令は実行されずにすぐタイマ 0 割り込みが受け付けられます。

タイマ 0 割り込み処理である処理 B の実行後 "RETI"命令が実行されると,"BR LOOP"命令を実行します。

注意 ホールト命令を実行する前に一度割り込み要求フラグ (IRQ×××)をリセットしたい場合は,次のようにホールト命令と割り込み要求フラグ (IRQ×××)のリセット命令との間にNOP命令(または1命令以上のほかの命令)を挿入してください。NOP命令(または1命令以上のほかの命令)を挿入しない場合は,割り込み要求フラグがリセットされないため,ホールト状態がすぐ解除されてしまいます。

例

20.2.7 複数の解除条件が同時に設定された場合

複数のホールト解除条件が同時に設定された場合は,設定された解除条件のうち1つでも条件が満たされるとホールト状態が解除します。

このとき複数の解除条件が同時に満たされたときの解除条件判別方法を次に示します。

例

 HLTINTP
 DAT
 1000B

 HLTBTM
 DAT
 0010B

 HLTPOD
 DAT
 0001B

 POD
 MEM
 0.73H

START:

BR MAIN

;***割り込みベクタ・アドレス***

NOP ; SIO

NOP ; ベーシック・タイマ 1

NOP ; TMO NOP ; INT

INTP: ; INT端子割り込みベクタ・アドレス(0004H)

処理 A ; INT端子割り込み処理

E I RET I

BTMOUP: ; タイマ・キャリーFF処理

処理 B

RET

PODP: ; POD入力処理

処理C

RET

MAIN:

SET1 IPO ; INT端子の割り込みを許可

ΕI

LOOP:

HALT HLTINT OR HLTBTM OR HLTPOC

;ホールト解除条件を,割り込み,タイマ・キャリーFF(125 ms)およ

びPOD入力に設定

SKF1 BTMOCY ; BTMOCYフラグを検出

CALL BTMOUP ; セット(1)されて(1)されて(1)されて(1)されて(1)もいればタイマ・キャリー(1)年

SKF POD, 1111B; PODの入力を検出

CALL PODP ; ハイ・レベルであればポート入力処理

BR LOOP

前記例ではホールト解除条件にINT端子の割り込み,125 msベーシック・タイマ0キャリーFFおよびポート0D入力の3条件を設定しています。

どの条件でホールト状態が解除されたかを検出するために、割り込みであればベクタ・アドレス、タイマ・キャリー FFであればBTM0CYフラグ、ポート入力であればポート・レジスタを検出します。

複数の解除条件を使用するときは,次に示す2点に注意が必要です。

- ・ホールト状態が解除されたときは、設定されている解除条件のすべてを検出する必要がある。
- ・優先順位の高い解除条件から検出する必要がある。

20.3 クロック・ストップ機能

20.3.1 クロック・ストップ機能概要

クロック・ストップ機能は "STOPs" 命令を実行することにより,75 kHz水晶振動子の発振回路を停止します(クロック・ストップ状態)。

したがって,デバイスの消費電流は10 μ A MAX. (T_A = -10 ~ +50 , V_{DD} = 0.9~1.8 V)まで減少します。

20.3.2 クロック・ストップ状態

クロック・ストップ状態は水晶振動子の発生回路が停止するため, CPUおよび周辺ハードウエアなどのデバイス動作はすべて停止します。

CPUおよび各周辺ハードウエアの動作は20.**4 ホールトおよびクロック・ストップ時のデバイス動作**を参照してください。

20.3.3 クロック・ストップ状態の解除方法

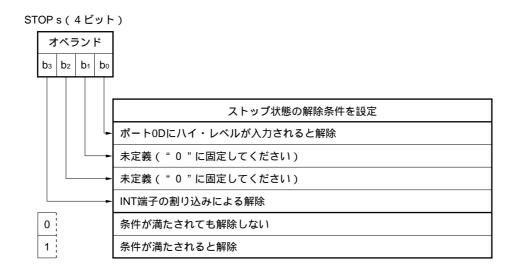
図20 - 3 にストップ解除条件を示します。

ストップ解除条件は "STOPs" 命令のオペランド "s" で指定する4ビット・データにより設定します。

ストップ状態は, オペランド "s"に "1"で指定された条件が満たされると解除されます。

ストップ状態が解除されると,発振回路の安定待ち時間としてベーシック・タイマ 0 クロック選択レジスタで設定した時間の半分(tset/2)のホールト期間のあと,プログラムは"STOPs"命令の次の命令から実行を始めます。ただし,割り込みによる解除を指定した場合には,割り込み許可($IPx \times x = 1$)されていてかつ割り込み要因が発行($IRQ \times x \times x = 1$)されたとき,割り込みイネーブル状態"EI",ディスエーブル状態"DI"のどちらに指定されているかでストップ解除後のプログラム動作が異なりますので注意が必要です。

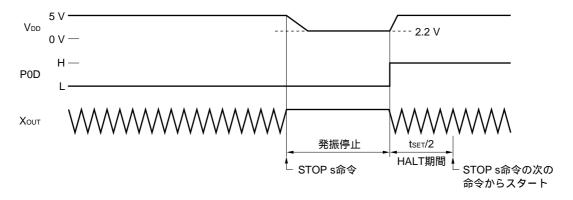
すべての割り込みが許可(EI状態)されていれば,割り込み許可(IP $\times \times \times = 1$)かつ割り込み要因の発行(IRQ $\times \times \times \times = 1$)によりストップ状態が解除され,プログラムの流れは各割り込みのベクタ・アドレスへ移ります。


割り込みの処理後は、RETI命令を実行するとプログラムの流れはSTOP命令の次の命令に復帰します。

また,すべての割り込みが禁止(DI状態)されていれば,割り込み許可(IP $\times \times \times = 1$)かつ割り込み要因の発行 (IRQ $\times \times \times \times = 1$) によりストップ状態が解除され,プログラムの流れはSTOP命令の次の命令へ移ります。

また,一度に複数の解除条件が設定されていると,設定されている条件のどれか1つでも満たされれば,ストップ 状態は解除されます。

ストップ解除条件"s"に0000Bが設定されると,どの解除条件も設定されません。このときデバイスにリセットがかるとストップ状態が解除されます。


図20-3 ストップ解除条件

20.3.4 ポートODのハイ・レベル入力によるクロック・ストップ状態の解除

図20 - 4 にポート0Dのハイ・レベル入力によるクロック・ストップ状態の解除動作を示します。

図20-4 ポート0Dのハイ・レベル入力によるクロック・ストップ状態の解除動作

tser:ベーシック・タイマ 0 設定時間

20.4 ホールトおよびクロック・ストップ時のデバイス動作

表20 - 1にホールト状態中とクロック・ストップ状態中のCPUおよび周辺ハードウエアの動作を示します。

ホールト状態中,すべての周辺ハードウエアは命令の実行が停止する以外は通常動作を継続します。

クロック・ストップ状態中は, すべての周辺ハードウエアが動作を停止します。

周辺ハードウエアの動作状態を制御するコントロール・レジスタは,ホールト状態中は通常どおり動作(イニシャライズされない)しますが,クロック・ストップ命令が実行された時点で所定の値にイニシャライズされます。

つまり各周辺ハードウエアは,ホールト状態中はコントロール・レジスタに設定されている動作を継続し,クロック・ストップ状態中はイニシャライズされたコントロール・レジスタの値に従って動作状態が決定されます。

クロック・ストップ状態時のコントロール・レジスタの値については, **8. レジスタ・ファイル (RF) とコントロール・レジスタ**を参照してください。

周辺ハードウエア	状	態
	ホールト時	クロック・ストップ時
プログラム・カウンタ	HALT命令のアドレスでストップ	STOP命令のアドレスでストップ
システム・レジスタ	保持	保持
周辺レジスタ	ıı .	一部イニシャライズ ^注
コントロール・レジスタ	n .	一部イニシャライズ ^注
タイマ	通常動作	動作停止
PLL周波数シンセサイザ	通常動作	II .
A/Dコンバータ	通常動作	II .
シリアル・インタフェース	内部クロック(マスタ)動作選択時には動作	動作停止し,汎用入出力ポートになる
	を停止し,外部クロック(スレーブ)動作選	
	択時には動作を継続する。	
周波数カウンタ	通常動作	動作停止し,汎用入力ポートになる
BEEP出力	"	動作停止し,汎用入出力ポートになる
LCDコントローラ / ドライバ	n	動作停止
汎用入出力ポート	n .	保持
汎用入力ポート	ıı .	入力ポート
 汎用出力ポート	ıı	出力ラッチ保持

表20-1 ホールト状態とクロック・ストップ状態中のデバイス動作

注 イニシャライズされる値については5.システム・レジスタ(SYSREG)および8.レジスタ・ファイル(RF) とコントロール・レジスタを参照してください。

20.5 ホールト状態およびクロック・ストップ状態中の各端子の処理上の注意

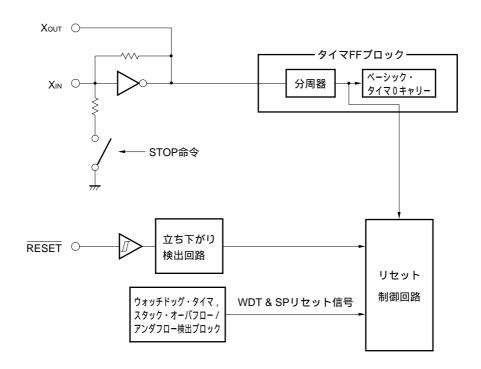
ホールト状態は,たとえば時計のみを動作させるときなどの消費電流を減らす目的で使用されます。 また,クロック・ストップ機能はデータ・メモリのみ保持するために消費電流を減らす目的で使用されます。 したがって,ホールト状態およびクロック・ストップ状態中は極力消費電流を減少させる必要があります。 このとき,消費電流は各端子の状態により大きく異なることがあるため,表20-2に示すような注意が必要です。

表20 - 2 ホールトおよびクロック・ストップ状態中の各端子の状態と注意 (1/2)

	端子機能端子記号		各端子の状態と処理上の注意						
			ホールト状態	クロック・ストップ状態					
汎用	ポート0B	P0B3/BEEP	ホールト以前の状態をそのまま保持します。	すべて汎用ポートに指定されます(P0D3/					
入出		P0B2/SO1		AD2-P0D1/AD0, P2A2/LCD19-P2A0/LCD17					
入出力ポー		P0B1/SI1/SO2	(1)出力端子に指定されているとき	を除く)。					
Ĭ -		P0B0/SCK	ハイ・レベル出力中に外部でプルダウ	汎用入出力ポートの入力/出力の設定はクロ					
	ポート1A	P1A3	ンされていたり , ロウ・レベル出力中に	ック・ストップ以前の状態を保持します。					
		P1A2	外部でプルアップされていると消費電流						
		P1A1	が増加します。	(1)汎用出力ポートに指定されているとき					
		P1A0	N-chオープン・ドレーン出力(P1A3-	フローティング状態になっているとノイ					
	ポート1D	P1D3	P1A0, P1D3-P1D0)は注意してください。	ズにより消費電流が増加します。					
		P1D2							
		P1D1	(2)入力端子に指定されているとき	(2)汎用入力ポートに指定されているとき					
		P1D0	フローティング状態になっていると丿	フローティング状態であっても,ノイズ					
	ポート2B	P2B3-P2B0	イズにより消費電流が増加します。	による消費電流は増加しない回路になって					
	ポート2C	P2C3-P2C0		います。					
汎用	ポート0D	P0D3/AD2	(3)ポート0D (P0D3/AD2-P0D1/AD0,						
汎用入力ポー		P0D2/AD1	P0D0)	(3) P0D3/AD2-P0D1/AD0, P0D0					
		P0D1/AD0	ソフトウエアで選択可能なプルダウン	A/Dコンバータに設定されている端子は					
		P0D0	抵抗を内蔵しているため,外部でプルア	そのまま保持します。					
	ポート1C	P1C3/FMIFC/AMIFC	ップされていると消費電流が増加しま	P0D3-P0D0端子のプルダウン抵抗は以					
		P1C2/AMIFC/FCG	उं 。	前の状態を保持します。					
		P1C1/TM1							
		P1C0/TM0	(4) ポート1C (P1C3/FMIFC/AMIFC,	(4) P2A2/LCD19-P2A0/LCD17					
	ポート2A	P2A2/LCD19	P1C2/AMIFC/FCG , P1C1/TM1 , P1C0/	LCDセグメントに設定されている端子					
		P2A1/LCD18	TMO)	はそのまま保持します。					
		P2A0/LCD17	P1C2/AMIFC/FCG , P1C3/FMIFC/						
汎用	ポート0A	P0A1	AMIFC端子をIFカウンタとして使用して	汎用出力ポートに指定されます。					
汎用出力ポー		P0A0	いるときは,内蔵アンプが動作して消費	出力されている内容はそのまま保持されま					
	ポート0C	P0C3-P0C0	電流が増加します。	す。したがってハイ・レベル出力中に外部で					
				プルダウンされていたり,ロウ・レベル出力					
				中にプルアップされていると消費電流が増加					
				します。					

表20-2 ホールトおよびクロック・ストップ状態中の各端子の状態と注意 (2/2)

端子機能	端子記号	各端子の状態と	ヒ処理上の注意
		ホールト状態	クロック・ストップ状態
外部割り込み	INT	フローティング状態になっていると外部ノイス	「などにより消費電流が増加します。
PLL周波数シン	VCOL	PLL動作時は消費電流が増加します。	PLLディスエーブル状態になります。
セサイザ	VCOH	PLLディスエーブル時は次のようになります。	
	EO0		VCOH , VCOL:内部でプルダウン
	EO1	VCOH , VCOL:内部でプルダウン	EO1,EO0 : フローティング
		EO1,EO0 : フローティング	
水晶発振回路	XIN	水晶発振回路の発振波形により消費電流が変	ім端子は内部でプルダウンされ, Хоит端子はハ
	Хоит	化します。	イ・レベルを出力します。
		また,発振振幅が大きいほど消費電流は小さ	
		くなります。	
		発振振幅は使用する水晶振動子や負荷コンデ	
		ンサにより左右されるため,評価が必要で	
		す。	
LCDコントロー	LCD19/P2A2	(1) LCD19/P2A2-LCD17/P2A0 を汎用入力	(1) LCD19/P2A2-LCD17/P2A0 を汎用入力
ラ / ドライバ	LCD18/P2A1	ポートとして使用しているとき	ポートとして使用しているとき
	LCD17/P2A0	汎用入力ポートとして使用していると	汎用入力ポートとして使用していると
	LCD16	きは,前記汎用ポートと同様の注意が必	きは,前記汎用ポートと同様の注意が必
	I	要です。	要です。
	LCD0		
	СОМЗ	(2)LCDコントローラ/ドライバとして使	(2)LCDコントローラ/ドライバとして使
	I	用しているとき (LCDEN = 1)	用しているとき
	COM0	LCD19-LCD0:セグメント信号を出力	LCDEN = 0となります。
		COM3-COM0:コモン信号を出力	LCD16-LCD0:ロウ・レベルを出力
			COM3-COM0:ロウ・レベルを出力
		(3) LCD表示オフ(LCDEN = 0)	
		LCD19-LCD0:ロウ・レベルを出力	
		COM3-COM0:ロウ・レベルを出力	


21. **リセット**

21.1 リセットの概要

リセット機能は、デバイス動作の初期化を行うために使用します。 μPD17934Aのリセットには、次の種類があります。

- ・RESET端子によるリセット
- ・WDT & SPリセット

図21 - 1 リセット・ブロックの構成

21. 2 RESET 端子によるリセット

RESET端子にロウ・レベルを入力すると内部リセット信号が発生します。

その時点で,プログラム・カウンタ,スタック,システム・レジスタおよびコントロール・レジスタは初期化されます(初期値については各項を参照してください)。

次にRESET端子をハイ・レベルにすると,125 ms後のベーシック・タイマ 0 キャリーFFセット用信号の立ち上が リエッジでプログラムが 0 番地からスタートします。

なお,プログラム実行中に $\overline{\text{RESET}}$ 端子によるリセットを行うと,データ・メモリのデータが破壊される場合があります。

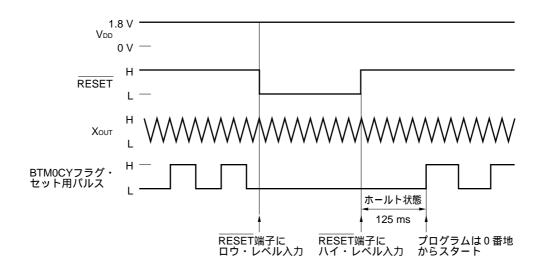
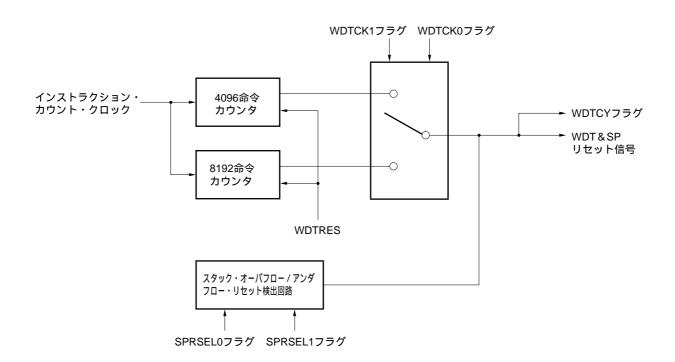


図21 - 2 RESET端子によるリセットの動作



21.3 WDT & SP U セット

WDT & SPリセットは,次のリセットを表します。

- ・ウォッチドッグ・タイマ・リセット
- ・スタック・ポインタ・オーバフロー / アンダフロー・リセット

図21 - 3 WDT & SPリセットの概要

21.3.1 ウォッチドッグ・タイマ・リセット

ウォッチドッグ・タイマは,プログラムの実行シーケンスが不良動作(暴走)を起こしたとき,リセット信号を発生する回路です。

不良動作(暴走)とは、外部ノイズなどによりプログラムが意図しないルーチンに飛んでいき、特定の無限ループに陥り、システムがデッド・ロックされた状態になることです。ウォッチドッグ・タイマを利用すると一定基準時間 ごとにウォッチドッグ・タイマからのリセット信号が発生し、プログラムを0番地から実行することで、不良動作から回復することが可能です。

クロック・ストップ・モード,ホールト・モード時には機能を停止します。

ウォッチドッグ・タイマでのリセットは,スタック・オーバフロー選択レジスタ,ウォッチドッグ・タイマ・カウンタ・リセット・レジスタ,ベーシック・タイマ0キャリー・レジスタを除いて,すべて初期化されます。

ウォッチドッグ・タイマ・リセットの発生検出はWDTCYフラグ(R&Reset)により行います。

21.3.2 ウォッチドッグ・タイマ設定フラグ

電源投入時のパワーオン・リセットおよびRESET端子によるリセット後,1回のみ設定可能です。

WDTCK0, WDTCK1フラグは,リセット信号を出力する間隔を設定します。

基準時間は,次の3種類が選択できます。

- ・4096命令
- ・8192命令
- ・ウォッチドッグ・タイマを設定しない

電源投入時は,8192命令が選択されています。

リセット信号発生間隔が8192命令の場合,8192命令を越えない間隔でウォッチドッグ・タイマFFをリセットする必要があります。リセットの有効期間は1命令~8192命令の間です。

リセット信号発生間隔が4096命令の場合,4096命令を越えない間隔でウォッチドッグ・タイマFFをリセットする必要があります。リセットの有効期間は1命令~4096命令の間です。

図21 - 4 ウォッチドッグ・タイマ・クロック選択レジスタの構成

名 称	7	7ラ!	ブ記 [・]	号	アドレス	Read/Write	
	рз	b ₂	b ₁	b ₀			
ウォッチドッグ・タイマ・	0	0	ŵ	ŵ	(BANK15)	R/W ^注]
クロック選択		! !	D	D	02H		
(WDTCK)			Т	Т			
			С	С			
		 	K	K			
		!	1	0			
							-
				-		ウォッチド	ッグ・タイマのクロック選
			0	0	ウォッチドッ?	グ・タイマを設定	定しない
			0	1	4096命令		
			1	0	設定禁止		
			1	1	8192命令		
				_	" 0 " 固定		

リセッ	 RESET端子によるリセット	0	0	1	1
ト時	WDT & SPリセット			保	持
ク	ロック・ストップ時	,	,	保	持

注 1回のみ書き込み可能

WDTRESフラグはウォッチドッグ・タイマ・カウンタをリセットするためのフラグです。

WDTRESフラグをセット(1)すると,自動的にウォッチドッグ・タイマ・カウンタがリセットされます。 WDTCK0,WDTCK1フラグで設定した基準時間以内に1回WDTRESフラグをセット(1)すると,ウォッチドッグ・タイマによるリセット信号は出力されません。

名 称 フラグ記号 アドレス Read/Write b₃ b₂ b₁ b₀ ウォッチドッグ・タイマ・ W 0 0 0 0 (BANK15) W&Reset カウンタ・リセット D 03H Т R Ε S " 0 " 固定 ウォッチドッグ・タイマ・カウンタのリセット 0 無効 1 ウォッチドッグ・タイマ・カウンタのリセット

図21 - 5 ウォッチドッグ・タイマ・カウンタ・リセット・レジスタの構成

ti	RESET端子によるリセット	不	0	0	0
ト時	WDT & SPリセット	不			
ク	ロック・ストップ時	不	ļ		ļ

不:不定

21.3.3 スタック・ポインタ・オーバフロー/アンダフロー・リセット

アドレスまたは割り込みのスタックが,オーバフローまたはアンダフローしたとき,リセット信号が発生します。 スタック・ポインタ・オーバフロー/アンダフロー・リセットは,ウォッチドッグ・タイマ・リセットと同様に, 不良動作(暴走)を検出することに使用できます。

リセットの発生する条件は次のとおりです。

- ・割り込みスタック(4レベル)のオーバフローまたはアンダフローによる割り込み
- ・アドレス・スタック(15レベル)のオーバフローまたはアンダフローによる割り込み

スタック・ポインタ・オーバフロー / アンダフローでのリセットは, スタック・オーバフロー選択レジスタ, ウォッチドッグ・タイマ・カウンタ・リセット・レジスタ, ベーシック・タイマ0キャリー・レジスタを除いて, すべて初期化されます。

スタック・ポインタ・オーバフロー / アンダフロー・リセットの発生検出はWDTCYフラグ(R&Reset)により行います。

21.3.4 スタック・ポインタ設定フラグ

スタック・オーバフロー / アンダフロー・リセット選択レジスタは, RESET端子によるリセット後, 1回のみ設定可能です。アドレス・スタック・オーバフロー / アンダフローおよび割り込みスタック・オーバフロー / アンダフローによるリセットを有効にするか禁止するかを設定します。

図21 - 6 スタック・オーバフロー/アンダフロー・リセット選択レジスタの構成

名 称	7	7ラ!	ブ記 [・]		アドレス	Read/Write	
	рз	b ₂	b ₁	b ₀			
スタック・オーバフロー /	0	0	s	S	(RF)	R/W ^注	
アンダフロー・リセット選択			i	Р	05H		
				R			
			1	S			
			:	L			
		 		0			
		丁	_				1
				-	アドレス	・スタック・オ-	- バフロー / アンダフロー・リセット選択
				0	リセット禁止		
				1	リセット有効		
			L		割り込み	スタック・オー	バフロー / アンダフロー・リセット選択
				0	リセット禁止		
				1	リセット有効		
				-	" 0 " 固定		
リ セッ RESET端子によるリセット	0	0	1	1			
ッ ト 時 WDT & SPリセット			保	持			
クロック・ストップ時	ļ		保	持.			

注 1回のみ書き込み可能

図21 - 7 WDT & SP**リセット選択レジスタの構成**

名 称	7	フラグ記号			アドレス	Read/Write		
	рз	b ₂	b ₁	b ₀				
WDT & SPリセット状態検出	0	0	0	W	(BANK15)	R&Reset		
				D	16H			
		! ! !		Т				
		:		С				
				Υ				
		T						
				-		WDT &	Pリセット発生を検出	
				0	リセット要求が	まし		
				1	リセット要求る	あり		
				-	" 0 " 固定			
				,				

1	ヒッ	RESET端子によるリセット	О)	0	 0	0
В	ァ ト 時	WDT & SPリセット					1
	ク	ロック・ストップ時		_			保

保:保持

22.命令セット

22.1 命令セット概要

b ₁₄ -b ₁₁	b ₁₅		0		4
BIN	HEX		0		1
0000	0	ADD	r, m	ADD	m, #n4
0001	1	SUB	r, m	SUB	m, #n4
0010	2	ADDC	r, m	ADDC	m, #n4
0011	3	SUBC	r, m	SUBC	m, #n4
0100	4	AND	r, m	AND	m, #n4
0101	5	XOR	r, m	XOR	m, #n4
0110	6	OR	r, m	OR	m, #n4
		INC	AR		
		INC	IX		
		RORC	r		
		MOVT	DBF, @AR		
		PUSH	AR		
		POP	AR		
		GET	DBF, p		
		PUT	p, DBF		
		PEEK	WR, rf		
		POKE	rf, WR		
0111	7	BR	@AR		
		CALL	@AR		
		RET			
		RETSK			
		RETI			
		EI			
		DI			
		STOP	S		
		HALT	h		
		NOP			
1000	8	LD	r, m	ST	m, r
1001	9	SKE	m, #n4	SKGE	m, #n4
1010	А	MOV	@r, m	MOV	m, @r
1011	В	SKNE	m, #n4	SKLT	m, #n4
1100	С	BR	addr(ページ 0)	CALL	addr (ページ 0)
1101	D	BR	addr (ページ1)	MOV	m, #n4
1110	Е	BR	addr (ページ2)	SKT	m, #n
1111	F	BR	addr (ページ3)	SKF	m, #n

22. 2 凡

AR : アドレス・レジスタ

:スタック・ポインタで示されるアドレス・スタック・レジスタ **ASR**

addr :プログラム・メモリ・アドレス(下位11ビット)

BANK : バンク・レジスタ CMP : コンペア・フラグ CY : キャリー・フラグ

DBF : データ・バッファ :ホールト解除条件 h

: インタラプト・イネーブル・フラグ INTEF

INTR : 割り込み時スタックに自動退避されるレジスタ

INTSK : 割り込みスタック・レジスタ

IX : インデクス・レジスタ

: データ・メモリ・ロウ・アドレス・ポインタ MP

MPE : メモリ・ポインタ・イネーブル・フラグ

: mr, mcで示されるデータ・メモリ・アドレス m

: データ・メモリ・ロウ・アドレス (上位)

: データ・メモリ・カラム・アドレス(下位) mc

: ビット・ポジション(4ビット) n

: イミーディエト・データ(4ビット) n4

:ページ(プログラム・カウンタのビット12,11) PAGE

PC : プログラム・カウンタ

: 周辺アドレス р

:周辺アドレス(上位3ビット) рн :周辺アドレス(下位4ビット) рь

: ジェネラル・レジスタ・カラム・アドレス r

: レジスタ・ファイル・アドレス

:レジスタ・ファイル・ロウ・アドレス(上位3ビット) rf_R :レジスタ・ファイル・カラム・アドレス(下位4ビット) rfc

SP : スタック・ポインタ :ストップ解除条件

WR : ウインドウ・レジスタ

(x):x でアドレスされる内容

22. 3 命令一覧表

命令群	-T <i>h</i>	+ ~ = > . 1	+ 2 1 2 2.	命	(令コー	۲	
群	ニモニック	オペランド	オペレーション	オペ・コード	オ	ペラン	۲
	ADD	r, m	(r) (r) + (m)	00000	m R	m c	r
加加	ADD	m, #n4	(m) (m) + n4	10000	m R	m c	n4
/JH	ADDC	r, m	(r) (r) + (m) + CY	00010	mR	mc	r
算	ADDC	m, #n4	(m) (m) + n4 + CY	10010	mR	m c	n4
	INC	AR	AR AR + 1	00111	000	1001	0000
	INC	IX	IX IX+1	00111	000	1000	0000
	SUB	r, m	(r) (r) - (m)	00001	MR	m c	r
減	306	m, #n4	(m) (m) - n4	10001	m R	m c	n4
算	SUBC	r, m	(r) (r) - (m) - CY	00011	m R	m c	r
		m, #n4	(m) (m) - n4 - CY	10011	m _R	m c	n4
	OB	r, m	(r) (r) (m)	00110	MR	m c	r
論	OR	m, #n4	(m) (m) n4	10110	m R	m c	n4
理	AND	r, m	(r) (r) (m)	00100	m R	m c	r
演	AND	m, #n4	(m) (m) n4	10100	mR	m c	n4
算	XOR	r, m	(r) $(r)-(m)$	00101	m R	m c	r
	XOR	m, #n4	(m) (m) - n4	10101	m R	m c	n4
判断	SKT	m, #n	CMP 0, if (m) $n = n$, then skip	11110	m R	m c	n
断	SKF	m, #n	CMP 0, if (m) n = 0, then skip	11111	m _R	m c	n
	SKE	m, #n4	(m) - n4, skip if zero	01001	MR	m c	n4
比	SKNE	m, #n4	(m) - n4, skip if not zero	01011	MR	m c	n4
較	SKGE	m, #n4	(m) - n4, skip if not borrow	11001	m _R	mс	n4
	SKLT	m, #n4	(m) - n4, skip if borrow	11011	m _R	m c	n4
回転	RORC	r	CY (r) b3 (r) b2 (r) b1 (r) b0	00111	000	0111	r

命令群		± .º = > . I*	+ • 1	命	i令コ ー	ド	
群	ニモニック	オペランド	オペレーション	オペ・コード	7	ペラン	۲
	LD	r, m	(r) (m)	01000	mR	m c	r
	ST	m, r	(m) (r)	11000	mR	mc	r
		@r, m	if MPE = 1: (MP, (r)) (m) if MPE = 0: (BANK, mR, (r)) (m)	01010	m _R	mc	r
	MOV	m, @r	if MPE = 1: (m) (MP, (r)) if MPE = 0: (m) (BANK, m _R , (r))	11010	m _R	mc	r
転		m, #n4	(m) n4	11101	mR	m c	n4
送送	MOVT	DBF, @AR	SP SP - 1, ASR PC, PC AR, DBF (PC), PC ASR, SP SP + 1	00111	000	0001	0000
	PUSH	AR	SP SP - 1, ASR AR	00111	000	1101	0000
	POP	AR	AR ASR, SP SP + 1	00111	000	1100	0000
	GET	DBF, p	DBF (p)	00111	рн	1011	р∟
	PUT	p, DBF	(p) DBF	00111	рн	1010	р∟
	PEEK	WR, rf	WR (rf)	00111	rf _R	0011	rf c
	POKE	rf, WR	(rf) WR	00111	rfR	0010	rf c
	BR ad	addr	PC ₁₀₋₀ addr , PAGE 0	01100		•	
分			PC ₁₀₋₀ addr , PAGE 1	01101		addr	
			PC ₁₀₋₀ addr , PAGE 2	01110	addi		
岐			PC ₁₀₋₀ addr , PAGE 3	01111			
		@AR	PC AR	00111	000	0100	0000
		addr	SP SP - 1, ASR PC PC ₁₁ 0, PC ₁₀₋₀ addr	11100		addr	
サブルー	CALL	@AR	SP SP - 1, ASR PC PC AR	00111	000	0101	0000
チン	RET		PC ASR, SP SP + 1	00111	000	1110	0000
	RETSK		PC ASR, SP SP + 1 and skip	00111	001	1110	0000
	RETI		PC ASR, INTR INTSK, SP SP + 1	00111	010	1110	0000
割り込み	EI		INTEF 1	00111	000	1111	0000
込み	DI		INTEF 0	00111	001	1111	0000
そ	STOP	s	STOP	00111	010	1111	s
での他	HALT	h	HALT	00111	011	1111	h
	NOP		No operation	00111	100	1111	0000

22. **4** アセンブラ (RA17K) 組み込みマクロ命令

凡 例

flag n : FLG型シンボル

n : ビット番号

: 内は省略可能

	ニモニック	オペランド	オペレーション		n	
	SKTn	flag 1, flag n	if (flag 1) ~ (flag n) = all "1", then skip	1	n	4
	SKFn	flag 1, flag n	if (flag 1) ~ (flag n) = all "0", then skip	1	n	4
組	SETn	flag 1, flag n	(flag 1) ~ (flag n) 1	1	n	4
	CLRn	flag 1, flag n	(flag 1) ~ (flag n) 0	1	n	4
み込みマクロ	NOTa	fland fland	if (flag n) = " 0 " , then (flag n) 1	1		
クロ	NOTn	flag 1, flag n	if (flag n) = "1", then (flag n) 0		n	4
	INITELO	NOT flag 1,	if description = NOT flag n, then (flag n) 0 if description = flag n, then (flag n) 1		n	4
	INITFLG	NOT flag n				4
	BANKn		(BANK) n	0	n	15
	BRX	Label	Jump Label		-	
	CALLX	function-name	CALL sub-routine		-	
拡	SYSCALX	function-name or	CALL system sub-routine		-	
拡張命令	SYSCALX	expression				
\$		NOT/INV flag 1,	if description = NOT (or INV)		n 4	4
	INITFLGX	NOT/INV flag n	flag, (flag) 0			
			if description = flag, (flag) 1			

23. 予約シンボル

23.1 データ・バッファ (DBF)

シンボル名	属性	値	R/W	説	明
DBF3	MEM	0.0CH	R/W	データ・バッファのビット15-ビット12	
DBF2	МЕМ	0.0DH	R/W	データ・バッファのビット11-ビット8	
DBF1	MEM	0.0EH	R/W	データ・バッファのビット7-ビット4	
DBF0	MEM	0.0FH	R/W	データ・バッファのビット3-ビット0	

23.2 システム・レジスタ (SYSREG)

シンボル名	属性	値	R/W	説明			
AR3	MEM	0.74H	R/W	アドレス・レジスタのビット15-ビット12			
AR2	MEM	0.75H	R/W	アドレス・レジスタのビット11-ビット8			
AR1	MEM	0.76H	R/W	アドレス・レジスタのビット7-ビット4			
AR0	MEM	0.77H	R/W	アドレス・レジスタのビット3-ビット0			
WR	MEM	0.78H	R/W	ウインドウ・レジスタ			
BANK	MEM	0.79H	R/W	バンク・レジスタ			
IXH	MEM	0.7AH	R/W	インデクス・レジスタのビット10-ビット8			
MPH	MEM	0.7AH	R/W	メモリ・ポインタのビット6-ビット4			
MPE	FLG	0.7AH.3	R/W	メモリ・ポインタ・イネーブル・フラグ			
IXM	MEM	0.7BH	R/W	インデクス・レジスタのビット7-ビット4			
MPL	MEM	0.7BH	R/W	メモリ・ポインタのビット3-ビット0			
IXL	MEM	0.7CH	R/W	インデクス・レジスタのビット3-ビット0			
RPH	MEM	0.7DH	R/W	ジェネラル・レジスタ・ポインタのビット6-ビット3			
RPL	MEM	0.7EH	R/W	ジェネラル・レジスタ・ポインタのビット2-ビット0			
BCD	FLG	0.7EH.0	R/W	BCD演算フラグ			
PSW	MEM	0.7FH	R/W	プログラム・ステータス・ワード			
CMP	FLG	0.7FH.3	R/W	コンペア・フラグ			
CY	FLG	0.7FH.2	R/W	キャリー・フラグ			
Z	FLG	0.7FH.1	R/W	ゼロ・フラグ			
IXE	FLG	0.7FH.0	R/W	インデクス・イネーブル・フラグ			

23.3 LCDセグメント・レジスタ

シンボル名	属性	値	R/W	説明
LCDD19	MEM	14.5CH	R/W	LCDセグメント・レジスタ
LCDD18	MEM	14.5DH	R/W	LCDセグメント・レジスタ
LCDD17	MEM	14.5EH	R/W	LCDセグメント・レジスタ
LCDD16	MEM	14.5FH	R/W	LCDセグメント・レジスタ
LCDD15	MEM	14.60H	R/W	LCDセグメント・レジスタ
LCDD14	MEM	14.61H	R/W	LCDセグメント・レジスタ
LCDD13	MEM	14.62H	R/W	LCDセグメント・レジスタ
LCDD12	MEM	14.63H	R/W	LCDセグメント・レジスタ
LCDD11	MEM	14.64H	R/W	LCDセグメント・レジスタ
LCDD10	MEM	14.65H	R/W	LCDセグメント・レジスタ
LCDD9	MEM	14.66H	R/W	LCDセグメント・レジスタ
LCDD8	MEM	14.67H	R/W	LCDセグメント・レジスタ
LCDD7	MEM	14.68H	R/W	LCDセグメント・レジスタ
LCDD6	MEM	14.69H	R/W	LCDセグメント・レジスタ
LCDD5	MEM	14.6AH	R/W	LCDセグメント・レジスタ
LCDD4	MEM	14.6BH	R/W	LCDセグメント・レジスタ
LCDD3	MEM	14.6CH	R/W	LCDセグメント・レジスタ
LCDD2	MEM	14.6DH	R/W	LCDセグメント・レジスタ
LCDD1	MEM	14.6EH	R/W	LCDセグメント・レジスタ
LCDD0	MEM	14.6FH	R/W	LCDセグメント・レジスタ

23.4 ポート・レジスタ

シンボル名	属性	値	R/W	説明
P0A1	FLG	0.70H.1	R/W	ポート 0 A のビット 1
P0A0	FLG	0.70H.0	R/W	ポート0 Aのビット0
P0B3	FLG	0.71H.3	R/W	ポート0Bのビット3
P0B2	FLG	0.71H.2	R/W	ポート 0 B のビット 2
P0B1	FLG	0.71H.1	R/W	ポート 0 Bのビット 1
P0B0	FLG	0.71H.0	R/W	ポート0Bのビット0
P0C3	FLG	0.72H.3	R/W	ポート0Cのビット3
P0C2	FLG	0.72H.2	R/W	ポート0 C のビット 2
P0C1	FLG	0.72H.1	R/W	ポート0 C のビット 1
P0C0	FLG	0.72H.0	R/W	ポート0 C のビット 0
P0D3	FLG	0.73H.3	R ^注	ポート0Dのビット3
P0D2	FLG	0.73H.2	R ^注	ポート 0 Dのビット 2
P0D1	FLG	0.73H.1	R ^注	ポート0 Dのビット1
P0D0	FLG	0.73H.0	R ^注	ポート0Dのビット0
P1A3	FLG	1.70H.3	R/W	ポート1Aのビット3
P1A2	FLG	1.70H.2	R/W	ポート1Aのビット2
P1A1	FLG	1.70H.1	R/W	ポート1Aのビット1
P1A0	FLG	1.70H.0	R/W	ポート1Aのビット0
P1C3	FLG	1.72H.3	R ^注	ポート1Cのビット3
P1C2	FLG	1.72H.2	R ^注	ポート1Cのビット2
P1C1	FLG	1.72H.1	R ^注	ポート1Cのビット1
P1C0	FLG	1.72H.0	R ^注	ポート1Cのビット0
P1D3	FLG	1.73H.3	R/W	ポート1Dのビット3
P1D2	FLG	1.73H.2	R/W	ポート1 Dのビット2
P1D1	FLG	1.73H.1	R/W	ポート1 Dのビット1
P1D0	FLG	1.73H.0	R/W	ポート1 Dのビット0
P2A2	FLG	2.70H.2	R/W	ポート2Aのビット2
P2A1	FLG	2.70H.1	R/W	ポート2Aのビット1
P2A0	FLG	2.70H.0	R/W	ポート2Aのビット0
P2B3	FLG	2.71H.3	R/W	ポート2Bのビット3
P2B2	FLG	2.71H.2	R/W	ポート2Bのビット2
P2B1	FLG	2.71H.1	R/W	ポート2Bのビット1
P2B0	FLG	2.71H.0	R/W	ポート2Bのビット0

注 入力専用ポートですが、ポートに出力する命令を記述してもアセンブラ、インサーキット・エミュレータは エラー・メッセージを出力しません。また、実際にデバイスで実行させても動作上は何も変化は起こりません。

シンボル名	属性	値	R/W	説明
P2C3	FLG	2.72H.3	R/W	ポート2Cのビット3
P2C2	FLG	2.72H.2	R/W	ポート2 Cのビット2
P2C1	FLG	2.72H.1	R/W	ポート2 Cのビット1
P2C0	FLG	2.72H.0	R/W	ポート2Cのビット0

23.5 レジスタ・ファイル (コントロール・レジスタ)

シンボル名	属性	値	R/W	説明	
SP	MEM	0.81H	R/W	スタック・ポインタ	
DBFSP	MEM	0.84H	R	DBFスタック・ポインタ	
SPRSEL	MEM	0.85H	R/W	スタック・オーバフロー選択フラグ(電源投入後一度だけ設定可能)	
MOVTSEL1	FLG	0.87H.1	R/W	MOVTビット選択フラグ	
MOVTSEL0	FLG	0.87H.0	R/W	MOVTビット選択フラグ	
SYSRSP	MEM	0.88H	R	システム・レジスタ・スタック・ポインタ	
WDTCK	MEM	15.02H	R/W	ウォッチドッグ・タイマのクロック選択フラグ	
WDTRES	FLG	15.03H.3	R/W	ウォッチドッグ・タイマ・カウンタ・リセット	
PLLSCNF	FLG	15.10H.3	R/W	スワロ・カウンタのMSB設定フラグ	
PLLMD2	FLG	15.10H.2	R/W	トーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー	
PLLMD1	FLG	15.10H.1	R/W	PLLモード選択フラグ	
PLLMD0	FLG	15.10H.0	R/W	PLLモード選択フラグ	
PLLRFCK3	FLG	15.11H.3	R/W	PLL基準周波数選択フラグ	
PLLRFCK2	FLG	15.11H.2	R/W		
PLLRFCK1	FLG	15.11H.1	R/W		
PLLRFCK0	FLG	15.11H.0	R/W	+	
PLLUL	FLG	15.12H.0	R	PLLアン・ロックFFフラグ	
BEEP0SEL	FLG	15.14H.2	R/W	BEEP0イネーブル・フラグ	
BEEP0CK1	FLG	15.14H.1	R/W	BEEP0クロック選択フラグ	
BEEP0CK0	FLG	15.14H.0	R/W	BEEP0クロック選択フラグ	
WDTCY	FLG	15.16H.0	R	ウォッチドッグ・タイマ / スタック・ポインタ・リセット・ステータス検出フラグ	
BTM0CY	FLG	15.17H.0	R	ベーシック・タイマ0キャリー・フラグ	
BTM1CK0	FLG	15.18H.0	R/W	ベーシック・タイマ1クロック選択フラグ	
SIO1CK1	FLG	15.1CH.1	R/W	シリアル・インタフェース 1 入出力クロック選択フラグ	
SIO1CK0	FLG	15.1CH.0	R/W	ラー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
SIO1MOD	FLG	15.1DH.2	R/W	シリアル・インタフェース 1 SI1/SO2選択フラグ	
SIO1HIZ	FLG	15.1DH.1	R/W	シリアル・インタフェース 1 汎用ポート選択フラグ	
SIO1TS	FLG	15.1DH.0	R/W	シリアル・インタフェース 1 送受信スタート	
IEG0	FLG	15.1FH.0	R/W	INT0端子割り込み要求検出のエッジ方向検出フラグ	
FCGCH0	FLG	15.20H.0	R/W	FCGチャネル選択フラグ	
IFCGOSTT	FLG	15.21H.0	R	IFカウンタのゲート状態検出フラグ(1:オープン,0:クローズ)	

シンボル名	属性	値	R/W	説明
IFCMD1	FLG	15.22H.3	R/W	IFカウンタ・モード選択フラグ(10:FMIFC , 11:AMIFC2)
IFCMD0	FLG	15.22H.2	R/W	IFカウンタ・モード選択フラグ(00:FCG , 01:AMIFC)
IFCCK1	FLG	15.22H.1	R/W	トーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー
IFCCK0	FLG	15.22H.0	R/W	トーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー
IFCSTRT	FLG	15.23H.1	W	IFカウンタのカウント開始
IFCRES	FLG	15.23H.0	R/W	IFカウンタ・リセット
ADCCH3	FLG	15.24H.3	R/W	A/Dコンバータ・チャネル選択フラグ
ADCCH2	FLG	15.24H.2	R/W	A/Dコンバータ・チャネル選択フラグ
ADCCH1	FLG	15.24H.1	R/W	A/Dコンバータ・チャネル選択フラグ
ADCCH0	FLG	15.24H.0	R/W	A/Dコンバータ・チャネル選択フラグ
ADCSTRT	FLG	15.25H.1	R/W	A/Dコンバータ比較開始フラグ
ADCCMP	FLG	15.25H.0	R	
TM0EN	FLG	15.2BH.3	R/W	モジュロ・タイマ 0 カウント開始フラグ
TM0RES	FLG	15.2BH.2	R/W	▼
TM0CK1	FLG	15.2BH.1	R/W	ー
TM0CK0	FLG	15.2BH.0	R/W	ー
TM0OVF	FLG	15.2CH.3	R	モジュロ・タイマ0オーバフロー検出フラグ
IPSIO1	FLG	15.2FH.3	R/W	シリアル・インタフェース 1 割り込み許可フラグ
IPBTM1	FLG	15.2FH.2	R/W	
IPTM0	FLG	15.2FH.1	R/W	
IP0	FLG	15.2FH.0	R/W	トーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー
IRQSIO1	FLG	15.3CH.0	R/W	シリアル・インタフェース 1 割り込み要求検出フラグ
IRQBTM1	FLG	15.3DH.0	R/W	ベーシック・タイマ 1 割り込み要求検出フラグ
IRQTM0	FLG	15.3EH.0	R/W	モジュロ・タイマ 0 割り込み要求検出フラグ
INT0	FLG	15.3FH.3	R/W	INT0端子状態検出フラグ
IRQ0	FLG	15.3FH.0	R/W	+
LCDDBCK	FLG	15.40H.3	R/W	LCD駆動電圧生成用ダブラ回路のクロック選択フラグ
LCDEN	FLG	15.40H.0	R/W	
LCD19SEL	FLG	15.69H.2	R/W	P2A2/LCD19切り替えフラグ
LCD18SEL	FLG	15.69H.1	R/W	P2A1/LCD18切り替えフラグ
LCD17SEL	FLG	15.69H.0	R/W	
P0DPLD3	FLG	15.6AH.3	R/W	P0D3端子プルダウン抵抗切り替えフラグ
P0DPLD2	FLG	15.6AH.2	R/W	POD2端子プルダウン抵抗切り替えフラグ
P0DPLD1	FLG	15.6AH.1	R/W	POD1端子プルダウン抵抗切り替えフラグ
P0DPLD0	FLG	15.6AH.0	R/W	PODO端子プルダウン抵抗切り替えフラグ
P2CBIO3	FLG	15.6BH.3	R/W	P2C3入力 / 出力選択フラグ
P2CBIO2	FLG	15.6BH.2	R/W	P2C2入力 / 出力選択フラグ
P2CBIO1	FLG	15.6BH.1	R/W	
P2CBIO0	FLG	15.6BH.0	R/W	

シンボル名	属性	値	R/W	説	明
P2BBIO3	FLG	15.6CH.3	R/W	P2B3入力 / 出力選択フラグ	
P2BBIO2	FLG	15.6CH.2	R/W		
P2BBIO1	FLG	15.6CH.1	R/W		
P2BBIO0	FLG	15.6CH.0	R/W	P2B0入力 / 出力選択フラグ	
P1DBIO3	FLG	15.6DH.3	R/W	P1D3入力 / 出力選択フラグ	
P1DBIO2	FLG	15.6DH.2	R/W	P1D2入力 / 出力選択フラグ	
P1DBIO1	FLG	15.6DH.1	R/W	P1D1入力 / 出力選択フラグ	
P1DBIO0	FLG	15.6DH.0	R/W	P1D0入力 / 出力選択フラグ	
P1ABIO3	FLG	15.6EH.3	R/W	P1A3入力 / 出力選択フラグ	
P1ABIO2	FLG	15.6EH.2	R/W	P1A2入力 / 出力選択フラグ	
P1ABIO1	FLG	15.6EH.1	R/W	P1A1入力 / 出力選択フラグ	
P1ABIO0	FLG	15.6EH.0	R/W	P1A0入力 / 出力選択フラグ	
P0BBIO3	FLG	15.6FH.3	R/W	P0B3入力 / 出力選択フラグ	
P0BBIO2	FLG	15.6FH.2	R/W	P0B2入力 / 出力選択フラグ	
P0BBIO1	FLG	15.6FH.1	R/W	P0B1入力 / 出力選択フラグ	
P0BBIO0	FLG	15.6FH.0	R/W	P0B0入力 / 出力選択フラグ	

23.6 周辺ハードウエア・レジスタ

シンボル名	属性	値	R/W	説明	
ADCR	DAT	02H	R/W	A/Dコンバータ基準電圧設定レジスタ	
SIO1SFR	DAT	04H	R/W	シリアル・インタフェース 1 プリセッタブル・シフト・レジスタ	
TMOM	DAT	1AH	R/W	タイマ・モジュロ 0 レジスタ	
TM0C	DAT	1BH	R	タイマ・モジュロ 0 カウンタ	
AR	DAT	40H	R/W	アドレス・レジスタ	
DBFSTK	DAT	41H	R/W	DBFスタック・レジスタ	
PLLR	DAT	42H	R/W	PLLデータ・レジスタ	
IFC	DAT	43H	R	IFカウンタ・データ・レジスタ	

23.7 その他

シンボル名	属性	値	説明
DBF	DAT	0FH	GET/PUT/MOVT/MOVTH/MOVTL命令のオペランド (DBF)
IX	DAT	01H	INC命令のオペランド(IX)
AR_EPA1	DAT	8040H	CALL/BR/MOVT/MOVTH/MOVTL命令のオペランド(EPAビット・オン)
AR_EPA0	DAT	4040H	CALL/BR/MOVT/MOVTH/MOVTL命令のオペランド(EPAビット・オフ)

24. 電気的特性

絶対最大定格 (TA = 25)

項目	略号	条件	定格	単 位
電源電圧	V _{DD0}		- 0.3 ~ + 2.0	V
	V _{DD1}		- 0.3 ~ + 2.0	V
	V _{DD2}		- 0.3 ~ + 2.0	V
入力電圧	VII	P0D0-P0D3, P1C0-P1C3端子	- 0.3 ~ V _{DD2} + 0.3	V
	V _{I2}	VCOH, VCOL端子	- 0.3 ~ V _{DD1} + 0.3	V
	Vıз	P0B0-P0B3 , P1A0-P1A3 , P1D0-P1D3 ,	- 0.3 ~ V _{DD0} + 0.3	V
		P2A0-P2A2 , P2B0-P2B3 , P2C0-P2C3		
		RESET , INT端子		
出力電圧	Vo ₁	P0B0-P0B3 , P0C0-P0C3 , P2B0-P2B3 ,	- 0.3 ~ V _{DD0} + 0.3	V
		P2C0-P2C3		
	V _{O2}	EO0 , EO1端子	- 0.3 ~ REGLCD1 + 0.3	V
	Voз	LCD0-LCD19,COM0-COM3端子	- 0.3 ~ REGLCD2 + 0.3	V
ハイ・レベル出力電流	Іон	1端子	- 3.0	mA
		P0B0-P0B3 , P0C0-P0C3 , P2B0-P2B3 ,	- 30.0	mA
		P2C0-P2C3合計		
ロウ・レベル出力電流	l _{OL1}	P0A0, P0A1, P1D0-P1D3の1端子	10.0	mA
	l _{OL2}	P0A0, P0A1, P1D0-P1D3以外の1端子	3.0	mA
		P0A0, P0A1 , P0B0-P0B3 , P0C0-P0C3 ,	45.0	mA
		P1A0-P1A3 , P1D0-P1D3 , P2B0-P2B3 ,		
		P2C0-P2C3合計		
出力耐圧	V _{BDS}	P0A0, P0A1, P1A0-P1A3 , P1D0-P1D3	- 0.3 ~ + 4.0	V
動作周囲温度	TA		- 10 ~ + 50	
保存温度	Tstg		- 55 ~ + 125	

注意 各項目のうち1項目でも,また一瞬でも絶対最大定格を越えると,製品の品質を損なう恐れがあります。つまり絶対最大定格とは,製品に物理的な損傷を与えかねない定格値です。必ずこの定格値を越えない状態で,製品をご使用ください。

推奨電源電圧範囲 (TA = - 10 ~ +50)

項	目	略号	条件	MIN.	TYP.	MAX.	単 位
電源電圧		V _{DD0}		0.9		1.8	V
		V _{DD1}		0.9		1.8	V
		V _{DD2}		0.9		1.8	V

推奨出力耐圧 (TA = -10~+50)

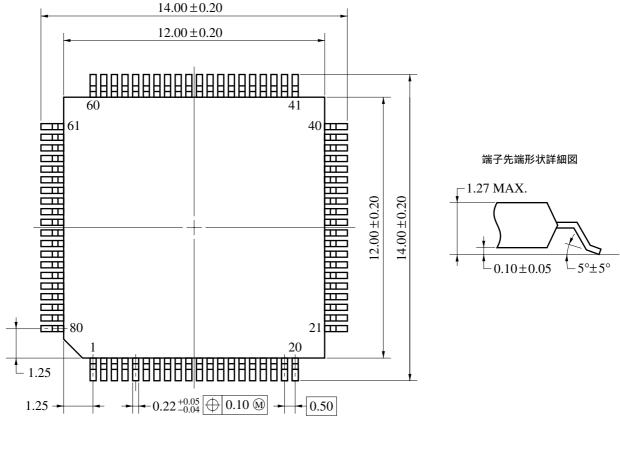
項	目	略号	条件	MIN.	TYP.	MAX.	単 位
出力耐圧		V _{BDS}	P0A0, P0A1, P1A0-P1A3, P1D0-P1D3	- 0.3		+ 4.0	V

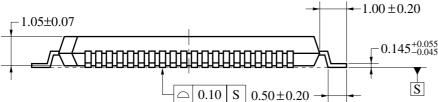
DC特性 (TA = -10~+50 , VDD = VDD0 = VDD1 = VDD2 = 0.9~1.8 V)

項目	略号	条	件	MIN.	TYP.	MAX.	単 位
電源電流	IDD1 CPU動作時				130	190	μА
		(LCD表示ON , ダブラ・クロック = 75 kH.	$z, V_{DD} = 1.8 V, T_{A} = 25$)				
	I _{DD2}	HALT動作時			45	75	μА
		(LCD表示ON , ダブラ・クロック = 5 kHz, V _{DD} = 1.8 V, T _A = 25)					
	I _{DD3}	HALT動作時		40	70	μА	
		(LCD表示OFF , ダブラ・クロック = 5 kH:	$z, V_{DD} = 1.8 V, T_{A} = 25$)				
	I _{DD4}	CPU, PLL動作時		6	10	mA	
		(VHFHモード, fin = 230 MHz, Voi	/HFHモード , fin = 230 MHz, Vdd = 1.8 V, Ta = 25)				
ハイ・レベル入力電圧	V _{IH1}	7 _{IH1} P0B0-P0B3, P1A0-P1A3, P1C0-P1C3, P1D0-P1D3,		0.8 V _{DD}		V _{DD}	V
		P2A0-P2A2, P2B0-P2B3, P2C0-F	P2C3, RESET, INT				
	V _{IH2}	P0D0-P0D3		0.8 V _{DD}		V _{DD}	V
ロウ・レベル入力電圧	V _{IL1}	P0B0-P0B3, P1A0-P1A3, P1C0-F	P1C3, P1D0-P1D3,	0		0.1 V _{DD}	V
		P2A0-P2A2, P2B0-P2B3,P2C0-P	2C3, RESET, INT				
	V _{IL2}	P0D0-P0D3		0		0.1 V _{DD}	V
ハイ・レベル出力電圧	V _{OH1}	P0B0-P0B3, P0C0-P0C3, P2B0-F	P2B3, P2C0-P2C3			V _{DD}	V
	V _{OH2}	EO0, EO1		REGLCD1 - 0.2	REGLCD1	REGLCD1 + 0.2	V
	Vонз	LCD0-LCD19, COM0-COM3		REGLCD2 - 0.2	REGLCD2	REGLCD2 + 0.2	V
ハイ・レベル入力電流	I _{IH1}	P0D0-P0D3プルダウン時	VIH = VDD0 = 0.9 V	2		30	μА
			VIH = VDD0	2		80	μА
ハイ・レベル出力電流	І он1	P0B0-P0B3, P0C0-P0C3, P2B0-F	P2B3, P2C0-P2C3	- 0.13			mA
		(VoH = VDD1 - 0.2 V)					
	І ОН2	EO0, EO1 (VoH = VDD2 - 0.2 V)		- 0.13			mA
	Іонз	LCD0-LCD19 (VoH = REGLCD2 -	0.2 V)	- 1			μА
	І он4	COM0-COM3 (VoH = REGLCD2 -	0.2 V)	- 10			μА
ロウ・レベル出力電流	l _{OL1}	P0B0-P0B3, P0C0-P0C3, P2B0	-P2B3, P2C0-P2C3	0.2			mA
		(Vol = 0.2 V)					
	lo _{L2}	EO0, EO1 (VoL = 0.2 V)		0.2			mA
	І ОL3	P1A0-P1A3 (VoL = 0.2 V)		0.4			mA
	lo _{L4}	P0A0, P1A1, P1D0-P1D3 (VoL =	0.2 V)	6.0			mA
	lo _{L5}	LCD0-LCD19 (VoL = 0.2 V)		1			μA
	lo _{L6}	COM0-COM3 (Vol = 0.2 V)		10			μА
LCD駆動電圧	VLCD0	LCD0-LCD19出力オープン,C1-	C5 = 0.1 µ F	1.4		1.6	V
	V _{LCD1}	T _A = 25		2.8		3.2	V
出力オフリーク電流	IL1	P0A0, P0A1, P1A0-P1A3, P1D0-F	P1D3 (VoH = 1.8 V)		1.5	1	μА
	IL2 EO0, EO1 (VOH = 1.8 V, VOL = 0 V)		V)		3.0	± 1	μА
COM中間電位出力電圧	OM中間電位出力電圧 V _M COM0-COM3 (出力オープン)			REGLCD1	REGLCD1	REGLCD1	V
				- 0.2		+ 0.2	
COM中間電位出力電流	Іом	COM0-COM3 (Vom = Vm ± 0.2 V)	± 1			μА

備考 特に指定のないかぎり,兼用端子の特性はポート端子の特性と同じです。

AC特性(TA = -10~+50 , VDD = VDD0 = VDD1 = VDD2 = 0.9~1.8 V)


項目	略号	条	件	MIN.	TYP.	MAX.	単位
動作周波数	fin1	VHFHモード	正弦波入力VIN = 0.2 V _{P-P}	70		230	MHz
	f _{IN2}	VHFLモード	正弦波入力VIN = 0.2 V _{P-P}	20		100	MHz
	fınз	HFモード	正弦波入力VIN = 0.2 V _{P-P}	5		40	MHz
	fin4	MFモード	正弦波入力VIN = 0.3 V _{P-P}	0.7		3.5	MHz
	fin5	AMIFC端子, AMIFカウン	ノト・モード	0.4		2	MHz
		正弦波入力V _{IN} = 0.2 V _{P-P}					
	fin6	FMIFC端子,AMIFカウン	ノト・モード	0.4		2	MHz
		正弦波入力V _{IN} = 0.2 V _{P-P}					
	f _{IN7}	FMIFC端子,FMIFカウン	ノト・モード	10		11	MHz
		正弦波入力VIN = 0.15 V _{P-F})				
SCK入力周波数	fin8	外部クロック				75	kHz


A/Dコンパータ特性(TA = -10~+50 , VDD = VDD0 = VDD1 = VDD2 = 0.9~1.8 V)

項	目	略	号	条	件	MIN.	TYP.	MAX.	単 位
変換総合誤差				V _{DD2} = 0.9 ~ 1.8 V				±3	LSB

★ 25.外形図

80ピン・プラスチック TQFP (ファインピッチ)(12x12)外形図(単位:mm)

P80GK-50-BE9-6

26. 半田付け推奨条件

★ µPD17934Aの半田付け実装は,次の推奨条件で実施してください。
半田付け推奨条件の詳細は,インフォメーション資料「半導体デバイス実装マニュアル」(C10535J)を参照してください。

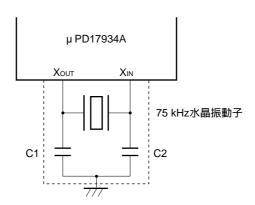
なお,推奨条件以外の半田付け方式および半田付け条件については,当社販売員にご相談ください。

★ 表26 - 1 表面実装タイプの半田付け条件

 μ PD17934AGK-×××-BE9:80ピン・プラスチックTQFP(ファインピッチ)(12x12)

半田付け方式	半田付け条件	推奨条件記号
赤外線リフロ	パッケージ・ピーク温度: 235 , 時間: 30秒以内(210 以上), 回数: 2回以内	IR35-107-2
	制限日数:7日間 ^注 (以降は125 プリベーク10時間必要)	
	留意事項	
	耐熱トレイ以外(マガジン,テーピング,非耐熱トレイ)は,包装状態でのベーキングが	
	できません。	
VPS	パッケージ・ピーク温度: 215 , 時間: 40秒以内(200 以上), 回数: 2回以内	VP15-107-2
	制限日数:7日間 ^注 (以降は125 プリベーク10時間必要)	
	留意事項	
	耐熱トレイ以外(マガジン,テーピング,非耐熱トレイ)は,包装状態でのベーキングが	
	できません。	
端子部分加熱	端子温度:300 以下,時間:3秒以内(デバイスの一辺当たり)	-

注 ドライパック開封後の保管日数で,保管条件は25 ,65 %RH以下。


注意 半田付け方式の併用はお避けください(ただし,端子部分加熱方式は除く)。

付録 A. 水晶振動子を接続するときの注意

システム・クロック発振回路を使用する場合は、配線容量などの影響を避けるために、図中の破線の部分に次のような注意が必要です。

- ・配線は極力短くしてください。
- ・C1, C2をあまり大きくすると,発振起動特性が悪化したり,消費電力が増加したりします。
- ・発振周波数調整用のトリマ・コンデンサは一般的にはXIN端子に接続します。ただし、使用する水晶振動子によっては発振安定感が異なることがあります。したがって、実際に使用する水晶振動子で評価してください。
- ・水晶周波数の調整は,Xout端子やXin端子にエミュレーション・プローブなどを接続するとプローブの容量により正確に調整できません。VCO発振周波数を測定しながら行ってください。

×

付録 B. 開発ツール

★ µPD17934Aのプログラムを開発するために,次の開発ツールを用意しています。

ハードウエア

	名 称	概 要
	インサーキット・エミュレータ	IE-17K,IE-17K-ETは,17Kシリーズ共通のインサーキット・エミュレータです。
	[IE-17K	IE-17KおよびIE-17K-ETは,ホスト・マシンであるPC-9800シリーズまたはIBM PC/AT™とRS-
	IE-17K-ET ^{注1}	232-Cを介して接続して使用します。
		各品種専用のシステム・エバリュエーション・ボード(SEボード)と組み合わせて使用するこ
		とにより、その品種に対応したエミュレータとして動作します。マン・マシン・インタフェー
		ス・ソフトウエアである $SIMPLEHOST^{ ext{B}}$ を使用すると,さらに高度なディバグ環境を実現でき
		ます。
*	SEボード	SE-17934は,μPD17934A用のSEボードです。単体でシステム評価に,インサーキット・エ
	(SE-17934)	ミュレータと組み合わせてディバグに使用します。
*	エミュレーション・プローブ	EP-17K80GKは, μPD17934A用のエミュレーション・プローブです。TGK-080SDP ^{注3} とともに
	(EP-17K80GK)	使用することで,SEボードとターゲット・システムを接続します。
	変換ソケット	TGK-080SDPは,80ピン・プラスチックTQFP(ファインピッチ)(12x12)用の変換ソケッ
	(TGK-080SDP ^{注2})	トです。
		EP-17K80GKとターゲット・システムを接続するために使用します。

- 注1. 廉価版:電源外付けタイプ
 - 2. 東京エレテック株式会社(東京(03)5295-1661)の製品です。ご購入の際はNEC特約店にご相談ください。

備考 3rdパーティ製PROMプログラマとして,安藤電気株式会社製のAF-9703, AF-9704, AF-9705, AF-9706を用意 しています。プログラマ・アダプタPA-17P709GCと組み合わせて使用してください。詳細につきましては,安藤電気株式会社(東京(03)3733-1151)までお問い合わせください。

ソフトウエア

	名 前	概 要	ホスト・マシン	os	供給媒体	オーダ名称
	17Kアセンブラ	RA17Kは17Kシリーズ共通に使用で	PC-9800シリーズ	日本語版	3.5インチ2HD	μ SAA13RA17K
	(RA17K)	RA17K) きるアセンブラです。デバイスのプログラム開発には,このRA17Kと		Windows™		
				日本語版	3.5インチ2HC	μ SAB13RA17K
		デバイス・ファイルを組み合わせて		Windows		
		使用します。		英語版		μSBB13RA17K
				Windows		
	17Kシリーズ	<i>emlc-17K</i> は17Kシリーズ共通に使	PC-9800シリーズ	日本語版	3.5インチ2HD	μ SAA13CC17K
	Cライク・	用できるCライク・コンパイラで		Windows		
	コンパイラ	す。RA17Kと組み合わせて使用し	IBM PC/AT互換機	日本語版	3.5インチ2HC	μ SAB13CC17K
	(emlc-17K [®])	ます。		Windows		
				英語版		μ SBB13CC17K
				Windows		
*	デバイス・	AS17934には µ PD17934A用のデバ	PC-9800シリーズ	日本語版	3.5インチ2HD	μ SAA13AS17934
	ファイル	イス・ファイルが入っています。		Windows		
	(AS17934)	17Kシリーズ共通のアセンブラ	IBM PC/AT互換機	日本語版	3.5インチ2HC	μ SAB13AS17934
		(RA17K)と組み合わせて使用し		Windows		
		ます。		英語版		μ SBB13AS17934
				Windows		
	サポート・	SIMPLEHOSTはインサーキット・	PC-9800シリーズ	日本語版	3.5インチ2HD	μ SAA13ID17K
	ソフトウエア	エミュレータとパーソナル・コンピ		Windows		
	(SIMPLEHOST)	ュータを用いてプログラム開発を行	IBM PC/AT互換機	日本語版	3.5インチ2HC	μ SAB13ID17K
		うときにWindwos上でマン・マシ		Windows		
		ン・インタフェースを行うソフトウ		英語版		μSBB13ID17K
		エアです。		Windows		

CMOSデバイスの一般的注意事項

静電気対策 (MOS全般)

注意 MOSデバイス取り扱いの際は静電気防止を心がけてください。

MOSデバイスは強い静電気によってゲート絶縁破壊を生じることがあります。運搬や保存の際には、NECが出荷梱包に使用している導電性のトレーやマガジン・ケース,または導電性の緩衝材,金属ケースなどを利用し,組み立て工程にはアースを施してください。プラスチック板上に放置したり,端子を触ったりしないでください。

また,MOSデバイスを実装したボードについても同様の扱いをしてください。

未使用入力の処理 (CMOS特有)

注意 CMOSデバイスの入力レベルは固定してください。

バイポーラやNMOSのデバイスと異なり、CMOSデバイスの入力に何も接続しない状態で動作させると、ノイズなどに起因する中間レベル入力が生じ、内部で貫通電流が流れて誤動作を引き起こす恐れがあります。プルアップかプルダウンによって入力レベルを固定してください。また、未使用端子が出力となる可能性(タイミングは規定しません)を考慮すると、個別に抵抗を介してVppまたはGNDに接続することが有効です。

資料中に「未使用端子の処理」について記載のある製品については、その内容を守ってください。

初期化以前の状態 (MOS全般)

注意 電源投入時, MOSデバイスの初期状態は不定です。

分子レベルのイオン注入量等で特性が決定するため,初期状態は製造工程の管理外です。電源投入時の端子の出力状態や入出力設定,レジスタ内容などは保証しておりません。ただし,リセット動作やモード設定で定義している項目については,これらの動作ののちに保証の対象となります。

リセット機能を持つデバイスの電源投入後は、まずリセット動作を実行してください。

emIC-17K, SIMPLEHOST は,日本電気株式会社の登録商標です。

Windowsは,米国Microsoft Corporationの米国およびその他の国における登録商標または商標です。 PC/ATは,米国IBM社の商標です。

本製品が外国為替および外国貿易管理法の規定による規制貨物等(または役務)に該当するか否かは,ユーザ (仕様を決定した者)が判定してください。

- 本資料の内容は予告なく変更することがありますので,最新のものであることをご確認の上ご使用ください。
- 文書による当社の承諾なしに本資料の転載複製を禁じます。
- 本資料に記載された製品の使用もしくは本資料に記載の情報の使用に際して,当社は当社もしくは第三者の知的財産権その他の権利に対する保証または実施権の許諾を行うものではありません。上記使用に 起因する第三者所有の権利にかかわる問題が発生した場合,当社はその責を負うものではありませんの でご了承ください。
- ◆本資料に記載された回路,ソフトウエア,及びこれらに付随する情報は,半導体製品の動作例,応用例を説明するためのものです。従って,これら回路・ソフトウエア・情報をお客様の機器に使用される場合には,お客様の責任において機器設計をしてください。これらの使用に起因するお客様もしくは第三者の損害に対して,当社は一切その責を負いません。
- 当社は品質,信頼性の向上に努めていますが,半導体製品はある確率で故障が発生します。当社半導体製品の故障により結果として,人身事故,火災事故,社会的な損害等を生じさせない冗長設計,延焼対策設計,誤動作防止設計等安全設計に十分ご注意願います。
- 当社は,当社製品の品質水準を「標準水準」,「特別水準」およびお客様に品質保証プログラムを指定して頂く「特定水準」に分類しております。また,各品質水準は以下に示す用途に製品が使われることを意図しておりますので,当社製品の品質水準をご確認の上ご使用願います。

標準水準:コンピュータ, OA機器,通信機器,計測機器,AV機器,家電,工作機械,パーソナル機器,産業用ロボット

特別水準:輸送機器(自動車,列車,船舶等),交通用信号機器,防災/防犯装置,各種安全装置, 生命維持を直接の目的としない医療機器

特定水準: 航空機器, 航空宇宙機器, 海底中継機器, 原子力制御システム, 生命維持のための医療機器, 生命維持のための装置またはシステム等

当社製品のデータ・シート / データ・ブック等の資料で,特に品質水準の表示がない場合は標準水準製品であることを表します。当社製品を上記の「標準水準」の用途以外でご使用をお考えのお客様は,必ず事前に当社販売窓口までご相談頂きますようお願い致します。

M7 98.8

── お問い合わせ先・

【技術的なお問い合わせ先】

NEC半導体テクニカルホットライン 電話 : 044-435-9494 FAX : 044-435-9608

【営業関係お問い合わせ先】

第一販売事業部	第二販売事業部	第三販売事業部
東京 (03)3798-6106, 6107,	東京 (03)3798-6110,6111,	東 京 (03)3798-6151, 6155, 6586,
6108	6112	1622, 1623, 6156
大阪 (06)6945-3178, 3200,	立 川 (042)526-5981, 6167	水 戸 (029)226-1702
3208, 3212	\underline{u} /// (042)526-5961, 6167	広島 (082)242-5504
	松 本 (0263)35-1662	前 橋 (027)243-6060
仙 台 (022)267-8740	静 岡 (054)254-4794	鳥 取 (0857)27-5313
郡 山 (024)923-5591	,	太 田 (0276)46-4014
千 葉 (043)238-8116	金 沢 (076)232-7303	名古屋 (052)222-2170, 2190
	松 山 (089)945-4149	福 岡 (092)261-2806

【資料の請求先】

上記営業関係お問い合わせ先またはNEC特約店へお申しつけください。

【NECエレクトロンデバイス ホームページ】

NECエレクトロンデバイスの情報がインターネットでご覧になれます。 URL(アドレス) http://www.ic.nec.co.jp/