カタログ等資料中の旧社名の扱いについて

2010年4月1日を以ってNECエレクトロニクス株式会社及び株式会社ルネサステクノロジが合併し、両社の全ての事業が当社に承継されております。従いまして、本資料中には旧社名での表記が残っておりますが、当社の資料として有効ですので、ご理解の程宜しくお願い申し上げます。

ルネサスエレクトロニクス ホームページ (http://www.renesas.com)

2010年4月1日 ルネサスエレクトロニクス株式会社

【発行】ルネサスエレクトロニクス株式会社 (http://www.renesas.com)

【問い合わせ先】http://japan.renesas.com/inquiry

ご注意書き

- 1. 本資料に記載されている内容は本資料発行時点のものであり、予告なく変更することがあります。当社製品のご購入およびご使用にあたりましては、事前に当社営業窓口で最新の情報をご確認いただきますとともに、当社ホームページなどを通じて公開される情報に常にご注意ください。
- 2. 本資料に記載された当社製品および技術情報の使用に関連し発生した第三者の特許権、著作権その他の知的財産権の侵害等に関し、当社は、一切その責任を負いません。当社は、本資料に基づき当社または第三者の特許権、著作権その他の知的財産権を何ら許諾するものではありません。
- 3. 当社製品を改造、改変、複製等しないでください。
- 4. 本資料に記載された回路、ソフトウェアおよびこれらに関連する情報は、半導体製品の動作例、応用例を説明するものです。お客様の機器の設計において、回路、ソフトウェアおよびこれらに関連する情報を使用する場合には、お客様の責任において行ってください。これらの使用に起因しお客様または第三者に生じた損害に関し、当社は、一切その責任を負いません。
- 5. 輸出に際しては、「外国為替及び外国貿易法」その他輸出関連法令を遵守し、かかる法令の定めるところにより必要な手続を行ってください。本資料に記載されている当社製品および技術を大量破壊兵器の開発等の目的、軍事利用の目的その他軍事用途の目的で使用しないでください。また、当社製品および技術を国内外の法令および規則により製造・使用・販売を禁止されている機器に使用することができません。
- 6. 本資料に記載されている情報は、正確を期すため慎重に作成したものですが、誤りがないことを保証するものではありません。万一、本資料に記載されている情報の誤りに起因する損害がお客様に生じた場合においても、当社は、一切その責任を負いません。
- 7. 当社は、当社製品の品質水準を「標準水準」、「高品質水準」および「特定水準」に分類しております。また、各品質水準は、以下に示す用途に製品が使われることを意図しておりますので、当社製品の品質水準をご確認ください。お客様は、当社の文書による事前の承諾を得ることなく、「特定水準」に分類された用途に当社製品を使用することができません。また、お客様は、当社の文書による事前の承諾を得ることなく、意図されていない用途に当社製品を使用することができません。当社の文書による事前の承諾を得ることなく、「特定水準」に分類された用途または意図されていない用途に当社製品を使用したことによりお客様または第三者に生じた損害等に関し、当社は、一切その責任を負いません。なお、当社製品のデータ・シート、データ・ブック等の資料で特に品質水準の表示がない場合は、標準水準製品であることを表します。

標準水準: コンピュータ、OA 機器、通信機器、計測機器、AV 機器、家電、工作機械、パーソナル機器、 産業用ロボット

高品質水準: 輸送機器(自動車、電車、船舶等)、交通用信号機器、防災・防犯装置、各種安全装置、生命 維持を目的として設計されていない医療機器(厚生労働省定義の管理医療機器に相当)

特定水準: 航空機器、航空宇宙機器、海底中継機器、原子力制御システム、生命維持のための医療機器(生命維持装置、人体に埋め込み使用するもの、治療行為(患部切り出し等)を行うもの、その他直接人命に影響を与えるもの)(厚生労働省定義の高度管理医療機器に相当)またはシステム

- 8. 本資料に記載された当社製品のご使用につき、特に、最大定格、動作電源電圧範囲、放熱特性、実装条件その他諸条件につきましては、当社保証範囲内でご使用ください。当社保証範囲を超えて当社製品をご使用された場合の故障および事故につきましては、当社は、一切その責任を負いません。
- 9. 当社は、当社製品の品質および信頼性の向上に努めておりますが、半導体製品はある確率で故障が発生したり、使用条件によっては誤動作したりする場合があります。また、当社製品は耐放射線設計については行っておりません。当社製品の故障または誤動作が生じた場合も、人身事故、火災事故、社会的損害などを生じさせないようお客様の責任において冗長設計、延焼対策設計、誤動作防止設計等の安全設計およびエージング処理等、機器またはシステムとしての出荷保証をお願いいたします。特に、マイコンソフトウェアは、単独での検証は困難なため、お客様が製造された最終の機器・システムとしての安全検証をお願いいたします。
- 10. 当社製品の環境適合性等、詳細につきましては製品個別に必ず当社営業窓口までお問合せください。ご使用に際しては、特定の物質の含有・使用を規制する RoHS 指令等、適用される環境関連法令を十分調査のうえ、かかる法令に適合するようご使用ください。お客様がかかる法令を遵守しないことにより生じた損害に関して、当社は、一切その責任を負いません。
- 11. 本資料の全部または一部を当社の文書による事前の承諾を得ることなく転載または複製することを固くお断りいたします。
- 12. 本資料に関する詳細についてのお問い合わせその他お気付きの点等がございましたら当社営業窓口までご 照会ください。
- 注 1. 本資料において使用されている「当社」とは、ルネサスエレクトロニクス株式会社およびルネサスエレクトロニクス株式会社がその総株主の議決権の過半数を直接または間接に保有する会社をいいます。
- 注 2. 本資料において使用されている「当社製品」とは、注 1 において定義された当社の開発、製造製品をいいます。

バイポーラ・アナログ集積回路 Bipolar Analog Integrated Circuit

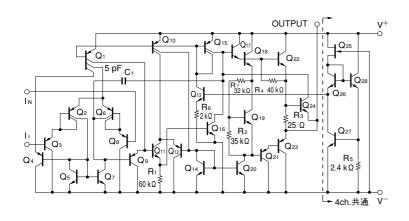
μ PC452,3403

単電源クワッド汎用演算増幅回路

 μ PC452, 3403は、単電源オペアンプ μ PC451, 324の高性能版です。クロスオーバひずみを発生しないよう、出力段にAB級プッシュプル回路を採用し、AC特性も改善されています。また、単電源はもちろん正負両電源で動作し、同相入力電圧範囲もV $^-$ (GND)レベルから使用できます。したがって、単電源ACアンプを始め各種の応用回路に幅広く使用できます。

使用セット、動作周囲温度に応じて通信工業用の μ PC452と一般用の μ PC3403があります。

特 徴


- ○入力オフセット電圧 ±2 mV (TYP.)
- ○入力オフセット電流 ±5 nA (TYP.)
- ○入力バイアス電流 45 nA (TYP.)
- ○スルーレート 0.8 V/ μs (TYP.)

- ○位相補正回路を内蔵しています。
- ○出力短絡保護回路を内蔵しています。
- ○標準のクワッド・オペアンプの端子接続(ピン・コンパチブル)です。

★ オーダ情報

オーダ名称	パッケージ						
μ PC452C	14ピン・プラスチックDIP (7.62 mm (300))						
μ PC452G2	14ピン・プラスチックSOP(5.72 mm(225))						
μ PC3403C	14ピン・プラスチックDIP (7.62 mm (300))						
μPC3403G2	14ピン・プラスチックSOP(5.72 mm(225))						

等価回路図(1/4回路)

端子接続図(Top View)

本資料の内容は、予告なく変更することがありますので、最新のものであることをご確認の上ご使用ください。

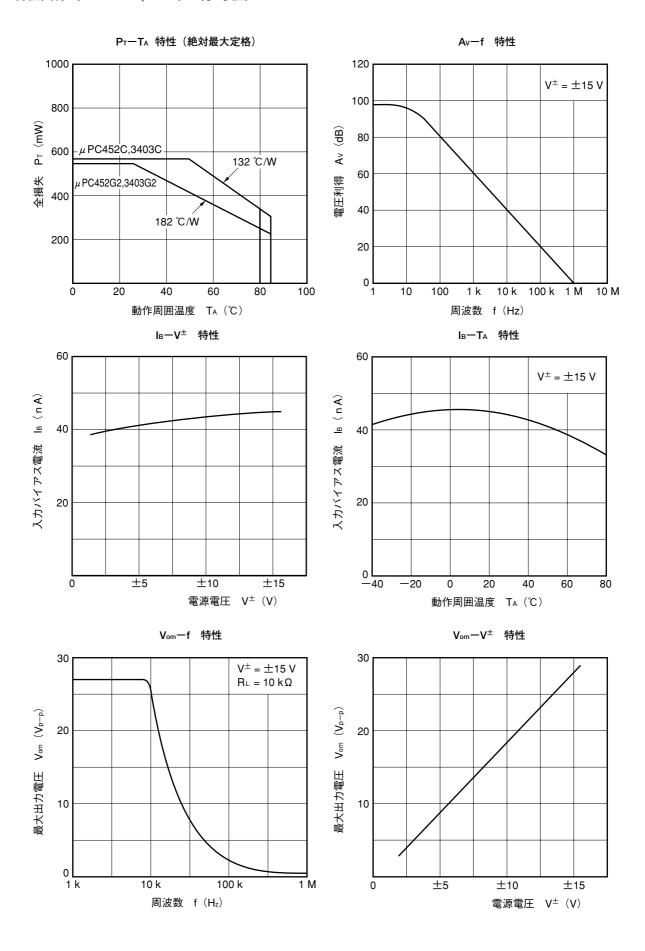
絶対最大定格(TA = 25 ℃)

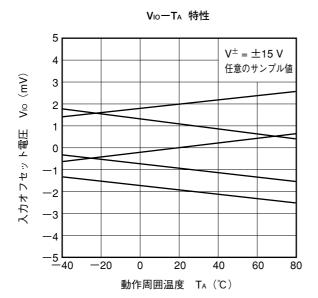
		項		目		略号	μPC452C	μ PC452G2	μPC3403C	μ PC3403G2	単位
電		源	電		圧注1	V+ — V-		− 0.3 ~ + 36			
差	動	入	カ	電	圧	VID		± 30			
入		カ	電		圧注2	Vı	$V^ 0.3 \sim V^+ + 0.3$				V
出	カ	印	加	電	圧注3	Vo	$V^ 0.3 \sim V^+ + 0.3$				V
全		ł	員		失	Рт	570注4 550注5 570注4 550注5			mW	
出	カ	短	絡	時	間注6		無限大			s	
動	作	周	进	温	度	TA	$-40 \sim +85$ $-20 \sim +80$			°C	
保	:	存	温		度	T _{stg}	−55 ~ + 125			°C	

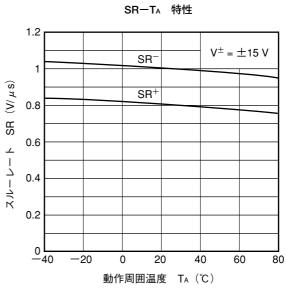
- 注1. 電源の逆接続は破壊の可能性がありますのでご注意ください。
 - 2. 特性劣化や破壊がなく、入力端子に印加可能な入力電圧範囲です。 電源ON/OFF時等の過渡状態も含めて定格を越えないようにご注意ください。 なお、オペアンプとして正常動作する入力電圧は、電気的特性の同相入力電圧範囲内です。
 - 3. 特性劣化や破壊がなく、出力端子に外部から印加可能な電圧範囲です。 電源ON/OFF時等の過渡状態も含めて定格を越えないようにご注意ください。 なお、オペアンプとして得られる出力電圧は、電気的特性の最大出力電圧の範囲内です。
 - 4. $T_A \le +50$ \mathbb{C} での値です。 $T_A > 50$ \mathbb{C} では-7.6 mW/ \mathbb{C} でディレーティングしてください。
 - 5. $T_A \le +25$ \mathbb{C} での値です。 $T_A > 25$ \mathbb{C} では-5.5 mW/ \mathbb{C} でディレーティングしてください。
 - 6. 全損失および注4, 5のディレーティング以下でご使用ください。

推奨動作条件

	項	Į	目	略号	MIN.	TYP.	MAX.	単位
電	源	電	圧 (両電源)	V [±]	土 1.5		± 16	V
電	源	電	圧(V ⁻ = GND)	V ⁺	+3		+32	V

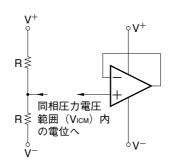

電気的特性(T_A = 25 ℃, V[±] = ± 15 V)


	項目	略号	条件	MIN.	TYP.	MAX.	単 位
	入力オフセット電圧	Vio			±2.0	±7.0	mV
	人 カ オ ノ ヒッ ド 竜 圧	VIO	$V^{+} = + 5 V, V^{-} = GND$		±2.0	±7.0	""
	入力オフセット電流	lio			±5	±50	- nA
	スカオフセッド电流	IIO	$V^{+} = + 5 V, V^{-} = GND$		±5	±50	
	入 カ バ イ ア ス 電 流 ^{注7}	Ів			45	250	nA
	スカハイテス電流=	IB	$V^{+} = +5 V, V^{-} = GND$		45	250	
	大振幅電圧利得	Av	$V_0 = \pm 10 \text{ V}, \text{ RL} = 2 \text{ k}\Omega$	20000	80000		
	八 城 悃 电	Av	$V^{+} = + 5 \text{ V}, V^{-} = \text{GND}, R_L = 2 \text{ k}\Omega$	20000	80000		
*	回路電流注8	Icc	$Vo = 0$, $R_L = \infty$, $Io = 0A$		2.8	7.0	- mA
			$V^{+}=5 V, V^{-}=GND, Io = 0A$		2.5	7.0	
	同 相 信 号 除 去 比	CMR	$Rs \leq 10 k\Omega$	70	90		dB
	電源変動除去比	SVR			30	150	μV/V
	电脉发到际公儿		$V^{+} = 5 V, V^{-} = GND$			150	
			RL= 10 kΩ	± 12	± 13.5		
	最大出力電圧	V_{om}	R _L = 2.0 k Ω	± 10	± 13		v
	取 大 出 刀 竜 圧	V om	RL=10kΩ(GNDに接続), $5.0 \text{ V} \le \text{V}^+ \le 30 \text{ V}$	V ⁺ -1.7	V ⁺ -1.5		
			V ⁻ = GND	0	0		
	同相入力電圧範囲	Vісм		+ 13	+ 13.5		V
				-15	-15		_ v
	出 力 短 絡 電 流	los		± 10	± 20	± 45	mA
	チャネル・セパレーション		f = 1 kHz ~ 20 kHz		120		dB


注7. 入力バイアス電流の方向は、初段がPNPトランジスタで構成されておりますので、ICから流れ出す方向です。

^{★ 8.} 内部回路に流れる電流です。使用するチャネルの有無にかかわらずこの電流が流れます。

特性曲線(T_A = 25 ℃, TYP.)(参考值)



使用上の注意事項

○未使用回路の処理

使用しない回路がある場合は次のように接続することをお勧めします。

未使用回路処理例

備考 この例では、 V^+ と V^- の中間電位を印加しています。

○入力端子電圧, 出力端子電圧の定格について

入力端子、出力端子の電圧が絶対最大定格を越えた場合には、IC内部の寄生ダイオードが導通し、特性劣化や破壊にいたる場合があります。なお、入力端子が V^- より低くなる、もしくは出力端子が電源電圧を越える可能性がある場合には、順方向電圧の小さいダイオード(ショットキィ・ダイオードなど)でクランプ回路を設け保護することを推奨いたします。

○同相入力電圧範囲について

電源電圧が電気的特性の条件と異なる場合の同相入力電圧範囲は次の範囲となります。

VICM (TYP.) : $V^- \sim V^+ - 1.5$ (V) $(T_A = 25 ^{\circ}C)$

なお、設計にあたっては温度特性などを考慮し余裕をもってご使用ください。

○最大出力電圧について

電源電圧が電気的特性の条件と異なる場合の最大出力電圧のTYP.値は次の範囲となります。

 V_{om}^+ (TYP.) : V^+ - 1.5 (V) (T_A = 25 °C) , V_{om}^- (TYP.) : V^- + 1.5 (V) (T_A = 25 °C)

なお、設計にあたっては特性バラツキ、温度特性などを考慮し余裕をもってご使用ください。

また、出力電流が大きくなると、出力電圧範囲(Vom+-Vom-) は狭くなりますので、あわせてご注意ください。

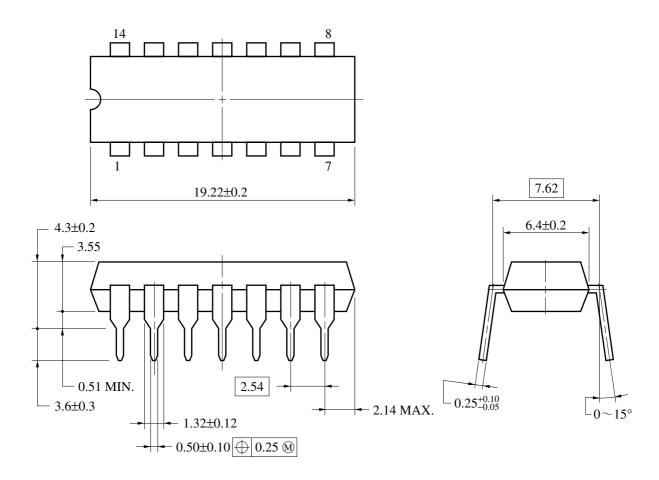
○出力の動作について

本ICは、出力電圧が $V^-+1.5$ V以下では出力電流吸い込み動作をしなくなります。この場合、出力端子・ V^- 間に負荷抵抗を接続し、負荷抵抗側で電流を吸い込むことで V^- 側へ出力電圧を改善できます(負荷抵抗に流れる電流によって、効果は異なります)。

○ICの取り扱いについて

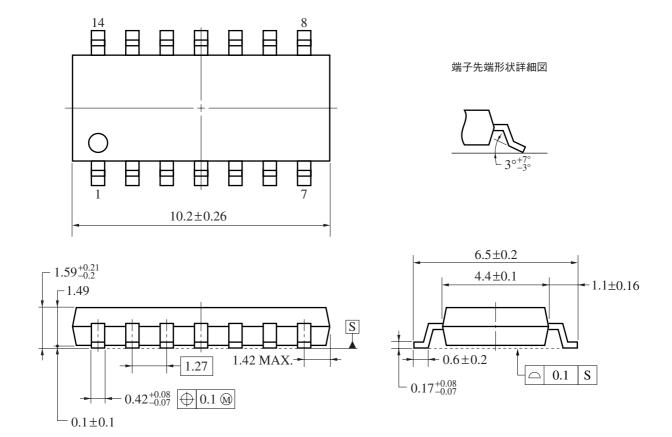
基板のソリや曲がりなどによりICに応力が加わると、圧電(ピエゾ)効果により特性が変動します。基板のソリや曲がりにご注意ください。

代表的オペアンプの主特性一覧表


分 類	品	名	電源電圧	回路電流	標準スルーレート	入力オフセット電圧
	通工用	一般用	(推奨値)	Icc (mA)	SR (V/µs)	V _{IO} (mV)
				MAX.	TYP.	MAX.
低ノイズ	μPC258	μPC4558	±4~±16	5.6	1	±6
	μPC458	μPC4741	±4~±16	7	1	±5
	μPC259	μPC4560	±4~±16	5.6	2.8	±6
		μPC4570	±4~±16	8	7	±5
		μPC4572	±2~±7	7	7	±5
		μPC4574	±4~±16	12	6	±5
単電源	μPC1251	μPC358	+3~+30	1.2	0.3	±7
	μPC451	μPC324	+3~+30	2	0.3	±7
	μPC452	μPC3403	+3~+32	7	0.8	±7
	μPC842	μPC4742	+3~+32	5.5	7	±5
	μPC844	μPC4744	+3~+32	11	7	±6
J-FET入力	μPC801	μPC4081	±5~±16	2.8	13	±15
	μPC803	μPC4082	±5~±16	5.6	13	±15
	μPC804	μPC4084	±5~±16	11.2	13	±15
	μPC821	μPC4071	±5~±16	2.7	13	±10
	μPC822	μPC4072	±5~±16	5	13	±10
	μPC824	μPC4074	±5~±16	10	13	±10
	μPC831	μPC4061	±2~±16	0.25	3	±10
	μPC832	μPC4062	±2~±16	0.5	3	±10
	μPC834	μPC4064	±2~±16	1	3	±10
	μPC811	μPC4091	±5~±16	3.4	15	±2.5
	μPC812	μPC4092	±5~±16	6.8	15	±3
	μPC813	μPC4093	±5~±16	3.4	25	±2.5
	μPC814	μPC4094	±5~±16	6.8	25	±3
高精度	μPC815		±3~±20	4.6	1.6	±0.06
	μPC816		±3~±20	4.6	7.6	±0.06
マイクロパワー	μPC802	μPC4250	±1~±16	0.1(可変)	~1	±6

注意 1. 表中の値は比較する際の参考データとしてお考えください。なお、品種ごとの詳細な特性については個別の データ・シートをご参照くださいますようお願いいたします。

2. オペアンプの選定法の詳細はインフォメーション資料「オペアンプ, コンパレータの選択法」 (G10617J) をご参照ください。


★ 外形図

14ピン・プラスチック DIP(7.62 mm(300))外形図(単位:mm)

P14C-100-300B1-3

14ピン・プラスチック SOP(5.72 mm(225))外形図(単位: mm)

S14GM-50-225B, C-6

★ 半田付け推奨条件

この製品の半田付け実装は、次の推奨条件で実施してください。

なお、推奨条件以外の半田付け方式および半田付け条件については、当社販売員にご相談ください。 半田付け推奨条件の技術的内容については下記を参照してください。

「半導体デバイス実装マニュアル」(http://www.necel.com/pkg/ja/jissou/index.html)

表面実装タイプの半田付け推奨条件

μ PC452G2, 3403G2:14ピン・プラスチックSOP(5.72 mm(225))

半田付け方式	半田付け条件	推奨条件記号
赤外線リフロ	パッケージ・ピーク温度:230℃,時間:30秒以内(210℃以上),回数:1回	IR30-00-1
VPS	PS パッケージ・ピーク温度:215℃,時間:40秒以内(200℃以上),回数:1回	
ウエーブ・ソルダリング	半田槽温度:260℃以下,時間:10秒以内,回数:1回,	WS60-00-1
	予備加熱温度:120℃ MAX.(パッケージ表面温度)	
端子部分加熱	端子温度:300℃以下,時間:3秒以内(デバイスの一辺当たり)	_

注意 半田付け方式の併用はお避けください(ただし、端子部分加熱方式は除く)。

挿入タイプの半田付け推奨条件

μ PC452C, 3403C:14ピン・プラスチックDIP(7.62 mm(300))

半田付け方式	半田付け条件
ウエーブ・ソルダリング	半田槽温度:260 ℃以下,時間:10秒以内
(端子のみ)	
端子部分加熱	端子温度:300℃以下,時間:3秒以内(1端子当たり)

注意 ウエーブ・ソルダリングは端子のみとし、噴流半田が直接本体に接触しないようにご注意ください。

参考資料

オペアンプの用語と特性	G10147J
オペアンプ,コンパレータの選択法	G10617J
オペアンプ,コンパレータ Q&A集	G12219J
+5 V動作オペアンプの使い方	C13689J
J-FET入力オペアンプの使い方	G13257J
高精度オペアンプの使い方	G13412J

*μ*PC452,3403

- ◆本資料に記載されている内容は2004年3月現在のもので、今後、予告なく変更することがあります。量 産設計の際には最新の個別データ・シート等をご参照ください。
- ◆ 文書による当社の事前の承諾なしに本資料の転載複製を禁じます。当社は、本資料の誤りに関し、一切 その責を負いません。
- 当社は、本資料に記載された当社製品の使用に関連し発生した第三者の特許権、著作権その他の知的財産権の侵害等に関し、一切その責を負いません。当社は、本資料に基づき当社または第三者の特許権、著作権その他の知的財産権を何ら許諾するものではありません。
- ◆本資料に記載された回路、ソフトウェアおよびこれらに関する情報は、半導体製品の動作例、応用例を 説明するものです。お客様の機器の設計において、回路、ソフトウェアおよびこれらに関する情報を使 用する場合には、お客様の責任において行ってください。これらの使用に起因しお客様または第三者に 生じた損害に関し、当社は、一切その責を負いません。
- 当社は、当社製品の品質、信頼性の向上に努めておりますが、当社製品の不具合が完全に発生しないことを保証するものではありません。当社製品の不具合により生じた生命、身体および財産に対する損害の危険を最小限度にするために、冗長設計、延焼対策設計、誤動作防止設計等安全設計を行ってください。
- 当社は、当社製品の品質水準を「標準水準」、「特別水準」およびお客様に品質保証プログラムを指定していただく「特定水準」に分類しております。また、各品質水準は、以下に示す用途に製品が使われることを意図しておりますので、当社製品の品質水準をご確認ください。

標準水準:コンピュータ,OA機器,通信機器,計測機器,AV機器,家電,工作機械,パーソナル機器,産業用ロボット

特別水準:輸送機器(自動車,電車,船舶等),交通用信号機器,防災・防犯装置,各種安全装置, 生命維持を目的として設計されていない医療機器

特定水準: 航空機器, 航空宇宙機器, 海底中継機器, 原子力制御システム, 生命維持のための医療機器, 生命維持のための装置またはシステム等

当社製品のデータ・シート、データ・ブック等の資料で特に品質水準の表示がない場合は、標準水準製品であることを表します。意図されていない用途で当社製品の使用をお客様が希望する場合には、事前に当社販売窓口までお問い合わせください。

(注)

- (1) 本事項において使用されている「当社」とは、NECエレクトロニクス株式会社およびNECエレクトロニクス株式会社がその総株主の議決権の過半数を直接または間接に保有する会社をいう。
- (2) 本事項において使用されている「当社製品」とは、(1) において定義された当社の開発、製造製品をいう。

M8E 02.11

【発行】

NECエレクトロニクス株式会社

〒211-8668 神奈川県川崎市中原区下沼部1753

電話(代表): 044(435)5111

— お問い合わせ先 -

【ホームページ】

NECエレクトロニクスの情報がインターネットでご覧になれます。

URL(アドレス) http://www.necel.co.jp/

【営業関係,技術関係お問い合わせ先】

半導体ホットライン電話: 044-435-9494(電話:午前 9:00~12:00、午後 1:00~5:00)E-mail : info@necel.com

【資料請求先】

NECエレクトロニクスのホームページよりダウンロードいただくか、NECエレクトロニクスの販売特約店へお申し付けください。