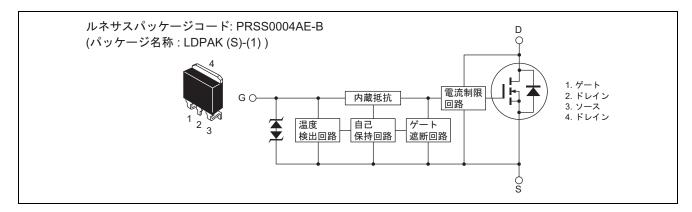


RJF0410JPE

40V - 40A - N チャネル サーマル FET 電力スイッチング R07DS1237JJ0300 Rev.3.00 2015.10.29


概要

本製品はゲートの印加電圧によりドレイン・ソース間の ON-OFF 制御ができるパワースイッチ用 MOS FET です。構造はパワーMOS FET のゲート部に過熱遮断回路を内蔵したものであり、異常な周囲温度上昇、過電力、過電流による発熱に対してゲート遮断動作によりパワーMOS FET を保護する働きを持っています。

特長

- ロジックレベル駆動型パワーMOS FET です。
- 過熱遮断回路を内蔵しており、高熱状態のパワーMOS FET 保護が可能。
- 負荷短絡に対する耐量が向上しています。
- 過熱遮断方式はラッチ型です。過熱遮断回路動作後は、ゲート電圧 0 バイアスで復帰します。
- 電流制限回路を内蔵しております。
- 電源電圧は 12 V を適用しています。
- AEC-O101 準拠

外観図

絶対最大定格

 $(Ta = 25^{\circ}C)$

			(1 u 2 5 e)
項目	記号	定格値	単位
ドレイン・ソース電圧	V _{DSS}	40	V
ゲート・ソース電圧	V _{GSS}	16	V
ゲート・ソース電圧	V _{GSS}	-2.5	V
ドレイン電流	I _D ^{注3}	40	А
逆ドレイン電流	I _{DR}	40	А
アバランシェ電流	I _{AP} 注2	12	А
アバランシェエネルギー	E _{AR} 注2	960	mJ
許容チャネル損失	Pch ^{注 1}	100	W
チャネル温度	Tch	150	°C
保存温度	Tstg	<i>−</i> 55 ~ +150	°C

- 【注】 1. Tc = 25°C における許容値
 - 2. Tch = 25°C, Rg ≥ 50 Ωにおける許容値
 - 3. 電流制限下限値にて規定します。

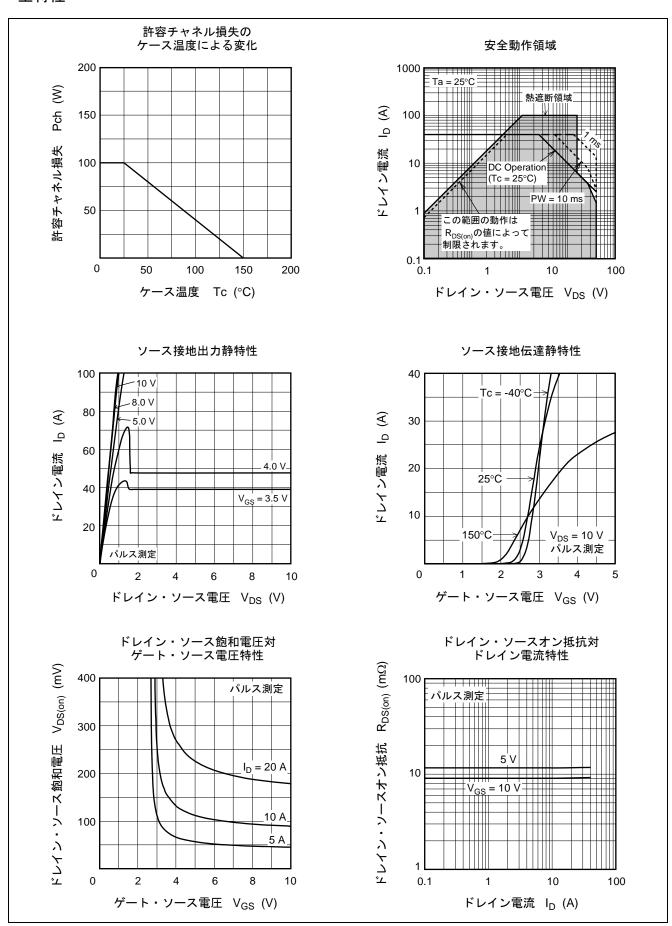
代表動作特性

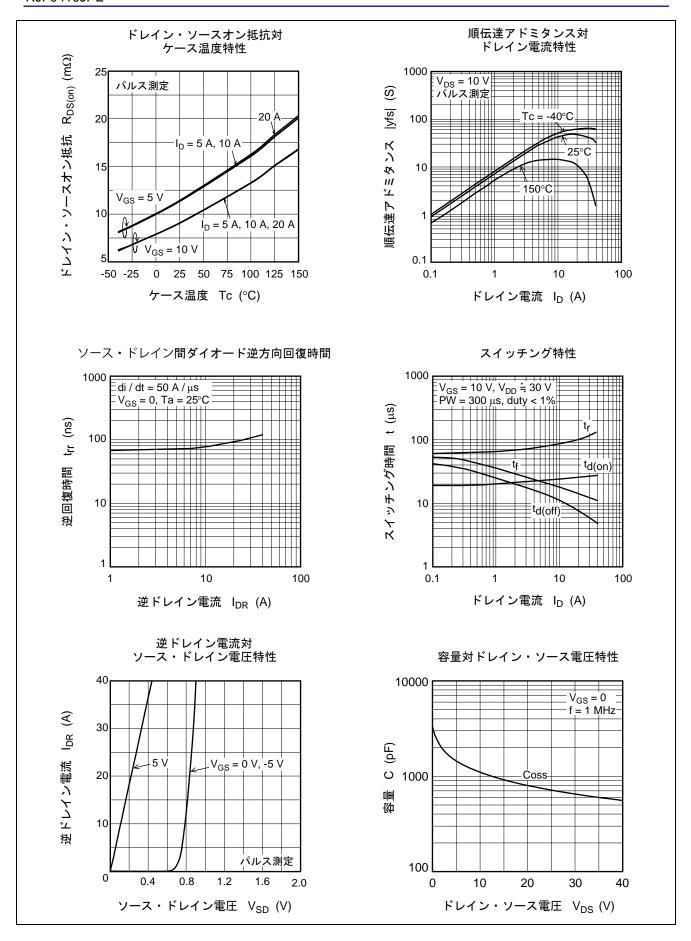
 $(Ta = 25^{\circ}C)$

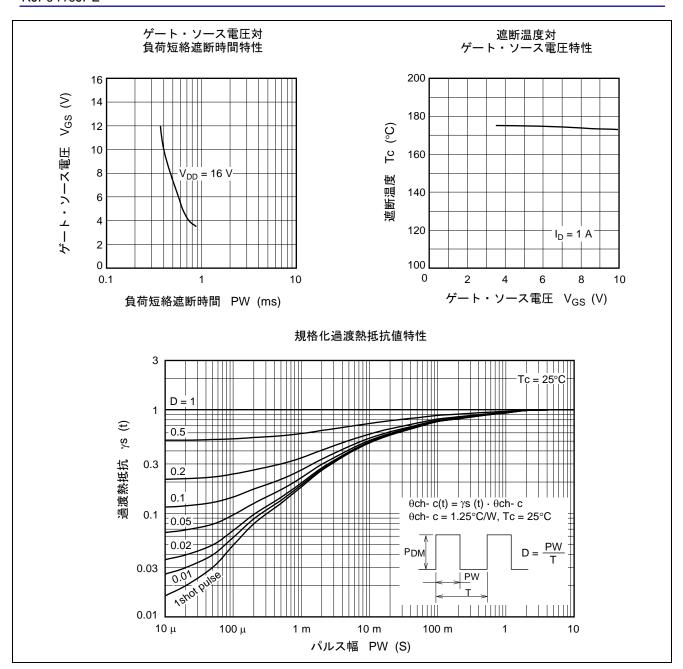
項目	記 号	Min	Тур	Max	単位	測定条件
入力電圧	VIH	3.5			V	
入力電圧	V_{IL}	1	1	1.2	V	
入力電流 (ゲート非遮断時)	I _{IH1}	1	1	100	μΑ	Vi = 8 V, V _{DS} = 0
入力電流 (ゲート非遮断時)	I _{IH2}	1	1	50	μΑ	$Vi = 3.5 V, V_{DS} = 0$
入力電流 (ゲート非遮断時)	I _{IL}	1	1	1	μΑ	Vi = 1.2 V, V _{DS} = 0
入力電流 (ゲート遮断動作時)	I _{IH(sd)1}	1	0.8		mA	$Vi = 8 V, V_{DS} = 0$
入力電流 (ゲート遮断動作時)	I _{IH(sd)2}	1	0.35		mA	$Vi = 3.5 V, V_{DS} = 0$
遮断温度	Tsd	1	175		°C	チャネル温度
ゲート動作電圧	Vop	3.5		12	V	
ドレイン電流 (電流制限値)	$I_{D\ limt}$	40			Α	$V_{GS} = 5 \text{ V}, V_{DS} = 10 \text{ V}^{\frac{1}{2}4}$

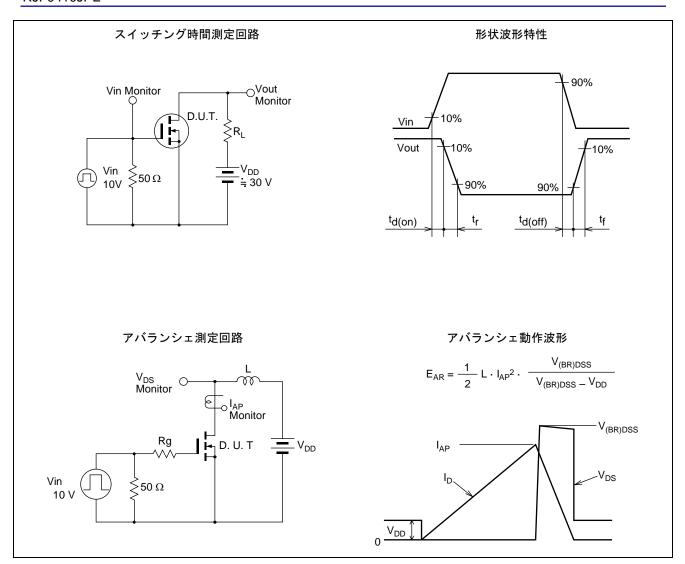
【注】 4. パルス測定

電気的特性

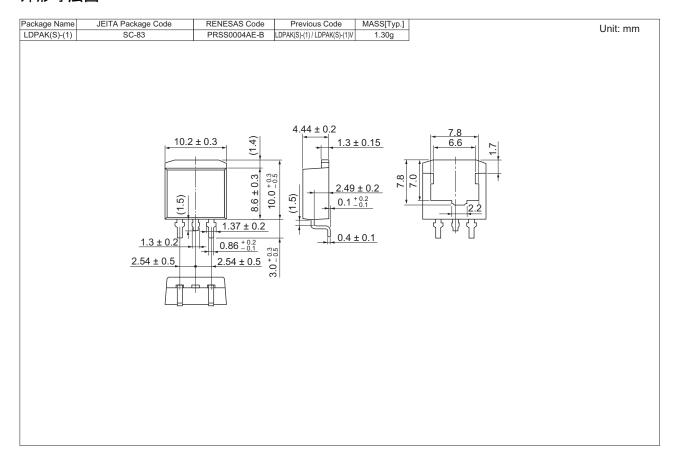

 $(Ta = 25^{\circ}C)$


						(1a - 25 C)
項目	記号	Min	Тур	Max	単位	測定条件
ドレイン電流	I_{D1}	_	_	74	Α	$V_{GS} = 3.5 \text{ V}, V_{DS} = 10 \text{ V}^{\pm 5}$
	I_{D2}	_	_	10	mA	$V_{GS} = 1.2 \text{ V}, V_{DS} = 10 \text{ V}$
	I _{D3}	40	_	_	Α	V _{GS} = 5 V, V _{DS} = 10 V ^{注 5}
ドレイン・ソース破壊電圧	V _{(BR)DSS}	40	_	_	V	$I_D = 10 \text{ mA}, V_{GS} = 0$
ゲート・ソース破壊電圧	$V_{(BR)GSS}$	16	_	_	V	$I_G = 800 \mu A, V_{DS} = 0$
	$V_{(BR)GSS}$	-2.5	_	_	V	$I_G = -100 \mu A, V_{DS} = 0$
ゲート遮断電流	I _{GSS1}	_	_	100	μА	$V_{GS} = 8 \text{ V}, V_{DS} = 0$
	I _{GSS2}	_	_	50	μА	$V_{GS} = 3.5 \text{ V}, V_{DS} = 0$
	I _{GSS3}	_	_	1	μА	$V_{GS} = 1.2 \text{ V}, V_{DS} = 0$
	I _{GSS4}	_	_	-100	μА	$V_{GS} = -2.4 \text{ V}, V_{DS} = 0$
入力電流 (ゲート遮断動作時)	I _{GS(OP)1}	_	0.8	_	mA	$V_{GS} = 8 \text{ V}, V_{DS} = 0$
	I _{GS(OP)2}	_	0.35	_	mA	$V_{GS} = 3.5 \text{ V}, V_{DS} = 0$
ドレイン遮断電流	I _{DSS}	_	_	10	μА	$V_{DS} = 32 \text{ V}, V_{GS} = 0, Tc = 110^{\circ}\text{C}$
ゲート・ソース遮断電圧	$V_{GS(off)}$	1.1	_	2.1	V	$V_{DS} = 10 \text{ V}, I_{D} = 1 \text{ mA}$
順伝達アドミタンス	y _{fs}	20	46	_	S	$I_D = 20 \text{ A}, V_{DS} = 10 \text{ V}^{\frac{1}{2}5}$
ドレイン・ソースオン抵抗	R _{DS(on)}	1	11.3	15	mΩ	$I_D = 20 \text{ A}, V_{GS} = 5 \text{ V}^{\pm 5}$
	R _{DS(on)}	_	9	13	mΩ	$I_D = 20 \text{ A}, V_{GS} = 10 \text{ V}^{\pm 5}$
出力容量	Coss	_	1098	_	pF	$V_{DS} = 10 \text{ V}, V_{GS} = 0, f = 1 \text{MHz}$
ターン・オン遅延時間	t _{d(on)}		24.7	_	μS	V_{GS} = 10 V, I_{D} = 20 A, R_{L} = 1.5 Ω
上昇時間	t _r	_	99.3	_	μS	
ターン・オフ遅延時間	t _{d(off)}	_	7.44	_	μS	
下降時間	t _f		13.3	_	μS	
ダイオード順電圧	V_{DF}		0.9	_	V	I _F = 40 A, V _{GS} = 0 ^{注 5}
逆回復時間	t _{rr}		122	_	ns	I _F = 40 A, V _{GS} = 0
						di _F /dt = 50 A/μs
負荷短絡遮断動作時間 ^{注6}	t _{os1}	_	0.63	_	ms	V _{GS} = 5 V, V _{DD} = 16 V


[【]注】 5. パルス測定


6. 過負荷によるパワーMOS FET の温度上昇による動作時間のシフト分も含む。

主特性



外形寸法図

発注情報

発注型名	梱包数量	梱包形態
RJF0410JPE-00-J3	1000 個	テーピング

【注】 型名中の"-"は"#"と置き換えて表示されることがあります。

ご注意書き

- 1. 本資料に記載された回路、ソフトウェアおよびこれらに関連する情報は、半導体製品の動作例、応用例を説明するものです。お客様の機器・システムの設計におい て、回路、ソフトウェアおよびこれらに関連する情報を使用する場合には、お客様の責任において行ってください。これらの使用に起因して、お客様または第三 者に生じた損害に関し、当社は、一切その責任を負いません。
- 2. 本資料に記載されている情報は、正確を期すため慎重に作成したものですが、誤りがないことを保証するものではありません。万一、本資料に記載されている情報 の誤りに起因する損害がお客様に生じた場合においても、当社は、一切その責任を負いません。
- 3. 本資料に記載された製品デ・タ、図、表、プログラム、アルゴリズム、応用回路例等の情報の使用に起因して発生した第三者の特許権、著作権その他の知的財産権 に対する侵害に関し、当社は、何らの責任を負うものではありません。当社は、本資料に基づき当社または第三者の特許権、著作権その他の知的財産権を何ら許 諾するものではありません。
- 4. 当社製品を改造、改変、複製等しないでください。かかる改造、改変、複製等により生じた損害に関し、当社は、一切その責任を負いません。
- 5. 当社は、当社製品の品質水準を「標準水準」および「高品質水準」に分類しており、

各品質水準は、以下に示す用途に製品が使用されることを意図しております。

標準水準: コンピュータ、OA機器、通信機器、計測機器、AV機器、

家電、工作機械、パーソナル機器、産業用ロボット等

高品質水準:輸送機器(自動車、電車、船舶等)、交通用信号機器、

防災・防犯装置、各種安全装置等

当社製品は、直接生命・身体に危害を及ぼす可能性のある機器・システム (生命維持装置、人体に埋め込み使用するもの等) 、もしくは多大な物的損害を発生さ せるおそれのある機器・システム(原子力制御システム、軍事機器等)に使用されることを意図しておらず、使用することはできません。 たとえ、意図しない用 途に当社製品を使用したことによりお客様または第三者に損害が生じても、当社は一切その責任を負いません。なお、ご不明点がある場合は、当社営業にお問い 合わせください。

- 6. 当社製品をご使用の際は、当社が指定する最大定格、動作電源電圧範囲、放熱特性、実装条件その他の保証範囲内でご使用ください。当社保証範囲を超えて当社製 品をご使用された場合の故障および事故につきましては、当社は、一切その責任を負いません。
- 7. 当社は、当社製品の品質および信頼性の向上に努めていますが、半導体製品はある確率で故障が発生したり、使用条件によっては誤動作したりする場合がありま す。また、当社製品は耐放射線設計については行っておりません。当社製品の故障または誤動作が生じた場合も、人身事故、火災事故、社会的損害等を生じさせ ないよう、お客様の責任において、冗長設計、延焼対策設計、誤動作防止設計等の安全設計およびエージング処理等、お客様の機器・システムとしての出荷保証 を行ってください。特に、マイコンソフトウェアは、単独での検証は困難なため、お客様の機器・システムとしての安全検証をお客様の責任で行ってください。
- 8. 当社製品の環境適合性等の詳細につきましては、製品個別に必ず当社営業窓口までお問合せください。ご使用に際しては、特定の物質の含有・使用を規制する RoHS指令等、適用される環境関連法令を十分調査のうえ、かかる法令に適合するようご使用ください。お客様がかかる法令を遵守しないことにより生じた損害に 関して、当社は、一切その責任を負いません。
- 9. 本資料に記載されている当社製品および技術を国内外の法令および規則により製造・使用・販売を禁止されている機器・システムに使用することはできません。ま た、当社製品および技術を大量破壊兵器の開発等の目的、軍事利用の目的その他軍事用途に使用しないでください。当社製品または技術を輸出する場合は、「外 国為替及び外国貿易法」その他輸出関連法令を遵守し、かかる法令の定めるところにより必要な手続を行ってください。
- 10. お客様の転売等により、本ご注意書き記載の諸条件に抵触して当社製品が使用され、その使用から損害が生じた場合、当社は何らの責任も負わず、お客様にてご負 担して頂きますのでご了承ください。
- 11. 本資料の全部または一部を当社の文書による事前の承諾を得ることなく転載または複製することを禁じます。
- 注1. 本資料において使用されている「当社」とは、ルネサスエレクトロニクス株式会社およびルネサスエレクトロニクス株式会社がその総株主の議決権の過半数 を直接または間接に保有する会社をいいます。
- 注2. 本資料において使用されている「当社製品」とは、注1において定義された当社の開発、製造製品をいいます。

ルネサスエレクトロニクス株式会社

営業お問合せ窓口

http://www.renesas.com

営業お問合せ窓口の住所は変更になることがあります。最新情報につきましては、弊社ホームページをご覧ください。

ルネサス エレクトロニクス株式会社 〒135-0061 東京都江東区豊洲3-2-24(豊洲フォレシア)

技術的なお問合せおよび資料のご請求は下記へどうぞ。 総合お問合せ窓口: http://japan.renesas.com/contact/