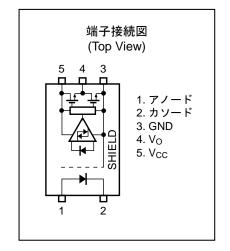


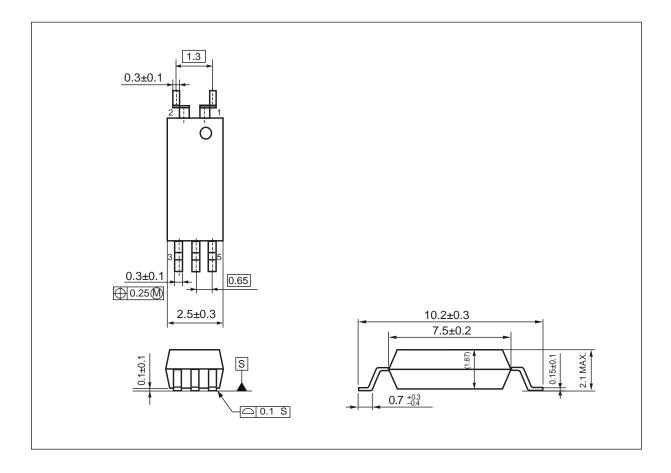
RV1S9262A


高 CMTI, 15 Mbps, IPM 駆動用 小型 8.2 mm 沿面 5 ピン SSOP (LSSO5) フォトカプラ R08DS0274JJ0200 Rev.2.00 2025, 09, 03

概 要

RV1S9262A は、入力側に AIGaAs 発光ダイオードを使用し、出力側にフォトダイオードと信号処理回路を同一チップ上に構成した受光 IC を用いたアクティブ・ロー高速 (15 Mbps) フォトカプラです。高いコモンモード過渡耐性 (高 CMTI) に加え、幅広い電源電圧駆動に対応し、温度変化を考慮した伝達遅延時間のばらつきを規定しており、IPM (Intelligent Power Module) 駆動用に最適です。

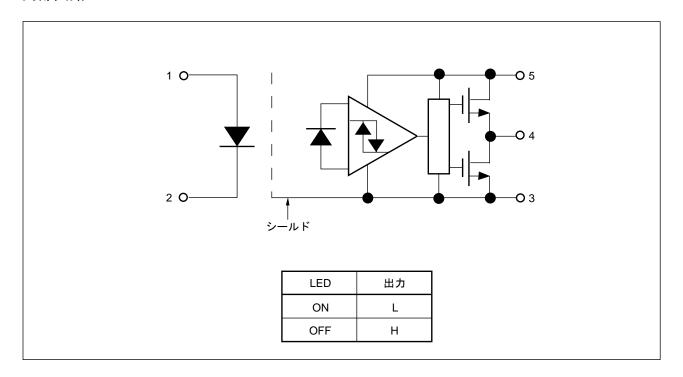
特 徴


- 沿面距離が長い (8.2 mm MIN,LSSO5)
- 応答速度が速い (15 Mbps)
- コモンモード過渡耐性が高い (|CM_H|, |CM_L| = 100 kV/µs MIN.)
- パルス幅ひずみが小さい (|tp+L tpL+| = 20 ns MAX.)
- 動作電源電圧範囲が広い (Vcc = 4.5 ~ 30 V)
- 動作周囲温度 (125 °C MAX.)
- 入出力間絶縁耐圧が高い (BV = 5 000 Vr.m.s.)
- エンボス・テーピング対応品: RV1S9262ACCSP-10Yx#KC0:3500個/リール
- 鉛フリー対応品
- 海外安全規格
 - UL 認定品: UL1577, Double protection
 - CSA 認定品: CAN/CSA-C22.2 No.62368-1, 強化絶縁
 - VDE 認定品: DIN EN IEC 60747-5-5 (オプション対応いたします)

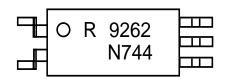
用 途

- IPM 駆動用
- 汎用インバータ

外形図 (単位:mm)



質量: 0.075 g (TYP.)


構造パラメータ

項目	MIN.
空間距離	8.2 mm
沿面距離	8.2 mm
絶縁物厚	0.15 mm

内部回路

捺 印 例

ı	3	Rer	nesas の頭文字	
9262		品名* ⁾		
0		1 ピンマーク		
N744	N	規格名		
	744	製造ロット番号		
		7 西暦年号の末尾		
		44 週コード		

*) 下記の該当品名を捺印

RV1S 9262 ACCSP-10Yx

捺印名は"RV1S","ACCSP-10Yx"が省略されております。

オーダ情報

品名	オーダ名称	メッキ仕様	包装形態	海外安全規格	申請品名 注
RV1S9262ACCSP -10YC	RV1S9262ACCSP -10YC#SC0	鉛フリー& ハロゲン・	20 個(テーピング品を 20 個単位にカット)	UL, CSA 認定品	RV1S9262A
	RV1S9262ACCSP -10YC#KC0	フリー (Ni/Pd/Au)	エンボステーピング 3500 個/リール		
RV1S9262ACCSP -10YV	RV1S9262ACCSP -10YV#SC0		20 個(テーピング品を 20 個単位にカット)	UL, CSA, VDE 認定品	
	RV1S9262ACCSP -10YV#KC0		エンボステーピング 3500 個/リール		

【注】海外安全規格申請は申請品名で行ってください。

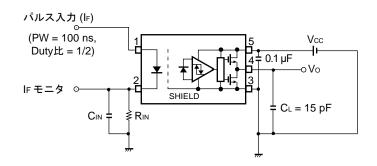
絶対最大定格 (特に指定のないかぎり TA = 25°C)

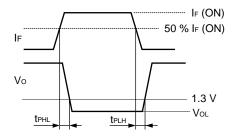
	項目	略号	定格	単位	
発 光	順電流	I _F	20	mA	
	逆電圧	V_R	5	V	
	許容損失 注1	P _D	45	mW	
受 光	電源電圧	V _{CC}	−0.5 ~ + 30	V	
	出力電圧	Vo	−0.5 ~ Vcc	V	
	出力電流	Io	25	mA	
	許容損失 注2	Pc	250	mW	
絶縁耐圧 ^{注3}		BV	5 000	Vr.m.s.	
動作周囲温度		T _A	−40 ~ + 125	°C	
保存温度		T _{stg}	−40 ~ + 150	°C	

- 【注】 1. T_A = 110 °C 以上では、1.2 mW/°C で減少する。
 - 2. T_A = 85 °C 以上では、4.15 mW/°C で減少する。
 - 3. TA = 25 °C、RH = 60 %、AC 電圧を 1 分間印加(入力側全電極端子一括と出力側電極端子一括間)

推奨動作条件

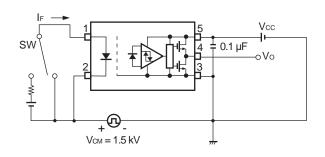
項目	略号	MIN.	TYP.	MAX.	単位
電源電圧	Vcc	4.5		30	V
入力電流 (ON)	I _F (ON)	6		12	mA
入力電圧 (OFF)	V _F (OFF)	0		0.8	V
電源電圧スルーレート	SR			0.5	V/µs
動作周囲温度	T _A	-40		125	°C

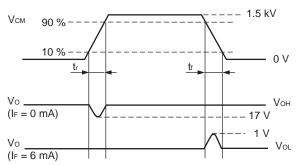

電気的特性 (特に指定のないかぎり T_A = -40~ +125°C, V_{CC} = 4.5~30 V)

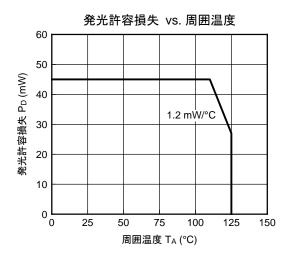

(出力:H) Vo > 17 V, IF = 0 mA, V _{CM} = 1.5 kV コモンモード過渡耐性 ^{建4} (出力:L) ICML V _{CC} = 30 V, T _A = 25 °C, Vo < 1 V, 100 kV/µs		項目	略号	条件	MIN.	TYP ^{.注1}	MAX.	単 位
選子間容量	発光	順電圧	VF	I _F = 6 mA, T _A = 25 °C	1.4	1.54	1.7	V
受 光		逆電流	I _R	V _R = 3 V, T _A = 25 °C			10	μА
IF = 6 mA, Io = 6.5 mA		端子間容量	Ct	V _F = 0 V, f = 1 MHz		30		pF
IF = 0 mA, Io = -3.5 mA	受 光	ロウ・レベル出力電圧	Vol	I _F = 6 mA, I _O = 3.5 mA			0.3	V
日ゥ・レベル供給電流 注2 Iccl IF = 6 mA, Vcc = 30 V 1.7 3 mA				$I_F = 6 \text{ mA}, I_O = 6.5 \text{ mA}$			0.5	
□ウ・レベル供給電流 ^{注2} Iccl IF = 6 mA, Vcc = 30 V 1.7 3 mA Vc → ベル供給電流 ^{注2} Icch IF = 0 mA, Vcc = 30 V 1.7 3 mA UVLO スレッシュホールド VuvLo Vo < 1 V, IF = 0 mA 3 V 4 mA 3 V 5 mA 1.7		ハイ・レベル出力電圧	Vон	$I_F = 0 \text{ mA}, I_O = -3.5 \text{ mA}$				V
ハイ・レベル供給電流 ^{注2} I _{CCH} I _F = 0 mA, V _{CC} = 30 V 1.7 3 mA				$I_F = 0 \text{ mA}, I_O = -6.5 \text{ mA}$				
UVLO スレッシュホールド VUVLO Vo < 1 V, IF = 0 mA 3 V		ロウ・レベル供給電流 注2	Iccl	I _F = 6 mA, V _{CC} = 30 V		1.7	3	mA
伝達特性 スレッシュホールド 入力電流 注2		ハイ・レベル供給電流 注2	I _{CCH}	$I_F = 0 \text{ mA}, V_{CC} = 30 \text{ V}$		1.7	3	mA
入力電流 注2		UVLO スレッシュホールド	V _{UVLO}	$V_0 < 1 \text{ V, I}_F = 0 \text{ mA}$		3		V
T _A = 25 °C 入出力間容量	伝達特性		I _{FHL}	l ' '			4	mA
伝達遅延時間 (H→L) 達3		入出力間絶縁抵抗	R _{I-O}		10 ¹¹			Ω
RIN = 560 Ω(IF= 0→6 mA 相当), CL = 15 pF, V _{THHL} = 1.3 V (伝達遅延時間 (L→H) ^{注3} t _{PLH} V _{IN} = 5→0 V, C _{IN} = 60 pF, RIN = 560 Ω(IF= 6→0 mA 相当), CL = 15 pF, V _{THLH} = 1.3 V パルス幅ひずみ PWD = t _{PHL} t _{PLH} V _{IN} = 0⇔5 V, C _{IN} = 60 pF, RIN = 560 Ω(IF= 0→6 mA 相当), CL = 15 pF, V _{THLH} = 1.3 V 2 部品間の伝達遅延時間差 PDD = t _{PHL} t _{PLH} CL = 15 pF, V _{THHL} = 1.3 V 3 で 2 で 3 で 3 で 3 で 3 で 3 で 3 で 3 で 3 で		入出力間容量	Cı-o	V = 0 V, f = 1 MHz		0.6		pF
伝達遅延時間 (L→H) ^{注3} t _{PLH} Vi _N = 5→0 V, C _{IN} = 60 pF, Ri _N = 560 Ω(I _F = 6→0 mA 相当), C _L = 15 pF, V _{THLH} = 1.3 V Vi _N = 0 ⇔5 V, C _{IN} = 60 pF, Ri _N = 560 Ω(I _F = 0 ⇔6 mA 相当), C _L = 15 pF, V _{THLH} = 1.3 V Vi _N = 0 ⇔5 V, C _{IN} = 60 pF, Ri _N = 560 Ω(I _F = 0 ⇔6 mA 相当), C _L = 15 pF, V _{THLH} = 1.3 V C _L = 15 pF, V _{THLH} = 1.3 V C _L = 15 pF, V _{THLH} = 1.3 V C _L = 15 pF, V _{THL} = 1.3 V C _L = 15 pF, V _{THL} = 1.3 V C _L = 15 pF, V _{THL} = 1.3 V C _L = 15 pF, V _{THL} = 1.3 V C _L = 15 pF, V _{THL} = 1.3 V C _L = 100 pF, Ri _N = 560 Ω(I _F = 0 ⇔6 mA 相当), C _L = 15 pF, V _{THL} = 1.3 V C _L = 15 pF, V _{THL} = 1.3 V C _L = 15 pF, V _{THL} = 1.3 V C _L = 100 pF, Ri _N = 1.5 pF, V _{THL} = 1.3 v C _L = 100 pF, Ri _N = 1.5 pF, V _{THL} = 1.3 v C _L = 100 pF, Ri _N = 1.5 pF, V _{THL} = 1.3 v C _L = 100 pF		伝達遅延時間 (H→L) ^{注3}	t _{PHL}	R _{IN} = 560 Ω(I _F = 0→6 mA 相当),			60	ns
t _{PHL} - t _{PLH} R _{IN} = 560 Ω(I _F = 0 ⇔ 6 mA 相当), C _L = 15 pF, V _{THHL} =V _{THLH} = 1.3 V -25 25 25 25 25 25 25 25		伝達遅延時間 (L→H) ^{注3}	tрLн	V _{IN} = 5→0 V, C _{IN} = 60 pF, R _{IN} = 560 Ω(I _F = 6→0 mA 相当),			60	ns
2 部品間の伝達遅延時間差 PDD = tpHL- tpLH		パルス幅ひずみ	PWD =	$V_{IN} = 0 \Leftrightarrow 5 \text{ V}, C_{IN} = 60 \text{ pF},$			20	ns
Table T			tphl- tplh					
コモンモード過渡耐性 ^{注4} CM _H V _{CC} = 30 V, T _A = 25 °C, 100 kV/μs Vo > 17 V, I _F = 0 mA, V _{CM} = 1.5 kV コモンモード過渡耐性 ^{注4} CM _L V _{CC} = 30 V, T _A = 25 °C, 100 kV/μs Vo < 1 V,		2 部品間の伝達遅延時間差	PDD =	C _L = 15 pF, V _{ТННL} =V _{ТНLН} = 1.3 V	-25		25	
(出力:H)			t _{PHL} - t _{PLH}					
I _F = 0 mA, V _{CM} = 1.5 kV			CM _H	· '	100			kV/μs
コモンモード過渡耐性 ^{注4} CM _L V _{CC} = 30 V, T _A = 25 °C, 100 kV/μs Vo < 1 V,		(出力:H)		,				
(出力:L) Vo < 1 V,				·				
			CM∟	Vo < 1 V,	100			kV/μs

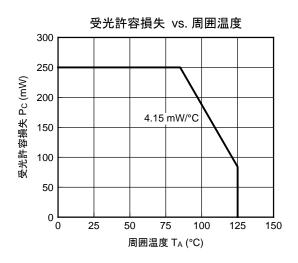
【注】1. TYP.値は T_A = 25 °C

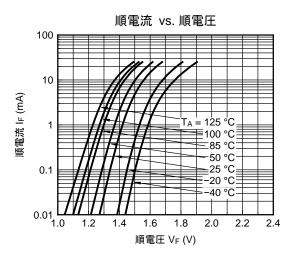
2. 電流は RV1S9262A へ流入する向きが正の方向。

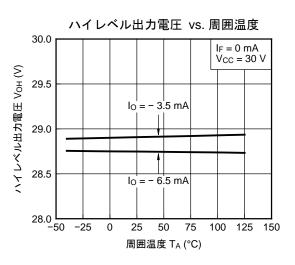

3. 伝達遅延時間測定回路

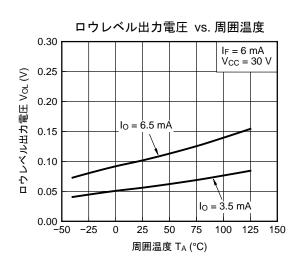


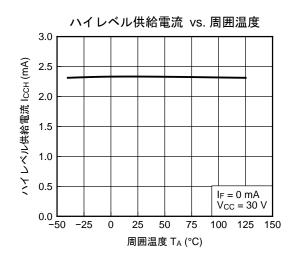

備考 CLはプローブと配線容量を含んだものです

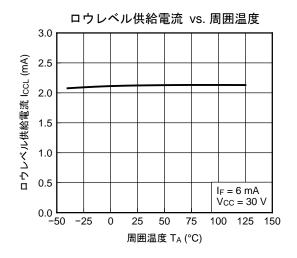

4. コモンモード過渡耐性測定回路

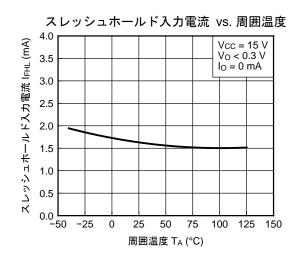


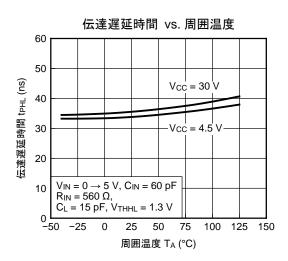


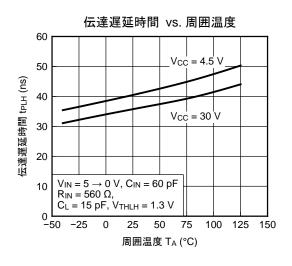

特性曲線 (特に指定のないかぎり TA = 25°C,参考値)

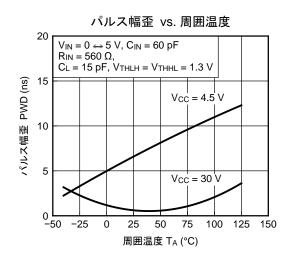


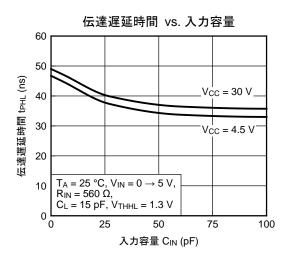


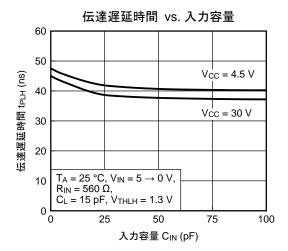




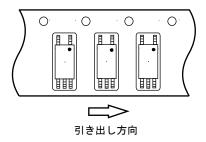

【備考】 グラフの中の値は参考値を示します。


特性曲線 (特に指定のないかぎり TA = 25°C,参考値)

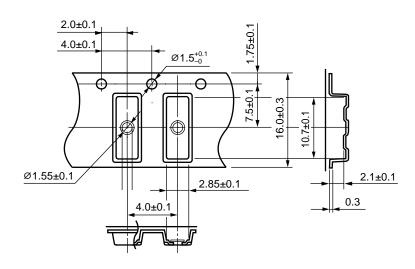




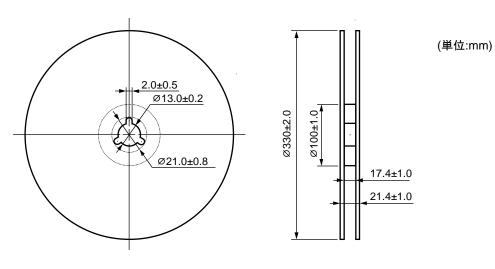
【備考】 グラフの中の値は参考値を示します。


特性曲線 (特に指定のないかぎり TA = 25 °C,参考値)

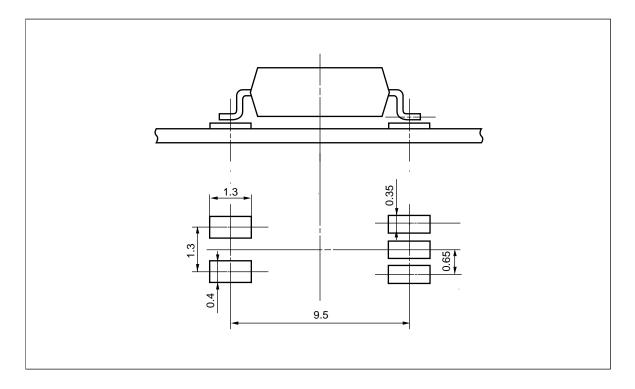
【備考】 グラフの中の値は参考値を示します。


テーピング仕様 (単位:mm)

テープ方向



外形および寸法 (テープ)


(単位:mm)

外形および寸法 (リール)

推奨マウント・パッド寸法 (単位:mm)

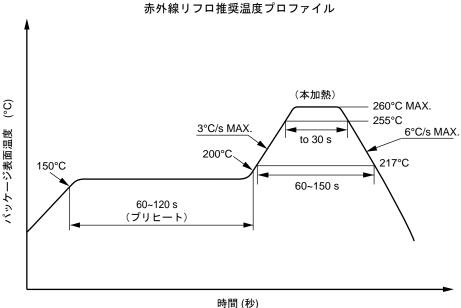
【注】実機にて評価のうえ適用判断して下さい。

実装上の注意事項

1. 半田付け推奨条件

(1) 赤外線リフロによる実装時

・ピーク温度 (260°C の場合) 260°C MAX. (パッケージ表面温度)


・ピーク温度 (-5°C) の時間 (255°C) 30 s 以内

・はんだ融点以上 (217°C 以上の時間) $60 \sim 150 s$

・プリヒート領域 (150~200°C の時間) $60 \sim 120 s$

・最多リフロ回数 3 回

・フラックス 塩素分の少ないロジン系フラックス (塩素 0.2 Wt % 以下を推奨)

JEDEC J-STD-020F 規格準拠 実装条件

(2) ウェーブ・ソルダリングによる実装時

・温度 260°C 以下 (溶融半田温度)

• 時間 10 s 以内

• 予備加熱 120°C 以下 (パッケージ表面温度)

• 回数 1回 (モールド部浸漬可)

・フラックス 塩素分の少ないロジン系フラックス (塩素 0.2 Wt % 以下を推奨)

(3) 手付け

・最高温度 (リード部温度) 350 ℃ 以下

・時間(パッケージの一辺あたり) 3s以内

・フラックス 塩素分の少ないロジン系フラックス(塩素 0.2 Wt % 以下を推奨)

• 場所 デバイスのリード根元より 1.5~2.0 mm 以上離してください。

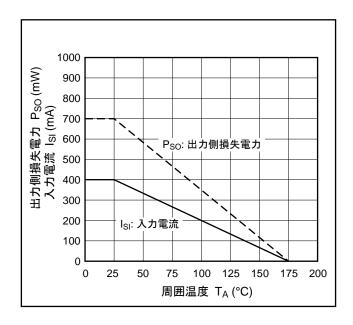
(4) 注意事項

フラックス洗浄 フロン系、ハロゲン系(塩素系など)溶剤による洗浄は避けてください。

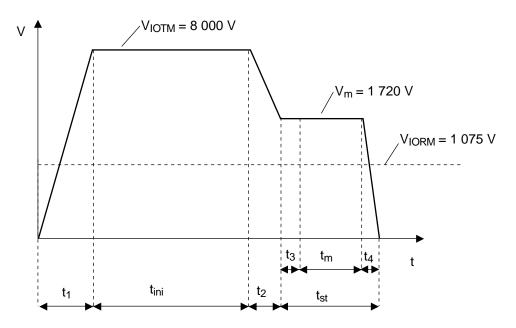
・固定/コーティング ハロゲン系物質を含有する物質は使用しないでください。

2. ノイズについての注意事項

フォトカプラの入力ー出力間に立ち上がりの急峻な電圧が印加されると、定格内であっても出力側が オン状態になることがありますので、ご確認のうえご使用願います。


使用上の注意

- 1. 本製品は高速化設計のため、静電気の影響を受けやすくなっております。取り扱いの際は人体アースなど静電気対策を行ってください。
- 2. V_{cc} GND 間に 0.1 μ F 以上のバイパス・コンデンサを挿入してください。また、フォトカプラ-コンデンサ間のリード距離は 10 mm 以内としてください。
- 3. 保管は高温多湿を避けてください。

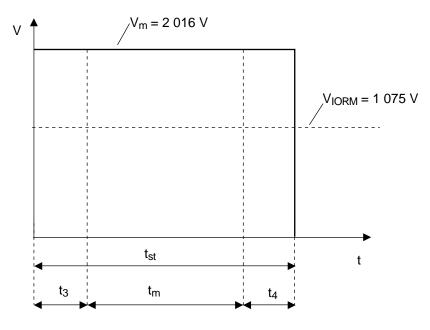

VDE 認定仕様

項 目	略号	定格	単 位
環境試験クラス(IEC 60068-1/DIN EN 60068-1)		40/125/21	
絶縁強度			
最大許容動作絶縁電圧	Viorm	1 075	V_{peak}
試験電圧(部分放電試験,手順 a,型式試験とランダム試験)	V _m	1 720	V_{peak}
$V_m = 1.6 \times V_{IORM}$			
判定基準:部分放電 q _{pd} < 5 pC			
試験電圧(部分放電試験,手順 b,全数試験)			
$V_m = 1.875 \times V_{IORM}$	V _m	2 016	V_{peak}
判定基準:部分放電 q _{pd} < 5 pC			
最大許容電圧(過度的電圧)	V _{IОТМ}	8 000	V_{peak}
汚染度 (IEC 60664-1/DIN EN 60664-1 (VDE 0110-1))		2	
絶縁材の耐トラッキング性 (IEC 60112/DIN EN 60112 (VDE 0303-11))	CTI	400	
材料グループ (IEC 60664-1/DIN EN 60664-1 (VDE 0110-1))		II	
許容保存温度	T _{stg}	-40 ~ +150	°C
許容動作温度	T _A	-40 ~ +125	°C
絶縁抵抗最小値			
V _{I-O} = 500 V dc, T _A = 25 °C	R _{I-O} MIN.	10 ¹²	Ω
V _{I-O} = 500 V dc, T _A = 定格最高温度, 最小 100 °C	R _{I-O} MIN.	10 ¹¹	Ω
安全最大定格(故障時の最大許容値)			
温度ディレイティングカーブ参照			
最大周囲温度	Ts	175	°C
最大入力電流	Isı	400	mA
最大出力側損失電力	Pso	700	mW
絶縁抵抗最小値(V _{I-O} = 500 V dc, T _A = T _S)	R _{I-O} MIN.	10 ⁹	Ω

安全最大定格-周囲温度

手順 a) 破壊試験、型式試験とランダム試験

 t_1 , $t_2 = 1$ to 10 sec


 $t_3, t_4 = 1 \text{ sec}$

 $t_m = 10 \text{ sec}$

 $t_{st} = 12 \text{ sec}$

 $t_{ini} = 60 \text{ sec}$

手順 b) 非破壊試験、全数試験

 t_3 , $t_4 = 0.1 sec$

 $t_m = 1.0 \text{ sec}$

 $t_{st} = 1.2 \text{ sec}$

注意 GaAs 製品

この製品には、ガリウムひ素 (GaAs)を使用しています。

GaAs の粉末や蒸気は有害ですから、次の点にご注意ください。

- ・廃棄する際には、次のような廃棄処理をすることを推奨します。
 - 1. 「ひ素含有物等の産業廃棄物の収集、運搬、処理の資格」を持つ処理業者に委託する。
 - 2. 一般産業廃棄物および家庭用廃棄物とは区別し、「特別管理産業廃棄物」として、 最終処分まで管理する。
- ・焼却、破壊、切断、粉砕や化学的な分解を行わないでください。
- 対象デバイスをなめたり、口に入れたりしないでください。

すべての商標および登録商標は、それぞれの所有者に帰属します。

ご注意書き

- 1. 本資料に記載された回路、ソフトウェアおよびこれらに関連する情報は、半導体製品の動作例、応用例を説明するものです。回路、ソフトウェアおよびこれらに関連する情報を使用する場合、お客様の責任において、お客様の機器・システムを設計ください。これらの使用に起因して生じた損害 (お客様または第三者いずれに生じた損害も含みます。以下同じです。)に関し、当社は、一切その責任を負いません。
- 2. 当社製品または本資料に記載された製品データ、図、表、プログラム、アルゴリズム、応用回路例等の情報の使用に起因して発生した第三者の特許権、著作権その他の知的財産権に対する侵害またはこれらに関する紛争について、当社は、何らの保証を行うものではなく、また責任を負うものではありません。
- 3. 当社は、本資料に基づき当社または第三者の特許権、著作権その他の知的財産権を何ら許諾するものではありません。
- 4. 当社製品を組み込んだ製品の輸出入、製造、販売、利用、配布その他の行為を行うにあたり、第三者保有の技術の利用に関するライセンスが必要となる場合、当該ライセンス取得の判断および取得はお客様の責任において行ってください。
- 5. 当社製品を、全部または一部を問わず、改造、改変、複製、リバースエンジニアリング、その他、不適切に使用しないでください。かかる改造、改変、複製、リバースエンジニアリング等により生じた損害に関し、当社は、一切その責任を負いません。
- 6. 当社は、当社製品の品質水準を「標準水準」および「高品質水準」に分類しており、各品質水準は、以下に示す用途に製品が使用されることを意図しております。

標準水準: コンピュータ、OA 機器、通信機器、計測機器、AV 機器、家電、工作機械、パーソナル機器、産業用ロボット等

高品質水準:輸送機器(自動車、電車、船舶等)、交通制御(信号)、大規模通信機器、金融端末基幹システム、各種安全制御装置等 当社製品は、データシート等により高信頼性、Harsh environment 向け製品と定義しているものを除き、直接生命・身体に危害を及ぼす可能性のあ る機器・システム(生命維持装置、人体に埋め込み使用するもの等)、もしくは多大な物的損害を発生させるおそれのある機器・システム(宇宙機 器と、海底中継器、原子力制御システム、航空機制御システム、プラント基幹システム、軍事機器等)に使用されることを意図しておらず、これら の用途に使用することは想定していません。たとえ、当社が想定していない用途に当社製品を使用したことにより損害が生じても、当社は一切その 責任を負いません。

- 7. あらゆる半導体製品は、外部攻撃からの安全性を 100%保証されているわけではありません。当社ハードウェア/ソフトウェア製品にはセキュリティ対策が組み込まれているものもありますが、これによって、当社は、セキュリティ脆弱性または侵害(当社製品または当社製品が使用されているシステムに対する不正アクセス・不正使用を含みますが、これに限りません。) から生じる責任を負うものではありません。当社は、当社製品または当社製品が使用されたあらゆるシステムが、不正な改変、攻撃、ウイルス、干渉、ハッキング、データの破壊または窃盗その他の不正な侵入行為(「脆弱性問題」といいます。) によって影響を受けないことを保証しません。当社は、脆弱性問題に起因しまたはこれに関連して生じた損害について、一切責任を負いません。また、法令において認められる限りにおいて、本資料および当社ハードウェア/ソフトウェア製品について、商品性および特定目的との合致に関する保証ならびに第三者の権利を侵害しないことの保証を含め、明示または黙示のいかなる保証も行いません。
- 8. 当社製品をご使用の際は、最新の製品情報(データシート、ユーザーズマニュアル、アプリケーションノート、信頼性ハンドブックに記載の「半導体デバイスの使用上の一般的な注意事項」等)をご確認の上、当社が指定する最大定格、動作電源電圧範囲、放熱特性、実装条件その他指定条件の範囲内でご使用ください。指定条件の範囲を超えて当社製品をご使用された場合の故障、誤動作の不具合および事故につきましては、当社は、一切その責任を負いません。
- 9. 当社は、当社製品の品質および信頼性の向上に努めていますが、半導体製品はある確率で故障が発生したり、使用条件によっては誤動作したりする場合があります。また、当社製品は、データシート等において高信頼性、Harsh environment 向け製品と定義しているものを除き、耐放射線設計を行っておりません。仮に当社製品の故障または誤動作が生じた場合であっても、人身事故、火災事故その他社会的損害等を生じさせないよう、お客様の責任において、冗長設計、延焼対策設計、誤動作防止設計等の安全設計およびエージング処理等、お客様の機器・システムとしての出荷保証を行ってください。特に、マイコンソフトウェアは、単独での検証は困難なため、お客様の機器・システムとしての安全検証をお客様の責任で行ってください。
- 10. 当社製品の環境適合性等の詳細につきましては、製品個別に必ず当社営業窓口までお問合せください。ご使用に際しては、特定の物質の含有・使用を規制する RoHS 指令等、適用される環境関連法令を十分調査のうえ、かかる法令に適合するようご使用ください。かかる法令を遵守しないことにより生じた損害に関して、当社は、一切その責任を負いません。
- 11. 当社製品および技術を国内外の法令および規則により製造・使用・販売を禁止されている機器・システムに使用することはできません。当社製品および技術を輸出、販売または移転等する場合は、「外国為替及び外国貿易法」その他日本国および適用される外国の輸出管理関連法規を遵守し、それらの定めるところに従い必要な手続きを行ってください。
- 12. お客様が当社製品を第三者に転売等される場合には、事前に当該第三者に対して、本ご注意書き記載の諸条件を通知する責任を負うものといたしませ
- 13. 本資料の全部または一部を当社の文書による事前の承諾を得ることなく転載または複製することを禁じます。
- 14. 本資料に記載されている内容または当社製品についてご不明な点がございましたら、当社の営業担当者までお問合せください。
- 注 1. 本資料において使用されている「当社」とは、ルネサス エレクトロニクス株式会社およびルネサス エレクトロニクス株式会社が直接的、間接的 に支配する会社をいいます。
- 注 2. 本資料において使用されている「当社製品」とは、注1において定義された当社の開発、製造製品をいいます。

(Rev.5.0-1 2020.10)

本社所在地

〒135-0061 東京都江東区豊洲 3-2-24 (豊洲フォレシア)

www.renesas.com

商標について

ルネサスおよびルネサスロゴはルネサス エレクトロニクス株式会社の 商標です。すべての商標および登録商標は、それぞれの所有者に帰属 します。

お問合せ窓口

弊社の製品や技術、ドキュメントの最新情報、最寄の営業お問合せ窓口に関する情報などは、弊社ウェブサイトをご覧ください。

www.renesas.com/contact/