

RZ/T2L グループ

RZ Arm ベースハイエンド 32 ビット/64 ビット MPU

R01DS0409JJ0120 Rev.1.20 Dec 8, 2023

200/400/800 MHz シングル Arm[®] Cortex[®]-R52 で、FPU および NEON[™]を内蔵し、1.0 MB 内蔵 SRAM、イーサネット MAC、 EtherCAT、USB 2.0 ハイスピード、CAN/CANFD、xSPI や ΔΣ インタフェースなどの多種多様な通信機能、エンコーダイン タフェース、およびセキュリティ機能を搭載

- 内蔵 32 ビット Arm Cortex-R52 プロセッサ
 - 動作周波数 200/400/800 MHz の高速リアルタイムコントロー
 - シングル 32 ビット Arm Cortex-R52 (revision rlp2) を内蔵 ECC 付き密接合メモリ (TCM)
 - 512 KB/64 KB
 - ECC 付き命令キャッシュ /データキャッシュ - キャッシュあたり、16 KB • 高速割り込み

 - FPU は単精度及び倍精度の加算、減算、乗算、除算、積和演算、平方根演算をサポート
 - NEON および Advanced SIMD は、整数及び単精度の演算結果
 - 8段パイプラインのハーバードアーキテクチャ

 - メモリプロテクションユニット (MPU) 対応
 Arm CoreSight アーキテクチャで JTAG および SWD インタフェースによるデバッグをサポート

■ 低消費電力

スタンバイモード、モジュールストップ機能

■ 内蔵 SRAM

- 1.0 MB の ECC 付き内蔵 SRAM
- 150/200 MHz

■ データ転送

● DMAC: 16 チャネル×2 ユニット

■ イベントリンクコントローラ

- 割り込みを介さず、イベント信号でモジュール動作が可能
- CPU がスタンバイ状態でも、モジュール間のリンク動作が可

■ リセットと電源電圧制御

• 端子リセットを含む4つのリセット要因

■ クロック機能

- ◆ 外部クロック/発振器入力周波数:25 MHz◆ CPU クロック周波数:200/400/800 MHz または150/300/600
- システムクロック周波数: 200 MHz または 150 MHz
- 低速オンチップオシレータ (LOCO): 240 kHz

■ セーフティ機能

- レジスタライトプロテクション、入力クロック発振停止の検 出および CRC
- マスタメモリプロテクションユニット (MPU)

■ セキュリティ機能(オプション)

- 暗号化によるセキュリティを備えたブートモード
- JTAG 認証
- 暗号化アクセラレータ
- TRNG

■ エンコーダインタフェース

- 最大2チャネル
- EnDat 2.2、BiSS-C、A-format、および HIPERFACE DSL 準拠のインタフェース
 エンコーダからの周波数分周出力

■ 多種多様な通信機能を内蔵

- イーサネット
 - EtherCAT スレーブコントローラ:3ポート - イーサネット MAC : 1 ポート
- USB2.0 ハイスピードホスト/ファンクション:1 チャネル
- ISO11898-1 準拠の CAN/CANFD: 2 チャネル
- 16 バイトの送受信 FIFO 搭載 SCI: 6 チャネル● 12C バスインタフェース: 3 チャネル (最大転送速度 400 kbps)
- SPI: 4 チャネル

● xSPI: 2 チャネル

■ 外部ホストインタフェース

● シリアルホストインタフェース (SHOSTIF)

■ 外部アドレス空間

- 高速データ転送バス (最大 100 MHz)
- 最大4つの CS 領域をサポート
- エリアごとに8ビットまたは16ビットバス空間を選択可能

■ 最大 35 本の拡張タイマ機能

- 16 ビット×8+32 ビット MTU3 (9 チャネル)、32 ビット GPT (18 チャネル): インプットキャプチャ、アウトプットコン 、PWM 波形出力
- 16 ビット CMT (6 チャネル)、32 ビット CMTW (2 チャネ

■ ΔΣ インタフェース

• 外部に最大 6 チャネルの ΔΣ モジュレータを接続可能

■ 三角関数ユニット

- sin と cos を同時に計算
- arctan と hypot_k を同時に計算

■ 12 ビット A/D コンバータ

- 12 ビット×2 ユニット (ユニット 0 とユニット 1 に対し 4 チ
- チップ内部の温度を計測可能な温度センサを内蔵

■ 汎用入出力ポート

- 入力プルアップ/プルダウン
- 周辺機能の入出力端子を複数個所から選択可能

■ 動作温度範囲

• Tj = -40 \sim +125 $^{\circ}$ C

1. 概要

1.1 仕様概要

この MPU は、浮動小数点ユニット (FPU) および NEON $^{\text{TM}}$ を備える Arm Cortex $^{\text{®}}$ -R52 プロセッサによる高性能 ASSP です。システム構成に必要な統合された周辺機能を内蔵しています。

表 1.1 CPU

機能	機能説明
Arm®Cortex®-R52	 シングルプロセッサ 動作周波数 200 MHz/400 MHz/800 MHz (200 MHz システムクロック時) 150 MHz/300 MHz/600 MHz (150 MHz システムクロック時) Arm の設計による 32 ビット CPU Cortex-R52 (Core revision r1p2) アドレス空間: 4 GB 命令キャッシュ 16 KB (ECC あり) データキャッシュ 16 KB (ECC あり) 密接合メモリ (TCM) ATCM: 512 KB (ECC あり) 1 ウェイト (400 MHz 未満の場合、0 ウェイト選択可能) BTCM: 64 KB (ECC あり) 0 ウェイト CTCM: 0 KB (ECC あり) 命令セット: Arm v8-R アーキテクチャ、Thumb[®]および Thumb-2 を含めてサポート データ配置 命令: リトルエンディアン データ: リトルエンディアン 2 ステージメモリプロテクションユニット (MPU)
FPU	 単精度と倍精度の加算、減算、乗算、除算、積和演算、および平方根演算をサポートします。 レジスタ 64 ビットシングルワードレジスタ: 64 ビット×32 (16 個のダブルワードレジスタとして使用可能: 128 ビット×16)
NEON	整数および単精度の演算結果をサポートする Advanced SIMD

表 1.2 メモリ

機能	機能説明
ECC 付き内蔵システム SRAM	 容量:最大 1.0 MB (512 KB × 2 ユニット) (ECC 付き) 動作周波数: 150 MHz/200 MHz SEC-DED (シングルエラー訂正/ダブルエラー検出) エラーインジェクションをサポート
ワンタイムプログラマブルメモリ	 上書き保護 冗長機能対応 ECC 対応 使用可能な情報 ユニーク ID 認証設定 トリミングデータ ブートモード設定 ユーザー領域

表 1.3 システム

機能	機能説明
動作モード	動作モードは、以下の 7 つのブートモードから選択できます。 • xSPI0 ブートモード (CS0 × 1 ブートシリアルフラッシュ) • xSPI0 ブートモード (CS0 × 8 ブートシリアルフラッシュ) • 16 ビットバスブートモード (CS0 NOR フラッシュ) • xSPI1 ブートモード (CS0 × 1 ブートシリアルフラッシュ) • SHOSTIF ブートモード • SCI ブートモード
クロック発生回路	 入カクロックは、外部クロックまたは外部発振子から選択できます。 入カクロック発振停止の検出 以下のクロックを発生します。 CPU0 クロック:システムクロック×1、×2、または×4 システムクロック: 150 MHz または 200 MHz 高速周辺モジュールクロック: 150 MHz または 200 MHz 中速周辺モジュールクロック: 75 MHz または 100 MHz 低速周辺モジュールクロック: 37.5 MHz または 50 MHz 12 ビット A/D コンバータの ADC クロック: 18.75 MHz または 25 MHz 外部バスクロック: 最高 100 MHz 低速オンチップオシレータ: 240 kHz (固定)
リセット	RES#端子リセット、ソフトウェアリセット、エラーリセット、CPU0 ソフトウェアリセット
低消費電力機能	 スタンバイモード (Cortex-R52) モジュールストップ機能
割り込みコントローラ (ICU)	 Cortex-R52 CPU0 の GIC (ジェネリック割り込みコントローラ) に割り込みを接続します 起動トリガを DMAC と ELC に接続します 周辺機能割り込み: 448 要因 外部割り込み: 16 要因 (IRQ0~IRQ15 端子) ソフトウェア割り込み: 8 要因 ノンマスカブル割り込み: 1 要因 16 レベルの優先順位を GIC に設定可能
バスステートコントローラ (BSC)	 外部アドレス空間は、管理のために 4 領域(CS0、CS2、CS3、CS5)に分割されています。 以下の機能を各領域に対して独立して設定可能です。 バスサイズ (8 ビットまたは 16 ビット):使用可能なサイズは領域に依存します。アクセスウェイトサイクル数 (領域によって、読み出しアクセスサイクルと書き込みアクセスサイクルに異なるウェイトサイクルを指定可能です)。アイドルウェイトサイクル挿入 (同じ領域のアクセスサイクル間、または異なる領域のアクセスサイクル間)。各領域に接続されるメモリを指定することで、SRAM、バイト選択付き SRAM、SDRAM、およびバーストROM (クロック同期または調歩同期)への直接接続が可能です。アドレス/データマルチプレクス入出力 (MPX) インタフェースも利用可能です。 対象の領域に従って、チップセレクト信号 (CS0#~CS5#)を出力します。(CS アサートまたはネゲートのタイミングはソフトウェアで選択可能です。) 各領域に接続可能なメモリタイプ CS0: SRAM、バースト ROM CS2: SRAM CS2: SRAM SDRAM (CS2 のみの SDRAM はサポートされていません。) CS3: SRAM、SDRAM CS5: SRAM、MPX-IO SDRAM リフレッシュ オートリフレッシュモード/セルフリフレッシュモードを選択可能 SDRAM バーストアクセス

表 1.4 ダイレクトメモリアクセス

機能	機能説明
ダイレクトメモリアクセスコントローラ (DMAC)	 2ユニット(各ユニットあたり16チャネル) 転送モード:シングル転送モードおよびブロック転送モード 転送サイズ ユニット0:1/2/4/8/16/32/64 バイト ユニット1:1/2/4/8/16/32 バイト 起動要因:ソフトウェアトリガ、外部 DMA 要求 (DREQ)、外部割り込み、および周辺機能割り込み要求

表 1.5 I/O ポート

機能	機能説明
汎用入出力ポート	 196 ピン FBGA - 入出力端子: 110 - 入力端子: 1 - プルアップ/プルダウン抵抗: 111 ◆ 入出力機能の場所は、複数の端子から選択可能です。

表 1.6 イベントリンク

機能	機能説明
イベントリンクコントローラ (ELC)	 最大 213 イベント信号をモジュールの動作に連動可能です。 特にタイマ系のモジュールの動作はイベント信号の入力で起動できます。 ポート 16 およびポート 18 の信号のイベントリンク動作が可能になります。

表 1.7 タイマ (1/2)

機能機能	 能説明
= y + 3 (MTU3) • • • • • • • • • • • • • • • • • •	9 チャネル (16 ビット×8 チャネル、32 ビット×1 チャネル) 最大 28 本のパルス入出力および 3 本のパルス入力が可能 チャネルごとに 10、11、12、または 14 種類のカウンタ入カクロック信号から選択可能 (最高動作周波数 200 MHz) インブットキャブチャ機能 39 本のアウトプットコンペアレジスタ兼インプットキャプチャによる同期クリア) 複数のタイマカウンタ (TCNT) への同時書き込み カウンタの同期動作による各レジスタの同時入出力 バッファ動作 カスケード接続動作をサポートレジスタデータの自動転送 パルス出力モードトグル/PWM/相補 PWM/リセット同期 PWM 相補 PWM 出力モード - 3 相のインバータ制御用ノンオーバーラップ波形を出力 - デッドタイム自動設定 - PWM デューティーサイクル: PWM のデューティー比を 0~100%の任意の値に選択可能 - A/D 変換要求ディレイド機能 - 山/谷割り込み間引き機能 - ダブルバッファ機能 リセット同期 PWM モード任意のデューティー比の正相ノ逆相 PWM 波形を 6 相出力位相計数モード: 16 ビットモード (チャネル 1 および 2) / 32 ビットモード (チャネル 1 と 2 のカスケード接続) デッドタイム補償用カウンタ機能 A/D コンバータの変換開始トリガの間引きが可能 インプットキャプチャ端子および外部カウントクロック端子の信号に対するデジタルノイズフィルタ機能

表 1.7 タイマ (2/2)

機能	機能説明
汎用 PWM タイマ (GPT)	 32 ビット×18 チャネル 全チャネルで、アップカウントもしくはダウンカウント(のこぎり波)、アップダウンカウント(三角波)が選択可能 チャネルごとに4種類のカウンタ入カクロック信号から選択可能(LLPPでの最高動作周波数 400 MHz) チャネルごとに2本の入出力端子 チャネルごとに2本の入出力端子 チャネルごとに7ウトブットコンペア/インプットキャプチャ用レジスタが2本 各チャネル2本のアウトブットコンペア/インブットキャプチャレジスタに対し、バッファレジスタとして4本のレジスタがあり、バッファ動作しないときにはコンペアレジスタとしても動作可能 アウトプットコンペア動作時に山/谷それぞれバッファ動作可能で左右非対称なPWM波形を生成可能 チャネルごとにフレーム周期用レジスタを搭載(オーバーフロー/アンダーフローで割り込み可能) 複数のカウンタを同期動作可能 同期動作の際にデッドタイム生成が可能 3つのカウンタを組み合わせ、デットタイム付きの3相PWM波形を生成可能 外部/内部トリガによるアップカウンタ/ダウンカウンタのスタート/クリア/ストップ/切り替え、およびインプットキャプチャスカレベル比較によるアップカウンタ/ダウンカウンタのスタート/クリア/ストップ/切り替え、およびインブットキャプチャ 入カレベル比較によるアップカウンタ/ダウンカウンタのスタート/クリア/ストップ/切り替え、およびインブットキャプチャ 入カレベル比較によるアップカウンタ/ダウンカウンタのスタート/クリア/ストップ/切り替え、およびインブットキャプチャ 内部トリガ生成機能 インプットキャプチャ端子および外部トリガ端子の信号に対するデジタルノイズフィルタ機能 ELCによるイベントリンク機能をサポート 谷、または山/谷から出カデューティー0%および出力デューティー100%機能を選択可能(全ユニット)
コンペアマッチタイマ (CMT)	◆ (16 ビット×2 チャネル)×3 ユニット◆ チャネルごとに 4 種類のカウンタ入力クロック信号から選択
コンペアマッチタイマ W (CMTW)	 (32 ビット×1 チャネル)×2 ユニット コンペアマッチ、インプットキャプチャ入力、およびアウトプットコンペア出力が可能 チャネルごとに4種類のカウンタ入力クロック信号から選択 コンペアマッチ、インプットキャプチャ、およびアウトプットコンペアのイベントに応答して、割り込み要求の出力が可能
ウォッチドッグタイマ (WDT)	14 ビット×1 チャネルチャネルごとに 6 種類のカウンタ入力クロック信号から選択
ポートアウトプットイネーブル 3 (POE3)	 MTU3 波形出力端子のハイインピーダンス制御 以下の5つの入力端子からの入力: POE0#、POE4#、POE8#、POE10#、POE11# 出力短絡検出(PWM 出力が同時にアクティブレベルになったことを検出)による起動 入力クロック発振停止検出、PLL 発振異常検出、2 種類の DSMIF エラー検出、またはソフトウェアによる起動 出力制御対象端子をプログラマブルに追加制御可能
GPT 用のポートアウトプットイネーブル (POEG)	 GPT 波形出力の出力禁止を制御 GTETRG 端子の入力レベル検出による起動 GPT からの出力禁止要求による起動 発振停止検出、2 種類の DSMIF エラー検出(LLPP のユニットのみ)、またはソフトウェアによる起動
リアルタイムクロック (RTC)	 2000 年から 2099 年までの 100 年カレンダー BCD コード表示 クロック源は、メイン発振器を分周 うるう年自動補正機能

表 1.8 通信インタフェース (1/2)

表 1.8 通信インダフェース (1/2) 機能	機能説明
イーサネット MAC (GMAC) ^(注2)	 1ポート IEEE802.3 IEEE1588-2008 EEE 用の IEEE802.3-az-2010 10/100/1000 Mbps データ転送をサポート 全二重モードおよび半二重モードに対応 16 KB までの標準フレームとジャンボフレームの両方をサポートするプログラマブルなフレーム長 17 本のアドレスフィルタブロック用 MAC アドレスレジスタ 多様なフレキシブルアドレスフィルタモードをサポート 先進の IEEE 1588-2002 および 2008 イーサネットフレームタイムスタンプをサポート RMII/RGMII コンバータが MII/RMII/RGMII インタフェースをサポート タイマモジュール
EtherCAT スレーブコントローラ (ESC) (注1) (注2)	 1 チャネル(3 ポート) EtherCAT スレーブコントローラ IP コア(Beckhoff Automation GmbH 製)を搭載 MII インタフェースをサポート。イーサネットサブシステムの RGMII コンバータが MII/ RMII インタフェースをサポート。
USB2.0 HS ホスト/ファンクションモ ジュール	 1ポート USB 2.0 仕様に準拠 OTG 対応 転送速度 ハイスピード (480 Mbps)、フルスピード (12 Mbps)、およびロースピード (1.5 Mbps、ホストのみ) 通信バッファ ホストモード用に 1 KB の RAM を内蔵 ファンクションモード用に 8 KB の RAM を内蔵 DMAC (2 チャネル)を内蔵
シリアルコミュニケーションインタフェース (SCI)	 6 チャネル 5 種類の通信モード 調歩同期式インタフェース 8 ビットクロック同期式インタフェース 簡易 I2C (マスタのみ) 簡易 SPI スマートカードインタフェース クロック源は、4 つの内部クロック信号から選択 内蔵のボーレートジェネレータにより任意のビットレートを設定可能 全二重モードおよび半二重モード通信 データ長:7~9 ビット (調歩同期式モード) ビットレート変調 倍速モード (調歩同期式モード、クロック同期式モード、および簡易 SPI モード) RS-485 ドライバコントロール機能 (調歩同期式モード) 自己診断機能を有効にするループバック機能 (調歩同期式モード、クロック同期式モード)
I ² C バスインタフェース (IIC)	 3 チャネル 通信フォーマット: I2C バスフォーマットまたは SMBus フォーマット マスタ/スレーブモードを選択可能 マルチマスタ対応 最大転送速度: 400 kbps (スタンダードモードおよびファストモード)
CAN-FD モジュール (CANFD) ^(注3)	 ● 2 チャネル ● CAN-FD ISO 11898-1 (2015) 準拠 ● 通信速度 ● クラシカル CAN モード: 1 Mbps ■ CAN FD モード: 公称ビットレート:最大 1 Mbps データビットレート:最大 8 Mbps ● 合計 192 メッセージバッファ (フレームサイズが 76 バイトの場合) ■ 個別バッファ: TX 用 64 個 ■ 共用バッファ: TX と RX 共用 128 個 (FIFO を含む) ● 11 ビットの標準 ID および 18 ビットの拡張 ID の選択可能な ID タイプ ● 選択可能なフレームタイプ: データフレームとリモートフレーム ● 最大 256 の受信ルール

表 1.8 通信インタフェース (2/2)

機能	機能説明
シリアルペリフェラルインタフェース (SPI)	 ◆ 4 チャネル ◆ SPI 転送機能 MOSI (マスタ出力、スレーブ入力)、MISO (マスタ入力、スレーブ出力)、SSL (スレーブ選択)、および RSPCK (SPI クロック) 信号を使用して、マスタまたはスレーブとしてシリアル転送が可能な SPI 動作 (4 線式) またはクロック同期式動作 (3 線式) でシリアル通信が可能 ◆ データフォーマット MSB ファースト/LSB ファーストの切り替え可能 転送ビット長を 4 ビット〜32 ビットから選択可能 32 ビット×4 ステージ FIFO の送信用パッファと受信用パッファー 1回の転送動作で最大 4 フレームの送受信が可能 (1 フレームは最大 32 ビット) マスタ受信時、RSPCK は受信パッファフルで自動停止可能
拡張シリアルペリフェラルインタフェ ース (xSPI)	 ● 2 チャネル ● JESD251 準拠 ● マルチスレーブは最大 2 スレーブ ● プロトコルモード: 1/4/8 ピン SDR/DDR 1S-1S-1S、4S-4D-4D、8D-8D-8D ● OctaFlash、OctaRAM、HyperFlash、および HyperRAM をサポート ● プロトコルモード: QSPI 互換の 2/4 ピン SDR 1S-2S-2S、2S-2S-2S 1S-4S-4S、4S-4S-4S ● 設定可能なアドレス長 ● 設定可能な初期アクセスレイテンシサイクル ● XiP モードをサポート ● 最大 256 MB アドレス空間をサポート ● 低レイテンシのバーストリードプリフェッチ機能 ● 高スループットのバーストライト高性能バッファ ● 最大 4 コマンドまで設定可能なマニュアルコマンド ● 出カクロック/入カストローブのポートタイミングシフト ● リセット解除後の自動コマンド設定:最大 4 コマンド ● xSPI0 には 1.8 V/3.3 V が選択可能、xSPI1 には 3.3 V 固定

- 注 1. EtherCAT は、Beckhoff Automation GmbH, Germany の登録商標です。
- 製品には、GMAC および ESC をサポートしない製品があります。 製品には、クラシカル CAN モードのみのものがあります。 注 2.
- 注 3.

表 1.9 アナログ

機能	機能説明
12 ビット A/D コンバータ (ADC12)	 12 ビット×2ユニット (ユニット0:4 チャネル、ユニット1:4 チャネル) 分解能:12 ビット 変換時間 0.84 μs/チャネル 動作モード スキャンモード(シングルスキャンモード/連続スキャンモード/3 グループスキャンモード) グループ優先制御 サンプル&ホールド機能 共用のサンプル&ホールド機能 上記に加え、チャネル専用サンプル&ホールド機能を搭載 上記に加え、チャネル専用サンプル&ホールド機能を搭載 (ユニット0、ユニット1ともに3 チャネル) サンプリング可変機能 チャネルごとにサンプリング時間が設定可能 ダブルトリガモード(A/D変換データ2重化機能) 3 種類のA/D変換開始方法 ソフトウェアトリガ、タイマ(MTU3、ELC)のトリガ、外部トリガ ELCによるイベントリンク機能をサポート
温度センサユニット (TSU)	● 1 チャネル ● 相対精度:±1°C (Typ)

表 1.10 産業用インタフェース用ハードウェアアクセラレータ

機能	機能説明
ΔΣ インタフェース (DSMIF)	 3 チャネル×2ユニット 2 入力 (U/V) または3 入力 (U/V/W) 選択可能 最大6本の ΔΣ モジュレータを外部から接続可能 Sinc フィルタは、1 次、2 次、または3 次を選択可能 POE3 と POEG に直接エラー接続 電流エラー検出の機能強化
三角関数ユニット (TFU)	sin、cos、arctan、hypot_k ($\sqrt{x^2+y^2}/k$)の計算 sin と cos の同時計算 arctan と hypot_k の同時計算
エンコーダインタフェース	 EnDat 2.2 (2ユニット) BiSS-C (2ユニット) A-format (2ユニット) HIPERFACE DSL (2ユニット) ENCOUT (1ユニット)

表 1.11 セーフティ

機能	機能説明
メモリプロテクションユニット (MPU)	 Cortex-R52 MPU 2 ステージ MPU (EL2 および EL1) 各 MPU あたり 24 領域 マスタ MPU Cortex-R52 以外のマスタ (DMAC、USB、イーサネット MAC、CoreSight、SHOSTIF) に対するメモリプロテクション
レジスタライトプロテクション機能	プログラムが暴走したときに備え、重要なレジスタの書き換えを防止
CRC 演算器 (CRC)	 2 チャネル 8、16、または32 ビット単位の任意のデータ長に対して CRC コードを生成 以下の4つの多項式から選択可能: X³²+ X²⁶+ X²³+ X²²+ X¹⁶+ X¹²+ X¹¹+ X¹⁰+ X⁸+ X⁷+ X⁵+ X⁴+ X²+ X + 1 (32-Ethernet) X³²+ X²⁸+ X²⁷+ X²⁶+ X²⁵+ X²³+ X²²+ X²⁰+ X¹⁹+ X¹⁸+ X¹⁴+ X¹³+ X¹¹+ X¹⁰+ X⁹+ X⁸+ X⁶+ 1 (CRC-32C) X¹⁶+ X¹⁵+ X²+ 1 (CRC-16) X¹⁶+ X¹²+ X⁵+ 1 (CRC-CCITT) X⁸+ X²+ X + 1 (CRC-8)
クロックモニタ回路 (CLMA)	 入力クロック(メインクロック発振器)、PLL 回路、または低速オンチップオシレータからの異常な出力クロック周波数を監視 入力クロック発振停止の検出:使用可能
データ演算回路 (DOC)	16 ビットのデータを比較、加算、または減算する機能
独立周辺モジュール	 以下のセーフティ機能専用周辺モジュールが利用可能です: GPT: 4 チャネル SCI: 1 チャネル IIC: 1 チャネル SPI: 1 チャネル CRC: 1 ユニット RTC: 1 ユニット GPIO: 通常 GPIO と兼用可能 ECC 付き内蔵システム SRAM これらの周辺モジュールは通常の周辺モジュールから独立してマッピングされているため、EL2 MPU によりアクセス保護が可能です。

表 1.12 セキュリティ

機能	機能説明
セキュリティ ^(注1)	 セキュアブート JTAG 認証 暗号化アクセラレータ 対称暗号: CBC/ECB/CTR/GCM/XTS の AES128/192/256 ビット 非対称暗号: ECC 256 ビット、RSA 1024/2048/3072 ビット、RSAES-OAEP ハッシュ: SHA-1、SHA-2 メッセージ認証: HMAC、CMAC、GMAC 署名アルゴリズム: NIST P-256 による ECDSA、RSASSA-PSS、RSASSA-PKCS1 TRNG

注 1. 詳しくは、弊社営業担当までお問い合わせください。

表 1.13 デバッグ

機能	機能説明
デバッグインタフェース	 Arm の設計による CoreSight アーキテクチャ JTAG/SWD インタフェースによるデバッグ機能、トレースポートインタフェースによるトレース機能

表 1.14 外部ホストインタフェース

機能	機能説明
シリアルホストインタフェース (SHOSTIF)	 スレーブモードでのシリアル通信が可能です。 対応インタフェース モトローラシリアルペリフェラルインタフェース(4線式 SPI) デュアル、クワッド、またはオクタル SPI による拡張 SPI モード シリアルクロック極性切り替え シリアルクロック位相切り替え シングルデータ転送 データサイズは最大32 ビット×64 バースト
メールボックスおよびセマフォ (MBXSEM)	 8 つのセマフォ 外部ホスト CPU から Cortex-R52 へと Cortex-R52 から外部ホスト CPU への両方向に用いる 4 つの 32 ビットメールボックス 外部ホスト CPU と Cortex-R52 の両方から、割り込みの発生とクリアが可能

表 1.15 その他

機能	機能説明
電源電圧	VDD = 1.1 V (Core) VCC18 = 1.8 V (PLL, USB, ADC, TSU) VCC33 = 3.3 V (I/O, USB) VCC1833 = 1.8 V (RGMII, xSPI) または 3.3 V (RMII/MII, xSPI ^(注1))
動作温度	Tj = -40~+125°C
パッケージ	196 ピン FBGA(12 mm×12 mm、0.8mm ピッチ)

注 1. 最高 xSPI クロック周波数は 3.3 V 時に 75 MHz です。

1.2 製品ラインナップ

表 1.16 に製品ラインナップを示します。

表 1.16 製品ラインナップ

型名	パッケージ	СРИ	システム SRAM 容量	CAN	EtherCAT	セキュリティ
R9A07G074M08GBG	PLBG0196GC-A	シングル Cortex- R52	1.0 MB	CAN-FD	使用可能	使用可能
R9A07G074M05GBG	PLBG0196GC-A	シングル Cortex- R52	1.0 MB	クラシカル CAN	使用不可	使用可能
R9A07G074M04GBG	PLBG0196GC-A	シングル Cortex- R52	1.0 MB	CAN-FD	使用可能	使用不可
R9A07G074M01GBG	PLBG0196GC-A	シングル Cortex- R52	1.0 MB	クラシカル CAN	使用不可	使用不可

1.3 ブロック図

図 1.1 にブロック図を示します。

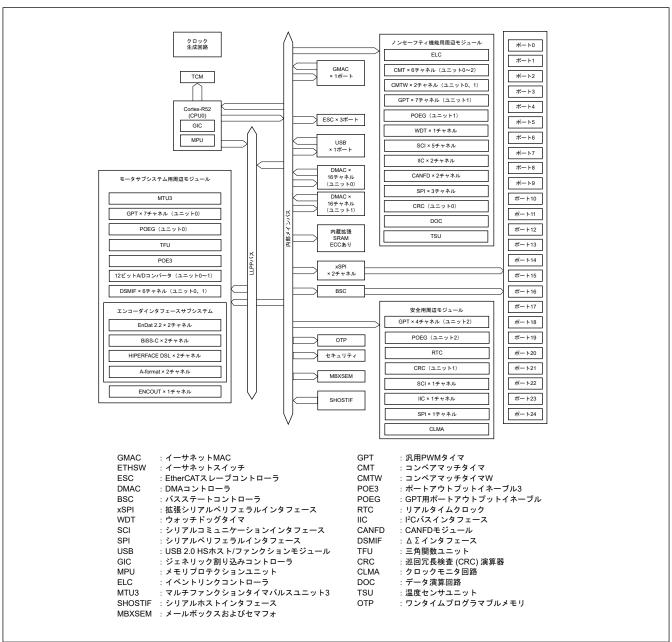


図 1.1 ブロック図

1.4 端子機能

表 1.17 に端子機能を示します。

表 1.17 端子機能 (1/7)

分類	端子名	入出力	機能
電源	VDD	入力	電源端子。システムの電源に接続してください。
	VSS	入力	グランド端子。システムの電源 (0 V) に接続してください。
	VCC1833_2 VCC1833_3	入力	各 I/O ドメインの電源端子。(1.8 V または 3.3 V)
	VCC33	入力	入出力端子の電源端子
	VCC18_PLL0、VCC18_PLL1	入力	内蔵 PLL 発振器の電源端子
	AVCC18_TSU	入力	温度センサユニットの電源端子
クロック	XTAL	出力	水晶振動子の接続端子。外部クロック信号を使用する
	EXTAL	入力	── 場合、EXTAL 端子は Low にしてください。XTAL 端子は、水晶振動子以外のもので駆動したり、負荷をかけたりしないでください。EXTAL の電圧レベルがコア VDD (1.16 V) を絶対に超えないようにしてください。
	EXTCLKIN	入力	外部クロック入力端子。水晶振動子を接続する場合は、 Low にしてください。
	CKIO	出力	外部デバイス用の外部バスクロック出力端子
	ETH0_REFCLK	出力	EtherPHY 0 用 25 MHz クロック出力端子
	ETH1_REFCLK	出力	EtherPHY 1 用 25 MHz クロック出力端子
	ETH2_REFCLK	出力	EtherPHY 2 用 25 MHz クロック出力端子
	RMII0_REFCLK	出力	RMII0 用 50 MHz クロック出力端子
	RMII1_REFCLK	出力	RMII1 用 50 MHz クロック出力端子
	RMII2_REFCLK	出力	RMII2 用 50 MHz クロック出力端子
動作モードコントロール	MDX	入力	Lowにしてください。
	MD0~MD2	入力	動作モード選択信号の入力端子。この端子の信号レベルは、リセット解除時の動作モードの遷移中に変更しないでください。
	MDV2、MDV3	入力	動作電圧選択信号の入力端子。この端子の信号レベルは、リセット解除時の動作モードの遷移中に変更しないでください。
	MDW	入力	ATCM ウェイトサイクル選択信号の入力端子。この端子の信号レベルは、リセット解除時の動作モードの遷移中に変更しないでください。
	MDD	入力	ハッシュ信号による JTAG 認証有効入力端子。この端子の信号レベルは、リセット解除時の動作モードの遷移中に変更しないでください。
システムコントロール	RES#	入力	リセット信号の入力端子。この端子が Low になると、 本 MPU はリセット状態となります。
	BSCANP	入力	バウンダリスキャンイネーブル信号の入力端子。この端子が High になると、バウンダリスキャンが有効となります。バウンダリスキャンを使用しない場合、この端子は Low にしてください。
	RSTOUT#	出力	外部リセット信号の出力端子

表 1.17 端子機能 (2/7)

分類		端子名	入出力	機能
デバッグインタ	フェース	TRST#	入力	オンチップエミュレータ用テストリセット端子
	TMS	入出力	オンチップエミュレータ用テストモード選択端子 シリアルワイヤデバッグ (SWD) モードでは SWDIO 端 子として機能します。	
		TDI	入力	オンチップエミュレータ用テストデータ入力端子
		TDO	出力	オンチップエミュレータ用テストデータ出力端子
		ТСК	入力	オンチップエミュレータ用テストクロック端子 シリアルワイヤデバッグ (SWD) モードでは SWCLK 端子として機能します。
		TRACECLK	出力	トレースデータとの同期用クロック出力端子
		TRACECTL	出力	トレースコントロール用イネーブル信号の出力端子
		TRACEDATA0~TRACEDATA7	出力	トレースデータ出力端子
バスステートコ	ントローラ	A25~A0	出力	アドレス出力端子
(BSC)		D15~D0	入出力	データ入出力端子
		CS0#、CS2#、CS3#、CS5#	出力	外部メモリおよびデバイス用のチップセレクト信号の 出力端子
		RD#	出力	読み出し進行中を示すストローブ信号の出力端子
		RD/WR#	出力	読み出しまたは書き込みアクセスを示すストローブ信 号の出力端子
		BS#	出力	バスサイクルの開始を示すステータス信号の出力端子
		AH#	出力	マルチプレクス I/O インタフェースを使用するデバイ ス用のアドレスホールド信号の出力端子
	WAIT#	入力	バスサイクルにウェイトサイクルを挿入する外部ウェ イトコントロール信号の入力端子	
		WE0#	出力	D7~D0 へのライトストローブ信号の出力端子
		WE1#	出力	D15~D8 へのライトストローブ信号の出力端子
		DQMLL	出力	D7~D0 へのデータマスクイネーブル信号の出力端子 (SDRAM 接続時)
		DQMLU	出力	D15~D8 へのデータマスクイネーブル信号の出力端子 (SDRAM 接続時)
		RAS#	出力	SDRAM ロウアドレスストローブ信号の出力端子。この端子は SDRAM の RAS#端子に接続してください。
	CAS#	出力	SDRAM カラムアドレスストローブ信号の出力端子。 この端子は SDRAM の CAS#端子に接続してください。	
	CKE	出力	SDRAM クロックイネーブル信号の出力端子。この端子は SDRAM の CKE 端子に接続してください。	
ダイレクトメモリアクセス コントローラ (DMAC)	DREQ	入力	外部デバイス DMA 転送要求信号の入力端子	
	DACK	出力	外部デバイスからの DMA 転送要求を受け付けたこと を示すアクノリッジ信号の出力端子	
	TEND	出力	DMA 転送終了信号の出力端子	
割り込み		NMI	入力	ノンマスカブル割り込み要求信号の入力端子
		IRQ0~IRQ15	入力	外部割り込み要求信号の入力端子

表 1.17 端子機能 (3/7)

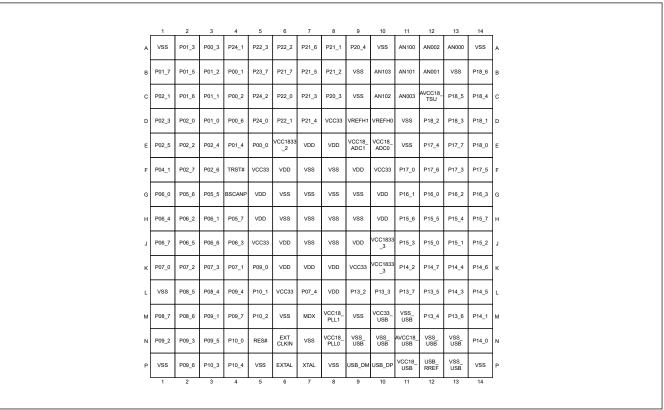
分類	端子名	入出力	機能
	MTIOCOA, MTIOCOB, MTIOCOC, MTIOCOD	入出力	TGRA0~TGRD0 インプットキャプチャ入力、アウトプットコンペア出力、および PWM 出力端子
	MTIOC1A、MTIOC1B	入出力	TGRA1、TGRB1 インプットキャプチャ入力、アウトプットコンペア出力、および PWM 出力端子
	MTIOC2A、MTIOC2B	入出力	TGRA2、TGRB2 インプットキャプチャ入力、アウトプットコンペア出力、および PWM 出力端子
	MTIOC3A、MTIOC3B、MTIOC3C、MTIOC3D	入出力	TGRA3~TGRD3 インプットキャプチャ入力、アウトプットコンペア出力、および PWM 出力端子
	MTIOC4A、MTIOC4B、MTIOC4C、 MTIOC4D	入出力	TGRA4~TGRD4 インプットキャプチャ入力、アウトプットコンペア出力、および PWM 出力端子
	MTIC5U、MTIC5V、MTIC5W	入力	TGRU5、TGRV5、TGRW5 インプットキャプチャ入 カ、およびデッドタイム補償機能の入力端子
	MTIOC6A、MTIOC6B、MTIOC6C、MTIOC6D	入出力	TGRA6~TGRD6 インプットキャプチャ入力/アウト プットコンペア出力/PWM 出力端子
	MTIOC7A、MTIOC7B、MTIOC7C、MTIOC7D	入出力	TGRA7~TGRD7 インプットキャプチャ入力/アウト プットコンペア出力/PWM 出力端子
	MTIOC8A、MTIOC8B、MTIOC8C、MTIOC8D	入出力	TGRA8~TGRD8 インプットキャプチャ入力/アウト プットコンペア出力/PWM 出力端子
	MTCLKA、MTCLKB、MTCLKC、MTCLKD	入力	MTU3 用外部クロック入力端子
ポートアウトプットイネー ブル 3 (POE3)	POE0#、POE4#、POE8#、POE10#、 POE11#	入力	MTU3 をハイインピーダンス状態にする要求信号の入力端子
汎用 PWM タイマ (GPT)/ GPT 用のポートアウトプッ	GTETRGA、GTETRGB、GTETRGC、GTETRGD	入力	外部トリガ入力端子および出力禁止要求の入力端子
トイネーブル (POEG)	GTETRGSA、GTETRGSB	入力	外部トリガ入力端子および出力禁止要求の入力端子 (SAFETY)
	GTIOC0A~GTIOC17A、GTIOC0B~ GTIOC17B	入出力	インプットキャプチャ入力/アウトプットコンペア出力/PWM 出力端子
	GTADSML0、GTADSML1、 GTADSMP0、GTADSMP1	出力	A/D 変換開始要求監視用の出力端子
コンペアマッチタイマ W (CMTW)	CMTW0_TIC0、CMTW0_TIC1、CMTW1_TIC0、CMTW1_TIC1	入力	CMTW インプットキャプチャ入力端子
	CMTW0_TOC0、CMTW0_TOC1、CMTW1_TOC0、CMTW1_TOC1	出力	CMTW アウトプットコンペア出力端子
リアルタイムクロック (RTC)	RTCAT1HZ	出力	RTC 1 Hz 出力端子

表 1.17 端子機能 (4/7)

分類	端子名	入出力	機能
シリアルコミュニケーショ ンインタフェース (SCI)	SCK0~SCK5	入出力	クロック入出力端子 (クロック同期式モード/簡易 SPI モード/スマートカードモード)
	RXD0~RXD5	入力	受信データ入力端子(調歩同期式モード/クロック同期 式モード/スマートカードモード)
	TXD0~TXD5	出力	送信データ出力端子(調歩同期式モード/クロック同期 式モード/スマートカードモード)
	CTS0#~CTS5#	入力	送信開始信号の入力端子(調歩同期式モード/クロック同期式モード)、アクティブ Low
	RTS0#~RTS5#	出力	受信出力端子(調歩同期式モード/クロック同期式モード)、アクティブ Low
	SCL0~SCL5	入出力	I2C クロック入出力端子(簡易 I2C モード)
	SDA0~SDA5	入出力	I2C データ入出力端子 (簡易 I2C モード)
	MISO0~MISO5	入出力	スレーブ送信データ入出力端子(簡易 SPI モード)
	MOSI0~MOSI5	入出力	マスタ送信データ入出力端子(簡易 SPI モード)
	SS0#~SS5#	入力	チップセレクト入力端子(簡易 SPI モード)、アクティブ Low
	DE0~DE5	出力	ドライバイネーブル出力端子 (調歩同期式モード)
I2C バスインタフェース	IIC_SCL0~IIC_SCL2	入出力	クロック入出力端子
(IIC)	IIC_SDA0~IIC_SDA2	入出力	データ入出力端子
イーサネット (RGMII はポート 2 でのみち	ETH0_TXCLK~ETH2_TXCLK	入出力	TX クロック入力端子(MII モード) TX クロック出力端子(RGMII モード)
ポートされます。) 	ETH0_TXD0~ETH2_TXD0	出力	TX データ 0 出力端子(RGMII、RMII、MII モード)
	ETH0_TXD1~ETH2_TXD1	出力	TX データ 1 出力端子(RGMII、RMII、MII モード)
	ETH0_TXD2~ETH2_TXD2	出力	TX データ 2 出力端子(RGMII、MII モード)
	ETH0_TXD3~ETH2_TXD3	出力	TX データ 3 出力端子(RGMII、MII モード)
	ETH0_TXEN~ETH2_TXEN	出力	TX データイネーブル出力端子(RMII、MII モード) TX データイネーブル/TX データエラー (TX_CTL) 端 子(RGMII モード)
	ETH2_TXER	出力	TX データエラー出力端子(MII モード)
	ETH0_RXCLK~ETH2_RXCLK	入力	RX クロック入力端子(RGMII、RMII、MII モード)
	ETH0_RXD0~ETH2_RXD0	入力	RX データ 0 入力端子(RGMII、RMII、MII モード)
	ETH0_RXD1~ETH2_RXD1	入力	RX データ 1 入力端子(RGMII、RMII、MII モード)
	ETH0_RXD2~ETH2_RXD2	入力	RX データ 2 入力端子(RGMII、MII モード)
	ETH0_RXD3~ETH2_RXD3	入力	RX データ 3 入力端子(RGMII、MII モード)
	ETH0_RXDV~ETH2_RXDV	入力	RX データ有効入力端子(MII モード) キャリア検知/RX データ有効 (CRS_DV) 入力端子 (RMII モード) RX データ有効/RX エラー (RX_CTL) 入力端子 (RGMII モード)
	ETH0_RXER~ETH2_RXER	入力	RX データエラー端子(RMII、MII モード)
	ETH2_CRS	入力	キャリア検知入力端子(MII モード)
	ETH2_COL	入力	衝突検出の入力端子(MII モード)

表 1.17 端子機能 (5/7)

分類	端子名	入出力	機能
イーサネット MAC (GMAC)	GMAC_PTPTRG0	入力	PTP タイマトリガ外部入力端子 0
	GMAC_PTPTRG1	入力	PTP タイマトリガ外部入力端子 1
	GMAC_PTPOUT0~ GMAC_PTPOUT3	出力	PTP タイマパルス出力
	GMAC_MDC	出力	マネジメントデータクロック出力端子
	GMAC_MDIO	入出力	マネジメントデータ入出力端子
EtherCAT スレーブコントロ	ESC_LEDRUN	出力	EtherCAT RUN LED 信号の出力端子
ーラ (ESC)	ESC_IRQ	出力	EtherCAT IRQ 信号の出力端子
	ESC_LEDSTER	出力	EtherCAT デュアルカラーステート LED 信号の出力端 子
	ESC_LEDERR	出力	EtherCAT エラー LED 信号の出力端子
	ESC_LINKACT0~ESC_LINKACT2	出力	EtherCAT リンク/アクティビティ LED 信号の出力端 子
	ESC_SYNC0、ESC_SYNC1	出力	EtherCAT SYNC 信号の出力端子
	ESC_LATCH0、ESC_LATCH1	入力	EtherCAT LATCH 信号の入力端子
	ESC_RESETOUT#	出力	EtherCAT リセット信号の出力端子
	ESC_I2CCLK	出力	EtherCAT EEPROM I2C クロック信号の出力端子
	ESC_I2CDATA	入出力	EtherCAT EEPROM I2C データ信号の入出力端子
	ESC_PHYLINK0~ESC_PHYLINK2	入力	EtherCAT PHY リンクステータス信号の入力端子
	ESC_MDC	出力	マネジメントデータクロック出力端子
	ESC_MDIO	入出力	マネジメントデータ入出力端子
USB2.0 ホスト/ファンクシ	VCC33_USB	入力	USB 用電源入力端子
ョンモジュール 	VCC18_USB	入力	USB 用電源入力端子
	VSS_USB	入力	USB 用グランド入力端子
	AVCC18_USB	入力	USB 用アナログ電源入力端子
	USB_RREF	入力	USB 用基準電流入力端子。この端子は VSS_USB 端子に 1.8 kΩ (±1%) の抵抗で接続してください。
	USB_DP	入出力	USB バス D+データ入出力端子
	USB_DM	入出力	USB バス D-データ入出力端子
	USB_VBUSEN	出力	USB 用 VBUS パワーイネーブル信号の出力端子
	USB_OVRCUR	入力	USB 用過電流信号の入力端子
	USB_VBUSIN	入力	USB ケーブル接続/切断検出の入力端子
	USB_EXICEN	出力	OTG 電源 IC 制御出力端子
	USB_OTGID	入力	OTG ID 入力端子
CANFD モジュール	CANRX0、CANRX1	入力	受信データ入力端子
(CANFD)	CANTX0、CANTX1	出力	送信データ出力端子
	CANRXDP0、CANRXDP1	出力	受信データフェーズ出力端子
	CANTXDP0、CANTXDP1	出力	送信データフェーズ出力端子


表 1.17 端子機能 (6/7)

分類	端子名	入出力	機能
シリアルペリフェラルイン	SPI_RSPCK0~SPI_RSPCK3	入出力	クロック入出力端子
タフェース (SPI)	SPI_MOSI0~SPI_MOSI3	入出力	マスタ送信データ入出力端子
	SPI_MISO0~SPI_MISO3	入出力	スレーブ送信データ入出力端子
	SPI_SSL00~SPI_SSL30	入出力	スレーブセレクト信号の入出力端子
	SPI_SSL01~SPI_SSL31, SPI_SSL02~SPI_SSL32, SPI_SSL03~SPI_SSL33	出力	スレーブセレクト信号の出力端子
拡張シリアルペリフェラル インタフェース (xSPI)	XSPI0_CKP、XSPI1_CKP、 XSPI0_CKN	出力	クロック出力端子
	XSPI0_CS0#、XSPI0_CS1#、 XSPI1_CS0#	出力	チップセレクト出力端子
	XSPI0_DS、XSPI1_DS	入出力	リードデータストローブ/ライトデータマスク入出力 端子
	XSPI0_IO0~XSPI0_IO7、XSPI1_IO0 ~XSPI1_IO7	入出力	Data0~Data7 入出力端子
	XSPI0_RESET0#、XSPI0_RESET1#	出力	マスタリセットステータス出力端子
	XSPI0_RSTO0#、XSPI0_RSTO1#	入力	スレーブリセットステータス入力端子
	XSPI0_INT0#、XSPI0_INT1#	入力	割り込み入力端子
	XSPI0_ECS0#、XSPI0_ECS1#	入力	誤り訂正ステータス入力端子
	XSPI0_WP0#、XSPI0_WP1#	出力	書き込み保護出力端子
ΔΣインタフェース (DSMIF)	MCLK0~MCLK5	入出力	クロック入出力端子
	MDAT0~MDAT5	入力	データ入力端子
12 ビット A/D コンバータ (ADC12)	AN000~AN003、 AN100~AN103	入力	A/D コンバータ用アナログ入力端子
	ADTRG0#、ADTRG1#	入力	A/D 変換開始のための外部トリガ入力端子
アナログ電源	VCC18_ADC0、VCC18_ADC1	入力	12 ビット A/D コンバータのアナログ電源入力端子。 12 ビット A/D コンバータを使用しない場合は、この端 子を 1.8 V 電源に接続してください。
	VREFH0、VREFH1	入力	12 ビット A/D コンバータの基準電圧入力端子。12 ビット A/D コンバータを使用しない場合は、この端子を1.8 V 電源に接続してください。
I/O ポート	P00_0~P24_2	入出力	汎用入出力端子
シリアルホストインタフェ	HSPI_CK	入力	クロック入力端子
ース (SHOSTIF)	HSPI_CS#	入力	チップセレクト入力端子
	HSPI_IO0~HSPI_IO7	入出力	Data0~Data7 入出力端子
	HSPI_INT#	出力	割り込み出力端子
メールボックス	MBX_HINT#	出力	Cortex-R52 からホストへのメールボックスの割り込み 出力端子
エンコーダインタフェース	ENCIFCK0、ENCIFCK1	出力	エンコーダインタフェースクロック出力端子
共通	ENCIFOE0、ENCIFOE1	出力	エンコーダインタフェースデータ出力イネーブル端子
	ENCIFDO0、ENCIFDO1	出力	エンコーダインタフェースデータ出力端子
	ENDIFDIO、ENDIFDI1	入力	エンコーダインタフェースデータ入力端子
EnDat 2.2 (ENDAT)	DUEI0、DUEI1	出力	EnDat 2.2 データ転送
·	TST_OUT0、TST_OUT1	出力	内部同期後の EnDat 2.2 データ入力
	101_0010, 101_0011		

表 1.17 端子機能 (7/7)

分類	端子名	入出力	機能
HIPERFACE DSL (HDSL)	HSDL0_LINK、HSDL1_LINK	出力	HDSL LINK
	HDSL0_SMPL、HDSL1_SMPL	出力	HDSL テスト信号ラインサンプラ
	HDSL0_CLK1、HDSL1_CLK1	入力	HDSL SPI クロック安全 1
	HDSL0_SEL1、HDSL1_SEL1	入力	HDSL SPI 選択安全 1
	HDSL0_MISO1、HDSL1_MISO1	出力	HDSL SPI データ出力安全 1
	HDSL0_MOSI1、HDSL1_MOSI1	入力	HDSL SPI データ入力安全 1
	HDSL0_CLK2、HDSL1_CLK2	入力	HDSL SPI クロック安全 2
	HDSL0_SEL2、HDSL1_SEL2	入力	HDSL SPI 選択安全 2
	HDSL0_MISO2、HDSL1_MISO2	出力	HDSL SPI データ出力安全 2
	HDSL0_MOSI2、HDSL1_MOSI2	入力	HDSL SPI データ入力安全 2
ENCOUT	POUTA	出力	ENCOUT A 相出力端子
	POUTB	出力	ENCOUT B 相出力端子
	POUTZ	出力	ENCOUT C 相出力端子

1.5 196 ピン FBGA のピン割り付け

図 1.2 196 ピン FBGA のピン配置図(上面図)

表 1.18 機能別の端子一覧(196 ピン FBGA) (1/8)

ピン番号	I/O 電源ドメ イン	電源クロックシ ステム制御	/0 ポ ート		タイマ (MTU3、 POE3、GPT/ POEG、CMTW、 RTC)	通信 (SCI、IIC、 GMAC、ESC、USB、 CANFD、SPI、xSPI)	DSMIF、メー ルポックス	割り込み	ADC12		エンコーダイン タフェース
A1	_	VSS	_	_	_	_	_	_	_	_	_
A2	VCC1833_2	_	P01_3	AH#	MTIOC4D / GTIOC3B	ETH2_TXD2	_	IRQ2	_	_	POUTZ

表 1.18 機能別の端子一覧(196 ピン FBGA) (2/8)

ピン番	I/O 電源ドメ	間源クロックシ	1/0 ポ	パス、	タイマ (MTU3、 POE3、GPT/ POEG、CMTW、	通信 (SCI、IIC、 GMAC、ESC、USB、	DSMIF, 4—			ホストイン タフェース	エンコーダイン
号 A3	イン VCC1833_2	ステム制御	P00_3	DMAC RD/WR#	MTIC5W	SS2# / CTS2# / RTS2# /	ルポックス	割り込み IRQ1	ADC12	(SHOST)	SI1#/ HDSL1_CLK1
						ETH2_REFCLK / RMII2_REFCLK					
A4	VCC1833_2	_	P24_1	D13 / CAS#	MTIOC0C / POE8# / GTETRGC	ETH2_RXCLK	MCLK5	_	_	_	_
A5	_	_	P22_3	D10	MTIOC8D / GTETRGSB	RXD5 / SCL5 / MISO5 / USB_VBUSEN / SPI_SSL00	_	_	_	_	ENCIFDI1
A6	_	TRACECLK	P22_2	D9	MTIOC8C / GTETRGSA	SPI_SSL12	MCLK1	IRQ4	_	_	ENCIFDO1
A7	_	TRACEDATA5	P21_6	D5 / TEND	MTIOC7B / GTIOC16B	CTS0# / ESC_LINKACT0	MDAT2	IRQ9	_	HSPI_IO4	_
A8	_	TRACEDATA0	P21_1	D0	MTIOC6A / GTIOC14A / CMTW0_TIC0	SCK5/IIC_SCL1/ ESC_SYNC0/ ESC_SYNC1/ SPI_SSL20	MCLK0	_	_	HSPI_INT#	_
A9	_	MDV3	P20_4	_	_	GMAC_PTPOUT0 / ESC_LINKACT1	_	_	_	_	_
A10	_	VSS	_	_	_	_	_	_	_	_	_
A11	_	_	_	_	_	_	_	_	AN100	_	_
A12	_	_	_	_	_	_	_	_	AN002	_	_
A13	_	_	_	_	_	_	_	_	AN000	_	_
A14	_	VSS	_	_	_	_	_	_	_	_	_
B1	_	TRACEDATA1	P01_7	A19	MTIOC1B / GTIOC9B	SCK1 / ETH2_TXER / CANRX0 / SPI_RSPCK3	_	_	ADTRG0#	_	ENCIFOE0
B2	VCC1833_2	_	P01_5	WE0# / DQMLL / CS0#	MTIOC4A / GTIOC2A	ETH2_TXD0 / SPI_RSPCK1	_	_	_	_	TST_OUT0 / HDSL0_SMPL
В3	VCC1833_2	_	P01_2	CS2#	MTIOC4B / GTIOC2B	ETH2_TXD3	_	IRQ2	_	_	POUTB
B4	VCC1833_2	_	P00_1	A13	MTIC5U	RXD2 / SCL2 / MISO2 / ETH2_RXDV	MCLK0	IRQ0	_	_	_
B5	VCC1833_2	_	P23_7	D11 / BS	MTIOC0A / GTETRGA	SCK1 / ETH2_RXD0	MCLK4	_	_	_	_
B6	_	TRACEDATA6	P21_7	D6 / DREQ	MTIOC7C / GTIOC17A	DE0	MCLK3	IRQ10	_	HSPI_IO5	_
B7	_	TRACEDATA4	P21_5	D4	MTIOC7A / GTIOC16A / CMTW1_TOC1	CTS5# / SPI_MISO0	MCLK2	IRQ6	ADTRG1#	HSPI_IO3	ENCIFDI0
B8	_	TRACEDATA1	P21_2	D1	MTIOC6B / GTIOC14B / GTIOC15A / CMTW0_TIC1	RXD5 / SCL5 / MISO5 / IIC _SDA1 / ESC_SYNC0 / ESC_SYNC1 / SPI_MISO2	MDAT0	_	_	HSPI_CS#	_
B9	_	VSS	_	_	_	_	_	_	_	_	_
B10	_	_	_	_	_	_	_	_	AN103	_	_
B11	_	_	_	_	_	_	_	_	AN101	_	_
B12	_	_	_	_	_	_	_	_	AN001	_	_
B13	_	VSS	_	_	_	_	_	_	_	_	_
B14	_	TRACECLK	P18_6	A15	MTIC5W	SCK4 / DE4 / IIC_SCL2 / GMAC_PTPOUT2 / SPI_MISO2 / XSPI1_IO7	_	IRQ11	ADTRG0#	HSPI_CK	SIO# / HDSL0_CLK1
C1	_	MDW	P02_1	A17	_	DE1/ GMAC_PTPOUT1/ ESC_SYNC0/ ESC_SYNC1	_	_	_	_	HDSL0_MISO1

表 1.18 機能別の端子一覧(196 ピン FBGA) (3/8)

双 1.10	186 1167	川の姉丁一見	(130		30A) (3/0)						
ピン番 号	I/O 電源ドメ イン	電源クロックシ ステム制御	/O ポ -ト	パス、 DMAC	タイマ (MTU3、 POE3、GPT/ POEG、CMTW、 RTC)	通信 (SCI、IIC、 GMAC、ESC、USB、 CANFD、SPI、xSPI)	DSMIF、メー ルポックス	割り込み	ADC12	ホストイン タフェース (SHOST)	エンコーダイン タフェース
C2	_	TRACEDATA0	P01_6	A20	MTIOC1A / MTIOC3A / GTIOC0A / GTIOC9A	CTS1# / GMAC_PTPTRG1 / ESC_LATCH1 / ESC_LATCH0 / ESC_PHYLINK0 / CANTXDP1	_	_	_	_	SI0# / HDSL0_CLK1
C3	VCC1833_2	_	P01_1	CKE	MTIOC3D / GTIOC1B / GTETRGC	DE2 / GMAC_MDC / ESC_MDC / ESC_PHYLINK2	MDAT1	_	_		POUTA
C4	VCC1833_2	_	P00_2	RD#	MTIC5V	TXD2 / SDA2 / MOSI2 / ETH2_TXEN / USB_OVRCUR	_	_	_	_	TST_OUT1 / HDSL0_MOSI2
C5	VCC1833_2	_	P24_2	D14 / RAS#	MTIOCOD / GTETRGD	TXD1 / SDA1 / MOSI1 / ETH2_RXD2	MDAT5	_	_	_	_
C6	_	TRACEDATA7	P22_0	D7	MTIOC7D / GTIOC17B	DE5	MDAT3	IRQ15	_	HSPI_IO6	_
C7	_	TRACEDATA2	P21_3	D2	MTIOC6C / GTIOC14B / GTIOC15A	TXD5 / SDA5 / MOSI5 / ESC_LEDRUN / ESC_LEDSTER / SPI_SSL33	MCLK1	NMI	_	HSPI_IO2	_
C8	_	MDV2	P20_3	_	_	GMAC_PTPOUT1 / ESC_LEDERR / CANTX1	_	_	_	_	_
C9	_	VSS	_	_	_	_	_	_	_	_	_
C10	_	_	_	_	_	_	_	_	AN102	_	_
C11	_	_	_	_	_	_	_	_	AN003	1_	_
C12	_	AVCC18_TSU	_	_	_	_	_	_	_	_	_
C13	_	TRACECTL	P18_5	RAS#	MTIC5V	RXD4 / SCL4 / MISO4 / ETH2_COL / CANRX0 / SPI_MOSI2 / XSPI1_IO6	_	_	_	HSPI_IO0	TST_OUT0 / HDSL0_SMPL
C14	_	_	P18_4	CAS#	MTIC5U	TXD4 / SDA4 / MOSI4 / ETH2_RXER / CANTX0 / SPI_RSPCK2 / XSPI1_IO5	_	IRQ1	_	HSPI_IO1	DUEI0 / HDSL0_LINK
D1	_	_	P02_3	A15 / AH#	MTIOC2B / POE11# / GTIOC10B	SS1# / CTS1# / RTS1# / ETH2_COL / CANRX1 / SPI_SSL30	_	IRQ15	_	_	ENCIFDO0
D2	_	TRACEDATA2	P02_0	A18	MTIOC3C / GTIOC0B / GTADSML0	RXD1 / SCL1 / MISO1 / ETH2_CRS / USB_OTGID / CANTX1 / SPI_MISO3	_	IRQ4	_	_	ENCIFCK0
D3	VCC1833_2	_	P01_0	CAS#	MTIOC3C / MTIOC4C / GTIOC0B / GTIOC3A	CTS2# / GMAC_MDIO / ESC_MDIO	MCLK1	IRQ13	_	_	_
D4	VCC1833_2	_	P00_6	CS5#	MTIOC3A / MTIOC3B / GTIOC0A / GTIOC1A	ETH2_TXCLK	MDAT0	_	_	_	_
D5	VCC1833_2	_	P24_0	D12 / CKE / DREQ	MTIOC0B / GTETRGB	RXD1 / SCL1 / MISO1 / ETH2_RXD1	MDAT4	_	_	_	_
D6	_	TRACECTL	P22_1	D8	POE4# / GTETRGB	SS4# / CTS4# / RTS4# / ESC_LINKACT2 / SPI_MOSI0	_	IRQ13	_	HSPI_IO7	_
D7	_	TRACEDATA3	P21_4	D3	MTIOC6D / GTIOC15B	SS5#/CTS5#/ RTS5#/ GMAC_PTPOUT1/ ESC_SYNC0/ ESC_SYNC1/ SPI_SSL02	MDAT1 / MBX_HINT#	_	_	_	ENCIFDO0
D8	_	VCC33			_	-	_	_	_	_	_

表 1.18 機能別の端子一覧(196 ピン FBGA) (4/8)

ピン番 号	I/O 電源ドメ イン	電源クロックシ ステム制御	/O ポ ト	パス、 DMAC	タイマ (MTU3、 POE3、GPT/ POEG、CMTW、 RTC)	通信 (SCI、IIC、 GMAC、ESC、USB、 CANFD、SPI、xSPI)	DSMIF、メー ルポックス	割り込み	ADC12	ホストイン タフェース (SHOST)	エンコーダイン タフェース
D9	_	VREFH1	_	_	_	_	_	_	_	_	_
D10	_	VREFH0	_	_	_	_	_	_	_	_	_
D11	_	VSS	_	_	_	_	_	_	_	_	_
D12	_	_	P18_2	BS	MTIOC4B / MTIOC4D / GTIOC2B / GTIOC3B	SCK0 / IIC_SDA2 / GMAC_PTPOUT3 / XSPI1_CS0#	_	_	_	_	_
D13	_	_	P18_3	CKE	MTIOC4B / MTIOC4D / GTIOC2B / GTIOC3B / CMTW1_TIC1	DE3 / ETH2_CRS / CANRXDP1 / XSPI1_IO4	_	IRQ0	_	_	_
D14	_	_	P18_1	WE1# / DQMLU	MTIOC3D / GTIOC1B	SS3# / CTS3# / RTS3#	_	IRQ10	ADTRG1#	_	_
E1	_	TDI	P02_5	WE1# / DQMLU	_	SCK5 / SPI_SSL31	_	_	_	_	_
E2	_	_	P02_2	A16	MTIOC2A / POE10# / GTIOC10A / RTCAT1HZ	TXD1 / SDA1 / MOSI1 / CANTX0 / SPI_MOSI3	_	IRQ14	_	_	ENCIFDI0
E3	_	TDO	P02_4	WE0# / DQMLL	_	DE1 / SPI_SSL33	_	_	_	_	_
E4	VCC1833_2	_	P01_4	WE1# / DQMLU	POE0#	ETH2_TXD1	_	IRQ3	_	_	DUEI0 / HDSL0_LINK
E5	VCC1833_2	_	P00_0	D15	_	SCK2 / DE2 / ETH2_RXD3	_	_	_	_	DUEI1 / HDSL0_SEL1
E6	_	VCC1833_2	_	_	_	_	_	_	_	_	_
E7	_	VDD	_	_	_	_	_	_	_	_	_
E8	_	VDD	_	_	_	_	_	_	_	_	_
E9	_	VCC18_ADC1	_	_	_	_	_	_	_	_	_
E10	_	VCC18_ADC0	_	_	_	_	_	_	_	_	_
E11	_	VSS	_	_	_	_	_	_	_	_	_
E12	_	TRACECLK	P17_4	DACK	MTIOC3C / GTIOC0A / GTETRGB	CTS3# / ETH2_TXER / ESC_PHYLINK2 / SPI_SSL32 / SPI_RSPCK0 / XSPI1_IO3	_	_	_	_	HDSL1_CLK2
E13	_	_	P17_7	RD# / DACK	MTIOC4A / MTIOC4C / GTIOC2A / GTIOC3A	RXD3 / SCL3 / MISO3 / XSPI1_CKP	_	_	_	_	_
E14	_	_	P18_0	WE0# / DQMLL	MTIOC4A / MTIOC4C / GTIOC2A / GTIOC3A	TXD3 / SDA3 / MOSI3 / XSPI1_IO0	_	_	_	_	_
F1	_	_	P04_1	CKIO	_	TXD3 / SDA3 / MOSI3 / IIC_SDA2 / SPI_MOSI0	_	_	_	_	_
F2	_	тск	P02_7	_	_	TXD5 / SDA5 / MOSI	_	_	_	_	_
F3	_	TMS	P02_6	_	_	RXD5 / SCL5 / MISO5	_	-	_	_	_
F4	_	TRST#	_	_	_	_	_	_	_	_	_
F5	_	VCC33	_	_	_	_	_	_	_	_	_
F6	_	VDD	_	_	_	_	_	-	_	_	_
F7	_	VSS	_	_	_	_	_	_	_	_	_
F8	_	vss	_	_	_	_	_	_	_	_	_
F9	_	VDD	_	_	_	_	_	_	_	_	_
F10	_	VCC33	_	_	_	_	_	_	_	_	_
F11	_	MDD	P17_0	_	_	SS0# / CTS0# / RTS0# / ESC_IRQ / SPI_SSL01 / XSPI1_IO1	_	_	_	_	HDSL1_MISO2

表 1.18 機能別の端子一覧(196 ピン FBGA) (5/8)

22 1.10		1107411 52			タイマ (MTU3、 POE3、GPT/	通信 (SCI、IIC、				ホストイン	
ピン番 号	I/O 電源ドメ イン	電源クロックシ ステム制御	/0 ポ ート	パス、 DMAC	POEG, CMTW, RTC)	GMAC、ESC、USB、 CANFD、SPI、xSPI)	DSMIF、メー ルポックス	割り込み	ADC12	タフェース (SHOST)	エンコーダイン タフェース
F12	_	_	P17_6	RD/WR#	MTIOC3B / GTIOC1A	SCK3 / XSPI1_DS	_	_	_	_	_
F13	_	TRACECTL	P17_3	DREQ	POE0# / GTETRGA	CANRX1 / SPI_SSL31 / XSPI1_IO2	_	_	ADTRG1#	_	_
F14	_	RSTOUT#	P17_5	TEND	MTIOC3A / GTIOC0B / GTETRGC	USB_OVRCUR	_	_	_	_	_
G1	_	_	P06_0	A12	GTIOC16A / CMTW1_TOC0	SS4# / CTS4# / RTS4# / ETH1_TXD3 / CANRX1 / SPI_SSL23	_	_	_	_	HDSL0_MOSI1
G2	_	_	P05_6	A13	GTIOC14A / CMTW1_TIC0	ETH1_RXER / SPI_SSL22	_	IRQ12	_	_	HDSL1_MOSI2
G3	_	_	P05_5	A14	GTIOC14B / CMTW0_TOC1	ESC_PHYLINK1 / SPI_RSPCK2	_	_	_	_	HDSL1_LINK
G4	_	BSCANP	_	_	_	_	_	_	_	_	_
G5	_	VDD	_	_	_	_	_	_	_	_	_
G6	_	VSS	_	_	_	_	_	_	_	_	_
G7	_	VSS	_	_	_	_	_	_	_	_	_
G8	_	VSS	_	_	_	_	_	_	_	_	_
G9	_	VSS	_	_	_	_	_	_	_	_	_
G10	_	VDD	_	_	_	_	_	_	_	_	_
G11	VCC1833_3	_	P16_1	CS2#	CMTW0_TOC1	RXD0 / SCL0 / MISO0 / SPI_MISO3 / XSPI0_RESET0#	MDAT3	_	ADTRG0#	_	ENCIFOE0 / HDSL1_SEL1
G12	VCC1833_3	_	P16_0	_	_	TXD0 / SDA0 / MOSI0 / ETH2_REFCLK / SPI_MOSI3 / XSPI0_CS1#	MCLK3	_	_	_	ENCIFCK0 / HDSL0_MOSI2
G13	VCC1833_3	_	P16_2	_	_	CTS0# / USB_EXICEN / SPI_RSPCK3 / SPI_SSL03 / XSPI0_RESET1#	_	NMI	_	_	ENCIFCK1 / HDSL1_MISO1
G14	VCC1833_3	_	P16_3	CS3#	GTADSMP1	SCK0 / ETH2_RXER / SPI_SSL30 / XSPI0_RSTO0#		IRQ7	_	_	ENCIFOE1 / HDSL1_MOSI1
H1	_	_	P06_4	A7	GTIOC11A	ETH1_TXCLK / SPI_MOSI1	_	_	_	_	HDSL0_SEL2
H2	_	MD1	P06_2	A9	_	ETH1_TXD1 / CANRXDP1	_	_	_	_	_
H3	_	_	P06_1	A10	GTIOC16B	CTS4# / ETH1_REFCLK / RMII1_REFCLK / CANTX1 / SPI_SSL22	_	_	_	_	HDSL0_CLK2
H4	_	MD2	P05_7	A11	CMTW1_TOC1	ETH1_TXD2 / SPI_SSL23	_	_	_	_	_
H5	_	VDD	_	_	_	_	_	_	_	_	_
H6	_	VSS	_	_	_	_	_	_	_	_	_
H7	_	VSS	_	_	_	_	_	_	_	_	_
H8	_	VSS	_	_	_	_	_	_	_	_	_
H9	_	VSS	_	_	_	_	_	_	_	_	_
H10	_	VDD	_	_	_	_	_	_	_	_	_
H11	VCC1833_3	_	P15_6	D14	_	SPI_SSL12 / XSPI0_IO7	MDAT2	_	_	_	_
H12	VCC1833_3	_	P15_5	D13	_	XSPI0_IO6	MCLK2	IRQ7	_	_	_
H13	VCC1833_3	_	P15_4	D12	MTIOC8D	XSPI0_IO5	MDAT1	IRQ3	_	_	_
H14	VCC1833_3	_	P15_7	TEND	_	CTS5# / SPI_SSL13 / XSPI0_CS0#	_	-	_	_	_

表 1.18 機能別の端子一覧(196 ピン FBGA) (6/8)

ピン番 号	I/O 電源ドメ イン	電源クロックシ ステム制御	/0 ポ ート	パス、 DMAC	タイマ (MTU3、 POE3、GPT/ POEG、CMTW、 RTC)	通信 (SCI、IIC、 GMAC、ESC、USB、 CANFD、SPI、xSPI)	DSMIF、メー ルポックス	割り込み	ADC12	ホストイン タフェース (SHOST)	エンコーダイン タフェース
J1	_	_	P06_7	A4	GTIOC12B	ETH1_RXD1 / SPI_SSL11	_	_	_	_	DUEI1 / HDSL1_LINK
J2	_	_	P06_5	A6	GTIOC11B	ETH1_TXEN / SPI_MISO1	_	_	_	_	HDSL0_MISO2
J3	_	_	P06_6	A5	GTIOC12A	ETH1_RXD0 / SPI_SSL10	_	_	_	_	HDSL1_SMPL
J4	_	MD0	P06_3	A8	_	DE4 / ETH1_TXD0 / CANTXDP1	_	_	_	_	_
J5	_	VCC33	_	_	_	_	_	_	_	_	_
J6	_	VDD	_	_	_	_	_	_	_	_	_
J7	_	VSS	_	_	_	_	_	_	_	_	_
J8	_	VSS	_	_	_	_	_	_	_	_	_
J9	_	VDD	_	_	_	_	_	_	_	_	1_
J10	_	VCC1833_3	_	_	_	_	_	_	_	_	_
J11	VCC1833 3	_	P15 3	D11	MTIOC8C	XSPI0_IO4	MCLK1	NMI	_	_	_
J12	VCC1833_3	_	P15_0	A23 / CKE	_	RXD5 / SCL5 / MISO5 / SPI_MOSI1 / XSPI0_IO1	_	_	_	_	_
J13	VCC1833_3	_	P15_1	A24 / CAS#	MTIOC0C	TXD5 / SDA5 / MOSI5 / SPI_SSL10 / XSPI0_IO2	_	_	_	_	_
J14	VCC1833_3	_	P15_2	A25 / RAS#	MTIOC0D	SS5# / CTS5# / RTS5# / SPI_SSL11 / XSPI0_IO3	_	_	_	_	_
K1	_	_	P07_0	A3	GTIOC13A	ETH1_RXD2	_	_	_	_	TST_OUT1 / HDSL1_SMPL
K2	_	_	P07_2	A1	GTIOC17A	ETH1_RXDV	_	_	_	_	HDSL1_SEL1
K3	_	_	P07_3	A0	GTIOC17B	ETH1_RXCLK / SPI_SSL00	_	_	_	_	HDSL1_MISO1
K4	_	_	P07_1	A2	GTIOC13B	ETH1_RXD3	_	_	_	_	SI1# / HDSL1_CLK1
K5	_	_	P09_0	CS0#	MTIOC4A / MTIOC7A / GTIOC6A	RXD3 / SCL3 / MISO3 / GMAC_MDIO / ESC_MDIO	_	_	_	_	_
K6	_	VDD	_	_	_	_	_	_	_	_	_
K7	_	VDD	_	_	_	_	_	_	_	_	_
K8	_	VDD	_	_	_	_	_	_	_	_	_
K9	_	VCC33	_	_	_	_	_	_	_	_	_
K10	_	VCC1833_3	_	_	_	_	_	_	_	_	_
K11	VCC1833_3	_	P14_2	_	MTIOC8B / GTIOC8B	ETH2_CRS / SPI_SSL10 / XSPI0_ECS0#	_	IRQ6	_	_	POUTA / HDSL0_CLK2
K12	VCC1833_3	_	P14_7	A22 / BS	_	SCK5 / SPI_MISO1 / XSPI0_IO0	_	_	_	_	_
K13	VCC1833_3	_	P14_4	BS	MTIOC0B	ESC_IRQ / SPI_SSL13 / XSPI0_DS	_	_	_	_	POUTZ / HDSL0_MISO2
K14	VCC1833_3	_	P14_6	A21	_	XSPI0_CKP	_	_	_	_	_
L1	_	VSS	_	_	_	_	_	_	_	_	_
L2	_	_	P08_5	_	MTIOC3C / MTIOC6B / GTIOC5A	RXD2 / SCL2 / MISO2 / ETH0_RXDV	MCLK2	IRQ5	_	_	_
L3	_	_	P08_4	CS5#	MTIOC3A / MTIOC6A / GTIOC4A	SCK2 / ETH0_RXD3 / CANTXDP1 / SPI_SSL32	_	IRQ14	_	_	HDSL1_MOSI1
L4	_	_	P09_4	_	GTADSMP0	TXD4 / SDA4 / MOSI4 / ETH0_TXD2 / SPI_SSL21	_	_	_	_	HDSL1_MISO2

表 1.18 機能別の端子一覧(196 ピン FBGA) (7/8)

ピン番 号	I/O 電源ドメ イン	電源クロックシ ステム制御	/0 ポ ート	パス、 DMAC	タイマ (MTU3、 POE3、GPT/ POEG、CMTW、 RTC)	通信 (SCI、IIC、 GMAC、ESC、USB、 CANFD、SPI、xSPI)	DSMIF、メー ルポックス	割り込み	ADC12	ホストイン タフェース (SHOST)	エンコーダイン タフェース
L5	_	_	P10_1	_	POE10#	CTS3# / ETH0_RXD0 / SPI_RSPCK1	_	IRQ10	_	_	ENCIFDI1
L6	_	VCC33	_	_	_	_	_	_	_	_	_
L7	_	_	P07_4	_	_	USB_VBUSIN	_	IRQ1	ADTRG0#	_	HDSL1_SEL2
L8	_	VDD	_	_	_	_	_	_	_	_	_
L9	_	TRACEDATA6	P13_2	D9	MTIOC0A / GTIOC10A / POE8#	SS1#/CTS1#/ RTS1#/IIC_SCL0/ GMAC_PTPOUT2/ ESC_I2CCLK/ SPI_MISO0	MCLK4	IRQ5	_	_	_
L10	_	TRACEDATA7	P13_3	D8 / RD#	MTIOC0B / MTIOC0C / GTIOC10B / CMTW1_TOC0	CTS1#/IIC_SDA0/ GMAC_PTPOUT3/ ESC_I2CDATA/ SPI_RSPCK0	MDAT4	_	_	_	_
L11	VCC1833_3	_	P13_7	_	MTCLKC	GMAC_PTPTRG1 / ESC_LATCH0 / ESC_LATCH1 / SPI_MOSI1 / XSPI0_ECS1#	MBX_HINT#	_	_	_	HDSL0_SEL1
L12	VCC1833_3	_	P13_5	_	MTCLKA	IIC_SCL2 / GMAC_PTPTRG0 / ESC_LATCH0 / ESC_LATCH1 / SPI_RSPCK1 / XSPI0_WP1#	_	_	_	_	_
L13	VCC1833_3	_	P14_3	_	MTIOC0A	ETH2_COL / SPI_SSL11 / XSPI0_RSTO1#	_	_	_		POUTB / HDSL0_SEL2
L14	VCC1833_3	_	P14_5	CS3#	POE8#	XSPI0_CKN	_	IRQ15	_	HSPI_INT#	_
M1	_	_	P08_7	WAIT#	MTIOC3D / MTIOC6D / GTIOC5B	TXD2 / SDA2 / MOSI2 / GMAC_MDC / ESC_MDC / SPI_SSL13	MDAT2	IRQ8	_	_	_
M2	_	_	P08_6	_	MTIOC3B / MTIOC6C / GTIOC4B / CMTW1_TIC1	SCK3 / ETH0_RXCLK	_	IRQ9	_	_	_
M3	_	_	P09_1	_	MTIOC4C / MTIOC7B / GTIOC7A / GTETRGSA	DE3 / ETH0_REFCLK/ RMII0_REFCLK / GMAC_PTPOUT0 / ESC_SYNC0 / ESC_SYNC1 SPI_SSL10	_	_	_	_	_
M4	_	_	P09_7	DACK	GTIOC15B	RXD4 / SCL4 / MISO4 / ETHO_TXCLK / USB_OVRCUR / CANTXDP0 / SPI_SSL00	_	IRQ12	_	_	ENCIFOE1
M5	_	_	P10_2	_	MTIC5U	TXD0 / SDA0 / MOSI0 / ETH0_RXD1	_	_	_	_	_
M6	_	VSS	_	_	_	_	_	_	_	_	_
M7	_	MDX	_	_	_	_	_	_	_	_	_
M8	_	VCC18_PLL1	_	_	_	_	_	_	_	_	_
M9	_	VSS	_	_	_	_	_	_	_	_	_
M10	_	VCC33_USB	_	_	_	_	_	_	_	_	_
M11	_	VSS_USB	_	_	_	_	_	_	_	_	_
M12	_	_	P13_4	A0 / WAIT#	MTIOC0D / GTIOC8B	ESC_RESETOUT#/ SPI_SSL12	_	_	_	_	_
M13	VCC1833_3	_	P13_6	_	MTCLKB	GMAC_PTPOUT0 / ESC_SYNC0 / ESC_SYNC1 / XSPI0_WP0#	_	_	_	_	

表 1.18 機能別の端子一覧(196 ピン FBGA) (8/8)

ピン番 号	I/O 電源ドメ イン	電源クロックシ ステム制御	/0 ポ ート	パス、 DMAC	タイマ (MTU3、 POE3、GPT/ POEG、CMTW、 RTC)	通信 (SCI、IIC、 GMAC、ESC、USB、 CANFD、SPI、xSPI)	DSMIF、メー ルポックス	割り込み	ADC12	ホストイン タフェース (SHOST)	エンコーダイン タフェース
M14	VCC1833_3	_	P14_1	_	MTIOC8A / GTIOC8A	GMAC_PTPTRG1 / ESC_LATCH0 / ESC_LATCH1 / SPI_MISO1 / XSPI0_INT1#	_	_	_	_	HDSL0_MOSI1
N1	_	_	P09_2	RAS#/ DACK	MTIOC4B / MTIOC7C / GTIOC6B / RTCAT1HZ	ETH0_RXER	_	IRQ0	_	_	HDSL1_CLK2
N2	_	_	P09_3	CS3#	MTIOC4D / MTIOC7D / GTIOC7B / GTETRGSB / CMTW0_TOC0	SS5# / CTS5# / RTS5# / ETHO_TXD3 / USB_VBUSEN / CANTXDP0	MCLK3	IRQ12	_	_	HDSL1_SEL2
N3	_	_	P09_5	DREQ	GTADSML1 / CMTW0_TOC0	DE5 / IIC_SCL1 / ETH0_TXD1 / USB_VBUSEN / CANRX0	_	IRQ14	_	_	HDSL1_MOSI2
N4	_	_	P10_0	_	POE11# / CMTW0_TIC0	SCK4 / IIC_SDA1 / ETH0_TXEN / USB_EXICEN / CANTX0	_	IRQ15	_	_	ENCIFDO1
N5	_	RES#	_	_	_	_	_	_	_	_	_
N6	_	EXTCLKIN	_	_	_	_	_	_	_	_	_
N7	_	VSS	_	_	_	_	_	_	_	_	_
N8	_	VCC18_PLL0	_	_	_	_	_	_	_	_	_
N9	_	VSS_USB	_	_	_	_	_	_	_	_	_
N10	_	VSS_USB	_	_	_	_	_	_	_	_	_
N11	_	AVCC18_USB	_	_	_	_	_	_	_	_	_
N12	_	VSS_USB	_	_	_	_	_	_	_	_	_
N13	_	VSS_USB	_	_	_	_	_	_	_	_	_
N14	VCC1833_3	_	P14_0	_	MTCLKD	GMAC_PTPOUT1 / ESC_SYNC0 / ESC_SYNC1 / XSPI0_INT0#	_	_	_	_	HDSL0_MISO1
P1	_	VSS	_	_	_	_	_	_	_	_	_
P2	_	_	P09_6	_	GTIOC15A / CMTW0_TIC1	CTS5# / ETH0_TXD0 / USB_EXICEN / CANRXDP0	MDAT3	IRQ13	_	_	ENCIFCK1
P3	_	_	P10_3	_	MTIC5V / RTCAT1HZ	RXD0 / SCL0 / MISO0 / ETH0_RXD2	_	IRQ8	_	_	_
P4	_	_	P10_4	D15	MTIC5W	SCK0 / ESC_PHYLINK0 / SPI_SSL01	MBX_HINT#	IRQ11	_	_	_
P5	_	VSS	_	_	_	_	_	-	_	_	_
P6	_	EXTAL	_	_	_	_	_	_	_	_	_
P7	_	XTAL	_	_	_	_	_	_	_	_	_
P8	_	VSS	_	_	_	_	_	_	_	_	_
P9	_	USB_DM	_	_	_	_	_	_	_	_	_
P10	_	USB_DP	_	_	_	_	_	_	_	_	_
P11	_	VCC18_USB	_	_	_	_	_	_	_	_	_
P12	_	USB_RREF	_	_	_	_	_	_	_	_	_
P13	_	VSS_USB	_	_	_	_	_	_	_	_	_
P14	_	VSS	_	_	_	_	_	_	_	_	_

2. 電気的特性

特に説明がない限り、本 LSI の電気特性は以下の条件で定義されます。

条件

 $VDD = 1.05 \sim 1.15 \text{ V}$

 $VCC18 = VCC1833_n (1.8 \text{ V} + \text{F}) = VCC18_PLL0 = VCC18_PLL1 = VCC18_USB = AVCC18_USB = VCC18_ADC0 = VCC18_ADC1 = AVCC18_TSU = VREFH0 = VREFH1 = 1.70 \sim 1.95 \text{ V}$

VCC33 = VCC1833 n (3.3 V モード) = VCC33 USB = 3.135~3.465 V

 $VSS = VSS \ USB = 0 \ V$

 $T_j = -40 \sim +125$ °C

2.1 絶対最大定格

表 2.1 絶対最大定格

項目	シンボル	值	単位
電源電圧 (3.3 V モード)	VCC33, VCC1833_2, VCC1833_3	-0.3~+3.8	V
電源電圧 (1.8 V モード)	(VCC18) VCC1833_2, VCC1833_3	-0.3~+2.5	V
電源電圧	VDD	-0.3~+1.5	V
入力電圧	Vin(3.3 V ロジック)	-0.3∼VCC33 + 0.3	V
入力電圧	Vin(1.8 V ロジック)	-0.3~VCC18 + 0.3	V
アナログ電源電圧	VCC18_PLL0、 VCC18_PLL1、 VCC18_USB、 AVCC18_USB、 VCC18_ADC0、 VCC18_ADC1、 AVCC18_TSU(注1)	-0.3~VCC18 ^(注2) + 0.3 または 2.5 の小さい方	V
	VCC33_USB	-0.3~VCC33 + 0.3 または 3.8 の小さい方	V
電源電圧差	VCC33-VCC18	-2.5~+ 2.1	V
アナログ入力電圧	VAN	-0.3~VCC18_ADC0/1 + 0.3 または 2.5 の小さい方	V
基準電圧	VREFH0、VREFH1	-0.3~VCC18_ADC0/1 + 0.3 または 2.5 の小さい方	V
水晶振動子端子入力電圧	XTAL、EXTAL	-0.3~+1.5	V
動作温度(ジャンクション温度)	Tj	-40~+125	°C
保存温度	T _{stg}	-55~+125	°C

注 1. アナログブロックを使用しないときは、アナログ電源端子は、VCC18 に接続してください。それらの端子を開放したままにしないでください。

【使用上の注意】絶対最大定格を超えて LSI を使用した場合、MCU の永久破壊となることがあります。

注 2. 慣例として、「VCC18」は 1.8 V モードの VCC1833 n などのチップ電源を仮想的に示しています。

2.2 電源

表 2.2 電源

項目	シンボル	値	Min	Тур	Max	単位
電源電圧	VCC33		3.135	_	3.465	V
	VDD		1.05	1.1	1.15	V
	VSS		_	0	_	V
マルチ電圧モードに対応する電源電圧	VCC1833_2,	3.3 V モード	3.135	3.3	3.465	V
	VCC1833_3	1.8 V モード (VCC18)	1.70	1.8	1.95	V
アナログ電源電圧	VCC18_PLL0	•	_	VCC18	_	V
	VCC18_PLL1		_	VCC18	_	V
	VCC33_USB		_	VCC33	_	V
	VCC18_USB		_	VCC18	_	V
	AVCC18_USB		_	VCC18	_	V
	VCC18_ADC0		_	VCC18	_	V
	VCC18_ADC1		_	VCC18	_	V
	AVCC18_TSU	_	VCC18	_	V	
	VSS_USB		_	0	_	V

2.3 電源投入/遮断シーケンス

電源投入/遮断シーケンスとタイミングを以下の図と表に示します。

電源投入では、 $1.1 \text{ V } \ge 1.8 \text{ V }$ 電源(例: VDD、VCC18、および AVCC)を最初に供給し、それから 3.3 V 電源(例: VCC33)を供給する必要があります。電源投入シーケンスは、100 ms 以内に完了する必要があります。リセット信号(例: RES#)は、電源投入中 Low レベルにしておく必要があります。

電源遮断では、まず 3.3 V 電源(例: VCC33)を先に遮断し、それから 1.1 V と 1.8 V 電源(例: VDD、VCC18、および AVCC)を遮断する必要があります。電源遮断シーケンスは、100 ms 以内に完了する必要があります。

各電源の投入時の立ち上がりと遮断時の立ち下がりの時間は、10 μs より長い必要があります。

電源電圧とリセット信号は、単調に立ち上がる必要があります。

電源電圧に負の電圧を印加しないでください。

リセット信号(すなわち RES#)が High に駆動されているときは、EXTAL/XTAL または EXTCLKIN 端子に安定したクロックを供給しなければなりません。

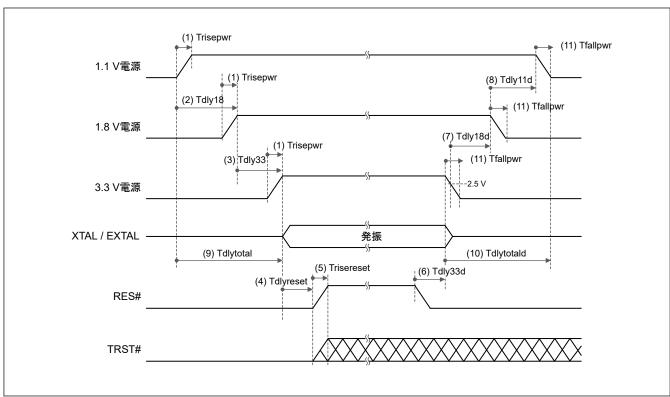


図 2.1 電源投入/遮断シーケンス

表 2.3 電源投入/遮断シーケンスタイミング

			値		
No.	シンボル	説明	Min	Тур	Max
(1)	Trisepwr	電源電圧の立ち上がり時間	10 µs	_	30 ms
(2)	Tdly18	1.1 V 電源電圧の立ち上がり開始から、1.8 V 電源電圧の立ち上がり完了までの遅延時間	0	_	100 ms
(3)	Tdly33	1.8 V 電源電圧の立ち上がり完了から、3.3 V 電源電圧の立ち上がり完了までの遅延時間	0	_	100 ms
(4)	Tdlyreset	XTAL/EXTAL 使用時の 3.3 V 電源電圧の立ち上がり完了から、 RES#信号の立ち上がり開始までの遅延時間	10 ms	_	_
		EXTCLKIN 使用時の 3.3 V 電源電圧の立ち上がり完了から、 RES#信号の立ち上がり開始までの遅延時間	1 ms	_	_
(5)	Trisereset	RES#信号の立ち上がり時間	_	_	150 µs
(6)	Tdly33d	RES#信号の立ち下がり開始から、3.3 V 電源電圧の立ち下がり 開始までの遅延時間	10 µs	_	_
(7)	Tdly18d	3.3 V 電源電圧の立ち下がり開始から、1.8 V 電源電圧の立ち下がり開始までの遅延時間	0	_	100 ms
(8)	Tdly11d	1.8 V 電源電圧の立ち下がり開始から、1.1 V 電源電圧の立ち下がり開始までの遅延時間	0	_	100 ms
(9)	Tdlytotal	全ての電源電圧の起動時間	_	_	100 ms
(10)	Tdlytotald	全ての電源電圧の遮断時間	_	_	100 ms
(11)	Tfallpwr	電源電圧の立ち下がり時間	10 µs	_	30 ms

2.4 DC 特性

表 2.4 DC 特性 (3.3 V モード)

項目	シンボル	条件	Min	Тур	Max	単位
入力 High レベル電圧	V _{IH33}	3.3 V モード、シュミットトリガ	2.0	_	VCC33 + 0.3	V
入力 Low レベル電圧	V _{IL33}	┤制御無効、P07_4 端子を除く │	-0.3	_	0.8	V
正トリガ電圧	V _{T33+}	3.3 V モード、シュミットトリガ	0.9	_	2.1	V
負トリガ電圧	V _{T33-}	─ 制御有効、P07_4 端子を除く ─	0.7	_	1.9	V
ヒステリシス電圧	ΔV _{T33}		0.2	_	_	V
入力 High レベル電圧 2	V _{IH33_2}	3.3 V モード、シュミットトリガ	VCC33 × 0.7	_	VCC33 + 0.3	V
入力 Low レベル電圧 2	V _{IL33_2}	┤ 制御無効、P07_4 端子のみ │	-0.3	_	VCC33 × 0.3	V
正トリガ電圧 2	V _{T33+_2}	3.3 V モード、シュミットトリガ	_	_	VCC33 × 0.72	V
負トリガ電圧 2	V _{T332}	┤ 制御有効、P07_4 端子のみ │	VCC33 × 0.3	_	_	V
ヒステリシス電圧 2	ΔV _{T33_2}		VCC33 × 0.1	_	_	V
出力 High レベル電圧	V _{OH33}	Low、IOH = -2 mA	VCC33 - 0.4	_	_	V
	V _{OH33}	Middle、IOH = -4 mA	VCC33 - 0.4	_	_	V
	V _{OH33}	High、IOH = −8 mA	VCC33 - 0.4	_	_	V
	V _{OH33}	Ultra High、IOH = −12 mA	VCC33 - 0.4	_	_	V
出力 Low レベル電圧	V _{OL33}	Low、IOL = 2 mA	_	_	0.4	V
	V _{OL33}	Middle、IOL = 4 mA	_	_	0.4	V
	V _{OL33}	High、IOL = 8 mA	_	_	0.4	V
	V _{OL33}	Ultra High、IOL = 12 mA	_	_	0.4	V
入力リーク電流	lin	Vin = 0 V、Vin = VCC33	_	_	10	μA
スリーステートリーク電流(オフ状態)	I _{TSI}	Vin = 0 V、Vin = VCC33	_	_	10	μA
入力プルアップ抵抗の値	Rpu	Vin = 0 V	15	_	300	kΩ
入力プルアップ抵抗の電流	lpu	Vin = 0 V	-220	_	-11	μA
入力プルダウン抵抗の値	Rpd	Vin = VCC33	15	_	300	kΩ
入力プルダウン抵抗の電流	lpd	Vin = VCC33	11		220	μA
入力容量	Cin	全入出力端子および全入力端子	_	_	10	pF

表 2.5 DC 特性(1.8 V モード) (1/2)

項目	シンボル	条件	Min	Тур	Max	単位
入力 High レベル電圧	V _{IH18}	1.8 V モード、シュミットトリガ	VCC18 × 0.65	_	VCC18 + 0.3	V
入力 Low レベル電圧	V _{IL18}	制御無効 -	-0.3	_	VCC18 × 0.35	V
正トリガ電圧	V _{T18+}	1.8 V モード、シュミットトリガ V 制御有効 V	VCC18 × 0.4	_	VCC18 × 0.7	V
負トリガ電圧	V _{T18-}		VCC18 × 0.3	_	VCC18 × 0.6	V
ヒステリシス電圧	ΔV _{T18}		VCC18 × 0.1	_	_	V
出力 High レベル電圧	V _{OH18}	Low、IOH = -2 mA	VCC18 - 0.45	_	_	V
	V _{OH18}	Middle、IOH = -4 mA	VCC18 - 0.45	_	_	V
	V _{OH18}	High、IOH = −8 mA	VCC18 - 0.45	_	_	V
	V _{OH18}	Ultra High、IOH = −12 mA	VCC18 - 0.45	_	_	V

表 2.5 DC 特性(1.8 V モード) (2/2)

項目	シンボル	条件	Min	Тур	Max	単位
出力 Low レベル電圧	V _{OL18}	Low、IOL = 2 mA	_	_	0.45	V
	V _{OL18}	Middle、IOL = 4 mA	_	_	0.45	V
	V _{OL18}	High、IOL = 8 mA	_	_	0.45	V
	V _{OL18}	Ultra High、IOL = 12 mA	_	_	0.45	٧
入力リーク電流	lin	Vin = 0 V、Vin = VCC18	_	_	10	μΑ
スリーステートリーク電流(オフ状態)	I _{TSI}	Vin = 0 V、Vin = VCC18	_	_	10	μA
入力プルアップ抵抗の値	Rpu	Vin = 0 V	15	_	300	kΩ
入力プルアップ抵抗の電流	Ipu	Vin = 0 V	-120	_	-6	μΑ
入力プルダウン抵抗の値	Rpd	Vin = VCC18	15	_	300	kΩ
入力プルダウン抵抗の電流	lpd	Vin = VCC18	6	_	120	μΑ
入力容量	Cin	全入出力端子および全入力端子	_	_	10	pF

表 2.6 USB2.0 USB_RREF 端子

項目	シンボル	条件	Min	Тур	Max	単位
基準抵抗 ^(注1)	R _{REF}	_		1.8 (±1%)	kΩ

注 1. USB_RREF 端子に接続した基準抵抗は外部から本 LSI への接続のためのものです。

表 2.7 USB2.0 プルアップ/プルダウン抵抗

項目	シンボル	条件	Min	Тур	Max	単位
USB_DP プルアップ抵抗	R _{PU}	アイドル状態	0.900	_	1.575	kΩ
(ファンクションコントローラ選択時) 		送受信	1.425	_	3.090	kΩ
USB_DP/USB_DM プルダウン抵抗 (ホストコントローラ選択時)	R _{PD}	_	14.25	_	24.80	kΩ

表 2.8 USB2.0 ホスト/ファンクション関連端子(ロースピードおよびフルスピード)

項目	シンボル	条件	Min	Тур	Мах	単位
入力 High レベル電圧	V _{FSIH}	_	2.0	_	_	٧
入力 Low レベル電圧	V _{FSIL}	_	_	_	0.8	V
差動入力感度	V _{FSDI}	(USB_DP) - (USB_DM)	0.2	_	_	V
差動コモンモードレンジ	V _{FSCM}	_	0.8	_	2.5	٧
出力 Low レベル電圧	V _{FSOL}	IFSOL = 2 mA	0.0	_	0.3	٧
出力 High レベル電圧	V _{FSOH}	IFSOH = -200 μA	2.8	_	3.6	V
出力信号クロスオーバー電圧	V _{FSCRS}	_	1.3	_	2.0	V

表 2.9 USB2.0 ホスト/ファンクション関連端子(ハイスピード) (1/2)

項目	シンボル	条件	Min	Тур	Max	単位
スケルチ検出しきい値電圧(差動電圧)	V _{HSSQ}	_	100	_	150	mV
切断検出しきい値電圧 (差動電圧)	V _{HSDSC}	_	525	_	625	mV
コモンモード電圧範囲	V _{HSCM}	_	-50	_	500	mV
アイドル状態	V _{HSOI}	_	-10.0	_	10.0	mV
出力 High レベル電圧	V _{HSOH}	_	360	_	440	mV
出力 Low レベル電圧	V _{HSOL}	_	-10.0	_	10.0	mV

表 2.9 USB2.0 ホスト/ファンクション関連端子(ハイスピード) (2/2)

項目	シンボル	条件	Min	Тур	Max	単位
Chirp J 出力電圧(差動)	V _{CHIRPJ}	_	700	_	1100	mV
Chirp K 出力電圧(差動)	V _{CHIRPK}	_	-900	_	-500	mV

表 2.10 消費電流

項目	シンボル	条件	Min	Тур	Max	単位
通常動作	I _{vdd}	ICLK = 200 MHz、CPU0CLK = 800 MHz、Tj ≦ 110°C	_	_	400	mA
	I _{VCC33}	(注1)	_	60	_	mA
	I _{VCC1833_2}	(注1)	_	9	_	mA
	I _{VCC1833_3}	(注1)	_	9	_	mA
	I _{VCC18_PLL0}	_	_	_	6	mA
	I _{VCC18_PLL1}	_	_	_	6	mA
	I _{VCC18_USB}	_	_	_	39	mA
	I _{VCC18_ADC0}	_	_	_	3	mA
	I _{VCC18_ADC1}	_	_	_	3	mA
	I _{VCC18_TSU}		_	_	2	mA
	I _{VCC33_USB}	_	_	_	6	mA
低消費電力モード ^(注2)	I _{vdd}	全モジュールが非アクティブ	_	12	_	mA
	I _{VCC33}	_	_	9	_	mA
	I _{VCC1833_2}	_	_	2	_	mA
	I _{VCC1833_3}	_	_	2	_	mA
	I _{VCC18_PLL0}	_	_	3.5	_	mA
	I _{VCC18_PLL1}	_	_	0.1	_	mA
	I _{VCC18_USB}	_	_	0.5	_	mA
	I _{VCC18_ADC0}	_	_	0.2	_	mA
	I _{VCC18_ADC1}	_	_	0.2	_	mA
	I _{VCC18_TSU}	_	_	0.1	_	mA
	I _{VCC33_USB}	_	_	0.3	_	mA

注. ここに示す値は参考値です。実際の動作電流はシステムに大きく依存します。(例えば、I/O 負荷やトグル周波数による鈍った波形など。) 必ずシステム上でこれら電流値を測定してください。

表 2.11 出力許容電流

項目	シンボル	条件	Min	Тур	Max	単位
出力 Low レベル許容電流 (端子ごとの最大値)	IOL	全出力端子	_	_	12	mA
出力 Low レベル許容電流(総和)	ΣΙΟL	全出力端子の総和	_	_	80	mA
出力 High レベル許容電流(端子ごとの最大値)	ЮН	全出力端子	_	_	-12	mA
出力 High レベル許容電流(総和)	ΣΙΟΗ	全出力端子の総和	_	_	-80	mA

注. LSIの信頼性を確保するため、すべての出力電流値はこの表の値の範囲である必要があります。

注 1. IO 消費電流(I_{VCC33} 、 $I_{VCC1833_n~(n=0\sim4)}$)は、80 mA 以下である必要があります。(表 2.11 の ΣIOH)

注 2. 設定可能なモジュールはすべて停止または最低クロック周波数設定のスタンバイモードとし、すべての入出カポートのプルアップおよびプルダウンまたは動作なし、および室温での測定とします。

表 2.12 熱抵抗値(参考)

項目	シンボル	パッケージ	Max	単位
熱抵抗	Θја	196 ピン FBGA(12 mm×12 mm、0.8 mm ピッチ)	25.4	°C/W
	Ψjt	196 ピン FBGA(12 mm×12 mm、0.8 mm ピッチ)	0.38	°C/W

注. 上記パッケージ熱抵抗値は、EIA/JESD51-9 (2s2p) 条件に基づくもので、参考用です。

2.5 AC 特性

表 2.13 動作周波数

項目		シンボル	Min	Max	単位
動作周波数	CPU クロック (CPU0CLK)	f	150 200	600 800	MHz
	システムクロック (ICLK)		150	200	
	周辺モジュールクロック H (PCLKH)		150	200	
	周辺モジュールクロック M (PCLKM)		75	100	
	周辺モジュールクロック L (PCLKL)		37.5	50	
	ADC 用周辺モジュールクロック (PCLKADC)		18.75	25	
	SCIn 用周辺モジュールクロック(PCLKSCIn、n = 0~5)		75	100	
	SPIn 用周辺モジュールクロック(PCLKSPIn、n = 0~3)		75	100	
	外部バスクロック出力 (CKIO)		18.75	100	
	イーサネット PHY 基準クロック(ETHn_REFCLK、n = 0~2)		25		
	イーサネット PHY 基準クロック(RMIIn_REFCLK、n = 0~2)			50	

AC 特性は、表 2.14 に示す I/O 設定 (DRCTLm レジスタ設定) の条件で定義されます。

表 2.14 I/O 設定(DRCTLm レジスタ設定)の条件 (1/2)

					DRCTLm レジスタ			
モジュール	信号		I/O の種類	電圧	DRVn	SRn	SMTn	
バス	СКІО	SDRAM および高駆動	_	3.3 V	高	高速	_	
		上記以外	_	3.3 V	中	高速	_	
	上記以外	上記以外		3.3 V	中	低速	無効	
			タイプB	3.3 V	低	低速	無効	
DMAC、MTU3、IIC、	全信号		タイプA	3.3 V	中	低速	無効	
CANFD、DSMIF			タイプB	3.3 V	低	低速	無効	
GPT (T)	GTIOCnA、GTIOCnB		タイプA	3.3 V	中	低速	無効	
$(n = 0 \sim 17)$ (m = 0, 1)			タイプB	3.3 V	低	低速	無効	
	GTADSMLm、GTADSMPm		_	3.3 V	低	低速	無効	
SCI, SPI	全信号		_	3.3 V	高	高速	無効	
xSPI		XSPIn_CKP、XSPI0_CKN、XSPIn_IO[7:0]、 XSPIn_CSm#、XSPIn_DS		1.8 V ^(注1)	高	高速	無効	
(n = 0, 1, m = 0, 1)	XSPIn_CS			3.3 V	高	高速	有効	
	上記以外		_	_	低	低速	無効	

表 2.14 I/O 設定(DRCTLm レジスタ設定)の条件 (2/2)

				DRCTLm L		
モジュール	信号	I/O の種類	電圧	DRVn	SRn	SMTn
イーサネットインタフ	ETHn_TXCLK、ETHn_TXD[3:0]	_	1.8 V ^(注1) /3.3 V	高	高速	無効
ェース (n = 0~2)	ETH2_TXER	_	3.3 V	中	高速	_
	ETHn_RXCLK、ETHn_RXD[3:0]	_	1.8 V ^(注1) /3.3 V	_	_	無効
	ETHn_RXER、ETH2_COL、ETH2_CRS	_	3.3 V	_	_	無効
	ETHn_REFCLK、RMIIn_REFCLK	_	3.3 V	高	高速	_
	上記以外	_	_	低	低速	無効
SHOSTIF	HSPI_CK、HSPI_CS#、HSPI_IO[7:0]	_	3.3 V	高	高速	無効
	HSPI_INT#	_	3.3 V	低	低速	無効
デバッグインタフェー ス	TRACECLK、TRACECTL、 TRACEDATA[7:0]、TDO、TMS	_	3.3 V	高	高速	無効
	上記以外	_	_	低	低速	無効
上記以外		_	_	低	低速	無効

注 1. 1.8 V は、xSPI0 とイーサネットポート 2 (ETH2_) でのみサポートされています。

2.5.1 クロックタイミング

2.5.1.1 CKIO 端子出力タイミング

表 2.15 CKIO 端子出力タイミング

項目	シンボル	条件	Min	Тур	Max	単位
CKIO 端子出力サイクル時間	t _{CKcyc}	図 2.2	10	_	53.4	ns
CKIO 端子出力 High レベルパルス幅	t _{CKH}		t _{CKcyc} / 2 - t _{CKr}	_	_	ns
CKIO 端子出力 Low レベルパルス幅	t _{CKL}		t _{CKcyc} / 2 - t _{CKf}	_	_	ns
CKIO 端子出力立ち上がり時間 1	t _{CKr}	CKIO: 高駆動出力設定	_	_	3.8	ns
CKIO 端子出力立ち下がり時間 1	t _{CKf}		_	_	3.8	ns
CKIO 端子出力立ち上がり時間 2	t _{CKr}	CKIO:通常出力設定	_	_	9	ns
CKIO 端子出力立ち下がり時間 2	t _{CKf}		_	_	9	ns

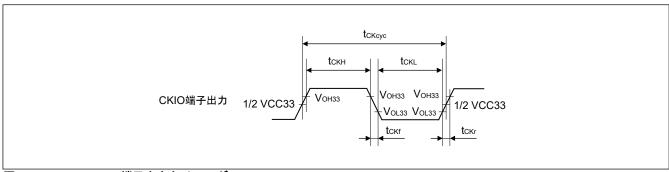


図 2.2 CKIO 端子出力タイミング

2.5.1.2 イーサネット PHY 基準クロック出力タイミング

条件:

 $C = 30 pF (ETHn_REFCLK)$

 $C = 20 pF (RMIIn_REFCLK)$

表 2.16 イーサネット PHY 基準クロック出力タイミング

項目	シンボル	条件	Min	Тур	Max	単位
ETHn_REFCLK サイクルタイム	t _{CK}	図 2.3	40	_	_	ns
ETHn_REFCLK 周波数	_		25.00 ± 50	MHz		
ETHn_REFCLK デューティー	_		45	_	55	%
ETHn_REFCLK 立ち上がり/立ち下がり時間	t _{CKr} / t _{CKf}		0.5	_	4.0	ns
RMIIn_REFCLK サイクルタイム	t _{CK}		20	_	_	ns
RMIIn_REFCLK 周波数	_		50.00 ± 50	ppm		MHz
RMIIn_REFCLK デューティー	_		45	_	55	%
RMIIn_REFCLK 立ち上がり/立ち下がり時間	t _{CKr} / t _{CKf}		0.5	_	3.5	ns

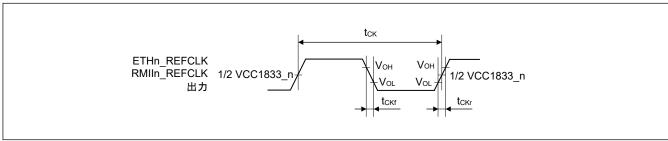


図 2.3 イーサネット PHY 基準クロック出力タイミング

2.5.1.3 EXTCLKIN 外部クロック入力

表 2.17 EXTCLKIN クロックタイミング

項目	シンボル	条件	Min	Тур	Max	単位	
EXTCLKIN 外部クロック周波数	f _{EXTCLKIN}	_	25.00 ± 50 ppm			MHz	
		EtherCAT 使用中	25.00 ± 25 ppm		25.00 ± 25 ppm MHz		MHz
EXTCLKIN デューティー	rextclkin	_	±5%		_		
EXTCLKIN 立ち上がり時間	t _{rEXTCLKIN}	_	0	_	5	ns	
EXTCLKIN 立ち下がり時間	t _{fEXTCLKIN}	_	0	_	5	ns	

注. 水晶振動子を接続する場合(すなわち EXTA/XTAL クロックを使用時)は、EXTCLKIN を Low にしてください。

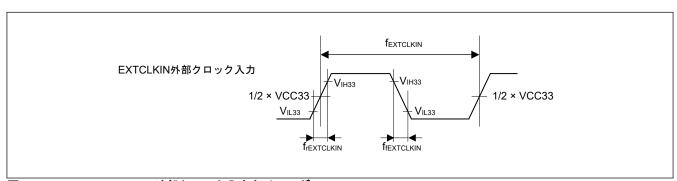


図 2.4 EXTCLKIN 外部クロック入力タイミング

2.5.1.4 EXTAL/XTAL クロックタイミング

表 2.18 EXTAL/XTAL クロックタイミング

項目	シンボル	条件	Min	Тур	Max	単位
EXTAL/XTAL クロック周波数 ^(注1)	f _{XTAL}	_	25.00 ± 50 ppm			MHz
		EtherCAT 使用中	25.00 ± 25 ppm		MHz	

- 注. 外部発振器を使用する場合、必ず XTAL を開放とし、EXTAL を Low にしてください。
- 注 1. EXTALIXTAL クロック(例:水晶振動子)を使用する場合、発振器の製造元に発振器の発振評価を依頼してください。発振安定待ち時間については、発振器の製造元の評価結果を参照してください。

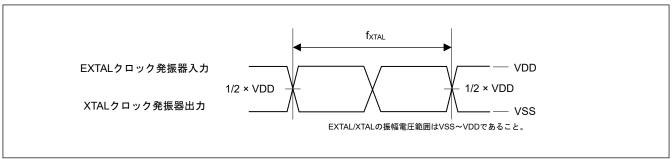


図 2.5 EXTAL クロック発振器入力と XTAL クロック発振器出力のタイミング

2.5.1.5 LOCO クロックタイミング

表 2.19 LOCO クロックタイミング

項目	シンボル	条件	Min	Тур	Max	単位
LOCO クロックサイクル時間	t _{Lcyc}	_	4.62	4.17	3.79	μs
LOCO クロック発振周波数	t _{LOCO}	_	216	240	264	kHz
LOCO クロック発振安定待機時間	t _{LOCOWT}	_	_	_	40	μs

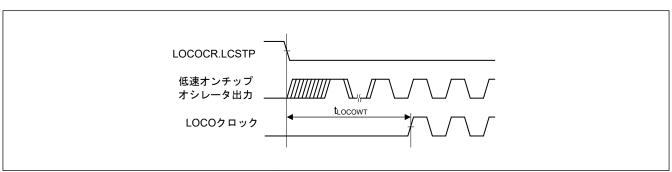


図 2.6 LOCO クロック発振開始タイミング

2.5.2 リセット、割り込み、およびモードタイミング

表 2.20 リセット、割り込み、およびモードタイミング (1/2)

項目		シンボル	条件	Min ^(注1)	Тур	Max	単位
RES#パルス幅	電源投入時	t _{dlyreset}	図 2.7	10	_	_	ms
	上記以外	t _{dlyreset2}		1	_	_	ms
RES#立ち上がり時間		t _{risereset}		_	_	150	μs
TRST#パルス幅	電源投入時	t _{dlyreset}		10	_	_	ms
	上記以外	t _{dlyreset2}		1	_	_	ms
TRST#立ち上がり時間		t _{risereset}		_	_	150	μs

表 2.20 リセット、割り込み、およびモードタイミング (2/2)

項目		シンボル	条件	Min ^(注1)	Тур	Max	単位
NMI パルス幅		t _{NMIW}	図 2.8	t _{lcyc} × 2	_	_	ns
IRQ パルス幅		t _{IRQW}	図 2.9	t _{lcyc} × 2	_	_	ns
モードホールド時間 (RES#に対して)	電源投入時	t _{MDH}	図 2.10	250	_	_	ns

注 1. t_{lcyc}: ICLK サイクル

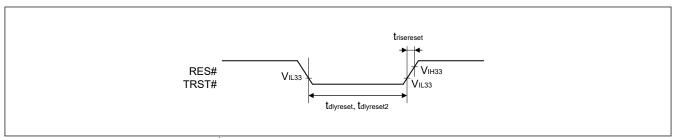


図 2.7 リセット入力タイミング

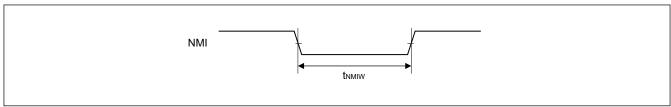


図 2.8 NMI 割り込み入力タイミング

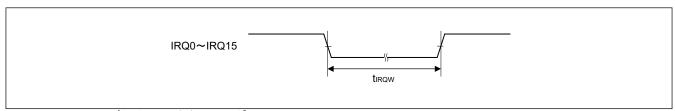


図 2.9 IRQ 割り込み入力タイミング

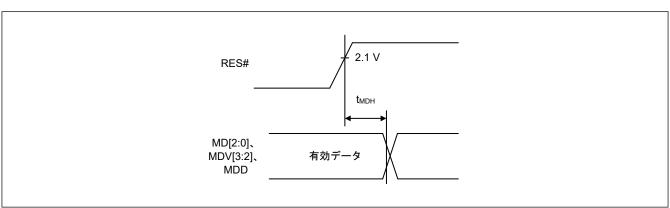


図 2.10 モード入力タイミング

2.5.3 バスタイミング

表 2.21 パスタイミング (1/2)

条件: V_{OH} = $VCC33 \times 0.5$ 、 V_{OL} = $VCC33 \times 0.5$ 、C = 15 pF (CKIO)、30 pF (その他)、 T_{i} min = -40°C

条件:V _{OH} = VCC33 × 0.5、\	<u> </u>	シンボ	CKIO = 1/t _{CKcy} (最大 66 MHz)	,		
項目		レンホ	Min	Max	単位	参照図
アドレス遅延時間 1	SDRAM ^(注2)	t _{AD1}	2	11	ns	図 2.11~図 2.35
	上記以外		0	10	ns	
アドレス遅延時間 2		t _{AD2}	1/2t _{CKcyc}	1/2t _{CKcyc} + 10	ns	図 2.18
アドレスセットアップ時間		t _{AS}	0	_	ns	図 2.11~図 2.14、図 2.18
チップイネーブルセットアッ	プ時間	t _{CS}	0	_	ns	図 2.11~図 2.14、図 2.18
アドレスホールド時間		t _{AH}	0	_	ns	図 2.11~図 2.14
BS 遅延時間		t _{BSD}	_	11	ns	図 2.11~図 2.32
CSn#遅延時間 1	SDRAM ^(注2)	t _{CSD1}	2	11	ns	図 2.11~図 2.35
	上記以外		0	10	ns	
リード/ライト遅延時間 1	SDRAM ^(注2)	t _{RWD1}	2	11	ns	図 2.11~図 2.35
	上記以外		0	10	ns	
リードストローブ遅延時間		t _{RSD}	1/2t _{CKcyc}	1/2t _{CKcyc} + 10	ns	図 2.11~図 2.18
リードデータセットアップ 味即 4(注3)	高駆動出力	t _{RDS1}	1/2t _{CKcyc} + 4	_	ns	図 2.11~図 2.17
時間 1 ^(注3)	通常出力		1/2t _{CKcyc} + 7	_	ns	
リードデータセットアップ 時間 2 ^(注3)	高駆動出力	t _{RDS2}	6.6	_	ns	図 2.19~図 2.22、図 2.27~図 2.29
リードデータセットアップ	高駆動出力	t _{RDS3}	1/2t _{CKcyc} + 4	_	ns	図 2.18
時間 3 ^(注3)	通常出力		1/2t _{CKcyc} + 7	_	ns	
リードデータホールド時間 1		t _{RDH1}	0	_	ns	図 2.11~図 2.17
リードデータホールド時間 2		t _{RDH2}	2.5	_	ns	図 2.19~図 2.22、図 2.27~図 2.29
リードデータホールド時間 3		t _{RDH3}	0	_	ns	図 2.18
ライトイネーブル遅延時間 1		t _{WED1}	1/2t _{CKcyc}	1/2t _{CKcyc} + 10	ns	図 2.11~図 2.16
ライトイネーブル遅延時間 2		t _{WED2}	_	11	ns	図 2.17
ライトデータ遅延時間 1		t _{WDD1}	_	11	ns	図 2.11~図 2.17
ライトデータ遅延時間 2		t _{WDD2}	_	11	ns	図 2.23~図 2.26、図 2.30~図 2.32
ライトデータホールド時間 1		t _{WDH1}	1	_	ns	図 2.11~図 2.17
ライトデータホールド時間 2		t _{WDH2}	2	_	ns	図 2.23~図 2.26、図 2.30~図 2.32
ライトデータホールド時間 4		t _{WDH4}	0	_	ns	図 2.11~図 2.15
WAIT#セットアップ時間	高駆動出力	t _{WTS}	1/2t _{CKcyc} + 4.5	_	ns	図 2.12~図 2.18
通常出力			1/2t _{CKcyc} + 8	_	ns	
WAIT#ホールド時間	WAIT#ホールド時間		1/2t _{CKcyc} + 3.5	_	ns	図 2.12~図 2.18
RAS#遅延時間 1		t _{RASD1}	2	11	ns	図 2.19~図 2.35
CAS#遅延時間 1		t _{CASD1}	2	11	ns	図 2.19~図 2.35
DQM 遅延時間 1		t _{DQMD1}	2	11	ns	図 2.19~図 2.32

表 2.21 パスタイミング (2/2)

条件: V_{OH} = $VCC33 \times 0.5$ 、 V_{OL} = $VCC33 \times 0.5$ 、C = 15 pF (CKIO)、30 pF (その他)、 T_i min = -40°C

	シンボ	CKIO = 1/t _{CKcyc} ^(注1) (最大 66 MHz)			
項目	ル	Min	Max	単位	参照図
CKE 遅延時間 1	t _{CKED1}	2	11	ns	図 2.34
AH#遅延時間	t _{AHD}	1/2t _{CKcyc}	1/2t _{CKcyc} + 10	ns	図 2.15
マルチプレクスアドレス遅延時間	t _{MAD}	_	10	ns	図 2.15
マルチプレクスアドレスホールド時間	t _{MAH}	1	_	ns	図 2.15
AH#アドレスセットアップ時間	t _{AVVH}	1/2t _{CKcyc} - 2	_	ns	図 2.15
DACK/TEND 遅延時間	t _{DACD}	「2.5.4. DMAC タイミング」を参 照してください。		ns	図 2.11~図 2.32

- 注. 遅延時間、セットアップ時間、ホールド時間の記述にある 1/2t_{CKcyc} は、クロック立ち上がりエッジから 1/2 サイクル、すなわちクロック立ち下がりの基準を示します。
- 注 1. CKIO (外部バスクロック) の fmax 値に関しては、システム構成に合わせた待機サイクル数を考慮に入れてください。CKIO が 50 MHz 以上の周波数で動作しているときは、高駆動出力を選択してください。
- 注 2. これらの値は、CSn 空間バスコントロールレジスタ (CSnBCR) で SDRAM (CSnBCR.TYPE[2:0] = 100b) を選択し、CKIO に高駆動 出力を選択している場合です。
- 注 3. これらの値は、CKIO に高駆動出力と通常出力をそれぞれ選択している場合です。

表 2.22 パスタイミング (1/2)

条件: V_{OH} = $VCC33 \times 0.5$ 、 V_{OL} = $VCC33 \times 0.5$ 、C = 12 pF (CKIO)、12 pF (その他)、 T_i min = -20°C

	-	シンボ	CKIO = 1/t _{CKcy} (最大 100 MHz	c ^(注1)		
項目		ル	Min	Max	単位	参照図
アドレス遅延時間 1	SDRAM ^(注2)	t _{AD1}	1.3	8	ns	図 2.11~図 2.35
	上記以外		0	8	ns	
アドレス遅延時間 2	アドレス遅延時間 2		1/2t _{CKcyc} - 0.5	1/2t _{CKcyc} + 8	ns	図 2.18
アドレスセットアップ時間		t _{AS}	0	_	ns	図 2.11~図 2.14、図 2.18
チップイネーブルセットアッ	プ時間	t _{CS}	0	_	ns	図 2.11~図 2.14、図 2.18
アドレスホールド時間		t _{AH}	0	_	ns	図 2.11~図 2.14
BS 遅延時間		t _{BSD}	_	8	ns	図 2.11~図 2.32
CSn#遅延時間 1	SDRAM ^(注2)	t _{CSD1}	1.3	8	ns	図 2.11~図 2.35
	上記以外		0	8	ns	
リード/ライト遅延時間 1	SDRAM ^(注2)	t _{RWD1}	1.3	8	ns	図 2.11~図 2.35
	上記以外		0	8	ns	
リードストローブ遅延時間		t _{RSD}	1/2t _{CKcyc}	1/2t _{CKcyc} + 8	ns	図 2.11~図 2.18
リードデータセットアップ	高駆動出力	t _{RDS1}	1/2t _{CKcyc} + 4.5	_	ns	図 2.11~図 2.17
時間 1 ^(注3)	通常出力		1/2t _{CKcyc} + 7	_	ns	
リードデータセットアップ 時間 2 ^(注3)	高駆動出力	t _{RDS2}	3.5	_	ns	図 2.19~図 2.22、図 2.27~図 2.29
リードデータセットアップ	高駆動出力	t _{RDS3}	1/2t _{CKcyc} + 4.5	_	ns	図 2.18
時間 3 ^(注3)	通常出力		1/2t _{CKcyc} + 7	_	ns	
リードデータホールド時間 1	,	t _{RDH1}	0	_	ns	図 2.11~図 2.17
リードデータホールド時間 2		t _{RDH2}	2.5	_	ns	図 2.19~図 2.22、図 2.27~図 2.29
リードデータホールド時間3		t _{RDH3}	0	_	ns	図 2.18

表 2.22 パスタイミング (2/2)

条件: V_{OH} = $VCC33 \times 0.5$ 、 V_{OL} = $VCC33 \times 0.5$ 、C = 12 pF (CKIO)、12 pF (その他)、 T_i min = -20°C

		シンボ	CKIO = 1/t _{CKcy} (最大 100 MHz			
項目		ルル	Min	Max	単位	参照図
ライトイネーブル遅延時間 1		t _{WED1}	1/2t _{CKcyc}	1/2t _{CKcyc} + 8	ns	図 2.11~図 2.16
ライトイネーブル遅延時間 2		t _{WED2}	_	9	ns	図 2.17
ライトデータ遅延時間 1		t _{WDD1}	_	8	ns	図 2.11~図 2.17
ライトデータ遅延時間 2		t _{WDD2}	_	8	ns	図 2.23~図 2.26、図 2.30~図 2.32
ライトデータホールド時間 1		t _{WDH1}	1	_	ns	図 2.11~図 2.17
ライトデータホールド時間 2		t _{WDH2}	1.3	_	ns	図 2.23~図 2.26、図 2.30~図 2.32
ライトデータホールド時間4		t _{WDH4}	0	_	ns	図 2.11~図 2.15
WAIT#セットアップ時間 (注3)	高駆動出力	t _{WTS}	1/2t _{CKcyc} + 4.5	_	ns	図 2.12~図 2.18
(注3)	通常出力		1/2t _{CKcyc} + 8	_	ns	
WAIT#ホールド時間		t _{WTH}	1/2t _{CKcyc} + 3.5	_	ns	図 2.12~図 2.18
RAS#遅延時間 1		t _{RASD1}	1.3	8	ns	図 2.19~図 2.35
CAS#遅延時間 1		t _{CASD1}	1.3	8	ns	図 2.19~図 2.35
DQM 遅延時間 1		t _{DQMD1}	1.3	8	ns	図 2.19~図 2.32
CKE 遅延時間 1		t _{CKED1}	1.3	8	ns	図 2.34
AH#遅延時間		t _{AHD}	1/2t _{CKcyc}	1/2t _{CKcyc} + 8	ns	図 2.15
マルチプレクスアドレス遅延	時間	t _{MAD}	_	8	ns	図 2.15
マルチプレクスアドレスホー	ルド時間	t _{MAH}	1	_	ns	図 2.15
AH#アドレスセットアップ時	間	t _{AVVH}	1/2t _{CKcyc} - 2	_	ns	図 2.15
DACK/TEND 遅延時間		t _{DACD}	「2.5.4. DMAC が 照してください	タイミング」を参 い。	ns	図 2.11~図 2.32

注. 遅延時間、セットアップ時間、ホールド時間の記述にある 1/2t_{CKcyc} は、クロック立ち上がりエッジから 1/2 サイクル、すなわちクロック立ち下がりの基準を示します。

注 1. CKIO(外部バスクロック)の fmax 値に関しては、システム構成に合わせた待機サイクル数を考慮に入れてください。CKIO が 50 MHz 以上の周波数で動作しているときは、高駆動出力を選択してください。

注 2. これらの値は、CSn 空間バスコントロールレジスタ (CSnBCR) で SDRAM(CSnBCR.TYPE[2:0] = 100b)を選択し、CKIO に高駆動 出力を選択している場合です。

注 3. これらの値は、CKIO に高駆動出力と通常出力をそれぞれ選択している場合です。

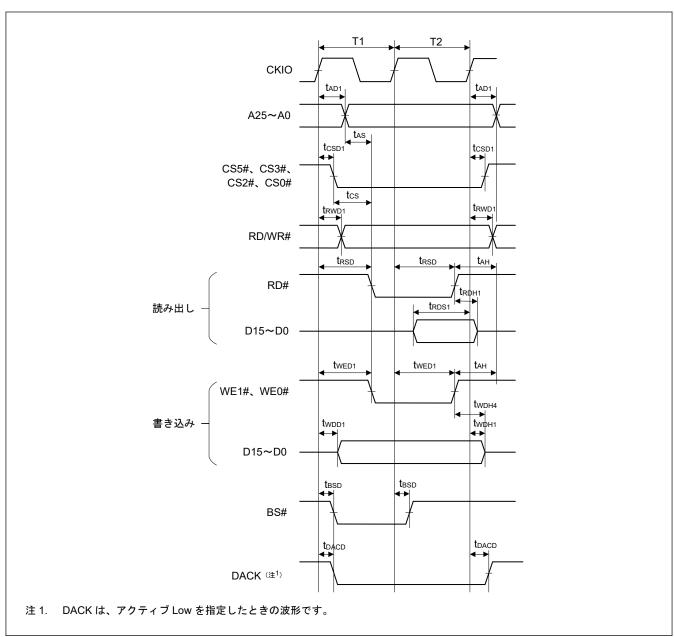


図 2.11 SRAM インタフェース基本パスサイクル(ウェイトなし)

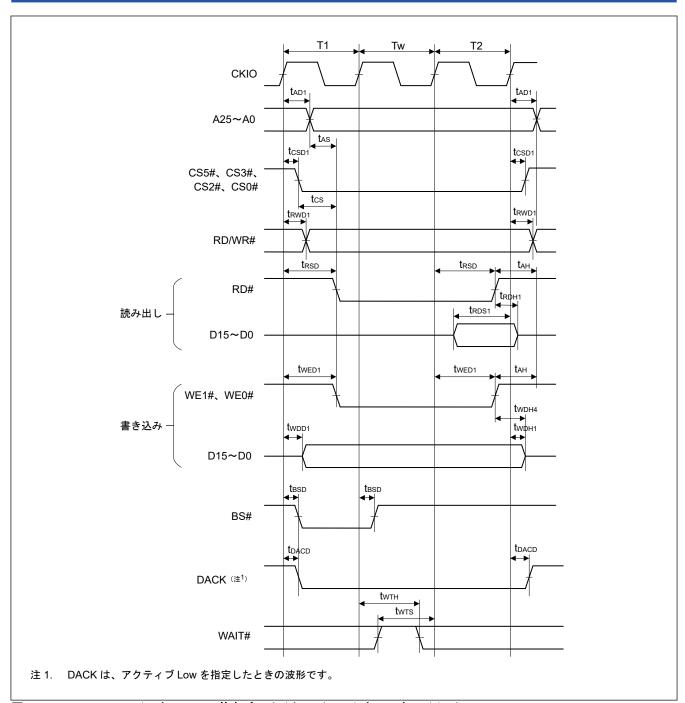


図 2.12 SRAM インタフェース基本パスサイクル(ソフトウェアウェイト 1)

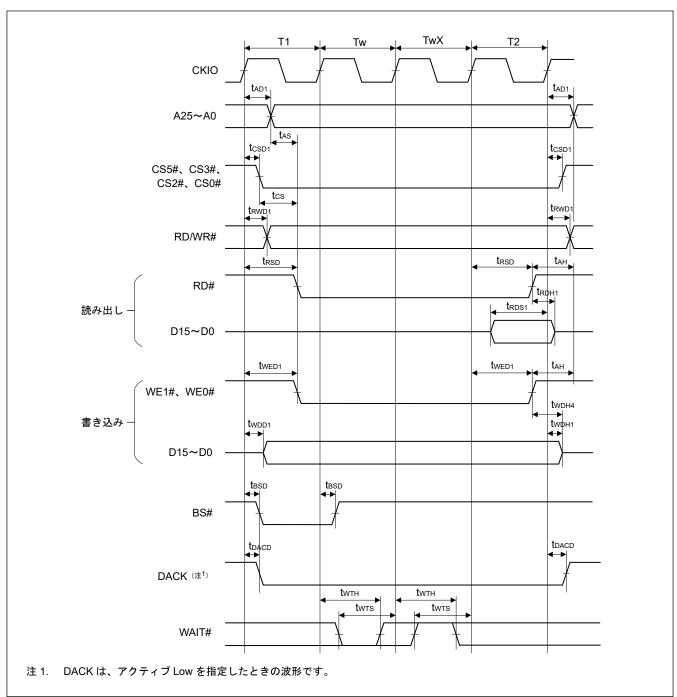


図 2.13 SRAM インタフェース基本パスサイクル(ソフトウェアウェイト 1、外部ウェイト 1 を挿入)

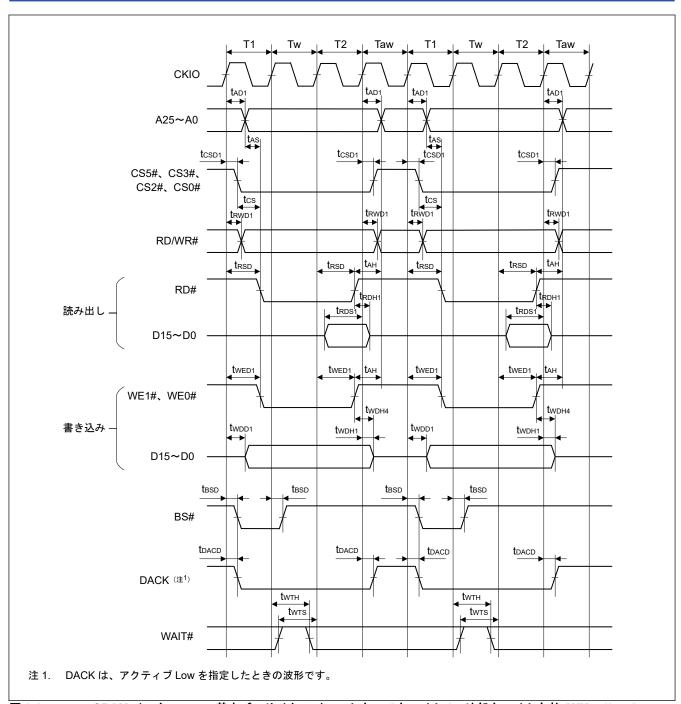


図 2.14 SRAM インタフェース基本パスサイクル(ソフトウェアウェイト 1、外部ウェイト有効 (WM = 0)、アイドルサイクルなし)

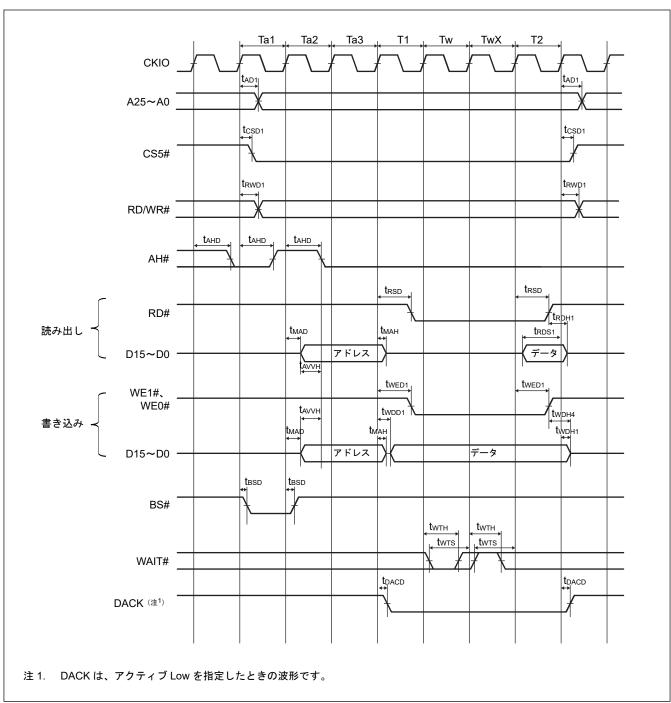


図 2.15 MPX-I/O インタフェースパスサイクル(アドレスサイクル 3、ソフトウェアウェイト 1、外部ウェイト 1 を挿入)

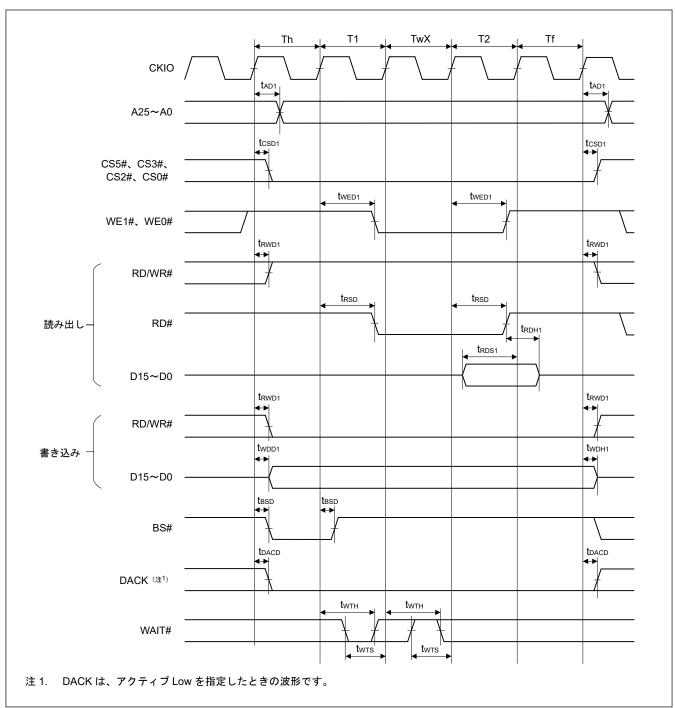


図 2.16 パイト選択付き SRAM パスサイクル(SW = 1 サイクル、HW = 1 サイクル、非同期外部ウェイト 1 挿入、BAS = 0(ライトサイクル UB/LB 制御))

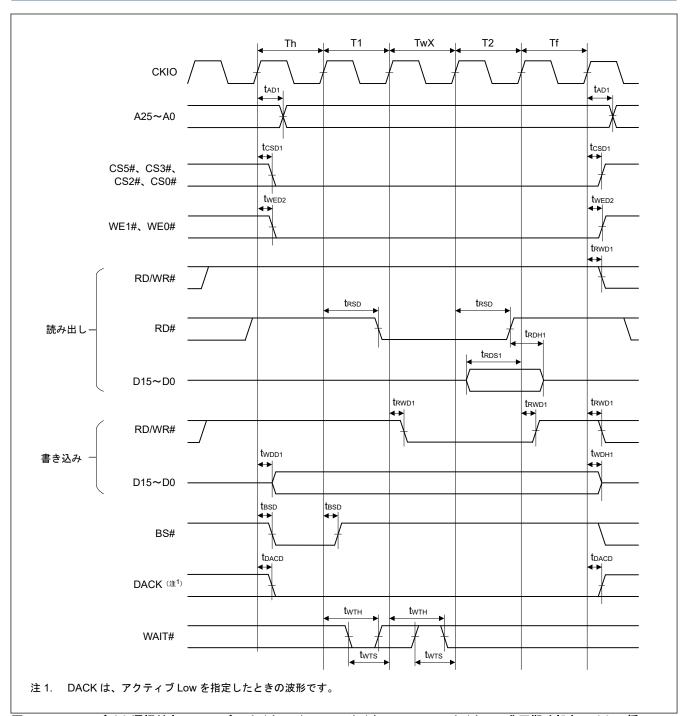


図 2.17 パイト選択付き SRAM パスサイクル(SW = 1 サイクル、HW = 1 サイクル、非同期外部ウェイト 1 挿入、BAS = 1(ライトサイクル WE 制御))

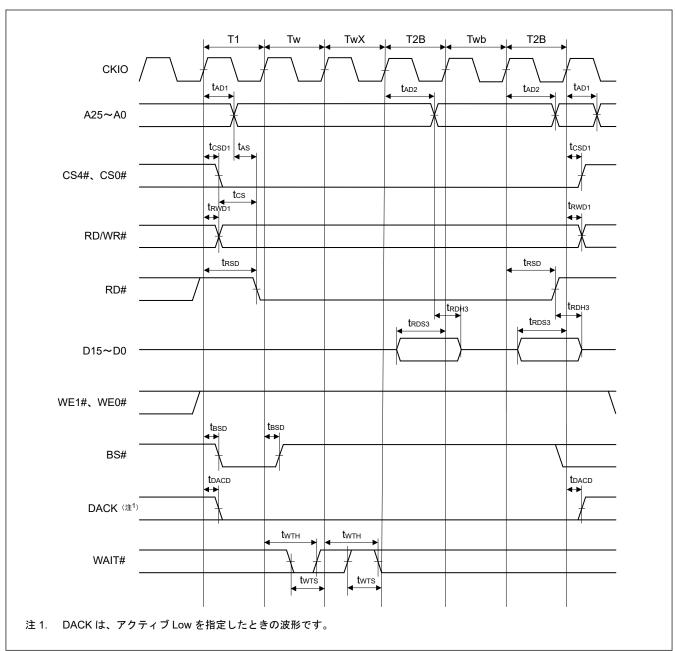


図 2.18 パースト ROM リードサイクル(ソフトウェアウェイト 1、非同期外部ウェイト 1 を挿入、パーストウェイト 1、2)

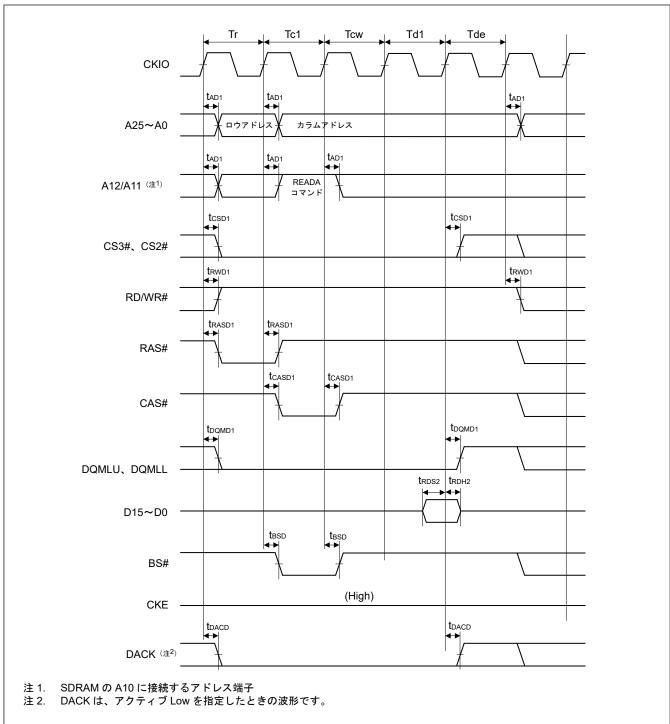


図 2.19 シンクロナス DRAM シングルリードパスサイクル(オートプリチャージ付き、CAS レイテンシ 2、 WTRCD = 0 サイクル、WTRP = 0 サイクル)

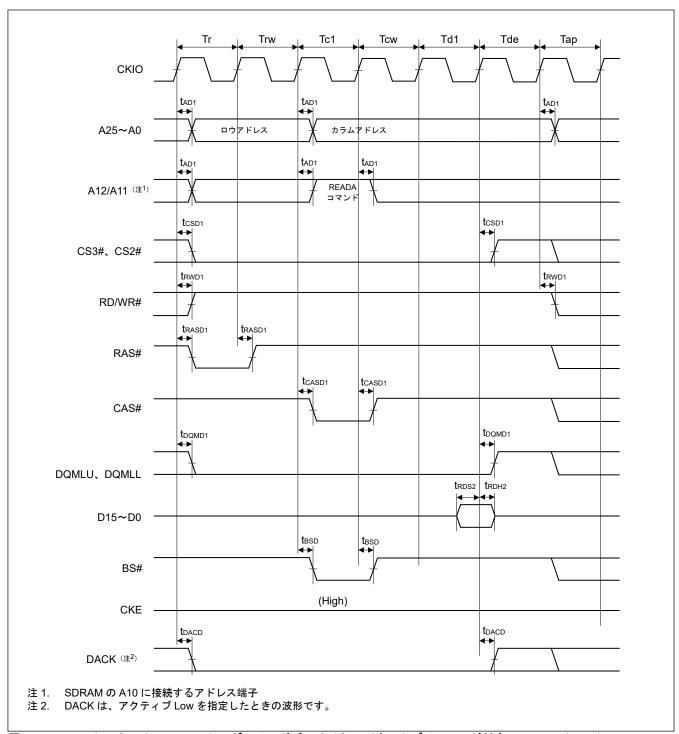


図 2.20 シンクロナス DRAM シングルリードバスサイクル(オートプリチャージ付き、CAS レイテンシ 2、 WTRCD = 1 サイクル、WTRP = 1 サイクル)

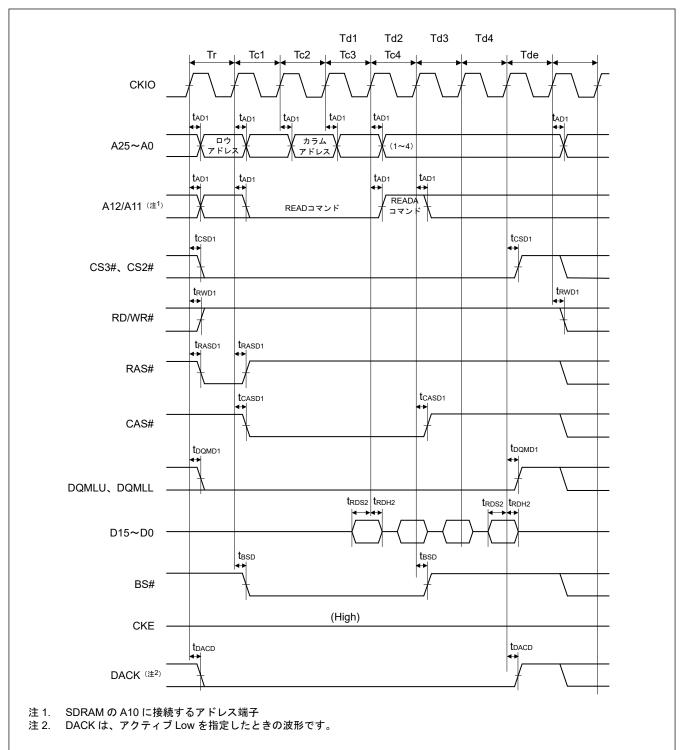


図 2.21 シンクロナス DRAM バーストリードバスサイクル(4 サイクルのリード)(オートプリチャージ付き、 CAS レイテンシ 2、WTRCD = 0 サイクル、WTRP = 1 サイクル)

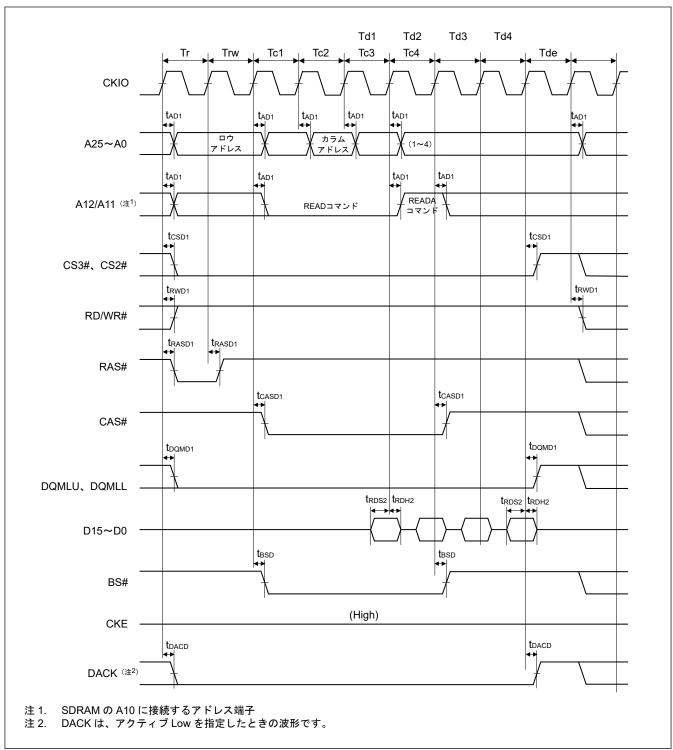


図 2.22 シンクロナス DRAM バーストリードバスサイクル(4 サイクルのリード)(オートプリチャージ付き、 CAS レイテンシ 2、WTRCD = 1 サイクル、WTRP = 0 サイクル)

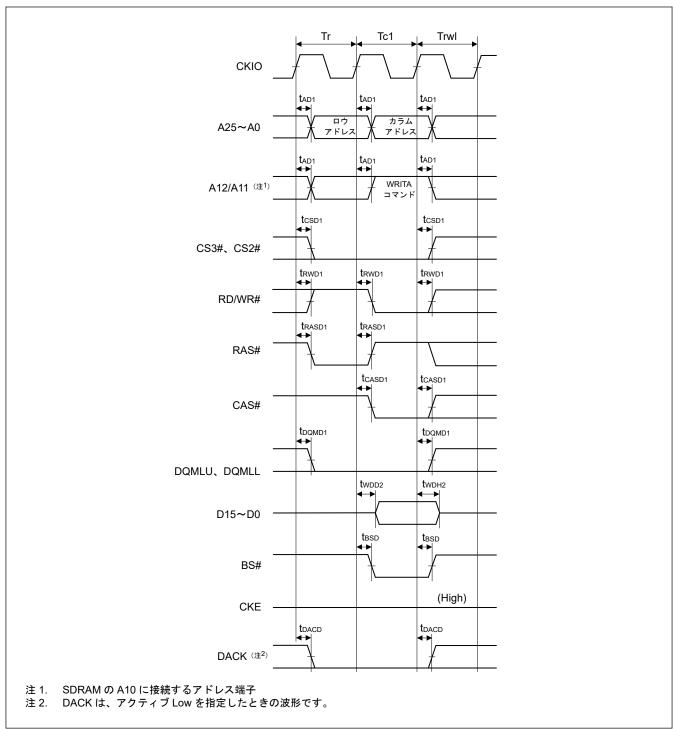


図 2.23 シンクロナス DRAM シングルライトバスサイクル(オートプリチャージ付き、TRWL = 1 サイクル)

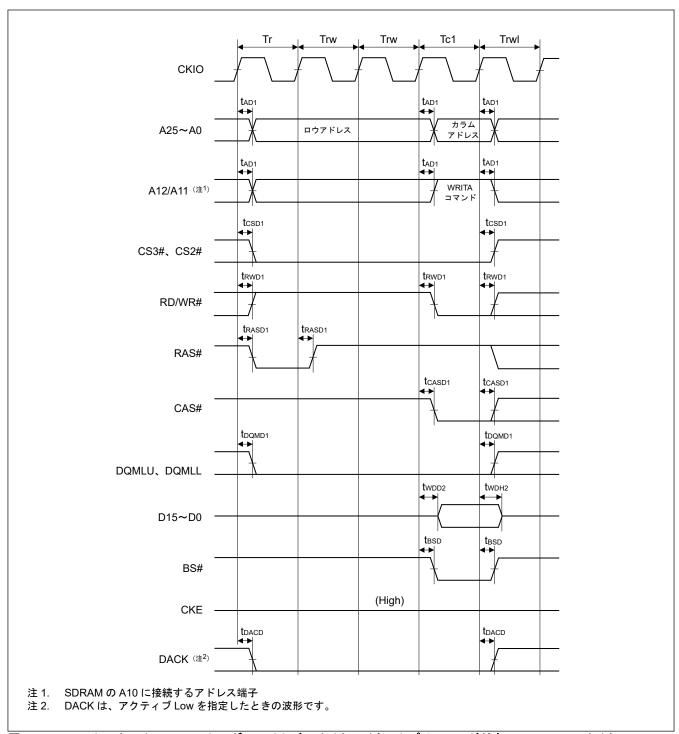


図 2.24 シンクロナス DRAM シングルライトパスサイクル (オートプリチャージ付き、WTRCD = 2 サイクル、TRWL = 1 サイクル)

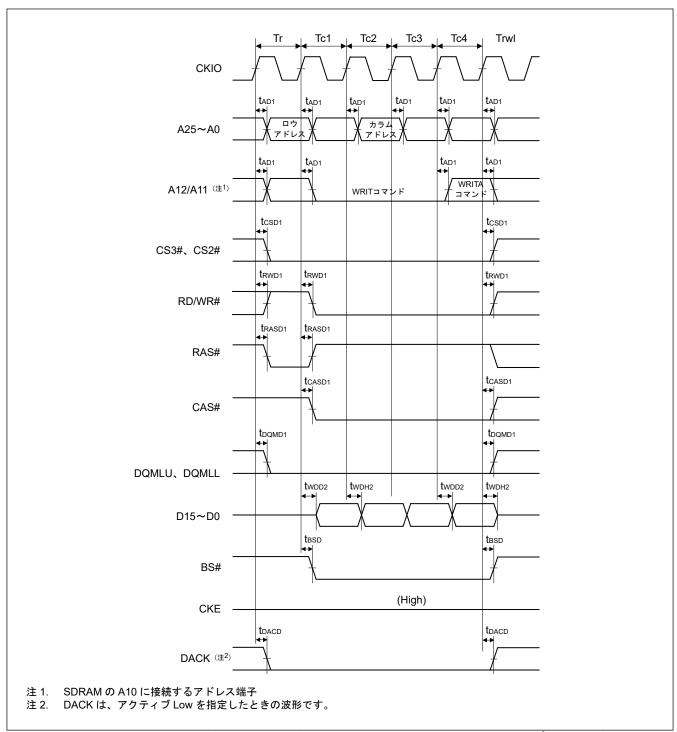


図 2.25 シンクロナス DRAM パーストライトパスサイクル(4 サイクルのライト)(オートプリチャージ付き、 WTRCD = 0 サイクル、TRWL = 1 サイクル)

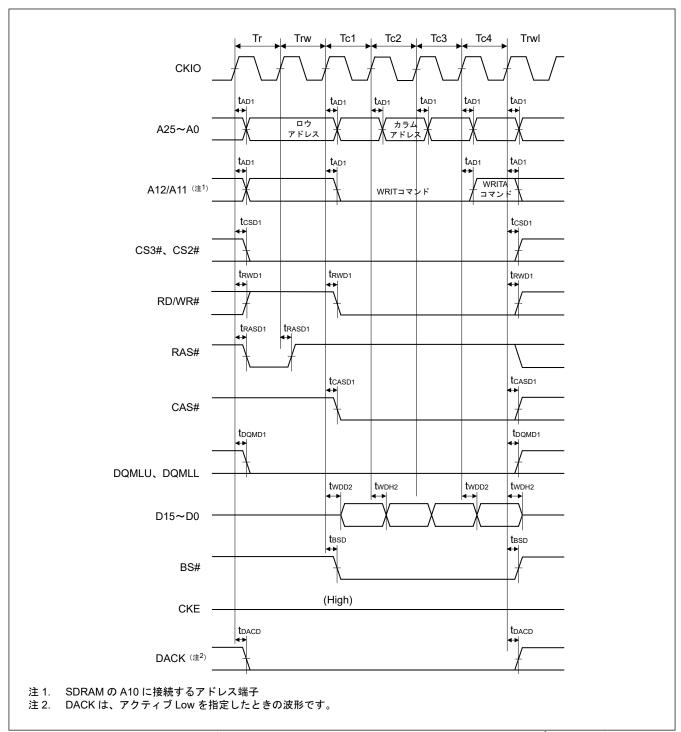


図 2.26 シンクロナス DRAM パーストライトパスサイクル(4 サイクルのライト)(オートプリチャージ付き、 WTRCD = 1 サイクル、TRWL = 1 サイクル)

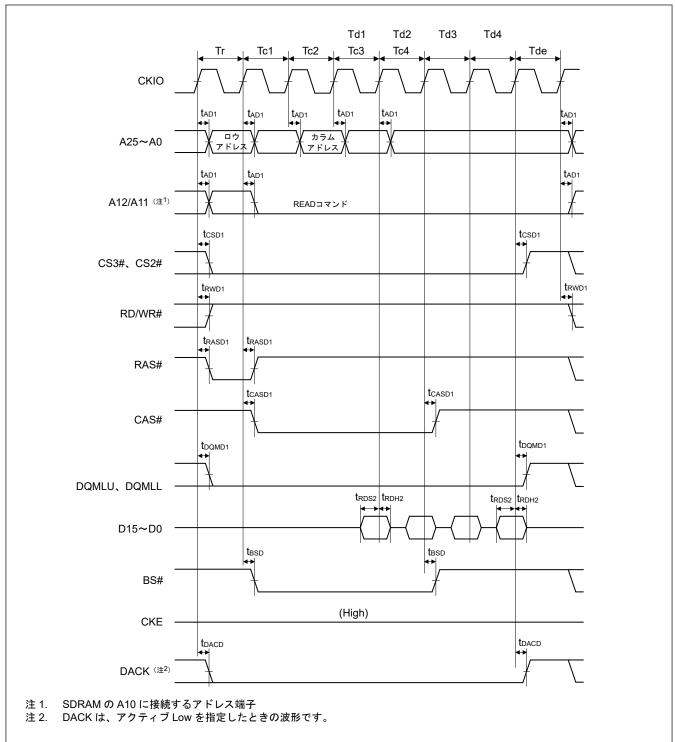


図 2.27 シンクロナス DRAM パーストリードパスサイクル (4 サイクルのリード) (パンクアクティブモード: ACT + READ コマンド、CAS レイテンシ 2、WTRCD = 0 サイクル)

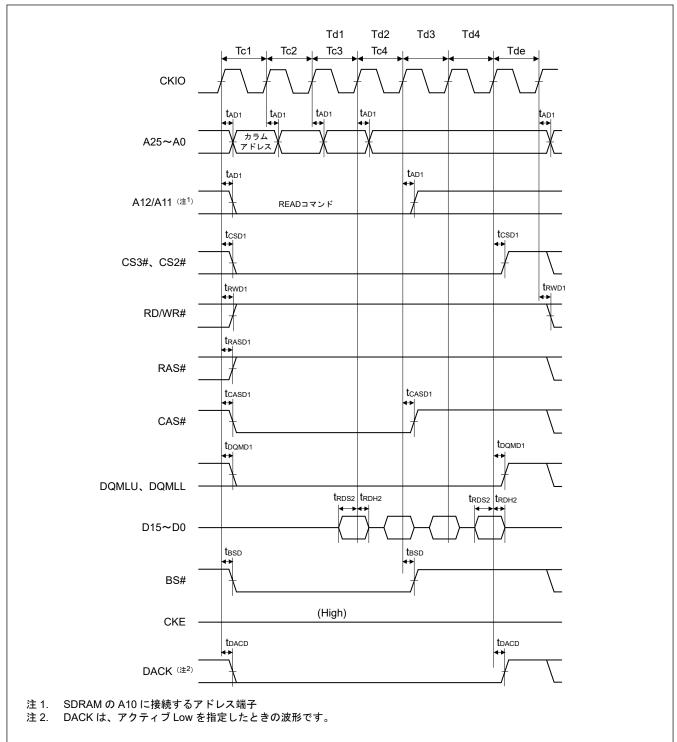


図 2.28 シンクロナス DRAM パーストリードパスサイクル(4 サイクルのリード)(パンクアクティブモード: READ コマンド、同一ロウアドレス、CAS レイテンシ 2、WTRCD = 0 サイクル)

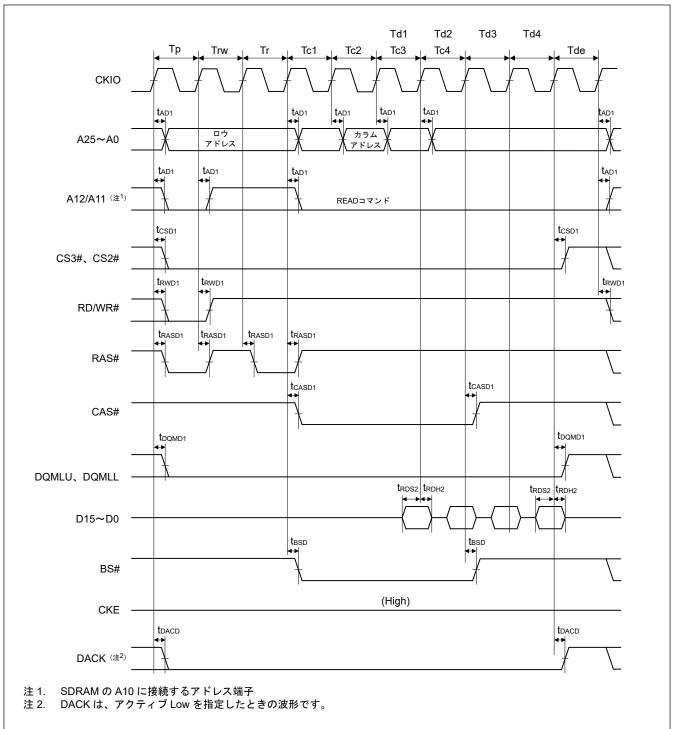


図 2.29 シンクロナス DRAM パーストリードパスサイクル $(4 \, \forall \, f)$ $(4 \, \forall$

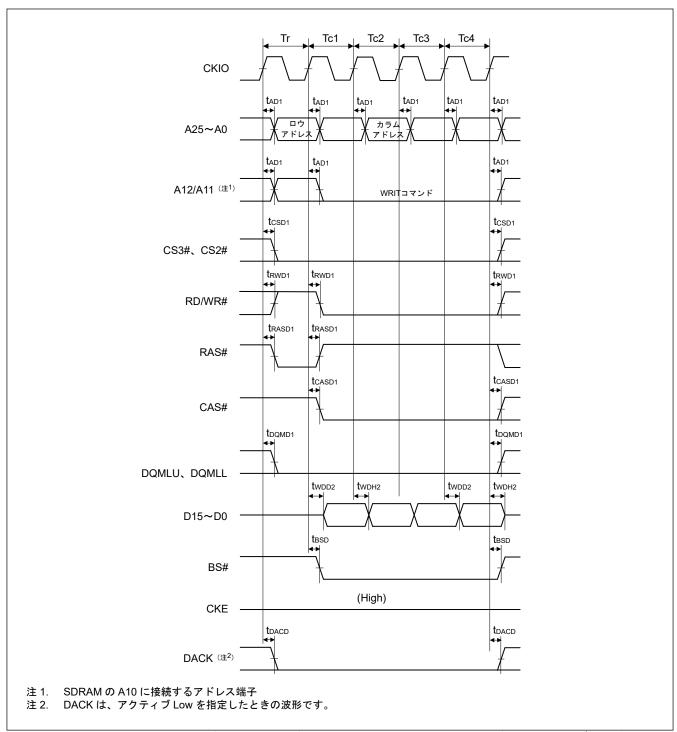


図 2.30 シンクロナス DRAM パーストライトパスサイクル(4 サイクルのライト)(パンクアクティブモード: ACT + WRITE コマンド、WTRCD = 0 サイクル、TRWL = 0 サイクル)

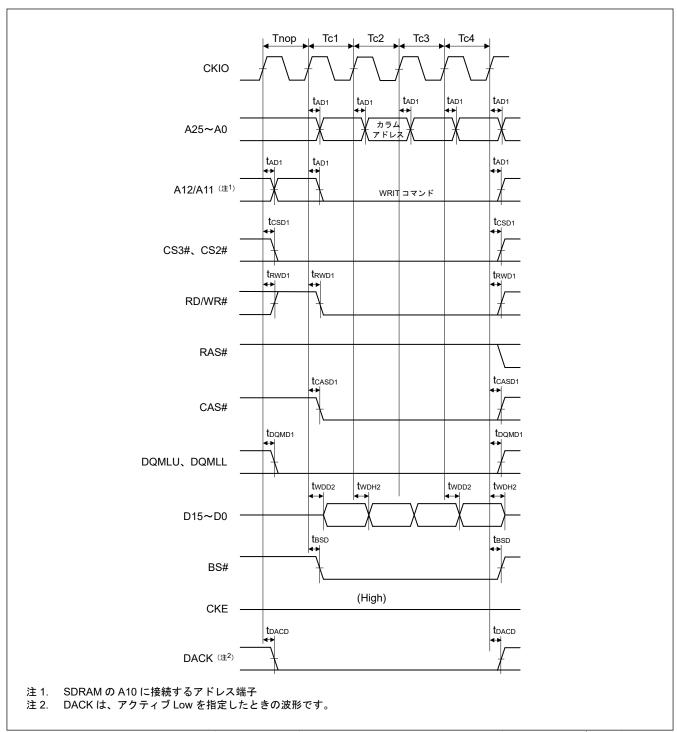


図 2.31 シンクロナス DRAM パーストライトパスサイクル (4 サイクルのライト) (パンクアクティブモード: WRITE コマンド、同一ロウアドレス、WTRCD = 0 サイクル、TRWL = 0 サイクル)

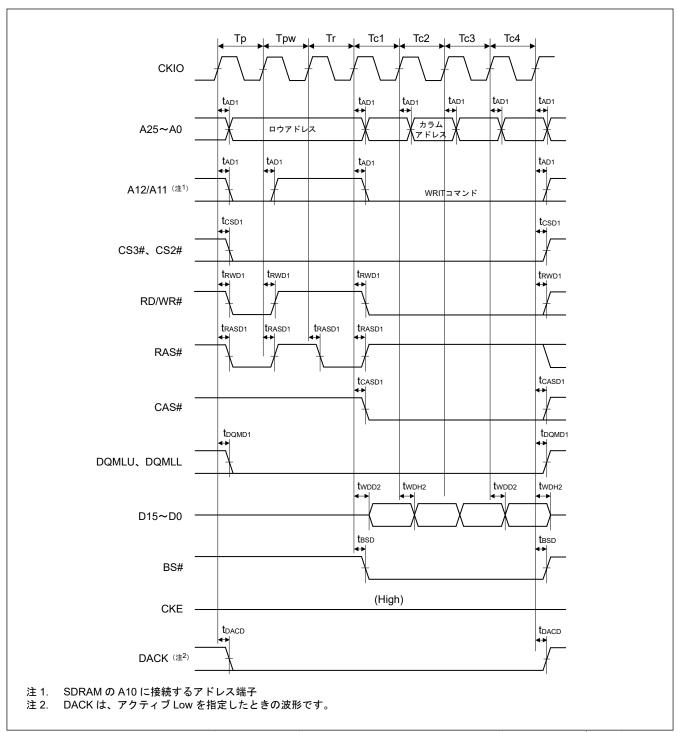


図 2.32 シンクロナス DRAM パーストライトパスサイクル(4 サイクルのライト)(パンクアクティブモード: PRE + ACT + WRITE コマンド、異なるロウアドレス、WTRCD = 0 サイクル、TRWL = 0 サイクル)

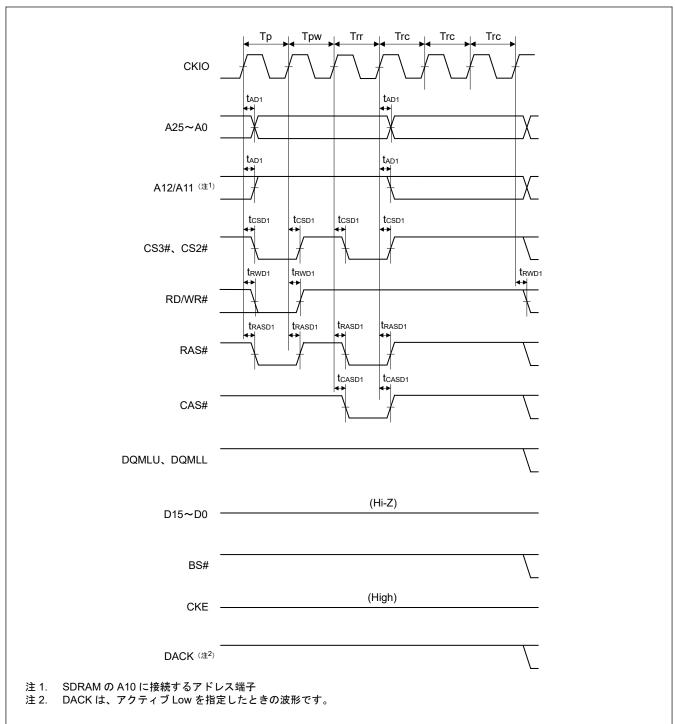


図 2.33 シンクロナス DRAM オートリフレッシュタイミング(WTRP = 1 サイクル、WTRC = 3 サイクル)

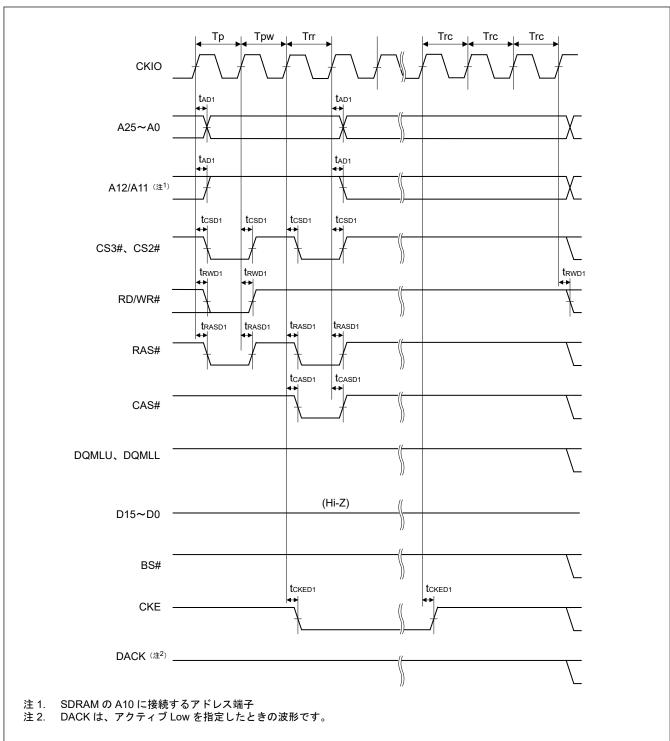
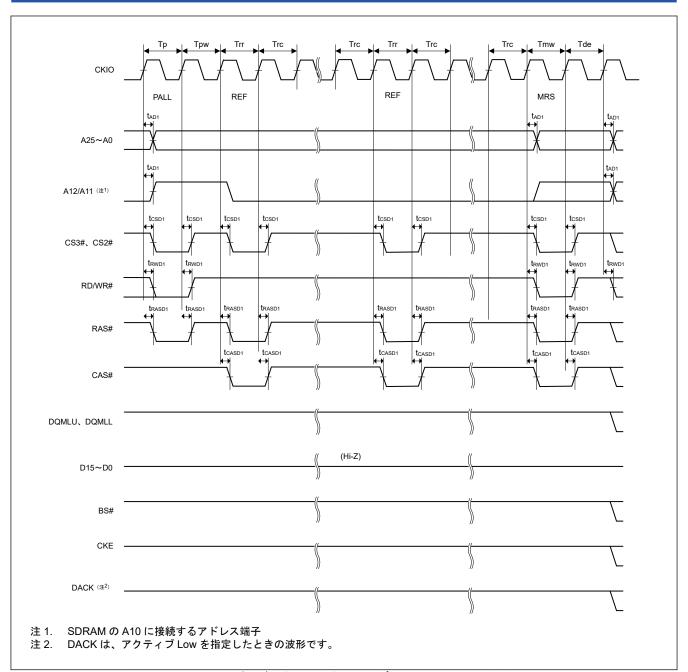



図 2.34 シンクロナス DRAM セルフリフレッシュタイミング(WTRP = 1 サイクル)

図 2.35 シンクロナス DRAM モードレジスタセットタイミング(WTRP = 1 サイクル)

2.5.4 DMAC タイミング

表 2.23 DMAC タイミング

条件: V_{OH} = $VCC33 \times 0.5$ 、 V_{OL} = $VCC33 \times 0.5$ 、C = 15 pF (CKIO)、30 pF (その他)、 T_{i} min = -40°C

項目		シンボル	Min ^(注1)	Max	単位	参照図
DMAC	DREQ パルス幅	t _{DRQW}	t _{PLcyc} × 2	_	ns	図 2.36
	DACK および TEND の遅延時間	t _{DACD}	0	10	ns	図 2.37

注 1. t_{PLcyc} : PCLKL サイクル

表 2.24 DMAC タイミング

条件: V_{OH} = $VCC33 \times 0.5$ 、 V_{OL} = $VCC33 \times 0.5$ 、C = 12 pF (CKIO)、12 pF (その他)、 T_i min = -20°C

項目	項目		Min ^(注1)	Max	単位	参照図
DMAC	DREQ パルス幅	t _{DRQW}	t _{PLcyc} × 2	_	ns	図 2.36
	DACK および TEND の遅延時間	t _{DACD}	-0.5	8	ns	図 2.37

注 1. t_{PLcyc} : PCLKL サイクル

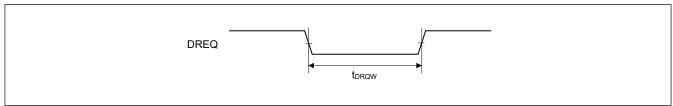


図 2.36 DREQ 入力タイミング

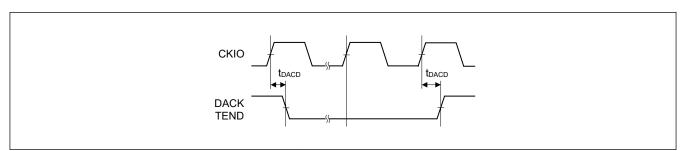


図 2.37 DACK および TEND の出力タイミング

2.5.5 内蔵周辺モジュールタイミング

2.5.5.1 I/O ポートタイミング

表 2.25 I/O ポートタイミング

項目		シンボル	Min	Мах	単位 ^(注1)	参照図
I/O ポート	入力データパルス幅	t _{PRW}	1.5	_	t _{PLcyc}	図 2.38

注 1. t_{PLcyc}: PCLKL サイクル

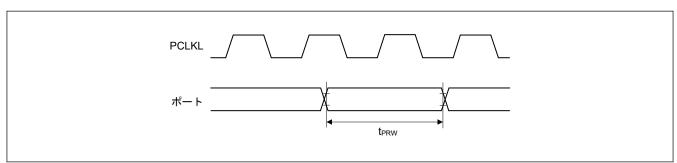


図 2.38 I/O ポート入力タイミング

2.5.5.2 CMTW タイミング

表 2.26 CMTW タイミング

項目			シンボル	Min	Мах	単位 ^(注1)	参照図
CMTW	インプットキャプチャ入	片エッジ設定	t _{CMTWICW}	1.5	_	t _{PLcyc}	図 2.39
カパルス幅		両エッジ設定		2.5	_		

注 1. t_{PLcyc} : PCLKL サイクル

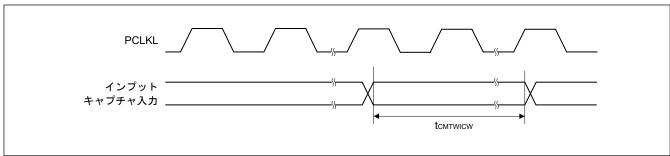


図 2.39 CMTW インプットキャプチャ入力タイミング

2.5.5.3 MTU3 タイミング

表 2.27 MTU3 タイミング

項目		シンボル	Min	Max	単位 ^(注1)	参照図	
MTU3	インプットキャプチャ入	片エッジ設定	t _{MTICW}	2.5		t _{PHcyc}	図 2.40
カパルス幅		両エッジ設定		3.5			
	タイマクロックパルス幅	片エッジ設定 t _{MTCKWH} 、 2.		2.5		t _{PHcyc}	図 2.41
		両エッジ設定	t _{MTCKWL}	3.5	_		
		位相計数モード		3.5	_		

注 1. t_{PHcyc}: PCLKH サイクル

図 2.40 MTU3 インプットキャプチャ入力タイミング

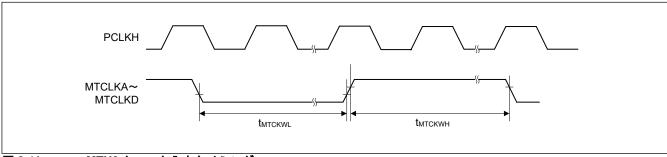


図 2.41 MTU3 クロック入力タイミング

2.5.5.4 POE3 タイミング

表 2.28 POE3 タイミング

項目	項目			Min	Мах	単位 ^(注1)	参照図
POE3	POEn#入力パルス幅		t _{POEW}	2.5	_	t _{PHcyc}	図 2.42
	出力禁止時間	POEn#信号レベルの遷移	t _{POEDI}	_	5 × PCLKH + 0.1	μs	図 2.43
		出力端子の同時出力	t _{POEDO}	_	3 × PCLKH + 0.1	μs	図 2.44
		レジスタ設定	t _{POEDS}	_	PCLKH + 0.1	μs	図 2.45
		発振停止検出	t _{POEDOS}	_	74	μs	図 2.46

注 1. t_{PHcyc}: PCLKH サイクル

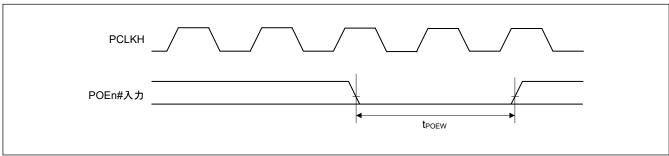


図 2.42 POEn#入力パルスタイミング

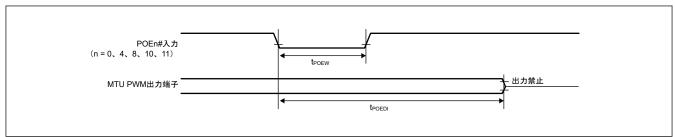


図 2.43 POEn#の信号レベルの遷移に対応した POE の出力禁止時間

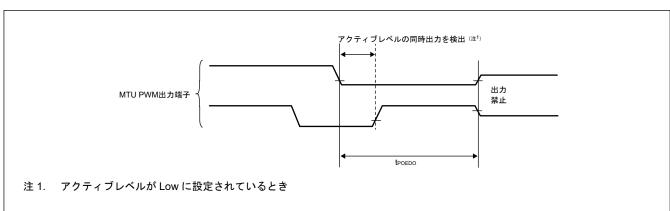


図 2.44 出力端子の同時出力に対応した POE の出力禁止時間

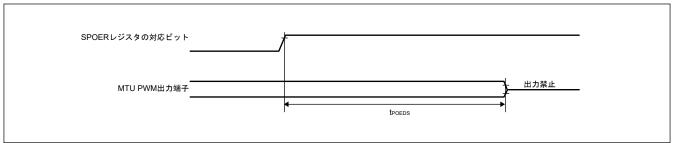


図 2.45 レジスタ設定に対応した POE の出力禁止時間

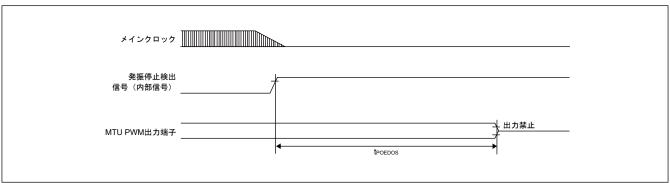


図 2.46 発振停止検出に対応した POE の出力禁止時間

2.5.5.5 GPT タイミング

表 2.29 GPT タイミング

項目		シンボル	Min	Max	単位 ^(注1)	参照図	
GPT	インプットキャプ	片エッジ設定	t _{GTICW}	2.5	_	t _{PHcyc}	図 2.47
	チャ入力パルス幅	両エッジ設定		3.5	_		
	外部トリガ入力パ	片エッジ設定	t _{GTEW}	2.5	_	t _{PHcyc}	図 2.48
	ルス幅	両エッジ設定		3.5	_		

注 1. t_{PHcyc}: PCLKH サイクル(LLPP チャネル)、PCLKM サイクル(その他のチャネル)

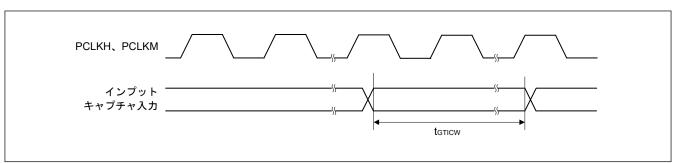


図 2.47 GPT インプットキャプチャ入力タイミング

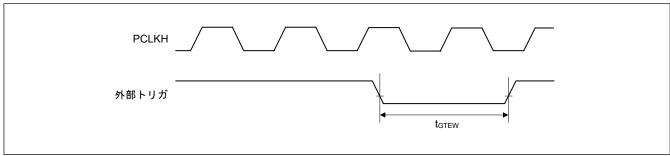


図 2.48 GPT 外部トリガ入力タイミング

2.5.5.6 POEG タイミング

表 2.30 POEG タイミング

項目	項目			Min	Мах	単位 ^(注1)	参照図
POEG	GTETRGn 入	カパルス幅(n = A~D)	t _{POEGW}	2.5	_	t _{PHcyc}	図 2.49
	出力禁止時間GTETRGn 端子の入力レベル検出 (フラグ経由)t _{POEGDI} —3 × PCLKH + 0.1		μs	図 2.50			
		GPT からの出力停止信号の検出 (デッドタイムエラー、同時 High 出力、または同時 Low 出力)	t _{POEGDO}	_	0.1	μs	図 2.51
		レジスタ設定	t _{POEGDS}	_	PCLKH + 0.1	μs	図 2.52
		発振停止検出	t _{POEGDOS}	_	74	μs	図 2.53

注 1. t_{PHcyc}: PCLKH サイクル(LLPP チャネル)、PCLKL サイクル(その他のチャネル)

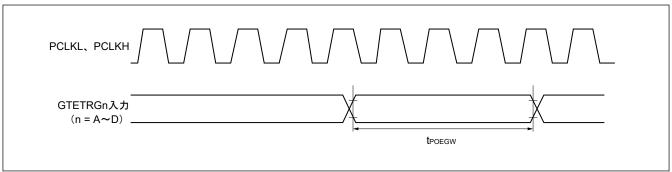


図 2.49 POEG 入力タイミング

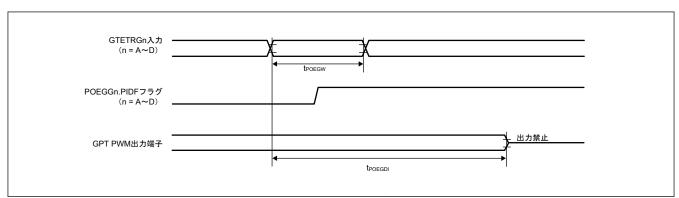


図 2.50 GTETRGn 端子の入力レベル検出に対応した検出フラグによる POEG の出力禁止時間

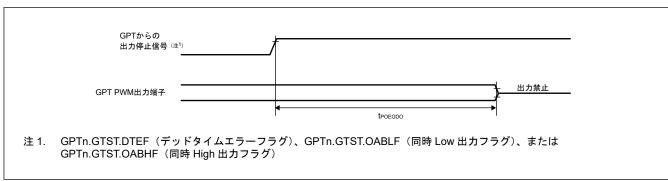


図 2.51 GPT からの出力停止信号の検出に対応した POEG の出力禁止時間

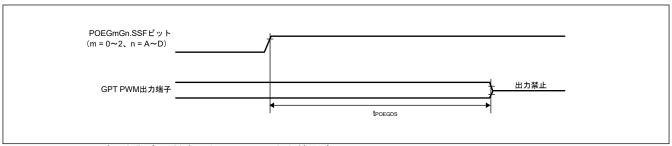


図 2.52 レジスタ設定に対応した POEG の出力禁止時間

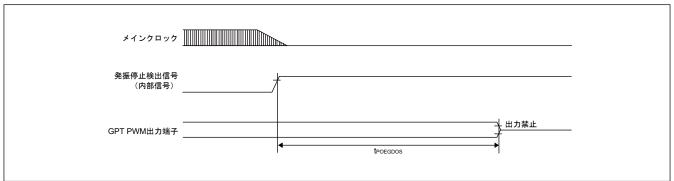


図 2.53 発振停止検出に対応した POEG の出力禁止時間

2.5.5.7 A/D コンバータトリガタイミング

表 2.31 A/D コンパータトリガタイミング

項目			シンボル	Min	Max	単位 ^(注1)	参照図
A/D コンバータ	A/D コンバータトリガ入 カパルス幅	ADTRG0#、 ADTRG1#	t _{TRGW}	1.5	_	t _{PADCcyc}	図 2.54

注 1. t_{PADCcyc}: PCLKADC サイクル

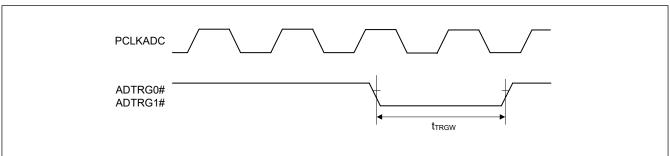


図 2.54 A/D コンパータトリガ入力タイミング(ADTRG0#、ADTRG1#)

2.5.5.8 SCI タイミング

条件: V_{OH} = VCC33 × 0.5、V_{OL} = VCC33 × 0.5、C = 30 pF (簡易 I2C 以外)

表 2.32 SCI タイミング (1/2)

項目		シンボル	Min	Max	単位	多照図
SCI (調歩同期式)	入力クロックサイクル	t _{Scyc}	4	_	t _{PSCIcyc}	図 2.55
	入力クロックパルス幅	tsckw	0.4	0.6	t _{Scyc}	
	入力クロック立ち上がり時間	t _{SCKr}	_	3	ns	
	入力クロック立ち下がり時間	t _{SCKf}	_	3	ns	
	出力クロックサイクル	t _{Scyc}	6	_	t _{PSClcyc}	
	出力クロックパルス幅	t _{SCKW}	0.4	0.6	t _{Scyc}	
	出カクロック立ち上がり時間	t _{SCKr}	_	3	ns	
	出力クロック立ち下がり時間	t _{SCKf}	_	3	ns	
SCI (簡易 I2C、 標準モード)	SDA 入力立ち上がり時間	t _{Sr}	_	1000	ns	図 2.56
	SDA 入力立ち下がり時間	t _{Sf}	_	300	ns	
	SCL、SDA 入力スパイクパルス除去時間	t _{SP}	0	2×NF _{cyc} ^(注1)	ns	
	データ入力セットアップ時間	t _{SDAS}	250	_	ns	
	データ入力ホールド時間	t _{SDAH}	0	_	ns	
	SCL、SDA の負荷容量	C _b	_	400	pF	
SCI (簡易 I2C 、 ファストモード)	SDA 入力立ち上がり時間	t _{Sr}	_	300	ns	図 2.56
	SDA 入力立ち下がり時間	t _{Sf}	_	300	ns	
	SCL、SDA 入力スパイクパルス除去時間	t _{SP}	0	2×NF _{cyc} ^(注1)	ns	
	データ入力セットアップ時間	t _{SDAS}	100	_	ns	
	データ入力ホールド時間	t _{SDAH}	0	_	ns	
	SCL、SDA の負荷容量	C _b	_	400	pF	

2. 電気的特性 RZ/T2L データシート

表 2.32 SCI タイミング (2/2)

項目			シンボル	Min	Max	単位	参照図
SCI (クロック同期、 簡易 SPI)	SCK 出力クロックサイクル(マスタ)		t _{SPcyc}	2	65536	tPSClcyc	図 2.57~図 2.62
	SCK 入力クロックサイクル(スレー ブ)			2	65536		
	SCK クロック High	t _{SPCKWH}	0.4	0.6	t _{SPcyc}		
	SCK クロック Low レベルパルス幅		tspckwl	0.4	0.6	t _{SPcyc}	
	SCK クロック立ち上がり/立ち下が り時間		tspckr tspckr	_	3	ns	
	データ入力セット アップ時間	内部クロック	t _{SU}	7	_	ns	
		外部クロック		3	_		
	データ入力ホール ド時間	内部クロック	t _H	3	_	ns	
		外部クロック		3	_		
	データ出力遅延時 間	内部クロック	t _{OD}	_	3	ns	
		外部クロック		_	12		
	データ出力ホール ド時間	内部クロック	t _{OH}	0	_		
		外部クロック		0	_		
	データ立ち上がり/立ち下がり時間		t _{DR} , t _{DF}	_	3	ns	
	スレーブアクセス 時間	内部クロック	t _{SA}	_	3 × t _{PSClcyc} + 12	ns	
		外部クロック		_	3 × t _{PSClcyc} + 12		
	スレーブ出力開放 時間	内部クロック	t _{REL}	_	3 × t _{PSClcyc} + 12	ns	
		外部クロック		_	3 × t _{PSClcyc} + 12		
SCI (簡易 SPI)	SS 入力セットアップ時間		t _{LEAD}	1	_	t _{SPcyc}	_
	SS 入力ホールド時間		t _{LAG}	1	_	t _{SPcyc}	
	SS 入力立ち上がり/立ち下がり時間		t _{SSR} , t _{SSF}	_	3	ns	

 $t_{\mathsf{PSCIcyc}}:\mathsf{PCLKSCIn}\, \forall \mathsf{T} \mathsf{D} \mathsf{I} \mathsf{D}$

 $N_{Fcyc} = 4^n \times 2^{m-1} \times t_{PSClcyc}$ n: CCR2.CKS[1:0] (n = 0, 1, 2, 3) m: CCR1.NFCS[2:0] (n = 1, 2, 3, 4)

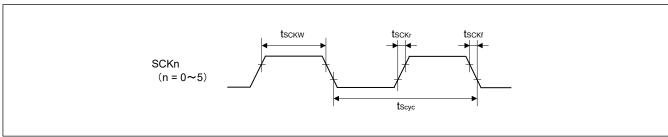


図 2.55 SCK クロック入出力タイミング

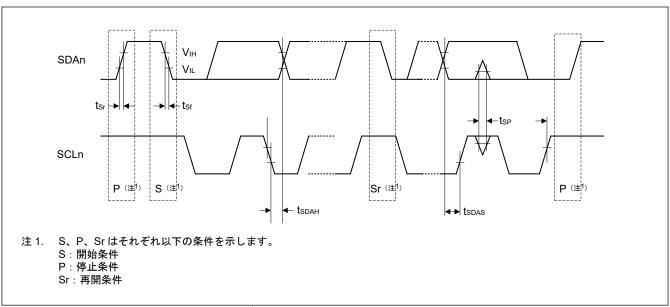


図 2.56 SCI 簡易 I2C モードタイミング

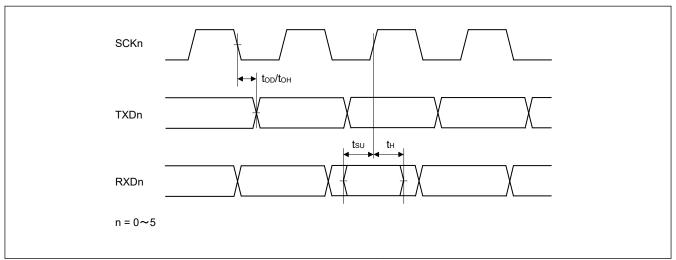


図 2.57 クロック同期式モードにおける SCI 入出力タイミング

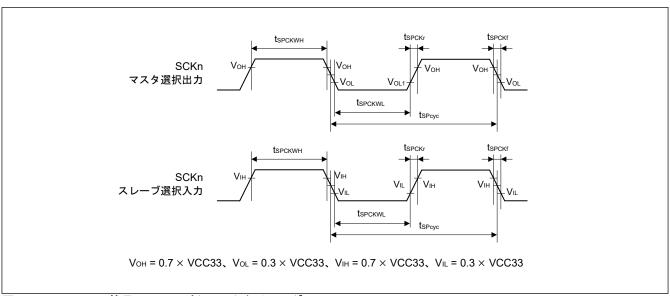


図 2.58 SCI 簡易 SPI モードクロックタイミング

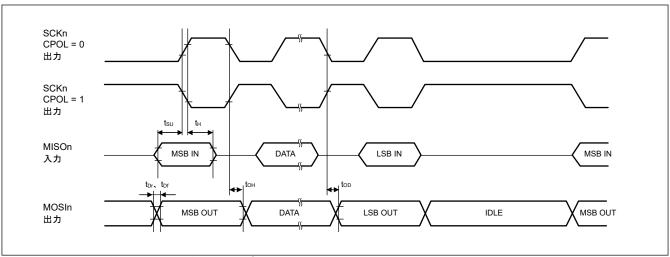


図 2.59 SCI 簡易 SPI モードタイミング(マスタ、CPHA = 0)

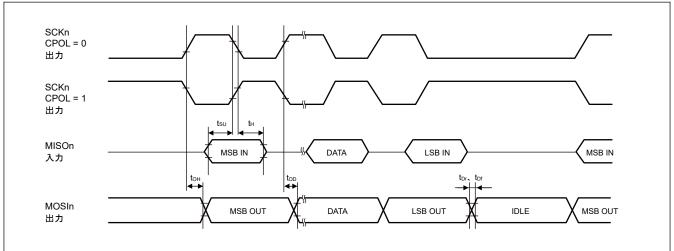


図 2.60 SCI 簡易 SPI モードタイミング(マスタ、CPHA = 1)

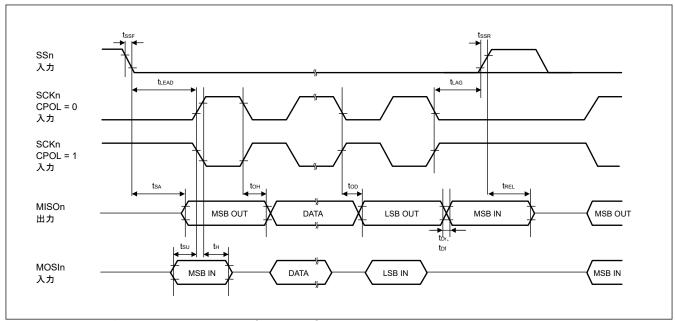


図 2.61 SCI 簡易 SPI モードタイミング(スレーブ、CPHA = 0)

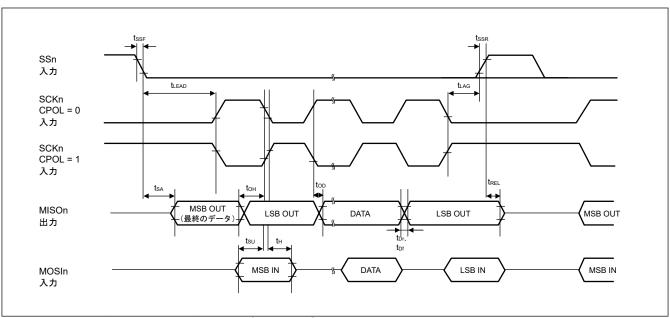


図 2.62 SCI 簡易 SPI モードタイミング(スレーブ、CPHA = 1)

2.5.5.9 IIC タイミング

条件: V_{OL} = 0.4 V、 I_{OL} = 4 mA

表 2.33 IIC タイミング

項目	11 200	シンボル	Min ^(注1) (注2)	Max ^(注1) (注2)	単位	参照図
IIC	SCL 入力サイクル時間	t _{SCL}	6(12) × t _{IICcyc} + 1300	_	ns	☑ 2.63
(標準モード)	SCL 入力 High レベルパルス幅	t _{SCLH}	3(6) × t _{IICcyc} + 300	_	ns	
	SCL 入力 Low レベルパルス幅	t _{SCLL}	3(6) × t _{IICcyc} + 300	_	ns	
	SCL、SDA 入力立ち上がり時間	t _{sr}	_	1000	ns	
	SCL、SDA 入力立ち下がり時間	t _{sf}	_	300	ns	
	SCL、SDA 入力スパイクパルス除去 時間	t _{SP}	0	1(4) × t _{IICcyc}	ns	
	SDA 入力バスフリー時間	t _{BUF}	3(6) × t _{IICcyc} + 300	_	ns	
	開始条件入力ホールド時間	t _{STAH}	t _{IICcyc} + 300	_	ns	
	再開条件入力セットアップ時間	t _{STAS}	1000	_	ns	
	停止条件入力セットアップ時間	t _{STOS}	1000	_	ns	
	データ入力セットアップ時間	t _{SDAS}	t _{IICcyc} + 50	_	ns	
	データ入力ホールド時間	t _{SDAH}	0	_	ns	
	SCL、SDA の負荷容量	C _b	_	400	pF	
IIC	SCL 入力サイクル時間	t _{SCL}	6(12) × t _{IICcyc} + 600	_	ns	
(ファストモード)	SCL 入力 High レベルパルス幅	t _{SCLH}	3(6) × t _{IICcyc} + 300	_	ns	
	SCL 入力 Low レベルパルス幅	t _{SCLL}	3(6) × t _{IICcyc} + 300	_	ns	
	SCL、SDA 入力立ち上がり時間	t _{sr}	(注4)	300	ns	
	SCL、SDA 入力立ち下がり時間	t _{sf}	(注4)	300	ns	
	SCL、SDA 入力スパイクパルス除去 時間	t _{SP}	0	1(4) × t _{IICcyc}	ns	
	SDA 入力バスフリー時間	t _{BUF}	3(6) × t _{IICcyc} + 300	_	ns	
	開始条件入力ホールド時間	t _{STAH}	t _{IICcyc} + 300	_	ns	
	再開条件入力セットアップ時間	t _{STAS}	300	_	ns	
	停止条件入力セットアップ時間	t _{STOS}	300	_	ns	
	データ入力セットアップ時間	t _{SDAS}	t _{IICcyc} + 50	_	ns	
	データ入力ホールド時間	t _{SDAH}	0	_	ns	
	SCL、SDA の負荷容量 ^(注3)	C _b	_	400	pF	

注 1. t_{IICcyc}: IIC 内部基準クロック (IICΦ) サイクル

注 2. ICFER.NFE = 1 でデジタルフィルタを有効にした状態で ICMR3.NF[1:0] = 00b の場合は、() の外の値が適用されます。ICFER.NFE = 1 でデジタルフィルタを有効にした状態で ICMR3.NF[1:0] = 11b の場合は、() 内の値が適用されます。

注 3. Cb はバスラインの容量の総計です。 注 4. ファストモードでは、 t_{sr} と t_{sf} に対する最小値は指定されていません。

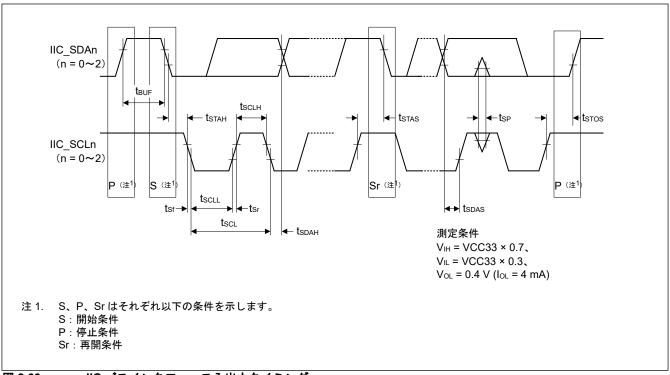


図 2.63 IIC パスインタフェース入出力タイミング

2.5.5.10 CANFD タイミング

表 2.34 CANFD タイミング

			CAN		CANFD			
項目		シンボル	Min	Max	Min	Max	単位	参照図
CANFD	内部遅延時間	t _{node}	_	100	_	50	ns	図 2.64
	通信速度	_	_	1	_	8	Mbps	

注. 内部遅延時間 (t_{node}) = 内部送信遅延時間 (t_{output}) + 内部受信遅延時間 (t_{input})

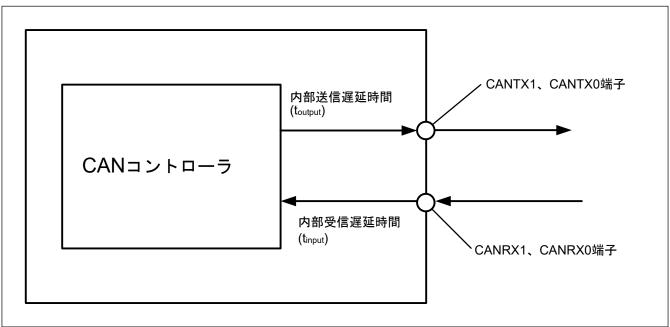


図 2.64 CAN インタフェース条件

2.5.5.11 SPI タイミング

表 2.35 SPI タイミング (1/2)

条件: V_{OH} = VCC33 × 0.5、 V_{OL} = VCC33 × 0.5、C = 30 pF

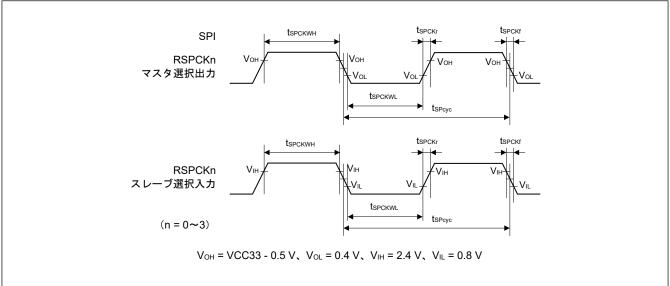

項目		シンボル	Min ^(注1)	Max ^(注1)	単位 (注1)	参照図	
RSPCK クロックサイクル	マスタ	t _{SPcyc}	2	4096	t _{SPIcyc}	図 2.65	
	スレーブ		2	4096			
RSPCK クロック High レベルパルス 幅	マスタ	tspckwh	(t _{SPcyc} - t _{SPCKr} - t _{SPCKf}) / 2 - 2.5	_	ns		
	スレーブ		1	_	t _{SPIcyc}		
RSPCK クロック Low レベルパルス 幅	マスタ	tspckwl	(t _{SPcyc} - t _{SPCKr} - t _{SPCKf}) / 2 - 2.5	_	ns		
	スレーブ		1	_	t _{SPIcyc}		
RSPCK クロック立ち上がり/立ち下	出力	t _{SPCKr} ,	_	3	ns		
がり時間	入力	t _{SPCKf}	_	1	ns		
データ入力セットアップ時間	マスタ	t _{SU}	5	_	ns	図 2.66~図	
	スレーブ		3			2.72	
データ入力ホールド時間	マスタ	t _H	3		ns		
	スレーブ		3	_			
SSL セットアップ時間	マスタ	t _{LEAD}	N×t _{SPcyc} - 3 ^(注2)	N × t_{SPcyc} + $3^{(注2)}$	ns	図 2.66~図 - 2.69	
	スレーブ		4	_	t _{SPIcyc}	2.03	
SSL ホールド時間	マスタ	t _{LAG}	N×t _{SPcyc} - 3 ^(注3)	N × t _{SPcyc} + 3 ^(注3)	ns		
	スレーブ		4	_	t _{SPlcyc}	-	
連続送信遅延	マスタ	t _{TD}	t _{SPcyc} + 2 × t _{SPlcyc}	8 × t _{SPcyc} + 2 × t _{SPlcyc}	ns		
	スレーブ		t _{SPcyc} + 5 × t _{SPlcyc}	_			
TI-SSP SS 入力セットアップ時間		t _{TISS}	3	_	ns	図 2.70~図	
TI-SSP SS 入力ホールド時間		t _{TISH}	3	_	ns	2.72	
TI-SSP 次アクセス時間		t _{TIND}	M ^(注4)	_	t _{SPIcyc}	_	
TI-SSP マスタ SS 出力遅延		t _{TISSOD}	-3	3	ns	_	
TI-SSP マスタ OE 遅延 1		t _{TIMOED1}	_	2	ns	_	
TI-SSP マスタ OE 遅延 2		t _{TIMOED2}	_	2	ns	-	
TI-SSP スレーブ OE 遅延 1		t _{TISOED1}	_	12	ns	-	
 TI-SSP スレーブ OE 遅延 2		t _{TISOED2}	_	8	ns	_	
 データ出力遅延時間	マスタ	t _{OD}	_	3	ns	図 2.66~図	
	スレーブ		_	12	ns	2.72	
データ出力ホールド時間	マスタ	t _{OH}	-3		ns	1	
	スレーブ		3	_			
MOSI、MISO クロック立ち上がり/立	出力	t _{Dr} , t _{Df}	_	3	ns	-	
ち下がり時間	入力		_	1	μs		
SSL 立ち上がり/立ち下がり時間	出力	t _{SSLr} , t _{SSLf}	_	3	ns	図 2.66、図 2.67	
	入力		_	1	μs	1	

表 2.35 SPI タイミング (2/2)

条件: V_{OH} = VCC33 × 0.5、V_{OL} = VCC33 × 0.5、C = 30 pF

項目	シンボル	Min ^(注1)	Max ^(注1)	単位 (注1)	参照図
スレーブアクセス時間	t _{SA}	_	12	ns	図 2.68、図 2.69
スレーブ出力開放時間	t _{REL}	_	12	ns	

注 1. t_{SPIcyc}: PCLKSPIn サイクル 注 2. SPCKD 設定値 + 1(1~8) 注 3. SSLND 設定値 + 1(1~8) 注 4. SSLND 設定値 + 2(2~9)

図 2.65 SPI クロックタイミング

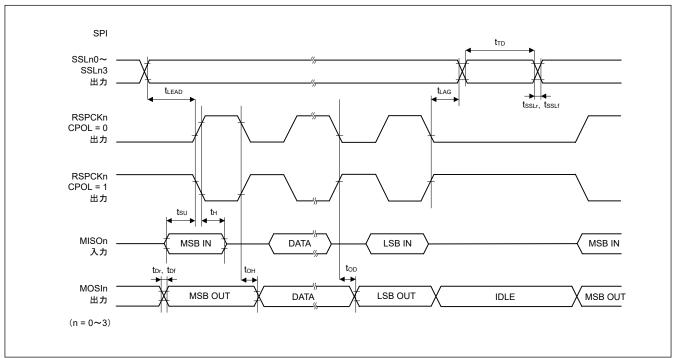


図 2.66 SPI タイミング(マスタ、モトローラ SPI、CPHA = 0)

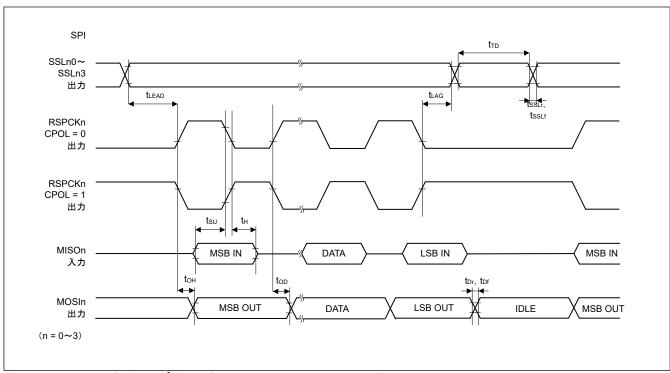


図 2.67 SPI タイミング(マスタ、モトローラ SPI、CPHA = 1)

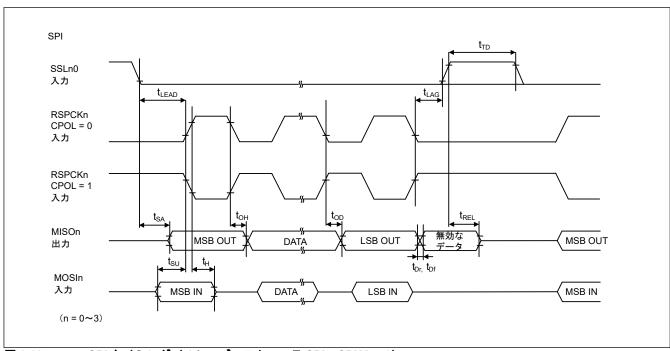


図 2.68 SPI タイミング(スレーブ、モトローラ SPI、CPHA = 0)

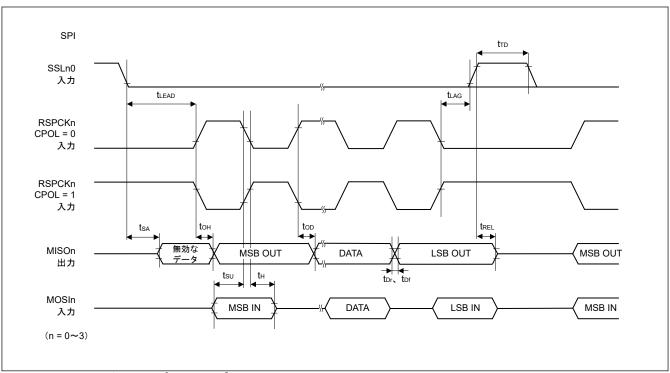


図 2.69 SPI タイミング(スレーブ、モトローラ SPI、CPHA = 1)

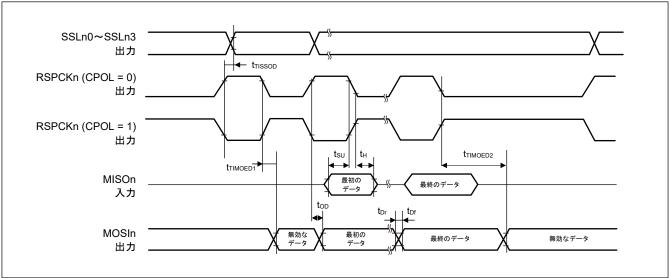


図 2.70 SPI タイミング(マスタ、TI SSP)

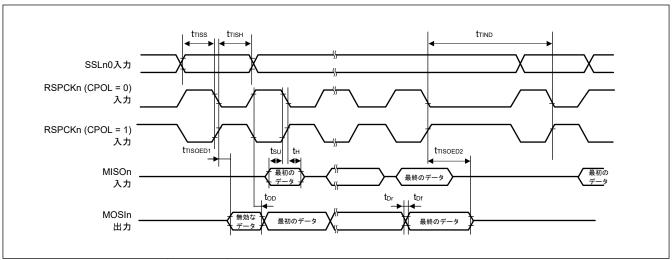


図 2.71 SPI タイミング(スレーブ、TI SSP、パースト転送時の遅延あり)

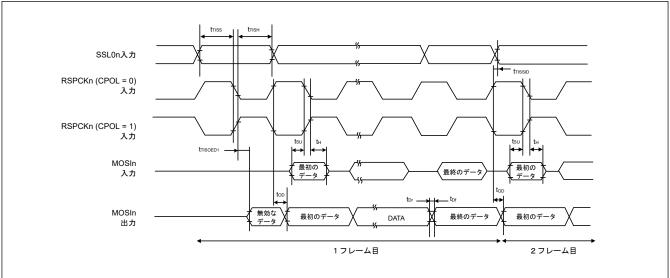


図 2.72 SPI タイミング(スレーブ、TI SSP、パースト転送時の遅延なし)

2.5.5.12 xSPI タイミング

条件:

シングルエンドクロック

$$V_{OH} = VCC18 \times 0.5$$
, $V_{OL} = VCC18 \times 0.5$, $C = 15 \text{ pF } (1.8 \text{ V})$

$$V_{OH} = VCC33 \times 0.5$$
, $V_{OL} = VCC33 \times 0.5$, $C = 15 \text{ pF } (3.3 \text{ V})$

データ

$$V_{OH} = VCC18 \times 0.5$$
, $V_{OL} = VCC18 \times 0.5$, $C = 15 \text{ pF} (1.8 \text{ V})$

$$V_{OH} = VCC33 \times 0.5$$
, $V_{OL} = VCC33 \times 0.5$, $C = 15 \text{ pF } (3.3 \text{ V})$

表 2.36 xSPI タイミング

		シンボ	1.8 V		3.3 V			
項目		レ	Min	Max	Min	Max	単位	参照図
サイクルタイム	SDR	t _{PERIOD}	7.5	_	13.3	_	ns	図 2.73
	DDR		10.0	_	13.3	_	ns]
クロック出力スルーレート		t _{SRck}	0.75/0.56 (注2)	_	0.56	_	V/ns	
クロックデューティーサイクル歪み		tCKDCD	0.0	t _{PERIOD} × 0.05	0.0	t _{PERIOD} × 0.05	ns	
クロック最小パルス幅		t _{CKMPW}	t _{PERIOD} × 0.45	_	t _{PERIOD} × 0.45	_	ns	
差動クロック交差電圧		V _{OX(AC)}	0.4 × VCC18	0.6 × VCC18	_	<u> </u>	V	1
DS デューティーサイクル歪み		t _{DSDCD}	0.0	t _{PERIOD} × 0.04	0.0	t _{PERIOD} × 0.04	ns	
DS 最小パルス幅		t _{DSMPW}	t _{PERIOD} × 0.41	_	t _{PERIOD} × 0.41	_	ns	_
データ入出力スルーレート		t _{SR}	0.75/0.56 (注2)	_	0.56	_	V/ns	
データ入力セットアップ時間(CK に 対して)	SDR	t _{SU}	2.0	_	2.4	_	ns	図 2.74
データ入力ホールド時間(CK に対し て)		t _H	1.0	_	1.0	_	ns	
データ出力遅延時間		t _{OD}	_	1.0 ^(注3)	_	1.4 ^(注3)	ns	
データ出力ホールド時間		t _{OH}	-1.0	_	-2.3	_	ns	
データ出力バッファオフ時間		t _{BOFF}	-1.0	_	-2.3	_	ns	
データ入力セットアップ時間(DS に対して)	DDR (注1)	t _{SU}	-0.8	_	-0.8	_	ns	図 2.75、図 2.76
データ入力ホールド時間(DS に対し て)	(注3)	t _H	t _{PERIOD} × 0.41 - 0.8	_	t _{PERIOD} × 0.41 - 0.8	_	ns	-
データ出カセットアップ時間(CK に 対して)		t _{SUO}	1.0	_	1.0	_	ns	
データ出力ホールド時間(CK に対して)		t _{HO}	1.0	_	1.0	_	ns	-
CS Low~クロック High		tcslckh	6.0/8.0 ^(注2) (注4)	_	8.0 ^(注4)	_	ns	図 2.74~図 2.76
CS Low~CS High		t _{CKLCSH}	6.0/8.0 ^(注2)	_	8.0	_	ns	
CS High 時間		t _{CSTD}	1	16	1	16	t _{PERIOD}	1
DS Low~CS High		t _{DSLCSH}	6.0/8.0 ^(注2)	_	10.6	_	ns	図 2.77
CS High~DS トライステート		t _{CSHDST}	0.0	t _{PERIOD}	0.0	t _{PERIOD}	ns	1
CS Low~DS Low		t _{CSLDSL}	0.0	_	0.0	_	ns	1
DS トライステート~CS Low		t _{DSTCSL}	0.0	_	0.0	_	ns	1

注 1. xSPI200 での DS シフト設定 (WRAPCFG.DSSFTCSx[4:0]) は 01000b です。 注 2. 133 MHz 時の仕様 / 100 MHz 時の仕様 注 3. これは OEN アサートが出力許可アサート拡張ビット (COMCFG.OEASTEX = 1) で拡張されたときの値です。 注 4. これは CS アサートが CS アサート拡張ビット (LIOCFGCSn.CSASTEX = 1) で拡張されたときの値です。

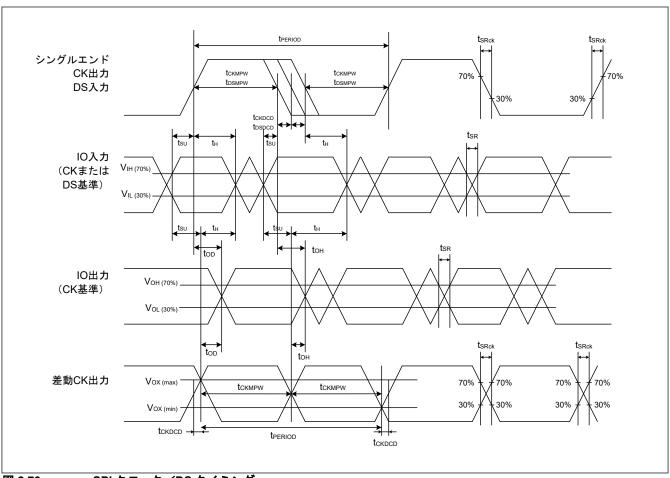


図 2.73 xSPI クロック/DS タイミング

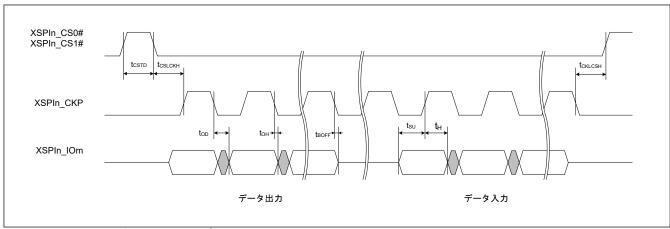


図 2.74 SDR 送受信タイミング(1S-1S-1S、1S-2S-2S、2S-2S-2S、1S-4S-4S、4S-4S-4S)

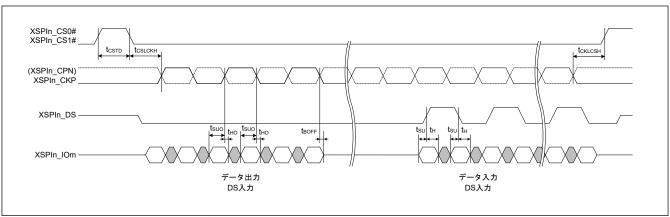


図 2.75 DDR 送受信タイミング(4S-4D-4D、8D-8D-8D)

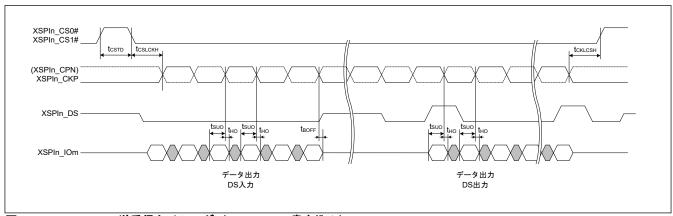


図 2.76 DDR 送受信タイミング(HyperRAM 書き込み)

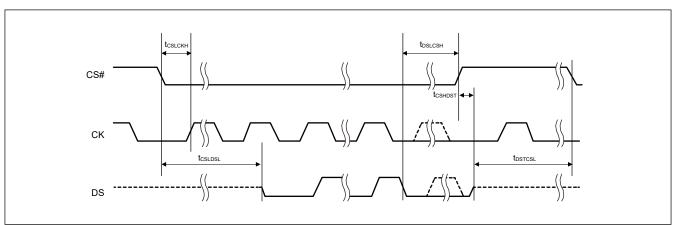


図 2.77 DS~CS 信号タイミング

2.5.5.13 デルタシグマインタフェースタイミング

条件: $V_{OH} = VCC33 \times 0.5$ 、 $V_{OL} = VCC33 \times 0.5$ 、C = 30 pF

表 2.37 ΔΣ インタフェースタイミング

項目			シンボル	Min	Max	単位	参照図
DSMIF	クロックサイクル	マスタ	t _{DScyc}	40	200	ns	図 2.78
		スレー ブ		40	200		
	クロック High レベル	マスタ	t _{DSCKWH}	16	_	ns	
		スレー ブ		16	_		
	クロック Low レベル	マスタ	t _{DSCKWL}	16	_	ns	
		スレー ブ		16	_		
	セットアップ時間	マスタ	t _{SU}	15	_	ns	図 2.79、図 2.80
		スレー ブ		10	_		
	ホールド時間	マスタ	t _H	0	_	ns	
		スレー ブ		10	_		

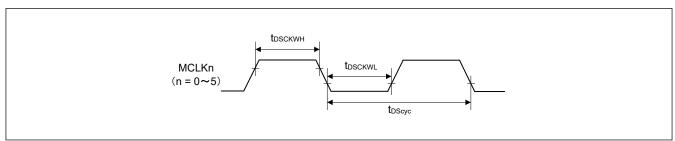


図 2.78 クロック入出力タイミング

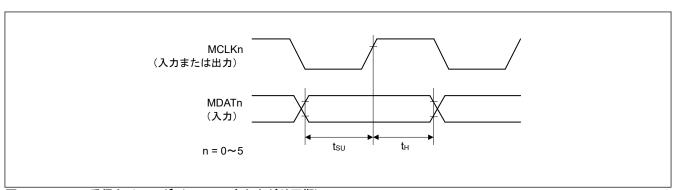


図 2.79 受信タイミング(MCLKn 立ち上がり同期)

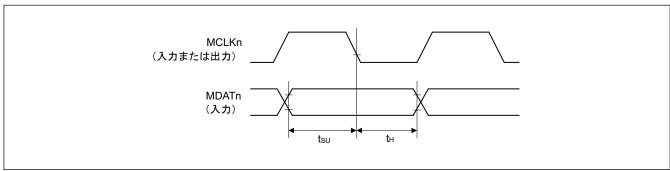


図 2.80 受信タイミング(MCLKn 立ち下がり同期)

2.5.5.14 イーサネットインタフェースタイミング

条件:

 $V_{OH} = VCC18 \times 0.5$, $V_{OL} = VCC18 \times 0.5$, C = 15 pF (RGMII)

 $V_{OH} = VCC33 \times 0.5$, $V_{OL} = VCC33 \times 0.5$, C = 25 pF (RMII)

 $V_{OH} = VCC33 \times 0.5$, $V_{OL} = VCC33 \times 0.5$, C = 30 pF (MII)

表 2.38 イーサネットインタフェースタイミング (1/2)

項目			シンボル	Min	Max	単位	参照図
イーサネ	ETHn_TXCLK、ETHn_RXCLK サイク	1 Gbps	t _{RGMIIck}	7.2	8.8	ns	図 2.81
ット (RGMII)	ルタイム期間	100 Mbps		36	44		
		10 Mbps		360	440		
	ETHn_TXCLK、ETHn_RXCLK 周波数	1 Gbps	_	125 – 50 ppm	125 + 50 ppm	MHz	
		100 Mbps		25 – 50 ppm	25 + 50 ppm		
		10 Mbps		2.5 – 50 ppm	2.5 + 50 ppm		
	ETHn_TXCLK、ETHn_RXCLK デュー	1 Gbps	_	45	55	%	
	ティーサイクル	100 Mbps 10 Mbps		40	60		
	ETHn_TXCLK、ETHn_TXD0~ETHn_T ETHn_TXEN (TX_CTL)、ETHn_RXCLk ~ETHn_RXD3、ETHn_RXDV (RX_CTI 立ち下がり時間	K、ETHn_RXD0	t _{RGMIIr} , t _{RGMIIf}	_	0.75	ns	
	ETHn_TXD0~ETHn_TXD3、ETHn_TX ETHn_TXCLK 出力スキュー	EN (TX_CTL)~	t _{RGMIIos}	-0.5	0.5	ns	
	ETHn_RXD0~ETHn_RXD3、ETHn_RX セットアップ時間	XDV (RX_CTL)	t _{RGMIIs}	1	_	ns	
	ETHn_RXD0~ETHn_RXD3、ETHn_RXホールド時間	XDV (RX_CTL)	t _{RGMIIh}	1	_	ns	
イーサネ	ETHn_RXCLK サイクルタイム		t _{RMIIck}	20	-	ns	図 2.82
ット (RMII)	ETHn_RXCLK 周波数 Typ. 50 MHz		_	50 – 50 ppm	50 + 50 ppm	MHz	
	ETHn_RXCLK デューティー		_	35	65	%	
	ETHn_RXCLK 立ち上がり/立ち下がり	時間	t _{RMIIckr} ,	0.5	3.5	ns	
	ETHn_TXD0、ETHn_TXD1、ETHn_TXEN 出力遅延時間		t _{RMIId}	2.5	12	ns	
	ETHn_RXDV (CRS_DV) セットアップ時間		t _{RMIIs}	4	_	ns	
			t _{RMIIh}	2	_	ns	
	ETHn_TXD0、ETHn_TXD1、ETHn_TX ETHn_RXD0、ETHn_RXD1、ETHn_RX ETHn_RXDV (CRS_DV) 立ち上がり/エ	XER.	t _{RMIIr} , t _{RMIIf}	0.5	4	ns	

表 2.38 イーサネットインタフェースタイミング (2/2)

項目	項目			Min	Max	単位	参照図
イーサネ			t _{Milck}	40	_	ns	図 2.83
ット (MII)	ルタイム	10 Mbps		400	_		
	ETHn_TXCLK、ETHn_RXCLK 周波数 100 Mbps		_	25 – 50 ppm	25 + 50 ppm	MHz	
	10 Mbps			2.5 – 50 ppm	2.5 + 50 ppm		
	ETHn_TXD0~ETHn_TXD3、ETHn_TX ETHn_TXER 出力遅延時間	EN,	t _{MIId}	1	20	ns	
	ETHn_RXD0~ETHn_RXD3、ETHn_RXDV、 ETHn_RXER セットアップ時間			10	_	ns	
	ETHn_RXD0~ETHn_RXD3、ETHn_RX ETHn_RXER ホールド時間	KDV.	t _{MIIh}	10	_	ns	

表 2.39 イーサネットインタフェースタイミング(MAC-to-MAC 接続モード)

項目		シンボル	Min	Max	単位	参照図
イーサネ	ETH2_TXCLK、ETH2_RXCLK サイクルタイム	t _{MRGMIIck}	7.2	8.8	ns	図 2.84
ット (RGMII)	ETH2_TXCLK、ETH2_RXCLK 周波数 Typ. 125 MHz	_	125 - 50 ppm	125 + 50 ppm	MHz	
	ETH2_TXCLK、ETH2_RXCLK デューティーサイクル	_	45	55	%	
	ETH2_TXCLK、ETH2_TXD0~ETH2_TXD3、 ETH2_TXEN (TX_CTL)、ETH2_RXCLK、 ETH2_RXD0~ETH2_RXD3、ETH2_RXDV (RX_CTL) 立ち上がり/立ち下がり時間	t _{MRGMIIr} , t _{MRGMIIf}	_	0.75	ns	
	ETH2_TXD0~ETHn_TXD3、ETHn_TXEN (TX_CTL) 出力スキュー	t _{MRGMIlos}	_	0.6	ns	
	ETH2_TXD0~ETH2_TXD3、ETH2_TXEN (TX_CTL) 出力セットアップ時間	t _{MRGMIIso}	1.1	_	ns	
	ETH2_TXD0~ETH2_TXD3、ETH2_TXEN (TX_CTL) 出力ホールド時間	t _{MRGMIIho}	1.1	_	ns	
	ETH2_RXD0~ETH2_RXD3、ETH2_RXDV (RX_CTL) 入力セットアップ時間	t _{MRGMIIsi}	-0.7	_	ns	
	ETH2_RXD0~ETH2_RXD3、ETH2_RXDV (RX_CTL) 入力ホールド時間	t _{MRGMIIhi}	2.9	_	ns	
イーサネ	ETH2_REFCLK サイクル時間	t _{MMIIck}	40	_	ns	図 2.85
ット (MII)	ETH2_REFCLK 周波数 Typ. 25 MHz	_	25 – 50 ppm	25 + 50 ppm	MHz	
	ETH2_TXD0~ETH2_TXD3、ETH2_TXEN、 ETH2_TXER 出力遅延時間	t _{MMIId}	11	25	ns	
	ETH2_RXD0~ETH2_RXD3、ETH2_RXDV、 ETH2_RXER セットアップ時間	t _{MMIIs}	10	_	ns	
	ETH2_RXD0~ETH2_RXD3、ETH2_RXDV、 ETH2_RXER ホールド時間	t _{MMIIh}	0	_	ns	

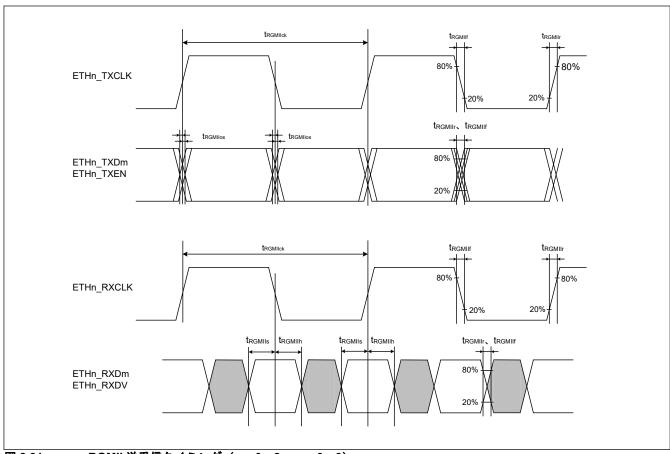


図 2.81 RGMII 送受信タイミング(n = 0~2、m = 0~3)

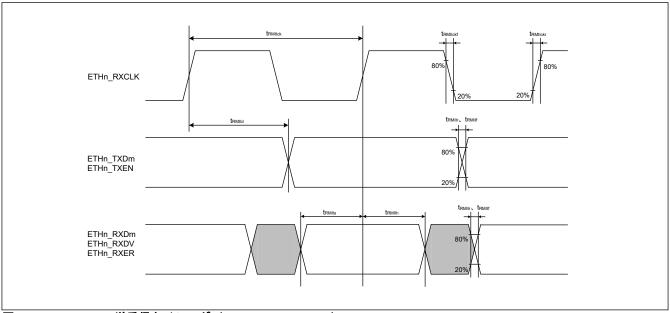


図 2.82 RMII 送受信タイミング(n = 0~2、m = 0~1)

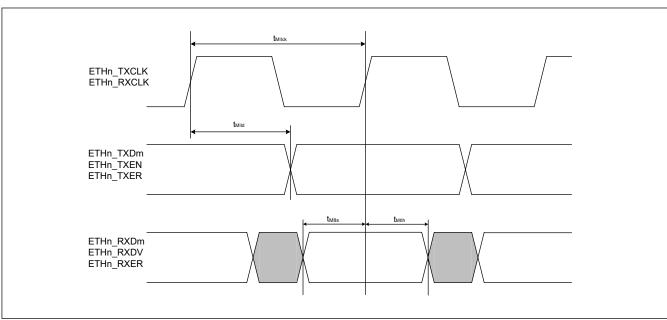


図 2.83 MII 送受信タイミング(n = 0~2、m = 0~3)

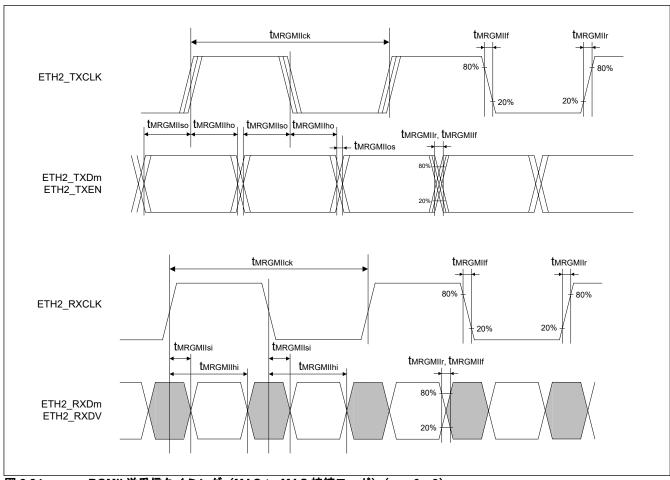


図 2.84 RGMII 送受信タイミング(MAC-to-MAC 接続モード)(m = 0~3)

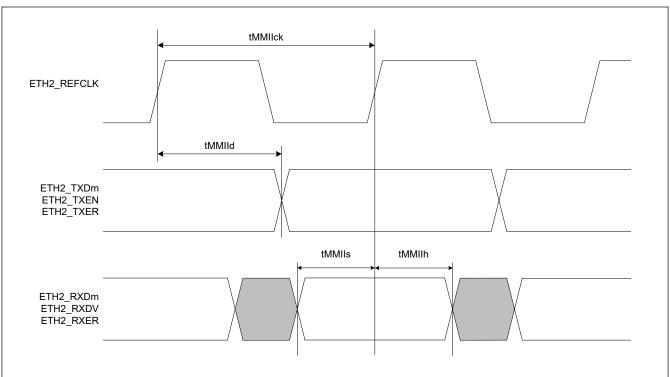


図 2.85 MII 送受信タイミング(MAC-to-MAC 接続モード)(m = 0~3)

2.5.5.15 シリアルマネジメントインタフェースタイミング

条件:

$$V_{OH} = VCC18 \times 0.5$$
, $V_{OL} = VCC18 \times 0.5$, $C = 30 \text{ pF } (1.8 \text{ V})$
 $V_{OH} = VCC33 \times 0.5$, $V_{OL} = VCC33 \times 0.5$, $C = 30 \text{ pF } (3.3 \text{ V})$

表 2.40 シリアルマネジメントインタフェースタイミング

項目			シンボル	Min	Max	単位	参照図
MDIO	MDC 出力サイクル時間	ル時間 GMAC_MDC、 ETHSW_MDC		80	_	ns	図 2.86
		ESC_MDC		400	_	ns	
	MDIO 出力遅延時間(MDC 立ち下が	IO 出力遅延時間(MDC 立ち下がりに対して) ^(注1)			20	ns	
	MDIO 入力セットアップ時間(MDC 立ち上がりに対して)			18	_	— ns	
		ESC_MDC		70	_	ns	
	MDIO 入力ホールド時間(MDC 立ち	上がりに対して)	T _{MDIOh}	0	_	ns	

注 1. ETHSW からの出力タイミングは MDC の立ち上がりエッジに基づいており、レジスタに出力遅延を設定可能です。

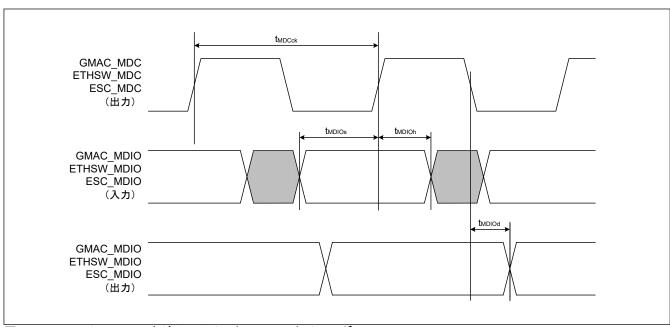
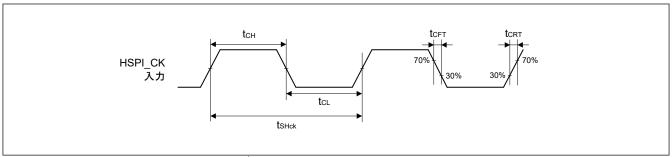


図 2.86 シリアルマネジメントインタフェースタイミング

2.5.5.16 SHOSTIF タイミング


条件:

 $V_{OH} = VCC18 \times 0.5$, $V_{OL} = VCC18 \times 0.5$, C = 30 pF (1.8 V)

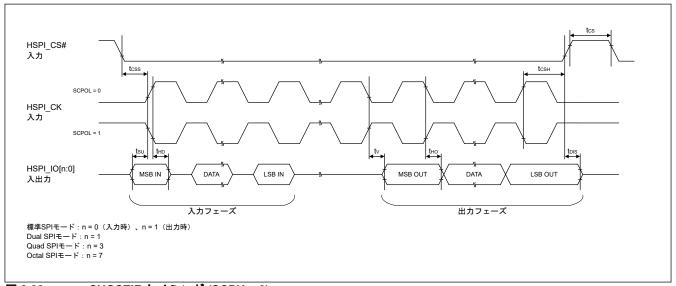

 $V_{OH} = VCC33 \times 0.5$, $V_{OL} = VCC33 \times 0.5$, C = 30 pF (3.3 V)

表 2.41 SHOSTIF タイミング

項目		シンボル	Min	Max	単位	参照図
SHOSTIF	クロックサイクルタイム	t _{SHck}	25	_	ns	図 2.87
	クロック High 時間	t _{CH}	0.45	0.55	t _{SHck}	
	クロック Low 時間	t _{CL}	0.45	0.55	t _{SHck}	
	クロック立ち上がりスルーレー ト	t _{CRT}	0.1	_	V/ns	
	クロック立ち下がりスルーレー ト	t _{CFT}	0.1	_	V/ns	
	CS# High 時間	t _{CS}	2	_	t _{SHck}	図 2.88、図 2.89
	CS#アクティブセットアップ時 間	t _{CSS}	15	_	ns	
	CS#アクティブホールド時間	tcsн	15	_	ns	
	データ入力セットアップ時間	t _{SU}	3	_	ns	
	データ入力ホールド時間	t _{HD}	10.5	_	ns	
	クロック Low~出力有効	t _V	_	15.5	ns	
	データ出力ホールド時間	t _{HO}	6	_	ns	
	データ出力禁止時間	t _{DIS}	_	18	ns	

図 2.87 SHOSTIF クロックタイミング

図 2.88 SHOSTIF タイミング (SCPH = 0)

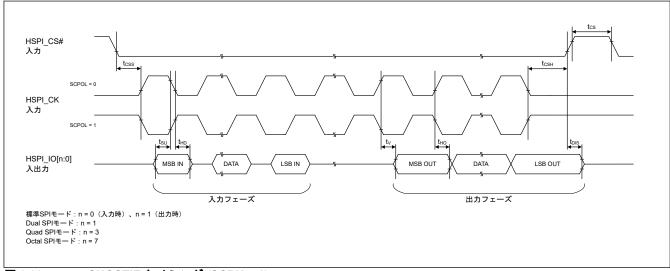


図 2.89 SHOSTIF タイミング (SCPH = 1)

2.6 USB 特性

表 2.42 内蔵 USB ロースピード(ホストのみ)特性

項目	シンボル	Min	Тур	Max	単位	参照図
立ち上がり時間	t _{LR}	75	_	300	ns	図 2.90、図 2.91
立ち下がり時間	t _{LF}	75	_	300	ns	
立ち上がり/立ち下がり時間 比	t _{LR} /t _{LF}	80	_	125	%	

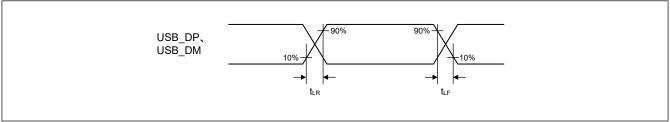


図 2.90 USB_DP、USB_DM の出力タイミング(ロースピード時/ホストのみ)

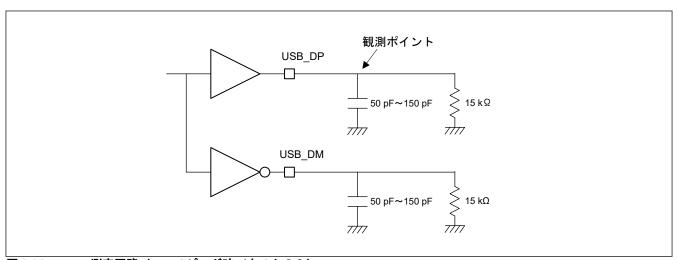


図 2.91 測定回路(ロースピード時/ホストのみ)

表 2.43 内蔵 USB フルスピード特性

項目	シンボル	Min	Тур	Max	単位	参照図
立ち上がり時間	t _{FR}	4	_	20	ns	図 2.92、図 2.93
立ち下がり時間	t _{FF}	4	_	20	ns	
立ち上がり/立ち下がり時間 比	t _{FR} /t _{FF}	90	_	111.11	%	

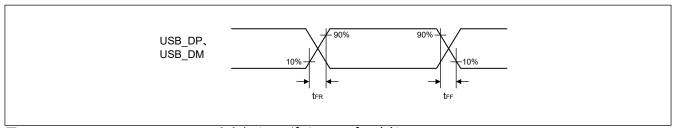


図 2.92 USB_DP、USB_DM の出力タイミング(フルスピード時)

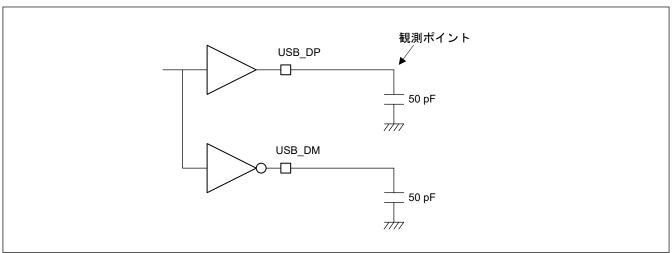


図 2.93 測定回路(フルスピード時)

表 2.44 内蔵 USB ハイスピード特性

項目	シンボル	Min	Тур	Max	単位	参照図
立ち上がり時間	t _{HSR}	_	_	2.133	V/µs	図 2.94、図 2.95
立ち下がり時間	t _{HSF}	_	_	2.133	V/µs	
出力抵抗 (ハイスピード終端 抵抗としても使用)	Z _{HSDRV}	40.5	_	49.5	Ω	_

注. USB_DP および USB_DM 端子に接続する出力抵抗 (ZHSDRV) は LSI に内蔵しています。

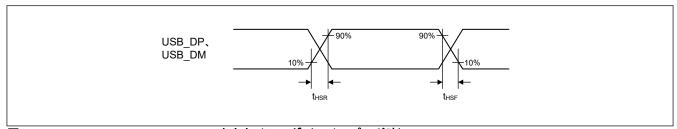


図 2.94 USB_DP、USB_DM の出力タイミング(ハイスピード時)

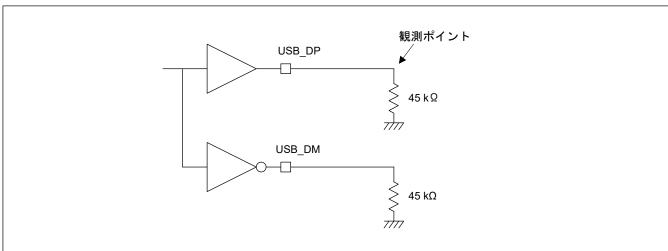


図 2.95 測定回路 (ハイスピード時)

2.7 A/D 変換特性

表 2.45 12 ビット A/D 変換特性

項目			Тур	Max	単位	参照図
分解能		12			ビット	_
アナログ入力容量			_	13	pF	_
チャネル専用サンプル&ホールド 回路使用時 (AN000~AN002、AN100~	変換時間 ^(注1) 許容信号源インピーダンス Max = 1.0 kΩ	1.52	_	_	μs	_
AN102)	オフセット誤差	_	_	±13	LSB	_
	フルスケール誤差	_	_	±13	LSB	_
	量子化誤差	_	±0.5	_	LSB	_
	絶対精度	_	_	±14	LSB	_
	DNL 微分非直線性誤差	_	_	±3	LSB	_
	INL 積分非直線性誤差	_	_	±4	LSB	_
	サンプル&ホールド回路のホール ド特性	_	_	2.67	μs	_
	ダイナミックレンジ	0.15	_	VREFH0 - 0.15	V	_
チャネル専用サンプル&ホールド 回路不使用時 (AN000~AN003、AN100~	変換時間 ^(注1) 許容信号源インピーダンス Max = 1.0 kΩ	0.84	_	_	μs	_
AN103)	オフセット誤差	_	_	±11	LSB	_
	フルスケール誤差	_	_	±11	LSB	_
	量子化誤差	_	±0.5	_	LSB	_
	絶対精度	_	_	±12	LSB	_
	DNL 微分非直線性誤差	_	_	±3	LSB	_
	INL 積分非直線性誤差	_	_	±4	LSB	_

- 注. 表の指定値は、A/D 変換中に外部バスアクセスを行わなかった場合の数値です。A/D 変換中に外部バスアクセスを行った場合は、指定した値の範囲に収まらない可能性があります。
- 注 1. 変換時間は、サンプリング時間と比較時間の合計です。

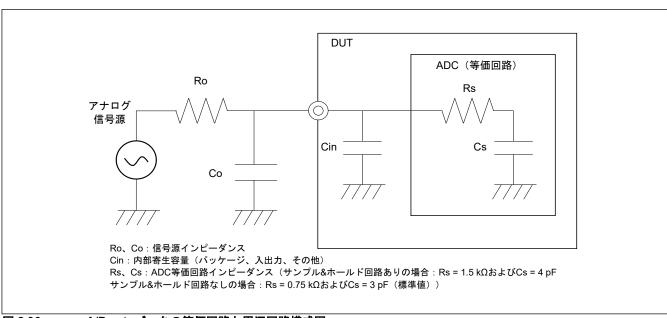


図 2.96 A/D コンバータの等価回路と周辺回路構成図

2.8 温度センサ特性

表 2.46 温度センサ特性

項目	Min	Тур	Max	単位	測定条件
相対精度	_	±1	_	°C	(注1)
温度傾斜	_	0.0625	_	°C/LSB	_
出力コード (25℃時)	_	1545(10 進数)	_	_	TSUSAD レジスタ

注 1. 2 点キャリブレーション (Tj = 25℃および Tj = 85℃)、および 8 回平均。

2.9 デバッグインタフェースタイミング

条件: $V_{OH} = VCC33 \times 0.5$ 、 $V_{OL} = VCC33 \times 0.5$

表 2.47 デバッグインタフェースタイミング

項目		シンボル	Min	Max	単位	参照図
TCK サイクル時間	ICE 接続時	t _{TCKcyc}	30(注1)	_	ns	図 2.97
	BSCAN 使用時		80	_		
TCK High レベルパルス幅		t _{TCKH}	0.4	0.6	t _{TCKcyc}	
TCK Low レベルパル	ス幅	t _{TCKL}	0.4	0.6	t _{TCKcyc}	
TDI セットアップ時間	TDI セットアップ時間		5	_	ns	図 2.98
TDI ホールド時間	TDI ホールド時間		5	_	ns	─ 出力負荷: 30 pF
TMS/SWDIO セットアップ時間		t _{TMSS}	5	_	ns	
TMS/SWDIO ホールド時間		t _{TMSH}	5	_	ns	
SWDIO 遅延時間		t _{SWDO}	_	15	ns	
TDO 遅延時間	ICE 接続時	t _{TDOD}	_	15	ns	
	BSCAN 使用時		_	22		
キャプチャレジスタイ	セットアップ時間	t _{CAPTS}	5	_	ns	図 2.99
キャプチャレジスタホールド時間		t _{CAPTH}	5	_	ns	
更新レジスタ遅延時間		t _{UPDATED}	_	15	ns	
トレースクロックサイクル		t _{TCYC}	20	_	ns	図 2.100
トレースデータ遅延	寺間	t _{TDT}	1.3	8.7	ns	── 出力負荷:15 pF

注 1. この値は、内部回路の通常動作のための最小のサイクルタイムです。 実際のサイクルタイムは、TCK キャプチャエッジタイミングと接続する ICE のケーブル長を考慮して決定する必要があります。

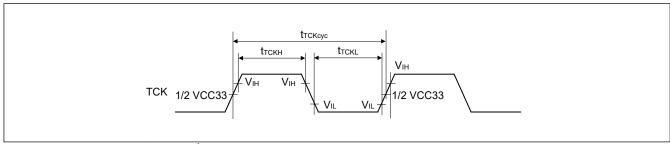


図 2.97 TCK 入力タイミング

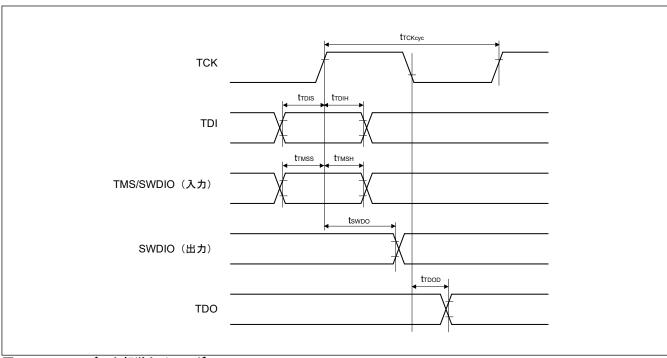


図 2.98 データ転送タイミング

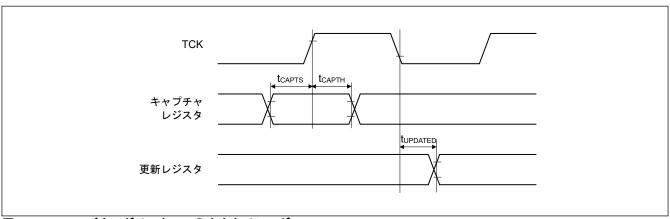
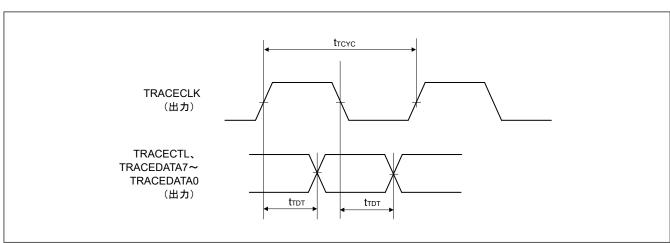
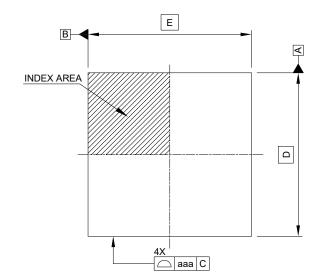
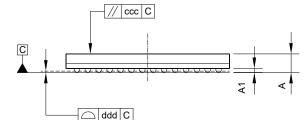
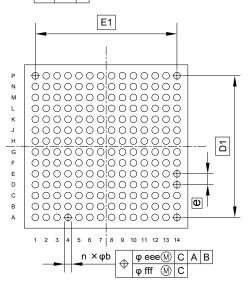


図 2.99 バウンダリスキャン入出力タイミング




図 2.100 トレースインタフェースタイミング


RZ/T2L データシート 付録 1. 外形寸法図


付録 1. 外形寸法図

外形寸法図の最新版や実装に関する情報は、弊社のウェブサイトの「パッケージ」を参照してください。

Reference	Dimension in Millimeters					
Symbol	Min.	Nom.	Max.			
D	_	12.00	_			
E	_	12.00	_			
D1	_	10.40	_			
E1	_	10.40	_			
Α	_	_	1.43			
A1	0.25	_	_			
b	0.36	0.41	0.46			
е	_	0.80	_			
aaa	_	_	0.15			
ccc	_	_	0.10			
ddd	_	_	0.10			
eee	_	_	0.15			
fff	_	_	0.08			
n	_	196	_			

図 1.1 196 ピン FBGA

RZ/T2L データシート 改訂記録

改訂記録

Revision 1.00 — 2022 年 11 月 30 日

● 初版リリース

Revision 1.10 — 2023 年 02 月 28 日

2. 電気的特性:

• 表 2.35 SPI タイミング を修正。

付録 1.外形寸法図:

• 図 1.1 196 ピン FBGA を修正。

Revision 1.20 — 2023 年 10 月 31 日

1. 概要:

● 表 1.7 タイマ を更新。

45. 電気的特性:

● 表 45.40 シリアルマネジメントインタフェースタイミング を更新。

ご注意書き

- 1. 本資料に記載された回路、ソフトウェアおよびこれらに関連する情報は、半導体製品の動作例、応用例を説明するものです。回路、ソフトウェアおよびこれらに関連する情報を使用する場合、お客様の責任において、お客様の機器・システムを設計ください。これらの使用に起因して生じた損害(お客様または第三者いずれに生じた損害も含みます。以下同じです。)に関し、当社は、一切その責任を負いません。
- 2. 当社製品または本資料に記載された製品データ、図、表、プログラム、アルゴリズム、応用回路例等の情報の使用に起因して発生した第三者の特許権、 著作権その他の知的財産権に対する侵害またはこれらに関する紛争について、当社は、何らの保証を行うものではなく、また責任を負うものではありま せん。
- 3. 当社は、本資料に基づき当社または第三者の特許権、著作権その他の知的財産権を何ら許諾するものではありません。
- 4. 当社製品を組み込んだ製品の輸出入、製造、販売、利用、配布その他の行為を行うにあたり、第三者保有の技術の利用に関するライセンスが必要となる 場合、当該ライセンス取得の判断および取得はお客様の責任において行ってください。
- 5. 当社製品を、全部または一部を問わず、改造、改変、複製、リバースエンジニアリング、その他、不適切に使用しないでください。かかる改造、改変、 複製、リバースエンジニアリング等により生じた損害に関し、当社は、一切その責任を負いません。
- 6. 当社は、当社製品の品質水準を「標準水準」および「高品質水準」に分類しており、各品質水準は、以下に示す用途に製品が使用されることを意図しております。

標準水準: コンピュータ、OA 機器、通信機器、計測機器、AV 機器、家電、工作機械、パーソナル機器、産業用ロボット等

高品質水準:輸送機器(自動車、電車、船舶等)、交通制御(信号)、大規模通信機器、金融端末基幹システム、各種安全制御装置等

当社製品は、データシート等により高信頼性、Harsh environment 向け製品と定義しているものを除き、直接生命・身体に危害を及ぼす可能性のある機器・システム(生命維持装置、人体に埋め込み使用するもの等)、もしくは多大な物的損害を発生させるおそれのある機器・システム(宇宙機器と、海底中継器、原子力制御システム、航空機制御システム、プラント基幹システム、軍事機器等)に使用されることを意図しておらず、これらの用途に使用することは想定していません。たとえ、当社が想定していない用途に当社製品を使用したことにより損害が生じても、当社は一切その責任を負いません。

- 7. あらゆる半導体製品は、外部攻撃からの安全性を 100%保証されているわけではありません。当社ハードウェア/ソフトウェア製品にはセキュリティ対策が組み込まれているものもありますが、これによって、当社は、セキュリティ脆弱性または侵害(当社製品または当社製品が使用されているシステムに対する不正アクセス・不正使用を含みますが、これに限りません。)から生じる責任を負うものではありません。当社は、当社製品または当社製品が使用されたあらゆるシステムが、不正な改変、攻撃、ウイルス、干渉、ハッキング、データの破壊または窃盗その他の不正な侵入行為(「脆弱性問題」といいます。)によって影響を受けないことを保証しません。当社は、脆弱性問題に起因しまたはこれに関連して生じた損害について、一切責任を負いません。また、法令において認められる限りにおいて、本資料および当社ハードウェア/ソフトウェア製品について、商品性および特定目的との合致に関する保証ならびに第三者の権利を侵害しないことの保証を含め、明示または黙示のいかなる保証も行いません。
- 8. 当社製品をご使用の際は、最新の製品情報(データシート、ユーザーズマニュアル、アプリケーションノート、信頼性ハンドブックに記載の「半導体デバイスの使用上の一般的な注意事項」等)をご確認の上、当社が指定する最大定格、動作電源電圧範囲、放熱特性、実装条件その他指定条件の範囲内でご使用ください。指定条件の範囲を超えて当社製品をご使用された場合の故障、誤動作の不具合および事故につきましては、当社は、一切その責任を負いません。
- 9. 当社は、当社製品の品質および信頼性の向上に努めていますが、半導体製品はある確率で故障が発生したり、使用条件によっては誤動作したりする場合があります。また、当社製品は、データシート等において高信頼性、Harsh environment 向け製品と定義しているものを除き、耐放射線設計を行っておりません。仮に当社製品の故障または誤動作が生じた場合であっても、人身事故、火災事故その他社会的損害等を生じさせないよう、お客様の責任において、冗長設計、延焼対策設計、誤動作防止設計等の安全設計およびエージング処理等、お客様の機器・システムとしての出荷保証を行ってください。特に、マイコンソフトウェアは、単独での検証は困難なため、お客様の機器・システムとしての安全検証をお客様の責任で行ってください。
- 10. 当社製品の環境適合性等の詳細につきましては、製品個別に必ず当社営業窓口までお問合せください。ご使用に際しては、特定の物質の含有・使用を規制する RoHS 指令等、適用される環境関連法令を十分調査のうえ、かかる法令に適合するようご使用ください。かかる法令を遵守しないことにより生じた損害に関して、当社は、一切その責任を負いません。
- 11. 当社製品および技術を国内外の法令および規則により製造・使用・販売を禁止されている機器・システムに使用することはできません。当社製品および 技術を輸出、販売または移転等する場合は、「外国為替及び外国貿易法」その他日本国および適用される外国の輸出管理関連法規を遵守し、それらの定 めるところに従い必要な手続きを行ってください。
- 12. お客様が当社製品を第三者に転売等される場合には、事前に当該第三者に対して、本ご注意書き記載の諸条件を通知する責任を負うものといたします。
- 13. 本資料の全部または一部を当社の文書による事前の承諾を得ることなく転載または複製することを禁じます。
- 14. 本資料に記載されている内容または当社製品についてご不明な点がございましたら、当社の営業担当者までお問合せください。
- 注 1. 本資料において使用されている「当社」とは、ルネサス エレクトロニクス株式会社およびルネサス エレクトロニクス株式会社が直接的、間接的に支配する会社をいいます。
- 注 2. 本資料において使用されている「当社製品」とは、注1において定義された当社の開発、製造製品をいいます。

(Rev.5.0-1 2020.10)

本社所在地

〒135-0061 東京都江東区豊洲 3-2-24 (豊洲フォレシア)

www.renesas.com

商標について

ルネサスおよびルネサスロゴはルネサス エレクトロニクス株式会社の 商標です。すべての商標および登録商標は、それぞれの所有者に帰属し ます。

お問合せ窓口

弊社の製品や技術、ドキュメントの最新情報、最寄の営業お問合せ窓口に関する情報などは、弊社ウェブサイトをご覧ください。

www.renesas.com/contact/