RENESAS

RL78/I1B

RENESAS MCU

True Low Power Platform (as low as 63 μ A/MHz, and 0.69 μ A for RTC + LVD), 1.9 V to 5.5 V Operation, 64 & 128 Kbyte Flash, for Single Phase Electric Power Meter Applications

1. OUTLINE

1.1 Features

Ultra-low power consumption technology

- VDD = single power supply voltage of 1.9 to 5.5 V
- HALT mode
- STOP mode
- SNOOZE mode

RL78 CPU core

- CISC architecture with 3-stage pipeline
- Minimum instruction execution time: Can be changed from high speed (0.04167 μs: @ 24 MHz operation with highspeed on-chip oscillator) to ultra-low speed (30.5 μs: @ 32.768 kHz operation with subsystem clock)
- Multiply/divide/multiply & accumulate instructions are supported.
- Address space: 1 MB
- General-purpose registers: (8-bit register × 8) × 4 banks
- On-chip RAM: 6 KB or 8 KB

Code flash memory

- Code flash memory: 64 KB or 128 KB
- Block size: 1 KB
- Prohibition of block erase and rewriting (security function)
- On-chip debug function
- Self-programming (with boot swap function/flash shield window function)

High-speed on-chip oscillator

- Select from 24 MHz (TYP.), 12 MHz (TYP.), 6 MHz (TYP.), and 3 MHz (TYP.)
- High accuracy: ±1.0 % (V_{DD} = 1.9 to 5.5 V, TA = -20 to +85°C)
- On-chip high-speed on-chip oscillator clock frequency correction function

Operating ambient temperature

• T_A = -40 to +85°C

Power management and reset function

- On-chip power-on-reset (POR) circuit
- On-chip voltage detector (LVD) (Select interrupt and reset from 11 levels)

Data transfer controller (DTC)

- Transfer mode: Normal mode, repeat mode, block mode
- Activation source: Start by interrupt sources (40 sources)
- Chain transfer function

Serial interface <R> • Simplified SPI

- Simplified SPI (CSI^{Note 1}): 1channel
- UART/UART (LIN-bus supported): 3 channels
- I²C/Simplified I2C communication: 3 channels
- IrDA: 1 channel

Timer

- 16-bit timer: 8 channels
- 12-bit interval timer: 1 channel
- 8-bit interval timer:4 channels
- Real-time clock 2: 1 channel (calendar for 99 years, alarm function, and clock correction function)
- Watchdog timer: 1 channel (operable with the dedicated lowspeed on-chip oscillator)
- Oscillation stop detection circuit: 1 channel

LCD controller/driver

- Internal voltage boosting method, capacitor split method, and external resistance division method are switchable
- Segment signal output: 34 (30)^{Note 2} to 42 (38)^{Note 2}
- Common signal output: 4 (8)^{Note 2}

A/D converter

- 8/10-bit resolution A/D converter (V_{DD} = 1.9 to 5.5 V): 4 or 6 channels
- 24-Bit $\Delta\Sigma$ A/D converter: 3 or 4 channels
- Internal reference voltage (1.45 V) and temperature sensor^{Note 3}

Comparator

- 2 channels
- Operation mode: Comparator high-speed mode, comparator low-speed mode, or window mode
- External reference voltage and internal reference voltage are selectable

I/O port

- I/O port: 53 or 69 (N-ch open drain I/O [withstand voltage of 6 V]: 3, N-ch open drain I/O [VDD withstand voltage]: 13)
- Can be set to N-ch open drain, TTL input buffer, and on-chip pull-up resistor
- Different potential interface: Can connect to a 1.8/2.5/3 V device
- On-chip clock output/buzzer output controller

Others

- On-chip BCD (binary-coded decimal) correction circuit
- On-chip battery backup function
- <R> Notes 1. Although the CSI function is generally called SPI, it is also called CSI in this product, so it is referred to as such in this manual.
 - **2.** The values in parentheses are the number of signal outputs when 8 com is used.
 - 3. Can be selected only in HS (high-speed main) mode
 - Remark The functions mounted depend on the product. See **1.6 Outline of Functions**.

Datasheet

R01DS0174EJ0230 Rev.2.30 Jun 28, 2024

O ROM, RAM capacities

Flash ROM	Data flash	RAM	RL78	3/I1B
			80 pins	100 pins
128 KB	-	8 KB ^{Note}	R5F10MMG	R5F10MPG
64 KB	-	6 KB	R5F10MME	R5F10MPE

Note This is about 7 KB when the self-programming function is used. (For details, see **CHAPTER 3** in the RL78/I1B User's Manual.)

<R>

1.2 List of Part Numbers

Figure 1-1.	Part Number,	, Memory Size	, and Package of RL78/I1B
-------------	--------------	---------------	---------------------------

Table 1-1.	List of Ordering	Part Numbers
------------	------------------	--------------

Pin count	Package	Data flash	Fields of Application ^{Note}	Ordering Part Number
80 pins	80-pin plastic LFQFP (12 × 12 mm, 0.5 mm pitch)	_	D	R5F10MMEDFB#10, R5F10MMGDFB#10 R5F10MMEDFB#30, R5F10MMGDFB#30 R5F10MMEDFB#50, R5F10MMGDFB#50 R5F10MMEDFB#70, R5F10MMGDFB#70
100 pins	100-pin plastic LFQFP (14 × 14 mm, 0.5 mm pitch)	_	D	R5F10MPEDFB#10, R5F10MPGDFB#10 R5F10MPEDFB#30, R5F10MPGDFB#30 R5F10MPEDFB#50, R5F10MPGDFB#50 R5F10MPEDFB#70, R5F10MPGDFB#70

<R>

<R>

- Note For the fields of application, see Figure 1-1 Part Number, Memory Size, and Package of RL78/I1B.
- Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

1.3 Pin Configuration (Top View)

1.3.1 80-pin products

• 80-pin plastic LFQFP (12 × 12 mm, 0.5 mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 $\mu F).$

Remarks 1. For pin identification, see 1.4 Pin Identification.

 Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/I1B User's Manual.

1.3.2 100-pin products

• 100-pin plastic LFQFP (14 × 14 mm, 0.5 mm pitch)

Cautions 1. Make EVss1 the same potential as Vss/EVss0.

- 2. Make EVDD1 the same potential as VDD/EVDD0.
- 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 $\mu\text{F}).$
- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD} and EV_{DD1} pins and connect the Vss and EVss1 pins to separate ground lines.
 - Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/I1B User's Manual.

1.4 Pin Identification

ANI0 to ANI5:	Analog Input	P80 to P85:	Port 8
ANIN0 to ANIN3,		P121 to P127:	Port 12
ANIP0 to ANIP3:	Analog Input for $\Delta\Sigma$ ADC	P130, P137:	Port 13
AREGC:	Regulator Capacitance for $\Delta\Sigma$ ADC	PCLBUZ0,	
AVCM:	Control forΔΣADC	PCLBUZ1:	Programmable Clock Output/Buzzer
AVDD:	Power Supply for $\Delta\Sigma ADC$		Output
AVREFM:	A/D Converter Reference Potential	REGC:	Regulator Capacitance
	(– side) Input	RESET:	Reset
AVREFP:	A/D Converter Reference Potential	RTC1HZ:	Real-time Clock Correction Clock
	(+ side) Input		(1 Hz) Output
AVRT:	Reference Potential for $\Delta\Sigma$ ADC	RxD0 to RxD2:	Receive Data for UART
AVss:	Ground forΔΣADC	SCK00:	Serial Clock Input/Output for CSI
CAPH, CAPL:	Capacitor Connection	SCLA0, SCL00,	
	for LCD Controller/Driver	SCL10:	Serial Clock Input/Output for IIC
COM0 to COM7:	Common Signal Output for LCD	SDAA0, SDA00,	
	Controller/Driver	SDA10:	Serial Data Input/Output for IIC
EVDD0, EVDD1:	Power Supply for Port	SEG0 to SEG41:	Segment Signal Output for LCD
EVsso, EVss1:	Ground for Port		Controller/Driver
EXCLK:	External Clock Input	SI00:	Serial Data Input for CSI
	(Main System Clock)	SO00:	Serial Data Output for CSI
EXCLKS:	External Clock Input	TI00 to TI07:	Timer Input
	(Subsystem clock)	TO00 to TO07:	Timer Output
INTP0 to INTP7:	Interrupt Request From Peripheral	TOOL0:	Data Input/Output for Tool
IrRxD:	Receive Data for IrDA	TOOLRxD,	
IrTxD:	Transmit Data for IrDA	TOOLTxD:	Data Input/Output for External Device
IVCMP0, IVCMP1:	Comparator Input	TxD0 to TxD2:	Transmit Data for UART
IVREF0, IVREF1:	Comparator Reference Input	VBAT:	Battery Backup Power Supply
P00 to P07:	Port 0	VCOUT0,	
P10 to P17:	Port 1	VCOUT1:	Comparator Output
P20 to P25:	Port 2	VDD:	Power Supply
P30 to P37:	Port 3	VL1 to VL4:	Voltage for Driving LCD
P40 to P44:	Port 4	Vss:	Ground
P50 to P57:	Port 5	X1, X2:	Crystal Oscillator (Main System
P60 to P62:	Port 6		Clock)
P70 to P77:	Port 7	XT1, XT2:	Crystal Oscillator (Subsystem Clock)

1.5 Block Diagram

1.5.1 80-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See **Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR)** in the RL78/I1B User's Manual.

1.5.2 100-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See **Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR)** in the RL78/I1B User's Manual.

RENESAS

1.6 Outline of Functions

	Item	80	-pin	100)-pin		
		R5F10MMEDFB	R5F10MMGDFB	R5F10MPEDFB	R5F10MPGDFB		
Code flash m	emory (KB)	64	128	64	128		
Data flash me	emory (KB)		• -	-			
RAM (KB)		6	8 ^{Note 1}	6	8 ^{Note 1}		
Address space	e	1 MB		•			
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) HS (High-speed main) mode: 1 to 20 MHz (V_{DD} = 2.7 to 5.5 V), HS (High-speed main) mode: 1 to 16 MHz (V_{DD} = 2.4 to 5.5 V), LS (Low-speed main) mode: 1 to 8 MHz (V_{DD} = 1.9 to 5.5 V)					
	High-speed on-chip oscillator clock	HS (High-speed main)	mode: 24/12/6/3 MHz (Vt mode: 12/6/3 MHz (Vt node: 6/3 MHz (Vt to = 1.9	2.4 to 5.5 V),			
Subsystem cl	ock	XT1 (crystal) oscillation 32.768 kHz (TYP.): VDD	, external subsystem cloc = 1.9 to 5.5 V	k input (EXCLKS)			
0 1	n-chip oscillator clock rrection function	Correct the frequency c	f the high-speed on-chip	oscillator clock by the su	bsystem clock.		
Low-speed on-chip oscillator 15 kHz (TYP.): $V_{DD} = 1.9 \text{ to } 5.5 \text{ V}$							
General-purp	ose register	8 bits × 8 registers × 4 banks					
Minimum inst	ruction execution time	0.04167 μs (High-speed on-chip oscillator: f _{iH} = 24 MHz operation)					
		0.05 μs (High-speed system clock: f _{MX} = 20 MHz operation)					
		30.5 μs (Subsystem clock: fsuB = 32.768 kHz operation)					
Instruction set		 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (16 bits × 16 bits), division (32 bits ÷ 32 bits) Multiplication and accumulation (16 bits × 16 bits + 32 bits) Rotate, barrel shift, and bit manipulation (set, reset, test, and boolean operation), etc. 					
I/O port	Total		53		69		
	CMOS I/O		44	60			
	CMOS input		5		5		
	CMOS output		1		1		
	N-ch O.D I/O (6 V tolerance)		3		3		
Timer	16-bit timer TAU		8 cha	annels			
	Watchdog timer		1 ch	annel			
	12-bit interval timer	1 channel					
	8-bit interval timer		4 cha	annels			
	Real-time clock 2	1 channel					
	Oscillation stop	1 channel					
	detection circuit						
	Timer output	Timer outputs: 8 chann PWM outputs: 7 ^{Note 2}	els				
	RTC output	1 channel • 1 Hz (subsystem cloo	ck: fsuв = 32.768 kHz)				

Notes 1. In the case of the 8 KB, this is about 7 KB when the self-programming function is used.

 The number of outputs varies, depending on the setting of channels in use and the number of the master (see 7.9.3 Operation as multiple PWM output function in the RL78/I1B User's Manual).

10	1 n
1/	121

			1		1	(2/2)	
Item		80-	pin	100)-pin		
			R5F10MMEDFB	R5F10MMGDFB	R5F10MPEDFB	R5F10MPGDFB	
Clock output/buzzer output		2 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: f_{MAIN} = 20 MHz operation) 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz (Subsystem clock: f_{SUB} = 32.768 kHz operation) 					
10-bit reso	olution A	/D converter	4 channels		6 channels		
24-Bit ΔΣ	A/D Cor	nverter	3 channels		4 channels		
	SNDR		Typ. 80 dB (gain ×1) Min. 69 dB (gain ×16) Min. 65 dB (gain ×32)				
	Sampli	ng frequency	3.906 kHz/1.953 kHz				
	PGA		Current ch: ×1, ×2, ×4, ×8, ×16, ×32 Voltage ch: ×1, ×2, ×4, ×8, ×16				
Comparat	or		2 channels				
Serial interface			Simplified SPI (CSI)/UART/simplified I ² C: 1 channel UART/simplified I ² C: 1 channel UART/IrDA: 1 channel				
		I ² C bus	1 channel				
Data trans	fer cont	roller (DTC)	30 sources				
LCD contr	oller/driv	/er	Internal voltage boosting method, capacitor split method, and external resistance division method are switchable.				
	Segme	nt signal output	34 (3	0) ^{Note 1}	42 (3	(38) ^{Note 1}	
	Commo	on signal output		4 (8) ^{Note 1}		
Vectored		Internal		:	34		
interrupt s	ources	External			10		
Reset		 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution^{Note 2} Internal reset by RAM parity error Internal reset by illegal-memory access 					
Power-on-reset circuit		Power-on-reset: 1.51 V (TYP.) Power-down-reset: 1.50 V (TYP.)					
Voltage de	etector		 Rising edge : 1.98 V to 4.06 V (11 stages) Falling edge : 1.94 V to 3.98 V (11 stages) 				
Battery ba	ickup fur	nction	Provided				
On-chip d	ebug fur	nction	Provided				
Power sup	oply volta	age	V _{DD} = 1.9 to 5.5 V				
Operating	ambien	t temperature	T _A = -40 to +85 °C				

Notes 1. The values in parentheses are the number of signal outputs when 8 com is used.

2. This reset occurs when instruction code FFH is executed.

This reset does not occur during emulation using an in-circuit emulator or an on-chip debugging emulator.

2. ELECTRICAL SPECIFICATIONS

- Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. The pins mounted depend on the product. See 2.1 Port Function List to 2.2.1 With functions for each product in the RL78/I1B User's Manual.
- Remarks 1. In the descriptions in this chapter, read EVDD as EVDD0 and EVDD1, and EVSS as EVSS0 and EVSS1.
 - 2. For 80-pin products, read EV_{DD} as V_{DD} and EV_{SS} as V_{SS}.

2.1 Absolute Maximum Ratings

Absolute Maximum Ratings (1/3)

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	Vdd		-0.5 to +6.5	V
	EVDD	EV _{DD1} = V _{DD}	-0.5 to +6.5	V
	VBAT		-0.5 to +6.5	V
	AVDD		-0.5 to +6.5 and -0.5 to V _{DD} ^{Note 4} +0.6	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8 and -0.3 to $V_{\text{DD}}^{\text{Note 4}}$ +0.3 $^{\text{Note 1}}$	V
Input voltage	VI1	P00 to P07, P10 to P17, P30 to P37, P40 to P44, P50 to P57, P70 to P77, P80 to P85, P125 to P127	-0.3 to EV_{DD} +0.3 and -0.3 to V_{DD}^{Note 4} +0.3 $^{Note 2}$	V
	VI2	P60 to P62 (N-ch open-drain)	-0.3 to +6.5	V
	Vı3	P20 to P25, P121 to P124, P137, EXCLK, EXCLKS	–0.3 to $V_{DD}^{Note 4}$ +0.3 ^{Note 2}	V
	V ₁₄	RESET	-0.3 to +6.5	V
Output voltage	V ₀₁	P00 to P07, P10 to P17, P30 to P37, P40 to P44, P50 to P57, P60 to P62, P70 to P77, P80 to P85, P125 to P127, P130	-0.3 to EV_{DD} +0.3 and -0.3 to V_{DD}^{Note 4} +0.3 $^{Note 2}$	V
	V ₀₂	P20 to P25	-0.3 to $V_{\text{DD}}^{\text{Note 4}}$ +0.3 $^{\text{Note 2}}$	V
Analog input voltage	Val1	ANI0 to ANI5	-0.3 to $V_{\text{DD}}^{\text{Note 4}}$ +0.3 and -0.3 to $AV_{\text{REF}(+)}$ +0.3 $^{\text{Notes 2, 3}}$	V
	Vai2	ANIP0 to ANIP3, ANIN0 to ANIN3	-0.6 to +2.8 and -0.6 to AREGC +0.3 ^{Note 5}	V
Reference supply voltage	VIDSAD	AREGC, AVCM, AVRT	-0.3 to +2.8 and -0.3 to AV _{DD} +0.3 ^{Note 6}	V

Notes 1. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μF). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.

- 2. Must be 6.5 V or lower.
- 3. Do not exceed $AV_{REF(+)}$ + 0.3 V in case of A/D conversion target pin.
- 4. The power supply voltage (VBAT pin or V_{DD} pin) selected by the battery backup feature.
- 5. The $\Delta\Sigma$ A/D conversion target pin must not exceed AREGC +0.3 V.
- 6. Connect AREGC, AVCM, and AVRT terminals to Vss via capacitor (0.47 μF). This value defines the absolute maximum rating of AREGC, AVCM, and AVRT terminal. Do not use with voltage applied.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - 2. AV_{REF (+)}: + side reference voltage of the A/D converter.
 - 3. Vss: Reference voltage

Absolute Maximum Ratings (2/3)

Parameter	Symbols		Conditions	Ratings	Unit
LCD voltage	VLI1 VL1 voltage ^{Note 1}			–0.3 to 2.8 and –0.3 to V _{L4} +0.3	V
V _{LI2}		VL2 voltage ^{Note 1}		–0.3 to VL4 +0.3 ^{Note 2}	V
	VLI3	VL3 voltage ^{Note 1}		-0.3 to V_{L4} +0.3 $^{\text{Note 2}}$	V
	VLI4	VL4 voltage ^{Note 1}		–0.3 to +6.5	V
	VLCAP	CAPL, CAPH vol	tage ^{Note 1}	-0.3 to VL4 +0.3 ^{Note 2}	V
	Vout	COM0 to COM7, SEG0 to SEG41,	External resistance division method	–0.3 to $V_{\text{DD}}^{\text{Note 3}}$ +0.3 $^{\text{Note 2}}$	V
		output voltage	Capacitor split method	–0.3 to $V_{DD}^{Note 3}$ +0.3 ^{Note 2}	V
			Internal voltage boosting method	-0.3 to V_{L4} +0.3 $^{\text{Note 2}}$	V

Notes 1. This value only indicates the absolute maximum ratings when applying voltage to the V_{L1}, V_{L2}, V_{L3}, and V_{L4} pins; it does not mean that applying voltage to these pins is recommended. When using the internal voltage boosting method or capacitance split method, connect these pins to Vss via a capacitor (0.47 μF ± 30%) and connect a capacitor (0.47 μF ± 30%) between the CAPL and CAPH pins.

- 2. Must be 6.5 V or lower.
- 3. The power supply voltage (VBAT pin or V_{DD} pin) selected by the battery backup feature.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Vss: Reference voltage

Absolute Maximum Ratings (3/3)

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P00 to P07, P10 to P17, P30 to P37, P40 to P44, P50 to P57, P70 to P77, P80 to P85, P125 to P127, P130	-40	mA
		Total of all pins	P00 to P07, P40 to P44, P130	-70	mA
		–170 mA	P10 to P17, P30 to P37, P50 to P57, P70 to P77, P80 to P85, P125 to P127	-100	mA
	Іон2	Per pin	P20 to P25	-0.5	mA
		Total of all pins		-2	mA
Output current, low		Per pin	P00 to P07, P10 to P17, P30 to P37, P40 to P44, P50 to P57, P60 to P62, P70 to P77, P80 to P85, P125 to P127, P130	40	mA
		Total of all pins	P00 to P07, P40 to P44, P130	70	mA
		170 mA	P10 to P17, P30 to P37, P50 to P57, P60 to P62, P70 to P77, P80 to P85, P125 to P127	100	mA
	Iol2	Per pin	P20 to P25	1	mA
		Total of all pins		5	mA
Operating ambient	TA	In normal operati	on mode	-40 to +85	°C
temperature		In flash memory	programming mode		
Storage temperature	Tstg			-65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.2 Oscillator Characteristics

2.2.1 X1, XT1 oscillator characteristics

$(T_A = -40 \text{ to } +85^{\circ}C, 1.9 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation	tes 1, 2 chiesal reconstor	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1.0		20.0	MHz
frequency (fx) ^{Notes 1, 2}		$2.4~V \leq V_{\text{DD}} < 2.7~V$	1.0		16.0	MHz
		$1.9~V \leq V_{\text{DD}} < 2.4~V$	1.0		8.0	MHz
XT1 clock oscillation frequency (fxT) ^{Notes 1, 2}	Crystal resonator		32	32.768	35	kHz

Notes 1. Indicates only permissible oscillator frequency ranges. See **2.4 AC Characteristics** for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

2. Voltage range is the power supply voltage (VBAT pin or VDD pin) selected by the battery backup function.

- Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.
- Remark When using the X1 oscillator and XT1 oscillator, see 5.4 System Clock Oscillator in the RL78/I1B User's Manual.

2.2.2 On-chip oscillator characteristics

Oscillators	Parameters	(Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency ^{Notes 1, 2}	fін			3		24	MHz
High-speed on-chip oscillator clock frequency accuracy		-20 to +85°C -40 to -20°C	$\begin{array}{l} 1.9 \ V \leq V_{DD}^{Note 3} \leq 5.5 \ V \\ \\ 1.9 \ V \leq V_{DD}^{Note 3} \leq 5.5 \ V \end{array}$	-1.0 -1.5		+1.0 +1.5	% %
Low-speed on-chip oscillator clock frequency	f∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Notes 1. The high-speed on-chip oscillator frequency is selected by using bits 0 to 3 of option byte (000C2H/010C2H) and bits 0 to 2 of the HOCODIV register.

2. This indicates the oscillator characteristics only. See 2.4 AC Characteristics for the instruction execution time.

3. The power supply voltage (VBAT pin or VDD pin) selected by the battery backup feature.

2.3 DC Characteristics

2.3.1 Pin characteristics

$(T_A = -40 \text{ to } +85^{\circ}C, 1.9 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{Note 1}	Іон1	Per pin for P00 to P07, P10 to P17, P30 to P37, P40 to P44, P50 to P57, P70 to P77, P80 to P85, P125 to P127, P130	$1.9~V \leq EV_{\text{DD}} \leq 5.5~V$			-10.0 ^{Note 2}	mA
		Total of P00 to P07, P40 to P44, P130	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			-55.0	mA
		(When duty = 70% ^{Note 3})	$2.7~V \leq EV_{\text{DD}} < 4.0~V$			-10.0	mA
			$1.9~V \leq EV_{\text{DD}} < 2.7~V$			-5.0	mA
		Total of P10 to P17, P30 to P37,	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			-80.0	mA
		P50 to P57, P70 to P77, P80 to P85, P125	$2.7~V \leq EV_{\text{DD}} < 4.0~V$			-19.0	mA
		to P127 (When duty = 70% ^{Note 3})	$1.9~V \leq EV_{\text{DD}} < 2.7~V$			-10.0	mA
		Total of all pins (When duty = 70% ^{Note 3})				-100.0	mA
	Іон2	Per pin for P20 to P25	$1.9~V \leq V_{\text{DD}}^{\text{Note 4}} \leq 5.5~V$			-0.1 ^{Note 2}	mA
		Total of all pins (When duty = 70% ^{Note 3})	$1.9~V \leq V_{\text{DD}}^{\text{Note 4}} \leq 5.5~V$			-0.6	mA

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from the EV_{DD} and V_{DD} pins to an output pin.

- 2. Do not exceed the total current value.
- **3.** Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = (IOH × 0.7)/(n × 0.01)
- <Example> Where n = 80% and IoH = -10.0 mA

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

4. The power supply voltage (VBAT pin or VDD pin) selected by the battery backup feature.

Caution P01 to P07, P15 to P17, and P80 to P82 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low ^{Note 1}	Iol1	Per pin for P00 to P07, P10 to P17, P30 to P37, P40 to P44, P50 to P57, P70 to P77, P80 to P85, P125 to P127, P130				20.0 ^{Note 2}	mA
		Per pin for P60 to P62				15.0 ^{Note 2}	mA
		Total of P00 to P07, P40 to P44,	$4.0~V \leq V_{DD} \leq 5.5~V$			70.0	mA
		P130 (M/box duty = 700 (Note 3)	$2.7~V \leq V_{\text{DD}} < 4.0~V$			15.0	mA
		(When duty = 70% ^{Note 3})	$1.9~V \leq V_{\text{DD}}$ < 2.7 V			9.0	mA
		Total of P10 to P17, P30 to P37,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			80.0	mA
		P50 to P57, P60 to P62, P70 to P77,	$2.7~V \leq V_{\text{DD}} < 4.0~V$			35.0	mA
		P80 to P85, P125 to P127 (When duty = 70% ^{Note 3})	$1.9~V \leq V_{\text{DD}} < 2.7~V$			20.0	mA
		Total of all pins (When duty = 70% ^{Note 3})				150.0	mA
	IOL2	Per pin for P20 to P25	$1.9~V \leq V_{\text{DD}}^{\text{Note 4}} \leq 5.5~V$			0.4 ^{Note 2}	mA
		Total of all pins (When duty = 70% ^{Note 3})	$1.9~V \leq V_{\text{DD}}^{\text{Note 4}} \leq 5.5~V$			2.4	mA

 $(T_A = -40 \text{ to } +85^{\circ}C, 1.9 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the EVss and Vss pins.

- 2. However, do not exceed the total current value.
- 3. Specification under conditions where the duty factor ≤ 70%. The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).
 - Total output current of pins = (Io_L × 0.7)/(n × 0.01)
 - <Example> Where n = 80% and I_{OL} = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \cong 8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

- 4. The power supply voltage (VBAT pin or VDD pin) selected by the battery backup feature.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	Vih1	P00 to P07, P10 to P17, P30 to P37, P40 to P44, P50 to P57, P70 to P77, P80 to P85, P125 to P127	Normal input buffer	0.8EVdd		EVdd	V
	VIH2	P00, P03, P05, P06, P15, P16, P81	TTL input buffer $4.0 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V}$	2.2		EVDD	V
			TTL input buffer $3.3 \text{ V} \leq \text{EV}_{\text{DD}} < 4.0 \text{ V}$	2.0		EVDD	V
			TTL input buffer 1.9 V \leq EV _{DD} $<$ 3.3 V	1.5		EVDD	V
	VIH3	P20 to P25		$0.7V_{\text{DD}}^{\text{Note}}$		V _{DD} ^{Note}	V
	VIH4	P60 to P62		0.7EVDD		6.0	V
	VIH5	P121 to P124, P137, EXCLK, EXCLK	$0.8V_{\text{DD}}^{\text{Note}}$		V _{DD} ^{Note}	V	
	VIH6	RESET	$0.8V_{\text{DD}}^{\text{Note}}$		6.0	V	
Input voltage, low	VIL1	P00 to P07, P10 to P17, P30 to P37, P40 to P44, P50 to P57, P70 to P77, P80 to P85, P125 to P127	Normal input buffer	0		0.2EV _{DD}	V
	VIL2	P00, P03, P05, P06, P15, P16, P81	TTL input buffer $4.0 \text{ V} \le EV_{DD} \le 5.5 \text{ V}$	0		0.8	V
			TTL input buffer $3.3 \text{ V} \leq EV_{\text{DD}} < 4.0 \text{ V}$	0		0.5	V
			TTL input buffer 1.9 V \leq EV _{DD} $<$ 3.3 V	0		0.32	V
	VIL3	P20 to P25		0		0.3VDD ^{Note}	V
	VIL4	P60 to P62		0		0.3EV _{DD}	V
	VIL5	P121 to P124, P137, EXCLK, EXCLK	S, RESET	0		0.2VDD ^{Note}	V

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.9 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

Note The power supply voltage (VBAT pin or V_{DD} pin) selected by the battery backup feature.

Caution The maximum value of V_I of pins P01 to P07, P15 to P17, and P80 to P82 is V_{DD}, even in the N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Items Symbol Conditions			MIN.	TYP.	MAX.	Unit
Output voltage, high	Voh1	P00 to P07, P10 to P17, P30 to P37, P40 to P44, P50 to P57, P70 to P77,	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -10.0 \ mA \end{array}$	EV _{DD} – 1.5			V
		P80 to P85, P125 to P127, P130	$4.0 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V},$ Ioh1 = -3.0 mA	EV _{DD} - 0.7			V
			2.7 V \leq EV _{DD} \leq 5.5 V, Іон = -2.0 mA	EV _{DD} - 0.6			V
			1.9 V \leq EV _{DD} \leq 5.5 V, Іон = -1.5 mA	$EV_{\text{DD}} - 0.5$			V
	Voh2	P20 to P25	$\begin{array}{l} 1.9 \ V \leq V_{\text{DD}}^{\text{Note}} \leq 5.5 \ V, \\ I_{\text{OH2}} = -100 \ \mu A \end{array}$	$V_{\text{DD}}-0.5$			V
Output voltage, low	Vol1	P00 to P07, P10 to P17, P30 to P37, P40 to P44, P50 to P57, P70 to P77,	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 20 \ mA \end{array} \end{array} \label{eq:eq:optimal_states}$			1.3	V
			$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 8.5 \ mA \end{array} \label{eq:DL1}$			0.7	V
			$\begin{array}{l} 2.7 \ \text{V} \leq \text{EV}_{\text{DD}} \leq 5.5 \ \text{V}, \\ \\ \text{I}_{\text{OL}} = 3.0 \ \text{mA} \end{array}$			0.6	V
			$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V},$ $I_{\text{OL1}} = 1.5 \text{ mA}$			0.4	V
			$1.9 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V},$ $I_{\text{OL1}} = 0.6 \text{ mA}$			0.4	V
	Vol2	P20 to P25	$\label{eq:local_local_states} \begin{split} 1.9 \ V &\leq V_{\text{DD}}^{\text{Note}} \leq 5.5 \ \text{V}, \\ I_{\text{OL2}} &= 400 \ \mu\text{A} \end{split}$			0.4	V
	Vol3	P60 to P62	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL3}} = 15.0 \ mA \end{array} \end{array} \label{eq:eq:electropy}$			2.0	V
			$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL3}} = 5.0 \ mA \end{array} \end{array} \label{eq:eq:entropy}$			0.4	V
			$\begin{array}{l} 2.7 \ \text{V} \leq \text{EV}_{\text{DD}} \leq 5.5 \ \text{V}, \\ \\ I_{\text{OL3}} = 3.0 \ \text{mA} \end{array}$			0.4	V
			$1.9 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V},$ Iols = 2.0 mA			0.4	V

(TA = -40 to +85°C, 1.9 V \leq VDD = EVDD \leq 5.5 V, Vss = EVss = 0 V)

Note The power supply voltage (VBAT pin or V_{DD} pin) selected by the battery backup feature.

Caution P01 to P07, P15 to P17, and P80 to P82 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Condit	tions		MIN.	TYP.	MAX.	Unit
Input leakage current, high	Цінт	P00 to P07, P10 to P17, P30 to P37, P40 to P44, P60 to P62, P70 to P77, P80 to P85, P125 to P127	Vi = EV _{DD}				1	μΑ
	ILIH2	P20 to P25, P137, RESET	VI = VDD ^{Note}				1	μA
	Ішнз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	$V_I = V_{DD}^{Note}$	In input port or external clock input			1	μA
				In resonator connection			10	μA
Input leakage current, low	Ilil1	P00 to P07, P10 to P17, P30 to P37, P40 to P44, P60 to P62, P70 to P77, P80 to P85, P125 to P127	Vi = EVss				-1	μA
	ILIL2	P20 to P25, P137, RESET	VI = Vss				-1	μA
	Ilil3	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = Vss	In input port or external clock input			-1	μA
				In resonator connection			-10	μA
On-chip pull-	R U1	P10 to P17, P30 to P37, P50 to P57,	VI = Vss	$2.4~V \leq EV_{\text{DD}} \leq 5.5~V$	10	20	100	kΩ
up resistance		P70 to P77, P80 to P85, P125 to P127		$1.9~V \leq EV_{\text{DD}} \leq 5.5~V$	10	30	100	kΩ
	Ru2	P00 to P07, P40 to P44	VI = Vss		10	20	100	kΩ

ſ	T₄ = –40 to +85°C.	$1.9 V < V_{DD} =$: EVnp < 5.5 V.	Vss = EVss = 0 V)
۰.	$\mathbf{T} = \mathbf{T} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U}$			• • • • • • • • • • • • • • • • • • • •

Note The power supply voltage (VBAT pin or VDD pin) selected by the battery backup feature.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.3.2 Supply current characteristics

$(T_A = -40 \text{ to } +85^{\circ}C, 1.9 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

(1/4)

		e, ne t <u>-</u>		$D \leq 5.5 V, VSS = EV$			()	/4)						
Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit				
Supply	IDD1	Operating	HS (high-	f⊪ = 24 MHz ^{Note 3}	Basic	V _{DD} = 5.0 V		1.5		mA				
current ^{Note 1}		mode	speed main)		operation	V _{DD} = 3.0 V		1.5		mA				
			mode ^{Note 5}		Normal	V _{DD} = 5.0 V		4.1	6.6	mA				
					operation	V _{DD} = 3.0 V		4.1	6.6	mA				
				f⊪ = 12 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		2.5	3.8	mA				
					operation	V _{DD} = 3.0 V		2.5	3.8	mA				
				f⊪ = 6 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		1.6	2.5	mA				
					operation	V _{DD} = 3.0 V		1.6	2.5	mA				
				f⊪ = 3 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		1.2	1.9	mA				
					operation	V _{DD} = 3.0 V		1.2	1.9	m/				
			LS (low-	f⊮ = 6 MHz ^{Note 3}	Normal	V _{DD} = 3.0 V		1.3	2.1	mA				
			speed main)		operation	V _{DD} = 2.0 V		1.3	2.1	mA				
			mode ^{Note 5}	f⊮ = 3 MHz ^{Note 3}	Normal	V _{DD} = 3.0 V		0.9	1.5	mA				
			HS (high-	-	operation	V _{DD} = 2.0 V		0.9	1.5	m/				
				f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.4	5.5	mA				
			speed main)	$V_{DD} = 5.0 V$	operation	Resonator connection		3.6	5.7	m/				
			mode ^{Note 5}	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.4	5.5	m/				
				V _{DD} = 3.0 V	operation	Resonator connection		3.6	5.7	m/				
					Normal	Square wave input		2.8	4.4	m/				
			V _{DD} = 5.0 V	operation	Resonator connection		2.9	4.6	m/					
			f _{MX} = 16 MHz ^{Note 2} ,	Normal	Square wave input		2.8	4.4	m/					
			V _{DD} = 3.0 V	operation	Resonator connection		2.9	4.6	m/					
				f _{MX} = 12 MHz ^{Note 2} ,	Normal	Square wave input		2.3	3.6	m/				
								V _{DD} = 5.0 V	operation	Resonator connection		2.4	3.7	m/
								fмx	f _{MX} = 12 MHz ^{Note 2} ,	Normal	Square wave input		2.3	3.6
							V _{DD} = 3.0 V	operation	Resonator connection		2.4	3.7	m/	
				f _{MX} = 10 MHz ^{Note 2} ,	Normal	Square wave input		2.1	3.2	m/				
				V _{DD} = 5.0 V	operation	Resonator connection		2.1	3.3	m/				
				f _{MX} = 10 MHz ^{Note 2} ,	Normal	Square wave input		2.1	3.2	m/				
				V _{DD} = 3.0 V	operation	Resonator connection		2.1	3.3	m/				
			LS (low-	f _{MX} = 8 MHz ^{Note 2} ,	Normal	Square wave input		1.2	2.0	m/				
			speed main)	V _{DD} = 3.0 V	operation	Resonator connection		1.2	2.1	m/				
			mode ^{Note 5}	f _{MX} = 8 MHz ^{Note 2} ,	Normal	Square wave input		1.2	2.0	m/				
				V _{DD} = 2.0 V	operation	Resonator connection		1.2	2.1	m/				
			Subclock	fsue = 32.768 kHz ^{Note 4} ,	Normal	Square wave input		4.8	5.9	μA				
			operation	T _A = -40°C	operation	Resonator connection		4.9	6.0	μA				
				fsue = 32.768 kHz ^{Note 4} ,	Normal	Square wave input		4.9	5.9	μA				
				T _A = +25°C	operation	Resonator connection		5.0	6.0	μA				
				fsue = 32.768 kHz ^{Note 4} ,	Normal	Square wave input		4.9	7.6	μA				
				T _A = +50°C	operation	Resonator connection		5.0	7.7	μA				
				fsuв = 32.768 kHz ^{Note 4} ,	Normal	Square wave input		5.2	9.3	μA				
				T _A = +70°C	operation	Resonator connection		5.3	9.4	μA				
		fs	fsue = 32.768 kHz ^{Note 4} ,	Normal	Square wave input		6.1	13.3	μA					
				T _A = +85°C	operation	Resonator connection		6.2	13.4	μA				

(Notes and Remarks are listed on the next page.)

- **Notes 1.** Total current flowing into VDD and EVDD, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD or Vss, EVss.
 - When the VBAT pin (pin for battery backup) is selected, current flowing into VBAT.

The following points apply in the HS (high-speed main), and LS (low-speed main) modes.

•The currents in the "TYP." column do not include the operating currents of the peripheral modules.

• The currents in the "MAX." column include the operating currents of the peripheral modules, except for those flowing into the LCD controller/driver, A/D converter, $\Delta\Sigma$ A/D converter, LVD circuit, comparator, battery backup circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.

In the subsystem clock operation, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules. However, in HALT mode, including the current flowing into the real-time clock 2.

- 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- 3. When high-speed system clock and subsystem clock are stopped.
- **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When setting ultra-low current consumption (AMPHS1 = 1).

5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le V_{\text{DD}} \le 5.5 \text{ V}@1 \text{ MHz}$ to 24 MHz

- 2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz
- LS (low-speed main) mode: $1.9 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 8 MHz
- Remarks 1. f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

<R>

<R>

(TA = -40 to +85°C, 1.9 V \leq VDD = EVDD \leq 5.5 V, Vss = EVss = 0 V)

(2/4)

	(1A = -40	10 103	0, 1.3 V -		$0 \leq 3.3$ V, VSS – EV	33 – U V)				(2/4)
	Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
<r></r>	Supply	DD2Note 2	HALT	HS (high-	fill = 24 MHz ^{Note 4}	V _{DD} = 5.0 V		0.50	1.45	mA
	current ^{Note 1}		mode	speed main)		V _{DD} = 3.0 V		0.50	1.45	mA
				mode ^{Note 6}	fili = 12 MHz ^{Note 4}	V _{DD} = 5.0 V		0.40	0.91	mA
						V _{DD} = 3.0 V		0.40	0.91	mA
					fi⊢ = 6 MHz ^{Note 4}	V _{DD} = 5.0 V		0.33	0.63	mA
						V _{DD} = 3.0 V		0.33	0.63	mA
						V _{DD} = 5.0 V		0.29	0.49	mA
						V _{DD} = 3.0 V		0.29	0.49	mA
<r></r>				LS (low-	fı⊢ = 6 MHz ^{Note 4}	$V_{DD} = 3.0 V$		290	620	μA
5175				speed main)		$V_{DD} = 2.0 V$		290	620	μΑ
				mode ^{Note 6}	fı⊢ = 3 MHz ^{Note 4}	$V_{DD} = 3.0 V$		250	534	μA
						$V_{DD} = 3.0 V$ $V_{DD} = 2.0 V$		250	534	· ·
				LIC (high	f _{MX} = 20 MHz ^{Note 3} ,					μA
<r></r>				HS (high- speed main)	$M_X = 20 \text{ MHz}^{10000}$, VDD = 5.0 V	Square wave input		0.31	1.08	mA
				mode ^{Note 6}	f _{мх} = 20 MHz ^{Note 3} ,	Resonator connection		0.48	1.28	mA m A
					$M_X = 20 \text{ MHz}^{10000}$, VDD = 3.0 V	Square wave input		0.31	1.08	mA
						Resonator connection		0.48	1.28	mA
					f _{MX} = 16 MHz ^{Note 3} , V _{DD} = 5.0 V	Square wave input		0.26	0.86	mA
					Resonator connection		0.38	1.00	mA	
				f _{MX} = 16 MHz ^{Note 3} , V _{DD} = 3.0 V	Square wave input		0.26	0.86	mA	
				f _{MX} = 12 MHz ^{Note 3} ,	Resonator connection		0.38	1.00	mA	
					$f_{MX} = 12 \text{ MHz}^{NOLE 3},$ VDD = 5.0 V	Square wave input		0.22	0.70	mA
					$f_{MX} = 12 \text{ MHz}^{\text{Note 3}},$	Resonator connection		0.31	0.79	mA
					$f_{MX} = 12 \text{ MHz}^{\text{Note 3}},$ $V_{DD} = 3.0 \text{ V}$	Square wave input		0.22	0.70	mA
					$f_{MX} = 10 \text{ MHz}^{Note 3},$ $V_{DD} = 5.0 \text{ V}$	Resonator connection		0.31	0.79	mA
						Square wave input		0.21	0.63	mA
					$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Resonator connection		0.28	0.71	mA
						Square wave input		0.21	0.63	mA
						Resonator connection		0.28	0.71	mA
<r></r>				LS (low- speed main)	$f_{MX} = 8 \text{ MHz}^{\text{Note 3}},$	Square wave input		110	360	μΑ
				mode ^{Note 6}	V _{DD} = 3.0 V	Resonator connection		160	420	μA
					f _{MX} = 8 MHz ^{Note 3} , V _{DD} = 2.0 V	Square wave input		110	360	μA
						Resonator connection		160	420	μA
				Subsystem clock	f _{SUB} = 32.768 kHz ^{Note 5} , T _A = -40°C	· · ·		0.36	0.77	μΑ
				operation		Resonator connection		0.55	0.98	μA
				•	f _{SUB} = 32.768 kHz ^{Note 5} , T _A = +25°C			0.42	0.91	μA
						Resonator connection		0.61	1.30	μΑ
					f _{SUB} = 32.768 kHz ^{Note 5} , T _A = +50°C	Square wave input		0.50	2.45	μA
						Resonator connection		0.69	2.64	μA
					f _{SUB} = 32.768 kHz ^{Note 5} , T _A = +70°C	Square wave input		0.86	4.28	μΑ
					Resonator connection		1.05	4.47	μA	
					f _{SUB} = 32.768 kHz ^{Note 5} , T _A = +85°C			2.29	8.44	μA
			070-		TA = 100 C	Resonator connection		2.48	8.63	μA
<r></r>		IDD3	STOP mode ^{Note 7}	T _A = -40°C				0.27	0.70	μA
			mode	T _A = +25°C				0.33	0.82	μA
				T _A = +50°C				0.41	2.36	μA
				T _A = +70°C				0.77	4.19	μA
				T _A = +85°C				2.20	8.35	μA

(Notes and Remarks are listed on the next page.)

Notes 1. Total current flowing into VDD and EVDD, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD or Vss, EVss.

When the VBAT pin (pin for battery backup) is selected, current flowing into VBAT.

The following points apply in the HS (high-speed main), and LS (low-speed main) modes.

• The currents in the "TYP." column do not include the operating currents of the peripheral modules.

• The currents in the "MAX." column include the operating currents of the peripheral modules, except for those flowing into the LCD controller/driver, the A/D converter, $\Delta\Sigma$ A/D converter, LVD circuit, comparator, battery backup circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.

In the subsystem clock operation, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules. However, in HALT mode, including the current flowing into the RTC.

In the STOP mode, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules.

- 2. During HALT instruction execution by flash memory.
- 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- 4. When high-speed system clock and subsystem clock are stopped.
- 5. When operating real-time clock 2 (RTC2) and setting ultra-low current consumption (AMPHS1 = 1). When highspeed on-chip oscillator and high-speed system clock are stopped.
- 6. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. < 5.5 V@1 MHz to 24 MU HS (high-speed main) mode: $2.7 V \le V_{DE}$

$$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}_{(2)}$$
 MHZ to 24 MHZ

 $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}@1 \text{ MHz}$ to 16 MHz LS (low-speed main) mode: $1.9 V \le V_{DD} \le 5.5 V@1 MHz$ to 8 MHz

- 7. If operation of the subsystem clock when STOP mode, same as when HALT mode of subsystem clock operation.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

<R>

<R>

Parameter	Symbol			Conditions	MIN.	TYP.	MAX.	Unit
Low-speed on- chip oscillator operating current	IFIL ^{Note 1}					0.24		μA
RTC2 operating current	IRTC ^{Notes 1, 2, 3}	fsuв = 32.768 kHz				0.02		μA
12-bit interval timer operating current	_{TMKA} Notes 1, 2, 4	fsuв = 32.768 kHz,	fма	in is stopped		0.04		μA
8-bit interval	ITMT ^{Notes 1, 2, 5}	fs∪в = 32.768 kHz,	-	8-bit counter mode \times 2 ch operation		0.12		μA
timer operating current		fmain is stopped, per unit		16-bit counter mode operation		0.10		μA
Watchdog timer operating current	_{WDT} Notes 1, 2, 6	fil = 15 kHz, fmain i	s st	opped		0.22		μA
LVD operating current	ILVD ^{Notes 1, 7}					0.08		μA
Oscillation stop detection circuit operating current	IOSDC ^{Note 1}					0.02		μA
Battery backup circuit operating current	_{BUP} Note 1					0.05		μA
A/D converter	ADC ^{Notes 1, 8}	When	No	ormal mode, $AV_{REFP} = V_{DD} = 5.0 V$		1.3	2.4	mA
operating current		conversion at maximum speed	Lo	w voltage mode, AV _{REFP} = V _{DD} = 3.0 V		0.5	1.0	mA
A/D converter reference voltage current	IADREF ^{Note 1}					75.0		μA
Temperature sensor operating current	ITMPS ^{Note 1}					105		μA
Comparator	ICMP ^{Notes 1, 9}	V _{DD} = 5.0 V,	W	indow mode		12.5		μA
operating current		Regulator output voltage = 2.1 V	Сс	omparator high-speed mode		6.5		μA
			Сс	omparator low-speed mode		1.7		μA
		V _{DD} = 5.0 V,	W	indow mode		8.0		μA
		Regulator output voltage = 1.8 V	Сс	omparator high-speed mode		4.0		μA
			Сс	omparator low-speed mode		1.3		μA
		V _{DD} = 5.0 V,	W	indow mode		8.0		μA
		STOP mode	Сс	omparator high-speed mode		4.0		μA
			Сс	omparator low-speed mode		1.3		μA
BGO operating current	BGO ^{Notes 1, 10}					2.00	12.20	mA
Self- programming operating current	_{FSP} Notes 1, 11					2.00	12.20	mA

(TA = -40 to +85°C, 1.9 V \leq VDD = EVDD \leq 5.5 V, Vss = EVss = 0 V)

(3/4)

(• • •)				(
Parameter	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
24-Bit ΔΣ A/D	IDSAD ^{Notes 1, 12}	In 4 ch ΔΣ A/D conv	erter operation			1.50	2.25	mA
Converter	Converter In 3 ch ΔΣ A/D converter operation					1.18	1.77	mA
current		In 1 ch ΔΣ A/D conv	erter operation			0.53	0.80	mA
SNOOZE	ISNOZ ^{Notes 1, 13}	ADC operation	The mode is performed			0.50	0.80	mA
operating current			The A/D conversion operations are performed, low voltage mode, $AV_{REFP} = V_{DD} = 3.0 V$					mA
		Simplified SPI (CSI)	/UART operation		0.70	1.05	mA	
		DTC operation		2.20		mA		
LCD operating current	_{LCD1} Notes 1, 14, 15	External resistance division method	f _{LCD} = f _{SUB} LCD clock = 128 Hz 1/3 bias, four-time-slices	V _{DD} = 5.0 V, V _{L4} = 5.0 V		0.06		μA
	ILCD2 ^{Notes 1, 14}	Internal voltage boosting method	f _{LCD} = f _{SUB} LCD clock = 128 Hz 1/3 bias, four-time-slices	V _{DD} = 3.0 V, V _{L4} = 3.0 V (VLCD = 04H)		0.85		μA
				V _{DD} = 5.0 V, V _{L4} = 5.1 V (VLCD = 12H)		1.55		μA
	I _{LCD3} Notes 1, 14	Capacitor split method	f _{LCD} = f _{SUB} LCD clock = 128 Hz 1/3 bias, four-time-slices	V _{DD} = 3.0 V, V _{L4} = 3.0 V		0.20		μA

$(T_A = -40 \text{ to } +85^{\circ}C, 1.9 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

(4/4)

Notes 1. Current flowing to V_{DD}. When the VBAT pin (battery backup power supply pin) is selected, current flowing to the VBAT.

- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to real-time clock 2 (excluding the low-speed on-chip oscillator and operating current of the XT1 oscillator). The value of the current value of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when real-time clock 2 operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of real-time clock 2.
- 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and XT1 oscillator). The value of the current value of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and ITMKA, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
- 5. Current flowing only to the 8-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and XT1 oscillator). The value of the current value of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and ITMT, when the 8-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
- 6. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates.
- 7 Current flowing only to the LVD circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit operates.
- 8. Current flowing only to the A/D converter. The current value of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- **9.** Current flowing only to the comparator circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ICMP when the comparator circuit operates.

- **Notes 10.** Current flowing only during rewrite of 1 KB code flash memory.
 - **11.** Current flowing only during self programming.
 - **12.** Current flowing only to the 24-bit $\Delta\Sigma$ A/D converter. The current value of the RL78 microcontrollers is the sum of IDD1 or IDD2, and IDSAD when the 24-bit $\Delta\Sigma$ A/D converter operates.
 - 13. For shift time to the SNOOZE mode, see 24.3.3 SNOOZE mode in the RL78/I1B User's Manual.
 - 14. Current flowing only to the LCD controller/driver. The current value of the RL78 microcontrollers is the sum of the LCD operating current (ILCD1, ILCD2 or ILCD3) to the supply current (IDD1, or IDD2) when the LCD controller/driver operates in an operation mode or HALT mode. Not including the current that flows through the LCD panel. Conditions of the TYP. value and MAX. value are as follows.
 - Setting 20 pins as the segment function and blinking all
 - Selecting fsub for system clock when LCD clock = 128 Hz (LCDC0 = 07H)
 - Setting four time slices and 1/3 bias
 - **15.** Not including the current flowing into the external division resistor when using the external resistance division method.
- Remarks 1. fil: Low-speed on-chip oscillator clock frequency
 - 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 3. fclk: CPU/peripheral hardware clock frequency
 - **4.** Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

2.4 AC Characteristics

(TA = -40 to +85°C, 1.9 V \leq VDD = EVDD \leq 5.5 V, Vss = EVss = 0 V)

Items	Symbol		Conc	dition	S	MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum instruction execution time)	Тсү	Main system clock (fmain) operation	HS (high-spe	ed 2	$2.7~V \leq V_{\text{DD}}^{\text{Note 1}} \leq 5.5~V$	0.0417		1	μs
			main) mode	2	$2.4~V \leq V_{\text{DD}}^{\text{Note 1}} < 2.7~V$	0.0625		1	μs
			LS (low-spee main) mode	ed 1	$1.9 \text{ V} \leq \text{V}_{\text{DD}}^{\text{Note 1}} \leq 5.5 \text{ V}$	0.125		1	μs
		Subsystem clock (fsub) 1.9 operation		$1.9 \text{ V} \leq \text{V}_{\text{DD}}^{\text{Note 1}} \leq 5.5 \text{ V}$	28.5	30.5	31.3	μs	
		In the self programming	HS (high-spe	ed 2	$2.7~V \leq V_{\text{DD}}^{\text{Note 1}} \leq 5.5~V$	0.0417		1	μs
			main) mode	2	$2.4 \text{ V} \leq \text{V}_{\text{DD}}^{\text{Note 1}} \leq 2.7 \text{ V}$	0.0625		1	μs
		mode	LS (low-spee main) mode	ed 1	$1.9~V \leq V_{\text{DD}}^{\text{Note 1}} \leq 5.5~V$	0.125		1	μs
External system clock	fex	$2.7~V \leq V_{\text{DD}}^{Note~1} \leq 5.5~V$				1.0		20.0	MHz
frequency		$2.4 \text{ V} \leq \text{V}_{\text{DD}}^{\text{Note 1}} < 2.7 \text{ V}$			1.0		16.0	MHz	
		$1.9 \text{ V} \leq \text{V}_{\text{DD}}^{\text{Note 1}} < 2.4 \text{ V}$			1.0		8.0	MHz	
	fexs				32		35	kHz	
External system clock input	texh, texl	$2.7~V \leq V_{\text{DD}}^{\text{Note 1}} \leq 5.5~V$			24			ns	
high-level width, low-level		$2.4~V \leq V_{\text{DD}}^{\text{Note 1}} < 2.7~V$			30			ns	
width		$1.9~V \leq V_{\text{DD}}^{\text{Note 1}} < 2.4~V$			60			ns	
	texns, texls					13.7			μs
TI00 to TI07 input high-level width, low-level width	tт⊪, tт⊫					1/fмск+10			ns ^{Note 2}
TO00 to TO07 output	fто	HS (high-speed main) mode		4.0	$V \leq EV_{\text{DD}} \leq 5.5 \; V$			12	MHz
frequency				2.7	$V \le EV_{DD} < 4.0 V$			8	MHz
				$2.4~V \leq EV_{\text{DD}} < 2.7~V$				4	MHz
		LS (low-speed main) 1.9 V mode		$V \leq EV_{DD} \leq 5.5 V$			4	MHz	
PCLBUZ0, PCLBUZ1 output	fpcl	HS (high-speed main) mode		4.0	$V \le EV_{\text{DD}} \le 5.5 \text{ V}$			16	MHz
frequency				2.7	$V \le EV_{DD} < 4.0 V$			8	MHz
				2.4	$V \le EV_{DD}$ < 2.7 V			4	MHz
		LS (low-spee mode	ed main)	1.9 '	$V \leq EV_{DD} \leq 5.5 V$			4	MHz
Interrupt input high-level	tinth,	INTP0		1.9	$V \leq V_{\text{DD}}^{\text{Note 1}} \leq 5.5 ~V$	1			μs
width, low-level width	t intl	INTP1 to IN	ГР7	1.9	$V \leq EV_{\text{DD}} \leq 5.5 \; V$	1			μs
RESET low-level width	trsl					10			μs

Notes 1. The power supply voltage (VBAT pin or V_{DD} pin) selected by the battery backup feature.

2. The following conditions are required for low voltage interface: 1.9 V \leq V_{DD} < 2.7 V: MIN. 125 ns

Remark fmck: Timer array unit operation clock frequency

(Operation clock to be set by the CKSmn0, CKSmn1 bits of timer mode register mn (TMRmn) m: Unit number (m = 0), n: Channel number (n = 0 to 7))

Minimum Instruction Execution Time during Main System Clock Operation

TCY VS VDD (HS (high-speed main) mode)

----- When the high-speed on-chip oscillator clock is selected

---- During self programming

----- When high-speed system clock is selected

AC Timing Test Points

2.5 Peripheral Functions Characteristics

AC Timing Test Points

2.5.1 Serial array unit

(1) During communication at same potential (UART mode) (dedicated baud rate generator output) ($T_A = -40$ to +85°C, 1.9 V \leq VDD = EVDD \leq 5.5 V, Vss = EVss = 0 V)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	
Transfer rate ^{Note 1}		$2.4~V{\leq}~V_{\text{DD}}{\leq}~5.5~V$			fмск/6 ^{Note 2}		fмск/6 ^{Note 2}	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$		4.0		1.3	Mbps
		$1.9~V \leq V_{\text{DD}} \leq 5.5~V$					fмск/6 ^{Note 2}	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$				1.3	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

- 2. The following conditions are required for low voltage interface.
 - $2.4 \text{ V} \leq \text{EV}_{\text{DD}} < 2.7 \text{ V}$: MAX. 2.6 Mbps
 - 1.9 V ≤ EV_{DD} < 2.4 V: MAX. 1.3 Mbps
- 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fcL κ) are:
 - HS (high-speed main) mode: 24 MHz
 - LS (low-speed main) mode: 8 MHz

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1, 8)

 fMCK: Serial array unit operation clock frequency (Operating clock that is set with the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))

R01DS0174EJ0230 Rev.2.30 Jun 28, 2024

(2) During communication at same potential (Simplified SPI (CSI) mode) (master mode, SCKp... internal clock output)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkCY1	$2.7~V \leq EV_{\text{DD}} \leq$	5.5 V	167		500		ns
		$2.4~V \leq EV_{\text{DD}} \leq$	5.5 V	250		500		ns
		$1.9~V \leq EV_{\text{DD}} \leq$	5.5 V			500		ns
SCKp high-/low-level width tkh1,		$4.0~V \leq EV_{\text{DD}} \leq$	tксү1/2 – 12		tксү1/2 – 50		ns	
	tĸ∟ı	$2.7~V \leq EV_{\text{DD}} \leq$	tксү1/2 – 18		tксү1/2 – 50		ns	
		$2.4~V \leq EV_{\text{DD}} \leq 5.5~V$		tксү1/2 – 38		tксү1/2 – 50		ns
		$1.9~V \leq EV_{\text{DD}} \leq 5.5~V$				tkcy1/2 – 50		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsik1	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$		44		110		ns
		$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$		44		110		ns
		$2.4~V \leq EV_{\text{DD}} \leq 5.5~V$		75		110		ns
		$1.9~V \leq EV_{\text{DD}} \leq 5.5~V$				110		ns
SIp hold time	↑\Note 2	$2.4~V \leq EV_{\text{DD}} \leq 5.5~V$		19		19		ns
(from SCKp↑) ^{Note 2}		$1.9~V \leq EV_{\text{DD}} \leq$	5.5 V			19		ns
Delay time from SCKp↓ to	tkso1	C = 30 pF ^{Note 4}	$2.4~V \le EV_{\text{DD}} \le 5.5~V$		25		25	ns
SOp output ^{Note 3}			$1.9~V \leq EV_{\text{DD}} \leq 5.5~V$				25	ns

 $(T_A = -40 \text{ to } +85^{\circ}C, 1.9 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

- **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp \downarrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remarks 1. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0),

```
g: PIM and POM numbers (g = 0, 1)
```

 fMCK: Serial array unit operation clock frequency (Operating clock that is set with the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00))

(3) During communication at same potential (Simplified SPI (CSI) mode) (slave mode, SCKp... external clock input)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.		
SCKp cycle time ^{Note 5}	t ксү2	$4.0~V \leq EV_{DD} \leq 5.5~V$	20 MHz < fмск	8/f мск		_		ns
			fмск ≤ 20 MHz	6/fмск		6/fмск		ns
		$2.7~V \le EV_{DD} \le 5.5~V$	16 MHz < fмск	8/fмск		_		ns
			fмск ≤ 16 MHz	6/fмск		6/fмск		ns
		$2.4~V \leq EV_{DD} \leq 5.5~V$		6/fмск and 500		6/fмск		ns
		$1.9~V \le EV_{DD} \le 5.5~V$			6/fмск		ns	
SCKp high-/low-level	tкн2, tкL2	$4.0~V \leq EV_{DD} \leq 5.5~V$	tксү2/2 – 7		tксү2/2 – 7		ns	
width th		$2.7~V \leq EV_{DD} \leq 5.5~V$	tксү2/2 – 8		tксү2/2 – 8		ns	
		$2.4~V \le EV_{DD} \le 5.5~V$		tксү2/2 – 18		tксү2/2 – 18		ns
		$1.9~V \le EV_{DD} \le 5.5~V$				tксү2/2 – 18		ns
SIp setup time tsiк₂ (to SCKp↑) ^{Note 1}	tsik2	$2.7 \text{ V} \leq EV_{DD} \leq 5.5 \text{ V}$	1/fмск+20		1/fмск+30		ns	
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V}$	1/fмск+30		1/fмск+30		ns	
		$1.9 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$			1/fмск+30		ns	
SIp hold time t	tksi2	$2.4~V \leq EV_{DD} \leq 5.5~V$		1/fмск+31		1/fмск+31		ns
(from SCKp↑) ^{Note 2}		$1.9~V \le EV_{\text{DD}} \le 5.5~V$			1/fмск+31		ns	
Delay time from SCKp↓ to SOp output ^{Note 3}	tĸso2	C = 30 pF ^{Note 4}	$2.7~V \leq EV_{DD} \leq 5.5~V$		2/fмск+44		2/fмск+ 110	ns
			$2.4~\text{V} \leq \text{EV}_{\text{DD}} \leq 5.5~\text{V}$		2/fмск+75		2/fмск+ 110	ns
			$1.9~V \leq EV_{DD} \leq 5.5~V$				2/fмск+ 110	ns

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.9 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

- **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 4. C is the load capacitance of the SOp output lines.
- 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0),
 - g: PIM number (g = 0, 1)
 - fMCK: Serial array unit operation clock frequency (Operating clock that is set with the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00))

RENESAS

Simplified SPI (CSI) mode connection diagram (during communication at same potential)

Simplified SPI (CSI) mode serial transfer timing (during communication at same potential) (when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1)

Simplified SPI (CSI) mode serial transfer timing (during communication at same potential) (when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0)

Remarks 1. p: CSI number (p = 00)

2. m: Unit number, n: Channel number (mn = 00)
(4) During communication at same potential (simplified I^2C mode)

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.9 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high-sp Mo		LS (low-sp Mo		Unit
			MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fsc∟	$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ C_{\text{b}} = 50 \ \text{pF}, \ R_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$		1000 ^{Note 1}		400 ^{Note 1}	kHz
		$\begin{array}{l} 1.9 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ C_{\text{b}} = 100 \ p\text{F}, \ R_{\text{b}} = 3 \ k\Omega \end{array}$		400 ^{Note 1}		400 ^{Note 1}	kHz
		1.9 V ^{Note 3} \le EV _{DD} < 2.7 V, C _b = 100 pF, R _b = 5 kΩ		300 ^{Note 1}		300 ^{Note 1}	kHz
Hold time when SCLr = "L"	t∟ow	$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ C_{\text{b}} = 50 \ \text{pF}, \ R_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	475		1150		ns
		$\begin{array}{l} 1.9 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ C_{\text{b}} = 100 \ p\text{F}, \ R_{\text{b}} = 3 \ k\Omega \end{array}$	1150		1150		ns
		$1.9 \text{ V}^{\text{Note 3}} \leq \text{EV}_{\text{DD}} < 2.7 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 5 \text{ k}\Omega$	1550		1550		ns
Hold time when SCLr = "H"	tніgн	$\label{eq:states} \begin{array}{l} 2.7 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ C_{\text{b}} = 50 \ pF, \ R_{\text{b}} = 2.7 \ k\Omega \end{array}$	475		1150		ns
		$\begin{array}{l} 1.9 \ V \leq EV_{DD} \leq 5.5 \ V, \\ C_b = 100 \ pF, \ R_b = 3 \ k\Omega \end{array}$	1150		1150		ns
		$1.9 \text{ V}^{\text{Note 3}} \leq \text{EV}_{\text{DD}} < 2.7 \text{ V},$ C_b = 100 pF, R_b = 5 kΩ	1550		1550		ns
Data setup time (reception)	tsu:dat	$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ C_{\text{b}} = 50 \ \text{pF}, \ R_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	1/fмск + 85 Notes 1, 2		1/f _{MCK} + 145 Notes 1, 2		ns
		$\begin{array}{l} 1.9 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ C_{\text{b}} = 100 \ p\text{F}, \ R_{\text{b}} = 3 \ k\Omega \end{array}$	1/f _{MCK} + 145 Notes 1, 2		1/f _{MCK} + 145 Notes 1, 2		ns
		$\begin{array}{l} 1.9 \; V^{\textbf{Note 3}} \leq E V_{\text{DD}} < 2.7 \; V, \\ C_{\text{b}} = 100 \; p\text{F}, \; R_{\text{b}} = 5 \; k\Omega \end{array}$	1/f _{MCK} + 230 Notes 1, 2		1/f _{MCK} + 230 Notes 1, 2		ns
Data hold time (transmission)	thd:dat	$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ C_{\text{b}} = 50 \ p\text{F}, \ R_{\text{b}} = 2.7 \ k\Omega \end{array}$	0	305	0	305	ns
		$\begin{array}{l} 1.9 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ C_{\text{b}} = 100 \ p\text{F}, \ R_{\text{b}} = 3 \ k\Omega \end{array}$	0	355	0	355	ns
		$\begin{array}{l} 1.9 \; V^{\text{Note 3}} \leq \text{EV}_{\text{DD}} < 2.7 \; \text{V}, \\ C_{\text{b}} = 100 \; \text{pF}, \; R_{\text{b}} = 5 \; \text{k}\Omega \end{array}$	0	405	0	405	ns

Notes 1. The value must also be equal to or less than $f_{MCK}/4$.

2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

3. When HS (high-speed main) mode, this value becomes 2.4 V.

(Caution and Remarks are listed on the next page.)

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- **Remarks 1.** R_b[Ω]:Communication line (SDAr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance
 - **2.** r: IIC number (r = 00, 10), g: PIM and POM number (g = 0, 1)
 - **3.** fmck: Serial array unit operation clock frequency

(Operating clock that is set with the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number (m = 0), n: Channel number (n = 0, 2), mn = 00, 02))

(5) Communication at different potential (1.9 V, 2.5 V, 3 V) (UART mode) (1/2)

Parameter	Symbol		Conditions		speed main) ode	LS (low-speed main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	
Transfer rate		Reception	$\begin{split} EV_{\text{DD}} &\leq 5.5 \text{ V}, \\ V_{\text{b}} &\leq 4.0 \text{ V} \end{split}$		fмск/6 ^{Note 1}		fмск/6 ^{Note 1}	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 4}$		4.0		1.3	Mbps
			$\begin{split} EV_{\text{DD}} &< 4.0 \text{ V}, \\ V_{\text{b}} &\leq 2.7 \text{ V} \end{split}$		fмск/6 ^{Note 1}		fмск/6 ^{Note 1}	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 4}$		4.0		1.3	Mbps
			$^{te5} \leq EV_{\text{DD}}$ < 3.3 V, $V_{\text{b}} \leq 2.0$ V		fмск/6 Notes 1 to 3		fмск/6 Notes 1, 2	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 4}$		4.0		1.3	Mbps

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.9 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

- **2.** Use it with $EV_{DD} \ge V_b$.
- 3. The following conditions are required for low voltage interface. $2.4 \text{ V} \leq \text{EV}_{\text{DD}} < 2.7 \text{ V}$: MAX. 2.6 Mbps $1.9 \text{ V} \leq \text{EV}_{\text{DD}} < 2.4 \text{ V}$: MAX. 1.3 Mbps
- 4. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are:
 - HS (high-speed main) mode: 24 MHz
 - LS (low-speed main) mode: 8 MHz
- 5. When HS (high-speed main) mode, this value becomes 2.4 V.

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (Vod tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Remarks 1. V_b[V]: Communication line voltage

2. q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1, 8)

3. fMCK: Serial array unit operation clock frequency (Operating clock that is set with the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)

Parameter	Symbol		Conditions		speed main) lode		speed main) lode	Unit
				MIN.	MAX.	MIN.	MAX.	
Transfer rate		Transmission	$\label{eq:bound} \begin{split} &\leq EV_{DD} \leq 5.5 \ V, \\ &\leq V_b \leq 4.0 \ V \end{split}$		Notes 1, 2		Notes 1, 2	bps
			Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 1.4 \text{ k}\Omega, V_b = 2.7 \text{ V}$		2.8 ^{Note 3}		2.8 ^{Note 3}	Mbps
			\leq EV _{DD} < 4.0 V, \leq V _b \leq 2.7 V		Notes 2, 4		Notes 2, 4	bps
			Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega, V_b = 2.3 \text{ V}$		1.2 ^{Note 5}		1.2 ^{Note 5}	Mbps
			Note 9 \leq EV _{DD} < 3.3 V, \leq V _b \leq 2.0 V		Notes 2, 6, 7		Notes 2, 6, 7	bps
			Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 \text{ V}$		0.43 ^{Note 8}		0.43 ^{Note 8}	Mbps

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.9 \text{ V} < \text{VDD} = \text{EVDD} < 5.5 \text{ V}, \text{Vss} = \text{EVss} = 0 \text{ V})$

Notes 1. The smaller maximum transfer rate derived by using fMck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq EV_{DD} \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- 2. Transfer rate in the SNOOZE mode is 4800 bps only.
- This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- **4.** The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq EV_{DD} < 4.0 V and 2.3 V \leq V_b \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **5.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 4** above to calculate the maximum transfer rate under conditions of the customer.
- **6.** Use it with $EV_{DD} \ge V_b$.

Notes 7. The smaller maximum transfer rate derived by using fMck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 1.9 V \leq EV_{DD} < 2.7 V and 1.6 V \leq V_b \leq 2.0 V

Maximum transfer rate = $\frac{1}{(2 - 2)^2}$ [bps]

$$\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3$$

Baud rate error (theoretical value) = $\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 7 above to calculate the maximum transfer rate under conditions of the customer.
- 9. When HS (high-speed main) mode, this value becomes 2.4 V.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (V_{DD} tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** $R_b[\Omega]$:Communication line (TxDq) pull-up resistance,
 - Cb[F]: Communication line (TxDq) load capacitance, Vb[V]: Communication line voltage
 - **2.** q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1, 8)
 - fMCK: Serial array unit operation clock frequency (Operating clock that is set with the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (V_{DD} tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** $R_b[\Omega]$: Communication line (TxDq) pull-up resistance, $V_b[V]$: Communication line voltage
 - **2.** q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1, 8)

(6) Communication at different potential (2.5 V, 3 V) (fмcк/2) (Simplified SPI (CSI) mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

Parameter	Symbol		Conditions	HS (high-sp Moo	-	LS (low-sp Mo	-	Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tксүı	tkcyı ≥ 2/fclk	$\begin{array}{l} 4.0 \; V \leq EV_{DD} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 20 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	200		1150		ns
			$\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{DD} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 20 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$	300		1150		ns
SCKp high-level width	tкнı	$\begin{array}{l} 4.0 \ V \leq EV_{DD} \\ C_{b} = 20 \ pF, \ R \end{array}$	≤ 5.5 V, 2.7 V $\leq V_b \leq 4.0$ V, b = 1.4 kΩ	tксү1/2 — 50		tkcy1/2-50		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD} \\ C_b = 20 \ pF, \ R \end{array}$	< 4.0 V, 2.3 V \leq V _b \leq 2.7 V, _b = 2.7 kΩ	tксү1/2 – 120		tксү1/2 – 120		ns
SCKp low-level width	tĸ∟ı	$\begin{array}{l} 4.0 \ V \leq EV_{DD} \\ C_b = 20 \ pF, \ R \end{array}$	$\leq 5.5 \text{ V}, 2.7 \text{ V} \leq V_b \leq 4.0 \text{ V},$ b = 1.4 kΩ	tксү1/2 – 7		tkcy1/2 - 50		ns
			$7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ b = 20 pF, Rb = 2.7 kΩ			tксү1/2 – 50		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsıĸı		$\begin{array}{l} .0 \ V \leq EV_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 20 \ pF, \ R_b = 1.4 \ k\Omega \end{array}$			479		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD} \\ C_b = 20 \ pF, \ R \end{array}$	< 4.0 V, 2.3 V \leq V _b \leq 2.7 V, _b = 2.7 kΩ	121		479		ns
SIp hold time (from SCKp↑) ^{Note 1}	tksi1	$\begin{array}{l} 4.0 \ V \leq EV_{DD} \\ C_b = 20 \ pF, \ R \end{array}$	$\leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_{b} \leq 4.0 \text{ V},$ b = 1.4 kΩ	10		10		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD} \\ C_b = 20 \ pF, \ R \end{array}$	< 4.0 V, 2.3 V \leq V _b \leq 2.7 V, _b = 2.7 kΩ	10		10		ns
Delay time from SCKp↓ to SOp output ^{Note 1}	tkso1	$\begin{array}{l} 4.0 \ V \leq EV_{DD} \\ C_b = 20 \ pF, \ R \end{array}$	≤ 5.5 V, 2.7 V \leq V _b \leq 4.0 V, b = 1.4 kΩ		60		60	ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD} \\ C_b = 20 \ pF, \ R \end{array}$	< 4.0 V, 2.3 V \leq V _b \leq 2.7 V, _b = 2.7 kΩ		130		130	ns
SIp setup time (to SCKp↓) ^{Note 2}	tsiкı	$\begin{array}{l} 4.0 \ V \leq EV_{DD} \\ C_b = 20 \ pF, \ R \end{array}$	≤ 5.5 V, 2.7 V \leq V _b \leq 4.0 V, b = 1.4 kΩ	23		110		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD} \\ C_b = 20 \ pF, \ R \end{array}$	< 4.0 V, 2.3 V \leq V _b \leq 2.7 V, _b = 2.7 kΩ	33		110		ns
SIp hold time (from SCKp↓) ^{Note 2}	tksi1	$\begin{array}{l} 4.0 \ V \leq EV_{DD} \\ C_b = 20 \ pF, \ R \end{array}$	\leq 5.5 V, 2.7 V \leq V _b \leq 4.0 V, b = 1.4 kΩ	10		10		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD} \\ C_b = 20 \ pF, \ R \end{array}$	< 4.0 V, 2.3 V \leq V _b \leq 2.7 V, _b = 2.7 kΩ	10		10		ns
Delay time from SCKp↑ to SOp output ^{Note 2}	tkso1	$\begin{array}{l} 4.0 \ V \leq EV_{DD} \\ C_b = 20 \ pF, \ R \end{array}$	$\leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V},$ b = 1.4 kΩ		10		10	ns
		$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \cdot$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}$	< 4.0 V, 2.3 V \leq V _b \leq 2.7 V, b = 2.7 kΩ		10		10	ns

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.9 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

(Caution and Remarks are listed on the next page.)

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

Simplified SPI (CSI) mode connection diagram (during communication at different potential)

- **Remarks 1.** R_b[Ω]:Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 1)
 - 3. fмск: Serial array unit operation clock frequency (Operating clock that is set with the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00))
 - **4.** This specification is valid only when CSI00's peripheral I/O redirect function is not used.

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (f_{MCK}/4) (Simplified SPI (CSI) mode) (master mode, SCKp... internal clock output) (1/2)

Parameter	Symbol		Conditions	HS (high-sp Mo	peed main) de	LS (low-sp Mo	-	Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t ксү1	tkcyı ≥ 4/fclk	$\begin{array}{l} 4.0 \; V \leq EV_{DD} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	300		1150		ns
			$\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{DD} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$	500		1150		ns
			$\label{eq:VDD} \begin{split} & 1.9 \; V^{\text{Note 4}} \leq EV_{\text{DD}} < 3.3 \; V, \\ & 1.6 \; V \leq V_{b} \leq 2.0 \; V, \\ & C_{b} = 30 \; pF, \; R_{b} = 5.5 \; k\Omega \end{split}$	1150		1150		ns
SCKp high-level width	tкнı	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5. \\ C_{\text{b}} = 30 \ \text{pF}, \ R_{\text{b}} = 3. \end{array}$	5 V, 2.7 V \leq Vb \leq 4.0 V, 1.4 kΩ	tксү1/2 — 75		tксү1/2 — 75		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.$ $C_{\text{b}} = 30 \text{ pF}, \text{ R}_{\text{b}} = 2.$	0 V, 2.3 V \leq V_b \leq 2.7 V, 2.7 k\Omega	tксү1/2 – 170		tксү1/2 – 170		ns
		$\begin{array}{l} 1.9 \ V^{\text{Note 4}} \leq EV_{\text{DD}} \\ C_{\text{b}} = 30 \ \text{pF}, \ R_{\text{b}} = 30 \end{array}$	< 3.3 V, 1.6 V \leq Vb \leq 2.0 V $^{\text{Note 3}},$ 5.5 k Ω	tксү1/2 – 458		tксү1/2 – 458		ns
SCKp low-level width	tĸ∟1	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5. \\ C_{\text{b}} = 30 \ \text{pF}, \ R_{\text{b}} = 3. \end{array}$	5 V, 2.7 V ≤ V _b ≤ 4.0 V, 1.4 kΩ	tксү1/2 – 12		tксү1/2 — 50		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.$ $C_{\text{b}} = 30 \text{ pF}, \text{ R}_{\text{b}} = 2$	0 V, 2.3 V \leq V_b \leq 2.7 V, 2.7 k\Omega	tксү1/2 – 18		tксү1/2 — 50		ns
		$1.9 \text{ V}^{\text{Note 4}} \leq \text{EV}_{\text{DD}}$ $C_{\text{b}} = 30 \text{ pF}, \text{ R}_{\text{b}} = 30 \text{ pF}$	< 3.3 V, 1.6 V \leq V _b \leq 2.0 V ^{Note 3} , 5.5 kΩ	tксү1/2 – 50		tксү1/2 – 50		ns

(T_A = -40 to +85°C, 1.9 V \leq VDD = EVDD \leq 5.5 V, Vss = EVss = 0 V)

(Notes, Caution and Remarks are listed on the page after the next page.)

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (f_{MCK}/4) (Simplified SPI (CSI) mode) (master mode, SCKp... internal clock output) (2/2)

Parameter	Symbol	Conditions		speed main) ode		beed main) bde	Unit
			MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↑) ^{Note 1}	tsıĸı	$\begin{array}{l} 4.0 \ V \leq EV_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \end{array}$	81		479		ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq EV_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	177		479		ns
		$\label{eq:Vote 4} \begin{split} 1.9 \ V^{\text{Note 4}} &\leq EV_{\text{DD}} < 3.3 \ \text{V}, \ 1.6 \ \text{V} \leq V_b \leq 2.0 \ V^{\text{Note 3}}, \\ C_b &= 30 \ \text{pF}, \ R_b = 5.5 \ \text{k}\Omega \end{split}$	479		479		ns
SIp hold time (from SCKp↑) ^{Note 1}	tksi1		19		19		ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq EV_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	19		19		ns
		$\label{eq:Vote 4} \begin{split} 1.9 \ V^{\text{Note 4}} &\leq \text{EV}_{\text{DD}} < 3.3 \ \text{V}, \ 1.6 \ \text{V} \leq \text{V}_{\text{b}} \leq 2.0 \ \text{V}^{\text{Note 3}}, \\ C_{\text{b}} &= 30 \ \text{pF}, \ R_{\text{b}} = 5.5 \ \text{k}\Omega \end{split}$	19		19		ns
Delay time from SCKp↓ to	tkso1	$\begin{array}{l} 4.0 \ V \leq EV_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \end{array}$		100		100	ns
SOp output ^{Note 1}		$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq EV_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		195		195	ns
		$\begin{split} 1.9 \ V^{\text{Note 4}} &\leq \text{EV}_{\text{DD}} < 3.3 \ \text{V}, \ 1.6 \ \text{V} \leq \text{V}_{\text{b}} \leq 2.0 \ \text{V}^{\text{Note 3}}, \\ C_{\text{b}} &= 30 \ \text{pF}, \ R_{\text{b}} = 5.5 \ \text{k}\Omega \end{split}$		483		483	ns
SIp setup time (to SCKp↓) ^{Note 2}	tsıĸı	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \end{array}$	44		110		ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq EV_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	44		110		ns
		$\label{eq:Vote 4} \begin{split} 1.9 \ V^{\text{Note 4}} &\leq \text{EV}_{\text{DD}} < 3.3 \ \text{V}, \ 1.6 \ \text{V} \leq \text{V}_{\text{b}} \leq 2.0 \ \text{V}^{\text{Note 3}}, \\ C_{\text{b}} &= 30 \ \text{pF}, \ R_{\text{b}} = 5.5 \ \text{k}\Omega \end{split}$	110		110		ns
SIp hold time (from SCKp↓) ^{Note 2}	tksi1		19		19		ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq EV_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	19		19		ns
		$\label{eq:Vote 4} \begin{split} 1.9 \ V^{\text{Note 4}} &\leq EV_{\text{DD}} < 3.3 \ \text{V}, \ 1.6 \ \text{V} \leq V_b \leq 2.0 \ V^{\text{Note 3}}, \\ C_b &= 30 \ \text{pF}, \ R_b = 5.5 \ \text{k}\Omega \end{split}$	19		19		ns
Delay time from SCKp↑ to SOp	tkso1			25		25	ns
output ^{Note 2}		$2.7 \; V \leq EV_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V,$		25		25	ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$				0-	
				25		25	ns

(T_A = -40 to +85°C, 1.9 V \leq VDD = EVDD \leq 5.5 V, Vss = EVss = 0 V)

(Notes, Caution and Remarks are listed on the next page.)

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
 - 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. Use it with $EV_{DD} \ge V_b$.
 - 4. When HS (high-speed main) mode, this value becomes 2.4 V.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** R_b[Ω]:Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00), m: Unit number , n: Channel number (mn = 00),
 g: PIM and POM number (g = 0, 1)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))

Simplified SPI (CSI) mode connection diagram (during communication at different potential)

Simplified SPI (CSI) mode serial transfer timing (master mode) (during communication at different potential) (when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1)

Simplified SPI (CSI) mode serial transfer timing (master mode) (during communication at different potential) (when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0)

- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- **Remark** p: CSI number (p = 00), m: Unit number, n: Channel number (mn = 00), g: PIM and POM number (g = 0, 1)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (Simplified SPI (CSI) mode) (slave mode, SCKp ... external clock input)

Parameter	Symbol	Con	ditions		peed main) ode		beed main) bde	Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time ^{Note 1}	tксү2	$4.0 V \le EV_{DD} \le 5.5 V$,	$20~MHz < f_{MCK} \le 24~MHz$	12/fмск				ns
		$2.7V\!\le\!V_b\!\le\!4.0V$	8 MHz < fмск ≤ 20 MHz	10/ f мск		_		ns
			$4 \text{ MHz} < f_{MCK} \le 8 \text{ MHz}$	8/fмск		16/fмск		ns
			fмск ≤ 4 MHz	6/fмск		10/fмск		ns
		$2.7 V \le EV_{DD} < 4.0 V$,	20 MHz < fмск ≤ 24 MHz	16/fмск		_		ns
		$2.3V \!\leq\! V_b \!\leq\! 2.7V$	16 MHz < fмск ≤ 20 MHz	14/fмск		_		ns
			$8 \text{ MHz} < f_{MCK} \le 16 \text{ MHz}$	12/fмск				ns
			$4 \text{ MHz} < f_{MCK} \le 8 \text{ MHz}$	8/fмск		16/f мск		ns
			∫мск ≤ 4 MHz	6/fмск		10/fмск		ns
		$1.9 \ V^{\text{Note 6}} \leq EV_{\text{DD}}$	$20 \text{ MHz} < f_{MCK} \le 24 \text{ MHz}$	36/f мск				ns
		< 3.3 V,	$16 \text{ MHz} < f_{MCK} \le 20 \text{ MHz}$	32/fмск				ns
		$1.6~V \leq V_b \leq 2.0~V^{\text{Note 2}}$	8 MHz < fmck \leq 16 MHz	26/fмск		_		ns
			4 MHz < fмск ≤ 8 MHz	16/fмск		16/fмск		ns
			fмск ≤ 4 MHz	10/fмск		10/fмск		ns
SCKp high-/low-level width	tкн2, tкL2	$4.0 \text{ V} \leq EV_{\text{DD}} \leq 5.5 \text{ V}, 2$	$2.7~V \leq V_b \leq 4.0~V$	tксү2/2 – 12		tксү2/2 – 50		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V}, 2$	$2.3~V \leq V_b \leq 2.7~V$	tксү2/2 – 18		tксү2/2 – 50		ns
		$1.9 \text{ V}^{\text{Note 6}} \leq \text{EV}_{\text{DD}} < 3.3$	$V,~1.6~V \leq V_b \leq 2.0~V^{\text{Note 2}}$	tксү2/2 – 50		tксү2/2 – 50		ns
SIp setup time (to SCKp↑) ^{Note 3}	tsık2	$2.7~V \leq EV_{DD} \leq 5.5~V,~2$	$2.3~V \leq V_b \leq 4.0~V^{\text{Note 2}}$	1/fмск + 20		1/fмск + 30		ns
		$1.9 \text{ V}^{\text{Note 6}} \leq \text{EV}_{\text{DD}} < 3.3$	$V,~1.6~V \leq V_b \leq 2.0~V^{\text{Note 2}}$	1/fмск + 30		1/fмск + 30		ns
SIp hold time (from SCKp↑) ^{Note 4}	tksi2	$2.7 \text{ V} \leq EV_{\text{DD}} \leq 5.5 \text{ V}, 2$	$2.3~V \leq V_b \leq 4.0~V^{\text{Note 2}}$	1/fмак + 31		1/fмск + 31		ns
		$1.9 \text{ V}^{\text{Note 6}} \leq \text{EV}_{\text{DD}} < 3.3$	V, 1.6 V \leq V_b \leq 2.0 V^{Note 2}	1/fмак + 31		1/fмск + 31		ns
Delay time from SCKp↓ to SOp output ^{Note 5}					2/f _{мск} + 120		2/f _{мск} + 573	ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V}, 2000 \text{ C}_{\text{b}} = 30 \text{ pF}, \text{R}_{\text{b}} = 2.7 \text{ km}^{2}$			2/fмск + 214		2/f _{мск} + 573	ns
		$1.9 \text{ V}^{\text{Note 6}} \le \text{EV}_{\text{DD}} < 3.3 \text{ V}^{\text{Note 6}}$ $C_{\text{b}} = 30 \text{ pF}, \text{ R}_{\text{b}} = 5.5 \text{ km}^{2}$	V, $1.6 \text{ V} \le V_b \le 2.0 \text{ V}^{\text{Note 2}}$, Ω		2/fмск + 573		2/f _{мск} + 573	ns

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.9 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

(Notes, Caution and Remarks are listed on the next page.)

- **Notes 1.** Transfer rate in the SNOOZE mode: MAX. 1 Mbps
 - **2.** Use it with $EV_{DD} \ge V_b$.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **5.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 6. When HS (high-speed main) mode, this value becomes 2.4 V.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

Simplified SPI (CSI) mode connection diagram (during communication at different potential)

- **Remarks 1.** R_b[Ω]:Communication line (SOp) pull-up resistance, C_b[F]: Communication line (SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00), m: Unit number, n: Channel number (mn = 00), g: PIM and POM number (g = 0, 1)
 - fMCK: Serial array unit operation clock frequency (Operating clock that is set with the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00))

Simplified SPI (CSI) mode serial transfer timing (slave mode) (during communication at different potential) (when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1)

- Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- **Remark** p: CSI number (p = 00), m: Unit number, n: Channel number (mn = 00), g: PIM and POM number (g = 0, 1)

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode) (1/2)

$T_{A} = -40$ to +85°C	19V <vnn=< th=""><th>: FVnn < 5.5 V</th><th>Vss = EVss = 0 V)</th></vnn=<>	: FVnn < 5.5 V	Vss = EVss = 0 V)
1A = -40 10 0000	1.3 4 2 400 -		v 33 - Lv 33 - U vj

Parameter	Symbol	Conditions		speed main) lode	-	peed main) ode	Unit
			MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fsc∟	$\begin{array}{l} 4.0 \; V \leq EV_{DD} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		1000 ^{Note 1}		300 ^{Note 1}	kHz
		$\label{eq:2.7} \begin{array}{l} 2.7 \; V \leq EV_{DD} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		1000 ^{Note 1}		300 ^{Note 1}	kHz
				400 ^{Note 1}		300 ^{Note 1}	kHz
		$\label{eq:2.7} \begin{array}{l} 2.7 \; V \leq EV_{DD} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		400 ^{Note 1}		300 ^{Note 1}	kHz
		$\label{eq:VDD} \begin{split} & 1.9 \; V^{\text{Note 4}} \leq EV_{\text{DD}} < 3.3 \; V, \\ & 1.6 \; V \leq V_{b} \leq 2.0 \; V^{\text{Note 2}}, \\ & C_{b} = 100 \; pF, \; R_{b} = 5.5 \; k\Omega \end{split}$		300 ^{Note 1}		300 ^{Note 1}	kHz
Hold time when SCLr = "L"	t∟ow		475		1550		ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \; V \leq EV_{DD} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	475		1550		ns
			1150		1550		ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \; V \leq EV_{DD} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1150		1550		ns
		$\label{eq:VDD} \begin{split} & 1.9 \; V^{\text{Note 4}} \leq EV_{\text{DD}} < 3.3 \; V, \\ & 1.6 \; V \leq V_b \leq 2.0 \; V^{\text{Note 2}}, \\ & C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{split}$	1550		1550		ns
Hold time when SCLr = "H"	tніgн	$\begin{array}{l} 4.0 \; V \leq EV_{DD} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	245		610		ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \; V \leq EV_{DD} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	200		610		ns
			675		610		ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \; V \leq EV_{DD} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	600		610		ns
		$\label{eq:VD} \begin{split} & 1.9 \; V^{\text{Note 4}} \leq \text{EV}_{\text{DD}} < 3.3 \; \text{V}, \\ & 1.6 \; \text{V} \leq \text{V}_{\text{b}} \leq 2.0 \; \text{V}^{\text{Note 2}}, \\ & \text{C}_{\text{b}} = 100 \; \text{pF}, \; \text{R}_{\text{b}} = 5.5 \; \text{k}\Omega \end{split}$	610		610		ns

(Notes, Caution and Remarks are listed on the next page.)

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode) (2/2)

Parameter	Symbol	Conditions		peed main) ode	LS (low-sp Mo	,	Unit
			MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu:dat		1/fмск + 135 ^{Note 3}		1/fмск + 190 ^{Note 3}		ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \; V \leq EV_{DD} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1/fмск + 135 ^{Note 3}		1/fмск + 190 ^{Note 3}		ns
			1/f _{мск} + 190 ^{Note 3}		1/fмск + 190 ^{Note 3}		ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \; V \leq EV_{DD} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1/f _{МСК} + 190 ^{Note 3}		1/f _{МСК} + 190 ^{Note 3}		ns
			1/f _{МСК} + 190 ^{Note 3}		1/f _{МСК} + 190 ^{Note 3}		ns
Data hold time (transmission)	thd:dat	$\begin{array}{l} 4.0 \; V \leq EV_{DD} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	0	305		305	ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \; V \leq EV_{DD} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	0	305		305	ns
			0	355		355	ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \; V \leq EV_{DD} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	0	355		355	ns
			0	405		405	ns

Notes 1. The value must also be equal to or less than fmck/4.

- **2.** Use it with $EV_{DD} \ge V_b$.
- 3. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".
- 4. When HS (high-speed main) mode, this value becomes 2.4 V.
- Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_H and V_L, see the DC characteristics with TTL input buffer selected.

(Remarks is listed on the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VH and VL, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** R_b[Ω]:Communication line (SDAr, SCLr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance, V_b[V]: Communication line voltage
 - **2.** r: IIC number (r = 00, 10), g: PIM, POM number (g = 0, 1)
 - fMCK: Serial array unit operation clock frequency (Operating clock that is set with the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00, 02))

2.5.2 Serial interface IICA

(1) I²C standard mode

(T_A = -40 to +85°C, 1.9 V \leq VDD = EVDD \leq 5.5 V, Vss = EVss = 0 V)

Parameter	Symbol	Co	nditions		h-speed Mode	· ·	beed main) bde	Unit
				MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fsc∟	Standard mode:			100	0	100	kHz
		fc∟k≥ 1 MHz	$\begin{array}{l} 1.9 \ V^{\text{Note 3}} \leq E V_{\text{DD}} \\ \leq 5.5 \ V \end{array}$	0	100	0	100	kHz
Setup time of restart condition	tsu:sta	$2.7 \text{ V} \leq EV_{DD} \leq 5.5$	V	4.7		4.7		μs
		$1.9 \; V^{\text{Note 3}} \leq EV_{\text{DD}}$	≤ 5.5 V	4.7		4.7		μs
Hold time ^{Note 1}	thd:sta	$2.7 \text{ V} \le EV_{DD} \le 5.5$	δV	4.0		4.0		μs
		$1.9 \ V^{\text{Note 3}} \leq EV_{\text{DD}}$	≤ 5.5 V	4.0		4.0		μs
Hold time when SCLA0 = "L"	t LOW	$2.7 \text{ V} \le EV_{\text{DD}} \le 5.5$	δV	4.7		4.7		μs
		$1.9 \; V^{\text{Note 3}} \leq EV_{\text{DD}}$	≤ 5.5 V	4.7		4.7		μs
Hold time when SCLA0 = "H"	tніgн	$2.7~V \le EV_{\text{DD}} \le 5.5$	δV	4.0		4.0		μs
		$1.9 \; V^{\text{Note 3}} \leq EV_{\text{DD}}$	≤ 5.5 V	4.0		4.0		μs
Data setup time (reception)	tsu:dat	$2.7 \text{ V} \le EV_{DD} \le 5.5$	δV	250		250		ns
		$1.9 \; V^{\text{Note 3}} \leq EV_{\text{DD}}$	≤ 5.5 V	250		250		ns
Data hold time (transmission)Note 2	thd:dat	$2.7 \text{ V} \leq EV_{DD} \leq 5.5$	ν	0	3.45	0	3.45	μs
		$1.9 \; V^{\text{Note 3}} \leq EV_{\text{DD}}$	≤ 5.5 V	0	3.45	0	3.45	μs
Setup time of stop condition	tsu:sto	$2.7~V \leq EV_{DD} \leq 5.5~V$		4.0		4.0		μs
		$1.9~V^{\text{Note 3}} \leq EV_{\text{DD}} \leq 5.5~V$		4.0		4.0		μs
Bus-free time	t BUF	$2.7 \text{ V} \le EV_{DD} \le 5.5$	5V	4.7		4.7		μs
		$1.9 \; V^{\text{Note 3}} \leq EV_{\text{DD}}$	≤ 5.5 V	4.7		4.7		μs

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

- 2. The maximum value (MAX.) of the control of the control of the ACK (acknowledge) timing.
- 3. When HS (high-speed main) mode, this value becomes 2.4 V.
- **Remark** The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: $C_b = 400 \text{ pF}$, $R_b = 2.7 \text{ k}\Omega$

(2) I²C fast mode

$(T_A = -40 \text{ to } +85^{\circ}C, 1.9 \text{ V} \le \text{VDD} = \text{EVDD} \le 5.5 \text{ V}, \text{ Vss} = \text{EVss} = 0 \text{ V})$

Parameter	Symbol	Co	nditions		h-speed Mode		beed main) bde	Unit
				MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode: $2.7 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V}$		0	400	0	400	kHz
		fc∟ĸ≥3.5 MHz	$1.9 \text{ V}^{\text{Note 3}} \leq EV_{\text{DD}}$ $\leq 5.5 \text{ V}$	0	400	0	400	kHz
Setup time of restart condition	tsu:sta	$2.7~V \le EV_{\text{DD}} \le 5.8$	5 V	0.6		0.6		μs
		$1.9 \ V^{\text{Note 3}} \leq EV_{\text{DD}}$	\leq 5.5 V	0.6		0.6		μs
Hold time ^{Note 1}	thd:sta	$2.7~V \le EV_{\text{DD}} \le 5.8$	5 V	0.6		0.6		μs
		$1.9 \ V^{\text{Note 3}} \leq EV_{\text{DD}}$	\leq 5.5 V	0.6		0.6		μs
Hold time when SCLA0 = "L"	t LOW	$2.7~V \le EV_{\text{DD}} \le 5.8$	5 V	1.3		1.3		μs
		$1.9 \ V^{\text{Note 3}} \leq EV_{\text{DD}}$	\leq 5.5 V	1.3		1.3		μs
Hold time when SCLA0 = "H"	tніgн	$2.7~V \le EV_{\text{DD}} \le 5.5$	5 V	0.6		0.6		μs
		$1.9 \ V^{\text{Note 3}} \leq EV_{\text{DD}}$	\leq 5.5 V	0.6		0.6		μs
Data setup time (reception)	tsu:dat	$2.7~V \le EV_{\text{DD}} \le 5.5$	5 V	100		100		ns
		$1.9 \ V^{\text{Note 3}} \leq EV_{\text{DD}}$	\leq 5.5 V	100		100		ns
Data hold time (transmission) ^{Note 2}	thd:dat	$2.7 V \le EV_{DD} \le 5.5$	5 V	0	0.9	0	0.9	μs
		$1.9 \; V^{\text{Note 3}} \leq EV_{\text{DD}}$	\leq 5.5 V	0	0.9	0	0.9	μs
Setup time of stop condition	tsu:sto	$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$		0.6		0.6		μs
		$1.9~V^{\text{Note 3}} \leq EV_{\text{DD}} \leq 5.5~V$		0.6		0.6		μs
Bus-free time	t BUF	$2.7~V \le EV_{DD} \le 5.4$	5 V	1.3		1.3		μs
		$1.9 \ V^{\text{Note 3}} \leq EV_{\text{DD}}$	\leq 5.5 V	1.3		1.3		μs

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the:DAT is during normal transfer and a clock stretch state is inserted in the ACK (acknowledge) timing.

- **3.** When HS (high-speed main) mode, this value becomes 2.4 V.
- **Remark** The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode: $C_b = 320 \text{ pF}, R_b = 1.1 \text{ k}\Omega$

(3) I²C fast mode plus

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.9 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fsc∟	Fast mode plus: fc∟κ ≥ 10 MHz	$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$	0	1000	-	-	kHz
Setup time of restart condition	tsu:sta	$2.7 \text{ V} \leq EV_{DD} \leq 5.5$	$2.7 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V}$			-	-	μs
Hold time ^{Note 1}	thd:sta	$2.7~V \leq EV_{\text{DD}} \leq 5.5$	V	0.26		-	_	μs
Hold time when SCLA0 = "L"	tLOW	$2.7~V \leq EV_{\text{DD}} \leq 5.5$	V	0.5		-	_	μs
Hold time when SCLA0 = "H"	tніgн	$2.7~V \leq EV_{\text{DD}} \leq 5.5$	V	0.26		-	_	μs
Data setup time (reception)	tsu:dat	$2.7~V \leq EV_{\text{DD}} \leq 5.5$	V	50		-	_	ns
Data hold time (transmission)Note 2	thd:dat	$2.7~V \leq EV_{\text{DD}} \leq 5.5$	V	0	0.45	-	_	μs
Setup time of stop condition	tsu:sto	$2.7~V \leq EV_{\text{DD}} \leq 5.5$	V	0.26		-	_	μs
Bus-free time	t BUF	$2.7~V \leq EV_{\text{DD}} \leq 5.5$	V	0.5		-	_	μs

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the:DAT is during normal transfer and a clock stretch state is inserted in the ACK (acknowledge) timing.

Fast mode plus: $C_b = 120 \text{ pF}$, $R_b = 1.1 \text{ k}\Omega$

IICA serial transfer timing

Remark The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

2.6 Analog Characteristics

2.6.1 A/D converter characteristics

(1) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pins: ANI2 to ANI5 and internal reference voltage

(T_A = -40 to +85°C, 1.9 V \leq V_{DD} = EV_{DD} \leq 5.5 V, V_{SS} = EV_{SS} = 0 V, reference voltage (+) = AV_{REFP}, reference voltage (-) = AV_{REFM} = 0 V)

Parameter	Symbol	C	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Notes 1, 2}	AINL	10-bit resolution AV _{REFP} = V _{DD}	$1.9~V \leq AV_{\text{REFP}} \leq 5.5~V$		1.2	±5.0	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V_{\text{DD}} \leq 5.5~V$	2.125		39	μs
			$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	3.1875		39	μs
			$1.9~V \leq V_{\text{DD}} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution AV _{REFP} = V _{DD}	$1.9~V \leq AV_{\text{REFP}} \leq 5.5~V$			±0.35	%FSR
Full-scale error ^{Notes 1, 2}	Efs	10-bit resolution AV _{REFP} = V _{DD}	$1.9~V \leq AV_{\text{REFP}} \leq 5.5~V$			±0.35	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution AV _{REFP} = V _{DD}	$1.9~V \leq AV_{\text{REFP}} \leq 5.5~V$			±3.5	LSB
Differential linearity error ^{Note 1}	DLE	10-bit resolution AV _{REFP} = V _{DD}	$1.9~V \leq AV_{\text{REFP}} \leq 5.5~V$			±2.0	LSB
Reference voltage (+)	AVREFP			1.9		Vdd	V
Analog input voltage	VAIN			0		AVREFP	V
	Vbgr		Select interanal reference voltage output 2.4 V \leq V_{DD} \leq 5.5 V, HS (high-speed main) mode		1.45	1.5	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

(2) When reference voltage (+) = V_{DD} (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = V_{SS} (ADREFM = 0), target pins: ANI0 to ANI5 and internal reference voltage

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.9 \text{ V} \le \text{V}_{\text{DD}} = \text{EV}_{\text{DD}} \le 5.5 \text{ V}, \text{ V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V}, \text{ reference voltage (+)} = \text{V}_{\text{DD}}, \text{ reference voltage (-)} = 10^{\circ} \text{ C}, 1.9 \text{ V} \le \text{V}_{\text{DD}} = 10^{\circ} \text{ C}, 1.9 \text{ V} \le \text{V}_{\text{DD}} = 10^{\circ} \text{ C}, 1.9 \text{ V} \le \text{V}_{\text{DD}} = 10^{\circ} \text{ C}, 1.9 \text{ V} \le \text{V}_{\text{DD}} = 10^{\circ} \text{ C}, 1.9 \text{ V} \le 10^{\circ} \text{ C}, 1.9 \text{ V} = 10^{\circ} \text{ C}, 1.9 \text{ C}, 1.9$
Vss)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Notes 1, 2}	AINL	10-bit resolution	$1.9~V \leq V_{\text{DD}} \leq 5.5~V$		1.2	±10.5	LSB
Conversion time	t _{CONV}	10-bit resolution	$3.6~V \leq V_{\text{DD}} \leq 5.5~V$	2.125		39	μs
			$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	3.1875		39	μs
			$1.9~V \leq V_{\text{DD}} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	$1.9~V \leq V_{\text{DD}} \leq 5.5~V$			±0.85	%FSR
Full-scale error ^{Notes 1, 2}	Ers	10-bit resolution	$1.9~V \leq V_{\text{DD}} \leq 5.5~V$			±0.85	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution	$1.9~V \leq V_{\text{DD}} \leq 5.5~V$			±4.0	LSB
Differential linearity error ^{Note 1}	DLE	10-bit resolution	$1.9~V \leq V_{\text{DD}} \leq 5.5~V$			±2.0	LSB
Analog input voltage	VAIN			0		VDD	V
	Vbgr	Select interanal reference voltage output, 2.4 V \leq V_{DD} \leq 5.5 V, HS (high-speed main) mode		1.38	1.45	1.5	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- Caution When using reference voltage (+) = VDD, taking into account the voltage drop due to the effect of the power switching circuit of the battery backup function and use the A/D conversion result. In addition, enter HALT mode during A/D conversion and set VDD port to input.
- (3) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pins: ANI0, ANI2 to ANI5

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{\text{DD}} = \text{EV}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V}, \text{ reference voltage (+)} = \text{V}_{\text{BGR}}, \text{ reference voltage (-)} = 0 \text{ or } 10^{\circ}\text{C}, 1$	
AVREFM = 0 V, HS (high-speed main) mode)	

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8			bit
Conversion time	t CONV	8-bit resolution	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	8-bit resolution	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			±2.0	LSB
Differential linearity error ^{Note 1}	DLE	8-bit resolution	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			±1.0	LSB
Reference voltage (+)	VBGR			1.38	1.45	1.5	V
Analog input voltage	VAIN			0		VBGR	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

2.6.2 24-bit $\Delta\Sigma$ A/D converter characteristics

(1) Reference voltage

$(T_{\text{A}} = -40 \text{ to } +85^{\circ}\text{C}, \text{ AV}_{\text{DD}} \leq \text{V}_{\text{DD}} + 0.3 \text{ V}, 2.4 \text{ V} \leq \text{AV}_{\text{DD}} \leq 5.5 \text{ V}, 2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{AV}_{\text{SS}} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Internal reference voltage	VAVRTO			0.8		V
Temperature coefficient for internal reference voltage	dREF/dt	0.47 μ F capacitor connected to AREGC, AVRT, and AVCM pins		30	90	ppm/°C

(2) Analog input

$(T_{\text{A}} = -40 \text{ to } +85^{\circ}\text{C}, \text{ AV}_{\text{DD}} \leq \text{V}_{\text{DD}} + 0.3 \text{ V}, 2.4 \text{ V} \leq \text{AV}_{\text{DD}} \leq 5.5 \text{ V}, 2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{AV}_{\text{SS}} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input voltage range	VAIN	x1 gain	-500		500	mV
(differential voltage)		x2 gain	-250		250	
		x4 gain	-125		125	
		x8 gain	-62.5		62.5	
		x16 gain	-31.25		31.25	
		x32 gain (for current channels)	-15.625		15.625	
Input gain	ainGAIN	x1 gain		1		dB
		x2 gain		2		
		x4 gain		4		
		x8 gain		8		
		x16 gain		16		
		x32 gain (for current channels)		32		
Input impedance	ainRIN	Differential voltage	150	360		kΩ
		Single-ended voltage	100	240		

(3) 4 kHz sampling mode

$(T_{\text{A}} = -40 \text{ to } +85^{\circ}\text{C}, \text{ AV}_{\text{DD}} \leq \text{V}_{\text{DD}} + 0.3 \text{ V}, 2.4 \text{ V} \leq \text{AV}_{\text{DD}} \leq 5.5 \text{ V}, 2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{AV}_{\text{SS}} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Operation clock	fdsad	fx oscillation clock, input external clock or high- speed on-chip oscillator clock is used		12		MHz
Sampling frequency	fs			3906.25		Hz
Oversampling frequency	fos			1.5		MHz
Output data rate	Tdata			256		μs
Data width	RES			24		bit
SNDR	SNDR	x1 gain High-speed system clock is selected as operating clock of 24-bit $\Delta\Sigma$ A/D converter (bit 0 of PCKC register (DSADCK) = 1)		80		dB
		x16 gain High-speed system clock is selected as operating clock of 24-bit $\Delta\Sigma$ A/D converter (bit 0 of PCKC register (DSADCK) = 1)	69	74		
		x32 gain High-speed system clock is selected as operating clock of 24-bit $\Delta\Sigma$ A/D converter (bit 0 of PCKC register (DSADCK) = 1)	65	69		
Passband (low pass band)	fChpf	At –3 dB (phase in high pass filter not adjusted) Bits 7 and 6 of DSADHPFCR register (DSADCOF1, DSADCOF0) = 00		0.607		Hz
		At –3 dB (phase in high pass filter not adjusted) Bits 7 and 6 of DSADHPFCR register (DSADCOF1, DSADCOF0) = 01		1.214		Hz
		At –3 dB (phase in high pass filter not adjusted) Bits 7 and 6 of DSADHPFCR register (DSADCOF1, DSADCOF0) = 10		2.429		Hz
		At –3 dB (phase in high pass filter not adjusted) Bits 7 and 6 of DSADHPFCR register (DSADCOF1, DSADCOF0) = 11		4.857		Hz
In-band ripple 1	rp1	45 Hz to 55 Hz @50 Hz 54 Hz to 66 Hz @60 Hz	-0.01		0.01	dB
In-band ripple 2	rp2	45 Hz to 275 Hz @50 Hz 54 Hz to 330 Hz @60 Hz	-0.1		0.1	
In-band ripple 3	rp3	45 Hz to 1100 Hz @50 Hz 54 Hz to 1320 Hz @60 Hz	-0.1		0.1	
Passband (high pass band)	fClpf	–3 dB		1672		Hz
Stopband (high pass band)	fatt	-80 dB		2545		Hz
Out-band attenuation	ATT1	fs	-80			dB
	ATT2	2 fs	-80			dB

(4) 2 kHz sampling mode

$(T_{\text{A}} = -40 \text{ to } +85^{\circ}\text{C}, \text{ AV}_{\text{DD}} \le \text{V}_{\text{DD}} + 0.3 \text{ V}, 2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 5.5 \text{ V}, 2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{AV}_{\text{SS}} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Operation clock	fdsad	fx oscillation clock, input external clock or high- speed on-chip oscillator clock is used		12		MHz
Sampling frequency	fs			1953.125		Hz
Oversampling frequency	fos			0.75		MHz
Output data rate	Tdata			512		μs
Data width	RES			24		bit
SNDR	SNDR	x1 gain High-speed system clock is selected as operating clock of 24-bit $\Delta\Sigma$ A/D converter (bit 0 of PCKC register (DSADCK) = 1)		80		dB
		x16 gain High-speed system clock is selected as operating clock of 24-bit $\Delta\Sigma$ A/D converter (bit 0 of PCKC register (DSADCK) = 1)	69	74		
		x32 gain High-speed system clock is selected as operating clock of 24-bit $\Delta\Sigma$ A/D converter (bit 0 of PCKC register (DSADCK) = 1)	65	69		
Passband (low pass band)	f Chpf	At –3 dB (phase in high pass filter not adjusted)		0.303		Hz
In-band ripple 1	rp1	45 Hz to 55 Hz @50 Hz 54 Hz to 66 Hz @60 Hz	-0.01		0.01	dB
In-band ripple 2	rp2	45 Hz to 275 Hz @50 Hz 54 Hz to 330 Hz @60 Hz	-0.1		0.1	
In-band ripple 3	rp3	45 Hz to 660 Hz @50 Hz 54 Hz to 550 Hz @60 Hz	-0.1		0.1	
Passband (high pass band)	f Clpf	–3 dB		836		Hz
Stopband (high pass band)	fatt	-80 dB		1273		Hz
Out-band attenuation	ATT1	fs	-80			dB
	ATT2	2 fs	-80			dB

2.6.3 Temperature sensor 2 characteristics

(T_A = -40 to +85°C, 2.4 V \leq V_{DD} = EV_{DD} \leq 5.5 V, V_{SS} = EV_{SS} = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor 2 output voltage	Vout			0.67		V
Temperature coefficient	Fvtmps2	Temperature sensor that depends on the temperature	-11.7	-10.7	-9.7	mV/°C
Operation stabilization wait time ^{Note}	t TMPON	Operable		15	50	μs
	tтмрснg	Switching mode		5	15	μs

Note Time to drop to output stable value \pm 5LSB (\pm 7 mV) or less.

2.6.4 Comparator

(TA = -40 to +85°C, 1.9 V \leq VDD = EVDD \leq 5.5 V, Vss = EVss = 0 V)

Parameter	Symbol	Cc	onditions	MIN.	TYP.	MAX.	Unit
Input voltage range	lvref			0		V _{DD} – 1.4	V
	lvcmp			-0.3		V _{DD} + 0.3	V
Output delay		V _{DD} = 3.0 V Input slew rate > 50 mV/µs	Comparator high-speed mode, standard mode			1.2	μs
			Comparator high-speed mode, window mode			2.0	μs
			Comparator low-speed mode, standard mode		3	5.0	μs
High-electric-potential reference voltage	VTW+	Comparator high-speed mod window mode	de,		0.76Vdd		V
Low-electric-potential reference voltage	VTW-	Comparator high-speed mod window mode	de,		0.24Vdd		V
Operation stabilization wait time	tсмр			100			μs
Reference output voltage	VCMPREF			1.00	1.45	1.50	V

2.6.5 POR circuit characteristics

(T_A = -40 to +85°C, Vss = EVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	When power supply rises ^{Note 1}	1.47	1.51	1.55	V
	VPDR	When power supply falls ^{Note 2}	1.46	1.50	1.54	V

Notes 1. Be sure to maintain the reset state until the power supply voltage rises over the minimum V_{DD} value in the operating voltage range specified in **2.4 AC Characteristics**, by using the voltage detector or external reset pin.

2. If the power supply voltage falls while the voltage detector is off, be sure to either shift to STOP mode or execute a reset by using the voltage detector or external reset pin before the power supply voltage falls below the minimum operating voltage specified in 2.4 AC Characteristics.

2.6.6 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

(TA = -40 to +85°C, VPDR \leq VDD = EVDD \leq 5.5 V, Vss = EVss = 0 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVD0	When power supply rises	3.98	4.06	4.24	V
voltage			When power supply falls	3.90	3.98	4.16	V
		VLVD1	When power supply rises	3.68	3.75	3.92	V
			When power supply falls	3.60	3.67	3.84	V
		VLVD2	When power supply rises	3.07	3.13	3.29	V
			When power supply falls	3.00	3.06	3.22	V
		VLVD3	When power supply rises	2.96	3.02	3.18	V
			When power supply falls	2.90	2.96	3.12	V
		VLVD4	When power supply rises	2.86	2.92	3.07	V
			When power supply falls	2.80	2.86	3.01	V
		VLVD5	When power supply rises	2.76	2.81	2.97	V
			When power supply falls	2.70	2.75	2.91	V
		VLVD6	When power supply rises	2.66	2.71	2.86	V
			When power supply falls	2.60	2.65	2.80	V
		VLVD7	When power supply rises	2.56	2.61	2.76	V
			When power supply falls	2.50	2.55	2.70	V
		VLVD8	When power supply rises	2.45	2.50	2.65	V
			When power supply falls	2.40	2.45	2.60	V
		VLVD9	When power supply rises	2.05	2.09	2.23	V
			When power supply falls	2.00	2.04	2.18	V
		VLVD10	When power supply rises	1.94	1.98	2.12	V
			When power supply falls	1.90	1.94	2.08	V
Minimum p	ulse width	tLw		300			μs
Detection d	elay time					300	μs

LVD Detection Voltage of Interrupt & Reset Mode

(Т	h = -40 to +85°C		= EVnn < 5 5 V	, Vss = EVss = 0 V)
. (1	A = -40 10 + 65 C	, vpuk ≤ vuu ·		, vss – Evss – u vj

Parameter	Symbol	Cond	ditions	MIN.	TYP.	MAX.	Unit
	VLVD8	VPOC2, VPOC1, VPOC0 =	0, 1, 0, falling reset voltage	2.40	2.45	2.60	V
	VLVD7	LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.56	2.61	2.76	V
			Falling interrupt voltage	2.50	2.55	2.70	V
	VLVD6	LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.66	2.71	2.86	V
			Falling interrupt voltage	2.60	2.65	2.80	V
	VLVD1	LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.68	3.75	3.92	V
			Falling interrupt voltage	3.60	3.67	3.84	V
	VLVD5	VPOC2, VPOC1, VPOC0 =	0, 1, 1, falling reset voltage	2.70	2.75	2.91	V
	VLVD4	LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.86	2.92	3.07	V
			Falling interrupt voltage	2.80	2.86	3.01	V
	VLVD3	LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.96	3.02	3.18	V
			Falling interrupt voltage	2.90	2.96	3.12	V
	VLVD0	LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.98	4.06	4.24	V
			Falling interrupt voltage	3.90	3.98	4.16	V

2.6.7 Power supply voltage rising slope characteristics

$(T_A = -40 \text{ to } +85^{\circ}C, V_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDDR				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until VDD reaches the operating voltage range shown in 2.4 AC Characteristics.

2.7 Battery Backup Function

(T_A = -40 to +85°C, Vss = EVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power swiching detection voltage	VDETBAT1	$V_{\text{DD}} \rightarrow VBAT$	1.92	2.00	2.08	V
	VDETBAT2	$VBAT\toV_{DD}$	2.02	2.10	2.18	V
V _{DD} fall slope	SVDDF		-0.06			V/ms
Response time of power switch detector	tcmp				300	μs

2.8 LCD Characteristics

2.8.1 Resistance division method

(1) Static display mode

$(T_A = -40 \text{ to } +85^{\circ}C, V_{L4} \text{ (MIN.)} \le V_{DD} = EV_{DD} \le 5.5 \text{ V}, V_{SS} = EV_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.0		Vdd	V

(2) 1/2 bias method, 1/4 bias method

(TA = -40 to +85°C, VL4 (MIN.) \leq VDD = EVDD \leq 5.5 V, Vss = EVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.7		Vdd	V

(3) 1/3 bias method

$(T_A = -40 \text{ to } +85^{\circ}C, V_{L4} \text{ (MIN.)} \le V_{DD} = EV_{DD} \le 5.5 \text{ V}, V_{SS} = EV_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.5		Vdd	V

2.8.2 Internal voltage boosting method

(1) 1/3 bias method

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.9 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1	C1 to C4 ^{Note 1}	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 µF ^{Note 2}	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
			VLCD = 0BH	1.25	1.35	1.43	V
			VLCD = 0CH	1.30	1.40	1.48	V
			VLCD = 0DH	1.35	1.45	1.53	V
			VLCD = 0EH	1.40	1.50	1.58	V
			VLCD = 0FH	1.45	1.55	1.63	V
			VLCD = 10H	1.50	1.60	1.68	V
			VLCD = 11H	1.55	1.65	1.73	V
			VLCD = 12H	1.60	1.70	1.78	V
			VLCD = 13H	1.65	1.75	1.83	V
Doubler output voltage	VL2	C1 to C4 ^{Note 1} =	0.47 µF	2 VL1-0.10	2 VL1	2 VL1	V
Tripler output voltage	VL4	C1 to C4 ^{Note 1} = 0.47 µF		3 VL1-0.15	3 VL1	3 VL1	V
Reference voltage setup time ^{Note 2}	tvwait1			5			ms
Voltage boost wait time ^{Note 3}	tvwait2	C1 to C4 ^{Note 1} =	0.47 µF	500			ms

Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between VL1 and GND

C3: A capacitor connected between V_{L2} and GND

C4: A capacitor connected between V_{L4} and GND

C1 = C2 = C3 = C4 = 0.47 μ F \pm 30 %

- 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

(2) 1/4 bias method

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.9 \text{ V} \le \text{V}_{\text{DD}} = \text{EV}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$

Parameter	Symbol	Con	ditions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1	C1 to C5 ^{Note 1}	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 µF ^{Note 2}	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
		V	VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
Doubler output voltage	VL2	C1 to C5 ^{Note 1} =	0.47 µF	2 VL1-0.08	2 VL1	2 VL1	V
Tripler output voltage	VL3	C1 to C5 ^{Note 1} =	0.47 µF	3 VL1-0.12	3 VL1	3 VL1	V
Quadruply output voltage	VL4	C1 to C5 ^{Note 1} =	0.47 µF	4 VL1-0.16	4 VL1	4 V _{L1}	V
Reference voltage setup time ^{Note 2}	tvwait1			5			ms
Voltage boost wait time ^{Note 3}	tvwait2	C1 to C5 ^{Note 1} =	0.47 µF	500			ms

Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between VL1 and GND

C3: A capacitor connected between VL2 and GND

C4: A capacitor connected between V_{L3} and GND

C5: A capacitor connected between $V_{\rm L4}$ and GND

C1 = C2 = C3 = C4 = C5 = 0.47 μ F \pm 30 %

- 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

2.8.3 Capacitor split method

(1) 1/3 bias method

$(T_A = -40 \text{ to } +85^{\circ}C, 2.2 \text{ V} \le V_{DD} = EV_{DD} \le 5.5 \text{ V}, \text{ Vss} = EV_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
VL4 voltage	VL4	C1 to C4 = 0.47 µF ^{Note 2}		Vdd		V
VL2 voltage	VL2	C1 to C4 = 0.47 μ F ^{Note 2}	2/3 VL4-	2/3 VL4	2/3 VL4 +	V
			0.1		0.1	
V _{L1} voltage	VL1	C1 to C4 = 0.47 µF ^{Note 2}	1/3 VL4-	1/3 VL4	1/3 V _{L4} +	V
			0.1		0.1	
Capacitor split wait time ^{Note 1}	t vwait		100			ms

Notes 1. This is the wait time from when voltage bucking is started (VLCON = 1) until display is enabled (LCDON = 1).

2. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between V_{L1} and GND

C3: A capacitor connected between V_{L2} and GND

C4: A capacitor connected between V_{L4} and GND

C1 = C2 = C3 = C4 = 0.47 µF±30 %

2.9 RAM Data Retention Characteristics

$(T_A = -40 \text{ to } +85^{\circ}C, V_{SS} = EV_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.46 ^{Note}		5.5	V

Note The value depends on the POR detection voltage. When the voltage drops, the RAM data is retained before a POR reset is effected, but RAM data is not retained when a POR reset is effected.

2.10 Flash Memory Programming Characteristics

$(T_A = -40 \text{ to } +85^{\circ}C, 1.9 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
System clock frequency	fclĸ	$1.9~V \leq V_{\text{DD}} \leq 5.5~V$	1		24	MHz
Number of code flash rewritesNotes 1, 2, 3	Cerwr	Retained for 20 years	1,000			Times
		TA = 85°C				

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

- 2. When using flash memory programmer and Renesas Electronics self programming library
- 3. This characteristic indicates the flash memory characteristic and based on Renesas Electronics reliability test.

2.11 Dedicated Flash Memory Programmer Communication (UART)

$(T_A = -40 \text{ to } +85^{\circ}C, 1.9 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

		, ,				
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

2.12 Timing Specs for Switching Flash Memory Programming Modes

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset must be released before the external reset is released.			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	ts∪	POR and LVD reset must be released before the external reset is released.	10			μs
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tно	POR and LVD reset must be released before the external reset is released.	1			ms

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.9 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.
- **Remark** tsuinit: The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the resets end.
 - $t_{su:}$ Time to release the external reset after the TOOL0 pin is set to the low level.
 - the: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

3. PACKAGE DRAWINGS

<R> 3.1 80-pin Products

R5F10MMEDFB, R5F10MMGDFB

© 2017 Renesas Electronics Corporation. All rights reserved.

RL78/I1B

JEITA Package code	RENESAS code	MASS(TYP.)[g]
P-LFQFP80-12x12-0.50	PLQP0080KJ-A	0.49

Reference	Dimensi	ion in Mill	limeters
Symbol	Min.	Nom.	Max.
А	—	—	1.60
A ₁	0.05	—	0.15
A ₂	1.35	1.40	1.45
D	_	14.00	
D ₁	—	12.00	_
E	_	14.00	
Eı	—	12.00	-
Ν	—	80	_
е	—	0.50	_
b	0.17	0.22	0.27
с	0.09	—	0.20
θ	0°	3.5°	7 °
L	0.45	0.60	0.75
Ц	—	1.00	_
aaa	—	—	0.20
bbb	_	_	0.20
ссс	_	_	0.08
ddd	_	_	0.08

<r></r>	
---------	--

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LFQFP80-12x12-0.50	PLQP0080KE-A	P80GK-50-8EU	0.53

NOTE

Each lead centerline is located within 0.08 mm of its true position at maximum material condition.

y

ZD

ZE

0.08

1.25

1.25

3.2 100-pin Products

R5F10MPEDFB, R5F10MPGDFB

0.45

Lp L1 0.6

1.0

0.75

RL78/I1B

JEITA Package code	RENESAS code	MASS(TYP.)[g]
P-LFQFP100-14x14-0.50	PLQP0100KP-A	0.67

Reference Symbol	Dimension in Millimeters			
	Min.	Nom.	Max.	
А	-	_	1.60	
A ₁	0.05	-	0.15	
A ₂	1.35	1.40	1.45	
D	-	16.00	-	
D ₁	-	14.00	-	
E	-	16.00	-	
Eı	-	14.00	-	
N	-	100	-	
е	-	0.50	-	
b	0.17	0.22	0.27	
С	0.09	-	0.20	
θ	0°	3.5°	7°	
L	0.45	0.60	0.75	
Ц	-	1.00	-	
aaa	-	-	0.20	
bbb	-	_	0.20	
ссс	-	-	0.08	
ddd	-	-	0.08	

Revision History

RL78/I1B Datasheet

		Description		
Rev.	Date	Page	Summary	
0.10	Dec 27, 2012	-	First Edition issued	
	Sep 17, 2013	1	Modification of 1.1 Features	
		2, 3	Modification of 1.2 Ordering Information	
		11-71	Modification of 2. ELECTRICAL SPECIFICATION	
2.00	2.00 Mar 26, 2014	1	Modification of 1.1 Features	
		3	Modification of 1.2 List of Part Numbers	
		4, 5	Modification of 1.3 Pin Configuration (Top View)	
		13, 15,	Modification of 2. ELECTRICAL SPECIFICATION	
		16, 21,		
		26 to 28,		
		30, 32,		
		34, 58, 59, 61,		
		63,		
		69 to 71		
		73	Modification of 3.1 80-pin products	
2.10 Apr 25,	Apr 25, 2016	4	Modification of Top View in 1.3.1 80-pin products	
		5	Modification of Top View in 1.3.2 100-pin products	
		9	Modification of Main system clock in1.6 Outline of Functions	
		21	Modification of on-chip pull-up resistance in 2.3.1 Pin characteristics	
		22	Modification of supply current in 2.3.2 Supply current characteristics	
		62	Modification of sampling frequency in 2.6.2 24-bit $\Delta\Sigma$ A/D converter	
			characteristics	
		71	Modification of title in 2.9 RAM Data Retention Characteristics	
		71	Modification of note in 2.9 RAM Data Retention Characteristics	
		71	Modification of figure in 2.9 RAM Data Retention Characteristics	
		71	Modification of table in 2.10 Flash Memory Programming Characteristics	
2.30	Jun, 28 2024	ALL	The module name for 3-wire serial I/O and 3-wire serial were changed to simplified SPI.	
		ALL	The module name for CSI was changed to simplified SPI	
		ALL	"Wait" was modified to "clock stretch"	
		1	Addition of Note 1 in 1.1 Features	
		3	Modification of Figure 1-1. Part Number, Memory Size, and Package of RL78/I1B	
		3	Modification of Table 1-1. List of Ordering Part Numbers	
		23	Modification of Notes 1 and 4 in 2.3.2 Supply current characteristics	
		24	Modification of Note 7 to Note 6 in 2.3.2 Supply current characteristics	
		24	Modification of Note 8 to Note 7 in 2.3.2 Supply current characteristics	
		24	Deletion of Note 6 in 2.3.2 Supply current characteristics	
		25	Modification of Notes 1 and 5 and delete Notes 6 in 2.3.2 Supply current characteristics	
		73	Modification of package drawing in 3.1 80-pin Package (PLQP0080KB-B)	
		74	Addition of package drawing in 3.1 80-pin Package (PLQP0080KJ-A)	
		75	Addition of PLQP0080KE-A in 3.1 80-pin Products	
		76	Modification of package drawing in 3.2 100-pin Package (PLQP0100KB-B)	
		77	Addition of package drawing in 3.2 100-pin Package (PLQP0100KP-A)	

All trademarks and registered trademarks are the property of their respective owners.

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power is supplied until the power reaches the level at which reseting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a systemevaluation test for the given product.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
- 5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 6. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
- 8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.