カタログ等資料中の旧社名の扱いについて

2010年4月1日を以ってNECエレクトロニクス株式会社及び株式会社ルネサステクノロジが合併し、両社の全ての事業が当社に承継されております。従いまして、本資料中には旧社名での表記が残っておりますが、当社の資料として有効ですので、ご理解の程宜しくお願い申し上げます。

ルネサスエレクトロニクス ホームページ (http://www.renesas.com)

2010 年 4 月 1 日 ルネサスエレクトロニクス株式会社

【発行】ルネサスエレクトロニクス株式会社 (http://www.renesas.com)

【問い合わせ先】http://japan.renesas.com/inquiry

ご注意書き

- 本資料に記載されている内容は本資料発行時点のものであり、予告なく変更することがあります。当社製品 のご購入およびご使用にあたりましては、事前に当社営業窓口で最新の情報をご確認いただきますとともに、 当社ホームページなどを通じて公開される情報に常にご注意ください。
- 本資料に記載された当社製品および技術情報の使用に関連し発生した第三者の特許権、著作権その他の知的 2. 財産権の侵害等に関し、当社は、一切その責任を負いません。当社は、本資料に基づき当社または第三者の 特許権、著作権その他の知的財産権を何ら許諾するものではありません。
- 3. 当社製品を改造、改変、複製等しないでください。
- 本資料に記載された回路、ソフトウェアおよびこれらに関連する情報は、半導体製品の動作例、応用例を説 明するものです。お客様の機器の設計において、回路、ソフトウェアおよびこれらに関連する情報を使用す る場合には、お客様の責任において行ってください。これらの使用に起因しお客様または第三者に生じた損 害に関し、当社は、一切その責任を負いません。
- 5. 輸出に際しては、「外国為替及び外国貿易法」その他輸出関連法令を遵守し、かかる法令の定めるところに より必要な手続を行ってください。本資料に記載されている当社製品および技術を大量破壊兵器の開発等の 目的、軍事利用の目的その他軍事用途の目的で使用しないでください。また、当社製品および技術を国内外 の法令および規則により製造・使用・販売を禁止されている機器に使用することができません。
- 本資料に記載されている情報は、正確を期すため慎重に作成したものですが、誤りがないことを保証するも のではありません。万一、本資料に記載されている情報の誤りに起因する損害がお客様に生じた場合におい ても、当社は、一切その責任を負いません。
- 当社は、当社製品の品質水準を「標準水準」、「高品質水準」および「特定水準」に分類しております。また、 7. 各品質水準は、以下に示す用途に製品が使われることを意図しておりますので、当社製品の品質水準をご確 認ください。お客様は、当社の文書による事前の承諾を得ることなく、「特定水準」に分類された用途に当 社製品を使用することができません。また、お客様は、当社の文書による事前の承諾を得ることなく、意図 されていない用途に当社製品を使用することができません。当社の文書による事前の承諾を得ることなく、 「特定水準」に分類された用途または意図されていない用途に当社製品を使用したことによりお客様または 第三者に生じた損害等に関し、当社は、一切その責任を負いません。なお、当社製品のデータ・シート、デ ータ・ブック等の資料で特に品質水準の表示がない場合は、標準水準製品であることを表します。

標準水準: コンピュータ、OA 機器、通信機器、計測機器、AV 機器、家電、工作機械、パーソナル機器、 産業用ロボット

高品質水準: 輸送機器(自動車、電車、船舶等)、交通用信号機器、防災・防犯装置、各種安全装置、生命 維持を目的として設計されていない医療機器(厚生労働省定義の管理医療機器に相当)

航空機器、航空宇宙機器、海底中継機器、原子力制御システム、生命維持のための医療機器(生 特定水準: 命維持装置、人体に埋め込み使用するもの、治療行為(患部切り出し等)を行うもの、その他 直接人命に影響を与えるもの)(厚生労働省定義の高度管理医療機器に相当)またはシステム

- 本資料に記載された当社製品のご使用につき、特に、最大定格、動作電源電圧範囲、放熱特性、実装条件そ 8. の他諸条件につきましては、当社保証範囲内でご使用ください。当社保証範囲を超えて当社製品をご使用さ れた場合の故障および事故につきましては、当社は、一切その責任を負いません。
- 当社は、当社製品の品質および信頼性の向上に努めておりますが、半導体製品はある確率で故障が発生した り、使用条件によっては誤動作したりする場合があります。また、当社製品は耐放射線設計については行っ ておりません。当社製品の故障または誤動作が生じた場合も、人身事故、火災事故、社会的損害などを生じ させないようお客様の責任において冗長設計、延焼対策設計、誤動作防止設計等の安全設計およびエージン グ処理等、機器またはシステムとしての出荷保証をお願いいたします。特に、マイコンソフトウェアは、単 独での検証は困難なため、お客様が製造された最終の機器・システムとしての安全検証をお願いいたします。
- 10. 当社製品の環境適合性等、詳細につきましては製品個別に必ず当社営業窓口までお問合せください。ご使用 に際しては、特定の物質の含有・使用を規制する RoHS 指令等、適用される環境関連法令を十分調査のうえ、 かかる法令に適合するようご使用ください。お客様がかかる法令を遵守しないことにより生じた損害に関し て、当社は、一切その責任を負いません。
- 11. 本資料の全部または一部を当社の文書による事前の承諾を得ることなく転載または複製することを固くお 断りいたします。
- 12. 本資料に関する詳細についてのお問い合わせその他お気付きの点等がございましたら当社営業窓口までご 照会ください。
- 注1. 本資料において使用されている「当社」とは、ルネサスエレクトロニクス株式会社およびルネサスエレク トロニクス株式会社がその総株主の議決権の過半数を直接または間接に保有する会社をいいます。
- 注 2. 本資料において使用されている「当社製品」とは、注 1 において定義された当社の開発、製造製品をいい ます。

バイポーラ アナログ集積回路 Bipolar Analog Integrated Circuit

μ PC3237TK

シリコン・ゲルマニウム低雑音高周波広帯域増幅器 IC

μPC3237TK は携帯端末向けディジタル TV などのロウ・ノイズ・アンプとして開発したシリコン・ゲルマニウム・モノリシック IC で, 低雑音, 高利得を実現しています。

パッケージは高密度表面実装に適した6ピン・リードレス・ミニモールド・パッケージを採用しています。本製品は,当社独自のシリコン・ゲルマニウム・バイポーラ・プロセス「UHS2」(<u>U</u>ltra <u>High S</u>peed Process)により生産しています。

特 徴

電源電圧 : Vcc = 2.4~3.3 V (2.8 V TYP.) 低消費電流 : Icc = 5 mA TYP.@ Vcc = 2.8 V 雑音指数 : NF = 1.4 dB TYP.@ f = 470 MHz

: NF = 1.5 dB TYP. @ f = 770 MHz

電力利得 : G_P = 15.3 dB TYP.@ f = 470 MHz

: $G_P = 13.5 \text{ dB TYP.} @ f = 770 \text{ MHz}$

表面実装に最適 : 6 ピン・リードレス・ミニモールド・パッケージ (1.5 × 1.1 × 0.55 mm)

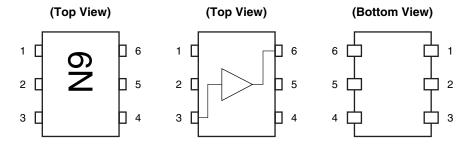
用 途

携帯端末向けディジタル TV などのロウ・ノイズ・アンプ

オーダ情報

品名	オーダ名称	パッケージ	捺印	包装形態
µРС3237ТК-Е2	'	6 ピン・リードレス・ ミニモールド (1511 PKG) (鉛フリー)	6N	・8 mm 幅エンボス式テーピング ・1, 6 ピン側が送り丸穴 ・5 k 個 / リール

備考 評価用サンプルのオーダについては,販売員にお問い合わせください。


サンプル名称: µPC3237TK

注意 本製品は静電気の影響を受けやすいので,取り扱いに注意してください。

本資料の内容は、予告なく変更することがありますので、最新のものであることをご確認の上ご使用ください。

端子接続図および内部ブロック図

端子番号	端子名称	
1	NC	
2	GND	
3	INPUT	
4	Vcc	
5	GND	
6	OUTPUT	

絶対最大定格

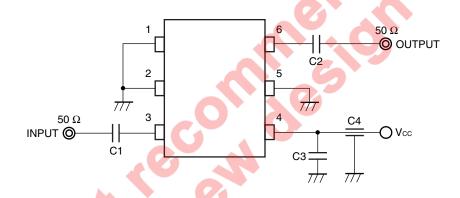
項目	略号	条件		定格	単 位
電源電圧	Vcc	T _A = +25°C		3.6	V
回路電流	lcc	T _A = +25°C		10	mA
パッケージ許容損失	P□	T _A = +85°C	注	203	mW
動作周囲温度	TA			- 40 ~ + 85	°C
保存温度	Tstg		1	- 55 ~ + 150	°C
入力電力	Pin	T _A = +25°C		+8	dBm

注 50 × 50 × 1.6 mm 両面銅箔ガラス・エポキシ基板実<mark>装</mark>時

推奨動作範囲

項目	略号	MIN.	TYP.	MAX.	単 位
電源電圧	Vcc	2.4	2.8	3.3	٧
動作周囲温度	TA	- 40	+ 25	+ 85	°C

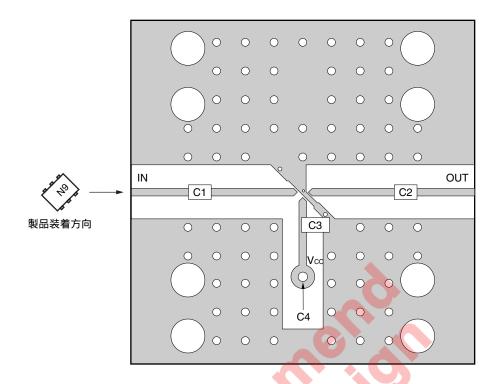
電気的特性 (特に指定のないかぎり TA = +25°C, Vcc = 2.8 V, Zs = ZL = 50 Ω)


項目	略号	条件	MIN.	TYP.	MAX.	単 位
回路電流	Icc	無信号時	3.5	5	7	mA
電力利得 1	G _P 1	f = 470 MHz, Pin = - 30 dBm	13.0	15.3	17.5	dB
電力利得 2	G _P 2	f = 770 MHz, Pin = - 30 dBm	11.0	13.5	16.0	dB
雑音指数 1	NF1	f = 470 MHz	ı	1.4	1.9	dB
雑音指数 2	NF2	f = 770 MHz	ı	1.5	2.0	dB
入力側リターン・ロス 1	RLin1	f = 470 MHz, P _{in} = - 30 dBm	6.5	9.5	-	dB
入力側リターン・ロス 2	RLin2	f = 770 MHz, Pin = - 30 dBm	5.5	8.5	-	dB
出力側リターン・ロス 1	RLout1	f = 470 MHz, Pin = - 30 dBm	9	14	-	dB
出力側リターン・ロス 2	RLout2	f = 770 MHz, Pin = - 30 dBm	10	15	-	dB
アイソレーション 1	ISL1	f = 470 MHz, Pin = - 30 dBm	17	22	-	dB
アイソレーション 2	ISL2	f = 770 MHz, Pin = - 30 dBm	16	21	-	dB
1 dB 利得圧縮時出力電力 1	Po (1 dB) 1	f = 470 MHz	-8	-5.5	_	dBm
1 dB 利得圧縮時出力電力 2	Po (1 dB) 2	f = 770 MHz	-8	-5.5	_	dBm

標準参考特性 (特に指定のないかぎり TA = +25°C, Vcc = 2.8 V, Zs = ZL = 50 Ω)

項目	略号	条件	参考値	単 位
飽和出力電力 1	Po (sat) 1	f = 470 MHz, Pin = +2 dBm	+ 1.3	dBm
飽和出力電力 2	Po (sat) 2	f = 770 MHz, P _{in} = +2 dBm	+ 1.3	dBm
入力 3 次ひずみ インタセプト・ポイント 1	IIP₃1	f1 = 470 MHz, f2 = 471 MHz	- 10.5	dBm
入力 3 次ひずみ インタセプト・ポイント 2	IIP₃2	f1 = 770 MHz, f2 = 771 MHz	- 9.5	dBm
出力 3 次ひずみ インタセプト・ポイント 1	OIP₃1	f1 = 470 MHz, f2 = 471 MHz	+ 4.8	dBm
出力 3 次ひずみ インタセプト・ポイント 2	OIP ₃ 2	f1 = 770 MHz, f2 = 771 MHz	+ 4.0	dBm
Kファクタ1	K1	f = 470 MHz	1.15	_
K ファクタ 2	K2	f = 770 MHz	1.20	_

測定回路図



本資料に掲載の応用回路および回路定数は,例示的に示したものであり,量産設計を対象とするものではありません。

電気的特性測定部品表

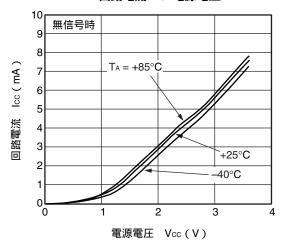
記号	部品種類	値
C1, C2	チップ・コンデンサ	100 pF
C3	チップ・コンデンサ	1 000 pF
C4	貫通コンデンサ	1 000 pF

測定回路のプリント基板例

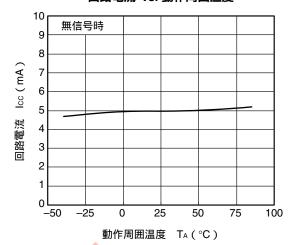
基板例注釈

(*1)30 \times 30 \times 0.4 mm FR-4 に両面 18 μ m 厚銅パターニング

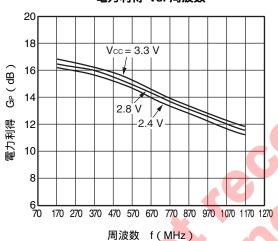
(*2)裏面グランド・パターン

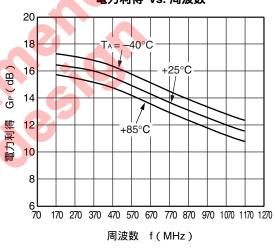

(*3) パターニング面は Au メッキ

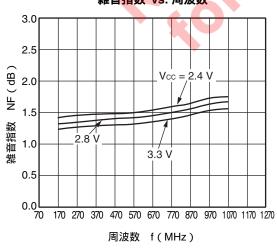
(*4) はスルー・ホール

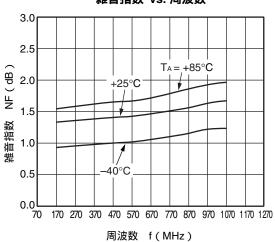

特性曲線 (特に指定のないかぎりTA = +25°C, Vcc = 2.8 V, Zs = ZL = 50 Ω, 参考値)

回路電流 vs. 電源電圧

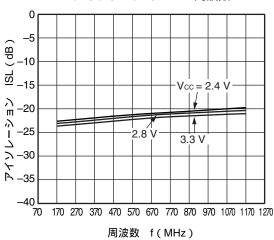

NEC


回路電流 vs. 動作周囲温度

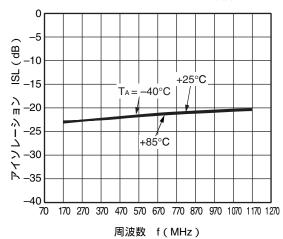

電力利得 vs. 周波数


電力利得 vs. 周波数

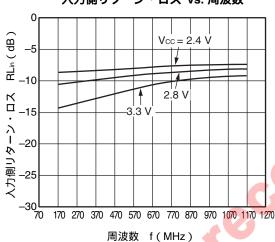
雑音指数 vs. 周波数

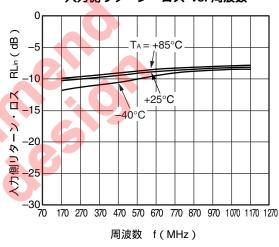


雑音指数 vs. 周波数

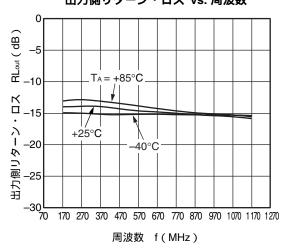


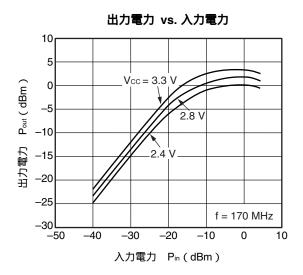
備考 グラフ中の値は参考値を示します。

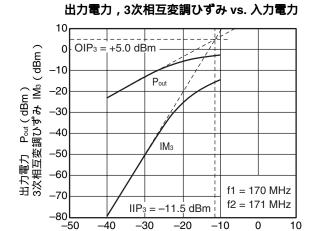

アイソレーション vs. 周波数


アイソレーション vs. 周波数

入力側リターン・ロス vs. 周波数

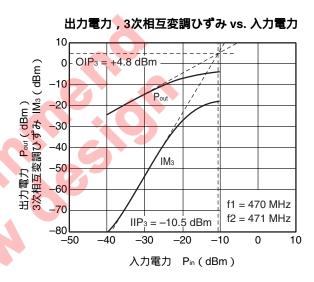

入力側リターン・ロス vs. 周波数

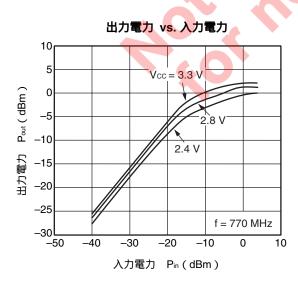

出力側リターン・ロス vs. 周波数

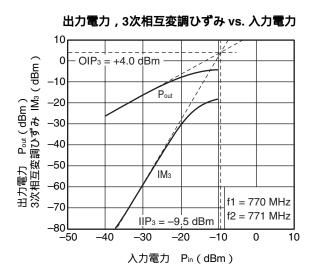


出力側リターン・ロス vs. 周波数

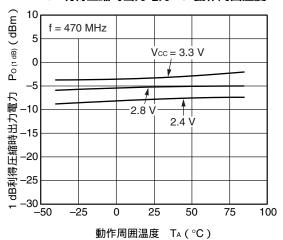


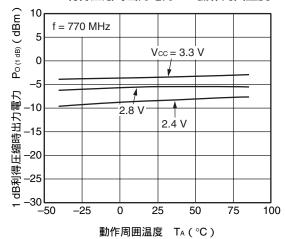

備考 グラフ中の値は参考値を示します。

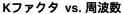




入力電力 Pin (dBm)

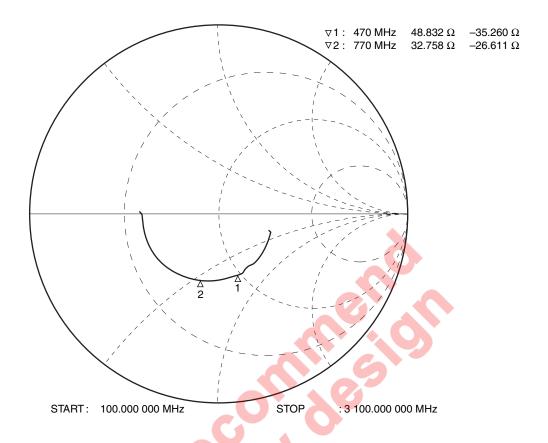


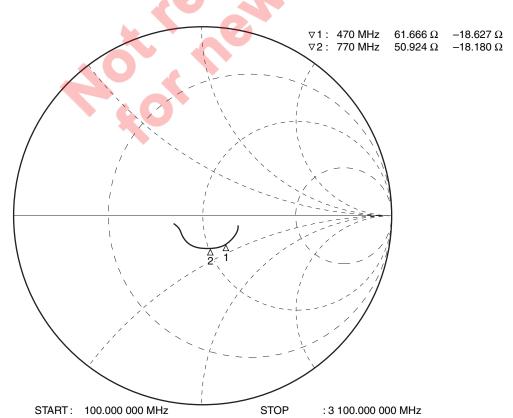



備考 グラフ中の値は参考値を示します。

1 dB利得圧縮時出力電力 vs. 動作周囲温度

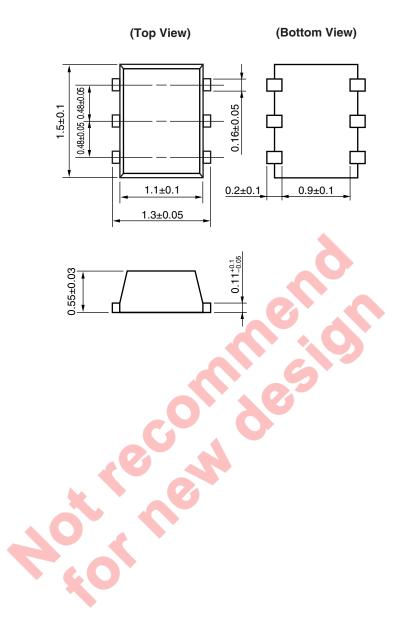
1 dB利得圧縮時出力電力 vs. 動作周囲温度




備考 グラフ中の値は参考値を示します

Sパラメータ (特に指定のないかぎりTA = +25°C, Vcc = 2.8 V, 測定回路実装基板の各端子間,参考値)

S11-周波数



S22-周波数

外形図

6ピン・リードレス・ミニモ - ルド (1511 PKG) (単位:mm)

使用上の注意事項

- (1) 本製品は高周波プロセスを用いていますので,静電気などの過大入力にご注意ください。
- (2)グランド・パターンは極力広く取り,接地インピーダンスを小さくしてください(異常発振の防止のため)。 特にグランド端子はインピーダンス差が生じないようにパターンをつなげてください。
- (3) Vcc 端子にはバイパス・コンデンサを挿入してください。
- (4) 入出力端子はそれぞれカップリング・コンデンサなどで DC カットしてください。
- (5)1ピン(NC)は接地して使用してください。

半田付け推奨条件

この製品の半田付け実装は,次の推奨条件で実施してください。

なお、推奨条件以外の半田付け方式および半田付け条件については、当社販売員にご相談ください。

半田付け方式	半田付け条件	推奨条件記号	
赤外線リフロ	・最高温度(パッケージ表面温度) ・最高温度の時間 ・温度 220℃ 以上の時間 ・プリヒート温度 120~180℃ の時間 ・最多リフロ回数 ・ロジン系フラックスの塩素含有量(質量百分率)	: 260℃以下 : 10秒以内 : 60秒以内 : 120±30秒 : 3回 : 0.2%(Wt.)以下	IR260
ウェーブ・ソルダリング	・最高温度(溶融半田温度)・フロー時間・プリヒート温度(パッケージ表面温度)・フロー回数・ロジン系フラックスの塩素含有量(質量百分率)	:260℃ 以下 :10 秒以内 :120℃ 以下 :1 回 :0.2%(Wt.)以下	WS260
端子部分加熱	・最高温度(端子部温度)・時間(デバイスの一辺あたり)・ロジン系フラックスの塩素含有量(質量百分率)	: 350℃ 以下 : 3 秒以内 : 0.2%(Wt.)以下	HS350

注意 半田付け方式の併用はお避けください(ただし,端子部分加熱は除く)。

- 本資料に記載されている内容は2007年7月現在のもので,今後,予告なく変更することがあります。量産設計の際には最新の個別データ・シート等をご参照ください。
- 文書による当社の事前の承諾なしに本資料の転載複製を禁じます。当社は,本資料の誤りに関し,一切その責を負いません。
- 当社は,本資料に記載された当社製品の使用に関連し発生した第三者の特許権,著作権その他の知的財産権の侵害等に関し,一切その責を負いません。当社は,本資料に基づき当社または第三者の特許権,著作権その他の知的財産権を何ら許諾するものではありません。
- ◆本資料に記載された回路,ソフトウエアおよびこれらに関する情報は,半導体製品の動作例,応用例を 説明するものです。お客様の機器の設計において,回路,ソフトウエアおよびこれらに関する情報を使 用する場合には,お客様の責任において行ってください。これらの使用に起因しお客様または第三者に 生じた損害に関し,当社は,一切その責を負いません。
- 当社は、当社製品の品質、信頼性の向上に努めておりますが、当社製品の不具合が完全に発生しないことを保証するものではありません。当社製品の不具合により生じた生命、身体および財産に対する損害の危険を最小限度にするために、冗長設計、延焼対策設計、誤動作防止設計等安全設計を行ってください。
- 当社は,当社製品の品質水準を「標準水準」,「特別水準」およびお客様に品質保証プログラムを指定していただく「特定水準」に分類しております。また,各品質水準は,以下に示す用途に製品が使われることを意図しておりますので,当社製品の品質水準をご確認ください。

標準水準:コンピュータ,OA機器,通信機器<mark>,計測</mark>機器,AV機器,家電,工作機械,パーソナル機器,産業用ロボット

特別水準:輸送機器(自動車,電車<mark>,船舶等)</mark>,交通<mark>用信号機器,防災・防犯装置,各種安全装置,</mark> 生命維持を目的として<mark>設計され</mark>ていない医療機器

特定水準:航空機器,航空宇宙機器,海底中継機器,原子力制御システム,生命維持のための医療機器,生命維持のための装置またはシステム等

当社製品のデータ・シート,データ・ブック等の資料で特に品質水準の表示がない場合は,標準水準製品であることを表します。意図されていない用途で当社製品の使用をお客様が希望する場合には,事前に当社販売窓口までお問い合わせください。

(注)

- (1)本事項において使用されている「当社」とは、NECエレクトロニクス株式会社およびNECエレクトロニクス株式会社がその総株主の議決権の過半数を直接または間接に保有する会社をいう。
- (2)本事項において使用されている「当社製品」とは,(1)において定義された当社の開発,製造製品をいう。

M8E 02.11

【発 行】

NECエレクトロニクス株式会社

〒211-8668 神奈川県川崎市中原区下沼部1753

電話(代表):044(435)5111

--- お問い合わせ先-

【ホームページ】

NECエレクトロニクスの情報がインターネットでご覧になれます。

URL(アドレス) http://www.necel.co.jp/

【営業関係,技術関係お問い合わせ先】

【資料請求先】

NECエレクトロニクスのホームページよりダウンロードいただくか, NECエレクトロニクスの販売特約店へお申し付けください。