

UPC177G2, UPC339G2

単電源クワッド・コンパレータ

概要

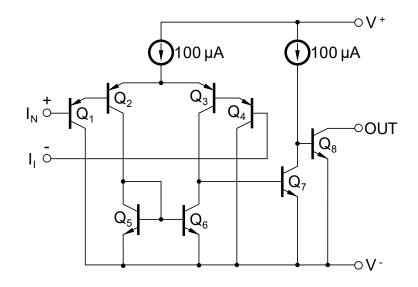
UPC177, UPC339 は、単電源動作用として開発されたコンパレータで、低電圧動作、 V^- (GND) レベルからの同相入力電圧範囲、オープン・コレクタ出力、低消費電流を特長としています。また、両電源による動作も可能で、各種電圧比較用途に幅広く応用できます。

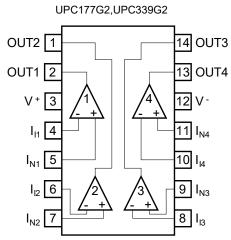
使用セット、動作周囲温度範囲に応じて通信工業用の UPC177 と一般用の UPC339 があります。なお、シリーズ品として、同一回路構成でデュアル・タイプの UPC277, UPC393 もあります。

特長

入力オフセット電圧 ±2 mV (TYP.)
 入力バイアス電流 25 nA (TYP.)
 電圧利得 200000 (TYP.)
 応答時間 1.3 μs (TYP.)
 出力吸い込み電流 16mA (TYP.)

- オープン・コレクタ出力なので、ワイヤード OR が可能です。
- 低電圧動作が可能です。 V+-V-:2~32 V


オーダー情報


オーダー名称 ⁽¹⁾	選別内容	パッケージ
UPC177G2-AP	標準品	14 ピン・プラスチック SOP (5.72 mm (225))
UPC339G2-AP	標準品	14 ピン・プラスチック SOP (5.72 mm (225))

(1) E1 または E2 が含まれるオーダー名称は包装形態がエンボス・テーピングを表します。 E1 は 1 ピンがテープ引き出し側、E2 は 1 ピンがテープ巻き込み側となります。

等価回路(1/4 回路)

端子接続図 (Top View)

絶対最大定格 (TA=25°C)

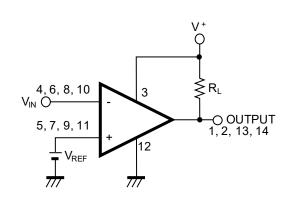
項目	記 号	UPC177G2	UPC339G2	単位
電源電圧 ^{注.1}	V+ - V-	-0.3 ~ +36		V
差動入力電圧	V _{ID}	±3	V	
入力電圧 ^{注.2}	Vı	V⁻ -0.3 ~ V⁻ +36		V
出力耐圧 ^{注.3}	Vo	V⁻ -0.3 ~ V⁻ +36		V
全損失注.4	PT	550		mW
出力短絡時間 (対 GND) ^{注.5}		無限大		
動作周囲温度	T _A	-40 ~ +85	-20 ~ +80	°C
保存温度	T _{stg}	-55 ~ +125		°C

【注】 1. 電源の逆接続は破壊の可能性がありますので注意してください。

- 2. 特性劣化や破壊がなく、入力端子に印加可能な入力電圧範囲です。電源電圧にかかわらず印加できます。 V⁻(GND)-0.3 V 以下の電圧を印加しないでください。 なお、コンパレータとして正常動作する入力電圧は、電気的特性の同相入力電圧範囲内です。
- 3. 特性劣化や破壊がなく、出力端子に外部から印加可能な電圧範囲です。電源電圧にかかわらず印加できます。 電源 ON/OFF 時などの過渡状態も含めて定格を越えないように注意してください。
- 4. T_A≤+25°C での値です。T_A>25°C では -5.5 mW/°C でディレーティングしてください。
- 5. V + 側への短絡は IC を破壊することがあります。全損失および注 4 のディレーティング以下でご使用ください。

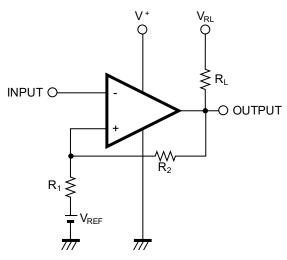
推奨動作条件

項目	記号	MIN.	TYP.	MAX.	単位
電源電圧 (両電源)	V ±	±1		±16	V
電源電圧 (V-=GND)	V +	+2		+32	V


電気的特性

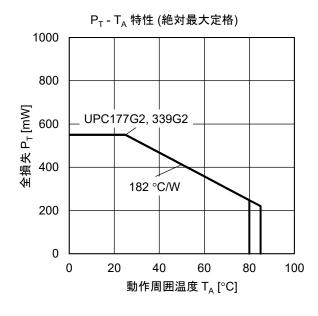
UPC177G2, UPC339G2 ($T_A = 25 \, ^{\circ}\text{C}$, $V^+ = +5 \, \text{V}$, $V^- = \text{GND}$)

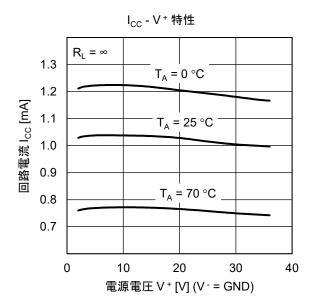
項目	記号	MIN.	TYP.	MAX.	単位	測定条件
入力オフセット電圧	Vio		±2	±5	mV	$V_0 = 1.4 \text{ V}, V_{REF} = 1.4 \text{ V}, R_S = 0 \Omega$
入力オフセット電流	I _{IO}		±5	±50	nA	V _O ≒ 1.4 V
入力バイアス電流 注 6	lΒ		25	250	nA	Vo ≒ 1.4 V
電圧利得	A _V		200000			$R_L = 15 \text{ k}\Omega$
回路電流 ^{注 7}	Icc		0.8	2	mA	R _L = ∞, I _O = 0 A
同相入力電圧範囲	VICM	0		V + -1.5	V	
出力飽和電圧	VoL		0.2	0.4	V	$V_{IN(-)} = 1 \text{ V, } V_{IN(+)} = 0 \text{ V, } I_{O \text{ SINK}} = 4 \text{ mA}$
出力吸い込み電流	I _{O SINK}	6	16		mA	$V_{IN(-)} = 1 \text{ V}, V_{IN(+)} = 0 \text{ V}, V_O \le 1.5 \text{ V}$
出カリーク電流	lo leak		0.1		nA	$V_{IN(+)} = 1 \text{ V}, V_{IN(-)} = 0 \text{ V}, V_O = 5 \text{ V}$
応答時間 ^{注 8}			1.3		μs	$R_L = 5.1 \text{ k}\Omega, V_{RL} = 5 \text{ V}$

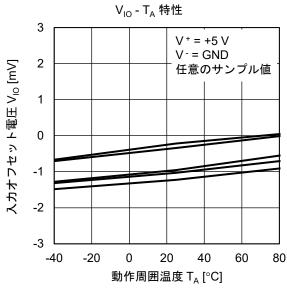

- 【注】 6. 入力バイアス電流の方向は、初段が PNP トランジスタで構成されておりますので、IC から流れ出す方向です。また、この項目の値は入力段の差動増幅回路がバランスしたときの値ですので、コンパレートしているときは、どちらか電位の低い端子の方に約 2 倍の電流が流れます。
 - 7. 内部回路に流れる電流です。使用するチャネルの有無にかかわらずこの電流が流れます。
 - 8. 入力振幅 100 mV 、オーバドライブ 5 mV のときの値です。 オーバドライブ量を増加すれば応答時間を短縮できます。

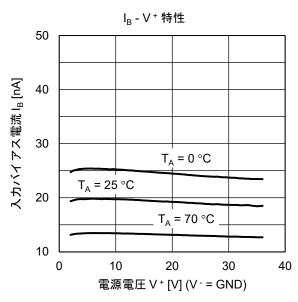
標準応用回路

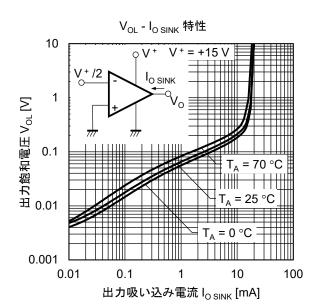
 $V_{REF} : V^- \sim V^+ - 1.5 [V]$

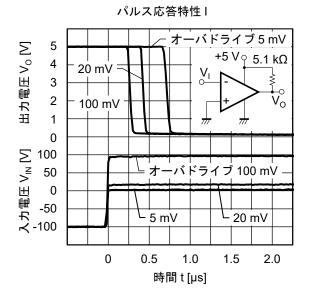

ヒステリシス付きコンパレータ

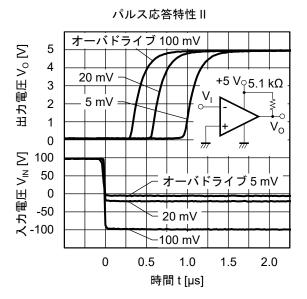


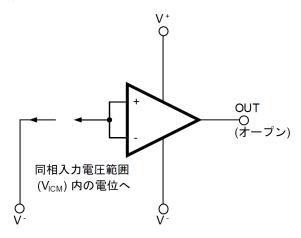

• スレッシュホールド電圧


$$\begin{split} &V_{TH~(High)} \doteq V_{REF} + \frac{R_1}{R_L + R_2 + R_1} \left(V_{RL} - V_{REF} \right) \\ &V_{TH~(Low)} \doteq V_{REF} - \frac{R_1}{R_1 + R_2} \left(V_{REF} - V_{OL} \right) \\ &\left(V_{RL} > V_{REF} > V_{OL} \right) \end{split}$$


特性曲線 (TA = 25 °C, TYP.) (参考値)







使用上の注意事項

• 未使用回路の処理

使用しない回路がある場合は次のように接続することをお勧めします。

未使用回路処理例

• 入力端子電圧、出力端子電圧の定格について

入力端子、出力端子の電圧が絶対最大定格を越えた場合には、IC 内部の寄生ダイオードが導通し、特性劣化や破壊にいたる場合があります。なお、入力端子、出力端子の電圧が V より低くなる可能性がある場合には、順方向電圧の小さいダイオード (ショットキー・ダイオードなど) でクランプ回路を設け、保護することを推奨します。

• 同相入力電圧範囲について

電源電圧が電気的特性の条件と異なる場合の同相入力電圧範囲は、次の範囲となります。

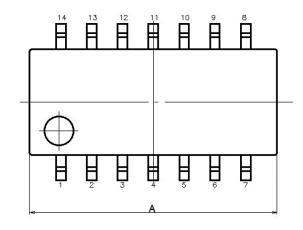
 V_{ICM} (TYP.) : $V^- \sim V^+ - 1.5$ [V] ($T_A = 25$ °C)

なお、設計にあたっては温度特性などを考慮し、余裕をもって使用してください。

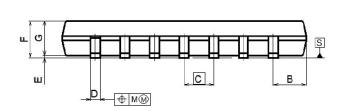
• 入力電流について

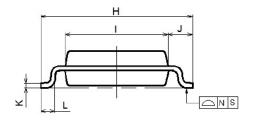
電気的特性規格表の「入力バイアス電流 [I_B] 」はオペアンプに準じて規定しており、入力段の差動増幅回路をバランスさせた状態 (負帰還をかけた状態) での、+ 入力端子 [I_N] に流れる電流と - 入力端子 [I_I] に流れる電流との平均値です。

したがって、比較動作時 (コンパレータ動作時) には、入力段の差動増幅回路をバランスさせないで使用しますので、 入力電流は、どちらか電位の低い端子の方に約2倍の電流が流れます。


• IC の取り扱いについて

基板のソリや曲がりなどにより IC に応力が加わると、圧電 (ピエゾ) 効果により特性が変動します。基板のソリや曲がりに注意してください。


外形寸法図


14-PIN PLASTIC SOP

JEITA Package code	RENESAS code	MASS (TYP.) [g]
P-LSOP14-4.4×10.2-1.27	PLSP0014DB-A	0.17[g]

NOTE EACH LEAD CENTERLINE IS LOCATED WITHIN 0.12 MM OF ITS TRUE POSITION(T.P.) AT MAXIMUM MATERIAL CONDITION.

	(UNIT:mm)
ITEM	DIMENSIONS
Α	10.2±0.2
В	1.42MAX
С	1.27(T.P)
D	0.40±0.05
E	0.1±0.1
F	1.59±0.20
G	1.49±0.1
Н	6.5±0.2
1	4.4±0.1
J	1.05±0.15
K	0.2±0.07
L	0.6±0.20
М	0.1MAX
N	0.1MAX
Р	4°±4°

ご注意書き

- 1. 本資料に記載された回路、ソフトウェアおよびこれらに関連する情報は、半導体製品の動作例、応用例を説明するものです。回路、ソフトウェアおよびこれらに関連する情報を使用する場合、お客様の責任において、お客様の機器・システムを設計ください。これらの使用に起因して生じた損害 (お客様または第三者いずれに生じた損害も含みます。以下同じです。)に関し、当社は、一切その責任を負いません。
- 2. 当社製品または本資料に記載された製品データ、図、表、プログラム、アルゴリズム、応用回路例等の情報の使用に起因して発生した第三者の特許 権、著作権その他の知的財産権に対する侵害またはこれらに関する紛争について、当社は、何らの保証を行うものではなく、また責任を負うもので はありません。
- 3. 当社は、本資料に基づき当社または第三者の特許権、著作権その他の知的財産権を何ら許諾するものではありません。
- 4. 当社製品を組み込んだ製品の輸出入、製造、販売、利用、配布その他の行為を行うにあたり、第三者保有の技術の利用に関するライセンスが必要となる場合、当該ライセンス取得の判断および取得はお客様の責任において行ってください。
- 5. 当社製品を、全部または一部を問わず、改造、改変、複製、リバースエンジニアリング、その他、不適切に使用しないでください。かかる改造、改変、複製、リバースエンジニアリング等により生じた損害に関し、当社は、一切その責任を負いません。
- 6. 当社は、当社製品の品質水準を「標準水準」および「高品質水準」に分類しており、各品質水準は、以下に示す用途に製品が使用されることを意図 しております。

標準水準: コンピュータ、OA 機器、通信機器、計測機器、AV 機器、家電、工作機械、パーソナル機器、産業用ロボット等

高品質水準:輸送機器(自動車、電車、船舶等)、交通制御(信号)、大規模通信機器、金融端末基幹システム、各種安全制御装置等 当社製品は、データシート等により高信頼性、Harsh environment 向け製品と定義しているものを除き、直接生命・身体に危害を及ぼす可能性のある 機器・システム(生命維持装置、人体に埋め込み使用するもの等)、もしくは多大な物的損害を発生させるおそれのある機器・システム(宇宙機器 と、海底中継器、原子力制御システム、航空機制御システム、プラント基幹システム、軍事機器等)に使用されることを意図しておらず、これらの 用途に使用することは想定していません。たとえ、当社が想定していない用途に当社製品を使用したことにより損害が生じても、当社は一切その責 任を負いません。

- 7. あらゆる半導体製品は、外部攻撃からの安全性を 100%保証されているわけではありません。当社ハードウェア/ソフトウェア製品にはセキュリティ対策が組み込まれているものもありますが、これによって、当社は、セキュリティ脆弱性または侵害(当社製品または当社製品が使用されているシステムに対する不正アクセス・不正使用を含みますが、これに限りません。) から生じる責任を負うものではありません。当社は、当社製品または当社製品が使用されたあらゆるシステムが、不正な改変、攻撃、ウイルス、干渉、ハッキング、データの破壊または窃盗その他の不正な侵入行為(「脆弱性問題」といいます。) によって影響を受けないことを保証しません。当社は、脆弱性問題に起因しまたはこれに関連して生じた損害について、一切責任を負いません。また、法令において認められる限りにおいて、本資料および当社ハードウェア/ソフトウェア製品について、商品性および特定目的との合致に関する保証ならびに第三者の権利を侵害しないことの保証を含め、明示または黙示のいかなる保証も行いません。
- 8. 当社製品をご使用の際は、最新の製品情報(データシート、ユーザーズマニュアル、アプリケーションノート、信頼性ハンドブックに記載の「半導体デバイスの使用上の一般的な注意事項」等)をご確認の上、当社が指定する最大定格、動作電源電圧範囲、放熱特性、実装条件その他指定条件の範囲内でご使用ください。指定条件の範囲を超えて当社製品をご使用された場合の故障、誤動作の不具合および事故につきましては、当社は、一切その責任を負いません。
- 9. 当社は、当社製品の品質および信頼性の向上に努めていますが、半導体製品はある確率で故障が発生したり、使用条件によっては誤動作したりする場合があります。また、当社製品は、データシート等において高信頼性、Harsh environment 向け製品と定義しているものを除き、耐放射線設計を行っておりません。仮に当社製品の故障または誤動作が生じた場合であっても、人身事故、火災事故その他社会的損害等を生じさせないよう、お客様の責任において、冗長設計、延焼対策設計、誤動作防止設計等の安全設計およびエージング処理等、お客様の機器・システムとしての出荷保証を行ってください。特に、マイコンソフトウェアは、単独での検証は困難なため、お客様の機器・システムとしての安全検証をお客様の責任で行ってください。
- 10. 当社製品の環境適合性等の詳細につきましては、製品個別に必ず当社営業窓口までお問合せください。ご使用に際しては、特定の物質の含有・使用を規制する RoHS 指令等、適用される環境関連法令を十分調査のうえ、かかる法令に適合するようご使用ください。かかる法令を遵守しないことにより生じた損害に関して、当社は、一切その責任を負いません。
- 11. 当社製品および技術を国内外の法令および規則により製造・使用・販売を禁止されている機器・システムに使用することはできません。当社製品および技術を輸出、販売または移転等する場合は、「外国為替及び外国貿易法」その他日本国および適用される外国の輸出管理関連法規を遵守し、それらの定めるところに従い必要な手続きを行ってください。
- 12. お客様が当社製品を第三者に転売等される場合には、事前に当該第三者に対して、本ご注意書き記載の諸条件を通知する責任を負うものといたします。
- 13. 本資料の全部または一部を当社の文書による事前の承諾を得ることなく転載または複製することを禁じます。
- 14. 本資料に記載されている内容または当社製品についてご不明な点がございましたら、当社の営業担当者までお問合せください。
- 注 1. 本資料において使用されている「当社」とは、ルネサス エレクトロニクス株式会社およびルネサス エレクトロニクス株式会社が直接的、間接的に支配する会社をいいます。
- 注 2. 本資料において使用されている「当社製品」とは、注1において定義された当社の開発、製造製品をいいます。

(Rev.5.0-1 2020.10)

本社所在地

〒135-0061 東京都江東区豊洲 3-2-24 (豊洲フォレシア)

www.renesas.com

商標について

ルネサスおよびルネサスロゴはルネサス エレクトロニクス株式会社の 商標です。すべての商標および登録商標は、それぞれの所有者に帰属 します。

お問合せ窓口

弊社の製品や技術、ドキュメントの最新情報、最寄の営業お問合せ窓口に関する情報などは、弊社ウェブサイトをご覧ください。

www.renesas.com/contact/