

RA8M2 グループ

ルネサスマイクロコントローラ

R01DS0438JJ0120 Rev.1.20 Aug 27, 2025

高性能な 1 GHz Arm® Cortex®-M85 コア、250 MHz Arm® Cortex®-M33 コア、最大 1 MB のコード MRAM、および ECC を備 えた 2 MB の SRAM。高集積度のレイヤ 3 イーサネットスイッチモジュール、USB 2.0 ハイスピード、CANFD、SDHI、I3C、 オクタ SPI、オンザフライ復号、高度なアナログ機能。Arm® TrustZone と協調して動作する暗号化アクセラレータ、鍵管理 サポート、改ざん検出、および電源分析耐性を備え、セキュア要素機能を有機的に結ぶ統合ルネサスセキュリティ IP。

特長

- Arm® Cortex®-M85 コア
 - Armv8.1-M アーキテクチャプロファイル
 - Armv8-M セキュリティ拡張
 - 最高動作周波数:1 GHz

 - メモリプロテクションユニット (Arm MPU)− 保護メモリシステムアーキテクチャ (PMSAv8)
 - セキュア MPU (MPU S): 8 領域
 - 非セキュア MPÙ (MPU NS): 8 領域
 - SysTick タイマ
 - 2 つの SysTick タイマを搭載: セキュアおよび非セキュアイ
 - CPUCLK0 または MOCO 駆動 (8 分周)
 - CoreSight[™] ETM-M85

■ Arm® Cortex®-M33 コア

- Armv8-M アーキテクチャプロファイル Armv8-M セキュリティ拡張

- Affilyo-M とイュリティが無
 最高動作周波数: 250 MHz
 メモリプロテクションユニット (Arm MPU)
 保護メモリシステムアーキテクチャ (PMSAv8)
 セキュア MPU (MPU_S): 8 領域
 非セキュア MPU (MPU_NS): 8 領域
- SysTick タイマ
- 2つの SysTick タイマを搭載: セキュアおよび非セキュアインスタンス
- CPUCLK1 または MOCO 駆動 (8 分周)
- CoreSightTM ETM-M33

■メモリ

- 最大 1 MB の MRAM
- 2 MB の SRAM(256 KB の CM85 TCM および 128 KB の CM33 TCM を含む)

 • 最大 8 MB のフラッシュメモリ (SiP 製品)

■ 接続性

- シリアルコミュニケーションインタフェース (SCI)×10、最大 60 Mbps
- I²C バスインタフェース (IIC) × 3
- I³C バスインタフェース (I3C)
- シリアルペリフェラルインタフェース (SPI)×2、最大
- 166 Mbps オクタシリアルペリフェラルインタフェース (OSPI) × 2、最大 333 MB/s
 • USB 2.0 フルスピードモジュール (USBFS)
- USB 2.0 ハイスピードモジュール (USBHS)
- USB 2.0 ハイスピートモシュール (USBHS)
 CAN フレキシブルデータレート (CANFD)×2
 レイヤ3 イーサネットスイッチモジュール (ESWM)
 SD/MMC ホストインタフェース (SDHI)×2
 拡張シリアルサウンドインタフェース (SSIE)×2
 パルス密度変調インタフェース (PDMIF)

■ アナログ

- 16 ビット A/D コンバータ (ADC16H) × 2、最大 23 チャネル
 12 ビット D/A コンバータ (DAC12) × 2
 高速アナログコンパレータ (ACMPHS) × 4

- 温度センサ (TSN)

■タイマ

- 高分解能の 32 ビット汎用 PWM タイマ (GPT32)×4 300 MHz での分解能 52 ps
 32 ビット汎用 PWM タイマ (GPT32)×10
 低消費電力非同期汎用タイマ (AGT)×2
 超低消費電力タイマ (ULPT)×2

■ セキュリティおよび暗号化

- ルネサスセキュリティ IP (RSIP-E50D)
- Arm[®] TrustZone[®]

- プリビレッジ制御デバイスライフサイクルの管理セキュアブート
- OTP 内の不変ファーストステージブートローダー
- オンザフライ復号 (DOTF)
- 端子機能
 - 最大3つの耐タンパー端子
 - セキュア端子マルチプレキシング
- HUK のゼロ化

■ システムおよび電源管理

- 低消費電力モード
- バッテリバックアップ機能 (VBATT)
- リアルタイムクロック (RTC) (カレンダー、VBATT 対応)
 イベントリンクコントローラ (ELC)
 データトランスファコントローラ (DTC) × 2

- DMA コントローラ (DMAC) × 16
- パワーオンリセットプログラマブル電圧検出機能 (PVD) の設定可能
- ・ ウォッチドッグタイマ (WDT) × 2・ 独立ウォッチドッグタイマ (IWDT)

■ ヒューマンマシンインタフェース (HMI)

● キャプチャエンジンユニット(CEU)

■ マルチクロックソース

- メインクロック発振器 (MOSC) (8~48 MHz)
- ・ メインクロック発振器 (MOSC) (6 46 MHz)
 ・ サブクロック発振器 (SOSC) (32.768 kHz)
 ・ 高速オンチップオシレータ (HOCO) (16/18/20/32/48 MHz)
 ・ ජ・ボインチップオシレータ (MOCO) (8 MHz)
 ・ ජ・ボインチップオシレータ (LOCO) (32.768 kHz)

- HOCO/MOCO/LOCO に対するクロックトリム機能
- PLL1/PLL2
- クロックアウトのサポート

■ 汎用入出力ポート

● 5 V トレランス、オープンドレイン、入力プルアップ、切り替え可能駆動能力

■ 動作電圧

- 標準製品
 - VCC/VCC2: 1.62∼3.63 V
- SiP 製品
- VCC: 1.62~3.63 V
- VCC2: 1.70~2.00 V

■ 動作ジャンクション温度およびパッケージ

- Tj = $0 \, ^{\circ}\text{C} \sim +95 \, ^{\circ}\text{C}$
 - 1J-V と BGA (12 mm×12 mm、0.65 mm ピッチ) 289 ピン BGA (11 mm×11 mm、0.65 mm ピッチ) 303 ピン BGA (15 mm×15 mm、0.8 mm ピッチ)
- Tj = -40 °C \sim +105 °C
- 289 ピン BGA(12 mm×12 mm、0.65 mm ピッチ) 224 ピン BGA(11 mm×11 mm、0.65 mm ピッチ) 303 ピン BGA(15 mm×15 mm、0.8 mm ピッチ)

- 305 ピン BOA(13 mm ^ 13 mm, 0.6 mm ピッテ) Tj = -40 °C~+125 °C 289 ピン BGA(12 mm × 12 mm、0.65 mm ピッチ) 224 ピン BGA(11 mm × 11 mm、0.65 mm ピッチ) 176 ピン HLQFP(24 mm × 24 mm、0.5 mm ピッチ)

1. 概要

本 MCU は、さまざまなシリーズのソフトウェアと互換性のある Arm®ベースの 32 ビットコアで構成されています。同じ一連のルネサス周辺デバイスを共有することで、設計の拡張性やプラットフォームベースの製品開発の効率が高まります。

本シリーズの MCU は、高性能な Arm[®] Cortex[®]-M85 コア (最高 1 GHz で動作) および Arm[®] Cortex[®]-M33 コア (最高 250 MHz で動作) を内蔵しており、以下の特長があります。

- 最大 1 MB の MRAM
- 2 MB の SRAM(256 KB の CM85 TCM RAM、128 KB の CM33 TCM RAM、1664 KB のユーザー SRAM)
- オクタシリアルペリフェラルインタフェース (OSPI)
- レイヤ3イーサネットスイッチモジュール (ESWM)、USBFS、USBHS、SD/MMC ホストインタフェース
- アナログ周辺機能
- セキュリティ&セーフティ機能

1.1 機能の概要

表 1.1 Arm コア

機能	機能の説明
Arm [®] Cortex [®] -M85 コア	 最高動作周波数: 1 GHz Arm® Cortex®-M85 コア リビジョン: (r1p1-00rel0) ARMv8.1-M アーキテクチャプロファイル Armv8-M セキュリティ拡張 ANSI/IEEE 規格 754-2008 準拠浮動小数点ユニット (FPU) スカラーの半精度、単精度、および倍精度浮動小数点演算 M プロファイルベクタ拡張 (MVE) 整数、半精度、および単精度浮動小数点 MVE (MVE-F) Arm®メモリプロテクションユニット (Arm MPU) 保護メモリシステムアーキテクチャ (PMSAv8) セキュア MPU (MPU_S): 8 領域 まセキュア MPU (MPU_NS): 8 領域 SysTick タイマ 2 つの SysTick タイマを搭載: セキュアインスタンス (SysTick_S) と非セキュアインスタンス (SysTick_NS) CPUCLK0 または MOCO 駆動 (8 分周) CoreSight™ ETM-M85
Arm [®] Cortex [®] -M33 コア	 最高動作周波数: 250 MHz Arm® Cortex®-M33 コア リビジョン: (r0p4-00rel2) ARMv8-M アーキテクチャプロファイル Armv8-DSP セキュリティ拡張 ANSI/IEEE 規格 754-2008 の単精度浮動小数点数演算に準拠した浮動小数点ユニット (FPU) Arm®メモリプロテクションユニット (Arm MPU) 保護メモリシステムアーキテクチャ (PMSAv8) セキュア MPU (MPU_S): 8 領域 SysTick タイマ 2 つの SysTick タイマを搭載: セキュアインスタンス (SysTick_S) と非セキュアインスタンス (SysTick_NS) CPUCLK1 または MOCO 駆動 (8 分周) CoreSight™ ETM-M33

表 1.2 メモリ (1/2)

機能	機能の説明
コード MRAM	最大 1 MB のコード MRAM。

表 1.2 メモリ (2/2)

機能	機能の説明
フラッシュメモリ	システムインパッケージ (SiP) 最大 8 MB のシリアルフラッシュメモリ。
オプション設定メモリ	オプション設定メモリは、MCU のリセット後の状態を決定します。
SRAM	誤り訂正コード (ECC) を備えた高速 SRAM を内蔵しています。
ОТР	内蔵 OTP はファーストステージブートローダー (FSBL) を含みます。 汎用 96 バイト OTP

表 1.3 システム

機能	機能の説明
動作モード	 3 種類の動作モード: シングルチップモード JTAG ブートモード SCI/USB ブートモード
リセット	本 MCU は以下の 21 種類のリセットをサポートしています。
プログラマブル電圧検出 (PVD)	プログラマブル電圧検出 (PVD) モジュールは、VCC 端子への入力電圧レベルを監視します。検出レベルはレジスタ設定で選択できます。PVD モジュールは、5 つの独立した電圧監視回路 (PVD0, PVD1, PVD2, PVD4, PVD5) から構成されています。これらの PVD は VCC 端子への入力電圧レベルを測定します。PVD のレジスタは、アプリケーションの設定により、さまざまな電圧しきい値で VCC 端子への入力電圧の変動の検出を設定できます。
クロック	 メインクロック発振器 (MOSC) サブクロック発振器 (SOSC) 高速オンチップオシレータ (HOCO) 中速オンチップオシレータ (MOCO) 低速オンチップオシレータ (LOCO) PLL1/PLL2 クロックアウトのサポート
クロック周波数精度測定回路 (CAC)	クロック周波数精度測定回路 (CAC) は、測定の対象となるクロック (測定対象クロック) に対して、測定の基準となるクロック (測定基準クロック) で生成した時間内のクロックのパルスを数え、そのパルス数が許容範囲内にあるか否かで精度を判定します。測定終了時、または測定基準クロックで生成した時間内のパルスの数が許容範囲内にないとき、割り込み要求が発生します。
割り込みコントローラユニット (ICU)	割り込みコントローラユニット (ICU) は、ネスト型ベクタ割り込みコントローラ (NVIC)、DMA コントローラ (DMAC) モジュール、およびデータトランスファコントローラ (DTC) モジュール にリンクされるイベント信号を制御します。ICU はノンマスカブル割り込みも制御します。
低消費電力モード	消費電力は、以下に示す複数の方法で低減できます。その方法には、クロック分周器の設定、 EBCLK 出力制御、SDCLK 出力制御、モジュール停止、パワーゲート制御、通常動作時の動作電力制御モードの選択、低消費電力モードやプロセッサ低消費電力モードへの遷移があります。
バッテリバックアップ機能	バッテリバックアップ機能により、バッテリによる部分電力供給が可能です。バッテリ電源領域に含まれるものには、RTC、SOSC、バックアップレジスタ、改ざん検出、VBATT_R電圧降下検出、および VCC/VBATT 切り替えがあります。
レジスタライトプロテクション	レジスタライトプロテクション機能は、ソフトウェアエラーによって重要なレジスタが書き換えられないように保護します。保護対象のレジスタは、プロテクトレジスタ(PRCR_SとPRCR_NS)で設定します。
メモリプロテクションユニット (MPU)	すべてのバスマスタには、メモリプロテクションユニット (MPU) があります。

表 1.4 イベントリンク

機能	機能の説明
イベントリンクコントローラ (ELC)	イベントリンクコントローラ (ELC) は、さまざまな周辺モジュールで発生するイベント要求をソース信号として使用し、それらのモジュールを別のモジュールと接続することによって、CPUを介さずにモジュール間の直接リンクを実現します。

表 1.5 ダイレクトメモリアクセス (1/2)

機能	機能の説明
	データトランスファコントローラ (DTC) モジュールは、割り込み要求によって起動するとデータ 転送を行います。

表 1.5 ダイレクトメモリアクセス (2/2)

機能	機能の説明
DMA コントローラ (DMAC)	8 チャネルのダイレクトメモリアクセスコントローラ (DMAC) は CPU を介さずにデータ転送が可能です。DMA 転送要求が発生すると、DMAC は転送元アドレスに格納されているデータを転送先アドレスへ転送します。

表 1.6 外部パスインタフェース

機能	機能の説明
外部バス	 CS 領域 (ECBI): 外部デバイス(外部メモリインタフェース)を接続 SDRAM 領域 (ECBI): SDRAM(外部メモリインタフェース)を接続 OSPI0 領域 (OSPI0BI): OSPI0(外部デバイスインタフェース)を接続 OSPI1 領域 (OSPI1BI): OSPI1(外部デバイスインタフェース)を接続

表 1.7 タイマ

機能	機能の説明
汎用 PWM タイマ (GPT)	汎用 PWM タイマ (GPT) は、GPT32 × 14 チャネルの 32 ビットタイマです。PWM 波形はアップカウンタ、ダウンカウンタ、またはその両方を制御することにより生成が可能です。さらに、ブラシレス DC モーターを制御するために、PWM 波形の生成が可能です。GPT は、汎用タイマとしても使用できます。
PWM 遅延生成回路 (PDG)	PWM 遅延生成回路 (PDG) は、GPT に接続できる 4 チャネルの遅延回路を備えています。PDG は、GPT323 を介した GPT320 に対する PWM 出力の立ち上がり/立ち下がりエッジタイミングを制御できます。
GPT 用のポートアウトプットイネーブル (POEG)	ポートアウトプットイネーブル (POEG) は、汎用 PWM タイマ (GPT) の出力端子を出力禁止状態にすることができます。
低消費電力非同期汎用タイマ (AGT)	低消費電力非同期汎用タイマ (AGT) は、パルス出力、外部パルスの幅または周期の測定、および外部イベントのカウントに利用可能な 16 ビットのタイマです。このタイマは、リロードレジスタとダウンカウンタで構成されています。これらのリロードレジスタとダウンカウンタは、同一アドレスに配置され、AGT レジスタでアクセス可能です。
超低消費電力タイマ (ULPT)	超低消費電力タイマ (ULPT) は、パルス出力または外部イベントのカウントに使用可能な 32 ビットタイマです。この 32 ビットタイマは、リロードレジスタとダウンカウンタで構成されています。これらのリロードレジスタとダウンカウンタは、同一アドレスに配置され、ULPTCNT レジスタでアクセス可能です。
リアルタイムクロック (RTC)	リアルタイムクロック (RTC) には、カレンダーカウントモードとバイナリカウントモードの 2 種類のカウントモードがあり、レジスタの設定を切り替えることにより使用します。カレンダーカウントモードでは、RTC は 2000 年から 2099 年の 100 年間のカレンダーを保持し、うるう年の日付を自動補正します。バイナリカウントモードでは、RTC は秒をカウントし、その情報をシリアル値として保持します。バイナリカウントモードは、西暦以外のカレンダーに使用可能です。
ウォッチドッグタイマ (WDT)	ウォッチドッグタイマ (WDT) は 14 ビットのダウンカウンタです。システムが暴走すると WDT をリフレッシュできなくなるため、カウンタがアンダーフローした際に MCU をリセットするのに使用できます。さらに、WDT はノンマスカブル割り込みまたはアンダーフロー割り込みを発生させるのに使用できます。
独立ウォッチドッグタイマ (IWDT)	独立ウォッチドッグタイマ (IWDT) には、14 ビットのダウンカウンタがあり、ダウンカウンタのアンダーフロー時のリセット出力によって、MCU をリセットします。代替的には、カウンタのアンダーフロー時の割り込み要求の発生を選択できます。これにより、リフレッシュインターバルを考慮して、プログラムの暴走を検出できます。IWDT には、次の2種類のスタートモードがあります。オートスタートモードでは、リセット状態の解除後にカウントを自動的に開始します。また、レジスタスタートモードでは、リフレッシュ(特定のレジスタへの書き込み)により、カウントを開始します。

表 1.8 通信インタフェース (1/2)

機能	機能の説明
シリアルコミュニケーションインタフェース (SCI)	 シリアルコミュニケーションインタフェース (SCI) × 10 チャネルには、調歩同期式および同期式のシリアルインタフェースがあります。 ■ 調歩同期式インタフェース (UART および調歩同期式通信インタフェースアダプタ (ACIA)) ● 8 ビットクロック同期式インタフェース ● 簡易 IIC (マスタのみ) ● 簡易 SPI ● スマートカードインタフェース ● でンチェスタインタフェース ● でリチェスタインタフェース ● でリチェスタインタフェース ● でリチェスタインタフェース ● でリチェスタインタフェース ● でリチェスタインタフェース ● でリチェスタインタフェース ● でリチェスタインタフェースは、電子信号と伝送プロトコルに関して ISO/IEC 7816-3 規格に準拠しています。すべてのチャネルは FIFO バッファを内蔵しており、連続した全二重通信が可能です。また、内蔵のボーレートジェネレータを用いて、データ転送速度の個別設定が可能です。また、内蔵のボーレートジェネレータを用いて、データ転送速度の個別設定が可能です。 本 MCU では、最大レートがサポートされています。実際のレートについては、電気的特性を参照してください。
I ² C バスインタフェース (IIC)	I^2 C バスインタフェース (IIC) には 3 チャネルあります。IIC モジュールは、NXP 社の I^2 C (InterIntegrated Circuit) バスインタフェース方式に準拠しており、そのサブセット機能を備えています。
I3C バスインタフェース (I3C)	I3C バスインタフェース (I3C) には 1 チャネルあります。I3C モジュールは、NXP 社の I ² C (Inter-Integrated Circuit) および MIPI 社の I3C バスインタフェース方式に準拠しており、それらのサブセット機能を備えています。
シリアルペリフェラルインタフェース (SPI)	シリアルペリフェラルインタフェース (SPI) によって、複数のプロセッサおよび周辺デバイスとの高速な全二重同期式シリアル通信が可能です。 本 MCU では、最大レートがサポートされています。実際のレートについては、電気的特性を参照してください。
Control Area Network with Flexible Data-Rate モジュール (CANFD)	CAN with Flexible Data-Rate (CANFD) モジュールは、クラシカル CAN フレームと ISO 11898-1 規格に準拠する CANFD フレームの両方を取り扱うことができます。 本モジュールはチャネルごとに 4 個の送信バッファと 16 個の受信バッファをサポートしています。
USB 2.0 フルスピードモジュール (USBFS)	ホストコントローラまたはデバイスコントローラとして動作可能な USB2.0 フルスピードモジュール (USBFS) です。このモジュールは、ユニバーサルシリアルバス規格 2.0 のフルスピード およびロースピード転送 (ホストコントローラのみ) をサポートしています。また USB トランシーバを内蔵しており、ユニバーサルシリアルバス規格 2.0 で定義されている全転送タイプに対応しています。USB はデータ転送用にバッファメモリを内蔵し、最大 10 本のパイプを使用できます。パイプ 1~9 に対しては、通信を行う周辺デバイスやユーザーシステムに合わせた任意のエンドポイント番号の割り付けが可能です。
USB 2.0 ハイスピードモジュール (USBHS)	USB (Universal Serial Bus) 規格 2.0 に準拠するホストコントローラまたはデバイスコントローラとして動作する USB2.0 ハイスピードモジュール (USBHS) です。ホストコントローラは、USB2.0 ハイスピード、フルスピード、ロースピード転送に対応しています。デバイスコントローラは、USB2.0 ハイスピード転送とフルスピード転送に対応しています。また、USBHS は USB トランシーバを内蔵し、USB 2.0 規格で定義されている全転送タイプに対応しています。
オクタシリアルペリフェラルインタフェース (OSPI)	オクタシリアルペリフェラルインタフェース (OSPI) は、拡張シリアルペリフェラルインタフェース (xSPI) (JEDEC 規格の JESD251、JESD251-1、および JESD252)をサポートするメモリコントローラです。OSPI は 1 ビット、2 ビット、4 ビット、および 8 ビットのプロトコルをサポートします。 JESD251 では 2 つのインタフェースプロファイルを指定します。 プロファイル 1.0 はオクタル SPI、プロファイル 2.0 は HyperBus $^{\text{TM}}$ (HyperRAM $^{\text{TM}}$ および HyperFlash $^{\text{TM}}$) です。OSPI はQSPI プロトコルをサポートします。
拡張シリアルサウンドインタフェース (SSIE)	拡張シリアルサウンドインタフェース (SSIE) 周辺機能は、I ² S/モノラル/TDM オーディオデータを送信するため、デジタルオーディオデバイスをシリアルバス経由で接続する機能を提供しています。 SSIE は最高 50 MHz のオーディオクロック周波数をサポートしており、各種アプリケーションに適合するスレーブまたはマスタレシーバ/トランスミッタ/トランシーバとして動作します。 SSIE はレシーバとトランスミッタに 32 段 FIFO バッファを内蔵し、割り込みおよび DMA 駆動によるデータ送受信をサポートしています。

表 1.8 通信インタフェース (2/2)

機能	機能の説明
SD/MMC ホストインタフェース (SDHI)	セキュアデジタル (SD) カードホストインタフェースおよびマルチメディアカード (MMC) ホストインタフェースは、各種の外付けメモリカードと MCU との接続に必要な機能を提供します。 SDHI は、SD、SDHC、および SDXC フォーマットに対応するメモリカードを接続するために 1 ビットと 4 ビットのバスをサポートしています。 SD 規格に対応したホスト機器を開発するには、SD Host/Ancillary Product License Agreement (SD HALA) に準拠する必要があります。 MMC インタフェースは、eMMC 4.51 (JEDEC Standard JESD 84-B451) デバイスアクセスを可能にする 1 ビット、4 ビット、および 8 ビットの MMC バスをサポートしています。このインタフェースには下位互換性があり、高速 SDR 転送モードもサポートしています。
レイヤ3イーサネットスイッチモジュ ール (ESWM)	レイヤ3イーサネットスイッチモジュール (ESWM) は、2 チャネルのギガビットイーサネットコントローラ、高レベルのルーティング機能を持つイーサネットスイッチ、およびマルチプロトコルインタフェースサポートで構成されています。ギガビットイーサネットコントローラは、IEEE 802.3 規格のイーサネット MAC (Media Access Control) 層の定義に準拠します。この規格に準拠する外部物理層 LSI チップ (PHY-LSI) に接続することにより、イーサネット (IEEE 802.3) フレームの送信と受信が可能です。本イーサネットスイッチは、同一のネットワークインタフェースプロトコル内および異なるネットワークインタフェースプロトコル間、または最適化されたゲートウェイアプリケーションとの間での自立的なフレームルーティングが可能です。
パルス密度変調インタフェース (PDMIF)	PDM-IF には、パルス密度変調 (PDM) 信号を出力する外部マイクロホンに接続可能なチャネルが最大3つあります。PDM-IF は最大3つの外部マイクロホンと接続可能です。PDM-IF は、高いサンプリングレートでパルス密度変調された1 ビットのデジタルデータストリームをフィルタリングして、より低いサンプリングレートの20 ビットまたは16 ビットのデジタルデータに変換できます。

表 1.9 アナログ

機能	機能の説明
16 ビット A/D コンバータ (ADC16H)	16 ビット A/D コンバータを内蔵しています。最大 23 チャネルのアナログ入力を選択可能です。 変換には温度センサ出力、内部基準電圧、および VBATT 1/6 電圧監視を選択可能です。
12 ビット D/A コンバータ (DAC12)	12 ビットの D/A コンバータ (DAC12) を内蔵しています。
温度センサ (TSN)	デバイス動作の信頼性確保のため、内蔵されている温度センサ (TSN) でチップの温度を測定し、監視します。センサはチップの温度と正比例する電圧を出力します。チップ温度と出力電圧はほとんどリニアの関係にあります。出力電圧は ADC16H で変換されてから、末端の応用機器で使用できます。センサは異常温度検出信号をリセット制御回路に出力し、これを使用して異常温度による不具合を防止できます。
高速アナログコンパレータ (ACMPHS)	高速アナログコンパレータ (ACMPHS) は、アナログ入力電圧と基準電圧の比較、および変換結果に基づいたデジタル出力に使用できます。アナログ入力電圧と基準電圧は、どちらも内部ソース (D/A コンバータ出力または内部基準電圧) および外部ソースから ACMPHS に供給できます。このような柔軟性は、A/D 変換を行うことなくアナログ信号間の合否判定を実施する必要があるアプリケーションで有用です。

表 1.10 ヒューマンマシンインタフェース

機能	機能の説明
キャプチャエンジンユニット (CEU)	キャプチャエンジンユニット (CEU) は、外部から入力される画像データを取り込み、メモリに転送するキャプチャモジュールです。

表 1.11 データ処理

機能	機能の説明
巡回冗長検査 (CRC) 演算器	巡回冗長検査 (CRC: Cyclic Redundancy Check) 演算器は、CRC コードを生成してデータエラーを検出します。LSB ファーストまたは MSB ファーストでの通信用に、CRC 演算結果のビットオーダーを切り替えることができます。さらに、さまざまな CRC 生成多項式を使用できます。スヌーブ機能は、特定のアドレスに対する読み出しと書き込みをモニタするのを許可します。この機能は、シリアル送信バッファへの書き込みとシリアル受信バッファからの読み出しを監視する場合など、特定のイベントで CRC コードの自動生成が必要となるアプリケーションで役立ちます。
データ演算回路 (DOC)	データ演算回路 (DOC) は、32 ビットのデータを比較、加算、および減算します。選択した条件が適用される場合、32 ビットのデータが比較され、割り込みを生成可能です。

表 1.12 セキュリティ

機能	機能の説明
セキュリティ機能	 ARMv8-M TrustZone セキュリティ プリビレッジ制御 デバイスライフサイクル管理 認証レベル (AL) キーインジェクション セキュア端子マルチプレキシング HUK のゼロ化 VBATT バックアップレジスタのゼロ化 セキュアブート セキュアファクトリプログラミング
Renesas セキュア IP (RSIP-E50D)	 対称暗号: AES および ChaCha20-Poly1305 非対称暗号: RSA および ECC メッセージダイジェスト計算: HASH、HMAC 128 ビット真性乱数生成回路 256 ビットハードウェアユニークキー (HUK) 128 ビットのユニーク ID OEM ブートローダーバージョン オンザフライ復号 (DOTF) 用のキーデータ SPA/DPA 保護
オンザフライ復号 (DOTF)	オンザフライ復号 (DOTF) は、外部メモリに格納されている暗号化されたコンテンツをリアルタイムで復号します。

1.2 ブロック図

図 1.1 に、本 MCU のスーパーセットのブロック図を示します。グループ内の個々のデバイスは、その機能のサブセットを持つ場合があります。

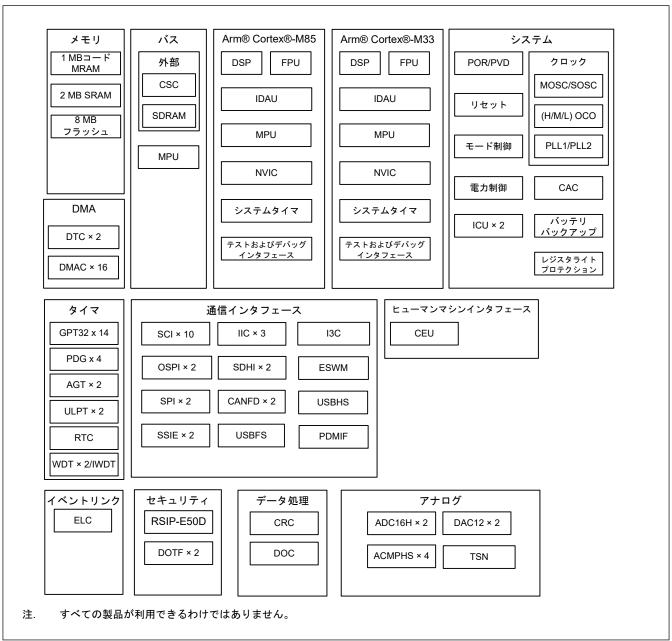


図 1.1 ブロック図

1.3 型名

図 1.2 に、メモリ容量およびパッケージタイプを含む製品の型名情報を示します。表 1.13 に、製品一覧表を示します。

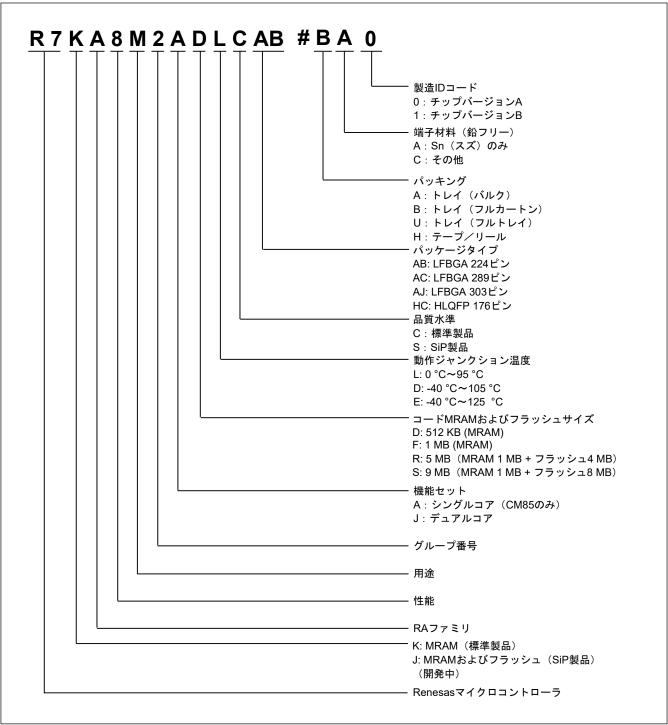


図 1.2 型名の読み方

表 1.13 製品一覧

製品型名	製品グループ	CPU	パッケージコード	コード MRAM	SRAM	フラッシュ	動作ジャンクション温度
R7KA8M2ADLCAB	Α	シングル	PLBG0224JA-A	512 KB	2 MB	_	0~95 °C
R7KA8M2ADLCAC			PLBG0289JA-A				
R7KA8M2ADDCAB	В		PLBG0224JA-A				-40~105 °C
R7KA8M2ADDCAC			PLBG0289JA-A				
R7KA8M2ADECAB	С		PLBG0224JA-A				-40~125 °C
R7KA8M2ADECAC			PLBG0289JA-A				
R7KA8M2ADECHC			PLQP0176KK-A				
R7KA8M2AFLCAB	Α		PLBG0224JA-A	1 MB			0~95 °C
R7KA8M2AFLCAC			PLBG0289JA-A				
R7KA8M2AFDCAB	В		PLBG0224JA-A				-40~105 °C
R7KA8M2AFDCAC			PLBG0289JA-A				
R7KA8M2AFECAB	С		PLBG0224JA-A				-40~125 °C
R7KA8M2AFECAC			PLBG0289JA-A				
R7KA8M2AFECHC			PLQP0176KK-A				
R7KA8M2JFLCAB	Α	デュアル	PLBG0224JA-A	1 MB			0~95 °C
R7KA8M2JFLCAC			PLBG0289JA-A				
R7KA8M2JFDCAB	В		PLBG0224JA-A				-40~105 °C
R7KA8M2JFDCAC			PLBG0289JA-A				
R7KA8M2JFECAB	С		PLBG0224JA-A				-40~125 °C
R7KA8M2JFECAC			PLBG0289JA-A				
R7KA8M2JFECHC			PLQP0176KK-A				
R7JA8M2JRLSAJ	Α	デュアル	PLBG0303xx-x	1 MB		4 MB	0~95 °C
R7JA8M2JSLSAJ						8 MB	
R7JA8M2JRDSAJ	В					4 MB	-40~105 °C
R7JA8M2JSDSAJ						8 MB	

1.4 機能の比較

表 1.14 機能の比較 (1/2)

型名		R7KA8M2Ax xCAC	R7KA8M2Jx xCAC	R7KA8M2Ax xCAB	R7KA8M2Jx xCAB	R7KA8M2Ax xCHC	R7KA8M2Jx xCHC	R7JA8M2Jx xSAJ			
端子総数		289	•	224		176		303			
パッケーシ	;	BGA		1		HLQFP		BGA			
I/O ポート		208		149		130		196			
コードMR	AM	1 MB, 512 KB	1 MB, 512 KB								
CPU0 TCM	Л	256 KB									
CPU1 TCN	И	なし	128 KB	なし	128 KB	なし	128 KB				
CPU0 I/D	キャッシュ	32 KB				•					
CPU1 C/S	キャッシュ	なし	32 KB	なし	32 KB	なし	32 KB				
SRAM		1792 KB	1664 KB	1792 KB	1664 KB	1792 KB	1664 KB				
フラッシュ	L	なし		•				8 MB, 4 MB			
DMA	DTC	1	2	1	2	1	2				
	DMAC	8	16	8	16	8	16				
BUS	外部バス	32 ビットバス	,	16 ビットバス							
	SDRAM	32 ビットバス	•	16 ビットバス	•						
	CPU0 クロッ ク	最高 1 GHz				最高 600 MHz		最高 1 GHz			
	CPU1 クロッ ク	なし	最高 250 MHz	なし	最高 250 MHz	なし	最高 200 MHz	最高 250 MHz			
	CPU クロッ クソース	MOSC, SOSC, HOCO, MOCO, LOCO, PLL1P									
	CAC	あり	あり								
	WDT	1	2	1	2	1	2				
	IWDT	あり									
	バックアップ レジスタ	128 B									
通信	SCI	10		9				10			
	IIC	3									
	I3C	あり	 あり								
	SPI	2	2								
	CANFD	2	2								
	USBFS	あり									
	USBHS	あり									
	OSPI	2		1	2 ^(注2)						
	SSIE	2									
	SDHI/MMC	2									
	ESWM	MII, RMII, GM	II, RGMII	MII, RMII, RG	MII	MII, RMII		MII, RMII, GMII, RGMII			
	PDMIF	あり				1		1			

表 1.14 機能の比較 (2/2)

型名		R7KA8M2Ax xCAC	R7KA8M2Jx xCAC	R7KA8M2Ax xCAB	R7KA8M2Jx xCAB	R7KA8M2Ax xCHC	R7KA8M2Jx xCHC	R7JA8M2Jx xSAJ
タイマ	GPT32 ^(注1)	14		•				
	PDG	4						
	AGT ^(注1)	2						
	ULPT ^(注1)	2						
	RTC	あり						
アナログ	ADC16H	ユニット 0: 15 15	5、ユニット 1:	ユニット 0: 7、	ユニット 1: 5			ユニット 0: 15、ユニット 1: 15
	DAC12	2						
	ACMPHS	4						
	TSN	あり						
НМІ	CEU	あり						
データ処理	CRC	あり						
	DOC	あり						
イベント制御	ELC	あり						
セキュリティ	·	RSIP-E50D、	オンザフライ復	[号、セキュアテ	· バッグ、OTP、	TrustZone、ラ	・ イフサイクル 1	· · · · · · · · · · · · · · · · · · ·

注: 製品型名は、サポートしているメモリサイズによって異なります。「1.3. 型名」を参照してください。注 1. 使用できる端子はピン数によります。詳細は、「1.7. 端子一覧」を参照してください。注 2. OSPI1 は、SiP 製品のシリアルフラッシュに接続されます。

1.5 端子機能

表 1.15 端子機能 (1/7)

機能	信号	入出力	説明
電源	VCC_01~ VCC_10, VCC2_11~ VCC2_15	入力	電源端子。システムの電源に接続してください。この端子は、0.1 µF のコンデンサを介して同じ番号の VSS_01~VSS_15 に接続してください。コンデンサは端子近くに配置してください。 SiP 製品では、VCC2_11~VCC2_15 をシステムの 1.8 V 電源に接続してください。
	VCC2_16~ VCC2_19	入力	SiP 製品用の専用電源端子。システムの 1.8 V 電源に接続してください。この端子は、 0.1 µF のコンデンサを介して同じ番号の VSS_16~VSS_19 に接続してください。コンデンサは端子近くに配置してください。
	VCC_DCDC	入力	スイッチングレギュレータ電源端子
	VLO	入出力	スイッチングレギュレータ端子
	VCL0~VCL11	入力	この端子は、内部電源を安定化するための平滑コンデンサを介して同じ番号の VSS0~VSS11 端子に接続してください。コンデンサは端子近くに配置してください。
	VBATT	入力	バッテリバックアップ電源端子
	VSS_01~ VSS_15, VSS0~ VSS11, VSS_DCDC	入力	グランド端子。システムの電源 (0 V) に接続してください。
	VSS_16~ VSS_19, VSS	入力	SiP 製品用の専用グランド端子。システムの電源 (0 V) に接続してください。
クロック	XTAL	出力	水晶振動子用の接続端子。EXTAL 端子を通じて外部クロック信号の入力が可能です。
	EXTAL	入力	
	XCIN	入力	サブクロック発振器用の入出力端子。XCOUT と XCIN の間には、水晶振動子を接続し
	XCOUT	出力	てください。
	EXCIN	入力	外部サブクロック入力
	CLKOUT	出力	クロック出力端子
動作モード制御	MD	入力	動作モード設定用の端子。この端子の信号レベルは、リセット解除時の動作モードの 遷移中に変更しないでください。
システム制御	RES	入力	リセット信号入力端子。この端子が Low になると、MCU はリセット状態となります。
	PUP	入力	抵抗を介して VCC2 に接続してください。
CAC	CACREF	入力	測定基準クロックの入力端子
オンチップエミュレ	TMS	入力	オンチップエミュレータ用またはバウンダリスキャン用端子
ータ	TDI	入力	
	TCK	入力	
	TDO	出力	
	TCLK	出力	トレースデータと同期をとるためのクロックを出力します。
	TDATA0~ TDATA3	出力	トレースデータ出力
	SWO	出力	シリアルワイヤトレース出力端子
	SWDIO	入出力	シリアルワイヤデバッグデータの入出力端子
	SWCLK	入力	シリアルワイヤクロック端子
割り込み	NMI	入力	ノンマスカブル割り込み要求端子
	IRQn	入力	マスカブル割り込み要求端子
	IRQn-DS	入力	マスカブル割り込み要求端子は、ディープソフトウェアスタンバイモード時も使用できます。

表 1.15 端子機能 (2/7)

機能	信号	入出力	説明
外部バスインタフェ	EBCLK	出力	外部デバイス用の外部バスクロックを出力します。
ース	RD	出力	外部バスインタフェース空間から読み出し中であることを示すストローブ信号、アクティブ Low
	WR	出力	1 ライトストローブモード時、外部バスインタフェース空間に書き込み中であることを 示すストローブ信号、アクティブ Low
	WRn	出力	バイトストローブモード時、外部バスインタフェース空間に書き込み中で、データバス端子 (D07~D00, D15~D08, D23~D16, D31~D24) のいずれかが有効であることを示すストローブ信号、アクティブ Low
	BCn	出力	1 ライトストローブモード時、外部バスインタフェース空間にアクセス中で、データバス端子 (D07~D00, D15~D08, D23~D16, D31~D24) のいずれかが有効であることを示すストローブ信号、アクティブ Low
	ALE	出力	アドレス/データマルチプレクスバス選択時のアドレスラッチ信号
	WAIT	入力	外部空間をアクセスするときのウェイト要求信号用の入力端子、アクティブLow
	CSn	出力	CS 領域選択信号、アクティブ Low
	A00~A23	出力	アドレスバス
	D00~D31	入出力	データバス
	A00/D00~ A15/D15	入出力	アドレス/データマルチプレクスバス
SDRAM インタフェ	SDCLK	出力	SDRAM 専用クロックを出力します。
ース	CKE	出力	SDRAM クロックイネーブル信号
	SDCS	出力	SDRAM のチップ選択信号、アクティブ Low
	RAS	出力	SDRAM Low アドレスストローブ信号、アクティブ Low
	CAS	出力	SDRAM 列アドレスストローブ信号、アクティブ Low
	WE	出力	SDRAM 書き込みイネーブル信号、アクティブ Low
	DQMn	出力	SDRAM 入出力データマスクイネーブル信号 (DQ07~DQ00, DQ15~DQ08, DQ23~DQ16, DQ31~DQ24)
	A00~A16	出力	アドレスバス
	DQ00~DQ31	入出力	データバス
GPT	GTETRGA, GTETRGB, GTETRGC, GTETRGD	入力	外部トリガ入力端子
	GTIOCnA, GTIOCnB	入出力	インプットキャプチャ、アウトプットコンペア、または PWM 出力端子
	GTADSM0, GTADSM1	出力	A/D 変換開始要求モニタリング出力端子
	GTCPPOn	出力	PWM 同期トグル出力
	GTIU	入力	ホールセンサ入力端子 U
	GTIV	入力	ホールセンサ入力端子 V
	GTIW	入力	ホールセンサ入力端子 W
	GTOUUP	出力	BLDC モーター制御用 3 相 PWM 出力(正相 U 相)
	GTOULO	出力	BLDC モーター制御用 3 相 PWM 出力(逆相 U 相)
	GTOVUP	出力	BLDC モーター制御用 3 相 PWM 出力(正相 V 相)
	GTOVLO	出力	BLDC モーター制御用 3 相 PWM 出力(逆相 V 相)
	GTOWUP	出力	BLDC モーター制御用 3 相 PWM 出力(正相 W 相)
	GTOWLO	出力	BLDC モーター制御用 3 相 PWM 出力(逆相 W 相)

表 1.15 端子機能 (3/7)

TATA BAL-	地工版			=0==
機能		信号	入出力	説明
AGT		AGTEEn	入力	外部イベント入力イネーブル信号
		AGTIOn	入出力	外部イベント入力およびパルス出力端子
		AGTOn	出力	パルス出力端子
		AGTOAn	出力	アウトプットコンペアマッチ A 出力端子
		AGTOBn	出力	アウトプットコンペアマッチ B 出力端子
ULPT	JLPT	ULPTEEn	入力	外部カウント制御入力
		ULPTEVIn	入力	外部イベント入力
		ULPTEEn-DS	入力	外部カウント制御入力はディープソフトウェアスタンバイモード 1 時も使用できます。
		ULPTEVIn-DS	入力	外部イベント入力はディープソフトウェアスタンバイモード1時も使用できます。
		ULPTOn	出力	パルス出力
		ULPTOAn	出力	アウトプットコンペアマッチ A 出力
		ULPTOBn	出力	アウトプットコンペアマッチ B 出力
		ULPTOn-DS	出力	パルス出力はディープソフトウェアスタンバイモード 1 時も使用できます。
		ULPTOAn-DS	出力	アウトプットコンペアマッチ A 出力はディープソフトウェアスタンバイモード 1 時も 使用できます。
	ULPTOBn-DS	出力	アウトプットコンペアマッチ B 出力はディープソフトウェアスタンバイモード 1 時も 使用できます。	
RTC		RTCOUT	出力	1 Hz または 64 Hz のクロック出力端子
		RTCICn	入力	時間キャプチャイベント入力端子
SCI	SCI	SCKn	入出力	クロック用の入出力端子 (クロック同期式モード)
		RXDn	入力	受信データ用の入力端子(調歩同期式モード/クロック同期式モード)
		TXDn	出力	送信データ用の出力端子(調歩同期式モード/クロック同期式モード)
		CTSn_RTSn	入出力	送受信の開始制御用の入出力端子(調歩同期式モード/クロック同期式モード)、アクティブ Low
		CTSn	入力	送信の開始用の入力端子
		DEn	出力	RS-485 用のドライバイネーブル信号
		SCLn	入出力	IIC クロック用の入出力端子(簡易 IIC モード)
		SDAn	入出力	IIC データ用の入出力端子(簡易 IIC モード)
		SCKn	入出力	クロック用の入出力端子(簡易 SPI モード)
		MISOn	入出力	データのスレーブ送信用の入出力端子(簡易 SPI モード)
		MOSIn	入出力	データのマスタ送信用の入出力端子(簡易 SPI モード)
		SSn	入力	チップセレクト入力端子(簡易 SPI モード)、アクティブ Low
IIC		SCLn	入出力	クロック用の入出力端子
		SDAn	入出力	データ用の入出力端子
I3C		I3C_SCL0	入出力	クロック用の入出力端子
		I3C_SDA0	入出力	データ用の入出力端子
SPI		RSPCKA, RSPCKB	入出力	クロック入出力端子
		MOSIA, MOSIB	入出力	マスタからの出力データ用の入出力端子
		MISOA, MISOB	入出力	スレーブからの出力データ用の入出力端子
		SSLA0, SSLB0	入出力	スレーブ選択用の入出力端子
		SSLA1~SSLA3, SSLB1~SSLB3	出力	スレーブ選択用の出力端子

表 1.15 端子機能 (4/7)

機能	信号	入出力	説明
CANFD	CRXn	入力	受信データ
	CTXn	出力	送信データ
USBFS	VCC_USB	入力	電源端子
	VSS_USB	入力	グランド端子
	USB_DP	入出力	USB 内蔵トランシーバ D+端子。この端子は USB バスの D+端子に接続してください。
	USB_DM	入出力	USB 内蔵トランシーバ D-端子。この端子は USB バスの D-端子に接続してください。
	USB_VBUS	入力	USB ケーブル接続モニタ端子。USB バスの VBUS に接続してください。ファンクションコントローラ機能選択時の VBUS の接続/切断を検出できます。
	USB_EXICEN	出力	外部電源 (OTG) チップの低消費電力制御信号
	USB_VBUSEN	出力	外部電源チップへの VBUS (5 V) 供給許可信号
	USB_OVRCURA	入力	これらの端子には外部過電流検出信号を接続してください。OTG 電源チップとの接続
	, USB_OVRCURB		時には VBUS コンパレータ信号を接続してください。
	USB_OVRCURA -DS, USB_OVRCURB -DS	入力	USBFS 用オーバーカレント端子は、ディープソフトウェアスタンバイモード 1 時も使用できます。これらの端子には外部過電流検出信号を接続してください。OTG 電源チップとの接続時には VBUS コンパレータ信号を接続してください。
	USB_ID	入力	OTG 動作時に MicroAB コネクタの ID 入力信号を接続してください。
USBHS	VCC_USBHS	入力	電源端子
	VSS1_USBHS, VSS2_USBHS	入力	グランド端子
	AVCC_USBHS	入力	アナログ電源
	USBHS_RREF	入出力	USBHS 用の基準電流源端子。 $2.2~{ m k}\Omega~(\pm 1\%)$ の抵抗を介して AVSS_USBHS 端子に接続してください。
	USBHS_DP	入出力	USB バスの D+データラインの入出力端子
	USBHS_DM	入出力	USB バスの D-データラインの入出力端子
	USBHS_EXICEN	出力	OTG 電源 IC に接続してください。
	USBHS_ID	入力	OTG 電源 IC に接続してください。
	USBHS_VBUSE N	出力	USBHS 用の VBUS 電源イネーブル端子
	USBHS_OVRCU RA, USBHS_OVRCU RB	入力	USBHS 用オーバーカレント端子
	USBHS_OVRCU RA-DS, USBHS_OVRCU RB-DS	入力	USBHS 用オーバーカレント端子は、ディープソフトウェアスタンバイモード 1 時も使用できます。
	USBHS_VBUS	入力	USB ケーブル接続モニタ入力端子

表 1.15 端子機能 (5/7)

機能	信号	入出力	説明
OSPI	OM_n_SCLK	出力	クロック出力(OCTACLK の 2 分周)
	OM_n_SCLKN	出力	反転クロック出力(OCTACLK の 2 分周)
	OM_n_CSn	出力	OctaFlash デバイス用チップセレクト信号、アクティブ Low
	OM_n_DQS	入出力	読み出しデータストローブ/書き込みデータマスク信号
	OM_n_SIOn	入出力	データ入出力
	OM_n_RESET	出力	両スレーブデバイス用のリセット信号、アクティブ Low
	OM_n_ECSINT1	入力	スレーブ1のエラー訂正状態と割り込み
	OM_n_RSTO1	入力	スレーブ1のスレーブリセット状態
	OM_n_WP1	出力	スレーブ1の書き込み保護、アクティブLow
SSIE	SSIBCK0, SSIBCK1	入出力	SSIE シリアルビットクロック端子
	SSILRCK0/ SSIFS0, SSILRCK1/ SSIFS1	入出力	LR クロック/フレーム同期端子
	SSITXD0	出力	シリアルデータ出力端子
	SSIRXD0	入力	シリアルデータ入力端子
	SSIDATA1	入出力	シリアルデータ入出力端子
	AUDIO_CLK	入力	オーディオ用の外部クロック端子(入力オーバーサンプリングクロック)
SDHI/MMC	SDnCLK	出力	SD クロック出力端子
	SDnCMD	入出力	コマンド出力端子および応答入力信号端子
	SDnDAT0~ SDnDAT7	入出力	SD/MMC データバス端子
	SDnCD	入力	SD カード検出端子
	SDnWP	入力	SD 書き込み保護信号

表 1.15 端子機能 (6/7)

機能	信号	入出力	説明
ESWM	ETn_GTX_CLK	出力	1000 Mb/s の送信クロック
	ETn_TX_CLK	入力	100 Mb/s、10 Mb/s の送信クロック
	ETn_RX_CLK	入力	受信クロック
	ETn_TX_EN	出力	送信許可
	ETn_TXD0~ ETn_TXD7	出力	送信データ
	ETn_TX_ER	出力	送信コーディングエラー
	ETn_RX_DV	入力	受信データ有効
	ETn_RXD0~ ETn_RXD7	入力	受信データ
	ETn_RX_ER	入力	受信エラー
	ETn_MDC	出力	管理データクロック
	ETn_MDIO	入出力	管理データ入出力
	RGMIIn_TXC	出力	送信クロック
	RGMIIn_RXC	入力	受信クロック
	RGMIIn_TX_CTL	出力	送信制御
<u> </u>	RGMIIn_TXD0~ RGMIIn_TXD3	出力	送信データ
	RGMIIn_RX_CTL	入力	受信制御
	RGMIIn_RXD0~ RGMIIn_RXD3	入力	受信データ
	RMIIn_REF50CK	入力	同期クロック参照
	RMIIn_TX_EN	出力	送信許可
	RMIIn_TXD0~ RMIIn_TXD1	出力	送信データ
	RMIIn_CRS_DV	入力	キャリア感知/受信データ有効
	RMIIn_RXD0~ RMIIn_RXD1	入力	受信データ
	RMIIn_RX_ER	入力	受信エラー
	ETn_LINKSTA	入力	PHY リンク状態
	ETn_INT	入力	PHY 割り込み
	ETn_WOL	出力	Wake-on-LAN。Magic Packet が受信されたことを示す信号
	GPTP_CAPTUR En	入力	メディアクロックキャプチャ入力
	GPTP_MATCHn	出力	メディアクロックリカバリ出力
	GPTP_PPSn	出力	PPS 信号
	GPTP_PTPOUT 0~ GPTP_PTPOUT 3	出力	PTP パルスジェネレータ信号
	ET_TAS_STA0~ ET_TAS_STA3	出力	TAS 状態監視
	ETHPHYCLK	出力	PHY 用クロック出力

表 1.15 端子機能 (7/7)

機能	信号	入出力	説明
PDMIF	PDMCLK0~ PDMCLK2	出力	クロック出力端子
	PDMDAT0~ PDMDAT2	入力	データ入力端子
アナログ電源	AVCC0	入力	アナログ電圧源端子。それぞれのモジュールのアナログ電源端子として使用されます。
	AVSS0	入力	アナロググランド端子。それぞれのモジュールのアナロググランド端子として使用されます。この端子には VSS 端子と同じ電圧を供給してください。
	VREFH	入力	ADC16H (ユニット1) と D/A コンバータ用のアナログ基準電圧端子。ADC16H (ユニット1) および D/A コンバータを使用しない場合は AVCC0 に接続してください。
	VREFL	入力	ADC16H および D/A コンバータのアナログ基準グランド端子。ADC16H (ユニット 1) および D/A コンバータを使用しない場合は AVSSO に接続してください。
	VREFH0	入力	ADC16H(ユニット0) 用のアナログ基準電圧端子。ADC16H(ユニット0) を使用しない場合は AVCC0 に接続してください。
	VREFL0	入力	ADC16H 用のアナログ基準グランド端子。ADC16H (ユニット 0) を使用しない場合は AVSS0 に接続してください。
ADC16H	ANxxx	入力	A/D コンバータで処理されるアナログ信号用の入力端子。
	ADTRGm	入力	A/D 変換を開始する外部トリガ信号用の入力端子、アクティブ Low
	ADSTm	出力	AD 変換開始
	ADmFLAG1	出力	AD 変換終了
	ADSYNC	出力	ユニット間の同期信号
DAC12	DAn	出力	D/A コンバータで処理されるアナログ信号用の出力端子。
ACMPHS	VCOUT	出力	コンパレータ出力端子
	IVREFn	入力	コンパレータ用基準電圧入力端子
	IVCMPn	入力	コンパレータ用アナログ電圧入力端子
I/O ポート	Pmn	入出力	汎用入出力端子(m:ポート番号、n:ピン番号)
	P200	入力	汎用入力端子
CEU	VIO_D15~ VIO_D0	入力	CEU データバス端子
	VIO_CLK	入力	CEU クロック端子
	VIO_VD	入力	CEU 垂直同期端子
	VIO_HD	入力	CEU 水平同期端子
	VIO_FLD	入力	フィールド信号端子

1.6 ピン配置図

以下にピン配置図(上面図)を示します。

г	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	1
٨	P609	P113	P115	P112	P302	P915	VLO	VLO	VSS_D CDC	VCC_D CDC	VCC_D CDC	P309	P906	P905	P907	P904	P207	Α
3	P813	PA12	P114	PA11	P300	P303	VLO	VLO	VSS_D CDC	VCC_D CDC	VCC_D CDC	P311	P908	P909	P206	PD01	PD02	В
2	PA06	P613	PA13	P301	P200	P210/T MS/S WDIO	P208/T DI	P110	P308	P305	P307	P911	P312	PD04	PD03	PD05	PD06	С
	PA04	P611	P610	PA14	RES	P211/T CK/S WCLK	P109	P108	P903	P304	P306	P912	PB04	PB07	PB05	PB03	PB01	D
	PA15	P615	P614	P612	P914	P201/ MD	P209/T DO	P111	P902	P310	P910	P913	PB02	PB06	PD07	PB00	P706	E
=[PA02	PA10	PA08	PA09	PC14	VCC_0 8	VSS_0 8	VSS3	VCL3	VSS_0 7	VCC_0 7	P700	P702	P406	P701	P707	P705	F
3	PA00	PA03	PA05	PA07	PC12	VCC_0 9	VSS_0 9	VSS4	VCL4	VSS_0 6	VCC_0	P405	P704	P703	VSS_0 3	VCC_0 5	VSS_0 5	G
1	P504	P503	P505	PA01	PC11	VCC_1 0	VSS_1 0	VSS7	VCL5	VSS5	VCC_0 4	VSS_0 4	P403	VCC_0	VCC_U SBHS	USBH S_DP	USBH S_DM	Н
J	P506	P507	P508	P509	PC13	VCC2_ 11	VSS_1 1	VCL7	VCL6	VSS6	VCL2	VSS2	P404	VSS_0 2	USBH S_RRE F	VSS2_ USBH S	VSS1_ USBH S	J
	PC15	P608	P510	PD00	PC07	VSS_1 2	VSS9	VCL9	VCL8	VSS8	VCL1	VSS1	P410	VCC_0 2	AVCC_ USBH S	P213/X TAL	P212/E XTAL	К
-[PC03	PC02	PC04	PC09	PC05	VCC2_ 12	VSS_1 4	VSS_1 5	VSS10	VCL10	VCL0	VSS0	P414	P402	VCC_0 1	P214/X COUT	P215/X CIN/EX CIN	L
1	PC00	P607	PC01	PC08	PC10	P104	VCC2_ 14	VCC2_ 15	P810	VSS11	VCL11	P412	P710	P411	P408	VBATT	VSS_0 1	М
1	P605	P604	P606	PC06	P107	P106	P105	P811	P013	P011	P807	P708	P712	P714	P711	P713	P401	N
,[P603	P602	P600	P601	P102	P801	P803	P812	P012	P010	P009	P805	P512	P413	P515	P709	P400	Р
٦	VCC2_ 13	P315	P900	P103	P101	P802	P804	P501	AVCC0	AVSS0	P005	P003	P513	P514	P415	P409	P407	R
	P205	P203	P313	P901	P809	P800	P502	P014	VREFL	VREFL 0	P004	P007	P001	P806	P715	P815/U SB_D M	VSS_U SB	Т
ار	P204	P202	P314	VSS_1 3	P808	P100	P500	P015	VREF H	VREF H0	P008	P006	P000	P002	P511	P814/U SB_DP	VCC_U SB	U

図 1.3 289 ピン BGA のピン配置

			0		_		-	0		40	44	40	40	4.4	45
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Α	NC	PA11	P114	P112	P300	VLO	VLO	VSS_D CDC	VCC_D CDC	VCC_D CDC	P309	P312	P908	P905	P206
В	P610	PA12	P115	P113	P302	VLO	VLO	VSS_D CDC	VCC_D CDC	VCC_D CDC	P311	P310	P906	P907	P909
С	P612	P611	PA13	P609	P301	RES	P210/T MS/S WDIO	P211/T CK/S WCLK	P304	P306	P305	P307	PB03	PB00	PB01
D	P615	P613	P614	PA14	P200	P208/T DI	P201/ MD	P209/T DO	P902	P308	PB02	PB04	P705	P707	P706
E	PA15	PA08	P813	PA09	VCC_0 8	VSS_0 8	VSS5	VCL5	VSS_0 7	VCC_0 7	P405	P702	P704	P406	P701
F	PA06	PA10	PA05	PA07	VCC_0 9	VSS_0 9	VSS6	VCL6	VCL4	VSS4	P700	P703	VSS_0 3	VCC_0 5	VSS_0 5
G	PA04	PA02	PA01	PA03	VCC_1 0	VSS_1 0	VSS7	VCL7	VCL3	VSS3	P404	VCC_0	VCC_U SBHS	USBH S_DP	USBH S_DM
Н	PA00	P504	P503	P505	PC14	VSS_1 5	VSS8	VCL8	VCL2	VSS2	P403	VSS_0 2	USBH S_RRE F	VSS2_ USBH S	VSS1_ USBH S
J	P506	P510	P507	P508	PC12	VCC2_ 15	VSS9	VCL9	VCL1	VSS1	P402	VCC_0 2	AVCC_ USBH S	P213/X TAL	P212/E XTAL
K	PC15	P608	PD00	P509	VCC2_ 14	VSS_1 4	VSS10	VCL10	VCL0	VSS0	P410	P407	VCC_0 1	P214/X COUT	P215/X CIN/EX CIN
L	PC13	P604	P603	P107	P106	P104	P105	VSS11	VCL11	P409	P414	P408	P415	VBATT	VSS_0 1
М	PC11	P602	P600	P601	P102	P801	P803	P009	P007	P708	P411	P710	P709	P711	P401
N	VCC2_ 12	P315	VSS_1 3	P103	P101	P802	P804	AVCC0	AVSS0	P005	P001	P712	P714	P713	P400
Ρ	P205	P203	P313	VCC2_ 13	P809	P800	P015	VREFL	VREFL 0	P006	P002	P003	P512	P815/U SB_D M	VSS_U SB
R	P204	P202	P314	VSS_1 2	P808	P100	P014	VREF H	VREF H0	P008	P004	P000	P511	P814/U SB_DP	VCC_U SB
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

図 1.4 224 ピン BGA のピン配置

ſ	1	2	3	4	5	6	7 P210/	8	9	10	11	12	13	14	15	16	17	18	1
l	VSS	P114	P609	P113	P301	P208/ TDI	TMS/ SWDIO	VLO	VLO	VSS_ DCDC	VCC_ DCDC	VCC_ DCDC	P309	P906	P905	P907	P207	vss	Α
3	P813	PA12	P115	PA11	P112	P209/ TDO	P211/ TCK/ SWCLK	VLO	VLO	VSS_ DCDC	VCC_ DCDC	VCC_ DCDC	P311	P908	P909	P904	PD01	PD02	В
	PA06	P613	PA13	P300	P302	P200	RES	P110	P903	P308	P305	P307	P911	P206	PD04	PD03	PD05	PD06	С
	PA04	P611	P610	PA14	P303	P915	P108	P111	P109	P310	P304	P306	P912	PB04	PB07	PB05	PB03	PB01	D
	PA15	P615	P614	P612	P914	P201/ MD				P902	P312	P910	P913	PB02	PB06	PD07	PB00	P706	E
-	PA02	PA10	PA08	PA09	PC14		VCC_ 08	VSS_ 08	VSS3	VCL3	VSS_ 07	VCC_ 07	P700	P702	P406	P701	P707	P705	F
}	PA00	PA03	PA05	PA07	PC12		VCC_ 09	VSS_ 09	VSS4	VCL4	VSS_ 06	VCC_ 06	P405	P704	P703	VSS_ 03	VCC_ 05	VSS_ 05	G
1	P504	P503	P505	PA01	PC11		VCC_ 10	VSS_ 10	VSS7	VCL5	VSS5	VCC_ 04	VSS_ 04		VCC_	VCC_ USBHS	USBHS _DP	USBHS _DM	н
j	P506	P507	P508	P509	PC13		VCC2_ 11	VSS_ 11	VCL7	VCL6	VSS6	VCL2	VSS2		VSS_ 02	USBHS _RREF	VSS2_ USBHS	VSS1_ USBHS	J
	PC15	P608	P510	PD00	VSS	VSS	VSS_ 12	VSS9	VCL9	VCL8	VSS8	VCL1	VSS1		VCC_ 02	AVCC_ USBHS	P213/ XTAL	P212/ EXTAL	к
-	PC10	VSS	PUP	VCC2_ 16	VSS_ 16		VCC2_ 12	VSS_ 14	VSS_ 15	VSS10	VCL10	VCL0	VSS0	P403	P404	VCC_ 01	P214/ XCOUT	P215/ XCIN/ EXCIN	L
1	PC09	VSS	VSS	VCC2_ 17	VSS_ 17			VCC2 _14	VCC2 _15		VSS11	VCL11		P414	P402	P410	VBATT	VSS_ 01	М
١	PC08	VSS	VSS	VCC2_ 18	VSS_ 18		P105			P810				P710	P411	P408	P412	P401	N
,	VSS	VSS	VSS	VCC2_ 19	VSS_ 19	P104	P107	P106	P811	P013	P011	P807	P708	P712	P714	P711	P713	P400	Р
2	P602	VSS	VSS	P600	P601	P102	P801	P803	P812	P012	P010	P009	P805	P512	P413	P515	P709	P407	R
	DNU	VSS	P315	P900	P103	P101	P802	P804	P501	AVCC0	AVSS0	P005	P003	P513	P514	P415	P409	VCC_ USB	Т
ار	VCC2_ 13	P205	P203	P313	P901	P809	P800	P502	P014	VREFL	VREFL 0	P004	P007	P001	P806	P715	P815/ USB_ DM	VSS_ USB	U
,	VSS	P204	P202	P314	VSS_ 13	P808	P100	P500	P015	VREFH	VREFH 0	P008	P006	P000	P002	P511	P814/ USB_ DP	VSS	V
L	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	J

図 1.5 303 ピン BGA のピン配置

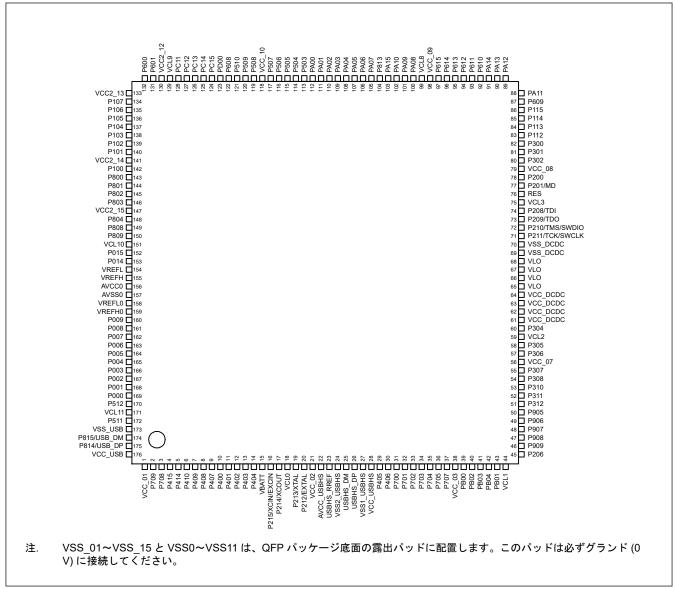


図 1.6 176 ピンのピン配置

1.7 端子一覧

表 1.16 標準製品の端子一覧 (1/8)

		年製品の	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	l/O ポー	ExBus/	外部割り込	SCI/IIC/I3C/SPI/CANFD/USBFS/ USBHS/OSPI/SSIE/SDHI/MMC/ ESWM(GMII, RGMII, MII, RMII)/		ADC16H/ DAC12/	
BGA289	BGA224	HLQFP176	デパッグ、CAC	+	SDRAM	み	PDMIF	GPT/AGT/ULPT/RTC	ACMPHS	CEU
A1	C4	87	_	P609	D7/DQ7	IRQ29	TXD0_C/SDA0_C/MOSI0_C/ MISOA_B/CTX1	GTIU/GTIOC5B/ULPTOA1- DS	AD1FLAG 1	_
A2	B4	84	_	P113	D4/DQ4	IRQ28	RXD0_A/SCL0_A/MISO0_A/ SSLA1_B/SSILRCK0_B/SSIFS0_B/ SD0DAT5_B	GTETRGB/GTIOC2A/ ULPTOA0-DS	ADST1	_
A3	В3	86	_	P115	D6/DQ6	IRQ31-DS	CTS0_A/MOSIA_B/SSITXD0_B/ SD0DAT7_B	GTETRGD/GTIOC5A	AD0FLAG 1	_
A4	A4	83	-	P112	D3/DQ3	IRQ27	TXD0_A/SDA0_A/MOSI0_A/ SSLA2_B/SSIBCK0_B/SD0DAT4_B	GTETRGA/GTIOC3B/ ULPTOB0-DS	ADST0	_
A5	B5	80	_	P302	D0/DQ0	IRQ5	RXD6_B/SCL6_B/MISO6_B/ SD0DAT1_B	GTOUUP/GTIOC4A/ ULPTO0-DS	_	_
A6	_	_	_	P915	_	IRQ8	CTS6_B	GTIOC5A	_	_
A7	A6	68	VLO	_	_	_	_	_	_	_
A8	A7	66	VLO	_	_	_	_	_	_	_
A9	A8	70	VSS DCDC	_	_	_	_	_	_	_
A10	A9	64	VCC DCDC	_	_	_	_	_	_	_
A11	A10	62	VCC_DCDC	_	_	_	_	_	 	_
A12	A11	_	_	P309	_	IRQ25-DS	CTS9 B/ET1 GTX CLK/	GTCPPO8	VCOUT	VIO D10
AIZ	A11			1 303		11(025-00	RGMII1_TXC	0101100	10001	VIO_D10
A13	B13	49	_	P906	_	IRQ9	CTS6_A/USB_ID/SSILRCK1_A/ SSIFS1_A/ET1_RXD0/ RGMII1_RXD0/RMII1_RXD0/ PDMDAT0	GTIOC13B/ULPTO1	AD0FLAG 1	VIO_D5
A14	A14	50	_	P905	_	IRQ8	RXD3_B/SCL3_B/MISO3_B/ ET1_RX_CLK/RGMII1_RXC/ RMII1_REF50CK/PDMDAT1	GTCPPO13	AD1FLAG 1	VIO_D6
A15	B14	48	_	P907	_	IRQ10	SCK6_A/DE6/USB_EXICEN/ SSIBCK1_A/ET1_RXD1/ RGMII1_RXD1/RMII1_RXD1/ PDMCLK2	GTIOC13A/ULPTEE1	ADSYNC	VIO_D4
A16	_	_	_	P904	_	IRQ2	ET1_RXD4	GTIOC11B	_	_
A17	_	_	_	P207	_	IRQ25	ET1_RXD5	GTCPPO3	_	_
B1	E3	104	_	P813	SDCS	IRQ15	SCK7_A/DE7/PDMCLK2	GTETRGA/GTIOC7B	_	VIO_D13
B2	B2	89	_	PA12	D9/DQ9	IRQ11	RXD9_C/SCL9_C/MISO9_C	GTIW/GTIOC6B	_	_
В3	A3	85	_	P114	D5/DQ5	IRQ30-DS	CTS_RTS0_A/SS0_A/DE0/ SSLA0_B/SSIRXD0_B/SD0DAT6_B	GTETRGC/GTIOC2B	ADSYNC	_
B4	A2	88	_	PA11	D8/DQ8	IRQ10	SCK9_C/DE9	GTIV/GTIOC6A	_	_
B5	A5	82	_	P300	D2/DQ2	IRQ4	SCK0_A/DE0/SSLA3_B/ SD0DAT3_B	GTIOC3A/ULPTEVI0-DS	_	_
B6	_	_	_	P303	_	IRQ29-DS	SCK6_B/DE6	GTIOC7B	_	_
B7	В6	67	VLO	_	_	_	_	_	_	_
B8	B7	65	VLO	_	_	_	_	_	_	_
B9	B8	69	VSS_DCDC	_	_	_	_	_	_	_
B10	В9	63	VCC DCDC	_	_	_	_	_	_	_
B11	B10	61	VCC_DCDC	_	_	_	_	_	_	_
B12	B11	52	_	P311	_	IRQ23-DS	SCK3_B/DE3/CRX0/ET1_TX_CLK	GTADSM1/GTCPPO6/ AGTOB1	_	VIO_D8
B13	A13	47	_	P908	_	IRQ11	TXD6_A/SDA6_A/MOSI6_A/CRX1/ USB_OVRCURB/USBHS_ID/ ET1_RXD2/RGMII1_RXD2/ PDMCLK1	GTIOC12B/ULPTEVI1	ADST1	VIO_D3
B14	B15	46	_	P909	_	IRQ21-DS	RXD6_A/SCL6_A/MISO6_A/CTX1/ USB_OVRCURA/USBHS_EXICEN/ ET1_RXD3/RGMII1_RXD3/ PDMCLK0	GTIOC12A/ULPTOA1	ADST0	VIO_D2
B15	A15	45	CLKOUT	P206	CS7	IRQ0-DS	USB_VBUSEN/SSIDATA1_A/ SD0DAT7_C/ET1_RX_DV/ RGMII1_RX_CTL/RMII1_CRS_DV	GTIU/GTCPP00/ULPT0B1	_	VIO_D0
B16	_	_	_	PD01	_	IRQ22	SCK8_C/DE8/SD0DAT2_C/ ET1_RXD6	GTCPPO2	_	_
B17	_	_	_	PD02	_	IRQ21	TXD8_C/SDA8_C/MOSI8_C/ SD0DAT1_C/ET1_RXD7	GTCPPO1	-	_

表 1.16 標準製品の端子一覧 (2/8)

BGA289	BGA224	HLQFP176	電源、システム、クロック、 デバッグ、CAC	I/O ポー ト	ExBus/ SDRAM	外部割り込み	SCI/IIC/I3C/SPI/CANFD/USBFS/ USBHS/OSPI/SSIE/SDHI/MMC/ ESWM(GMII, RGMII, MII, RMII)/ PDMIF	GPT/AGT/ULPT/RTC	ADC16H/ DAC12/ ACMPHS	CEU
C1	F1	106	_	PA06	CS1/CKE	IRQ17	CTS2_C/SD0DAT1_A/PDMDAT1	GTETRGC/GTIOC7B	_	VIO_D11
C2	D2	95	_	P613	D15/ DQ15	IRQ19	CTS0_C/USBHS_OVRCURB	GTETRGA/GTIOC9B/ AGTO1	_	_
C3	C3	90	_	PA13	D10/ DQ10	IRQ12	CTS_RTS9_C/SS9_C/DE9	GTOVUP/GTIOC10A	_	_
C4	C5	81	_	P301	D1/DQ1	IRQ6	TXD6_B/SDA6_B/MOSI6_B/ SD0DAT2_B	GTOULO/GTIOC4B/ AGTIO0/ULPTEE0-DS	_	_
C5	D5	78	_	P200	_	NMI	_	_	_	_
C6	C7	72	TMS/SWDIO	P210	_	IRQ24	CTS_RTS9_B/SS9_B/DE9	GTOULO/GTIOC0B	_	-
C7	D6	74	TDI	P208	_	IRQ3	RXD9_B/SCL9_B/MISO9_B/CRX1	GTOVLO/GTIOC1B	VCOUT	_
C8	_	_	_	P110	_	IRQ20	SD0DAT4_C	GTIOC9B	_	_
C9	D10	54	TCLK	P308	_	IRQ26-DS	CTS3_B/SD0CLK_B/ET1_TX_ER/ ETHPHYCLK	GTIU/GTCPPO9/ULPTOB1	_	VIO_D11
C10	C11	58	TDATA2	P305	_	IRQ8	SD0WP/ET1_TXD2/RGMII1_TXD2	GTOVUP/GTCPPO12/ ULPTEE1	_	VIO_D14
C11	C12	55	TDATA0	P307	_	IRQ27-DS	CTS_RTS6_A/SS6_A/DE6/ SD0CMD_B/ET1_TXD0/ RGMII1_TXD0/RMII1_TXD0	GTIV/GTCPPO10/ ULPTOA1	_	VIO_D12
C12	_	_	_	P911	_	IRQ6	ET1_TXD5	GTIOC3B	_	_
C13	A12	51	_	P312	_	IRQ22-DS	CTS_RTS3_B/SS3_B/DE3/CTX0/ ET1_RX_ER/RMII1_RX_ER/ PDMDAT2	GTADSM0/GTCPPO5/ AGTOA1	_	VIO_D7
C14	_	_	_	PD04	_	IRQ20	CTS_RTS8_C/SS8_C/DE8/ USBHS_ID/SD0CMD_C/ ET0_RXD5	GTIOC3A	_	_
C15	_	_	_	PD03	_	IRQ21	RXD8_C/SCL8_C/MISO8_C/ USBHS_EXICEN/SD0DAT0_C/ ET0_RXD4	GTIOC3B	_	_
C16	_	_	_	PD05	_	IRQ19	CTS8_C/USBHS_OVRCURB/ SD0CLK_C/ET0_RXD6	GTIOC2B	_	_
C17	_	_	_	PD06	_	IRQ18	USBHS_OVRCURA/SD0WP/ ET0_RXD7	GTIOC2A	_	_
D1	G1	108	_	PA04	A1/ DQM3	IRQ19	SCK2_C/DE2/SD0DAT3_A	GTIU/GTIOC4B	ADST0	VIO_D9
D2	C2	93	CACREF/CLKOUT	P611	D13/ DQ13	IRQ17	SCK0_C/DE0/MOSIA_B/ USBHS_VBUSEN	GTOULO/GTIOC4B	_	_
D3	B1	92	_	P610	D12/ DQ12	IRQ16	RXD0_C/SCL0_C/MISO0_C/ RSPCKA_B/CRX1	GTOUUP/GTIOC4A/ ULPTOB1-DS	_	_
D4	D4	91	_	PA14	D11/ DQ11	IRQ13	TXD9_C/SDA9_C/MOSI9_C	GTOVLO/GTIOC10B	_	_
D5	C6	76	RES	_	_	_	_	_	_	_
D6	C8	71	TCK/SWCLK	P211	_	IRQ23	SCK9_B/DE9	GTOUUP/GTIOC0A	_	_
D7	_	_	_	P109	_	IRQ23	SD0DAT5_C	GTIOC10A	_	_
D8	_	_	_	P108	_	IRQ24	SD0DAT6_C	GTIOC10B	_	_
D9	_	_	_	P903	_	IRQ1	_	GTIOC11A	_	_
D10	C9	60	TDATA3	P304	_	IRQ9	SD0DAT0_B/ET1_TXD3/ RGMII1_TXD3	GTOVLO/GTIOC7A/ ULPTO1	_	VIO_D15
D11	C10	57	TDATA1	P306	_	IRQ28-DS	SD0CD/ET1_TXD1/RGMII1_TXD1/ RMII1_TXD1	GTIW/GTCPPO11/ ULPTEVI1	_	VIO_D13
D12	_	_	_	P912	_	IRQ5	ET1_TXD6	GTIOC3A	_	_
D13	D12	42	_	PB04	_	IRQ9	SCK5_C/DE5/ET0_TXD3/ RGMII0_TXD3	GTCPPO3	AD0FLAG 1	VIO_CLK
D14	_	_	_	PB07	_	IRQ1	ET0_TXD5	GTIOC9B	_	_
D15	_	-	_	PB05	_	IRQ15	CTS5_C/ET0_TXD7	GTCPPO4	_	_
D16	C13	41	_	PB03	_	IRQ13	TXD5_C/SDA5_C/MOSI5_C/ ET0_TXD2/RGMII0_TXD2	GTCPPO1	ADSYNC	VIO_HD
D17	C15	43	_	PB01	ALE	IRQ12	CTS_RTS1_B/SS1_B/DE1/ ET0_TX_CLK	GTCPPO2	AD1FLAG 1	VIO_FLD
E1	E1	103	_	PA15	EBCLK/ SDCLK	IRQ14	CTS9_C/PDMCLK1	GTIOC7A	_	VIO_D14
E2	D1	97	_	P615	WR2/BC 2/DQM2	IRQ7	TXD7_A/SDA7_A/MOSI7_A/ USBHS_EXICEN	GTETRGC/GTCPPO10	_	_

表 1.16 標準製品の端子一覧 (3/8)

BGA289	BGA224	HLQFP176	電源、システム、クロック、 デバッグ、CAC	 	ExBus/ SDRAM	外部割り込み	SCI/IIC/I3C/SPI/CANFD/USBFS/ USBHS/OSPI/SSIE/SDHI/MMC/ ESWM(GMII, RGMII, MII, RMII)/ PDMIF	GPT/AGT/ULPT/RTC	ADC16H/ DAC12/ ACMPHS	CEU
E3	D3	96	_	P614	WR/WR0 /DQM0	IRQ20	RXD7_A/SCL7_A/MISO7_A/ USBHS_ID	GTETRGB/GTCPPO9/ AGTO0	_	_
E4	C1	94	_	P612	D14/ DQ14	IRQ18	CTS_RTS0_C/SS0_C/DE0/ SSLA0_B/USBHS_OVRCURA	GTIOC9A	_	-
E5	_	_	_	P914	_	IRQ9	CTS_RTS6_B/SS6_B/DE6	GTIOC5B	_	_
E6	D7	77	MD	P201	_	IRQ4	_	_	_	_
E7	D8	73	TDO/SWO/CLKOUT	P209	_	IRQ25	TXD9 B/SDA9 B/MOSI9 B/CTX1	GTOVUP/GTIOC1A	1_	_
E8	_	_	_	P111	_	IRQ19	SD0DAT3 C	GTIOC9A	1_	_
E9	D9	_	_	P902	ALE	IRQ0	AUDIO CLK/ETHPHYCLK	GTCPPO13	1_	VIO D1
E10	B12	53	_	P310	_	IRQ24-DS	TXD3_B/SDA3_B/MOSI3_B/ ET1_TX_EN/RGMI1_TX_CTL/ RMI1_TX_EN	GTCPPO7/AGTEE1	_	VIO_D9
E11	_	_	_	P910	_	IRQ7	ET1_TXD4	GTCPPO12	_	_
E12	_	_	CLKOUT	P913	_	IRQ3	ET1_TXD7	GTCPPO11	_	_
E13	D11	40	_	PB02	_	IRQ11	RXD5_C/SCL5_C/MISO5_C/ ET0_TXD1/RGMII0_TXD1/ RMII0_TXD1	GTCPPO0	ADST1	VIO_VD
E14	_	_	_	PB06	_	IRQ0	CTS_RTS5_C/SS5_C/DE5/ ET0_TXD6	GTIOC9A	_	_
E15	_	_	_	PD07	_	IRQ17	USBHS_VBUSEN/SD0CD/ ET0_TXD4	GTCPP00	_	_
E16	C14	39		PB00	_	IRQ10	SCK1_B/DE1/USBHS_VBUSEN/ ET0_TXD0/RGMII0_TXD0/ RMII0_TXD0/PDMDAT2	GTCPPO4	ADST0	_
E17	D15	_	_	P706	_	IRQ7	RXD1_B/SCL1_B/MISO1_B/ USBHS_OVRCURB-DS/ ET0_GTX_CLK/RGMII0_TXC/ ETHPHYCLK/PDMDAT0	GTCPPO2/AGTIO0	_	VIO_D10
F1	G2	110	_	PA02	A3	IRQ31	RXD2_C/SCL2_C/MISO2_C/ SD0DAT5_A	GTIW/GTCPPO9	ADSYNC	VIO_D7
F2	F2	102	_	PA10	CS2/RAS	IRQ4	SCK5_B/DE5/PDMCLK0	GTCPPO13	-	VIO_D15
F3	E2	100	_	PA08	CS0/WE	IRQ6	RXD5_B/SCL5_B/MISO5_B	GTETRGD/GTCPPO11	_	_
F4	E4	101	_	PA09	CS3/CAS	IRQ5	TXD5_B/SDA5_B/MOSI5_B	GTCPPO12	_	_
F5	H5	125	_	PC14	D16/ DQ16	IRQ0	TXD6_C/SDA6_C/MOSI6_C/ ET0_WOL	GTADSM1/GTCPPO9	_	_
F6	E5	79	VCC_08	_	_	_	_	_	_	_
F7	E6	_	VSS_08	_	_	_	_	_	_	_
F8	G10	_	VSS3	_	_	_	_	_	_	_
F9	G9	75	VCL3	_	_	_	_	_	1_	_
F10	E9	_	VSS 07	_	_	_	_	_	_	_
F11	E10	56	VCC 07	_	_	_	_	_	_	_
F12	F11	31	_	P700	_	IRQ16-DS	RXD2_B/SCL2_B/MISO2_B/ MISOA_C/SSIDATA1_B/SD1WP/ ET0_RXD2/RGMII0_RXD2	GTIOC5A	_	VIO_D4
F13	E12	33	_	P702	_	IRQ18-DS	CTS2_B/RSPCKA_C/SSIBCK1_B/ SD1DAT5_B/ET0_RXD0/ RGMII0_RXD0/RMII0_RXD0	GTIOC6A/ULPTO0	_	VIO_D6
F14	E14	30	_	P406	_	IRQ31	TXD2_B/SDA2_B/MOSI2_B/ SSLA3_C/SSIRXD0_A/SD1CD/ ET0_RXD3/RGMII0_RXD3	GTIOC1B	_	VIO_D3
F15	E15	32	_	P701	_	IRQ17-DS	CTS_RTS2_B/SS2_B/DE2/ MOSIA_C/SSILRCK1_B/ SSIFS1_B/SDIDAT4_B/ ET0_RXD1/RGMII0_RXD1/ RMII0_RXD1	GTIOC5B/ULPTO1	_	VIO_D5
F16	D14	37	_	P707	_	IRQ8	TXD1_B/SDA1_B/MOSI1_B/ USBHS_OVRCURA-DS/ ET0_TX_ER/ETHPHYCLK/ PDMDAT1	GTCPPO3	_	VIO_D11
F17	D13	36	_	P705	_	IRQ19	CTS1_B/SSLA2_C/CRX0/ ET0_TX_EN/RGMII0_TX_CTL/ RMII0_TX_EN/PDMCLK2	GTADSM1/GTCPPO1/ AGTIO0	_	VIO_D9
G1	H1	112	_	PA00	A5	IRQ22	CTS_RTS5_B/SS5_B/DE5/ SD0DAT7_A	GTOVLO/GTCPPO7	AD1FLAG	VIO_D5
G2	G4	109	_	PA03	A2	IRQ20	TXD2_C/SDA2_C/MOSI2_C/ SD0DAT4_A	GTIV/GTCPPO10	ADST1	VIO_D8

表 1.16 標準製品の端子一覧 (4/8)

BGA289	BGA224	HLQFP176	電源、システム、クロック、 デバッグ、CAC	 	ExBus/ SDRAM	外部割り込み	SCI/IIC/I3C/SPI/CANFD/USBFS/ USBHS/OSPI/SSIE/SDHI/MMC/ ESWM(GMII, RGMII, MII, RMII)/ PDMIF	GPT/AGT/ULPT/RTC	ADC16H/ DAC12/ ACMPHS	CEU
G3	F3	107	_	PA05	A0/BC0/ DQM1	IRQ18	CTS_RTS2_C/SS2_C/DE2/ SD0DAT2_A/PDMDAT2	GTETRGD/GTIOC4A	-	VIO_D10
G4	F4	105	_	PA07	RD	IRQ16	CTS7_A/SD0DAT0_A/PDMDAT0	GTETRGB/GTIOC7A	VCOUT	VIO_D12
G5	J5	127	_	PC12	D18/ DQ18	IRQ2	SCK6_C/DE6/ET0_MDIO	GTCPPO11	_	_
G6	F5	98	VCC_09	_	_	_	_	_	1_	_
G7	F6	_	VSS 09	_	_	_	_	_	 	_
G8	F10	_	VSS4	_	_	_	_	_	_	_
G9	F9	_	VCL4	_	_		_	_	_	_
G10	_	_	VSS_06	_	_		_	_	+_	_
G11	_	_	VCC_06	_	_	_	_	_	_	_
G12	E11	29	_	P405	_	IRQ30	SCK2_B/DE2/SSITXD0_A/ SD1DAT3_B/ET0_RX_DV/ RGMII0_RX_CTL/RMII0_CRS_DV	GTIOC1A/AGTIO1	-	VIO_D2
G13	E13	35	_	P704	_	IRQ26	SSLA1_C/CTX0/SD1DAT7_B/ ET0_RX_ER/RMII0_RX_ER/ PDMCLK1	GTADSM0/GTCPP00/ AGT00	_	VIO_D8
G14	F12	34	_	P703	_	IRQ19-DS	SSLA0_C/SD1DAT6_B/ ET0_RX_CLK/RGMII0_RXC/ RMII0_REF50CK/PDMCLK0	GTIOC6B/AGTO1	VCOUT	VIO_D7
G15	F13	_	VSS_03	_	_	_	_	_	_	_
G16	F14	_	VCC_05	_	_	_	_	_	_	_
G17	F15	_	VSS_05	_	_	_	_	_	_	_
H1	H2	114	_	P504	A7	IRQ7	SD0WP	GTOULO/GTCPPO1	_	VIO_D3
H2	НЗ	113	_	P503	A6	IRQ6	SD0CD	GTOUUP/GTCPPO6	_	VIO_D4
НЗ	H4	115	_	P505	A8	IRQ8	SD0CLK_A	GTOWUP/GTCPPO2	_	VIO_D2
H4	G3	111	_	PA01	A4	IRQ21	CTS5_B/SD0DAT6_A	GTOVUP/GTCPP08	AD0FLAG 1	VIO_D6
H5	M1	128	_	PC11	D19/ DQ19	IRQ3	CTS_RTS6_C/SS6_C/DE6/ ET0_MDC	GTCPPO12	_	_
H6	G5	118	VCC_10	_	_	_	_	_	_	_
H7	G6	_	VSS_10	_	_	_	_	_	_	_
H8	G7	_	VSS7	_	_	_	_		_	_
H9	E8	_	VCL5	_	_	_	_	_	_	_
H10	E7	_	VSS5	_	_	_	_	_	_	_
H11	_	_	VCC_04	_	_	_	_	_	_	_
H12	_	_	VSS_04	_	_	_	_	_	_	_
H13	H11	13	_	P403	_	IRQ14-DS	CTS_RTS1_A/SS1_A/DE1/ SSIBCK0_A/SD1DAT1_B/ ET1_WOL	GTIOC3A/RTCIC1	AD0FLAG 1	_
H14	G12	38	VCC_03	_	_	_	_	_	_	_
H15	G13	28	VCC_USBHS	_	-	_	_	_	_	_
H16	G14	26	USBHS_DP	_	_	_	_	_	_	_
H17	G15	25	USBHS_DM	_	_	_	_	_	_	_
J1	J1	116	_	P506	A9	IRQ9	SD0CMD_A	GTOWLO/GTCPPO3	_	VIO_D1
J2	J3	117	_	P507	A10	IRQ10	CTS_RTS7_A/SS7_A/DE7/ ET_TAS_STA0	GTADSM0/GTIOC0A	_	VIO_D0
J3	J4	119	_	P508	A11	IRQ1	CTS5_A/ET_TAS_STA1	GTADSM1/GTIOC0B	_	VIO_VD
J4	K4	120	_	P509	A12	IRQ2	CTS_RTS5_A/SS5_A/DE5/ ET_TAS_STA2	GTIOC1A/ULPTEVI1	_	VIO_HD
J5	L1	126	_	PC13	D17/ DQ17	IRQ1	RXD6_C/SCL6_C/MISO6_C/ ET0_INT	GTCPPO10	_	_
J6	_	_	VCC2_11	_	_	_	_	_	_	_
J7	_	_	VSS_11	_	_	_	_	_	_	_
J8	G8	_	VCL7	_	_	_	_	_	_	_
J9	F8	_	VCL6	_	_	_	_	_	_	_
J10	F7	_	VSS6	_	_	_	_	_	-	_

表 1.16 標準製品の端子一覧 (5/8)

BGA289	BGA224	HLQFP176	電源、システム、クロック、 デパッグ、CAC	 I/O ポー ト	ExBus/ SDRAM	外部割り込み	SCI/IIC/I3C/SPI/CANFD/USBFS/ USBHS/OSPI/SSIE/SDHI/MMC/ ESWM(GMII, RGMII, MII, RMII)/ PDMIF	GPT/AGT/ULPT/RTC	ADC16H/ DAC12/ ACMPHS	CEU
J11	Н9	59	VCL2	_	_	_	_	_	_	_
J12	H10	_	VSS2	_	_	_	_	_	_	_
J13	G11	14	_	P404	_	IRQ15-DS	CTS1_A/SSILRCK0_A/SSIFS0_A/ SD1DAT2_B/ET0_WOL	GTIOC3B/RTCIC2	AD1FLAG	_
J14	H12	_	VSS_02	_	_	_	_	_	_	_
J15	H13	23	USBHS_RREF	-	_	_	_	_	_	_
J16	H14	24	VSS2_USBHS	-	_	_	_	_	_	_
J17	H15	27	VSS1_USBHS	-	_	_	_	_	_	-
K1	K1	124	_	PC15	A16	IRQ30	CTS6_C/CRX1	GTADSM0	_	_
K2	K2	122	CACREF	P608	A14	IRQ22	TXD5_A/SDA5_A/MOSI5_A	GTOWUP/GTCPPO4	_	VIO_FLD
К3	J2	121	_	P510	A13	IRQ3	RXD5_A/SCL5_A/MISO5_A/ ET_TAS_STA3	GTIOC1B/ULPTEVI0	_	VIO_CLK
K4	КЗ	123	_	PD00	A15	IRQ23	SCK5_A/DE5/CTX1	GTOWLO/GTCPP05	_	_
K5	_	_	_	PC07	D23/ DQ23	IRQ21	OM_1_RESET	GTCPPO0	_	_
K6	R4	_	VSS_12	_	_	_	_	_	_	_
K7	J7	_	VSS9	_	_	_	_	_	_	_
K8	J8	129	VCL9	-	_	_	_	_	_	_
K9	Н8	99	VCL8	-	_	_	_	_	_	_
K10	H7	_	VSS8	-	_	_	_	_	_	_
K11	J9	44	VCL1	-	_	_	_	_	_	_
K12	J10	_	VSS1	_	_	_	_	_	_	_
K13	K11	6	_	P410	A19	IRQ5	SCK3_A/DE3/SCL0_A/ USB_OVRCURB-DS/ USBHS_OVRCURB/ GPTP_MATCH0	GTOVLO/GTIOC9B/ AGTOB1	ADST0	_
K14	J12	21	VCC_02	-	_	_	_	_	_	_
K15	J13	22	AVCC_USBHS	-	_	_	_	_	_	_
K16	J14	19	XTAL	P213	_	IRQ2	TXD1_C/SDA1_C/MOSI1_C	GTETRGC/GTIOC0A/ ULPTEE0	ADTRG1	_
K17	J15	20	EXTAL	P212	_	IRQ3	RXD1_C/SCL1_C/MISO1_C	GTETRGD/GTIOC0B/ AGTEE1	_	_
L1	_	_	_	PC03	D27/ DQ27	IRQ25	TXD7_C/SDA7_C/MOSI7_C/ OM_1_SIO4	GTCPPO4	_	_
L2	_	_	_	PC02	D28/ DQ28	IRQ26	SCK7_C/DE7/OM_1_SIO3	GTCPPO5		_
L3	_		_	PC04	D26/ DQ26	IRQ24	RXD7_C/SCL7_C/MISO7_C/ OM_1_SIO2	GTCPPO3		_
L4	_	_	_	PC09	D21/ DQ21	IRQ5	OM_1_RSTO1	_	_	_
L5	_	_	_	PC05	D25/ DQ25	IRQ23	OM_1_CS1	GTCPPO2	_	_
L6	N1	130	VCC2_12		_	_	_	_		_
L7	K6	_	VSS_14	-	_	_	_	_		_
L8	H6	_	VSS_15	-	_	_	_	_		_
L9	K7	_	VSS10	_	_	_	_	_		_
L10	K8	151	VCL10	_	_	_	_	_		_
L11	K9	18	VCL0	_	_	_	_	_		_
L12	K10	_	VSS0	_	_	_	_	_	_	_
L13	L11	5	_	P414	A23	IRQ9	RXD4_B/SCL4_B/MISO4_B/ SSLB0_B/CRX1/ET1_MDIO	GTIOC0B		VIO_CLK
L14	J11	12	CACREF	P402	_	IRQ4-DS	SCK1_A/DE1/CRX0/AUDIO_CLK/ SD1DAT0_B/ET0_LINKSTA	RTCIC0		_
L15	K13	1	VCC_01	_	_	_	_	_	-	_
L16	K14	17	XCOUT	P214	_	IRQ21	_	_		_
L17	K15	16	XCIN/EXCIN	P215	_	IRQ20	_	_	-	_
M1	_	_	_	PC00	D30/ DQ30	IRQ28	CTS_RTS7_C/SS7_C/DE7/ OM_1_SIO5	GTCPPO7	_	_

表 1.16 標準製品の端子一覧 (6/8)

BGA289	BGA224	HLQFP176	電源、システム、クロック、 デパッグ、CAC	/O ポー -	ExBus/ SDRAM	外部割り込み	SCI/IIC/I3C/SPI/CANFD/USBFS/ USBHS/OSPI/SSIE/SDHI/MMC/ ESWM(GMII, RGMII, MII, RMII)/ PDMIF	GPT/AGT/ULPT/RTC	ADC16H/ DAC12/ ACMPHS	CEU
M2	_	_	_	P607	D31/ DQ31	IRQ23	OM_1_DQS	_	-	-
M3	_	_	_	PC01	D29/ DQ29	IRQ27	CTS7_C/OM_1_SIO0	GTCPPO6	_	_
M4	_	_	_	PC08	D22/ DQ22	IRQ29	OM_1_CS0	GTCPPO8	_	_
M5	_	_	_	PC10	D20/ DQ20	IRQ4	OM_1_WP1	GTCPPO13	-	-
M6	L6	137	_	P104	_	IRQ1	CTS9_A/SSLB1_A/OM_0_CS1/ GPTP_MATCH0	GTETRGB/GTIOC1B	AD0FLAG	_
M7	K5	141	VCC2_14	_	_	_	_	_	Ī-	_
M8	J6	147	VCC2_15	_	_	_	_	_	_	_
M9	_	_	_	P810	_	IRQ21	SCK7_B/DE7/SD1DAT2_A/ PDMCLK0	GTIOC10A/ULPTOA0	_	_
M10	L8	_	VSS11	_	_	_	_	_	_	_
M11	L9	171	VCL11	_	_	_	_	_	1_	_
M12	_	_	_	P412	A21	IRQ20-DS	CTS3_A/USB_EXICEN/ USBHS_EXICEN/GPTP_PTPOUT0	GTOULO/GTCPPO8/ AGTEE1	_	_
M13	M12	_	_	P710	CS5	IRQ17	CTS4_B/SSLB3_B/ET0_LINKSTA	GTIOC11B	_	VIO_D12
M14	M11	_	CACREF	P411	A20	IRQ4	CTS_RTS3_A/SS3_A/DE3/ USB_ID/USBHS_ID/ GPTP_PTPOUT1	GTOVUP/GTIOC9A/ AGTOA1	_	_
M15	L12	8	_	P408	A17	IRQ7	RXD3_A/SCL3_A/MISO3_A/ SCL0_B/USB_VBUSEN/ USBHS_VBUS/GPTP_PTPOUT2	GTOWLO/GTIOC10A/ ULPTOB0	ADSYNC	_
M16	L14	15	VBATT	_	_	_	_	_	_	_
M17	L15	_	VSS_01	_	_	_	_	_	_	_
N1	_	_	_	P605	_	IRQ25	CTS0_B/OM_1_SIO1	GTIOC8A	_	_
N2	L2	_	_	P604	_	IRQ26	CTS_RTS0_B/SS0_B/DE0/ OM_1_SIO7	GTIOC8B	-	_
N3	_	_	_	P606	WR3/BC	IRQ24	OM_1_SIO6	_	-	_
N4	_	_	_	PC06	D24/ DQ24	IRQ22	OM_1_ECSINT1	GTCPPO1	_	_
N5	L4	134	_	P107	_	IRQ31	CTS4_A/OM_0_CS0/ET1_INT	GTOWUP/GTIOC8A/ AGTOA0	ADST0	_
N6	L5	135	_	P106	_	IRQ16	CTS8_B/SSLB3_A/OM_0_RESET/ ET1_LINKSTA	GTOWLO/GTIOC8B/ AGTOB0/ULPTEE1-DS	ADST1	_
N7	L7	136	_	P105	_	IRQ0	CTS_RTS8_B/SS8_B/DE8/ SSLB2_A/OM_0_ECSINT1/ GPTP_CAPTURE0	GTIOC1A/ULPTO1-DS	ADSYNC	_
N8	_	_	_	P811	_	IRQ22	CTS7_B/USB_ID/SD1DAT3_A/ PDMCLK1	GTIOC10B/ULPTOB0	_	_
N9	_	_	_	P013	_	IRQ14	_	_	AN013	_
N10	_	_	_	P011	_	IRQ16	_	_	AN011	_
N11	_	_	_	P807	_	IRQ11	_	GTIOC13A	_	_
N12	M10	3	CACREF	P708	WR1/BC	IRQ11	SCK4_B/DE4/SDA2_A/MOSIB_B/ AUDIO_CLK/ET0_MDC	GTCPPO6	-	VIO_VD
N13	N12	_	_	P712	_	IRQ2	CTS1_C/SSLB1_B/ GPTP_CAPTURE1	GTIOC2B/AGTOB0	_	_
N14	N13	_	_	P714	_	IRQ13	TXD4_C/SDA4_C/MOSI4_C/ GPTP_PPS1	GTIOC12B	_	-
N15	M14	_	_	P711	_	IRQ3	CTS_RTS1_C/SS1_C/DE1/ SSLB2_B/GPTP_PPS0	GTIOC11A/AGTEE0	_	-
N16	N14	_	_	P713	-	IRQ14	CTS4_C/GPTP_MATCH1	GTIOC2A/AGTOA0	_	-
N17	M15	11	_	P401	_	IRQ5-DS	RXD1_A/SCL1_A/MISO1_A/ I3C_SDA0/CTX0/SD1CMD_B	GTETRGA/GTIOC6B	_	VIO_D1
P1	L3	_	_	P603	_	IRQ27	TXD0_B/SDA0_B/MOSI0_B/ OM_1_SCLK	GTIOC7A/ULPTO0	_	_
P2	M2	_	_	P602	_	IRQ28	RXD0_B/SCL0_B/MISO0_B/ OM_1_SCLKN	GTIOC7B/ULPTEE0	_	_
P3	M3	132	CACREF	P600	-	IRQ30	OM_0_RSTO1/ET1_WOL	GTIOC6B/ULPTEVI1-DS	_	_

表 1.16 標準製品の端子一覧 (7/8)

BGA289	BGA224	HLQFP176	電源、システム、クロック、 デパッグ、CAC	/O ポー ト	ExBus/ SDRAM	外部割り込み	SCI/IIC/I3C/SPI/CANFD/USBFS/ USBHS/OSPI/SSIE/SDHI/MMC/ ESWM(GMII, RGMII, MII, RMII)/ PDMIF	GPT/AGT/ULPT/RTC	ADC16H/ DAC12/ ACMPHS	CEU
P4	M4	131	_	P601	_	IRQ29	SCK0_B/DE0/OM_0_WP1	GTIOC6A/ULPTEVIO/ RTCOUT	_	_
P5	M5	139	_	P102	_	IRQ17	TXD9_A/SDA9_A/MOSI9_A/ RSPCKB_A/CRX0/OM_0_SIO4	GTOWLO/GTIOC2B/ AGTO0	ADTRG0	_
P6	M6	144	_	P801	_	IRQ12	TXD2_A/SDA2_A/MOSI2_A/ OM_0_DQS/GPTP_PPS1	GTIV/GTIOC11B/AGTOB0	_	_
P7	M7	146	_	P803	_	IRQ19	SCK2_A/DE2/OM_0_SIO1	GTETRGC/GTIOC12B	_	_
P8	_	_	_	P812	_	IRQ23	CTS_RTS7_B/SS7_B/DE7/ USB_EXICEN/SD1DAT4_A/ PDMCLK2	GTIOC11A	AN022	_
P9	_	_	_	P012	_	IRQ15	_	_	AN012	_
P10	_	_	_	P010	_	IRQ14	_	_	AN010	_
P11	M8	160	_	P009	_	IRQ13-DS	_	_	AN009/ IVREF1	_
P12	_	_	_	P805	_	IRQ30	TXD8_A/SDA8_A/MOSI8_A/ ET1_MDIO	_	AN017/ IVCMP0	VIO_D15
P13	P13	170	_	P512	_	IRQ14	CTS8_A/SCL1_A/CTX1/ET1_INT	GTIOC0A	_	_
P14	_	_	_	P413	A22	IRQ18	ET_TAS_STA3	GTOUUP/GTCPPO7/ ULPTEE1	_	_
P15	_	_	_	P515	_	IRQ12	CTS_RTS4_C/SS4_C/DE4/ SCL2_B/ET_TAS_STA0	GTIOC13A	_	_
P16	M13	2	_	P709	CS4	IRQ10	CTS_RTS4_B/SS4_B/DE4/ SCL2_A/MISOB_B/ET0_MDIO	GTCPP05	_	VIO_D13
P17	N15	10	_	P400	_	IRQ0	TXD1_A/SDA1_A/MOSI1_A/ I3C_SCL0/AUDIO_CLK/SD1CLK_B	GTIOC6A/AGTIO1	ADTRG1	VIO_D0
R1	P4	133	VCC2_13	_	_	_	_	_	_	_
R2	N2	_	_	P315	_	IRQ29	SCK3_C/DE3/SSLA3_A	_	_	-
R3	_	_	_	P900	_	IRQ30	CTS3_C	GTADSM0	_	_
R4	N4	138	_	P103	_	IRQ16	CTS_RTS9_A/SS9_A/DE9/ SSLB0_A/CTX0/OM_0_SIO2/ GPTP_PPS0	GTOWUP/GTIOC2A	AD1FLAG 1	_
R5	N5	140	_	P101	_	IRQ1	RXD9_A/SCL9_A/MISO9_A/ MOSIB_A/OM_0_SIO3/ GPTP_CAPTURE1	GTETRGB/GTIOC8A/ AGTEE0	_	_
R6	N6	145	_	P802	_	IRQ18	RXD2_A/SCL2_A/MISO2_A/ OM_0_SIO6	GTIW/GTIOC12A	-	_
R7	N7	148	_	P804	_	IRQ14	CTS_RTS2_A/SS2_A/DE2/ OM_0_SIO7	GTETRGD/GTIOC13A	_	_
R8	_	_	_	P501	_	IRQ25	TXD8_B/SDA8_B/MOSI8_B/ USB_OVRCURA/SD1DAT6_A/ PDMDAT1	GTIOC12A	AN020	_
R9	N8	156	AVCC0	_	_	_	_	_	_	_
R10	N9	157	AVSS0	_	_	_	_	_	_	_
R11	N10	164	_	P005	_	IRQ10-DS	_	_	AN005/ IVCMP3	_
R12	P12	166	_	P003	_	IRQ29	_	_	AN003/ IVCMP3	_
R13	_	_	_	P513	_	IRQ31	SCK8_A/DE8/ET0_INT	GTIOC13B	AN016/ IVCMP0	VIO_FLD
R14	_	ı	_	P514	_	IRQ13	SCK4_C/DE4/SDA2_B/ ET_TAS_STA1	GTIOC13B	_	_
R15	L13	4	_	P415	WAIT	IRQ8	TXD4_B/SDA4_B/MOSI4_B/ RSPCKB_B/CTX1/ET1_MDC	GTIOC0A	_	VIO_HD
R16	L10	7	_	P409	A18	IRQ6	TXD3_A/SDA3_A/MOSI3_A/ SDA0_A/USB_OVRCURA-DS/ USBHS_OVRCURA/ GPTP_CAPTURE0	GTOWUP/ULPTOA0	ADST1	_
R17	K12	9	_	P407	CS6	IRQ22	SCK1_C/DE1/SDA0_B/ USB_VBUS/USBHS_VBUSEN/ GPTP_PTPOUT3	GTIOC10B/AGTIO0/ RTCOUT	ADTRG0	_
T1	P1	-	CLKOUT	P205	_	IRQ1-DS	TXD4_A/SDA4_A/MOSI4_A/ SCL1_B/SSLA1_A/ USB_OVRCURA/SD1CD	GTIV/GTIOC4A/AGTO1	_	_
T2	P2	_	_	P203	_	IRQ2-DS	RXD4_A/SCL4_A/MISO4_A/ RSPCKA_A/CTX0/USB_VBUSEN/ SD1CLK_A	GTIOC5A/ULPTOA1	_	_

表 1.16 標準製品の端子一覧 (8/8)

BGA289	BGA224	HLQFP176	電源、システム、クロック、 デバッグ、CAC	/O ポー	ExBus/ SDRAM	外部割り込み	SCI/IIC/I3C/SPI/CANFD/USBFS/ USBHS/OSPI/SSIE/SDHI/MMC/ ESWM(GMII, RGMII, MII, RMII)/ PDMIF	GPT/AGT/ULPT/RTC	ADC16H/ DAC12/ ACMPHS	CEU
Т3	P3	_	_	P313	_	IRQ27	TXD3_C/SDA3_C/MOSI3_C/ MISOA_A/USB_ID/SD1DAT0_A	_	_	_
T4	_	_	_	P901	_	IRQ31	CTS_RTS3_C/SS3_C/DE3	GTADSM1/AGTIO1	_	_
T5	P5	150	_	P809	_	IRQ20	TXD7_B/SDA7_B/MOSI7_B/ OM_0_SCLKN	_	_	_
T6	P6	143	_	P800	_	IRQ11	CTS2_A/OM_0_SIO5	GTIU/GTIOC11A/AGTOA0	_	_
T7	_	_	_	P502	_	IRQ26	SCK8_B/DE8/USB_OVRCURB/ SD1DAT7_A/PDMDAT2	GTIOC12B	AN019	_
T8	R7	153	_	P014	_	IRQ27	_	_	AN014/D A0/ IVCMP0	_
Т9	P8	154	VREFL	_	_	_	_	_	_	_
T10	P9	158	VREFL0	_	_	_	_	_	_	_
T11	R11	165	_	P004	_	IRQ9-DS	_	_	AN004/ IVCMP2	_
T12	M9	162	_	P007	_	IRQ28	_	_	AN007/ IVCMP3	_
T13	N11	168	_	P001	_	IRQ7-DS	_	_	AN001/ IVCMP3	_
T14	_	_	_	P806	_	IRQ0	RXD8_A/SCL8_A/MISO8_A/ ET1_MDC	_	AN018	VIO_D14
T15	_	_	_	P715	_	IRQ12	RXD4_C/SCL4_C/MISO4_C/ ET_TAS_STA2	GTIOC12A	-	_
T16	P14	174	_	P815	_	IRQ15	CTX0/USB_DM	GTIOC8A	_	_
T17	P15	173	VSS_USB	_	_	_	_	_	_	_
U1	R1	_	CACREF	P204	_	IRQ26	SCK4_A/DE4/SDA1_B/SSLA0_A/ USB_OVRCURB/SD1WP	GTIW/GTIOC4B/AGTIO1	_	_
U2	R2	_	_	P202	_	IRQ3-DS	CTS_RTS4_A/SS4_A/DE4/ MOSIA_A/CRX0/USB_EXICEN/ SD1CMD_A	GTIOC5B/ULPTOB1	_	_
U3	R3	_	_	P314	_	IRQ28	RXD3_C/SCL3_C/MISO3_C/ SSLA2_A/SD1DAT1_A	_	ADTRG0	_
U4	N3	_	VSS_13	_	_	_	_	_	_	_
U5	R5	149	_	P808	_	IRQ15	RXD7_B/SCL7_B/MISO7_B/ OM_0_SCLK	GTIOC13B	_	_
U6	R6	142	_	P100	_	IRQ2	SCK9_A/DE9/MISOB_A/ OM_0_SIO0/GPTP_MATCH1	GTETRGA/GTIOC8B/ AGTIO0	_	_
U7	_	_	CACREF	P500	_	IRQ24	RXD8_B/SCL8_B/MISO8_B/ USB_VBUSEN/SD1DAT5_A/ PDMDAT0	GTIOC11B	AN021	_
U8	P7	152	_	P015	_	IRQ13	_	_	AN015/D A1/ IVCMP0	_
U9	R8	155	VREFH	_	_	_	_	_	_	_
U10	R9	159	VREFH0	_	_	_	_	_	_	_
U11	R10	161	_	P008	_	IRQ12-DS	_	_	AN008/ IVREF0	-
U12	P10	163	_	P006	_	IRQ11-DS	_	_	AN006/ IVCMP2	_
U13	R12	169	_	P000	_	IRQ6-DS	_		AN000/ IVCMP2	_
U14	P11	167	_	P002	_	IRQ8-DS	_	_	AN002/ IVCMP2	_
U15	R13	172	_	P511	_	IRQ15	CTS_RTS8_A/SS8_A/DE8/ SDA1_A/CRX1/ET1_LINKSTA	GTIOC0B	_	_
U16	R14	175	_	P814	_	IRQ16	CRX0/USB_DP	GTIOC8B	_	_
U17	R15	176	VCC_USB	_	_	_	_	_	_	_

注: いくつかの端子名には、_A、_B、および_C という接尾語が付加されています。これらの接尾語には、電気的特性に対しては特別な条件があります。

表 1.17 SiP 製品の端子一覧 (1/8)

BGA303	電源、システム、クロック、デパッグ、CAC	I/O ポート	ExBus/ SDRAM	外部割り込み	SCI/IIC/I3C/SPI/CANFD/USBFS/USBHS/ OSPI/SSIE/SDHI/MMC/ESWM(GMII, RGMII, MII, RMII)/PDMIF	GPT/AGT/ULPT/RTC	ADC16H/ DAC12/ ACMPHS	CEU
A1	VSS	_	_	_	_	_	_	_
A2	_	P114	D5/DQ5	IRQ30-DS	CTS_RTS0_A/SS0_A/DE0/SSLA0_B/ SSIRXD0_B/SD0DAT6_B	GTETRGC/GTIOC2B	ADSYNC	_
A3	_	P609	D7/DQ7	IRQ29	TXD0_C/SDA0_C/MOSI0_C/MISOA_B/ CTX1	GTIU/GTIOC5B/ULPTOA1-DS	AD1FLAG1	_
A4	_	P113	D4/DQ4	IRQ28	RXD0_A/SCL0_A/MISO0_A/SSLA1_B/ SSILRCK0_B/SSIFS0_B/SD0DAT5_B	GTETRGB/GTIOC2A/ULPTOA0- DS	ADST1	_
A5	_	P301	D1/DQ1	IRQ6	TXD6_B/SDA6_B/MOSI6_B/SD0DAT2_B	GTOULO/GTIOC4B/AGTIO0/ ULPTEE0-DS	_	_
A6	TDI	P208	_	IRQ3	RXD9_B/SCL9_B/MISO9_B/CRX1	GTOVLO/GTIOC1B	VCOUT	_
A7	TMS/SWDIO	P210	_	IRQ24	CTS_RTS9_B/SS9_B/DE9	GTOULO/GTIOC0B	_	_
A8	VLO	_	_	_	_	_	_	_
A9	VLO	_	_	_	_	_	_	_
A10	VSS_DCDC	_	_	_	_	_	_	_
A11	VCC_DCDC	_	_	_	_	_	_	_
A12	VCC DCDC	_	_	_	_	_	_	
A13	_	P309	_	IRQ25-DS	CTS9_B/ET1_GTX_CLK/RGMII1_TXC	GTCPPO8	VCOUT	VIO D10
A14		P906		IRQ9	CTS6 A/USB ID/SSILRCK1 A/	GTIOC13B/ULPTO1	AD0FLAG1	VIO_D10
AI4		F900	_	INGS	SSIFS1_A/ET1_RXD0/RGMII1_RXD0/ RMII1_RXD0/PDMDAT0	GHOC13B/OLF TO 1	ADUFLAGT	VIO_D3
A15	_	P905	_	IRQ8	RXD3_B/SCL3_B/MISO3_B/ ET1_RX_CLK/RGMII1_RXC/ RMII1_REF50CK/PDMDAT1	GTCPPO13	AD1FLAG1	VIO_D6
A16	_	P907	_	IRQ10	SCK6_A/DE6/USB_EXICEN/SSIBCK1_A/ ET1_RXD1/RGMII1_RXD1/RMII1_RXD1/ PDMCLK2	GTIOC13A/ULPTEE1	ADSYNC	VIO_D4
A17	_	P207	_	IRQ25	ET1_RXD5	GTCPPO3	_	_
A18	VSS	_	_	_	_	_	_	_
B1	_	P813	SDCS	IRQ15	SCK7_A/DE7/PDMCLK2	GTETRGA/GTIOC7B	_	VIO_D13
B2	_	PA12	D9/DQ9	IRQ11	RXD9_C/SCL9_C/MISO9_C	GTIW/GTIOC6B	_	_
В3	_	P115	D6/DQ6	IRQ31-DS	CTS0_A/MOSIA_B/SSITXD0_B/ SD0DAT7_B	GTETRGD/GTIOC5A	AD0FLAG1	_
B4	_	PA11	D8/DQ8	IRQ10	SCK9_C/DE9	GTIV/GTIOC6A	_	_
B5	_	P112	D3/DQ3	IRQ27	TXD0_A/SDA0_A/MOSI0_A/SSLA2_B/ SSIBCK0_B/SD0DAT4_B	GTETRGA/GTIOC3B/ULPTOB0-DS	ADST0	_
B6	TDO/SWO/CLKOUT	P209	_	IRQ25	TXD9_B/SDA9_B/MOSI9_B/CTX1	GTOVUP/GTIOC1A	_	_
B7	TCK/SWCLK	P211	_	IRQ23	SCK9_B/DE9	GTOUUP/GTIOC0A	_	_
B8	VLO	_	_	_	_	_	_	_
B9	VLO	_	_	_	_	_	_	_
B10	VSS_DCDC	_	_	 	_	_		_
B11	VCC DCDC	_	_	_	_	_	_	_
B12	VCC DCDC	_	_		_		_	
B13	_	P311	_	IRQ23-DS	SCK3 B/DE3/CRX0/ET1 TX CLK	GTADSM1/GTCPPO6/AGTOB1	- -	VIO D8
B14	_	P908	_	IRQ11	TXD6_A/SDA6_A/MOSI6_A/CRX1/ USB_OVRCURB/USBHS_ID/ET1_RXD2/ RGMII1_RXD2/PDMCLK1	GTIOC12B/ULPTEVI1	ADST1	VIO_D3
B15	_	P909	_	IRQ21-DS	RXD6_A/SCL6_A/MISO6_A/CTX1/ USB_OVRCURA/USBHS_EXICEN/ ET1_RXD3/RGMII1_RXD3/PDMCLK0	GTIOC12A/ULPTOA1	ADST0	VIO_D2
B16	_	P904	_	IRQ2	ET1 RXD4	GTIOC11B	_	_
B17	_	PD01	_	IRQ22	SCK8 C/DE8/SD0DAT2 C/ET1 RXD6	GTCPPO2	_	<u> </u>
B18	_	PD02	_	IRQ21	TXD8_C/SDA8_C/MOSI8_C/SD0DAT1_C/ ET1_RXD7	GTCPPO1	_	_
C1	_	PA06	CS1/CKE	IRQ17	CTS2 C/SD0DAT1 A/PDMDAT1	GTETRGC/GTIOC7B	_	VIO_D11
C2	_	P613	D15/DQ15	IRQ19	CTS0_C/USBHS_OVRCURB	GTETRGA/GTIOC9B/AGTO1	_	
C3	_	PA13	D10/DQ10	IRQ19	CTS_RTS9_C/SS9_C/DE9	GTOVUP/GTIOC10A	_	
	_							_
C4	_	P300	D2/DQ2	IRQ4	SCK0_A/DE0/SSLA3_B/SD0DAT3_B	GTIOC3A/ULPTEVIO-DS	_	
C5	_	P302	D0/DQ0	IRQ5	RXD6_B/SCL6_B/MISO6_B/SD0DAT1_B	GTOUUP/GTIOC4A/ULPTO0-DS	_	_
C6	_	P200	-	NMI	_	_	_	

表 1.17 SiP 製品の端子一覧 (2/8)

BGA303	電源、システム、クロック、デバ ッグ、CAC	I/O ポート	ExBus/ SDRAM	外部割り込み	SCI/IIC/I3C/SPI/CANFD/USBFS/USBHS/ OSPI/SSIE/SDHI/MMC/ESWM(GMII, RGMII, MII, RMII)/PDMIF	GPT/AGT/ULPT/RTC	ADC16H/ DAC12/ ACMPHS	CEU
C7	RES	_	_	_	_	_	_	_
C8	_	P110	_	IRQ20	SD0DAT4_C	GTIOC9B	_	_
C9	_	P903	_	IRQ1	_	GTIOC11A	_	_
C10	TCLK	P308	_	IRQ26-DS	CTS3_B/SD0CLK_B/ET1_TX_ER/ ETHPHYCLK	GTIU/GTCPPO9/ULPTOB1	_	VIO_D11
C11	TDATA2	P305	_	IRQ8	SD0WP/ET1_TXD2/RGMII1_TXD2	GTOVUP/GTCPPO12/ULPTEE1	_	VIO_D14
C12	TDATA0	P307	_	IRQ27-DS	CTS_RTS6_A/SS6_A/DE6/SD0CMD_B/ ET1_TXD0/RGMII1_TXD0/RMII1_TXD0	GTIV/GTCPPO10/ULPTOA1	_	VIO_D12
C13	_	P911	_	IRQ6	ET1_TXD5	GTIOC3B	_	_
C14	CLKOUT	P206	CS7	IRQ0-DS	USB_VBUSEN/SSIDATA1_A/ SD0DAT7_C/ET1_RX_DV/ RGMII1_RX_CTL/RMII1_CRS_DV	GTIU/GTCPP00/ULPT0B1	_	VIO_D0
C15	_	PD04	_	IRQ20	CTS_RTS8_C/SS8_C/DE8/USBHS_ID/ SD0CMD_C/ET0_RXD5	GTIOC3A	_	_
C16	_	PD03	_	IRQ21	RXD8_C/SCL8_C/MISO8_C/ USBHS_EXICEN/SD0DAT0_C/ ET0_RXD4	GTIOC3B	_	_
C17	_	PD05	_	IRQ19	CTS8_C/USBHS_OVRCURB/SD0CLK_C/ ET0_RXD6	GTIOC2B	_	_
C18	_	PD06	_	IRQ18	USBHS_OVRCURA/SD0WP/ET0_RXD7	GTIOC2A	_	_
D1	_	PA04	A1	IRQ19	SCK2_C/DE2/SD0DAT3_A	GTIU/GTIOC4B	ADST0	VIO_D9
D2	CACREF/CLKOUT	P611	D13/DQ13	IRQ17	SCK0_C/DE0/MOSIA_B/ USBHS_VBUSEN	GTOULO/GTIOC4B	_	_
D3	_	P610	D12/DQ12	IRQ16	RXD0_C/SCL0_C/MISO0_C/RSPCKA_B/ CRX1	GTOUUP/GTIOC4A/ULPTOB1- DS	_	_
D4	_	PA14	D11/DQ11	IRQ13	TXD9_C/SDA9_C/MOSI9_C	GTOVLO/GTIOC10B	_	_
D5	_	P303	_	IRQ29-DS	SCK6_B/DE6	GTIOC7B	_	_
D6	_	P915	_	IRQ8	CTS6_B	GTIOC5A	_	_
D7	_	P108	_	IRQ24	SD0DAT6_C	GTIOC10B	_	-
D8	_	P111	_	IRQ19	SD0DAT3_C	GTIOC9A	_	_
D9	_	P109	_	IRQ23	SD0DAT5_C	GTIOC10A	_	_
D10	_	P310	_	IRQ24-DS	TXD3_B/SDA3_B/MOSI3_B/ET1_TX_EN/ RGMI11_TX_CTL/RMII1_TX_EN	GTCPPO7/AGTEE1	_	VIO_D9
D11	TDATA3	P304	_	IRQ9	SD0DAT0_B/ET1_TXD3/RGMII1_TXD3	GTOVLO/GTIOC7A/ULPTO1	_	VIO_D15
D12	TDATA1	P306	_	IRQ28-DS	SD0CD/ET1_TXD1/RGMII1_TXD1/ RMII1_TXD1	GTIW/GTCPPO11/ULPTEVI1	_	VIO_D13
D13	_	P912	_	IRQ5	ET1_TXD6	GTIOC3A	_	_
D14	_	PB04	_	IRQ9	SCK5_C/DE5/ET0_TXD3/RGMII0_TXD3	GTCPPO3	AD0FLAG1	VIO_CLK
D15	_	PB07	_	IRQ1	ET0_TXD5	GTIOC9B	_	_
D16	_	PB05	_	IRQ15	CTS5_C/ET0_TXD7	GTCPPO4	_	_
D17	_	PB03	_	IRQ13	TXD5_C/SDA5_C/MOSI5_C/ET0_TXD2/ RGMII0_TXD2	GTCPPO1	ADSYNC	VIO_HD
D18	_	PB01	ALE	IRQ12	CTS_RTS1_B/SS1_B/DE1/ET0_TX_CLK	GTCPPO2	AD1FLAG1	VIO_FLD
E1	_	PA15	EBCLK/ SDCLK	IRQ14	CTS9_C/PDMCLK1	GTIOC7A	_	VIO_D14
E2	_	P615	_	IRQ7	TXD7_A/SDA7_A/MOSI7_A/ USBHS_EXICEN	GTETRGC/GTCPPO10	_	_
E3	_	P614	WR/WR0/ DQM0	IRQ20	RXD7_A/SCL7_A/MISO7_A/USBHS_ID	GTETRGB/GTCPPO9/AGTO0	_	_
E4	_	P612	D14/DQ14	IRQ18	CTS_RTS0_C/SS0_C/DE0/SSLA0_B/ USBHS_OVRCURA	GTIOC9A	_	_
E5	_	P914	_	IRQ9	CTS_RTS6_B/SS6_B/DE6	GTIOC5B	_	_
E6	MD	P201	_	IRQ4	_	_	_	-
E10	_	P902	ALE	IRQ0	AUDIO_CLK/ETHPHYCLK	GTCPPO13	_	VIO_D1
E11	_	P312	_	IRQ22-DS	CTS_RTS3_B/SS3_B/DE3/CTX0/ ET1_RX_ER/RMII1_RX_ER/PDMDAT2	GTADSM0/GTCPPO5/AGTOA1	_	VIO_D7
E12	_	P910	-	IRQ7	ET1_TXD4	GTCPPO12	_	_
E13	CLKOUT	P913	_	IRQ3	ET1_TXD7	GTCPPO11	_	_
E14	_	PB02	_	IRQ11	RXD5_C/SCL5_C/MISO5_C/ET0_TXD1/ RGMII0_TXD1/RMII0_TXD1	GTCPPO0	ADST1	VIO_VD

表 1.17 SiP 製品の端子一覧 (3/8)

BGA303	電源、システム、クロック、デバ ッグ、CAC	l/O ポート	ExBus/ SDRAM	外部割り込み	SCI/IIC/I3C/SPI/CANFD/USBFS/USBHS/ OSPI/SSIE/SDHI/MMC/ESWM(GMII, RGMII, MII, RMII)/PDMIF	GPT/AGT/ULPT/RTC	ADC16H/ DAC12/ ACMPHS	CEU
E15	_	PB06	_	IRQ0	CTS_RTS5_C/SS5_C/DE5/ET0_TXD6	GTIOC9A	_	_
E16	_	PD07	_	IRQ17	USBHS_VBUSEN/SD0CD/ET0_TXD4	GTCPP00	_	_
E17	_	PB00	_	IRQ10	SCK1_B/DE1/USBHS_VBUSEN/ ET0_TXD0/RGMII0_TXD0/RMII0_TXD0/ PDMDAT2	GTCPPO4	ADST0	_
E18	-	P706	_	IRQ7	RXD1_B/SCL1_B/MISO1_B/ USBHS_OVRCURB-DS/ET0_GTX_CLK/ RGMII0_TXC/ETHPHYCLK/PDMDAT0	GTCPPO2/AGTIO0	_	VIO_D10
F1	_	PA02	A3	IRQ31	RXD2_C/SCL2_C/MISO2_C/SD0DAT5_A	GTIW/GTCPPO9	ADSYNC	VIO_D7
F2	_	PA10	CS2/RAS	IRQ4	SCK5_B/DE5/PDMCLK0	GTCPPO13	_	VIO_D15
F3	_	PA08	CS0/WE	IRQ6	RXD5_B/SCL5_B/MISO5_B	GTETRGD/GTCPPO11	_	<u> </u>
F4	_	PA09	CS3/CAS	IRQ5	TXD5_B/SDA5_B/MOSI5_B	GTCPPO12	_	_
F5	_	PC14	_	IRQ0	TXD6_C/SDA6_C/MOSI6_C/ET0_WOL	GTADSM1/GTCPPO9	_	_
F7	VCC_08	_	_	_	_	_	_	_
F8	VSS_08	_	_	_	_	_	_	_
F9	VSS3	_	_	_	_	_	_	_
F10	VCL3	_	_	_	_	_	_	_
F11	VSS_07	_	_	_	_	_	_	_
F12	VCC_07	_	_	_	_	_	_	_
F13	_	P700	_	IRQ16-DS	RXD2_B/SCL2_B/MISO2_B/MISOA_C/ SSIDATA1_B/SD1WP/ET0_RXD2/ RGMII0_RXD2	GTIOC5A	_	VIO_D4
F14	-	P702	_	IRQ18-DS	CTS2_B/RSPCKA_C/SSIBCK1_B/ SD1DAT5_B/ET0_RXD0/RGMII0_RXD0/ RMII0_RXD0	GTIOC6A/ULPTO0	-	VIO_D6
F15	_	P406	_	IRQ31	TXD2_B/SDA2_B/MOSI2_B/SSLA3_C/ SSIRXD0_A/SD1CD/ET0_RXD3/ RGMII0_RXD3	GTIOC1B	_	VIO_D3
F16	_	P701	_	IRQ17-DS	CTS_RTS2_B/SS2_B/DE2/MOSIA_C/ SSILRCK1_B/SSIFS1_B/SD1DAT4_B/ ET0_RXD1/RGMII0_RXD1/RMII0_RXD1	GTIOC5B/ULPTO1	_	VIO_D5
F17	_	P707	_	IRQ8	TXD1_B/SDA1_B/MOSI1_B/ USBHS_OVRCURA-DS/ET0_TX_ER/ ETHPHYCLK/PDMDAT1	GTCPPO3	-	VIO_D11
F18	_	P705	_	IRQ19	CTS1_B/SSLA2_C/CRX0/ET0_TX_EN/ RGMII0_TX_CTL/RMII0_TX_EN/ PDMCLK2	GTADSM1/GTCPPO1/AGTIO0	-	VIO_D9
G1	_	PA00	A5	IRQ22	CTS_RTS5_B/SS5_B/DE5/SD0DAT7_A	GTOVLO/GTCPPO7	AD1FLAG1	VIO_D5
G2	_	PA03	A2	IRQ20	TXD2_C/SDA2_C/MOSI2_C/SD0DAT4_A	GTIV/GTCPPO10	ADST1	VIO_D8
G3	_	PA05	A0/BC0/ DQM1	IRQ18	CTS_RTS2_C/SS2_C/DE2/SD0DAT2_A/ PDMDAT2	GTETRGD/GTIOC4A	_	VIO_D10
G4	_	PA07	RD	IRQ16	CTS7_A/SD0DAT0_A/PDMDAT0	GTETRGB/GTIOC7A	VCOUT	VIO_D12
G5	_	PC12	_	IRQ2	SCK6_C/DE6/ET0_MDIO	GTCPPO11	_	_
G7	VCC_09	_	_	_	_	_	_	_
G8	VSS_09	_	_	_	_	_	_	_
G9	VSS4	_	_	_	_	_	_	_
G10	VCL4	_	_	_	_	_	_	_
G11	VSS_06	_	_	_	_	_	_	_
G12	VCC_06	_	_	_	_	_	_	_
G13	_	P405	_	IRQ30	SCK2_B/DE2/SSITXD0_A/SD1DAT3_B/ ET0_RX_DV/RGMII0_RX_CTL/ RMII0_CRS_DV	GTIOC1A/AGTIO1	_	VIO_D2
G14	_	P704	_	IRQ26	SSLA1_C/CTX0/SD1DAT7_B/ ET0_RX_ER/RMII0_RX_ER/PDMCLK1	GTADSM0/GTCPP00/AGT00	_	VIO_D8
G15	_	P703	_	IRQ19-DS	SSLA0_C/SD1DAT6_B/ET0_RX_CLK/ RGMII0_RXC/RMII0_REF50CK/ PDMCLK0	GTIOC6B/AGTO1	VCOUT	VIO_D7
G16	VSS_03	_	_	_	_	_	_	_
G17	VCC_05	_	_	_	_	_	_	_
G18	VSS_05	_	_	_	_	_	_	_
H1	_	P504	A7	IRQ7	SD0WP	GTOULO/GTCPPO1	_	VIO_D3

表 1.17 SiP 製品の端子一覧 (4/8)

BGA303	電源、システム、クロック、デバ ッグ、CAC	I/O ポート	ExBus/ SDRAM	外部割り込み	SCI/IIC/I3C/SPI/CANFD/USBFS/USBHS/ OSPI/SSIE/SDHI/MMC/ESWM(GMII, RGMII, MII, RMII)/PDMIF	GPT/AGT/ULPT/RTC	ADC16H/ DAC12/ ACMPHS	CEU
H2	_	P503	A6	IRQ6	SD0CD	GTOUUP/GTCPPO6	_	VIO_D4
НЗ	_	P505	A8	IRQ8	SD0CLK_A	GTOWUP/GTCPPO2	_	VIO_D2
H4	_	PA01	A4	IRQ21	CTS5_B/SD0DAT6_A	GTOVUP/GTCPPO8	AD0FLAG1	VIO_D6
H5	_	PC11	_	IRQ3	CTS_RTS6_C/SS6_C/DE6/ET0_MDC	GTCPPO12	_	_
H7	VCC_10	_	_	_	_	_	_	_
Н8	VSS_10	_	_	_	_	_	_	_
Н9	VSS7	_	_	_	_	_	_	_
H10	VCL5	_	_	_	_	_	_	_
H11	VSS5	_	_	_	_	_	_	_
H12	VCC_04	_	_	_	_	_	_	_
H13	VSS_04	_	_	_	_	_	_	_
H15	VCC_03	_	_	_	_	_	_	_
H16	VCC_USBHS	_	_	_	_	_	_	_
H17	USBHS_DP	_	_	_	_	_	_	_
H18	USBHS_DM	_	_	_	_	_	_	_
J1	_	P506	A9	IRQ9	SD0CMD A	GTOWLO/GTCPPO3	_	VIO D1
J2	_	P507	A10	IRQ10	CTS RTS7 A/SS7 A/DE7/ET TAS STA0	GTADSM0/GTIOC0A	_	VIO_D0
J3	_	P508	A11	IRQ1	CTS5_A/ET_TAS_STA1	GTADSM1/GTIOC0B	_	VIO_VD
J4	_	P509	A12	IRQ2	CTS_RTS5_A/SS5_A/DE5/ET_TAS_STA2	GTIOC1A/ULPTEVI1	_	VIO_HD
J5		PC13	_	IRQ1	RXD6_C/SCL6_C/MISO6_C/ET0_INT	GTCPPO10	_	
J7	VCC2_11	1 0 13	_	IIIQI				
		_		 	_	_	_	_
J8	VSS_11	_	_	_	_	_	_	
J9	VCL7	_	_	-	_	_	_	-
J10	VCL6	_	_	-	-	_	_	_
J11	VSS6	_	_	-	_	_	_	_
J12	VCL2	_	_	-	_	_	_	_
J13	VSS2	_	_	-	_	_	_	-
J15	VSS_02	_	_	-	_	_	_	-
J16	USBHS_RREF	_	_	_	_	_	_	_
J17	VSS2_USBHS	_	_	_	_	_	_	_
J18	VSS1_USBHS	_	_	-	_	_	_	_
K1	_	PC15	A16	IRQ30	CTS6_C/CRX1	GTADSM0	_	_
K2	CACREF	P608	A14	IRQ22	TXD5_A/SDA5_A/MOSI5_A	GTOWUP/GTCPPO4	_	VIO_FLD
K3	_	P510	A13	IRQ3	RXD5_A/SCL5_A/MISO5_A/ ET_TAS_STA3	GTIOC1B/ULPTEVI0	_	VIO_CLK
K4	_	PD00	A15	IRQ23	SCK5_A/DE5/CTX1	GTOWLO/GTCPPO5	_	_
K5	VSS	_	_	_	_	_	_	_
K6	VSS	_	_	_	_	_	_	_
K7	VSS_12	_	_	_	_	_	_	_
K8	VSS9	_	_	_	_	_	_	_
K9	VCL9	_	_	_	_	_	_	_
K10	VCL8	_	_	_	_	_	_	_
K11	VSS8	_	_	_	_	_	_	_
K12	VCL1	_	_	_	_	_	_	_
K13	VSS1	_	_	_	_	_	_	_
K15	VCC_02	_	_	_	_	_	_	_
K16	AVCC_USBHS	_	_	_	_	_	_	_
K17	XTAL	P213	_	IRQ2	TXD1_C/SDA1_C/MOSI1_C	GTETRGC/GTIOC0A/ULPTEE0	ADTRG1	_
K18	EXTAL	P212	_	IRQ3	RXD1_C/SCL1_C/MISO1_C	GTETRGD/GTIOC0B/AGTEE1	_	_
	_	PC10	_	IRQ4	_	GTCPPO13	_	_
L1								1

表 1.17 SiP 製品の端子一覧 (5/8)

BGA303	電源、システム、クロック、デバ ッグ、CAC	I/O ポート	ExBus/ SDRAM	外部割り込み	SCI/IIC/I3C/SPI/CANFD/USBFS/USBHS/ OSPI/SSIE/SDHI/MMC/ESWM(GMII, RGMII, MII, RMII)/PDMIF	GPT/AGT/ULPT/RTC	ADC16H/ DAC12/ ACMPHS	CEU
L3	PUP	_	_	_	_	_	_	_
L4	VCC2_16	_	_	_	_	_	_	_
L5	VSS_16	_	_	_	_	_	_	_
L7	VCC2_12	_	_	_	_	_	_	_
L8	VSS_14	_	_	_	_	_	_	_
L9	VSS_15	_	_	_	_	_	_	_
L10	VSS10	_	_	_	_	_	_	_
L11	VCL10	_	_	_	_	_	_	_
L12	VCL0	_	_	_	_	_	_	_
L13	VSS0	_	_	_	_	_	_	_
L14	_	P403	_	IRQ14-DS	CTS_RTS1_A/SS1_A/DE1/SSIBCK0_A/ SD1DAT1_B/ET1_WOL	GTIOC3A/RTCIC1	AD0FLAG1	_
L15	_	P404	_	IRQ15-DS	CTS1_A/SSILRCK0_A/SSIFS0_A/ SD1DAT2_B/ET0_WOL	GTIOC3B/RTCIC2	AD1FLAG1	_
L16	VCC_01	_	_	_	_	_	_	_
L17	XCOUT	P214	_	IRQ21	_	_	_	_
L18	XCIN/EXCIN	P215	_	IRQ20	_	_	_	_
M1	_	PC09	_	IRQ5	_	_	_	_
M2	VSS	_	_	_	_	_	_	_
МЗ	VSS	_	_	_	_	_	_	_
M4	VCC2_17	_	_	_	_	_	_	_
M5	VSS_17	_	_	_	_	_	_	_
M8	VCC2_14	_	_	_	_	_	_	_
M9	VCC2_15	_	_	_	_	_	_	_
M11	VSS11	_	_	_	_	_	_	_
M12	VCL11	_	_	_	_	_	_	_
M14	_	P414	A23	IRQ9	RXD4_B/SCL4_B/MISO4_B/SSLB0_B/ CRX1/ET1_MDIO	GTIOC0B	_	VIO_CLK
M15	CACREF	P402	_	IRQ4-DS	SCK1_A/DE1/CRX0/AUDIO_CLK/ SD1DAT0_B/ET0_LINKSTA	RTCIC0	_	_
M16	_	P410	A19	IRQ5	SCK3_A/DE3/SCL0_A/USB_OVRCURB- DS/USBHS_OVRCURB/GPTP_MATCH0	GTOVLO/GTIOC9B/AGTOB1	ADST0	_
M17	VBATT	_	_	_	_	_	_	_
M18	VSS_01	_	_	_	_	_	_	_
N1	_	PC08	_	IRQ29	_	GTCPPO8	_	_
N2	VSS	_	_	_	_	_	_	_
N3	VSS	_	_	_	_	_	_	_
N4	VCC2_18	_	_	_	_	_	_	_
N5	VSS_18	_	_	_	_	_	_	_
N7	_	P105		IRQ0	CTS_RTS8_B/SS8_B/DE8/SSLB2_A/ OM_0_ECSINT1	GTIOC1A/ULPTO1-DS	ADSYNC	_
N10	_	P810	_	IRQ21	SCK7_B/DE7/SD1DAT2_A/PDMCLK0	GTIOC10A/ULPTOA0	_	_
N14	_	P710	CS5	IRQ17	CTS4_B/SSLB3_B/ET0_LINKSTA	GTIOC11B	_	VIO_D12
N15	CACREF	P411	A20	IRQ4	CTS_RTS3_A/SS3_A/DE3/USB_ID/ USBHS_ID/GPTP_PTPOUT1	GTOVUP/GTIOC9A/AGTOA1	_	_
N16	_	P408	A17	IRQ7	RXD3_A/SCL3_A/MISO3_A/SCL0_B/ USB_VBUSEN/USBHS_VBUS/ GPTP_PTPOUT2	GTOWLO/GTIOC10A/ULPTOB0	ADSYNC	_
N17	_	P412	A21	IRQ20-DS	CTS3_A/USB_EXICEN/USBHS_EXICEN/ GPTP_PTPOUT0	GTOULO/GTCPPO8/AGTEE1	_	_
N18	_	P401	_	IRQ5-DS	RXD1_A/SCL1_A/MISO1_A/I3C_SDA0/ CTX0/SD1CMD_B	GTETRGA/GTIOC6B	_	VIO_D1
P1	VSS	_	_	_	_	_	_	-
P2	VSS	_	_	_	_	_	_	_
P3	VSS	_	_	_	_	_	_	_
P4	VCC2_19	_	_	_	_	_	_	_

RA8M2 データシート 1. 概要

表 1.17 SiP 製品の端子一覧 (6/8)

BGA303	電源、システム、クロック、デパッグ、CAC	I/O ポート	ExBus/ SDRAM	外部割り込み	SCI/IIC/I3C/SPI/CANFD/USBFS/USBHS/ OSPI/SSIE/SDHI/MMC/ESWM(GMII, RGMII, MII, RMII)/PDMIF	GPT/AGT/ULPT/RTC	ADC16H/ DAC12/ ACMPHS	CEU
P5	VSS_19	_	_	_	_	_	_	_
P6	_	P104	_	IRQ1	CTS9_A/SSLB1_A/OM_0_CS1	GTETRGB/GTIOC1B	AD0FLAG1	_
P7	_	P107	_	IRQ31	CTS4_A/OM_0_CS0	GTOWUP/GTIOC8A/AGTOA0	ADST0	_
P8	_	P106	_	IRQ16	CTS8_B/SSLB3_A/OM_0_RESET	GTOWLO/GTIOC8B/AGTOB0/ ULPTEE1-DS	ADST1	_
P9	_	P811	_	IRQ22	CTS7_B/USB_ID/SD1DAT3_A/PDMCLK1	GTIOC10B/ULPTOB0	_	_
P10	_	P013	_	IRQ14	_	_	AN013	_
P11	_	P011	_	IRQ16	_	_	AN011	_
P12	_	P807	_	IRQ11	_	GTIOC13A	_	_
P13	CACREF	P708	WR1/BC1	IRQ11	SCK4_B/DE4/SDA2_A/MOSIB_B/ AUDIO_CLK/ET0_MDC	GTCPPO6	_	VIO_VD
P14	_	P712	_	IRQ2	CTS1_C/SSLB1_B/GPTP_CAPTURE1	GTIOC2B/AGTOB0	_	_
P15	_	P714	_	IRQ13	TXD4_C/SDA4_C/MOSI4_C/GPTP_PPS1	GTIOC12B	_	_
P16	_	P711	_	IRQ3	CTS_RTS1_C/SS1_C/DE1/SSLB2_B/ GPTP_PPS0	GTIOC11A/AGTEE0	_	_
P17	_	P713	_	IRQ14	CTS4_C/GPTP_MATCH1	GTIOC2A/AGTOA0	_	_
P18	_	P400	_	IRQ0	TXD1_A/SDA1_A/MOSI1_A/I3C_SCL0/ AUDIO_CLK/SD1CLK_B	GTIOC6A/AGTIO1	ADTRG1	VIO_D0
R1	_	P602	_	IRQ28	RXD0_B/SCL0_B/MISO0_B	GTIOC7B/ULPTEE0	_	_
R2	VSS	_	_	_	_	_	_	_
R3	VSS	_	_	_	_	_	_	_
R4	CACREF	P600	_	IRQ30	OM_0_RSTO1	GTIOC6B/ULPTEVI1-DS	_	_
R5	_	P601	_	IRQ29	SCK0_B/DE0/OM_0_WP1	GTIOC6A/ULPTEVIO/RTCOUT	_	_
R6	_	P102	_	IRQ17	TXD9_A/SDA9_A/MOSI9_A/RSPCKB_A/ CRX0/OM_0_SIO4	GTOWLO/GTIOC2B/AGTO0	ADTRG0	_
R7	_	P801	_	IRQ12	TXD2_A/SDA2_A/MOSI2_A/OM_0_DQS	GTIV/GTIOC11B/AGTOB0	_	_
R8	_	P803	_	IRQ19	SCK2_A/DE2/OM_0_SIO1	GTETRGC/GTIOC12B	_	_
R9	_	P812	_	IRQ23	CTS_RTS7_B/SS7_B/DE7/USB_EXICEN/ SD1DAT4_A/PDMCLK2	GTIOC11A	AN022	_
R10	_	P012	_	IRQ15	_	_	AN012	_
R11	_	P010	_	IRQ14	_	_	AN010	_
R12	_	P009	_	IRQ13-DS	_	_	AN009/ IVREF1	_
R13	_	P805	_	IRQ30	TXD8_A/SDA8_A/MOSI8_A/ET1_MDIO	_	AN017/ IVCMP0	VIO_D15
R14	_	P512	_	IRQ14	CTS8_A/SCL1_A/CTX1/ET1_INT	GTIOC0A	_	_
R15	_	P413	A22	IRQ18	ET_TAS_STA3	GTOUUP/GTCPPO7/ULPTEE1	_	_
R16	_	P515	_	IRQ12	CTS_RTS4_C/SS4_C/DE4/SCL2_B/ ET_TAS_STA0	GTIOC13A	_	_
R17	_	P709	CS4	IRQ10	CTS_RTS4_B/SS4_B/DE4/SCL2_A/ MISOB_B/ET0_MDIO	GTCPPO5	_	VIO_D13
R18	_	P407	CS6	IRQ22	SCK1_C/DE1/SDA0_B/USB_VBUS/ USBHS_VBUSEN/GPTP_PTPOUT3	GTIOC10B/AGTIO0/RTCOUT	ADTRG0	_
T1	DNU	_	_	_	_	_	_	_
T2	VSS	_	_	_	_	_	_	
Т3	_	P315	_	IRQ29	SCK3_C/DE3/SSLA3_A	_	_	_
T4	_	P900	_	IRQ30	CTS3_C	GTADSM0	_	
T5	_	P103	_	IRQ16	CTS_RTS9_A/SS9_A/DE9/SSLB0_A/ CTX0/OM_0_SIO2	GTOWUP/GTIOC2A	AD1FLAG1	_
Т6	_	P101	_	IRQ1	RXD9_A/SCL9_A/MISO9_A/MOSIB_A/ OM_0_SIO3	GTETRGB/GTIOC8A/AGTEE0	_	
T7	_	P802	-	IRQ18	RXD2_A/SCL2_A/MISO2_A/OM_0_SIO6	GTIW/GTIOC12A	_	_
T8	_	P804	-	IRQ14	CTS_RTS2_A/SS2_A/DE2/OM_0_SIO7	GTETRGD/GTIOC13A	_	_
Т9	_	P501	_	IRQ25	TXD8_B/SDA8_B/MOSI8_B/ USB_OVRCURA/SD1DAT6_A/PDMDAT1	GTIOC12A	AN020	_
T10	AVCC0	_	_	_	_	_	_	_
T11	AVSS0	_	_	_	_	_	_	_

RA8M2 データシート 1. 概要

表 1.17 SiP 製品の端子一覧 (7/8)

BGA303	電源、システム、クロック、デパ ッグ、CAC	l/O ポート	ExBus/ SDRAM	外部割り込み	SCI/IIC/I3C/SPI/CANFD/USBFS/USBHS/ OSPI/SSIE/SDHI/MMC/ESWM(GMII, RGMII, MII, RMII)/PDMIF	GPT/AGT/ULPT/RTC	ADC16H/ DAC12/ ACMPHS	CEU
T12	_	P005	_	IRQ10-DS	_	_	AN005/ IVCMP3	-
T13	_	P003	_	IRQ29	_	_	AN003/ IVCMP3	_
T14	_	P513	_	IRQ31	SCK8_A/DE8/ET0_INT	GTIOC13B	AN016/ IVCMP0	VIO_FLD
T15	_	P514	_	IRQ13	SCK4_C/DE4/SDA2_B/ET_TAS_STA1	GTIOC13B	_	_
T16	_	P415	WAIT	IRQ8	TXD4_B/SDA4_B/MOSI4_B/RSPCKB_B/ CTX1/ET1_MDC	GTIOC0A	_	VIO_HD
T17	_	P409	A18	IRQ6	TXD3_A/SDA3_A/MOSI3_A/SDA0_A/ USB_OVRCURA-DS/USBHS_OVRCURA/ GPTP_CAPTURE0	GTOWUP/ULPTOA0	ADST1	_
T18	VCC_USB	_	_	_	_	_	_	_
U1	VCC2_13	_	_	_	_	_	_	_
U2	CLKOUT	P205	-	IRQ1-DS	TXD4_A/SDA4_A/MOSI4_A/SCL1_B/ SSLA1_A/USB_OVRCURA/SD1CD	GTIV/GTIOC4A/AGTO1	_	_
U3	_	P203	-	IRQ2-DS	RXD4_A/SCL4_A/MISO4_A/RSPCKA_A/ CTX0/USB_VBUSEN/SD1CLK_A	GTIOC5A/ULPTOA1	_	_
U4	_	P313	-	IRQ27	TXD3_C/SDA3_C/MOSI3_C/MISOA_A/ USB_ID/SD1DAT0_A	_	_	-
U5	_	P901	_	IRQ31	CTS_RTS3_C/SS3_C/DE3	GTADSM1/AGTIO1	_	_
U6	_	P809	_	IRQ20	TXD7_B/SDA7_B/MOSI7_B/ OM_0_SCLKN	_	_	_
U7	_	P800	_	IRQ11	CTS2_A/OM_0_SIO5	GTIU/GTIOC11A/AGTOA0	_	_
U8	_	P502	_	IRQ26	SCK8_B/DE8/USB_OVRCURB/ SD1DAT7_A/PDMDAT2	GTIOC12B	AN019	_
U9	_	P014	_	IRQ27	_	_	AN014/DA0/ IVCMP0	_
U10	VREFL	_	_	_	_	_	_	_
U11	VREFL0	_	_	_	_	_	_	_
U12	_	P004	_	IRQ9-DS	_	_	AN004/ IVCMP2	_
U13	_	P007	_	IRQ28	_	_	AN007/ IVCMP3	_
U14	_	P001	_	IRQ7-DS	_	_	AN001/ IVCMP3	_
U15	_	P806	_	IRQ0	RXD8_A/SCL8_A/MISO8_A/ET1_MDC	_	AN018	VIO_D14
U16	_	P715	_	IRQ12	RXD4_C/SCL4_C/MISO4_C/ ET_TAS_STA2	GTIOC12A	_	_
U17	_	P815	_	IRQ15	CTX0/USB_DM	GTIOC8A	_	_
U18	VSS_USB	_	_	_	_	_	_	_
V1	VSS	_	_	_	_	_	_	_
V2	CACREF	P204	_	IRQ26	SCK4_A/DE4/SDA1_B/SSLA0_A/ USB_OVRCURB/SD1WP	GTIW/GTIOC4B/AGTIO1	-	_
V3	_	P202	_	IRQ3-DS	CTS_RTS4_A/SS4_A/DE4/MOSIA_A/ CRX0/USB_EXICEN/SD1CMD_A	GTIOC5B/ULPTOB1	_	_
V4	_	P314	_	IRQ28	RXD3_C/SCL3_C/MISO3_C/SSLA2_A/ SD1DAT1_A	_	ADTRG0	_
V5	VSS_13	_	_	_	_	_	_	_
V6	_	P808	_	IRQ15	RXD7_B/SCL7_B/MISO7_B/OM_0_SCLK	GTIOC13B	_	_
V7	_	P100	_	IRQ2	SCK9_A/DE9/MISOB_A/OM_0_SIO0	GTETRGA/GTIOC8B/AGTIO0	_	_
V8	CACREF	P500	_	IRQ24	RXD8_B/SCL8_B/MISO8_B/ USB_VBUSEN/SD1DAT5_A/PDMDAT0	GTIOC11B	AN021	_
V9	_	P015	_	IRQ13	_	_	AN015/DA1/ IVCMP0	_
V10	VREFH	_	_	<u> </u>	_	_	1_	_
V11	VREFH0	_	_	_	_	_	_	_
V12	_	P008	_	IRQ12-DS	_	_	AN008/ IVREF0	_
V13	_	P006	_	IRQ11-DS	_	_	AN006/ IVCMP2	_

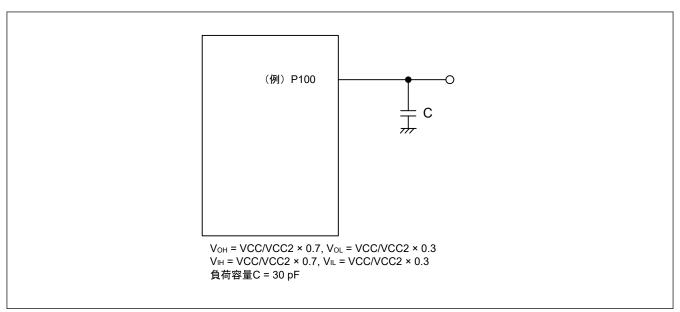
RA8M2 データシート 1. 概要

表 1.17 SiP 製品の端子一覧 (8/8)

BGA303	電源、システム、クロック、デバ ッグ、CAC	I/O ポート	ExBus/ SDRAM	外部割り込み	SCI/IIC/I3C/SPI/CANFD/USBFS/USBHS/ OSPI/SSIE/SDHI/MMC/ESWM(GMII, RGMII, MII, RMII)/PDMIF	GPT/AGT/ULPT/RTC	ADC16H/ DAC12/ ACMPHS	CEU
V14	_	P000	_	IRQ6-DS	_	_	AN000/ IVCMP2	
V15	_	P002	_	IRQ8-DS	_	_	AN002/ IVCMP2	_
V16	_	P511	_	IRQ15	CTS_RTS8_A/SS8_A/DE8/SDA1_A/ CRX1/ET1_LINKSTA	GTIOC0B	_	_
V17	_	P814	_	IRQ16	CRX0/USB_DP	GTIOC8B	_	_
V18	vss	_	_	_	_	_	_	_

注. いくつかの端子名には、_A、_B、および_C という接尾語が付加されています。これらの接尾語には、電気的特性に対しては特別な条件があります。

2. 電気的特性


他に指定がなければ、最小値と最大値は設計シミュレーション、特性結果、または製品テストのいずれかにより 保証されます。

サポートする周辺機能と端子は、製品型名によって異なります。

特に記載のない限り、本 MCU の電気的特性は以下の条件で定義されています。

- VCC = VCC DCDC = VBATT = $1.62 \sim 3.63 \text{ V}$
- VCC2 = 1.62~3.63 V (標準製品)
- VCC2 = 1.70~2.00 V (SiP 製品)
- AVCC0 = $1.62 \sim 3.63 \text{ V}$
- VCC_USB = VCC_USBHS = AVCC_USBHS = 3.0~3.6 V
- VREFH0/VREFH = 1.62 V∼AVCC0
- VSS = VSS DCDC = AVSS0 = VREFL0 /VREFL = VSS USB = VSS1 USBHS = VSS2 USBHS = 0 V
- VCC 電圧が 2.7 V 未満のとき、LVOCR.LVO0E = 1。それ以外のとき、LVOCR.LVO0E = 0。
- VCC2 電圧が 2.7 V 未満のとき、LVOCR.LVO1E = 1。それ以外のとき、LVOCR.LVO1E = 0。
- T_j = T_{opj} 特に記載のない限り、標準値は室温 25 °C、VCC = VCC_DCDC = VCC_USB = VBATT = VCC_USBHS = AVCC_USBHS = AVCC0 = VREFH0 = VREFH = 3.3 V で測定しています。

図 2.1 にタイミング条件を示します。

図 2.1 入出力タイミング計測条件

各周辺モジュールのタイミング仕様の計測条件は、最適な周辺動作に推奨されるものです。ただし、ユーザー条件に合うように、各端子の駆動能力を調整してください。

2.1 絶対最大定格

表 2.1 絶対最大定格 (1/2)

項目	シンボル		値	単位
電源電圧	VCC, VCC_DCDC(注2)		-0.3~+4.0	V
	VCC2 標準製品 -		-0.3~+4.0	V
		SiP 製品	-0.3~+2.5	V

表 2.1 絶対最大定格 (2/2)

項目	シンボル	値	単位
外部電源電圧 ^(注6)	VCL	-0.3~+1.2	V
VBATT 電源電圧	VBATT	-0.3~+4.0	V
入力電圧(5 V トレラントポートを除く ^(注1))	V _{in}	-0.3~VCC + 0.3、 -0.3~VCC2 + 0.3、 -0.3~VCC_USB + 0.3 または-0.3~VBATT_R + 0.3	V
入力電圧(5 V トレラントポート ^(注1))	V _{in}	-0.3~+ VCC + 4.0 (最大 5.8) または-0.3~+ VCC2 + 4.0 (最 大 5.8)	V
リファレンス電源電圧	VREFH/VREFH0	-0.3~AVCC0 + 0.3	V
USBFS 電源電圧	VCC_USB	-0.3~+4.0	V
USBHS 電源電圧	VCC_USBHS	-0.3~+4.0	V
USBHS アナログ電源電圧	AVCC_USBHS	-0.3~+4.0	V
アナログ電源電圧	AVCC0	-0.3~+4.0	V
アナログ入力電圧	V _{AN}	-0.3~AVCC0 + 0.3	V
動作ジャンクション温度 ^{(注3)(注4)(注5)}	T _{opj}	0~95 または-40~+105 または-40~+125	°C
保存温度	T _{stg}	-55~+125	°C

- 注 1. ポート P204、P205、P303、P407~P413、P511、P512、P514、P515、および P708~P715 は、5 V トレラント対応ポートです。
- 注 2. VCC DCDCを VCC に接続してください。
- 注 3. 「2.2.1. Tj/Ta の定義」を参照してください。
- 注 4. Tj = $+95\,^{\circ}$ C $\sim +125\,^{\circ}$ C の場合のディレーティング動作については、弊社営業窓口までお問い合わせください。ディレーティングとは、信頼性向上のための系統的な負荷軽減策です。
- 注 5. 動作ジャンクション温度の下限と上限は、製品によって異なります。
- 注 6. 外部 VDD モードは、HLQFP パッケージではサポートされません。

【使用上の注意】絶対最大定格を超えて MCU を使用した場合、MCU の永久破壊となることがあります。

表 2.2 推奨動作条件

項目	シンボル			Min	Тур	Max	単位
電源電圧	VCC,	下記以外		1.62	_	3.63	V
	VCC_DCDC	ESWM 使月		2.30	_	3.63	V
		SDRAM 使	用時	3.00	_	3.63	V
	VCC2	標準製品	下記以外	1.62	_	3.63	V
			ESWM 使用時	2.30	_	3.63	V
			SDRAM 使用時	3.00	_	3.63	V
		SiP 製品		1.70	_	2.00	V
	VCL	外部 VDD	電圧範囲 1	0.92	_	0.99	V
		使用時 (注2)(注3)	電圧範囲 2	0.87	_	0.99	V
		DCDC 使	VSCR_1	_	0.95	_	V
		用時 (High- speed モ ード)	VSCR_2	_	0.925	_	V
		DCDC 使	SVSCR_1	_	0.95	_	V
		用時(ソフトウェアスタンバイモード)	SVSCR_2	_	0.925	_	V
			SVSCR_3	_	0.825	_	V
			SVSCR_4	_	0.765	_	V
			SVSCR_5	_	0.715	_	V
	VSS, VSS_DCDC	;		_	0	_	V
USB 電源電圧	VCC_USB,	USB 未使用]時	1.62	<u> </u>	3.63	V
	VCC_USBHS, AVCC_USBHS	USB 使用問	†	3.00	_	3.60	V
	VSS_USB, VSS1	VSS_USB, VSS1_USBHS, VSS2_USBHS					V
VBATT 電源電圧	VBATT	VBATT		1.62	_	3.63	V
アナログ電源電圧	AVCC0 ^(注1)		下記以外	1.62	_	3.63	V
			チャネル専用サンプル& ホールド回路使用時	2.70	_	3.63	V
	AVSS0		-	_	0	_	V

注 1. A/D コンバータ、D/A コンバータ、および高速アナログコンパレータを使用していない場合、AVCC0 端子、VREFH/VREFH0 端子、AVSS0 端子、および VREFL/VREFL0 端子を開放したままにしないでください。AVCC0 端子および VREFH/VREFH0 端子を VCCに、AVSS0 端子および VREFL/VREFL0 端子を VSS にそれぞれ接続してください。

- 注 2. VCL 電圧が VCC 電圧を超えることのないようにしてください。
- 注 3. 外部 VDD モードは、HLQFP パッケージではサポートされません。

2.2 DC 特性

2.2.1 Tj/Ta の定義

表 2.3 DC 特性

項目	シンボル	Тур	Max	単位	測定条件
許容動作ジャンクション温度	Tj	_	125 ^(注1)	°C	High-speed モード

注. $T_j = T_a + \theta_{ja} \times$ 総消費電力 (W) となるようにしてください。このとき、総消費電力 = (VCC - V_{OH}) × $\Sigma I_{OH} + V_{OL} \times \Sigma I_{OL} + (I_{CC} max + I_{CC} DCDC max) \times VCC$ です。

- 注. 最低周囲温度 (Ta) は -40 °C または 0 °C です (製品による)。
- 注 1. 動作ジャンクション温度の上限は、95°C、105°C、または 125°C です (製品による)。

$2.2.2 \qquad \text{I/O V}_{\text{IH}}, \, \text{V}_{\text{IL}}$

表 2.4 シュミットトリガ入力端子以外の I/O V_{IH}、V_{IL} (1/2)

項目		VCC/VCC2/ AVCC0/ VCC_USB	シンボル	Min	Тур	Max	単位
为口 一	EXTAL(外部ク	1.62 V 以上	VIH	VCC × 0.8	Тур		<u>≠₩</u>
1) AZ 100 NG 71111 J	ロック入力)、 WAIT、SPI ^(注1) (RSPCK を除 く)	1.02 7 %	V _{IL}		_	VCC × 0.2	·
	SPI ^(注2)	1.62 V 以上	V _{IH}	VCC2 × 0.8		_	
	(RSPCK を除 く)		V _{IL}	_	_	VCC2 × 0.2	
	OSPI	2.70 V 以上	V _{IH}	VCC2 × 0.8		_	
	(OM_0_RSTO		V _{IL}	_		VCC2 × 0.2	
	OM_0_ECSINT	1.62~2.00 V	V _{IH}	VCC2 × 0.7		VCC2 + 0.3	
	OM_1_RSTO1 、および OM_1_ECSINT 1を除く)		V _{IL}	VSS - 0.3	_	VCC2 × 0.3	
	SD ^(注3)	2.70 V 以上	V _{IH}	VCC × 0.625	_	VCC + 0.3	
			V _{IL}	VSS - 0.3	_	VCC × 0.25	
		1.70~1.95 V	V _{IH}	1.27	_	2	
			V _{IL}	VSS - 0.3	_	0.58	
	SD ^(注4)	2.70 V 以上	V _{IH}	VCC2 × 0.625		VCC2 + 0.3	
			V _{IL}	VSS - 0.3	-	VCC2 × 0.25	
		1.70~1.95 V	V _{IH}	1.27	-	2	
			V _{IL}	VSS - 0.3		0.58	
	MMC ^(注5)	2.70 V 以上	V _{IH}	VCC × 0.625	_	VCC + 0.3	
			V _{IL}	VSS - 0.3		VCC × 0.25	
		1.70~1.95 V	V _{IH}	VCC × 0.65		VCC + 0.3	
			V _{IL}	VSS - 0.3	_	VCC × 0.35	
	MMC ^(注6)	2.70 V 以上	V _{IH}	VCC2 × 0.625		VCC2 + 0.3	
			V _{IL}	VSS - 0.3		VCC2 × 0.25	
		1.70~1.95 V	V _{IH}	VCC2 × 0.65	_	VCC2 + 0.3	
			V _{IL}	VSS - 0.3	_	VCC2 × 0.35	
	D00~D19,	1.62 V 以上	V _{IH}	VCC × 0.7	_	_	
	TMS, TDI, SWDIO		V _{IL}	_	_	VCC × 0.3	
	D20~D31	1.62 V 以上	V _{IH}	VCC2 × 0.7	_	_	
			V _{IL}	_	_	VCC2 × 0.3	
	DQ00~DQ19	3.00 V 以上	V _{IH}	VCC × 0.7	_	_	
			V _{IL}	_		VCC × 0.3	
	DQ20~DQ31	3.00 V 以上	V _{IH}	VCC2 × 0.7	_	_	
			V _{IL}	_		VCC2 × 0.3	

表 2.4 シュミットトリガ入力端子以外の I/O V_{IH}、V_{IL} (2/2)

項目		VCC/VCC2/ AVCC0/ VCC_USB	シンボル	Min	Тур	Max	単位
周辺機能端子	ESWM ^(注9)	2.30~3.60 V	V _{IH}	VCC × 0.7	_	_	V
			V _{IL}	_	_	VCC × 0.3	
			V _{IH}	VCC2 × 0.7	_	_	
			V _{IL}	_	_	VCC2 × 0.3	
	ESWM (MII)	2.70~3.60 V	V _{IH}	2.3	_	_	
	(注10)、ESWM (RMII) ^(注11)		V _{IL}	_	_	VCC × 0.2	
	ESWM (GMII)	3.00~3.60 V	V _{IH}	2	_	_	1
	^(注10) 、ESWM (RGMII) ^(注12)		V _{IL}	_	_	0.8	
		2.30~2.70 V	V _{IH}	1.7	_	_	
			V _{IL}	_	_	0.7	
	IIC (SMBus)	2.70 V 以上	V _{IH}	2.1	_	VCC + 3.6 (最大 5.8)	
	(注7)		V _{IL}	_	_	0.8	
	IIC (SMBus)	2.70 V 以上	V _{IH}	2.1	_	VCC2 + 3.6(最大 5.8)	
	(注8)		V _{IL}	_	_	0.8	
	I3C (SMBus)	2.70 V 以上	V _{IH}	2.1	_	VCC + 0.3	
			V _{IL}	_	_	0.8	
	RTCICO,	1.62 V 以上	V _{IH}	0.9	_	3.9	
	RTCIC1、 RTCIC2(VCC 電源選択時)		V _{IL}	_		0.3	
	RTCICO、RTCIC		V _{IH}	0.9	_	3.9	
	(VBATT 電源選	沢時)	V _{IL}	_	_	0.3	
	EXCIN (VCC 電	1.62 V 以上	V _{IH}	0.9	_	VCC	
	源選択時)		V _{IL}	_	_	0.3	
	EXCIN (VBATT	電源選択時)	V _{IH}	0.9	_	VBATT	
			V _{IL}	_	_	0.3	

- 注 1. SPI0_B、SPI0_C、および SPI1_B
- 注 2. SPI0_A, SPI1_A
- SD_A ch0、SD_B ch0、SD_C ch0、および SD_B ch1 注 3.
- 注 4. SD_A ch1
- $\mbox{MMC_A ch0}$ 、 $\mbox{MMC_B ch0}$ 、 $\mbox{MM_C ch0}$ 、および $\mbox{MMC_B ch1}$ $\mbox{MMC_A ch1}$ 注 5.
- 注 6.
- 注 7. IICO_A、IICO_B、IIC1_A、IIC2_A、およびIIC2_B
- 注 8. IIC1_B
- 注 9. GPTP_CAPTUREn、ETn_LINKSTA、ETn_MDIO、およびETn_INT (n = 0, 1)
- 注 10. ETn_RX_CLK、ETn_RX_DV、ETn_RXD7~ETn_RXD0、ETn_RX_ER、およびETn_TX_CLK (n = 0, 1)
- 注 11. RMIIn_REF50CK、RMIIn_CRS_DV、RMIIn_RXD1~RMIIn_RXD0、およびRMIIn_RX_ER (n = 0, 1)
- 注 12. RGMIIn_RXC、RGMIIn_RX_CTL、および RGMIIn_RXD3~RGMIIn_RXD0 (n = 0, 1)

表 2.5 シュミットトリガ入力端子の I/O V_{IH}、V_{IL} (1/2)

		VCC/VCC2/ AVCC0/					
項目		VCC_USB	シンボル	Min	Тур	Max	単位
周辺機能端子	IIC (SMBus を	1.62 V 以上	V _{IH}	VCC × 0.7	_	VCC + 3.6 (最大 5.8)	V
	除く) ^(注7)		V _{IL}	_	_	VCC × 0.3	
			ΔV_{T}	VCC × 0.05	_	_	
	IIC (SMBus を	1.62 V 以上	V _{IH}	VCC2 × 0.7	_	VCC2 + 3.6(最大 5.8)	
	除く) ^(注8)		V _{IL}	_	_	VCC2 × 0.3	
			ΔV_{T}	VCC2 × 0.05	_	_	
	I3C (SMBus を	1.65 V 以上	V _{IH}	VCC × 0.7	_	VCC + 0.3	
5 7	除く)		V _{IL}	_	_	VCC × 0.3	
			ΔV_{T}	VCC × 0.1	_	_	
	5 V トレラント	1.62 V 以上	V _{IH}	VCC × 0.8	_	VCC + 3.6 (最大 5.8)	
	ポート ^{(注1)(注6)}		V _{IL}	_	_	VCC × 0.2	
			ΔV_{T}	VCC × 0.05	_	_	
	5 Vトレラント	1.62 V 以上	V _{IH}	VCC2 × 0.8	_	VCC2 + 3.6(最大 5.8)	
	ポート ^{(注2)(注6)}		V _{IL}	_	_	VCC2 × 0.2	
			ΔV_{T}	VCC2 × 0.05	_	_	
	その他の VCC	1.62 V 以上	V _{IH}	VCC × 0.8	_	_	
	入力端子 ^(注3)		V _{IL}	_	_	VCC × 0.2	
			ΔV_{T}	VCC × 0.05	_	_	
	その他の VCC2	1.62 V 以上	V _{IH}	VCC2 × 0.8	_	_	
	入力端子 ^(注3)		V _{IL}	_	_	VCC2 × 0.2	
			ΔV_{T}	VCC2 × 0.05	_	_	
	その他の	1.62 V 以上	V _{IH}	AVCC0 × 0.8	_	_	
	AVCC0 入力端 子 ^(注3)		V _{IL}	_	_	AVCC0 × 0.2	
			ΔV_{T}	AVCC0 × 0.05	_	_	
	その他の	1.62 V 以上	V _{IH}	VCC_USB × 0.8	_	_	
	VCC_USB 入力 端子 ^(注3)		V _{IL}	_	_	VCC_USB × 0.2	
			ΔV_{T}	VCC_USB × 0.05	_	_	
	その他の	1.62 V 以上	V _{IH}	VCC × 0.8	_	VCC	
	VBATT_R 入力 端子 (VCC 電源		V _{IL}	_	_	VCC × 0.2	
	選択時) (注3)		ΔV_{T}	VCC × 0.05	_	_	1

表 2.5 シュミットトリガ入力端子の I/O V_{IH}、V_{IL} (2/2)

項目		VCC/VCC2/ AVCC0/ VCC_USB	シンボル	Min	Тур	Max	単位
ポート	5 V トレラント	1.62 V 以上	V _{IH}	VCC × 0.8	_	VCC + 3.6 (最大 5.8)	٧
	ポート ^{(注4)(注6)}		V _{IL}	_	_	VCC × 0.2	
	5 V トレラント	1.62 V 以上	V _{IH}	VCC2 × 0.8	_	VCC2 + 3.6(最大 5.8)	
	ポート ^{(注2)(注6)}		V _{IL}	_	_	VCC2 × 0.2	
その他の VC0 入力端子 ^(注5)		1.62 V 以上	V _{IH}	VCC × 0.8	_	_	
	入力端子 ^(注5) 		V _{IL}	_	_	VCC × 0.2	
	その他の VCC2	1.62 V 以上	V _{IH}	VCC2 × 0.8	_	_	
	入力端子 ^(注5) 		V _{IL}	_	_	VCC2 × 0.2	
	その他の	1.62 V 以上	V _{IH}	AVCC0 × 0.8	_	_	
	AVCC0 入力端 子 ^(注5)		V _{IL}	_	_	AVCC0 × 0.2	
	その他の	1.62 V 以上	V _{IH}	VCC_USB × 0.8	_	_	
	VCC_USB 入力 端子 ^(注5)		V _{IL}	_	_	VCC_USB × 0.2	
	その他の	1.62 V 以上	V _{IH}	VCC × 0.8	_	VCC	
	VBATT_R 入力 端子 (VCC 電源 選択時) ^(注5)		V _{IL}	_	_	VCC × 0.2	

- 注 1. P303、P407~P413、P511、P512、P514、P515、P708~P715(合計 21 端子)に関連する RES および周辺機能端子
- 注 2. P204、P205 (合計 2 端子)
- 注 3. 表で説明した周辺機能端子を除くすべての入力端子。各ポートの電源電圧ごとに項目を分けています。ポートの電源の入出力に関する章を参照してください。
- 注 4. P303、P407~P413、P511、P512、P514、P515、P708~P715(合計 20 端子)
- 注 5. 表で説明したポートを除くすべての入力端子。各ポートの電源電圧ごとに項目を分けています。ポートの電源の入出力に関する章を参照してください。
- 注 6. VCC または VCC2 が 1.62 V 未満の場合、5 V トレラントポートの入力電圧は、3.6 V 未満としてください。このようにしないと、絶縁破壊が発生する可能性があります。5 V トレラントポートは耐圧違反を防止するように電気的に制御されるためです。

2.2.3 I/O I_{OH} , I_{OL}

表 2.6 I/O I_{OH}, I_{OL} (1/5)

項目			VCC/VCC2/ AVCC0/ VCC_USB	シンボル	Min	Тур	Max	単位
許容出力電流(端子ごと		_	_	I _{OH}		_	-2.0	mA
の平均値)	P015、P201			I _{OL}		_	2.0	mA
	ポート P204、	低駆動 ^(注1)	_	I _{OH}		_	-2.0	mA
	P205、P303、P407 ~P413、P511、			I _{OL}		1—	2.0	mA
	P512、P514、 P515、P708~	中駆動 ^(注2)	_	I _{OH}	_	_	-4.0	mA
	P715、PA15(合計 23 端子)			I _{OL}	_	_	4.0	mA
	20 4111] /	高駆動 ^(注3)	_	I _{OH}	_	_	-16	mA
				I _{OL}		_	20.0	mA
		高速高駆動 ^(注4)	_	I _{OH}	_	_	-20	mA
				I _{OL}	_	_	20.0	mA
	その他の出力端子	低駆動 ^(注1)	_	I _{OH}	_	_	-2.0	mA
	(注5)			I _{OL}	_	_	2.0	mA
		中駆動 ^(注2)	_	I _{OH}	_	_	-4.0	mA
				I _{OL}		_	4.0	mA
		高駆動 ^(注3)	_	I _{OH}	_	_	-16	mA
				I _{OL}	_	_	16.0	mA
		高速高駆動 ^(注4)	_	I _{OH}		_	-20	mA
				I _{OL}	_	_	20.0	mA
許容出力電流(端子ごと	ポート P000~	_	_	I _{OH}	_	_	-4.0	mA
の最大値)	P015、P201			I _{OL}	_	_	4.0	mA
	ポート P204、	低駆動 ^(注1)	_	I _{OH}			-4.0	mA
	P205、P303、P407 ~P413、P511、			I _{OL}			4.0	mA
	P512、P514、 P515、P708~	中駆動 ^(注2)	_	I _{OH}		_	-8.0	mA
	P715、PA15(合計 23 端子)			I _{OL}		_	8.0	mA
		高駆動 ^(注3)	_	I _{OH}	_	_	-32	mA
				I _{OL}		_	40.0	mA
		高速高駆動 ^(注4)	_	I _{OH}		_	-40	mA
				I _{OL}		_	40.0	mA
	その他の出力端子	低駆動 ^(注1)	_	I _{OH}		_	-4.0	mA
	()23)			I _{OL}		_	4.0	mA
		中駆動 ^(注2)	_	I _{OH}		_	-8.0	mA
				I _{OL}			8.0	mA
		高駆動 ^(注3)	-	Іон			-32	mA
				I _{OL}		_	32.0	mA
		高速高駆動 ^(注4)		Іон			-40	mA
				I _{OL}	_	_	40.0	mA

表 2.6 I/O I_{OH}, I_{OL} (2/5)

項目				VCC/VCC2/ AVCC0/ VCC_USB	シンボル	Min	Тур	Max	単位
許容出力電流(全端子合計の最大値)	全出力端子の最大 値	VCC I/O	ポート P411~ P415、P511~ P515、P708~ P715、P805~ P807(合計 21 端子)	1.62 V 以上	ΣΙ _{ΟΗ (max)}	_	_	-40	mA
			ポート P212、 P213、P400~ P410(合計 13 端子)	1.62 V 以上		_	_	-40	
			ポート P700~ P707、PB00~ PB04(合計 13 端子)	1.62 V 以上		_	_	-40	
			ポート PB05~ PB07、PD06、 PD07 (合計 5 端 子)	1.62 V 以上		_	_	-40	
			ポート P207、 PD01~PD05 (合計 6 端子)	1.62 V 以上		_	_	-40	
			ポート P904、 P910~P913(合 計 5 端子)	1.62 V 以上		_	_	-40	
			ポート P206、 P304~P312、 P902、P903、 P905~P909(合計 17 端子)	1.62 V 以上		_		-40	
			ポートP108~ P115、P201、 P208~P211、 P300~P303、 P609、P914、 P915、PA11(合 計 21 端子)	1.62 V 以上		_	_	-40	
			ポート P610~ P615、P813、 PA04~PA10、 PA12~PA15 (合計 18 端子)	1.62 V 以上		_	_	-40	
			ポート P503~ P510、P608、 PA00~PA03、 PC11~PC15、 PD00(合計 19 端子)	1.62 V 以上		_	_	-40	

表 2.6 I/O I_{OH}, I_{OL} (3/5)

項目				VCC/VCC2/ AVCC0/ VCC_USB	シンボル	Min	Тур	Max	単位
許容出力電流(全端子合 計の最大値)	全出力端子の最大 値	VCC2 ポート PC00~ I/O PC10 (合計 11 端子)		1.62 V 以上	ΣI _{OH (max)}	_	_	-40	mA
			ポート P204、 P205、P600~ P607(合計 10 端子)	1.62 V 以上			_	-40	
			ポート P202、 P203、P313~ P315、P900、 P901 (合計 7 端 子)	1.62 V 以上		_	_	-40	
			ポートP100~ P107、P800、 P801(合計 10 端子)	1.62 V 以上		_	_	-40	
			ポート P500~ P502、P802~ P804、P808~ P812(合計 11 端子)	1.62 V 以上			_	-40	
		AVCC0	I/O	1.62 V 以上		_	_	-33	1
		VCC_U	SB I/O	1.62 V 以上	1	_	_	-33	1

表 2.6 I/O I_{OH}, I_{OL} (4/5)

項目				VCC/VCC2/ AVCC0/ VCC_USB	シンボル	Min	Тур	Max	単位
許容出力電流(全端子合計の最大値)	全出力端子の最大値	VCC および VCC2 I/O	ポート P411~ P415、P511~ P515、P708~ P715、P805~ P807(合計 21 端子)	1.62 V 以上	ΣI _{OL (max)}	_	_	40	mA
			ポート P212、 P213、P400~ P410、(合計 13 端子)	1.62 V 以上		_	_	40	
			ポート P700~ P707、PB00~ PB04(合計 13 端子)	1.62 V 以上		_	_	40	
			ポート PB05~ PB07、PD06、 PD07 (合計 5 端 子)	1.62 V 以上		_	_	40	
			ポート P207、 PD01~PD05 (合計 6 端子)	1.62 V 以上		_	_	40	
			ポート P904、 P910~P913(合 計 5 端子)	1.62 V 以上		_	_	40	
			ポート P206、 P304~P312、 P902、P903、 P905~P909(合計 17端子)	1.62 V 以上		_	_	40	
			ポート P108~ P115、P201、 P208~P211、 P300~P303、 P609、P914、 P915、PA11(合 計 21 端子)	1.62 V 以上		_	_	40	
			ポート P610~ P615、P813、 PA04~PA10、 PA12~PA15 (合計 18 端子)	1.62 V 以上		_	_	40	
			ポート P503~ P510、P608、 PA00~PA03、 PC11~PC15、 PD00(合計 19 端子)	1.62 V 以上			_	40	
			ポート PC00~ PC10(合計 11 端子)	1.62 V 以上		_	_	40	
			ポート P204、 P205、P600~ P607(合計 10 端子)	1.62 V 以上		_	_	40	

表 2.6 I/O I_{OH}, I_{OL} (5/5)

項目		VCC/VCC2/ AVCC0/ VCC_USB	シンボル	Min	Тур	Max	単位		
許容出力電流(全端子合計の最大値)	全出力端子の最大値	VCC および VCC2 I/O	ポート P202、 P203、P313~ P315、P900、 P901 (合計 7 端 子)	1.62 V 以上	ΣI _{OL (max)}	_	_	40	mA
			ポートP100~ P107、P800、 P801(合計 10 端子)	1.62 V 以上		_	_	40	
			ポート P500~ P502、P802~ P804、P808~ P812(合計 11 端子)	1.62 V 以上		_	_	40	
		AVCC0	I/O	1.62 V 以上		_	_	33	1
		VCC_U	SB I/O	1.62 V 以上		_	_	33	1

- 注 1. PmnPFS レジスタのポート駆動能力ビットで低駆動が選択されている場合の値です。選択された駆動能力は、P400 と P401 を除き、 ディープソフトウェアスタンバイモードで保持されます。
- PmnPFS レジスタのポート駆動能力ビットで中駆動が選択されている場合の値です。選択された駆動能力は、P400 と P401 を除き、 ディープソフトウェアスタンバイモードで保持されます。
- PmnPFS レジスタのポート駆動能力ビットで高駆動が選択されている場合の値です。選択された駆動能力は、P400 と P401 を除き、 注 3. ディープソフトウェアスタンバイモードで保持されます。
- PmnPFS レジスタのポート駆動能力で高速高駆動が選択されている場合の値です。選択された駆動能力は、ディープソフトウェアス 注 4. タンバイモードで保持されます。 注 5. 入力ポートである P200、P214、および P215 を除きます。

【使用上の注意】MCU の信頼性を確保するため、出力電流値はこの表の値を超えないようにしてください。平均出力電流は、 100 µs の間に計測した電流の平均値を意味します。

2.2.4 I/O V_{OH}、V_{OL}、およびその他の特性

表 2.7 I/O V_{OH}、V_{OL}、およびその他の特性 (1/3)

項目		VCC/ VCC2/ AVCC0/ VCC_US B	シンボル	Min	Тур	Max	単位	測定条件
出力電圧	IIC	2.70 V 以	V _{OL}	_	_	0.4	V	I _{OL} = 3.0 mA
		上	V _{OL}	_	_	0.6		I _{OL} = 6.0 mA
		1.62 V~	V _{OL}	_		VCC × 0.2		I _{OL} = 2.0 mA
		1.95 V	V _{OL}	_		0.4		I _{OL} = 3.0 mA
			V _{OL}	_	_	0.6 ^(注4)		I _{OL} = 6.0 mA
			V _{OL}	_	-	VCC2 × 0.2		I _{OL} = 2.0 mA
	IIC ^(注1)	2.70 V 以	V _{OL}	_	_	0.4		I _{OL} = 15.0 mA (ICFER.FMPE = 1)
		上	V _{OL}	_	0.4	_		I _{OL} = 20.0 mA (ICFER.FMPE = 1)
		1.62 V~	V _{OL}	_	-	0.4		I _{OL} = 15.0 mA (ICFER.FMPE = 1)
		1.95 V	V _{OL}	_	0.4	_		I _{OL} = 20.0 mA (ICFER.FMPE = 1)
	I3C	2.70 V 以 上	V _{OL}	_	_	0.4		I _{OL} = 3.0 mA (PRTS.PRTMD = 1, BFCTL.FMPE = 0, BFCTL.HSME = 0)
			V _{OL}	_		0.6		I _{OL} = 6.0 mA (PRTS.PRTMD = 1, BFCTL.FMPE = 0, BFCTL.HSME = 0)
			V _{OL}	_	_	0.4		I _{OL} = 15.0 mA (PRTS.PRTMD = 1, BFCTL.FMPE = 1, BFCTL.HSME = 0)
			V _{OL}	_	0.4	_		I _{OL} = 20.0 mA (PRTS.PRTMD = 1, BFCTL.FMPE = 1, BFCTL.HSME = 0)
		3.00 V 以 上	V _{OL}	_		0.4		I _{OL} = 3.0 mA (PRTS.PRTMD = 1, BFCTL.FMPE = 0, BFCTL.HSME = 1)
			V _{OH}	VCC - 0.27		_		I _{OH} = 3.0 mA (PRTS.PRTMD = 0, BFCTL.FMPE = 0, BFCTL.HSME = 0)
			V _{OL}	_	_	0.27		I _{OL} = 3.0 mA (PRTS.PRTMD = 0, BFCTL.FMPE = 0, BFCTL.HSME = 0)
		1.65 V~ 1.95 V	V _{OL}	_	_	VCC × 0.2		I _{OL} = 2.0 mA (PRTS.PRTMD = 1, BFCTL.FMPE = 0, BFCTL.HSME = 0)
			V _{OL}	_	_	0.4		I _{OL} = 3.0 mA (PRTS.PRTMD = 1, BFCTL.FMPE = 0, BFCTL.HSME = 0)
			V _{OL}	_	_	0.6		I _{OL} = 6.0 mA (PRTS.PRTMD = 1, BFCTL.FMPE = 0, BFCTL.HSME = 0)
			V _{OL}	_	_	VCC × 0.2		I _{OL} = 2.0 mA (PRTS.PRTMD = 1, BFCTL.FMPE = 1, BFCTL.HSME = 0)
			V _{OL}	_	_	0.4		I _{OL} = 15.0 mA (PRTS.PRTMD = 1, BFCTL.FMPE = 1, BFCTL.HSME = 0)
			V _{OL}	_	0.4	_		I _{OL} = 20.0 mA (PRTS.PRTMD = 1, BFCTL.FMPE = 1, BFCTL.HSME = 0)
			V _{OL}	_	_	VCC × 0.2		I _{OL} = 3.0 mA (PRTS.PRTMD = 1, BFCTL.FMPE = 0, BFCTL.HSME = 1)
			V _{OH}	VCC - 0.27	-	_		I _{OH} = 3.0 mA (PRTS.PRTMD = 0, BFCTL.FMPE = 0, BFCTL.HSME = 0)
			V _{OL}	_	-	0.27		I _{OL} = 3.0 mA (PRTS.PRTMD = 0, BFCTL.FMPE = 0, BFCTL.HSME = 0)

表 2.7 I/O V_{OH}、V_{OL}、およびその他の特性 (2/3)

#1	項目		\$ 6 d*u				Mé AL	and the de fil.
	E014/4	B	シンボル	Min	Тур	Max	単位	測定条件
出力電圧	ESWM	2.70 V~ 3.60 V	V _{OH}	VCC - 0.5	-	_	V	I _{OH} = -1.0 mA
			V _{OL}	_	_	0.4	-	I _{OL} = 1.0 mA
			V _{OH}	VCC2 - 0.5	_	_		I _{OH} = -1.0 mA
		2.30 V~ 2.70 V	V _{OH}	2	_	_		I _{OH} = -1.0 mA
			V _{OL}	_		0.4		I _{OL} = 1.0 mA
	SD	2.70 V 以 上	V _{OH}	VCC × 0.75	_	_		I _{OH} = -2.0 mA
			V _{OL}	_	_	VCC × 0.125		I _{OL} = 3.0 mA
			V _{OH}	VCC2 × 0.75	_	_		I _{OH} = -2.0 mA
			V _{OL}	_	_	VCC2 × 0.125		I _{OL} = 3.0 mA
		1.70~	V _{OH}	1.4	_	_		I _{OH} = -2.0 mA
		1.95 V	V _{OL}	_	_	0.45		I _{OL} = 2.0 mA
	ммс	2.70 V 以	V _{OH}	VCC × 0.75	_	_		I _{OH} = -0.1 mA (VCC = 2.7 V)
		上	V _{OL}	_	_	VCC × 0.125		I _{OL} = 0.1 mA (VCC = 2.7 V)
			V _{OH}	VCC2 × 0.75	_	_		I _{OH} = -0.1 mA (VCC2 = 2.7 V)
			V _{OL}	_	_	VCC2 × 0.125		I _{OL} = 0.1 mA (VCC2 = 2.7 V)
		1.70~	V _{OH}	VCC - 0.45	_	_		I _{OH} = -2.0 mA
		1.95 V	V _{OL}	_	_	0.45		I _{OL} = 2.0 mA
			V _{OH}	VCC2 - 0.45	_	_		I _{OH} = -2.0 mA
	ポート	_	V _{OH}	VCC - 1.0	_	_	-	I _{OH} = -16 mA (VCC = 3.3 V)
	P204、 P205、		V _{OL}	_	_	1		I _{OL} = 20 mA (VCC = 3.3 V)
	P303、 P407~		V _{OH}	VCC2 - 1.0	_	_		I _{OH} = -16 mA (VCC2 = 3.3 V)
	P413、 P511、 P512、 P514、 P515、 P708~ P715、 PA15(合計 23 端子)(注2)		V _{OL}	_	_	1		I _{OL} = 20 mA (VCC2 = 3.3 V)
	その他の 出力端子	1.62 V 以 上	V _{OH}	VCC - 0.5	_	_	V	I _{OH} = -1.0 mA
			V _{OL}	_	_	0.5		I _{OL} = 1.0 mA
			V _{OH}	VCC2 - 0.5		_		I _{OH} = -1.0 mA
			V _{OL}	_	_	0.5		I _{OL} = 1.0 mA
			V _{OH}	AVCC0 - 0.5		_		I _{OH} = -1.0 mA
			V _{OL}	_	_	0.5		I _{OL} = 1.0 mA
			V _{OH}	VCC_USB - 0.5		_		I _{OH} = -1.0 mA
			V _{OL}	_	_	0.5		I _{OL} = 1.0 mA

2. 電気的特性 RA8M2 データシート

表 2.7 I/O V_{OH}、V_{OL}、およびその他の特性 (3/3)

項目		VCC/ VCC2/ AVCC0/ VCC_US B	シンボル	Min	Тур	Max	単位	測定条件
入力リーク電 流	RES	1.62 V 以 上	I _{in}	_	_	5	μА	V _{in} = 0 V V _{in} = 5.5 V
	ポート P200、 P214、 P215	1.62 V 以 上		_	_	1		V _{in} = 0 V V _{in} = VCC
スリーステー トリーク電流 (オフ状態)	5 V トレラ ントポー ト	1.62 V 以 上	I _{TSI}	_	_	5	μА	V _{in} = 0 V V _{in} = 5.5 V
	その他の ポート (ポ ート P200、 P214、 P215 を除 く)	1.62 V 以 上		_	_	1		V _{in} = 0 V V _{in} = VCC, VCC2, AVCC0, VCC_USB
入力プルアッ プ MOS 電流	ポート P0 ~PD	2.70 V 以 上	Ip	-300	_	-10	μА	VCC, VCC2, AVCC0, VCC_USB = 2.7 ~3.63 V V _{in} = 0 V
		1.62 V 以 上		-300	_	-5		VCC, VCC2, AVCC0, VCC_USB = 1.62~3.63 V V _{in} = 0 V
SCL 電流ソ ースとして機	I3C ^(注3)	3.00~ 3.63 V	I _{cs}	3	-	12	mA	VCC = 3.0~3.63 V V _{in} = 0.3 × VCC~0.7 × VCC
能するプルア ップ電流		1.65 ~ 1.95 V						VCC = 1.65~1.95 V V _{in} = 0.3 × VCC~0.7 × VCC
入力容量	ポート P014、 P015	_	C _{in}	_	_	16	pF	Vbias = 0 V Vamp = 20 mV f = 1 MHz
	ポート P814/ USB_DP、 P815/ USB_DM	_		_	_	12		Ta = 25 °C
	ポート P400、 P401、 P409、 P410、 P511、 P512、 P708、 P709、 USBHS_D P、 USBHS_D M	_		_	_	10		
	その他の 入力端子	_		_		8		

SCL0_A、SDA0_A、SCL1_A、SDA1_A、SCL2_A、SDA2_A(合計 6 端子) これは PmnPFS レジスタのポート駆動能力ビットで高速高駆動能力が選択されている場合の値です。 注 2.

注 3.

選択された駆動能力は、ディープソフトウェアスタンバイモードで保持されます。
ISC_SCL0 (1 端子)。これは IIC High-speed モード選択時の値です。
これは、以下の端子に対して、PmnPFS レジスタのポート駆動能力ビットで高速高駆動能力が選択されている場合の値です。 注 4. SDA0_B、SCL0_B、SDA1_B、SCL1_B、SDA2_B、SCL2_B

2.2.5 動作電流とスタンバイ電流

SiP フラッシュメモリの電流値は本項では対象外です。IS25WX064 のデータシートを参照してください。

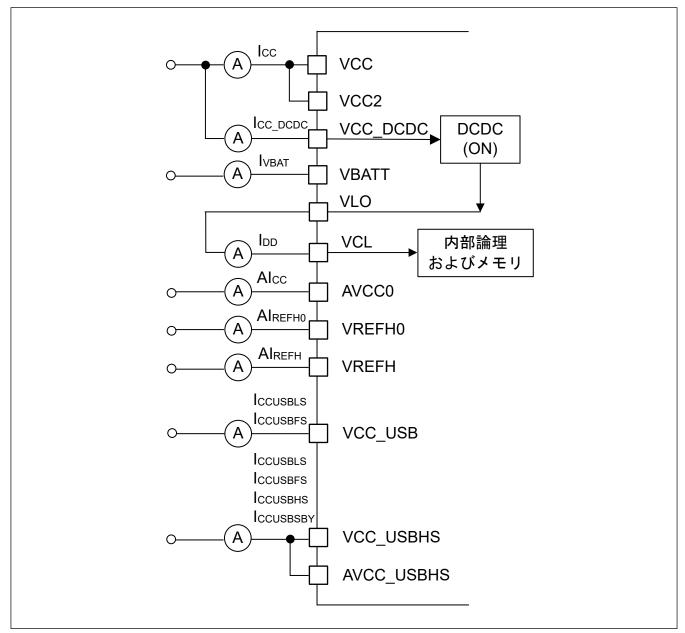


図 2.2 消費電流測定図 (DCDC モード)

表 2.8 High-speed モード、極大条件(MVE および周辺機能動作)(DCDC モード)における電流

					Max							
項目			シンボル	Тур	95 °C	105 °C	125 °C	単位	測定条件			
消費電	_		Icc	3.85	6.27	6.69	8.01	mA	_			
流 ^(注1) (注2) (注6)	CPUC LK0 = 1 GHz	VCC_DCD C ≧ 2.5 V	I _{CC_DCDC} (注4)	176	340	_	_	mA	VCC_DCDC = 3.3 V MRICLK = 250 MHz, MRPCLK = 125 MHz, ICLK = 250 MHz, BCLK = 125 MHz, PCLKA			
	CPUC LK1 = 250 M		I _{DD} (注3)	452	873	_	_		= 125 MHz, PCLKB = 62.5 MHz, PCLKC = 125 MHz, PCLKD = 250 MHz, PCLKE = 250 MHz			
	Hz VSCR_ 1 VCC_DCD C < 2.5 V		I _{CC_DCDC} (注4)	343	664	_	_		VCC_DCDC = 1.8 V クロック設定は上記と同様			
			I _{DD}	452	873	_	_					
	CPUC LK0 = 800 M	VCC_DCD C ≧ 2.5 V	I _{CC_DCDC} (注4)	148	_	356	_	mA	VCC_DCDC = 3.3 V MRICLK = 200 MHz, MRPCLK = 100 MHz, ICLK = 200 MHz, BCLK = 100 MHz, PCLKA			
	Hz CPUC LK1 =		I _{DD} ^(注3)	380	_	915	_		= 100 MHz, PCLKB = 50 MHz, PCLKC = 100 MHz, PCLKD = 200 MHz, PCLKE = 200 MHz			
	200 M Hz VSCR_	VCC_DCD C < 2.5 V	I _{CC_DCDC} (注4)	289	_	696	_		VCC_DCDC = 1.8 V クロック設定は上記と同様			
	1		I _{DD}	380	_	915	_					
	CPUC LK0 = 600 M	VCC_DCD C ≧ 2.5 V	I _{CC_DCDC} (注4)	129	_	_	390	mA	VCC_DCDC = 3.3 V MRICLK = 200 MHz, MRPCLK = 100 MHz, ICLK = 200 MHz, BCLK = 100 MHz, PCLKA			
	Hz CPUC LK1 =		I _{DD} ^(注3)	330	_	_	1000 (注5)		= 100 MHz, PCLKB = 50 MHz, PCLKC = 100 MHz, PCLKD = 200 MHz, PCLKE = 200 MHz			
	200 M Hz VSCR_	VCC_DCD C < 2.5 V	I _{CC_DCDC} (注4)	251	_	_	760		VCC_DCDC = 1.8 V クロック設定は上記と同様			
	1		I _{DD}	330	_	_	1000 (注5)					
	CPUC LK0 = 600 M	VCC_DCD C ≧ 2.5 V	I _{CC_DCDC} (注4)	115	282	309	366	mA	VCC_DCDC = 3.3 V MRICLK = 150 MHz, MRPCLK = 75 MHz, ICLK = 150 MHz, BCLK = 75 MHz, PCLKA =			
	Hz CPUC LK1 =		I _{DD} (注3)	301	738	810	959		75 MHz, PCLKB = 37.5 MHz, PCLKC = 75 MHz, PCLKD = 150 MHz, PCLKE = 150 MHz			
	150 M Hz VSCR_	VCC_DCD C < 2.5 V	I _{CC_DCDC} (注4)	224	550	604	715		VCC_DCDC = 1.8 V クロック設定は上記と同様			
	2		I _{DD}	301	738	810	959					

- 注 1. 消費電流値はすべての出力端子を無負荷状態にして、さらにすべての入力プルアップ MOS をオフ状態にした場合の値です。
- 注 2. 動作中の周辺機能にクロックが供給された状態で計測しました。BGO 動作は含まれません。
- 注 3. I_{DD} は、下記の式にしたがって f(CPUCLKO および ICLK)に依存します。式の中の ICLK 項は、CPU1 電流を含んでいます。
 - I_{DD} Typ. = 0.25 × fCPUCLK0 + 0.77 × fICLK + 21(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max.(VSCR_1, 95 °C) = $0.22 \times$ fCPUCLK0 + $0.80 \times$ fICLK + 477(単位:mA、ただし fCPUCLK0 および fICLK については MHz) I_{DD} Max.(VSCR_1, 105 °C) = $0.22 \times$ fCPUCLK0 + $0.80 \times$ fICLK + 553(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max.(VSCR_1, 125 °C) = 0.22 × fCPUCLK0 + 0.80 × fICLK + 709(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max.(VSCR_2, 95 °C) = $0.22 \times$ fCPUCLK0 + $0.93 \times$ fICLK + 464(単位:mA、ただし fCPUCLK0 および fICLK については MHz) I_{DD} Max.(VSCR_2, 105 °C) = $0.22 \times$ fCPUCLK0 + $0.93 \times$ fICLK + 537(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max.(VSCR_2, 125 °C) = 0.22 × fCPUCLK0 + 0.93 × fICLK + 691(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
- 注 4. 標準 DCDC 効率と測定条件の電圧が適用されます。
- 注 5. 動作時の実消費電流はここに示す電流値を上回らないようにしてください。
- 注 6. 電力 = VCC × I_{cc} + VCC_DCDC × I_{cc} DCDC として消費電力は計算されます。

表 2.9 High-speed モード、極大条件(MVE および周辺機能動作)(外部 VDD モード)における電流

				Max				
項目		シンボル	Тур	95 °C	105 °C	125 °C	単位	測定条件
消費電	_	I _{CC}	3.85	6.27	6.69	8.01	mA	_
流(注1) (注2)(注5)	CPUCL K0 = 1 GHz CPUCL K1 = 250 MH z VCL = 電圧範 囲 1	I _{DD} (注3)	452	873	_	_	mA	MRICLK = 250 MHz, MRPCLK = 125 MHz, ICLK = 250 MHz, BCLK = 125 MHz, PCLKA = 125 MHz, PCLKB = 62.5 MHz, PCLKC = 125 MHz, PCLKD = 250 MHz, PCLKE = 250 MHz
	CPUCL K0 = 800 MH z CPUCL K1 = 200 MH z VCL = 電圧範 囲 1	I _{DD} (注3)	380	_	915	_	mA	MRICLK = 200 MHz, MRPCLK = 100 MHz, ICLK = 200 MHz, BCLK = 100 MHz, PCLKA = 100 MHz, PCLKB = 50 MHz, PCLKC = 100 MHz, PCLKD = 200 MHz, PCLKE = 200 MHz
	CPUCL K0 = 600 MH z CPUCL K1 = 200 MH z VCL = 電圧範 囲 1	I _{DD} (注3)	330	_	_	1000 (注4)	mA	MRICLK = 200 MHz, MRPCLK = 100 MHz, ICLK = 200 MHz, BCLK = 100 MHz, PCLKA = 100 MHz, PCLKB = 50 MHz, PCLKC = 100 MHz, PCLKD = 200 MHz, PCLKE = 200 MHz
	CPUCL K0 = 600 MH z CPUCL K1 = 150 MH z VCL = 電圧範 囲 2	I _{DD} (注3)	301	738	810	959	mA	MRICLK = 150 MHz, MRPCLK = 75 MHz, ICLK = 150 MHz, BCLK = 75 MHz, PCLKA = 75 MHz, PCLKB = 37.5 MHz, PCLKC = 75 MHz, PCLKD = 150 MHz, PCLKE = 150 MHz

- 注 1. 消費電流値はすべての出力端子を無負荷状態にして、さらにすべての入力プルアップ MOS をオフ状態にした場合の値です。
- 注 2. 動作中の周辺機能にクロックが供給された状態で計測しました。BGO 動作は含まれません。
- 注 3. I_{DD} は、下記の式にしたがって f(CPUCLKO および ICLK)に依存します。式の中の ICLK 項は、CPU1 電流を含んでいます。

 I_{DD} Typ. = 0.25 × fCPUCLK0 + 0.77 × fICLK + 21(単位:mA、ただし fCPUCLK0 および fICLK については MHz)

 I_{DD} Max.(VCL = 電圧範囲 1、95 °C) = $0.22 \times fCPUCLK0 + 0.80 \times fICLK + 477$ (単位:mA、ただし fCPUCLK0 および fICLK については MHz)

 I_{DD} Max. (VCL = 電圧範囲 1、105 °C) = 0.22 × fCPUCLK0 + 0.80 × fICLK + 553(単位:mA、ただし fCPUCLK0 および fICLK については MHz)

 I_{DD} Max.(VCL = 電圧範囲 1、125 °C) = $0.22 \times fCPUCLK0 + 0.80 \times fICLK + 709$ (単位:mA、ただし fCPUCLK0 および fICLK については MHz)

 I_{DD} Max.(VCL = 電圧範囲 2、95 °C) = $0.22 \times fCPUCLK0 + 0.93 \times fICLK + 464$ (単位:mA、ただし fCPUCLK0 および fICLK については MHz)

 I_{DD} Max. (VCL = 電圧範囲 2、105 °C) = 0.22 × fCPUCLK0 + 0.93 × fICLK + 537(単位:mA、ただし fCPUCLK0 および fICLK については MHz)

 I_{DD} Max. (VCL = 電圧範囲 2、125 °C) = 0.22 × fCPUCLK0 + 0.93 × fICLK + 691(単位:mA、ただし fCPUCLK0 および fICLK については MHz)

- 注 4. 動作時の実消費電流はここに示す電流値を上回らないようにしてください。
- 注 5. 電力 = VCC × I_{cc} + VCL × I_{DD} として消費電力は計算されます。

High-speed モード、極大条件(MVE および周辺機能動作)、CPU0 有効、CPU1 ディープスリープ(DCDC モー 表 2.10

					Max					
項目			シンボル	Тур	95 °C	105 °C	125 °C	単位	測定条件	
消費電	_		I _{CC}	3.85	6.27	6.69	8.01	mA	_	
流 ^(注1) (注2) (注5)	CPUC LK0 = 1 GHz	VCC_DCD C ≧ 2.5 V	I _{CC_DCDC} (注4)	168	329	_	_	mA	VCC_DCDC = 3.3 V MRICLK = 250 MHz, MRPCLK = 125 MHz, ICLK = 250 MHz, BCLK = 125 MHz, PCLKA	
			I _{DD} (注3)	430	844	_	_		= 125 MHz, PCLKB = 62.5 MHz, PCLKC = 125 MHz, PCLKD = 250 MHz, PCLKE = 250 MHz (PCLKE = 250 MHz)	
		VCC_DCD C < 2.5 V	I _{CC_DCDC} (注4)	327	642	_	_		VCC_DCDC = 1.8 V クロック設定は上記と同様	
			I _{DD}	430	844	_	_			
	CPUC LK0 =	VCC_DCD C ≧ 2.5 V	I _{CC_DCDC} (注4)	141	_	347	_	mA	VCC_DCDC = 3.3 V MRICLK = 200 MHz, MRPCLK = 100 MHz, ICLK = 200 MHz, BCLK = 100 MHz, PCLKA	
	800 M Hz CPUC LK1 = 200 M		I _{DD} (注3)	362	_	891	_		= 100 MHz, PCLKB = 50 MHz, PCLKC = 100 MHz, PCLKD = 200 MHz, PCLKE = 200 MHz (PCLKE = 200 MHz)	
	Hz VSCR_ 1	VCC_DCD C < 2.5 V	I _{CC_DCDC} (注4)	275	_	678	_		VCC_DCDC = 1.8 V クロック設定は上記と同様	
			I _{DD}	362	_	891	_			
	CPUC LK0 = 600 M	C ≧ 2.5 V	I _{CC_DCDC} (注4)	122	_	_	380	mA	VCC_DCDC = 3.3 V MRICLK = 200 MHz, MRPCLK = 100 MHz, ICLK = 200 MHz, BCLK = 100 MHz, PCLKA	
	Hz CPUC LK1 = 200 M		I _{DD} (注3)	312	_	_	976		= 100 MHz, PCLKB = 50 MHz, PCLKC = 100 MHz, PCLKD = 200 MHz, PCLKE = 200 MHz CPU1 = ディープスリープ	
	Hz VSCR_ 1	VCC_DCD C < 2.5 V	I _{CC_DCDC} (注4)	237	_	_	742		VCC_DCDC = 1.8 V クロック設定は上記と同様	
			I _{DD}	312	_	_	976			
	CPUC LK0 = 600 M	VCC_DCD C ≧ 2.5 V	I _{CC_DCDC} (注4)	110	274	301	359	mA	VCC_DCDC = 3.3 V MRICLK = 150 MHz, MRPCLK = 75 MHz, ICLK = 150 MHz, BCLK = 75 MHz, PCLKA =	
	600 M Hz CPUC LK1 = 150 M	z PUC (1 =	I _{DD} (注3)	289	718	788	940		75 MHz, PCLKB = 37.5 MHz, PCLKC = 75 MHz, PCLKD = 150 MHz, PCLKE = 150 MHz CPU1 = ディープスリープ	
	Hz VSCR_ 2	VCC_DCD C < 2.5 V	I _{CC_DCDC} (注4)	216	536	588	701		VCC_DCDC = 1.8 V クロック設定は上記と同様	
			I _{DD}	289	718	788	940			

- 消費電流値はすべての出力端子を無負荷状態にして、さらにすべての入力プルアップ MOS をオフ状態にした場合の値です。
- 動作中の周辺機能にクロックが供給された状態で計測しました。BGO 動作は含まれません。 I_{DD} は、下記の式にしたがって f(CPUCLKO および ICLK)に依存します。 注 2.
- 注 3.
 - I_{DD} Typ. = 0.25 × fCPUCLK0 + 0.71 × fICLK + 21(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max.(VSCR_1, 95 °C) = 0.22 × fCPUCLK0 + 0.70 × fICLK + 474(単位:mA、ただし fCPUCLK0 および fICLK については MHz) I_{DD} Max.(VSCR_1, 105 °C) = 0.22 × fCPUCLK0 + 0.70 × fICLK + 549(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max.(VSCR_1, 125 $^{\circ}$ C) = 0.22 \times fCPUCLK0 + 0.70 \times fICLK + 704(単位:mA、ただし fCPUCLK0 および fICLK については
 - I_{DD} Max.(VSCR 2, 95 °C) = 0.22 × fCPUCLK0 + 0.83 × fICLK + 461(単位:mA、ただし fCPUCLK0 および fICLK については MHz) I_{DD} Max.(VSCR_2, 105 °C) = 0.22 × fCPUCLK0 + 0.83 × fICLK + 533(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max.(VSCR_2, 125 °C) = 0.22 × fCPUCLK0 + 0.83 × fICLK + 686(単位:mA、ただし fCPUCLK0 および fICLK については MHz)

- 注 4. 標準 DCDC 効率と測定条件の電圧が適用されます。
- 注 5. 電力 = VCC × I_{cc} + VCC_DCDC × I_{cc_DCDC} として消費電力は計算されます。

表 2.11 High-speed モード、極大条件(MVE および周辺機能動作)、CPU0 有効、CPU1 ディープスリープ(外部 VDD モード)における電流

				Max				
項目		シンボル	Тур	95 °C	105 °C	125 °C	単位	測定条件
消費電	_	I _{CC}	3.85	6.27	6.69	8.01	mA	_
流(注1) (注2)(注4)	CPUCL K0 = 1 GHz CPUCL K1 = 250 MH z VCL = 電圧範 囲 1	I _{DD} (注3)	430	844	_	_	mA	MRICLK = 250 MHz, MRPCLK = 125 MHz, ICLK = 250 MHz, BCLK = 125 MHz, PCLKA = 125 MHz, PCLKB = 62.5 MHz, PCLKC = 125 MHz, PCLKD = 250 MHz, PCLKE = 250 MHz CPU1 = ディープスリープ
	CPUCL K0 = 800 MH z CPUCL K1 = 200 MH z VCL = 電圧範 囲 1	I _{DD} (注3)	362		891	_	mA	MRICLK = 200 MHz, MRPCLK = 100 MHz, ICLK = 200 MHz, BCLK = 100 MHz, PCLKA = 100 MHz, PCLKC = 100 MHz, PCLKC = 100 MHz, PCLKD = 200 MHz, PCLKD = 200 MHz CPU1 = ディープスリープ
	CPUCL K0 = 600 MH z CPUCL K1 = 200 MH z VCL = 電圧範 囲 1	I _{DD} (注3)	312	_	_	976	mA	MRICLK = 200 MHz, MRPCLK = 100 MHz, ICLK = 200 MHz, BCLK = 100 MHz, PCLKA = 100 MHz, PCLKB = 50 MHz, PCLKC = 100 MHz, PCLKD = 200 MHz, PCLKD = 200 MHz, PCLKD = 200 MHz CPU1 = ディープスリープ
	CPUCL K0 = 600 MH z CPUCL K1 = 150 MH z VCL = 電圧範 囲 2	I _{DD} (注3)	289	718	788	940	mA	MRICLK = 150 MHz, MRPCLK = 75 MHz, ICLK = 150 MHz, BCLK = 75 MHz, PCLKA = 75 MHz, PCLKB = 37.5 MHz, PCLKC = 75 MHz, PCLKD = 150 MHz, PCLKE = 150 MHz CPU1 = ディープスリープ

- 注 1. 消費電流値はすべての出力端子を無負荷状態にして、さらにすべての入力プルアップ MOS をオフ状態にした場合の値です。
- 注 2. 動作中の周辺機能にクロックが供給された状態で計測しました。BGO 動作は含まれません。
- 注 3. I_{DD} は、下記の式にしたがって f (CPUCLKO および ICLK) に依存します。
 - $I_{
 m DD}$ Typ. = 0.25 × fCPUCLK0 + 0.71 × fICLK + 21(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max.(VCL = 電圧範囲 1、95 °C) = $0.22 \times fCPUCLK0 + 0.70 \times fICLK + 474$ (単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max. (VCL = 電圧範囲 1、105 °C) = $0.22 \times fCPUCLK0 + 0.70 \times fICLK + 549$ (単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max. (VCL = 電圧範囲 1、125 °C) = $0.22 \times fCPUCLK0 + 0.70 \times fICLK + 704$ (単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max.(VCL = 電圧範囲 2、95 °C) = $0.22 \times fCPUCLK0 + 0.83 \times fICLK + 461$ (単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max.(VCL = 電圧範囲 2、105 °C) = $0.22 \times fCPUCLK0 + 0.83 \times fICLK + 533$ (単位:mA、ただし fCPUCLK0 および fICLK については MHz)

 I_{DD} Max. (VCL = 電圧範囲 2、125 °C) = 0.22 × fCPUCLK0 + 0.83 × fICLK + 686(単位:mA、ただし fCPUCLK0 および fICLK については MHz)

注 4. 電力 = VCC × I_{cc} + VCL × I_{DD} として消費電力は計算されます。

表 2.12 High-speed モード、最大データ処理(MVE 動作)、周辺クロック ON(DCDC モード)における電流

				Max				
項目		シンボル	Тур	95 °C	105 °C	125 °C	単位	測定条件
消費電 流 ^(注1) (注2)	CPUCLK0 = 1 GHz CPUCLK1 =	I _{CC_DCDC} (注4)	136	322	_	_	mA	VCC_DCDC = 3.3 V(注5)
(/±2)	250 MHz VSCR_1 CPUCLK0 = 800 MHz CPUCLK1 = 200 MHz VSCR_1	I _{DD} (注3)	350	827	_	_		
		I _{CC_DCDC} (注4)	113	_	340	_		
		I _{DD} (注3)	290	_	874	_		
	CPUCLK0 = 600 MHz	I _{CC_DCDC} (注4)	94	_	_	356		
	CPUCLK1 = 200 MHz VSCR_1 CPUCLK0 = 600 MHz	I _{DD} (注3)	241	_	_	915		
		I _{CC_DCDC} (注4)	86	264	305	336		
	CPUCLK1 = 150 MHz VSCR_2	I _{DD} (注3)	226	692	798	879		

- 注 1. 消費電流値はすべての出力端子を無負荷状態にして、さらにすべての入力プルアップ MOS をオフ状態にした場合の値です。
- 注 2. 動作中の周辺機能にクロックが供給された状態で計測しました。BGO 動作は含まれません。
- 注3. I_{DD} は、下記の式にしたがって f(CPUCLKO および ICLK)に依存します。式の中の ICLK 項は、CPU1 電流を含んでいます。
 - I_{DD} Typ. = 0.24 × fCPUCLK0 + 0.37 × fICLK + 21(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max.(VSCR_1, 95 °C) = 0.27 × fCPUCLK0 + 0.20 × fICLK + 477(単位:mA、ただし fCPUCLK0 および fICLK については MHz) I_{DD} Max.(VSCR_1, 105 °C) = 0.27 × fCPUCLK0 + 0.20 × fICLK + 553(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max.(VSCR_1, 125 °C) = 0.27 × fCPUCLK0 + 0.20 × fICLK + 709(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max.(VSCR_2, 95 °C) = $0.27 \times$ fCPUCLK0 + $0.18 \times$ fICLK + 464(単位:mA、ただし fCPUCLK0 および fICLK については MHz) I_{DD} Max.(VSCR_2, 105 °C) = $0.27 \times$ fCPUCLK0 + $0.18 \times$ fICLK + 537(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max.(VSCR_2, 125 °C) = 0.27 × fCPUCLK0 + 0.18 × fICLK + 691(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
- 注 4. 標準 DCDC 効率と測定条件の電圧が適用されます。
- 注 5. 極大条件下と同じ周波数条件が適用されます。

表 2.13 High-speed モード、最大データ処理(MVE 動作)、周辺クロック ON(外部 VDD モード)における電流

				Max				
項目		シンボル	Тур	95 °C	105 °C	125 °C	単位	測定条件
消費電 流 ^(注1) (注2)	CPUCLK0 = 1 GHz CPUCLK1 = 250 MHz VCL = 電圧範囲 1	I _{DD} (注3)	350	827	_	_	mA	(注4)
	CPUCLK0 = 800 MHz CPUCLK1 = 200 MHz VCL = 電圧範囲 1	I _{DD} (注3)	290	_	874	_		
	CPUCLK0 = 600 MHz CPUCLK1 = 200 MHz VCL = 電圧範囲 1	I _{DD} (注3)	241	_	_	915		
	CPUCLK0 = 600 MHz CPUCLK1 = 150 MHz VCL = 電圧範囲 2	I _{DD} (注3)	226	692	798	879		

- 注 1. 消費電流値はすべての出力端子を無負荷状態にして、さらにすべての入力プルアップ MOS をオフ状態にした場合の値です。
- 注 2. 動作中の周辺機能にクロックが供給された状態で計測しました。BGO 動作は含まれません。
- 注 3. I_{DD} は、下記の式にしたがって f(CPUCLKO および ICLK)に依存します。式の中の ICLK 項は、CPU1 電流を含んでいます。
 - I_{DD} Typ. = 0.24 × fCPUCLK0 + 0.37 × fICLK + 21(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max.(VCL = 電圧範囲 1、95 °C) = $0.27 \times fCPUCLK0 + 0.20 \times fICLK + 477$ (単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max. (VCL = 電圧範囲 1、105 °C) = 0.27 × fCPUCLK0 + 0.20 × fICLK + 553(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max. (VCL = 電圧範囲 1、125 °C) = 0.27 × fCPUCLK0 + 0.20 × fICLK + 709(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max.(VCL = 電圧範囲 2、95 °C) = 0.27 × fCPUCLK0 + 0.18 × fICLK + 464(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max. (VCL = 電圧範囲 2、105 °C) = 0.27 × fCPUCLK0 + 0.18 × fICLK + 537(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max.(VSCR_2, 125 °C) = 0.27 × fCPUCLK0 + 0.18 × fICLK + 691(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
- 注 4. 極大条件下と同じ周波数条件が適用されます。

表 2.14 High-speed モード、最大データ処理(MVE 動作)、CPU0 有効、CPU1 ディープスリープ、周辺クロック ON (DCDC モード)における電流

				Max	Max			
項目		シンボル	Тур	95 °C	105 °C	125 °C	単位	測定条件
消費電 流 ^(注1)	CPUCLK0 = 1 GHz CPUCLK1 = 250 MHz VSCR_1	I _{CC_DCDC} (注4)	131	313	_	_	mA	VCC_DCDC = 3.3 V CPU1 = ディープスリープ (注5)
(注2)		I _{DD} (注3)	335	804	_	_		
	CPUCLK0 = 800 MHz CPUCLK1 = 200 MHz VSCR_1	I _{CC_DCDC} (注4)	109	_	332	_		
		I _{DD} (注3)	279	_	853	_		
	CPUCLK0 = 600 MHz CPUCLK1 =	I _{CC_DCDC} (注4)	89	_	_	342		
	200 MHz VSCR_1	I _{DD} (注3)	229	_	_	879		
	CPUCLK0 = 600 MHz CPUCLK1 = 150 MHz VSCR_2	I _{CC_DCDC} (注4)	83	258	298	328		
		I _{DD} (注3)	216	676	780	858		

- 注 1. 消費電流値はすべての出力端子を無負荷状態にして、さらにすべての入力プルアップ MOS をオフ状態にした場合の値です。
- 注 2. 動作中の周辺機能にクロックが供給された状態で計測しました。BGO 動作は含まれません。
- 注 3. I_{DD} は、下記の式にしたがって f (CPUCLKO および ICLK) に依存します。
 - I_{DD} Typ. = 0.25 × fCPUCLK0 + 0.30 × fICLK + 21(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max.(VSCR_1, 95 °C) = 0.27 × fCPUCLK0 + 0.05 × fICLK + 474(単位:mA、ただし fCPUCLK0 および fICLK については MHz) I_{DD} Max.(VSCR_1, 105 °C) = 0.27 × fCPUCLK0 + 0.05 × fICLK + 549(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max.(VSCR_1, 125 °C) = 0.27 × fCPUCLK0 + 0.05 × fICLK + 704(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max.(VSCR_2, 95 °C) = $0.27 \times$ fCPUCLK0 + $0.07 \times$ fICLK + 461(単位:mA、ただし fCPUCLK0 および fICLK については MHz) I_{DD} Max.(VSCR_2, 105 °C) = $0.27 \times$ fCPUCLK0 + $0.07 \times$ fICLK + 533(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max.(VSCR_2, 125 °C) = 0.27 × fCPUCLK0 + 0.07 × fICLK + 686(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
- 注4. 標準 DCDC 効率と測定条件の電圧が適用されます。
- 注 5. 極大条件下と同じ周波数条件が適用されます。

表 2.15 High-speed モード、最大データ処理(MVE 動作)、CPU0 有効、CPU1 ディープスリープ、周辺クロック ON(外 部 VDD モード)における電流

				Max				
						1		
項目		シンボル	Тур	95 °C	105 °C	125 °C	単位	測定条件
消費電 流 ^(注1) (注2)	CPUCLK0 = 1 GHz CPUCLK1 = 250 MHz VCL = 電圧範囲 1	1 GHz CPUCLK1 = 250 MHz	mA	CPU1 = ディープスリープ (注4)				
	CPUCLK0 = 800 MHz CPUCLK1 = 200 MHz VCL = 電圧範囲 1	I _{DD} (注3)	279	_	853	_		
	CPUCLK0 = 600 MHz CPUCLK1 = 200 MHz VCL = 電圧範囲 1	I _{DD} (注3)	229	_	_	879		
	CPUCLK0 = 600 MHz CPUCLK1 = 150 MHz VCL = 電圧範囲 2	I _{DD} (注3)	216	676	780	858		

- 注 1. 消費電流値はすべての出力端子を無負荷状態にして、さらにすべての入力プルアップ MOS をオフ状態にした場合の値です。
- 注 2. 動作中の周辺機能にクロックが供給された状態で計測しました。BGO 動作は含まれません。
- 注 3. I_{DD} は、下記の式にしたがって f(CPUCLKO および ICLK)に依存します。
 - I_{DD} Typ. = 0.25 × fCPUCLK0 + 0.30 × fICLK + 21 (単位: mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max.(VCL = 電圧範囲 1、95 °C) = $0.27 \times fCPUCLK0 + 0.05 \times fICLK + 474$ (単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max. (VCL = 電圧範囲 1、105 °C) = 0.27 × fCPUCLK0 + 0.05 × fICLK + 549(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max. (VCL = 電圧範囲 1、125 °C) = $0.27 \times fCPUCLK0 + 0.05 \times fICLK + 704$ (単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max.(VCL = 電圧範囲 2、95 °C) = $0.27 \times f$ CPUCLK0 + $0.07 \times f$ ICLK + 461(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max. (VCL = 電圧範囲 2、105 °C) = 0.27 × fCPUCLK0 + 0.07 × fICLK + 533(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max.(VCL = 電圧範囲 2、125 °C) = 0.27 × fCPUCLK0 + 0.07 × fICLK + 686(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
- 注 4. 極大条件下と同じ周波数条件が適用されます。

表 2.16 High-speed モード、最大データ処理、CPU0 ディープスリープ、CPU1 有効、周辺クロック ON(DCDC モード)における電流

				Max				
項目		シンボル	Тур	95 °C	105 °C	125 °C	単位	測定条件
消費電 流 ^(注1)	CPUCLK0 = 1 GHz CPUCLK1 =	I _{CC_DCDC} (注4)	44	175	_	_	mA	VCC_DCDC = 3.3 V CPU0 = ディープスリープ (注3)
(注2)	250 MHz VSCR_1	I _{DD}	112	450	_	_		(VLO)
	CPUCLK0 = 800 MHz CPUCLK1 = 200 MHz VSCR_1	I _{CC_DCDC} (注4)	38	_	190	_		
		I _{DD}	99	_	488	_		
	CPUCLK0 = 600 MHz	I _{CC_DCDC} (注4)	38	_	_	224		
	CPUCLK1 = 200 MHz VSCR_1	I _{DD}	96	_	_	545		
	CPUCLK0 = 600 MHz CPUCLK1 = 150 MHz VSCR_2	I _{CC_DCDC} (注4)	31	155	179	208		
		I _{DD}	82	406	470	545		

- 注 1. 消費電流値はすべての出力端子を無負荷状態にして、さらにすべての入力プルアップ MOS をオフ状態にした場合の値です。
- 注 2. 動作中の周辺機能にクロックが供給された状態で計測しました。BGO 動作は含まれません。
- 注3. 極大条件下と同じ周波数条件が適用されます。
- 注 4. 標準 DCDC 効率と測定条件の電圧が適用されます。

表 2.17 High-speed モード、最大データ処理、CPU0 ディープスリープ、CPU1 有効、周辺クロック ON(外部 VDD モード)における電流

	1 / 1-00.7							
				Max				
項目		シンボル	Тур	95 °C	105 °C	125 °C	単位	測定条件
消費電 流 ^(注1) (注2)	CPUCLK0 = 1 GHz CPUCLK1 = 250 MHz VCL = 電圧範囲 1	I _{DD}	112	450	_	_	mA	CPU0 = ディープスリープ (注3)
	CPUCLK0 = 800 MHz CPUCLK1 = 200 MHz VCL = 電圧範囲 1	I _{DD}	99	_	488	_		
	CPUCLK0 = 600 MHz CPUCLK1 = 200 MHz VCL = 電圧範囲 1	I _{DD}	96	_	_	545		
	CPUCLK0 = 600 MHz CPUCLK1 = 150 MHz VCL = 電圧範囲 2	I _{DD}	82	406	470	545		

- 注 1. 消費電流値はすべての出力端子を無負荷状態にして、さらにすべての入力プルアップ MOS をオフ状態にした場合の値です。
- 注 2. 動作中の周辺機能にクロックが供給された状態で計測しました。BGO 動作は含まれません。
- 注 3. 極大条件下と同じ周波数条件が適用されます。

表 2.18 High-speed モード、最大データ処理(MVE 動作)、周辺クロック OFF(DCDC モード)における電流

				Max	Max			
項目		シンボル	Тур	95 °C	105 °C	125 °C	単位	測定条件
消費電 流 ^(注1)	CPUCLK0 = 1 GHz CPUCLK1 = 250 MHz VSCR_1	I _{CC_DCDC} (注4)	121	317	_	_	mA	VCC_DCDC = 3.3 V ^(注5)
(注2)		I _{DD} (注3)	310	814	_	_		
	CPUCLK0 = 800 MHz	I _{CC_DCDC} (注4)	99	_	325	_		
	CPUCLK1 = 200 MHz VSCR_1	I _{DD} (注3)	255	_	833	_		
	CPUCLK0 = 600 MHz CPUCLK1 =	I _{CC_DCDC} (注4)	80	_	_	358		
	200 MHz VSCR_1	I _{DD} (注3)	207	_	_	919		
	CPUCLK0 = 600 MHz CPUCLK1 = 150 MHz VSCR_2	I _{CC_DCDC} (注4)	75	258	292	340		
		I _{DD} (注3)	197	675	764	889		

- 注 1. 消費電流値はすべての出力端子を無負荷状態にして、さらにすべての入力プルアップ MOS をオフ状態にした場合の値です。
- 注2. この状態では、周辺機能へのクロック信号供給は停止されています。BGO 動作は含まれません。
- 注 3. I_{DD} は、下記の式にしたがって f(CPUCLK0 および ICLK)に依存します。式の中の ICLK 項は、CPU1 電流を含んでいます。 I_{DD} Typ. = $0.24 \times$ fCPUCLK0 + $0.20 \times$ fICLK + 21(単位:mA、ただし fCPUCLK0 および fICLK については MHz) I_{DD} Max.(VSCR_1, 95 °C) = $0.27 \times$ fCPUCLK0 + $0.23 \times$ fICLK + 477(単位:mA、ただし fCPUCLK0 および fICLK については MHz) I_{DD} Max.(VSCR_1, 105 °C) = $0.27 \times$ fCPUCLK0 + $0.23 \times$ fICLK +
 -_{DD} Max.(VSCR_1, 125 °C) = 0.27 × fCPUCLK0 + 0.23 × fICLK + 709(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max.(VSCR_2, 95 °C) = 0.27 × fCPUCLK0 + 0.25 × fICLK + 464(単位:mA、ただし fCPUCLK0 および fICLK については MHz) I_{DD} Max.(VSCR_2, 105 °C) = 0.27 × fCPUCLK0 + 0.25 × fICLK + 537(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max.(VSCR_2, 125 °C) = 0.27 × fCPUCLK0 + 0.25 × fICLK + 691(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
- 注4. 標準 DCDC 効率と測定条件の電圧が適用されます。
- 注 5. 極大条件下と同じ周波数条件が適用されます。

表 2.19 High-speed モード、最大データ処理(MVE 動作)、周辺クロック OFF(外部 VDD モード)における電流

				Max				
項目		シンボル	Тур	95 °C	105 °C	125 °C	単位	測定条件
消費電 流 ^(注1) (注2)	CPUCLK0 = 1 GHz CPUCLK1 = 250 MHz VCL = 電圧範囲 1	I _{DD} (注3)	310	814	_	_	mA	(注4)
	CPUCLK0 = 800 MHz CPUCLK1 = 200 MHz VCL = 電圧範囲 1	I _{DD} (注3)	255	_	833	_		
	CPUCLK0 = 600 MHz CPUCLK1 = 200 MHz VCL = 電圧範囲 1	I _{DD} (注3)	207	_	_	919		
	CPUCLK0 = 600 MHz CPUCLK1 = 150 MHz VCL = 電圧範囲 2	I _{DD} (注3)	197	675	764	889		

- 注 1. 消費電流値はすべての出力端子を無負荷状態にして、さらにすべての入力プルアップ MOS をオフ状態にした場合の値です。
- 注 2. この状態では、周辺機能へのクロック信号供給は停止されています。BGO 動作は含まれません。
- 注 3. I_{DD} は、下記の式にしたがって f(CPUCLKO および ICLK)に依存します。式の中の ICLK 項は、CPU1 電流を含んでいます。
 - I_{DD} Typ. = 0.24 × fCPUCLK0 + 0.20 × fICLK + 21(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max.(VCL = 電圧範囲 1、95 °C) = $0.27 \times fCPUCLK0 + 0.23 \times fICLK + 477$ (単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max. (VCL = 電圧範囲 1、105 °C) = 0.27 × fCPUCLK0 + 0.23 × fICLK + 553(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max. (VCL = 電圧範囲 1、125 °C) = 0.27 × fCPUCLK0 + 0.23 × fICLK + 709(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max.(VCL = 電圧範囲 2、95 °C) = $0.27 \times fCPUCLK0 + 0.25 \times fICLK + 464$ (単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max. (VCL = 電圧範囲 2、105 °C) = 0.27 × fCPUCLK0 + 0.25 × fICLK + 537(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max.(VCL = 電圧範囲 2、125 °C) = 0.27 × fCPUCLK0 + 0.25 × fICLK + 691(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
- 注 4. 極大条件下と同じ周波数条件が適用されます。

High-speed モード、最大データ処理(MVE 動作)、CPU0 有効、CPU1 ディープスリープ、周辺クロック OFF 表 2.20 (DCDC モード) における電流

				Max	Max			
項目		シンボル	Тур	95 °C	105 °C	125 °C	単位	測定条件
消費電 流 ^(注1)	CPUCLK0 = 1 GHz CPUCLK1 = 250 MHz VSCR_1	I _{CC_DCDC} (注4)	115	308	_	_	mA	VCC_DCDC = 3.3 V CPU1 = ディープスリープ (注5)
(注2)		I _{DD} (注3)	295	792	_	_		
	CPUCLK0 = 800 MHz CPUCLK1 = 200 MHz VSCR_1	I _{CC_DCDC} (注4)	95	_	317	_		
		I _{DD} (注3)	244	_	813	_		
	CPUCLK0 = 600 MHz	I _{CC_DCDC} (注4)	76	_	_	348		
	CPUCLK1 = 200 MHz VSCR_1	I _{DD} (注3)	194	_	_	895		
	CPUCLK0 = 600 MHz CPUCLK1 = 150 MHz VSCR_2	I _{CC_DCDC} (注4)	71	251	285	331		
		I _{DD} (注3)	187	658	746	868		

- 消費電流値はすべての出力端子を無負荷状態にして、さらにすべての入力プルアップ MOS をオフ状態にした場合の値です。この状態では、周辺機能へのクロック信号供給は停止されています。BGO 動作は含まれません。 注 1.
- 注 2.
- I_{DD} は、下記の式にしたがって f (CPUCLKO および ICLK) に依存します。 注 3.
 - I_{DD} Typ. = $0.25 \times f$ CPUCLK $0+0.13 \times f$ ICLK + 21(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max.(VSCR_1, 95 °C) = 0.27 × fCPUCLK0 + 0.13 × fICLK + 474(単位:mA、ただし fCPUCLK0 および fICLK については MHz) I_{DD} Max.(VSCR 1, 105 °C) = 0.27 × fCPUCLK0 + 0.13 × fICLK + 549(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max.(VSCR_1, 125 $^{\circ}$ C) = 0.27 \times fCPUCLK0 + 0.13 \times fICLK + 704(単位:mA、ただし fCPUCLK0 および fICLK については
 - I_{DD} Max.(VSCR_2, 95 °C) = 0.27 × fCPUCLK0 + 0.14 × fICLK + 461(単位:mA、ただし fCPUCLK0 および fICLK については MHz) I_{DD} Max.(VSCR_2, 105 °C) = 0.27 × fCPUCLK0 + 0.14 × fICLK + 533(単位:mA、ただし fCPUCLK0 および fICLK については
 - I_{DD} Max.(VSCR 2, 125 °C) = 0.27 × fCPUCLK0 + 0.14 × fICLK + 686(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
- 標準 DCDC 効率と測定条件の電圧が適用されます。
- 注 5. 極大条件下と同じ周波数条件が適用されます。

表 2.21 High-speed モード、最大データ処理(MVE 動作)、CPU0 有効、CPU1 ディープスリープ、周辺クロック OFF (外部 VDD モード)における電流

	() Ap 122 C	1	U -500	I				
				Max				
項目		シンボル	Тур	95 °C	105 °C	125 °C	単位	測定条件
消費電 流 ^(注1) (注2)	CPUCLK0 = 1 GHz CPUCLK1 = 250 MHz VCL = 電圧範囲 1	I _{DD} (注3)	295	792	_	_	mA	CPU1 = ディープスリープ ^(注4)
	CPUCLK0 = 800 MHz CPUCLK1 = 200 MHz VCL = 電圧範囲 1	I _{DD} (注3)	244	_	813	_		
	CPUCLK0 = 600 MHz CPUCLK1 = 200 MHz VCL = 電圧範囲 1	I _{DD} (注3)	194	_	_	895		
	CPUCLK0 = 600 MHz CPUCLK1 = 150 MHz VCL = 電圧範囲 2	I _{DD} (注3)	187	658	746	868		

- 注 1. 消費電流値はすべての出力端子を無負荷状態にして、さらにすべての入力プルアップ MOS をオフ状態にした場合の値です。
- 注 2. この状態では、周辺機能へのクロック信号供給は停止されています。BGO 動作は含まれません。
- 注 3. I_{DD} は、下記の式にしたがって f (CPUCLKO および ICLK) に依存します。
 - I_{DD} Typ. = 0.25 × fCPUCLK0 + 0.13 × fICLK + 21(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max.(VCL = 電圧範囲 1、95 °C) = $0.27 \times fCPUCLK0 + 0.13 \times fICLK + 474$ (単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max. (VCL = 電圧範囲 1、105 °C) = 0.27 × fCPUCLK0 + 0.13 × fICLK + 549(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max. (VCL = 電圧範囲 1、125 °C) = 0.27 × fCPUCLK0 + 0.13 × fICLK + 704(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max.(VCL = 電圧範囲 2、95 °C) = $0.27 \times f$ CPUCLK0 + $0.14 \times f$ ICLK + 461(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max. (VCL = 電圧範囲 2、105 °C) = 0.27 × fCPUCLK0 + 0.14 × fICLK + 533(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max.(VCL = 電圧範囲 2、125 °C) = 0.27 × fCPUCLK0 + 0.14 × fICLK + 686(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
- 注 4. 極大条件下と同じ周波数条件が適用されます。

表 2.22 High-speed モード、最大データ処理、CPU0 ディープスリープ、CPU1 有効、周辺クロック OFF(DCDC モー

	Max							
項目		シンボル	Тур	95 °C	105 °C	125 °C	単位	測定条件
消費電 流 ^(注1)	CPUCLK0 = 1 GHz CPUCLK1 = 250 MHz VSCR_1	I _{CC_DCDC} (注4)	28	157	_	_	mA	VCC_DCDC = 3.3 V CPU0 = ディープスリープ (注3)
(注2)		I _{DD}	72	404	_	_		(33)
	CPUCLK0 = 800 MHz CPUCLK1 = 200 MHz VSCR_1	I _{CC_DCDC} (注4)	25	_	174	_		
		I _{DD}	64	_	447	_		
	CPUCLK0 = 600 MHz	I _{CC_DCDC} (注4)	24	_	_	208		
	CPUCLK1 = 200 MHz VSCR_1	I _{DD}	61	_	_	533		
	CPUCLK0 = 600 MHz CPUCLK1 = 150 MHz VSCR_2	I _{CC_DCDC} (注4)	20	142	166	195		
		I _{DD}	53	372	435	511		

- 消費電流値はすべての出力端子を無負荷状態にして、さらにすべての入力プルアップ MOS をオフ状態にした場合の値です。この状態では、周辺機能へのクロック信号供給は停止されています。BGO 動作は含まれません。 注 1.
- 注 2.
- 極大条件下と同じ周波数条件が適用されます。 注 3.
- 注 4. 標準 DCDC 効率と測定条件の電圧が適用されます。

High-speed モード、最大データ処理、CPU0 ディープスリープ、CPU1 有効、周辺クロック OFF(外部 VDD モ 表 2.23 ード) における電流

				Max	Max			
項目		シンボル	Тур	95 °C	105 °C	125 °C	単位	測定条件
消費電 流 ^(注1) (注2)	CPUCLK0 = 1 GHz CPUCLK1 = 250 MHz VCL = 電圧範囲 1	I _{DD}	72	404	_	_	mA	CPU0 = ディープスリープ (注3)
	CPUCLK0 = 800 MHz CPUCLK1 = 200 MHz VCL = 電圧範囲 1	IDD	64	_	447	_		
	CPUCLK0 = 600 MHz CPUCLK1 = 200 MHz VCL = 電圧範囲 1	I _{DD}	61	_	_	533		
	CPUCLK0 = 600 MHz CPUCLK1 = 150 MHz VCL = 電圧範囲 2	DD	53	372	435	511		

- 注 1. 消費電流値はすべての出力端子を無負荷状態にして、さらにすべての入力プルアップ MOS をオフ状態にした場合の値です。
- 注 2. この状態では、周辺機能へのクロック信号供給は停止されています。BGO 動作は含まれません。 注 3. 極大条件下と同じ周波数条件が適用されます。

表 2.24 High-speed モード、CPU スリープモード(DCDC モード)における電流

				Max	Max			
項目		シンボル	Тур	95 °C	105 °C	125 °C	単位	測定条件
消費電 流 ^(注1) (注3)	CPUCLK0 = 1 GHz CPUCLK1 = 250 MHz VSCR_1	I _{CC_DCDC} (注5)	22	200	_	_	mA	VCC_DCDC = 3.3 V
(注3)		I _{DD} (注2)	56	513	_	_		
	CPUCLK0 = 800 MHz	I _{CC_DCDC} (注5)	20	_	228	_		
	CPUCLK1 = 200 MHz VSCR_1	I _{DD} (注2)	50	_	586	_		
	CPUCLK0 = 600 MHz CPUCLK1 =	I _{CC_DCDC} (注5)	18	_	_	279		
	200 MHz VSCR_1	I _{DD} (注2)	46	_	_	716		
	CPUCLK0 = 600 MHz CPUCLK1 = 150 MHz VSCR_2	I _{CC_DCDC} (注5)	16	185	219	264		
		I _{DD} (注2)	42	484	573	690		

- 注 1. 消費電流値はすべての出力端子を無負荷状態にして、さらにすべての入力プルアップ MOS をオフ状態にした場合の値です。
- 注 2. I_{DD} は、下記の式にしたがって f (ICLK) に依存します。
 - I_{DD} Typ. = 0.02 × fCPUCLK0 + 0.06 × fICLK + 57(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max.(VSCR_1, 95 °C) = $0.02 \times$ fCPUCLK0 + $0.01 \times$ fICLK + 477(単位:mA、ただし fCPUCLK0 および fICLK については MHz) I_{DD} Max.(VSCR_1, 105 °C) = $0.02 \times$ fCPUCLK0 + $0.01 \times$ fICLK + 553(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max.(VSCR_1, 125 °C) = 0.02 × fCPUCLK0 + 0.01 × fICLK + 709(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max.(VSCR_2, 95 °C) = $0.02 \times$ fCPUCLK0 + $0.01 \times$ fICLK + 464(単位:mA、ただし fCPUCLK0 および fICLK については MHz) I_{DD} Max.(VSCR_2, 105 °C) = $0.02 \times$ fCPUCLK0 + $0.01 \times$ fICLK + 537(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max.(VSCR_2, 125 °C) = 0.02 × fCPUCLK0 + 0.01 × fICLK + 691(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
- 注 3. この状態では、周辺機能へのクロック信号供給は停止されています。BGO動作は含まれません。
- 注 4. MRICLK、MRPCLK、ICLK、PCLKA、PCLKB、PCLKD、PCLKD、PCLKE、およびBCLK は、64 分周に設定されています。
- 注 5. 標準 DCDC 効率と測定条件の電圧が適用されます。

表 2.25 High-speed モード、CPU スリープモード(外部 VDD モード)における電流

				Max				
項目		シンボル	Тур	95 °C	105 °C	125 °C	単位	測定条件
消费(注1) (注3) (注4)	CPUCLK0 = 1 GHz CPUCLK1 = 250 MHz VCL = 電圧範囲 1	I _{DD} (注2)	56	513	_	_	mA	
	CPUCLK0 = 800 MHz CPUCLK1 = 200 MHz VCL = 電圧範囲 1	I _{DD} (注2)	50	_	586	_		
	CPUCLK0 = 600 MHz CPUCLK1 = 200 MHz VCL = 電圧範囲 1	I _{DD} (注2)	46	_	_	716		
	CPUCLK0 = 600 MHz CPUCLK1 = 150 MHz VCL = 電圧範囲 2	I _{DD} (注2)	42	484	573	690		

- 注 1. 消費電流値はすべての出力端子を無負荷状態にして、さらにすべての入力プルアップ MOS をオフ状態にした場合の値です。
- 注 2. I_{DD} は、下記の式にしたがって f (ICLK) に依存します。
 - I_{DD} Typ. = $0.02 \times$ fCPUCLK0 + $0.06 \times$ fICLK + 57(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max.(VCL = 電圧範囲 1、95 °C) = $0.02 \times fCPUCLK0 + 0.01 \times fICLK + 477$ (単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max. (VCL = 電圧範囲 1、105 °C) = $0.02 \times fCPUCLK0 + 0.01 \times fICLK + 553$ (単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max. (VCL = 電圧範囲 1、125 °C) = 0.02 × fCPUCLK0 + 0.01 × fICLK + 709(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max.(VCL = 電圧範囲 2、95 °C) = $0.02 \times fCPUCLK0 + 0.01 \times fICLK + 464$ (単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max. (VCL = 電圧範囲 2、105 °C) = $0.02 \times fCPUCLK0 + 0.01 \times fICLK + 537$ (単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max. (VCL = 電圧範囲 2、125 °C) = $0.02 \times fCPUCLK0 + 0.01 \times fICLK + 691$ (単位:mA、ただし fCPUCLK0 および fICLK については MHz)
- 注 3. この状態では、周辺機能へのクロック信号供給は停止されています。BGO 動作は含まれません。
- 注 4. MRICLK、MRPCLK、ICLK、PCLKA、PCLKB、PCLKC、PCLKD、PCLKE、およびBCLKは、64 分周に設定されています。

表 2.26 High-speed モード、CPU0 スリープ、CPU1 ディープスリープ(DCDC モード)における電流

				Max				
項目		シンボル	Тур	95 °C	105 °C	125 °C	単位	測定条件
消費電流(注1) (注3) (注4)	CPUCLK0 = 1 GHz CPUCLK1 = 250 MHz VSCR_1	I _{CC_DCDC} (注5)	21	197	_	_	mA	VCC_DCDC = 3.3 V CPU1 = ディープスリープ
		I _{DD} (注2)	54	505	_	_		
	CPUCLK0 = 800 MHz CPUCLK1 = 200 MHz VSCR_1	I _{CC_DCDC} (注5)	19	_	229	_		
		I _{DD} (注2)	48	_	576	_		
	CPUCLK0 = 600 MHz CPUCLK1 = 200 MHz VSCR_1	I _{CC_DCDC} (注5)	17	_	_	274		
		I _{DD} (注2)	44	_	_	703		
	CPUCLK0 = 600 MHz CPUCLK1 = 150 MHz VSCR_2	I _{CC_DCDC} (注5)	15	182	216	259		
		I _{DD} (注2)	40	477	565	678		

- 注 1. 消費電流値はすべての出力端子を無負荷状態にして、さらにすべての入力プルアップ MOS をオフ状態にした場合の値です。
- 注 2. I_{DD} は、下記の式にしたがって f (ICLK) に依存します。
 - I_{DD} Typ. = $0.02 \times f$ CPUCLK $0 + 0.05 \times f$ ICLK + 55(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max.(VSCR_1, 95 °C) = 0.004 × fCPUCLK0 + 0.01 × fICLK + 474(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max.(VSCR_1, 105 °C) = 0.004 × fCPUCLK0 + 0.01 × fICLK + 549(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max.(VSCR_1, 125 °C) = 0.004 × fCPUCLK0 + 0.01 × fICLK + 704(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max.(VSCR_2, 95 °C) = 0.004 × fCPUCLK0 + 0.01 × fICLK + 461(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max.(VSCR_2, 105 °C) = 0.004 × fCPUCLK0 + 0.01 × fICLK + 533(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max.(VSCR_2, 125 °C) = 0.004 × fCPUCLK0 + 0.01 × fICLK + 686(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
- 注 3. この状態では、周辺機能へのクロック信号供給は停止されています。BGO 動作は含まれません。
- 注 4. MRICLK、MRPCLK、ICLK、PCLKA、PCLKB、PCLKC、PCLKD、PCLKE、およびBCLKは、64 分周に設定されています。
- 注 5. 標準 DCDC 効率と測定条件の電圧が適用されます。

表 2.27 High-speed モード、CPU0 スリープ、CPU1 ディープスリープ(外部 VDD モード)における電流

				Max				
項目		シンボル	Тур	95 °C	105 °C	125 °C	単位	測定条件
消費電 流 ^(注1) (注3) (注4)	CPUCLK0 = 1 GHz CPUCLK1 = 250 MHz VCL = 電圧範囲 1	I _{DD} (注2)	54	505	_	_	mA	CPU1 = ディープスリープ
	CPUCLK0 = 800 MHz CPUCLK1 = 200 MHz VCL = 電圧範囲 1	I _{DD} (注2)	2) 48 — 576 —	_				
	CPUCLK0 = 600 MHz CPUCLK1 = 200 MHz VCL = 電圧範囲 1	I _{DD} (注2)	44	_	_	703		
	CPUCLK0 = 600 MHz CPUCLK1 = 150 MHz VCL = 電圧範囲 2	I _{DD} (注2)	40	477	565	678		

- 注 1. 消費電流値はすべての出力端子を無負荷状態にして、さらにすべての入力プルアップ MOS をオフ状態にした場合の値です。
- 注 2. I_{DD} は、下記の式にしたがって f (ICLK) に依存します。
 - I_{DD} Typ. = $0.02 \times$ fCPUCLK0 + $0.05 \times$ fICLK + 55 (単位: mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max. (VCL = 電圧範囲 1、95 °C) = 0.004 × fCPUCLK0 + 0.01 × fICLK + 474(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max. (VCL = 電圧範囲 1、105 °C) = $0.004 \times f$ CPUCLK $0 + 0.01 \times f$ ICLK + 549 (単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max. (VCL = 電圧範囲 1、125 °C) = 0.004 × fCPUCLK0 + 0.01 × fICLK + 704(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max. (VCL = 電圧範囲 2、95 °C) = 0.004 × fCPUCLK0 + 0.01 × fICLK + 461(単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max. (VCL = 電圧範囲 2、105 °C) = $0.004 \times f$ CPUCLK $0 + 0.01 \times f$ ICLK + 533 (単位:mA、ただし fCPUCLK0 および fICLK については MHz)
 - I_{DD} Max. (VCL = 電圧範囲 2、125 °C) = $0.004 \times f$ CPUCLK $0 + 0.01 \times f$ ICLK + 686 (単位:mA、ただし fCPUCLK0 および fICLK については MHz)
- 注 3. この状態では、周辺機能へのクロック信号供給は停止されています。BGO 動作は含まれません。
- 注 4. MRICLK、MRPCLK、ICLK、PCLKA、PCLKB、PCLKC、PCLKD、PCLKE、およびBCLKは、64 分周に設定されています。

表 2.28 High-speed モード、CPU0 ディープスリープ、CPU1 スリープ(DCDC モード)における電流

				Max				
項目		シンボル	Тур	95 °C	105 °C	125 °C	単位	測定条件
消費電流(注1)	流 ^(注1) 1 GHz (注2) CPUCLK1 =	I _{CC_DCDC} (注4)	12	141	_	_	mA	VCC_DCDC = 3.3 V CPU0 = ディープスリープ
(注3)		I _{DD}	32	363	_	_		
	CPUCLK0 = 800 MHz CPUCLK1 =	I _{CC_DCDC} (注4)	12	_	161	_		
	200 MHz VSCR_1	I _{DD}	30	_	414	_		
	CPUCLK0 = 600 MHz CPUCLK1 =	I _{CC_DCDC} (注4)	11	_	_	196		
	200 MHz VSCR_1	I _{DD}	29	_	_	504		
	CPUCLK0 = 600 MHz	I _{CC_DCDC} (注4)	10	132	157	184		
	CPUCLK1 = 150 MHz VSCR_2	I _{DD}	26	347	411	481		

- 注 1. 消費電流値はすべての出力端子を無負荷状態にして、さらにすべての入力プルアップ MOS をオフ状態にした場合の値です。
- 注 2. この状態では、周辺機能へのクロック信号供給は停止されています。BGO 動作は含まれません。
- 注 3. MRICLK、MRPCLK、ICLK、PCLKA、PCLKB、PCLKC、PCLKD、PCLKE、およびBCLKは、64 分周に設定されています。
- 注 4. 標準 DCDC 効率と測定条件の電圧が適用されます。

表 2.29 High-speed モード、CPU0 ディープスリープ、CPU1 スリープ(外部 VDD モード)における電流

			Max					
項目		シンボル	Тур	95 °C	105 °C	125 °C	単位	測定条件
消費電 流 ^(注1) (注2) (注3)	CPUCLK0 = 1 GHz CPUCLK1 = 250 MHz VCL = 電圧範囲 1	Поп	32	363	_	_	mA	CPU0 = ディープスリープ
	CPUCLK0 = 800 MHz CPUCLK1 = 200 MHz VCL = 電圧範囲 1	I _{DD}	30	_	414 —			
	CPUCLK0 = 600 MHz CPUCLK1 = 200 MHz VCL = 電圧範囲 1	I _{DD}	29	_	_	504		
	CPUCLK0 = 600 MHz CPUCLK1 = 150 MHz VCL = 電圧範囲 2	I _{DD}	26	347	411	481		

- 注 1. 消費電流値はすべての出力端子を無負荷状態にして、さらにすべての入力プルアップ MOS をオフ状態にした場合の値です。
- 注 2. この状態では、周辺機能へのクロック信号供給は停止されています。BGO 動作は含まれません。
- 注 3. MRICLK、MRPCLK、ICLK、PCLKA、PCLKB、PCLKC、PCLKD、PCLKE、およびBCLK は、64 分周に設定されています。

表 2.30 High-speed モード、CPU ディープスリープモード(DCDC モード)における電流

				Max				
項目		シンボル	Тур	95 °C	105 °C	125 °C	単位	測定条件
消費電 流 ^(注1)	CPUCLK0 = 1 GHz CPUCLK1 =	I _{CC_DCDC} (注4)	13	138	_	_	mA	VCC_DCDC = 3.3 V
(注3)	` ′	I _{DD}	32	355	_	_		
	CPUCLK0 = 800 MHz CPUCLK1 =	I _{CC_DCDC} (注4)	12	_	158	_		
	200 MHz VSCR_1	I _{DD}	30	_	405	_		
	CPUCLK0 = 600 MHz CPUCLK1 =	I _{CC_DCDC} (注4)	11	_	_	192		
	200 MHz VSCR_1	I _{DD}	29	_	_	492		
	CPUCLK0 = 600 MHz CPUCLK1 = 150 MHz VSCR_2	I _{CC_DCDC} (注4)	11	130	154	182		
		I _{DD}	28	340	402	476		

- 注 1. 消費電流値はすべての出力端子を無負荷状態にして、さらにすべての入力プルアップ MOS をオフ状態にした場合の値です。
- 注 2. この状態では、周辺機能へのクロック信号供給は停止されています。BGO 動作は含まれません。
- 注 3. MRICLK、MRPCLK、ICLK、PCLKA、PCLKB、PCLKC、PCLKD、PCLKE、およびBCLKは、64 分周に設定されています。
- 注 4. 標準 DCDC 効率と測定条件の電圧が適用されます。

表 2.31 High-speed モード、CPU ディープスリープモード(外部 VDD モード)における電流

				Max				
項目		シンボル	Тур	95 °C	105 °C	125 °C	単位	測定条件
消費電 流 ^(注1) (注2) (注3)	CPUCLK0 = 1 GHz CPUCLK1 = 250 MHz VCL = 電圧範囲 1	I _{DD}	32	355	_	_	mA	
	CPUCLK0 = 800 MHz CPUCLK1 = 200 MHz VCL = 電圧範囲 1	I _{DD}	30	_	405	_		
	CPUCLK0 = 600 MHz CPUCLK1 = 200 MHz VCL = 電圧範囲 1	I _{DD}	29	_	_	492		
	CPUCLK0 = 600 MHz CPUCLK1 = 150 MHz VCL = 電圧範囲 2	l _{DD}	28	340	402	476		

- 注 1. 消費電流値はすべての出力端子を無負荷状態にして、さらにすべての入力プルアップ MOS をオフ状態にした場合の値です。
- 注 2. この状態では、周辺機能へのクロック信号供給は停止されています。BGO 動作は含まれません。
- 注 3. MRICLK、MRPCLK、ICLK、PCLKA、PCLKB、PCLKC、PCLKD、PCLKE、およびBCLK は、64 分周に設定されています。

表 2.32 BGO 動作時の増加分(MRAM OTP のプログラミング)(DCDC モードおよび外部 VDD モード)における電流

				Max					
項目		シンボル	Тур	95 °C	105 °C	125 °C	単位	測定条件	
消費電流(注1)	通常速度書き込みモ	Icc	_	_	_	20	mA	VCC ≧ 1.62 V	
	- F	I _{DD}	_	_	_	0.50			
	高速書き込みモード I _{CC}	١,	I _{CC}	_	_	_	25		VCC ≧ 2.5 V
	0	I _{DD}	_	_	_	0.5			
	高速書き込みモード	Icc	_	_	_	80		VCC ≧ 3.0 V	
	1	I _{DD}	_	_	_	0.5			

注 1. 消費電流値はすべての出力端子を無負荷状態にして、さらにすべての入力プルアップ MOS をオフ状態にした場合の値です。

表 2.33 スタンパイ電流(DCDC モード) (1/4)

							Max															
項目					シンボル	Тур	95 °C	105° C	125 ° C	単位	測定条件											
消費電流 (注1)	ソフトウェ アスタンバ イモード				I _{CC}	0.1 0	1.11	1.12	1.14	mA	_											
		SS2LP_ 0	svscr _1	SRAM と TCM のデータは保持 されます。	ICC_DCDC	2.6 7	54.24	62.23	78.41		VCC_DCDC = 3.3 V PDRAMSCR0.RKEEPn = 1 (n = 0~12) PDRAMSCR1.RKEEPn = 1 (n = 0, 1)											
			SRAM と TCM のデータは保持 されません。	I _{CC_DCDC}	2.4	52.53	59.86	74.47		VCC_DCDC = 3.3 V PDRAMSCR0.RKEEPn = 0 (n = 0~12) PDRAMSCR1.RKEEPn = 0 (n = 0, 1)												
			SVSCR _2	SRAM と TCM のデータは保持 されます。	ICC_DCDC	2.5	51.58	59.19	74.81		VCC_DCDC = 3.3 V PDRAMSCR0.RKEEPn = 1 (n = 0~12) PDRAMSCR1.RKEEPn = 1 (n = 0, 1)											
				SRAM と TCM のデータは保持 されません。	I _{CC_DCDC}	2.3	50.03	57.09	71.10		VCC_DCDC = 3.3 V PDRAMSCR0.RKEEPn = 0 (n = 0~12) PDRAMSCR1.RKEEPn = 0 (n = 0, 1)											
			SVSCR	SRAM と TCM のデータは保持 されます。	I _{CC_DCDC}	1.6	37.85	43.60	56.69	_	VCC_DCDC = 3.3 V PDRAMSCR0.RKEEPn = 1 (n = 0~12) PDRAMSCR1.RKEEPn = 1 (n = 0, 1)											
				SRAM と TCM のデータは保持 されません。	I _{CC_DCDC}	1.6	36.87	42.22	54.07		VCC_DCDC = 3.3 V PDRAMSCR0.RKEEPn = $0 \text{ (n = } 0 \sim 12)$ PDRAMSCR1.RKEEPn = $0 \text{ (n = } 0, 1)$											
										SVSCR _4	SRAM と TCM のデータは保持 されます。	ICC_DCDC	1.4	32.41	38.22	49.79		VCC_DCDC = 3.3 V PDRAMSCR0.RKEEPn = 1 (n = 0~12) PDRAMSCR1.RKEEPn = 1 (n = 0, 1)				
																						0 2
		_5		SRAM と TCM のデータは保持 されます。	ICC_DCDC	1.2	29.69	34.28	44.67		VCC_DCDC = 3.3 V PDRAMSCR0.RKEEPn = 1 (n = 0~12) PDRAMSCR1.RKEEPn = 1 (n = 0, 1)											
				SRAM と TCM のデータは保持 されません。	ICC_DCDC	1.2	29.03	33.32	42.82		VCC_DCDC = 3.3 V PDRAMSCR0.RKEEPn = 0 (n = 0~12) PDRAMSCR1.RKEEPn = 0 (n = 0, 1)											

表 2.33 スタンパイ電流(DCDC モード) (2/4)

							Max																						
項目					シンボル	Тур	95 °C	105° C	125° C	単 位	測定条件																		
消費電流 (注1)	ソフトウェ アスタンバ イモード	SS2LP_ 1	SVSCR _2	SRAM と TCM のデータは保持 されます。	ICC_DCDC	2.1	43.32	49.71	62.83	mA	VCC_DCDC = 3.3 V PDRAMSCR0.RKEEPn = 1 (n = 0~12) PDRAMSCR1.RKEEPn = 1 (n = 0, 1)																		
				SRAM と TCM のデータは保持 されません。	ICC_DCDC	1.9 5	42.01	47.94	59.71		VCC_DCDC = 3.3 V PDRAMSCR0.RKEEPn = 0 (n = 0~12) PDRAMSCR1.RKEEPn = 0 (n = 0, 1)																		
			svscr _3	SRAM と TCM のデータは保持 されます。	ICC_DCDC	1.4	31.70	36.52	47.48		VCC_DCDC = 3.3 V PDRAMSCR0.RKEEPn = 1 (n = 0~12) PDRAMSCR1.RKEEPn = 1 (n = 0, 1)																		
				SRAM と TCM のデータは保持 されません。	ICC_DCDC	1.3	30.88	35.36	45.29		VCC_DCDC = 3.3 V PDRAMSCR0.RKEEPn = 0 (n = 0~12) PDRAMSCR1.RKEEPn = 0 (n = 0, 1)																		
			SVSCR _4	SRAM と TCM のデータは保持 されます。	ICC_DCDC	1.2	26.41	31.14	40.57		VCC_DCDC = 3.3 V PDRAMSCR0.RKEEPn = 1 (n = 0~12) PDRAMSCR1.RKEEPn = 1 (n = 0, 1)																		
																					SVSCB	SRAM と TCM のデータは保持 されません。	ICC_DCDC	1.1	25.76	30.20	38.80		VCC_DCDC = 3.3 V PDRAMSCR0.RKEEPn = 0 (n = 0~12) PDRAMSCR1.RKEEPn = 0 (n = 0, 1)
			SVSCR _5	SRAM と TCM のデータは保持 されます。	ICC_DCDC	1.0	24.15	27.89	36.35		VCC_DCDC = 3.3 V PDRAMSCR0.RKEEPn = 1 (n = 0~12) PDRAMSCR1.RKEEPn = 1 (n = 0, 1)																		
				SRAM と TCM のデータは保持 されません。	ICC_DCDC	1.0	23.62	27.11	34.84		VCC_DCDC = 3.3 V PDRAMSCR0.RKEEPn = 0 (n = 0~12) PDRAMSCR1.RKEEPn = 0 (n = 0, 1)																		

表 2.33 スタンパイ電流(DCDC モード) (3/4)

						Max				
項目				シンボル	Тур	95 °C	105° C	125° C	単位	測定条件
消費電流 (注1)	ディープソ フトウェア スタンバイ モード 1			I _{CC}	10. 04	207	297	498	μА	_
				I _{CC_DCDC}	0.1 6	0.85	1.24	2.45		_
		機能起動時に増加	PVDn (n = 0~ 2, 4, 5) または バッテリ電源ス イッチ	I _{CC}	表 2. い。	36 を参	照して・	くださ		_
			LOCO 使用時		2.4 6	_	_	_		_
		水晶振動子およ び RTC			表 2. い。	<mark>37</mark> を参	照して・	くださ		_
			IWDT および ULPT (すべての ユニット) が動 作中		1.5 8	_	_	_		_
消費電流 (注1)	ディープソ フトウェア スタンバイ モード 2			Icc	3.0 4	98	122	175	μА	_
				I _{CC_DCDC}	0.1 6	0.85	1.24	2.45		_
		機能起動時に増加	PVDn (n = 0~ 2, 4, 5) または バッテリ電源ス イッチ	I _{CC}	表 2.36 を参照してください。			くださ		_
			水晶振動子およ び RTC		表 2. い。	37 を参	照して・	くださ		_
	ディープソ フトウェア スタンバイ モード 3	•		Icc	2.7	97	121	173		_
				I _{CC_DCDC}	0.1 6	0.85	1.24	2.45		_
		機能起動時に増加	水晶振動子およ び RTC	I _{CC}	表 2. い。	37 を参	照して	くださ		_

表 2.33 スタンパイ電流(DCDC モード) (4/4)

						Max									
項目				シンボル	Тур	95 °C	105° C	125° C	単 位	測定条件					
消費電流 (注1)	VCC オフ 時の RTC	水晶振動子を低消費 使用時	電力モード3で	I _{VBAT}	0.5 3	_	_	_	μΑ	VBATT = 1.8 V, VCC = 0 V					
	動作(バッ テリバック アップ機能				0.8 2	_	_	_		VBATT = 3.3 V, VCC = 0 V					
	により、 RTC のみ 動作)	水晶振動子を低消費 使用時		0.6 3	_	_	_		VBATT = 1.8 V, VCC = 0 V						
	3 ∫1F/				0.9 4	_	_	_		VBATT = 3.3 V, VCC = 0 V					
	水晶振動子を低消費 使用時		電力モード1で		0.7 3	_	_	_		VBATT = 1.8 V, VCC = 0 V					
				1.0 3	_	_	_		VBATT = 3.3 V, VCC = 0 V						
		水晶振動子を標準モ	一ドで使用時		0.9 9	_	_	_		VBATT = 1.8 V, VCC = 0 V					
					1.2 9	_	_	_		VBATT = 3.3 V, VCC = 0 V					
		EXCIN 使用時		7						0.3 0	_	_	_		VBATT = 1.8 V, VCC = 0 V
		~2) 入力			0.5 2	_	_	_		VBATT = 3.3 V, VCC = 0 V					
			RTCICn (n = 0 ~2) 入力をチャ		7	, 1	. 1	7 1	ヤ 1	0.0			_		VBATT = 1.8 V, VCC = 0 V
			ネルごとに使用 中		0.0					VBATT = 3.3 V, VCC = 0 V					

注 1. 消費電流値はすべての出力端子を無負荷状態にして、さらにすべての入力プルアップ MOS をオフ状態にした場合の値です。

表 2.34 Coremark および通常モード電流、CPU0 有効、CPU1 ディープスリープ(DCDC モードおよび外部 VDD モード) (1/2)

						Max												
項目				シンボ ル	Тур	95° C	105 ° C	125 ° C	単位	測定条件								
消費電流	CPUCLK0 =	Coremark	キャッシュはオン	I _{DD}	151	_	_	_	μA/	CPU1 = ディープスリープ								
(注1)(注2)	1 GHz VSCR_1 VCL = 電圧		キャッシュはオ フ、ITCM から実行		143	_	_	_	MH z	OFF CPUCLK1 = 250 MHz,								
	範囲 1 		キャッシュはオ フ、SRAM から実 行		92	_	_	_		MRICLK = 250 MHz, MRPCLK = 15.6 MHz, ICLK = 250 MHz, PCLKA = 15.6 MHz, PCLKB =								
	通常		キャッシュはオ フ、MRAM から実 行		104	_	_	_		= 15.6 MHz, PCLKB = 15.6 MHz, PCLKC = 15.6 MHz, PCLKD = 15.6 MHz, PCLKE =								
		通常モード	すべての周辺機能 が無効、キャッシュはオン、While (1) コードはフラッシュから実行		118		_	_		15.6 MHz, BCLK = 15.6 MHz								
			すべての周辺機器 が無効、キャッシ ュはオフ、While (1) コードは MRAM から実行		121	_												
	CPUCLK0 =	Coremark			157	_	_	_	μΑ/	CPU1 = ディープスリープ ESWM 電源ドメインは								
	800 MHz VSCR_1 VCL = 電圧		キャッシュはオ フ、ITCM から実行			149	_	_	_	MH z	ESWM 電源ドメインは OFF CPUCLK1 = 200 MHz,							
	範囲 1		キャッシュはオ フ、SRAM から実 行			98	_	_	_		MRICLK = 200 MHz, MRPCLK = 12.5 MHz, ICLK = 200 MHz, PCLKA = 12.5 MHz, PCLKB =							
				111	_	_	_		12.5 MHz, PCLKC = 12.5 MHz, PCLKD = 12.5 MHz, PCLKE =									
		通常モード	すべての周辺機能 が無効、キャッシュはオン、While (1) コードはフラッシュから実行										124	_	_			12.5 MHz, BCLK = 12.5 MHz
			すべての周辺機器 が無効、キャッシ ュはオフ、While (1) コードは MRAM から実行		127	_	_	_										

Coremark および通常モード電流、CPU0 有効、CPU1 ディープスリープ(DCDC モードおよび外部 VDD モー 表 2.34

						Max						
項目				シンボ ル	Тур	95° C	105 ° C	125 ° C	単位	測定条件		
消費電流	CPUCLK0 =	Coremark	キャッシュはオン	I _{DD}	172	_	_	_	μΑ/	CPU1 = ディープスリープ		
(注1)(注2)	600 MHz CPUCLK1 = 200 MHz		キャッシュはオ フ、ITCM から実行		164	_	_	_	MH z	ESWM 電源ドメインは OFF CPUCLK1 = 200 MHz, MRICLK = 200 MHz, MRPCLK = 25 MHz, ICLK = 200 MHz, PCLKA = 25 MHz, PCLKB = 25 MHz, PCLKC = 25 MHz, PCLKD = 25 MHz, PCLKE =		
	VSCR_1 VCL = 電圧 範囲 1		キャッシュはオ フ、SRAM から実 行		118		_	_				
			キャッシュはオ フ、MRAM から実 行		133		_					
		通常モード	すべての周辺機能 が無効、キャッシュはオン、While (1) コードはフラッシュから実行		139	_	_	_		25 MHz, BCLK = 25 MHz		
			すべての周辺機器 が無効、キャッシュはオフ、While (1) コードは MRAM から実行		142		_					
	CPUCLK0 =	Coremark	キャッシュはオン		164	_	_	_	μΑ/	CPU1 = ディープスリープ		
	600 MHz VSCR_2 VCL = 電圧		キャッシュはオ フ、ITCM から実行		156	_	_	_	MH z	ESWM 電源ドメインは OFF CPUCLK1 = 150 MHz,		
	範囲 2		キャッシュはオ フ、SRAM から実 行		106	-	_	_		MRICLK = 150 MHz, MRPCLK = 9.4 MHz, ICLK = 150 MHz, PCLKA = 9.4 MHz, PCLKB =		
			キャッシュはオ フ、MRAM から実 行		119	_	_	_		9.4 MHz, PCLKC = 9.4 MHz, PCLKD = 9.4 MHz, PCLKE =		
		通常モード	すべての周辺機能 が無効、キャッシュはオン、While (1) コードはフラッシュから実行		131	_	_	_		9.4 MHz, BCLK = 9.4 MHz		
			すべての周辺機器 が無効、キャッシュはオフ、While (1) コードは MRAM から実行		135	_	_	_				

注 1. 消費電流値はすべての出力端子を無負荷状態にして、さらにすべての入力プルアップ MOS をオフ状態にした場合の値です。 注 2. この状態では、周辺機能へのクロック信号供給は停止されています。BGO 動作は含まれません。

表 2.35 Coremark および通常モード電流、CPU0 ディープスリープ、CPU1 有効(DCDC モードおよび外部 VDD モード) (1/2)

						Max						
項目				シンボ ル	Тур	95 °C	105 ° C	125 ° C	単位	測定条件		
消費電流	CPUCLK1 =	Coremark	キャッシュはオン	I _{DD}	54	_	_	_	μΑ/	CPU0 = ディープスリープ		
(注1)(注2)	250 MHz VSCR_1 VCL = 電圧		キャッシュはオ フ、ITCM から実行		49	_	_	_	MH z	ESWM 電源ドメインは OFF CPUCLK0 = 1 GHz, MRICLK = 250 MHz, MRPCLK =		
	範囲 1 		キャッシュはオ フ、SRAM から実 行		49	_	_	_		15.6 MHz, ICLK = 250 MHz, PCLKA = 15.6 MHz, PCLKB = 15.6 MHz, PCLKC = 15.6 MHz, PCLKD =		
			キャッシュはオ フ、MRAM から実 行	I	67	_	_	_		15.6 MHz, PCLKE = 15.6 MHz, BCLK = 15.6 MHz		
		通常モード	すべての周辺機能 が無効、キャッシュはオン、While (1) コードはフラッシュから実行		50	_	_	_				
			すべての周辺機器 が無効、キャッシュはオフ、While (1) コードは MRAM から実行		66	_	_	_				
	CPUCLK1 =	Coremark	キャッシュはオン		47	_	_	_	μΑ/	CPU0 = ディープスリープ		
	200 MHz VSCR_1 VCL = 電圧		キャッシュはオ フ、ITCM から実行		44	_	_	_	MH z	ESWM 電源ドメインは OFF CPUCLK0 = 800 MHz, MRICLK = 200 MHz, MRPCLK		
	範囲 1		キャッシュはオ フ、SRAM から実 行		43	_	_	_			= 12.5 MHz, ICLK = 200 MHz, PCLKA = 12.5 MHz, PCLKB = 12.5 MHz, PCLKC = 12.5 MHz, PCLKD =	
			キャッシュはオ フ、MRAM から実 行		60	_	_	_		12.5 MHz, PCLKE = 12.5 MHz, BCLK = 12.5 MHz		
		通常モード	すべての周辺機能 が無効、キャッシュはオン、While (1) コードはフラッシュから実行		44	_	_	_				
			すべての周辺機器 が無効、キャッシュはオフ、While (1) コードは MRAM から実行		59							

Coremark および通常モード電流、CPU0 ディープスリープ、CPU1 有効(DCDC モードおよび外部 VDD モー 表 2.35

						Max				
項目				シンボ ル	Тур	95 °C	105 ° C	125 ° C	単位	測定条件
消費電流	CPUCLK1 =	Coremark	キャッシュはオン	I _{DD}	45	_	_	_	μA/	CPU0 = ディープスリープ
(注1)(注2)	200 MHz VSCR_1 VCL = 電圧		キャッシュはオ フ、ITCM から実行		42	_	_	_	MH z	ESWM 電源ドメインは OFF CPUCLK0 = 600 MHz, MRICLK = 200 MHz, MRPCLK
	範囲 1 		キャッシュはオ フ、SRAM から実 行		41	_	_	_		= 25 MHz, ICLK = 200 MHz, PCLKA = 25 MHz, PCLKB = 25 MHz, PCLKC = 25 MHz, PCLKD = 25 MHz, PCLKE =
			キャッシュはオ フ、MRAM から実 行		58	_	_	_		25 MHz, BCLK = 25 MHz
		通常モード	すべての周辺機能 が無効、キャッシュはオン、While (1) コードはフラッシュから実行		43	_	_	_		
			すべての周辺機器 が無効、キャッシ ュはオフ、While (1) コードは MRAM から実行		57		_	_		
	CPUCLK1 =	Coremark	キャッシュはオン		40	_	_	_	μA/	CPU0 = ディープスリープ
	150 MHz VSCR_2 VCL = 電圧		キャッシュはオ フ、ITCM から実行		37	_	_	_	MH z	ESWM 電源ドメインは OFF CPUCLK0 = 600 MHz, MRICLK = 150 MHz, MRPCLK
	範囲 2		キャッシュはオ フ、SRAM から実 行		37	_	_	_		= 9.4 MHz, ICLK = 150 MHz, PCLKA = 9.4 MHz, PCLKB = 9.4 MHz, PCLKC = 9.4 MHz, PCLKD = 9.4 MHz, PCLKE =
			キャッシュはオ フ、MRAM から実 行		49	_	_	_		9.4 MHz, BCLK = 9.4 MHz
		通常モード	すべての周辺機能 が無効、キャッシュはオン、While (1) コードはフラッシュから実行		38	_	_	_		
			すべての周辺機器 が無効、キャッシュはオフ、While (1) コードは MRAM から実行		49	_	_	_		

注 1. 消費電流値はすべての出力端子を無負荷状態にして、さらにすべての入力プルアップ MOS をオフ状態にした場合の値です。 注 2. この状態では、周辺機能へのクロック信号供給は停止されています。BGO 動作は含まれません。

表 2.36 ディープソフトウェアスタンバイモード 1 と 2 で PVD1、PVD2、PVD4、PVD5、またはパッテリ電源スイッチ 有効時の増加

		シンボ		Max				
項目		ル	Тур	95 °C	105 °C	125 °C	単位	測定条件
消費電流	ディープソフトウェアスタンバイモード 1 で PVDn (n=1, 2, 4, 5) を有効化、またはバッテリ電源スイッチ制御用の PVD0 の低消費電力機能 (OFS1(_SEC).PVDLPSEL=1) を無効化するときの共通回路	Icc	4.00	_	_	_	μΑ	_
	ディープソフトウェアスタンバイモード 2 で PVDn (n=1, 2, 4, 5) を有効化、またはバッテリ電源スイッチ制御用の PVD0 の低消費電力機能 (OFS1(_SEC),PVDLPSEL=1) を無効化するときの共通回路		4.00	_	_	_		_
	PVD1 有効		2.00	_	_	_		_
	PVD2 有効		2.00	_	_	_		_
	PVD4 有効		2.00		_	_		
	PVD5 有効		2.00	_	_	_		_
	バッテリ電源スイッチが次の条件で有効: (注1) ■ バッテリ電源スイッチは有効 (VBTBPCR1.BPWSWSTP = 0)、およびディープソフトウェアスタンバイモードでの PVD0 の低消費電力機能選択は無効 (OFS1(_SEC).PVDLPSEL=1)。		2.00	_	_	_		_

注 1. これ以外の条件で消費電力は増加しません。

表 2.37 ディープソフトウェアスタンバイモード 1/2/3 でサブクロック発振器および RTC が有効のときの増加

					Max				
項目			シンボ ル	Тур	95 °C	105° C	125 ° C	単位	測定条件
消費電流	水晶振動子を使用時	低消費電力モード3	I _{CC}	0.31	_	_	_	μΑ	_
		低消費電力モード 2		0.43	_	_	_		_
		低消費電力モード 1		0.52	_	_	_		_
		標準モード		0.78	_	_	_		_
	RTC が動作中			0.30	_	_	_		_

表 2.38 インラッシュカレント

				シンボ		Max				
項目				ル	Тур	95 °C	105 °C	125 °C	単位	測定条件
消費電流	コールドスター トでのインラッ シュカレント		VCC_DCDC のイ ンラッシュカレン ト ^(注1)	I _{RUSH}	_	1330	1330	1330	mA	_
	ディープソフト ウェアスタンバ				_	1270	1270	1270		_
	イモードからの 復帰時のインラ ッシュカレント	DPSBYCR.DC SSMODE=2			_	1170	1170	1170		_
		DPSBYCR.DC SSMODE=3			_	1160	1160	1160		_

注 1. 参考值

表 2.39 動作電流(アナログ) (1/2)

						Max				
項目				シンボル	Тур	95° C	105° C	125° C	単位	測定条件
消費電流 (注1)	発振器	メインクロック発振を	 器	I _{CC}	0.65	_	_	_	mA	MOMCR.MODRV0[2: 0] = 000b
					0.76	_	_	_	mA	MOMCR.MODRV0[2: 0] = 011b
					0.88	_	_	_	mA	MOMCR.MODRV0[2: 0] = 101b
	アナログ電源電流	16 ビット A/D 変換 中	SAR モード、オーバーサングモード、オンプモード・イブリッド・スプリッドモード	Alcc	2.4	3.2	3.2	3.2	mA	
		S/H アンプによる 16 ビット A/D 変換 中	SAR モー ドとハイ ブリッド モード		3.9	5.1	5.1	5.1	mA	_
		ACMPHS(1 ユニット) 温度センサ			99	192	192	192	μA	_
					0.1	0.2	0.2	0.2	mA	_
		D/A 変換中(1 ユニッ	、変換中(1 ユニット当り)		1.2	1.6	1.6	1.6	mA	_
	A/D、D/A 変換待機時(全ユニット)		ま(全ユニッ		3.4	4.1	4.1	4.1	mA	_
		スタンバイモードの DAC12(全ユニット			1	16.0	22.4	42	μA	_
	基準電源電流 (VREFH0)	16 ビット A/D 変換 中(ユニット 0)	SAR モー ド	Al _{REFH0}	70	120	120	120	μΑ	_
			オーバー サンプリ ングモー ドとハイ ブリッド モード		200	310	310	310	μА	
		16 ビット A/D 変換待 ット 0)	機時(ユニ		14.00	14.00	14.00	14.00	μΑ	_
		スタンバイモードの ニット 0)	ADC16H(ユ		0.01	0.1	0.1	0.2	μΑ	_
	リファレンス電源電 流 (VREFH)	16 ビット A/D 変換 中(ユニット 1)	SAR モー ド	Al _{REFH}	70	120	120	120	μA	_
			オーバー サンプリ ングモー ドとハイ ブリッド モード		200	310	310	310	μΑ	_
		D/A 変換中(1 ユニッ	ノト当り)]	29	41.0	41.0	41.0	μA	_
		16 ビット A/D(ユニ D/A(全ユニット)変			14	14	14	14	μΑ	_
		スタンバイモードの . ニット 1)	スタンバイモードの ADC16H (ユ		0.1	0.1	0.2	0.3	μΑ	_

表 2.39 動作電流 (アナログ) (2/2)

						Max				
項目				シンボル	Тур	95° C	105° C	125° C	単位	測定条件
消費電流	USB 動作電流	ロースピード	USBFS	I _{CCUSBLS}	2.9	4.0	4.0	4.0	mA	VCC_USB
(注1)			USBHS		11.51	14.6	14.6	14.6	mA	VCC_USBHS = AVCC_USBHS (PHYSET.HSEB = 0)
			USBHS 5		5.04	6.8	6.8	6.8	mA	VCC_USBHS = AVCC_USBHS (PHYSET.HSEB = 1)
			USBFS	I _{CCUSBFS}	4.0	4.7	4.7	4.7	mA	VCC_USB
			USBHS		12.45	14.7	14.7	14.7	mA	VCC_USBHS = AVCC_USBHS (PHYSET.HSEB = 0)
			USBHS		5.98	6.9	6.9	6.9	mA	VCC_USBHS = AVCC_USBHS (PHYSET.HSEB = 1)
		ハイスピード	USBHS	I _{CCUSBH}	45.71	55.3	55.3	55.3	mA	VCC_USBHS = AVCC_USBHS
		スタンバイ時(ダイ レクトパワーダウ ン)	USBHS	I _{CCUSBSB}	0.89	11.4	11.4	11.4	μА	VCC_USBHS = AVCC_USBHS

注 1. 消費電流値はすべての出力端子を無負荷状態にして、さらにすべての入力プルアップ MOS をオフ状態にした場合の値です。 注 2. 本 MCU がソフトウェアスタンバイモードの場合または MSTPCRD.MSTPD21(16 ビット A/D コンバータモジュールストップビット)がモジュールストップ状態の場合

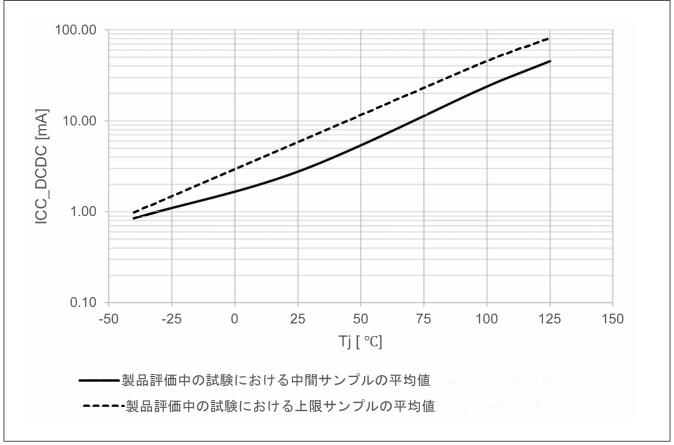


図 2.3 ソフトウェアスタンパイモードにおける温度依存性 (ICC_DCDC, SS2LP_0, SVSCR_1) (参考データ)

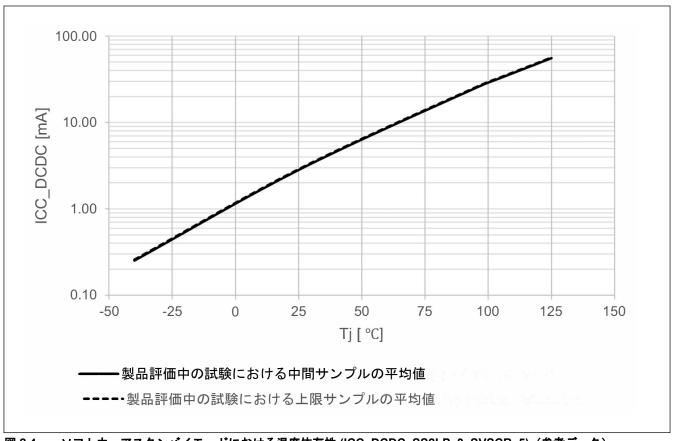


図 2.4 ソフトウェアスタンパイモードにおける温度依存性 (ICC_DCDC, SS2LP_0, SVSCR_5) (参考データ)

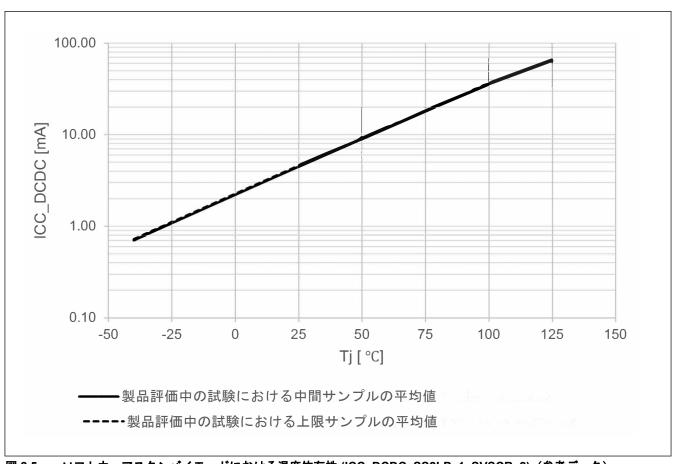


図 2.5 ソフトウェアスタンパイモードにおける温度依存性 (ICC_DCDC, SS2LP_1, SVSCR_2) (参考データ)

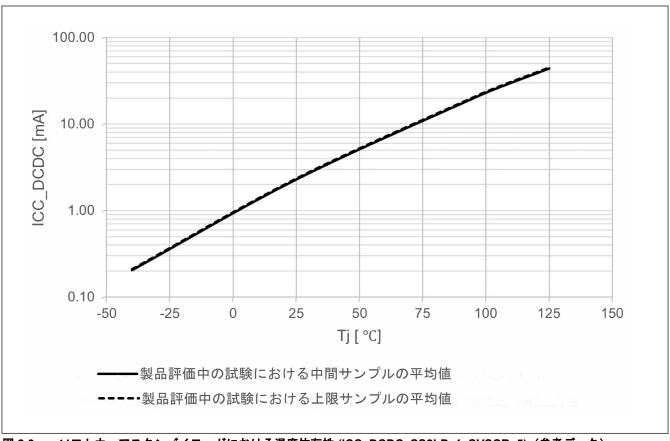


図 2.6 ソフトウェアスタンパイモードにおける温度依存性 (ICC_DCDC, SS2LP_1, SVSCR_5) (参考データ)

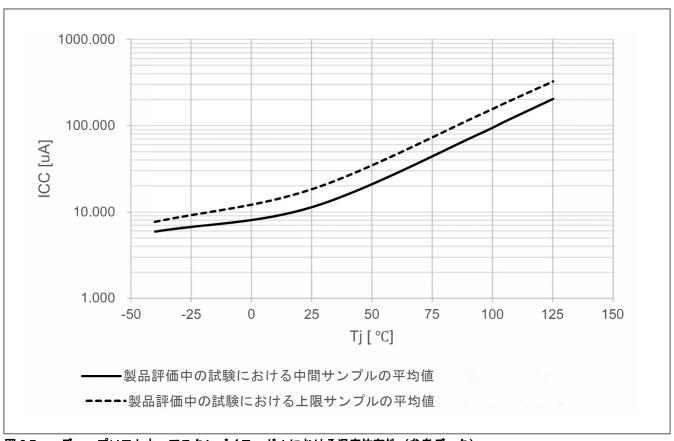


図 2.7 ディープソフトウェアスタンバイモード 1 における温度依存性(参考データ)

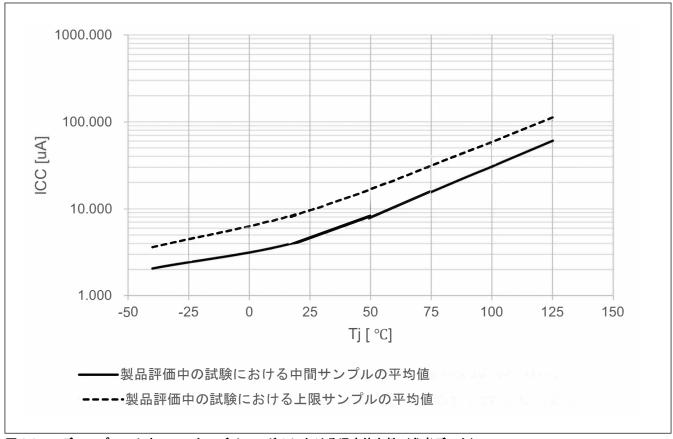


図 2.8 ディープソフトウェアスタンバイモード2における温度依存性(参考データ)

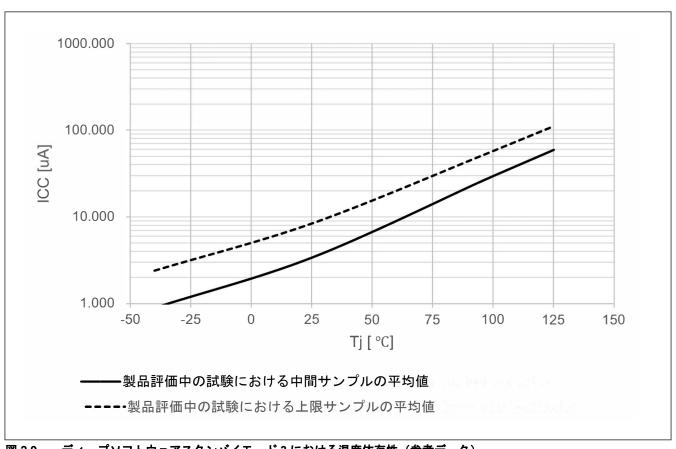


図 2.9 ディープソフトウェアスタンバイモード3における温度依存性(参考データ)

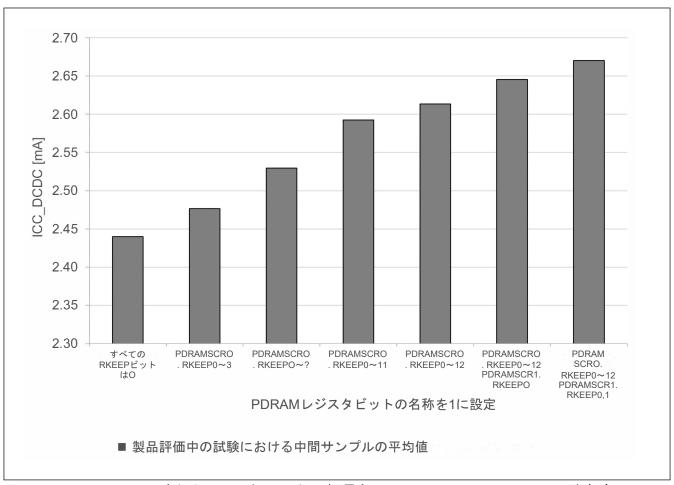


図 2.10 1 SRAM ステートあたりのソフトウェアスタンパイ電流 (ICC_DCDC, SS2LP_0, SVSCR_1) (参考データ)

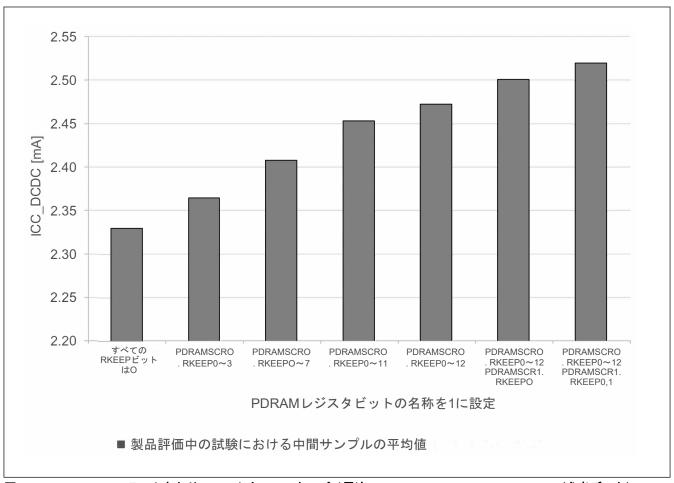


図 2.11 1 SRAM ステートあたりのソフトウェアスタンパイ電流 (ICC_DCDC, SS2LP_0, SVSCR_2)(参考データ)

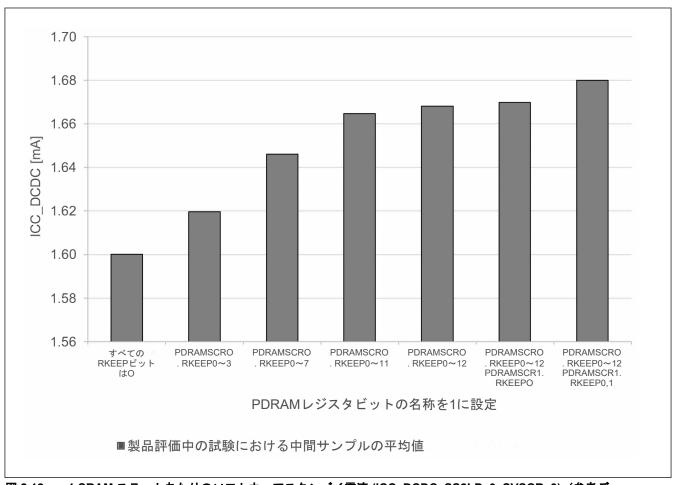


図 2.12 1 SRAM ステートあたりのソフトウェアスタンパイ電流 (ICC_DCDC, SS2LP_0, SVSCR_3)(参考データ)

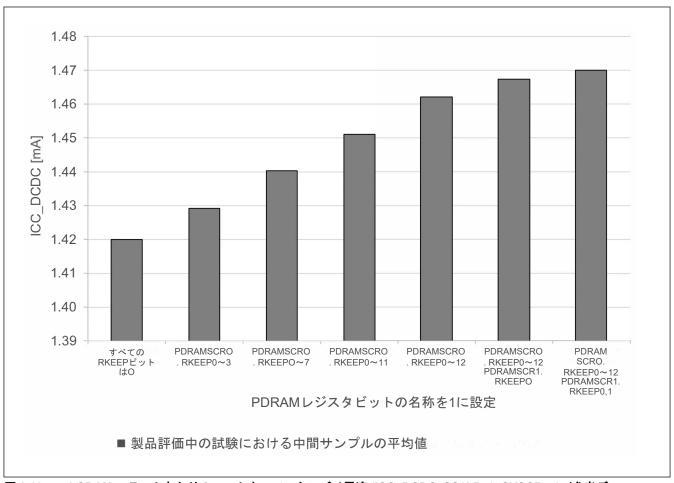


図 2.13 1 SRAM ステートあたりのソフトウェアスタンパイ電流 (ICC_DCDC, SS2LP_0, SVSCR_4)(参考データ)

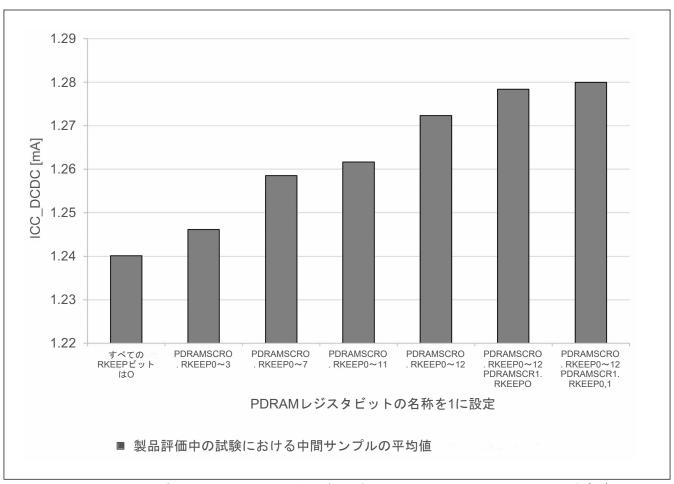


図 2.14 1 SRAM ステートあたりのソフトウェアスタンパイ電流 (ICC_DCDC, SS2LP_0, SVSCR_5)(参考データ)

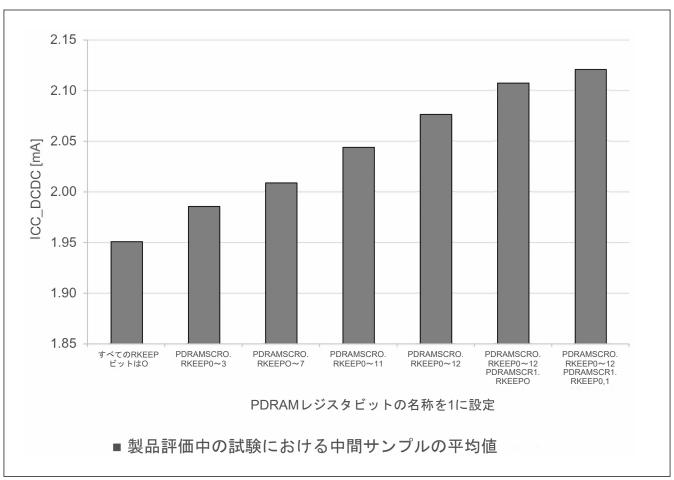


図 2.15 1 SRAM ステートあたりのソフトウェアスタンパイ電流 (ICC_DCDC, SS2LP_1, SVSCR_2)(参考データ)

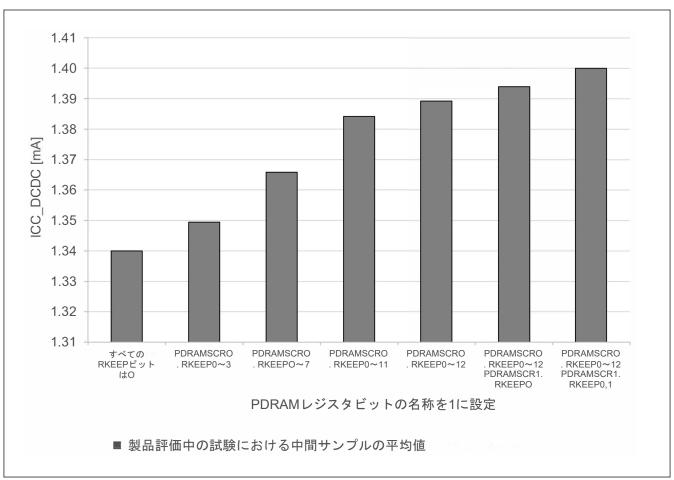


図 2.16 1 SRAM ステートあたりのソフトウェアスタンパイ電流 (ICC_DCDC, SS2LP_1, SVSCR_3) (参考データ)

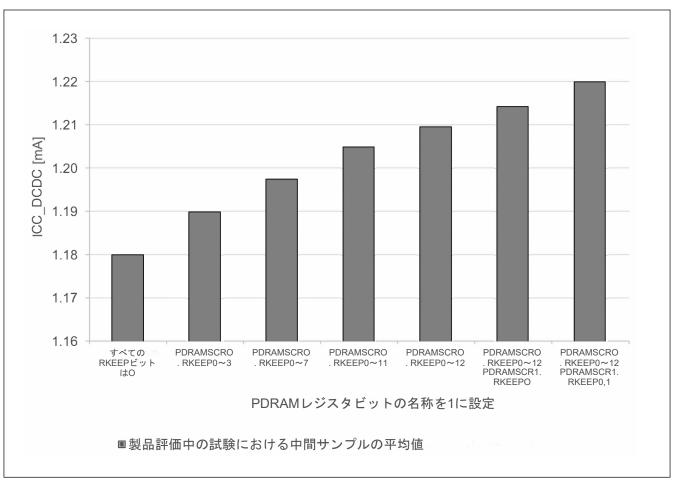


図 2.17 1 SRAM ステートあたりのソフトウェアスタンパイ電流 (ICC_DCDC, SS2LP_1, SVSCR_4)(参考データ)

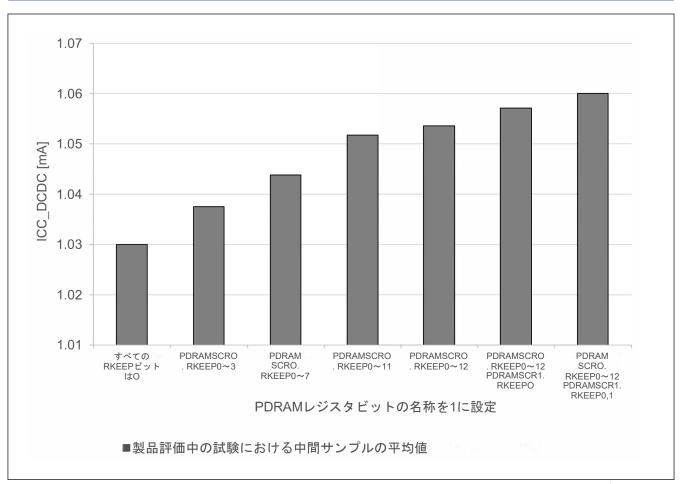


図 2.18 1 SRAM ステートあたりのソフトウェアスタンパイ電流 (ICC_DCDC, SS2LP_1, SVSCR_5) (参考データ)

より実際に近い $I_{CC\ DCDC}$ 値は以下の式で求められます。

 $I_{CC_DCDC} = (I_{DD} \times VCL) \, / \ \, (VCC_DCDC \times \, \text{効率})$

ここで、VCL と VCC はそれぞれ VCL 端子と VCC 端子の電圧であり、効率は以下の図に示されています。

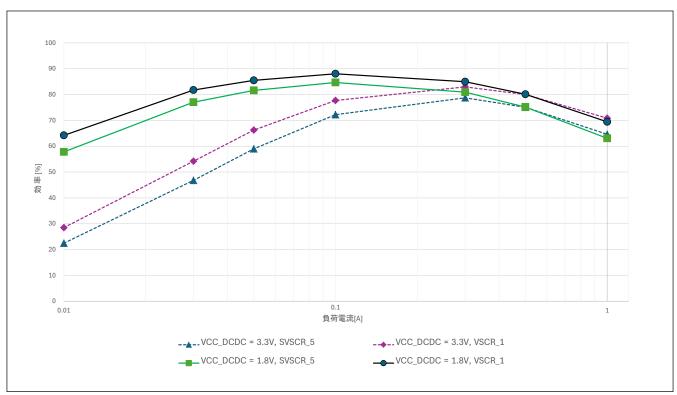


図 2.19 High-speed モードおよびソフトウェアスタンバイモード (SSCR1.SS2LP = SS2LP_1)、Tj = 25 °C における標準 DCDC 効率 (%) と負荷電流 (A)

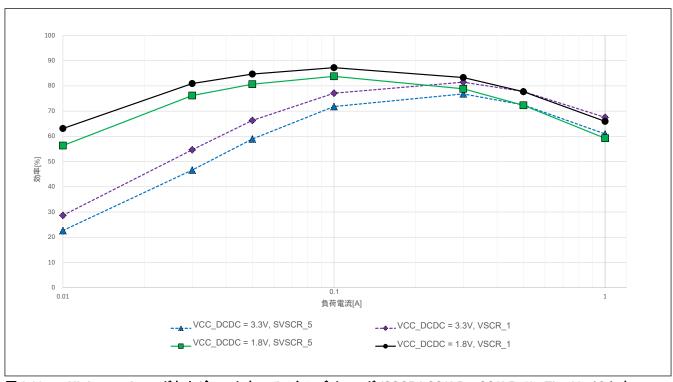


図 2.20 High-speed モードおよびソフトウェアスタンパイモード (SSCR1.SS2LP = SS2LP_0)、Tj = 125 °C における標準 DCDC 効率 (%) と負荷電流 (A)

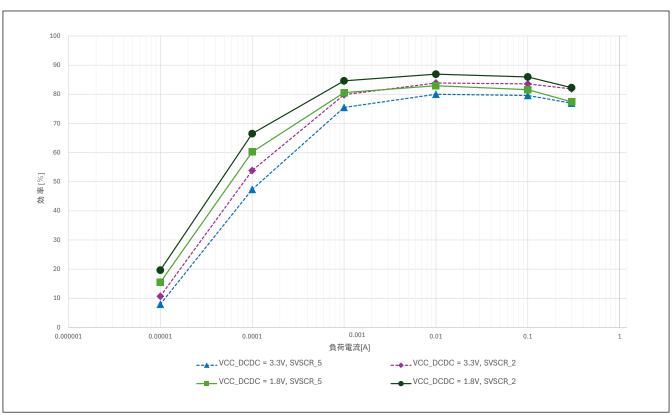


図 2.21 ソフトウェアスタンパイモード (SSCR1.SS2LP = SS2LP_1)、Tj = 25 °C における標準 DCDC 効率 (%) と 負荷電流 (A)

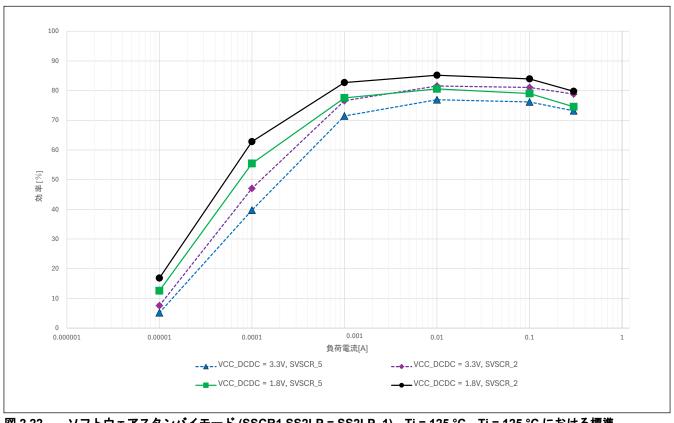


図 2.22 ソフトウェアスタンバイモード (SSCR1.SS2LP = SS2LP_1)、Tj = 125 °C、Tj = 125 °C における標準 DCDC 効率 (%) と負荷電流 (A)

2.2.6 VCC 立ち上がり/立ち下がり勾配とリップル周波数

表 2.40 パワーオン/オフ時の VCC 立ち上がり/立ち下がり勾配の特性

項目		シンボル	Min	Тур	Max	単位	測定条件		
パワーオン時の VCC 3	立ち上がり勾配 ^(注1)	SrVCC	0.0084	_	20) ms/V —			
パワーオフ時の VCC	VBATT 機能は無効 ^(注1)	SfVCC1	0.0084	_	_	ms/V	_		
立ち下がり勾配 	VBATT 機能は有効	SfVCC2	1.0000	_	_		_		

注 1. VCC 電圧が V_{POR1} を通過する場合

表 2.41 動作中の VCC リップル周波数特性と立ち上がり/立ち下がり勾配の特性

リップル電圧は、VCC 上限 (3.63 V) と下限 (1.62 V) の範囲内で、許容リップル周波数 $f_{r(VCC)}$ を満たす必要があります。VCC 変動が VCC±10%を超える場合は、許容電圧変動立ち上がり/立ち下がり勾配 dt/dVCC を満たす必要があります。

項目	シンボル	Min	Тур	Мах	単位	測定条件
許容リップル周波数	fr (VCC)	_	_	10	kHz	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
		_	_	1	MHz	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
		_	_	10	MHz	\boxtimes 2.23 V _{r (VCC)} \leq VCC × 0.06
許容電圧変動立ち上がり/立 ち下がり勾配	dt/dVCC ^(注1)	1.0	_	_	ms/V	VCC 変動が VCC±10%を超 える場合

注 1. VCC 電圧が VPOR1 を通過しない場合

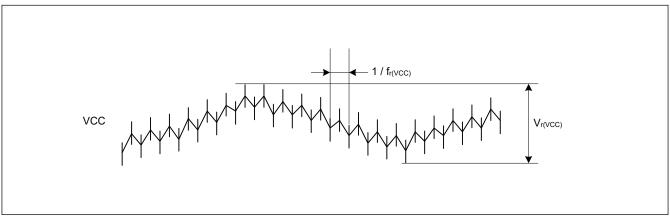


図 2.23 リップル波形

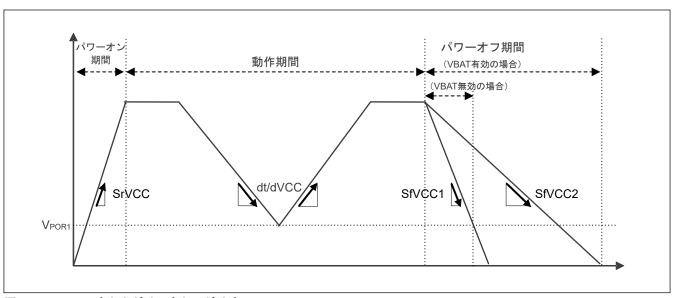


図 2.24 VCC 立ち上がり/立ち下がり波形

2.2.7 熱特性

ジャンクション温度 (Tj) の最大値は、「2.2.1. Tj/Ta の定義」の値を超えないようにしてください。 Tj は、以下のいずれかの式で計算されます。

- Tj = Ta + θja × 総消費電力
- Tj = Tt + Ψjt × 総消費電力
 - Ti: ジャンクション温度 (°C)
 - Ta:周囲温度 (°C)
 - Tt:ケース上面中央部温度(°C)
 - θja:「ジャンクション」-「周囲」間の熱抵抗 (°C/W)
 - Ψjt:「ジャンクション」-「ケース上面中央部」間の熱抵抗 (°C/W)
- 総消費電力 = 電圧×(リーク電流+ダイナミック電流)
- IO のリーク電流 = Σ ($I_{OL} \times V_{OL}$) / 電圧 + Σ ($|I_{OH}| \times |VCC V_{OH}|$) / 電圧
- IO のダイナミック電流 = Σ IO (C_{in} + C_{load}) × IO のスイッチング周波数 × 電圧
 - C_{in}:入力容量
 - C_{load}: 出力容量

 θ ja と Ψ jt については、表 2.42 を参照してください。

表 2.42 熱抵抗

項目	パッケージ	シンボル	值(注1)	単位	測定条件
熱抵抗	176 ピン HLQFP (PLQP0176K?-A)	θја	15	°C/W	JESD 51-2 および 51-7 準拠
	224 ピン BGA (PLBG0224J?-A)		21		JESD 51-2 および
	289 ピン BGA (PLBG0289J?-A)		20		51-9 準拠
	176 ピン HLQFP (PLQP0176K?-A)	Ψjt	0.3	°C/W	JESD 51-2 および 51-7 準拠
	224 ピン BGA (PLBG0224J?-A)		0.3		JESD 51-2 および
	289 ピン BGA (PLBG0289J?-A)		0.3		51-9 準拠

注 1. 値は、4 層基板使用時の基準値です。熱抵抗は、基板の層数やサイズによって変わります。詳細は、JEDEC 規格を参照してください。

2.2.7.1 最大電流計算の手引き

表 2.43 各ユニットの消費電力(DCDC モード) (1/3)

ダイナミック 電流/ リーク電流	MCU ドメイン	カテゴリ	項目	シンボル	周波数 [MHz]	電流 [µA/MHz]	電流 [mA]	条件
リーク電流	アナログ	レギュレータ	Tj = 95 °C	I _{CC}	_	_	2.51	_
		およびリーク ^(注1)	Tj = 105 °C		_	_	2.91	
			Tj = 115 °C		_	_	3.45	
			Tj = 125 °C		_	_	4.15	
			Tj = 95 °C	I _{CC_DCDC}	_	_	186	VCC_DCDC =
		_	Tj = 105 °C		_	_	216	3.3 V、High- speed モード、
			Tj = 115 °C		_	_	243	PDCTRGEN2. PDDE = 0
			Tj = 125 °C		_	_	277	
			Tj = 95 °C		_	_	363	
			Tj = 105 °C		_	_	421	1.8 V、High- speed モード、
			Tj = 115 °C		_	_	474	PDCTRGEN2.
			Tj = 125 °C		_	_	540	PDDE = 0
			Tj = 95 °C	I _{DD}	_	_	477	VSCR_1
		Т	Tj = 105 °C		_	_	553	PDCTRGEN2. PDDE = 0
			Tj = 115 °C		_	_	622	
			Tj = 125 °C		_	_	709	

表 2.43 各ユニットの消費電力(DCDC モード) (2/3)

ダイナミック 電流/ リーク電流	MCU ドメイン	カテゴリ	項目	シンボル	周波数 [MHz]	電流 [µA/MHz]	電流 [mA]	条件
ダイナミック 電流	CPU0	キャッシュあ り動作	CoreMark	I _{DD}	1000	145	144	CPUCLK0 = 1000 MHz VSCR_1
	CPU1	キャッシュあ り動作	CoreMark		250	166	41	CPUCLK1 = 250 MHz VSCR_1
	周辺ユニット	タイマ	RTC		62.5	1.229	0.077	VSCR_1
			GPT32 (14ch) ^(注2)		125	65.123	8.140	
	PC	POEG (4 グループ) ^(注2)		62.5	1.539	0.096		
			PDG (4ch) ^(注2)		125	47.465	5.933	
			AGT (2ch) ^(注2)		62.5	1.518	0.095	
			ULPT (2ch) ^(注2)		62.5	2.373	0.148	
			WDT0		62.5	0.437	0.027	
			WDT1		62.5	0.446	0.028	
			IWDT		62.5	0.014	0.001	

表 2.43 各ユニットの消費電力 (DCDC モード) (3/3)

ダイナミック 電流/			***		周波数	電流	電流	Ap Ist.
リーク電流	MCU ドメイン	カテゴリ	項目	シンボル	[MHz]	[µA/MHz]	[mA]	条件
ダイナミック 電流	周辺ユニット	通信インタフ ェース	ESWM	IDD	125	294.026	36.753	VSCR_1
			USBFS		62.5	7.495	0.468	
			USBHS		125	67.424	8.428	
			SCI (10ch) ^(注2)		125	32.336	4.042	
			IIC (3ch) ^(注2)		62.5	3.722	0.233	
			I3C		125	9.883	1.235	
			CANFD (2ch) ^(注2)		125	6.025	0.753	
			SPI (2ch) ^(注2)		125	11.36	1.420	
			OSPI (2ch) ^(注2)		62.5	100.8	6.300	
			SSIE (2ch) ^(注2)		62.5	7.89	0.493	
			SDHI (2ch) ^(注2)		62.5	9.858	0.616	
	ヒシェーイクセニデーシン		PDMIF		62.5	1.939	0.121	
		アナログ	ADC16H(2 ユニット) ^(注2)		125	66.267	8.283	VSCR_1
			DAC12 (2ch) ^(注2)		62.5	0.325	0.020	
			TSN		62.5	0.115	0.007	
			ACMPHS (4ch) ^(注2)		62.5	0.173	0.011	
		ヒューマンマ シンインタフ ェース	CEU		125	18.383	2.298	VSCR_1
		イベントリン ク	ELC		62.5	5.075	0.317	VSCR_1
		セキュリティ	RSIP-E50D		125	302.444	37.806	VSCR_1
			DOTF (2ch) ^(注2)		62.5	131.817	8.239	
		データ処理	CRC		125	1.455	0.182	VSCR_1
			DOC		125	0.241	0.030	
		システム	CAC		62.5	0.946	0.059	VSCR_1
		DMA	DMAC0 (1ch あたり)		250	7.278	1.819	VSCR_1
			DMAC1 (1ch あたり)		250	6.858	1.715	
			DTC0		250	9.077	2.269	
			DTC1		250	8.716	2.179	
ダイナミック 電流	FSBL 動作				250	_	79.9	FSBLCLK[2:0] = 111
					200	_	66.1	FSBLCLK[2:0] = 110
					150	_	51.0	FSBLCLK[2:0] = 101
					133	_	46.6	FSBLCLK[2:0] = 100

注 1. 「レギュレータ」、「リーク」はそれぞれ内部電圧レギュレータの電流と MCU のリーク電流を意味します。 Tj の温度に応じていずれかが選択されます。

注 2. チャネルごとまたはユニットごとの消費電流を求めるには、電流[mA]をチャネル数、グループ数、またはユニット数で割ります。

表 2.44 各ユニットの消費電力(外部 VDD モード) (1/2)

ダイナミック電 流/ リーク電流	MCU ドメイン	カテゴリ	項目	シンボル	周波数 [MHz]	電流 [µA/MHz]	電流 [mA]	条件
リーク電流	アナログ	レギュ レータ お リーク (注1)	Tj = 95 °C	Icc	_	_	2.51	
			Tj = 105 °C		_	_	2.91	
			Tj = 115 °C		_	_	3.45	
			Tj = 125 °C		_	_	4.15	
			Tj = 95 °C	I _{DD}	_	_	477	VCL = 電圧範 囲 1、 PDCTRGEN2. PDDE = 0
			Tj = 105 °C		_	_	553	
			Tj = 115 °C		_	_	622	
			Tj = 125 °C		_	_	709	
ダイナミック電 流	CPU0	キャッ シュあ り動作	CoreMark	I _{DD}	1000	145	144	CPUCLK0 = 1000 MHz、VCL = 電圧範囲 1
	CPU1	キャッ シュあ り動作	CoreMark		250	166	41	CPUCLK1 = 250 MHz、VCL = 電圧範囲 1
ダイナミック電	周辺ユニット	タイマ	RTC	IDD	62.5	1.229	0.077	VCL = 電圧範 囲 1
流			GPT32 (14ch) ^(注2)		125	65.123	8.140	
			POEG(4 グループ) ^(注2)		62.5	1.539	0.096	
			PDG (4ch) ^(注2)		125	47.465	5.933	
			AGT (2ch) ^(注2)		62.5	1.518	0.095	
			ULPT (2ch) ^(注2)		62.5	2.373	0.148	
			WDT0		62.5	0.437	0.027	
			WDT1		62.5	0.446	0.028	
			IWDT		62.5	0.014	0.001	
		通信タスス	ESWM	IDD	125	294.026	36.753	
			USBFS		62.5	7.495	0.468	
			USBHS		125	67.424	8.428	
			SCI (10ch) ^(注2)		125	32.336	4.042	
			IIC (3ch) ^(注2)		62.5	3.722	0.233	
			13C		125	9.883	1.235	
			CANFD (2ch) ^(注2)		125	6.025	0.753	
			SPI (2ch) ^(注2)		125	11.36	1.420	
			OSPI (2ch) ^(注2)		62.5	100.8	6.300	
			SSIE (2ch) ^(注2)		62.5	7.89	0.493	
			SDHI (2ch) ^(注2)		62.5	9.858	0.616	
			PDMIF	1	62.5	1.939	0.121	

表 2.44 各ユニットの消費電力(外部 VDD モード) (2/2)

ダイナミック電 流 <i>/</i> リーク電流	MCU ドメイン	カテゴリ	項目	シンボル	周波数 [MHz]	電流 [µA/MHz]	電流 [mA]	条件
ダイナミック電 流	周辺ユニット	アナログ	ADC16H(2ユニット) (注2)	loo -	125	66.267	8.283	VCL = 電圧範 囲 1
			DAC12 (2ch) ^(注2)		62.5	0.325	0.020	
			TSN		62.5	0.115	0.007	
			ACMPHS (4ch) ^(注2)		62.5	0.173	0.011	
		ヒュー マンマ シンイ ンタフ ェース	CEU	I _{DD}	125	18.383	2.298	VCL = 電圧範 囲 1
		イベン トリン ク	ELC	I _{DD}	62.5	5.075	0.317	VCL = 電圧範 囲 1
		セキュリティ	RSIP-E50D	I _{DD}	125	302.444	37.806	VCL = 電圧範 囲 1
			DOTF (2ch) ^(注2)		62.5	131.817	8.239	
		データ 処理	CRC	I _{DD}	125	1.455	0.182	VCL = 電圧範
			DOC		125	0.241	0.030	一 囲 1
		システ ム	CAC	I _{DD}	62.5	0.946	0.059	VCL = 電圧範 囲 1
		DMA	DMAC0 (1ch あたり)	I _{DD}	250	7.278	1.819	VCL = 電圧範 一 囲 1
			DMAC1 (1ch あたり)		250	6.858	1.715	
			DTC0		250	9.077	2.269	
			DTC1		250	8.716	2.179	
ダイナミック電 流	FSBL 動作			I _{DD}	250	_	79.9	FSBLCLK[2:0] = 111
					200		66.1	FSBLCLK[2:0] = 110
					150	_	51.0	FSBLCLK[2:0] = 101
					133	_	46.6	FSBLCLK[2:0] = 100

注 1. 「レギュレータ」、「リーク」はそれぞれ内部電圧レギュレータの電流と MCU のリーク電流を意味します。

表 2.45 各ユニットの動作の概要 (1/2)

周辺機能	動作の概要
RTC	RTC が LOCO で動作しています。
GPT	動作モードが、のこぎり波 PWM モードに設定されています。GPT が PCLKD で動作しています。
POEG	モジュールストップビットのクリアのみを行います。
PDG	PDG が GTCLK 周期の 1/128 倍の遅延を適用しています。
AGT	AGT が PCLKB で動作しています。
ULPT	ULPT が LOCO で動作しています。
WDT	WDT が PCLKB で動作しています。
IWDT	IWDT が IWDTCLK で動作しています。

Tj の温度に応じていずれかが選択されます。 注 2. チャネルごとまたはユニットごとの消費電流を求めるには、電流[mA]をチャネル数、グループ数、またはユニット数で割ります。

表 2.45 各ユニットの動作の概要 (2/2)

周辺機能	動作の概要
ESWM	通信モードが 1 Gbps、MAC ループバックに設定されています。 gPTP タイマが有効です。 ESWM が 2 つのポートで連続送信と連続受信を同時に実行しています。
USBFS	転送タイプがバルク転送に設定されています。USBFS がフルスピード転送 (12 Mbps) を使用して動作しています。
USBHS	転送タイプがバルク転送に設定されています。USBHS がハイスピード転送を使用して動作しています。
SCI	SCI がクロック同期式モードでデータを送信しています。
IIC	通信フォーマットは I2C バスフォーマットになります。IIC がマスタモードでデータを送信しています。
I3C	通信フォーマットは I3C SDR フォーマットになります。I3C がマスタモードでデータを送信しています (12.5 MHz)。
CANFD	CANFD がセルフテストモード 1 でデータを送受信しています。
SPI	SPI モードが SPI 動作(4 線式)に設定されています。 SPI マスタ/スレーブモードがマスタモードに設定されています。 SPI が 32 ビット幅のデータを送信しています。
OSPI	OSPI が HyperRAM にメモリ書き込みコマンドを発行しています。
SSIE	通信モードがマスタに設定されています。システムワード長が 32 ビットに設定されています。 データワード長が 20 ビットに設定されています。SSIE が I2S フォーマットを使用してデータを送信しています。
SDHI	転送バスモードがワイドバスモード(8 ビット)に設定されています。SDHIが CMD24(シングルブロックライト)を発行しています。
PDMIF	PDMIF が 3 チャネルのサウンドアクティビティを検出しています。
ADC16H	分解能は 16 ビット精度に設定されます。 変換データ演算コントロール B レジスタは 16 倍の平均モードに設定されます。 ADC がアナログ入力を連続スキャンモードで変換しています。 ADC が ADCCLK で動作しています。
DAC12	DAC12 が変換結果の出力とデータレジスタ値の更新を行っています。
TSN	TSN が動作しています。
ACMPHS	ACMPHS が動作しています。
CEU	CEU がデータをキャプチャし SRAM へ転送しています。
ELC	モジュールストップビットのクリアのみを行います。
RSIP-E50D	RSIP はセルフテスト動作を実行しています。
DOTF	DOTF が AES を使用して復号処理を実行しています。
CRC	CRC が 32 ビット CRC32-C 多項式を使用して CRC コードを生成しています。
DOC	DOC がデータ比較モードで動作しています。
CAC	測定対象クロックが PCLKB に設定されています。測定基準クロックが PCLKB に設定されています。 CAC がクロック周波数精度を測定しています。
DMAC	転送データのビット長が 32 ビットに設定されています。転送モードがブロック転送モードに設定されています。 DMAC が SRAM0 から SRAM0 にデータを転送しています。
DTC	転送データのビット長が 32 ビットに設定されています。転送モードがブロック転送モードに設定されています。 DTC が SRAMO から SRAMO にデータを転送しています。

2.2.7.2 Tj の計算例

前提事項:

- パッケージ 289 ピン BGA: θja = 20 °C/W
- $Ta = 65 \, ^{\circ}C$
- $I_{CC} + I_{CC DCDC} = 320 \text{ mA}$
- VCC = 3.5 V (VCC = VCC2 = AVCC0 = AVCC_USBHS = VCC_USB = VCC_USBHS)
- $I_{OH} = 1 \text{ mA}$ 、 $V_{OH} = VCC 0.5 \text{ V}$ 、12 出力
- I_{OL} = 20 mA、 V_{OL} = 1.0 V、8 出力

- I_{OL} = 1 mA、V_{OL} = 0.5 V、12 出力
- C_{in} = 8 pF、32 ピン、入力周波数 = 10 MHz
- C_{load} = 30 pF、32 ピン、出力周波数 = 10 MHz

IO のスタティック電流 = Σ (VOL × IOL) / 電圧 + Σ ((VCC - VOH) × IOH) / 電圧

- = $(20 \text{ mA} \times 1 \text{ V}) \times 8 / 3.5 \text{ V} + (1 \text{ mA} \times 0.5 \text{ V}) \times 12 / 3.5 \text{ V} + ((\text{VCC} (\text{VCC} 0.5 \text{ V})) \times 1 \text{ mA}) \times 12 / 3.5 \text{ V}$
- = 45.7 mA + 1.71 mA + 1.71 mA
- = 49.1 mA

IO のダイナミック電流 = Σ IO (Cin + Cload) × IO のスイッチング周波数 × 電圧

- = $((8 \text{ pF} \times 32) \times 10 \text{ MHz} + (30 \text{ pF} \times 32) \times 10 \text{ MHz}) \times 3.5 \text{ V}$
- = 42.6 mA

総消費電力=電圧 ×(スタティック電流+ダイナミック電流)

- $= (320 \text{ mA} \times 3.5 \text{ V}) + (49.1 \text{ mA} + 42.6 \text{ mA}) \times 3.5 \text{ V}$
- = 1441 mW (1.441 W)
- $Tj = Ta + \theta ja \times 総消費電力$
- $= 65 \, ^{\circ}\text{C} + 20 \, ^{\circ}\text{C/W} \times 1.441\text{W}$
- = 93.82 °C

2.3 AC 特性

2.3.1 周波数

表 2.46 High-speed モードにおける動作周波数の値 (1/8)

項目			シンボル	Min	Тур	Max	単位
動作周波数	PLL1 出力クロック P (PLL1P)	BGA パッケージ、0 °C ≦ Tj ≦ 95 °C(製品 グループ A)、VSCR_1 (DCDC モード)、電 圧範囲 1(外部 VDD モード)	f	_	_	1000	MHz
		BGA パッケージ、-40 °C ≦ Tj ≦ 105 °C (製品グループB)、VSCR_1 (DCDC モード)、電圧範囲 1 (外部 VDD モード)		_	_ _ 800	800	
		BGA パッケージ、 -40 °C \leq Tj \leq 125 °C (製品グループ C)、VSCR_1 (DCDC モード)、電圧範囲 1 (外部 VDD モード)		_	_	600	
		BGA パッケージ、 0 °C \leq Tj \leq 95 °C (製品 グループ A)、VSCR_2 (DCDC モード)、電圧範囲 2(外部 VDD モード)		_	_	600	
		BGA パッケージ、-40 °C ≦ Tj ≦ 105 °C (製品グループB)、VSCR_2 (DCDC モード)、電圧範囲 2 (外部 VDD モード)		_	_	600	
		BGA パッケージ、-40 °C ≦ Tj ≦ 125 °C (製品グループ C)、VSCR_2 (DCDC モード)、電圧範囲 2 (外部 VDD モード)		_	_	600	
	HLQFP パッケージ、-40 °C ≦ Tj ≦ 125 °C (製品グループ C)、VSCR_1 (DCDC モー ド)		_	_	600		
		HLQFP パッケージ、 -40 °C \leq Tj \leq 125 °C (製品グループ C)、VSCR_2 (DCDC モード)		_	_	600	
	その他の PLL 出力クロック (PLL1Q, PLL1R, PLL2P,	BGA パッケージ、0 °C ≦ Tj ≦ 95 °C(製品 グループ A)、VSCR_1 (DCDC モード)、電 圧範囲 1(外部 VDD モード)		_	_	1200	
	PLL2Q, PLL2R)	BGA パッケージ、-40 °C ≦ Tj ≦ 105 °C (製品グループB)、VSCR_1 (DCDC モード)、電圧範囲 1 (外部 VDD モード)		_	_	1200	
		BGA パッケージ、 $-40^{\circ}\text{C} \le \text{Tj} \le 125^{\circ}\text{C} (製品グループ C)、VSCR_1 (DCDC モード)、電圧範囲 1 (外部 VDD モード)$		_	_	1200	
		BGA パッケージ、0 °C ≦ Tj ≦ 95 °C(製品 グループ A)、VSCR_2 (DCDC モード)、電 圧範囲 2(外部 VDD モード)		_	_	1200	
		BGA パッケージ、-40 °C ≦ Tj ≦ 105 °C (製品グループB)、VSCR_2 (DCDC モード)、電圧範囲 2 (外部 VDD モード)		_	_	1200	
		BGA パッケージ、-40 °C ≦ Tj ≦ 125 °C (製品グループ C)、VSCR_2 (DCDC モード)、電圧範囲 2(外部 VDD モード)		_	_	1200	
		HLQFP パッケージ、 -40 °C \leq Tj \leq 125 °C (製品グループ C)、VSCR_1 (DCDC モード)			_	1200	
		HLQFP パッケージ、 -40 °C \leq Tj \leq 125 °C (製品グループ C)、VSCR_2 (DCDC モード)		_	_	1200	

表 2.46 High-speed モードにおける動作周波数の値 (2/8)

項目			シンボル	Min	Тур	Max	単位
動作周波数	CPU0 クロック (CPUCLK0)	BGA パッケージ、0 °C ≦ Tj ≦ 95 °C(製品 グループ A)、VSCR_1 (DCDC モード)、電 圧範囲 1(外部 VDD モード)	f		_	1000	MHz
		BGA パッケージ、-40 °C ≦ Tj ≦ 105 °C (製品グループB)、VSCR_1 (DCDC モード)、電圧範囲 1 (外部 VDD モード)		_	_	800	
		BGA パッケージ、-40 °C ≦ Tj ≦ 125 °C (製品グループ C)、VSCR_1 (DCDC モード)、電圧範囲 1 (外部 VDD モード)		_	_	600	
		BGA パッケージ、0 °C ≦ Tj ≦ 95 °C(製品 グループ A)、VSCR_2 (DCDC モード)、電 圧範囲 2(外部 VDD モード)		_	_	600	
		BGA パッケージ、 $-40^{\circ}\text{C} \le \text{Tj} \le 105^{\circ}\text{C}$ (製品グループB)、VSCR_2(DCDC モード)、電圧範囲 2(外部 VDD モード)		_	_	600	
		BGA パッケージ、-40 °C ≦ Tj ≦ 125 °C (製品グループ C)、VSCR_2 (DCDC モード)、電圧範囲 2 (外部 VDD モード)		_	_	600	
		HLQFP パッケージ、 -40 °C \leq Tj \leq 125 °C (製品グループ C)、VSCR_1 (DCDC モード)		_	_	600	
		HLQFP パッケージ、 -40 °C \leq Tj \leq 125 °C (製品グループ C)、VSCR_2 (DCDC モード)		_	_	600	
	CPU1 クロック (CPUCLK1)	BGA パッケージ、0 °C ≦ Tj ≦ 95 °C(製品 グループ A)、VSCR_1 (DCDC モード)、電 圧範囲 1(外部 VDD モード)		_	_	250	
		BGA パッケージ、-40 °C ≦ Tj ≦ 105 °C (製品グループB)、VSCR_1 (DCDC モード)、電圧範囲 1 (外部 VDD モード)		_	_	200	
		BGA パッケージ、-40 °C ≦ Tj ≦ 125 °C (製品グループ C)、VSCR_1 (DCDC モード)、電圧範囲 1 (外部 VDD モード)		_	_	200	
		BGA パッケージ、0 °C ≦ Tj ≦ 95 °C(製品 グループ A)、VSCR_2 (DCDC モード)、電 圧範囲 2(外部 VDD モード)		_	_	150	
		BGA パッケージ、-40 °C ≦ Tj ≦ 105 °C (製品グループB)、VSCR_2 (DCDC モード)、電圧範囲 2 (外部 VDD モード)		_	_	150	
		BGA パッケージ、-40 °C ≦ Tj ≦ 125 °C (製品グループ C)、VSCR_2 (DCDC モード)、電圧範囲 2 (外部 VDD モード)		_	_	150	
		HLQFP パッケージ、 $-40^{\circ}\text{C} \le \text{Tj} \le 125^{\circ}\text{C}$ (製品グループ C)、VSCR_1 (DCDC モード)		_	_	200	
		HLQFP パッケージ、 -40 °C \leq Tj \leq 125 °C (製品グループ C)、VSCR_2 (DCDC モード)		_	_	150	

表 2.46 High-speed モードにおける動作周波数の値 (3/8)

項目			シンボル	Min	Тур	Max	単位
動作周波数	システムクロック (ICLK)	BGA パッケージ、0 °C ≦ Tj ≦ 95 °C(製品 グループ A)、VSCR_1 (DCDC モード)、電 圧範囲 1(外部 VDD モード)	f	_	_	250	MHz
		BGA パッケージ、 $-40^{\circ}\text{C} \le \text{Tj} \le 105^{\circ}\text{C}$ (製品グループB)、VSCR_1 (DCDC モード)、電圧範囲 1 (外部 VDD モード)		_	_	200	
		BGA パッケージ、-40 °C ≦ Tj ≦ 125 °C (製品グループ C)、VSCR_1 (DCDC モード)、電圧範囲 1 (外部 VDD モード)		_	_	200	
		BGA パッケージ、0 °C ≦ Tj ≦ 95 °C(製品 グループ A)、VSCR_2 (DCDC モード)、電 圧範囲 2(外部 VDD モード)		_	_	150	
		BGA パッケージ、 $-40^{\circ}\text{C} \le \text{Tj} \le 105^{\circ}\text{C}$ (製品グループB)、VSCR_2(DCDC モード)、電圧範囲 2(外部 VDD モード)		_	_	150	
		BGA パッケージ、-40 °C ≦ Tj ≦ 125 °C (製品グループ C)、VSCR_2 (DCDC モード)、電圧範囲 2 (外部 VDD モード)		_	_	150	
		HLQFP パッケージ、 -40 °C \leq Tj \leq 125 °C (製品グループ C)、VSCR_1 (DCDC モード)		_	_	200	
		HLQFP パッケージ、 -40 °C \leq Tj \leq 125 °C (製品グループ C)、VSCR_2 (DCDC モード)		_	_	150	

表 2.46 High-speed モードにおける動作周波数の値 (4/8)

項目			シンボル	Min	Тур	Max	単位
動作周波数	MRAM バスクロック (MRICLK)	BGA パッケージ、0 °C ≦ Tj ≦ 95 °C(製品 グループ A)、VSCR_1 (DCDC モード)、電 圧範囲 1(外部 VDD モード)	f	_	_	250	MHz
		BGA パッケージ、 -40 °C \leq Tj \leq 105 °C (製品グループB)、VSCR_1 (DCDC モード)、電圧範囲 1 (外部 VDD モード)		_	_	200	
		BGA パッケージ、 -40 °C \leq Tj \leq 125 °C (製品グループ C)、VSCR_1 (DCDC モード)、電圧範囲 1 (外部 VDD モード)		_	_	200	
		BGA パッケージ、0 °C ≦ Tj ≦ 95 °C(製品 グループ A)、VSCR_2(DCDC モード)、電 圧範囲 2(外部 VDD モード)		_	_	150	
		BGA パッケージ、 $-40^{\circ}\text{C} \le \text{Tj} \le 105^{\circ}\text{C}$ (製品グループB)、VSCR_2(DCDC モード)、電圧範囲 2(外部 VDD モード)		_	_	150	
		BGA パッケージ、 -40 °C \leq Tj \leq 125 °C (製品グループ C)、VSCR_2 (DCDC モード)、電圧範囲 2(外部 VDD モード)		_	_	150	
		HLQFP パッケージ、 -40 °C \leq Tj \leq 125 °C (製品グループ C)、VSCR_1 (DCDC モード)		_	_	200	
		$HLQFP$ パッケージ、 -40 °C \leq $Tj \leq 125$ °C (製品グループ C)、 $VSCR_2$ (DCDC モード)		_	_	150	
	MRAM クロック (MRPCLK)	BGA パッケージ、0 °C ≦ Tj ≦ 95 °C(製品 グループ A)、VSCR_1 (DCDC モード)、電 圧範囲 1(外部 VDD モード)		_	_	125	
		BGA パッケージ、 -40 °C \leq Tj \leq 105 °C (製品グループB)、VSCR_1 (DCDC モード)、電圧範囲 1 (外部 VDD モード)		_	_	100	
		BGA パッケージ、 -40 °C \leq Tj \leq 125 °C (製品グループ C)、VSCR_1 (DCDC モード)、電圧範囲 1 (外部 VDD モード)		_	_	100	
		BGA パッケージ、 0 °C \leq Tj \leq 95 °C (製品 グループ A)、VSCR_2 (DCDC モード)、電圧範囲 2 (外部 VDD モード)		_	_	75	
		BGA パッケージ、 -40 °C \leq Tj \leq 105 °C (製品グループB)、VSCR_2 (DCDC モード)、電圧範囲 2(外部 VDD モード)		_	_	75	
		BGA パッケージ、-40 °C ≦ Tj ≦ 125 °C (製品グループ C)、VSCR_2 (DCDC モード)、電圧範囲 2(外部 VDD モード)		_	_	75	
		HLQFP パッケージ、-40 °C ≦ Tj ≦ 125 °C (製品グループ C)、VSCR_1 (DCDC モード)		_	_	100	
		HLQFP パッケージ、-40 °C ≦ Tj ≦ 125 °C (製品グループ C)、VSCR_2 (DCDC モード)		_	_	75	

表 2.46 High-speed モードにおける動作周波数の値 (5/8)

項目			シンボル	Min	Тур	Max	単位
動作周波数	周辺モジュールクロ ック (PCLKA)	BGA パッケージ、0 °C ≦ Tj ≦ 95 °C(製品 グループ A)、VSCR_1 (DCDC モード)、電 圧範囲 1(外部 VDD モード)	f	_	_	125	MHz
		BGA パッケージ、-40 °C ≦ Tj ≦ 105 °C (製品グループB)、VSCR_1 (DCDC モード)、電圧範囲 1 (外部 VDD モード)		_	_	100	
		BGA パッケージ、 $-40~^{\circ}$ C \leq Tj \leq 125 $^{\circ}$ C (製品グループ C)、VSCR_1 (DCDC モード)、電圧範囲 1(外部 VDD モード)		_	_	100	
		BGA パッケージ、0 °C ≦ Tj ≦ 95 °C(製品 グループ A)、VSCR_2 (DCDC モード)、電 圧範囲 2(外部 VDD モード)		_	_	75	
		BGA パッケージ、-40 °C ≦ Tj ≦ 105 °C (製品グループB)、VSCR_2 (DCDC モード)、電圧範囲 2 (外部 VDD モード)		_	_	75	
		BGA パッケージ、-40 °C ≦ Tj ≦ 125 °C (製品グループ C)、VSCR_2 (DCDC モード)、電圧範囲 2(外部 VDD モード)		_	_	75	
		$HLQFP$ パッケージ、 -40 $^{\circ}C \le Tj \le 125$ $^{\circ}C$ (製品グループ C)、 $VSCR_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$		_	_	100	
		$HLQFP$ パッケージ、 -40 $^{\circ}C \le Tj \le 125$ $^{\circ}C$ (製品グループ C)、 $VSCR_2$ (DCDC モード)		_	_	75	
	周辺モジュールクロック (PCLKB)	BGA パッケージ、0 °C ≦ Tj ≦ 95 °C(製品 グループ A)、VSCR_1 (DCDC モード)、電 圧範囲 1(外部 VDD モード)		_	_	62.5	
		BGA パッケージ、 $-40~^{\circ}$ C \leq Tj \leq 105 $^{\circ}$ C (製品グループB)、VSCR_1 (DCDC モード)、電圧範囲 1(外部 VDD モード)		_	_	50	
		BGA パッケージ、 $-40~^{\circ}$ C \leq Tj \leq 125 $^{\circ}$ C (製品グループ C)、VSCR_1 (DCDC モード)、電圧範囲 1(外部 VDD モード)		_	_	50	
		BGA パッケージ、0 °C ≦ Tj ≦ 95 °C(製品 グループ A)、VSCR_2(DCDC モード)、電 圧範囲 2(外部 VDD モード)		_	_	37.5	
		BGA パッケージ、 $-40~^{\circ}$ C \leq Tj \leq 105 $^{\circ}$ C (製品グループB)、VSCR_2 (DCDC モード)、電圧範囲 2(外部 VDD モード)		_	_	37.5	
		BGA パッケージ、 $-40^{\circ}\text{C} \le \text{Tj} \le 125^{\circ}\text{C}$ (製品グループ C)、VSCR_2 (DCDC モード)、電圧範囲 2(外部 VDD モード)		_	_	37.5	
		HLQFP パッケージ、-40 °C ≦ Tj ≦ 125 °C (製品グループ C)、VSCR_1 (DCDC モード)		_	_	50	
		HLQFP パッケージ、-40 °C ≦ Tj ≦ 125 °C (製品グループ C)、VSCR_2 (DCDC モード)		_	_	37.5	

表 2.46 High-speed モードにおける動作周波数の値 (6/8)

項目					Тур	Max	単位
動作周波数	周辺モジュールクロ ック (PCLKD)	BGA パッケージ、0 °C ≦ Tj ≦ 95 °C(製品 グループ A)、VSCR_1(DCDC モード)、電 圧範囲 1(外部 VDD モード)	f	_	_	250	MHz
		BGA パッケージ、-40 °C ≦ Tj ≦ 105 °C (製品グループB)、VSCR_1 (DCDC モード)、電圧範囲 1 (外部 VDD モード)		_	_	200	
		BGA パッケージ、 -40 °C \leq Tj \leq 125 °C (製品グループ C)、VSCR_1 (DCDC モード)、電圧範囲 1 (外部 VDD モード)		_		200	
		BGA パッケージ、0 °C ≦ Tj ≦ 95 °C(製品 グループ A)、VSCR_2(DCDC モード)、電 圧範囲 2(外部 VDD モード)		_	_	150	
		BGA パッケージ、-40 °C ≦ Tj ≦ 105 °C (製品グループB)、VSCR_2 (DCDC モード)、電圧範囲 2(外部 VDD モード)		_	_	150	
		BGA パッケージ、-40 °C ≦ Tj ≦ 125 °C (製品グループ C)、VSCR_2 (DCDC モード)、電圧範囲 2(外部 VDD モード)		_	_	150	
		HLQFP パッケージ、 -40 °C \leq Tj \leq 125 °C (製品グループ C)、VSCR_1 (DCDC モード)		_	_	200	
		HLQFP パッケージ、 -40 °C \leq Tj \leq 125 °C (製品グループ C)、VSCR_2 (DCDC モード)		_	_	150	
	周辺モジュールクロック (PCLKE)	BGA パッケージ、0 °C ≦ Tj ≦ 95 °C(製品 グループ A)、VSCR_1 (DCDC モード)、電 圧範囲 1(外部 VDD モード)		_		250	
		BGA パッケージ、 -40 °C \leq Tj \leq 105 °C (製品グループB)、VSCR_1 (DCDC モード)、電圧範囲 1(外部 VDD モード)		_	_	200	
		BGA パッケージ、-40 °C ≦ Tj ≦ 125 °C (製品グループ C)、VSCR_1 (DCDC モード)、電圧範囲 1 (外部 VDD モード)		_	_	200	
		BGA パッケージ、0 °C ≦ Tj ≦ 95 °C(製品 グループ A)、VSCR_2(DCDC モード)、電 圧範囲 2(外部 VDD モード)		_	_	150	
		BGA パッケージ、 -40 °C \leq Tj \leq 105 °C (製品グループB)、VSCR_2 (DCDC モード)、電圧範囲 2(外部 VDD モード)		_	_	150	
		BGA パッケージ、-40 °C ≦ Tj ≦ 125 °C (製品グループ C)、VSCR_2 (DCDC モード)、電圧範囲 2(外部 VDD モード)			_	150	
		HLQFP パッケージ、-40 °C ≦ Tj ≦ 125 °C (製品グループ C)、VSCR_1 (DCDC モード)			_	200	
		HLQFP パッケージ、 -40 °C \leq Tj \leq 125 °C (製品グループ C)、VSCR_2 (DCDC モード)			_	150	

表 2.46 High-speed モードにおける動作周波数の値 (7/8)

項目				シンボル	Min	Тур	Max	単位
動作周波数	外部バスクロック (BCLK)	VCC ≧ 2.7 V	BGA パッケージ、0°C ≦ Tj ≦ 95°C (製品グルー プA)、VSCR_1 (DCDC モード)、電圧範囲 1 (外 部 VDD モード)	f	_	_	125	MHz
			BGA パッケージ、-40°C ≦ Tj ≦ 105°C (製品グル ープ B)、VSCR_1 (DCDC モード)、電圧範囲 1 (外 部 VDD モード)		_	_	100	
			BGA パッケージ、-40 °C ≦ Tj ≦ 125 °C (製品グル ープ C)、VSCR_1 (DCDC モード)、電圧範囲 1 (外 部 VDD モード)		_	_	100	
			BGA パッケージ、0 °C ≦ Tj ≦ 95 °C (製品グルー プA)、VSCR_2 (DCDC モード)、電圧範囲 2 (外 部 VDD モード)		_	_	75	
			BGA パッケージ、-40 °C ≦ Tj ≦ 105 °C (製品グル ープB)、VSCR_2 (DCDC モード)、電圧範囲 2 (外 部 VDD モード)		_	_	75	
			BGA パッケージ、-40 °C ≦ Tj ≦ 125 °C (製品グル ープ C)、VSCR_2 (DCDC モード)、電圧範囲 2 (外 部 VDD モード)		_	_	75	
			HLQFP パッケージ、- 40 °C ≦ Tj ≦ 125 °C (製 品グループ C)、VSCR_1 (DCDC モード)		_	_	100	
			HLQFP パッケージ、- 40 °C ≦ Tj ≦ 125 °C (製 品グループ C)、VSCR_2 (DCDC モード)		_	_	75	
		VCC ≧ 1.62 V			_	_	60]
	EBCLK 端子出力	VCC ≧ 2.7 V			_	_	60	
		VCC ≧ 1.62 V					30	
	SDCLK 端子出力	VCC ≧ 3.0 V			_		133	

表 2.46 High-speed モードにおける動作周波数の値 (8/8)

項目	目			シンボル	Min	Тур	Max	単位
動作周波数	SCI クロック (SCICL	K)		f	_	_	120	MHz
	SPI クロック (SPICLK)				_	_	333	
	Octal-SPI クロック (OCTACLK)				_	_	333	
	CANFD コアクロック (CANFDCLK)				_	_	80	
	ADC クロック (ADCCLK) GPT クロック (GPTCLK) USB クロック (USBCLK)		25		_	120	_	
				(注1)	_ 3	300		
					_	_	48	
	USB クロック (USB6	0CLK)			_	_	60	
	I3C クロック (I3CCL	()			_	_	200	
	非同期外部バスクロック (BCLKA)				_	_	133	1
	EtherSW クロック	BGA パッケージ			_	_	250	
	(ESWCLK)	HLQFP パッケージ					125	
	EtherSW-PHY クロック (ESWPHYCLK)				_	_	500	

注 1. A/D 変換クロックに GPTCLK を使用するときは、GPTCLK の周波数は 25 MHz 以上にしてください。

2.3.2 クロックタイミング

表 2.47 サブクロック発振器以外のクロックタイミング (1/2)

項目		シンボル	Min	Тур	Max	単位	測定条件
EBCLK 端子出力サイクル時	VCC = 2.70 V 以上	t _{Bcyc}	16.6	_	_	ns	図 2.25
間	VCC = 1.62 V 以上		33.3	_	_		
EBCLK 端子出力 High レベ	VCC = 2.70 V 以上	t _{CH}	3.3	_	_	ns	
ルパルス幅	VCC = 1.62 V 以上		9.6	_	_		
EBCLK 端子出力 Low レベ	VCC = 2.70 V 以上	t _{CL}	3.3	_	_	ns	
ルパルス幅	VCC = 1.62 V 以上		9.6	_	_		
EBCLK 端子出力立ち上がり	VCC = 2.70 V 以上	t _{Cr}	_	_	5.0	ns	
時間	VCC = 1.62 V 以上		_	_	7.0		
EBCLK 端子出力立ち下がり	VCC = 2.70 V 以上	t _{Cf}	_	_	5.0	ns	
時間	VCC = 1.62 V 以上		_	_	7.0]	
SDCLK 端子出力サイクル時	· 間	t _{SDcyc}	7.52	_	_	ns	
SDCLK 端子出力 High レベル	パルス幅	t _{CH}	1.0	_	_	ns	
SDCLK 端子出力 Low レベル	パルス幅	t _{CL}	1.0	_	_	ns	
SDCLK 端子出力立ち上がり	時間	t _{Cr}	_	_	2.7	ns	
SDCLK 端子出力立ち下がり	時間	t _{Cf}	_	_	2.7	ns	
EXTAL 外部クロック入力サイ	イクル時間	t _{EXcyc}	20.80	_	_	ns	図 2.26
EXTAL 外部クロック入力 Hig	gh レベルパルス幅	t _{EXH}	5.30	_	_	ns	
EXTAL 外部クロック入力 Lov	w レベルパルス幅	t _{EXL}	5.30	_	_	ns	
EXTAL 外部クロック立ち上がり時間		t _{EXr}	_	_	3.0	ns	
EXTAL 外部クロック立ち下がり時間		t _{EXf}	_	_	3.0	ns	
メインクロック発振器周波数		f _{MAIN}	8	_	48	MHz	_
メインクロック発振安定待機	時間(水晶) ^(注1)	t _{MAINOSCW}	_	_	(注1)	ms	図 2.27

表 2.47 サブクロック発振器以外のクロックタイミング (2/2)

項目		シンボル	Min	Тур	Max	単位	測定条件
LOCO クロック発振周波数		f _{LOCO}	29.4912	32.768	36.0448	kHz	_
LOCO クロック発振安定待機	选時間	t _{LOCOWT}	_	_	26.0	μs	図 2.28
MOCO クロック発振周波数	MOCO クロック発振周波数		7.2	8.0	8.8	MHz	_
MOCO クロック発振安定待板	MOCO クロック発振安定待機時間		_	_	3.5	μs	_
HOCO クロック発振器発振	FLL なし	f _{HOCO16}	15.776	16.000	16.224	MHz	-20 ≦ Tj ≦ 105 °C
│ 周波数 │		f _{HOCO18}	17.748	18.000	18.252		
		f _{HOCO20}	19.720	20.000	20.280		
		f _{HOCO32}	31.552	32.000	32.448		
		f _{HOCO48}	47.328	48.000	48.672		
		f _{HOCO16}	15.712	16.000	16.288		–40 ≦ Tj ≦ 125 °C
		f _{HOCO18}	17.676	18.000	18.324		
		f _{HOCO20}	19.640	20.000	20.360		
		f _{HOCO32}	31.424	32.000	32.576		
		f _{HOCO48}	47.136	48.000	48.864		
	FLL あり	f _{HOCO16}	15.960	16.000	16.040		-40 ≦ Tj ≦ 125 °C
		f _{HOCO18}	17.955	18.000	18.045		サブクロック周波数精 度は、±50 ppm です。
		f _{HOCO20}	19.950	20.000	20.050		
		f _{HOCO32}	31.920	32.000	32.080		
		f _{HOCO48}	47.880	48.000	48.120		
HOCO クロック発振安定待機	幾時間 ^(注2)	t _{HOCOWT}	_	_	15.0	μs	_
HOCO 停止幅時間		t _{HOCOSTP}	1	_	_	μs	図 2.31
HOCO ピリオドジッタ		_	-3	_	3	ps	_
FLL 安定待機時間		t _{FLLWT}	_	_	1.92	ms	_
PLL1/PLL2 クロック周波数		f _{PLL}	60	_	1200	MHz	_
PLL1/PLL2 クロック発振安定	E待機時間	t _{PLLWT}	_	_	50	μs	図 2.29
PLL1/PLL2 ピリオドジッタ		_	_	±52	_	ps	_
PLL1/PLL2 ロングタームジッ	ノタ	_	_	±300	_	ps	期間:1 μs、10 μs

注 1. メインクロック発振器を設定する場合、発振器メーカーに発振評価を確認し、その結果を推奨発振安定時間として使用してください。MOSCWTCR レジスタを、推奨値以上に設定してください。 メインクロック動作を開始するために MOSCCR.MOSTP ビット設定を変更したら、OSCSF.MOSCSF フラグが 1 であることを確認してからメインクロック発振器の使用を開始してください。

表 2.48 サブクロック発振器のクロックタイミング

項目	シンボル	Min	Тур	Max	単位	測定条件
サブクロック周波数	f _{SUB}	_	32.768	_	kHz	_
サブクロック発振安定待機時間	tsuвоsсwт	_	_	— (注1)	s	図 2.30

注 1. サブクロック発振器を設定する場合、発振器メーカーに発振評価を確認し、その結果を推奨発振安定時間として使用してください。 サブクロック動作を開始するために SOSCCR.SOSTP ビット設定を変更したら、必ずサブクロック発振安定時間が十分に経過して からサブクロック発振器の使用を開始してください。示された時間の 2 倍を推奨します。

注 2. リセット状態の解除から HOCO 発振周波数 (f_{HOCO}) が動作保証範囲に達するまでの時間です。

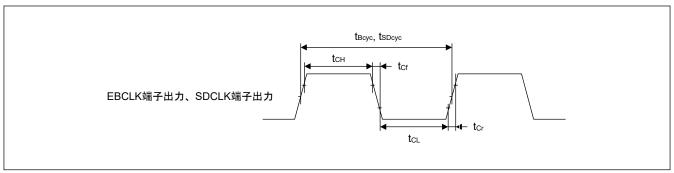


図 2.25 EBCLK および SDCLK の出力タイミング

図 2.26 EXTAL 外部クロック入力タイミング

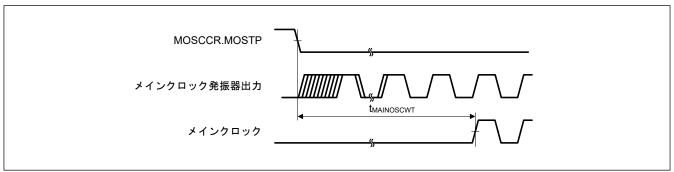


図 2.27 メインクロック発振開始タイミング

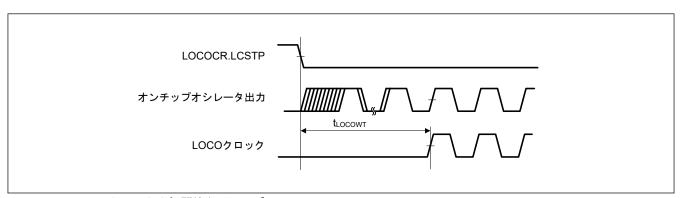


図 2.28 LOCO クロック発振開始タイミング

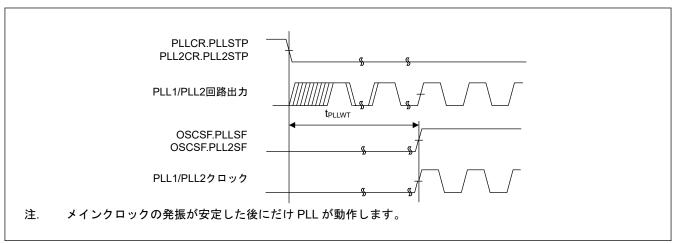


図 2.29 PLL1/PLL2 クロック発振開始タイミング

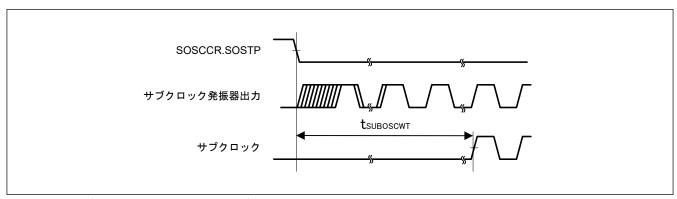


図 2.30 サブクロック発振開始タイミング

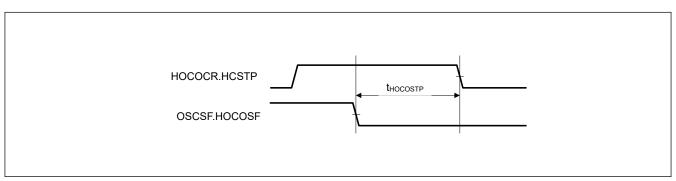


図 2.31 HOCO 停止幅時間

2.3.3 リセットタイミング

表 2.49 リセットタイミング

項目			シンボル	Min	Тур	Max	単位	測定条件
RES パルス	パワーオン	_	t _{RESWP}	2.4	_	_	ms	図 2.32
幅	ディープソ フトウェア	DPSBYCR.DCSSMODE = 00	t _{RESWD}	0.43	_	_	ms	図 2.33
	スタンバイ モード 1	DPSBYCR.DCSSMODE = 01		0.51	_	_		
		DPSBYCR.DCSSMODE = 10		0.67	_	_		
		DPSBYCR.DCSSMODE = 11		1.00	_	_		
	ディープソ フトウェア	DPSBYCR.DCSSMODE = 00		0.43	_	_		
	スタンバイ モード 2	DPSBYCR.DCSSMODE = 01		0.51	_	_		
		DPSBYCR.DCSSMODE = 10		0.67	_	_		
		DPSBYCR.DCSSMODE = 11		1.00	_	_		
	ディープソ フトウェア	DPSBYCR.DCSSMODE = 00		0.60	_	_		
	スタンバイ モード 3	DPSBYCR.DCSSMODE = 01		0.68	_	_		
		DPSBYCR.DCSSMODE = 10		0.84	_	_		
		DPSBYCR.DCSSMODE = 11		1.20	_	_		
	ソフトウェア	' スタンバイモード	t _{RESWS}	0.55	_	_	ms	
	CPU ディー: 動作)	プスリープモード(Subosc	t _{RESWSODS}	0.16	_	_	ms	
	CPU ディー: 動作以外)	プスリープモード(SOSC	t _{RESWDS}	0.04	_	_	ms	
	SOSC 動作	PGSCR.PGS = 1	t _{RESWSO}	0.27	_	_	ms	
		PGSCR.PGS = 0		0.30	_	_		
	上記以外	PGSCR.PGS = 1	t _{RESW}	0.15	_		ms	
		PGSCR.PGS = 0		0.18	_			
RES 解除後の	解除後の待機時間			_	78.7	79.1	μs	図 2.32
CPU0/1 ロッ 共通メモリエ ローカルメモ	内部リセット(IWDT リセット、WDT0/1 リセット、 CPU0/1 ロックアップリセット、バスエラーリセット、 共通メモリエラーリセット、ソフトウェアリセット、 ローカルメモリ 0/1 エラーリセット、温度監視リセッ ト)解除後の待機時間			_	78.7	79.1	μѕ	-

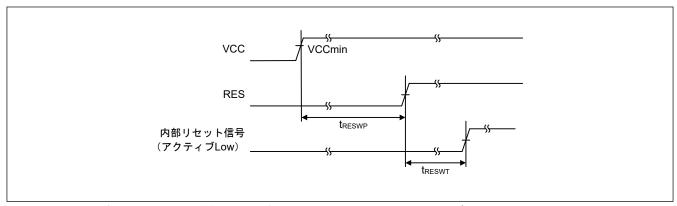


図 2.32 VCC が V_{POR} 電圧しきい値を超える条件下での RES 端子入力タイミング

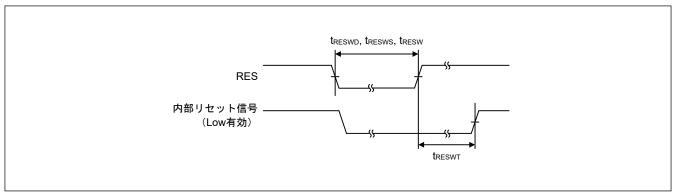


図 2.33 リセット入力タイミング

2.3.4 ウェイクアップタイミング

表 2.50 低消費電力モードからの復帰タイミング (1/3)

項目		高速復帰機能 (注9)	シンボル	Min	Тур	Max	単位	測定条件
	CPU0 ディープスリープモード	_	t _{DSLP} (注11)	_	6.14	9.45	μs	_
スリープモー ドからの復帰 時間	CPU1 ディープスリープモード	_		_	7.71	15.66	рs	

表 2.50 低消費電力モードからの復帰タイミング (2/3)

項目			高速復帰機能	シンボル	Min	Тур	Max	単位	測定条件
ソフトウェア スタンバイモ ードからの復 帰時間 ^(注12)	メインクロック 発振器に水晶振 動子を接続	システムクロッ クソースはメイ ンクロック発振 器 ^(注1) MOSCSCR.MO SCSOKP = 0	有効	t _{SBYMC} (注10)	_	2.09	2.14	ms	図 2.34 全発振器の分 周比は 1 です。
		システムクロッ クソースはメイ ンクロック発振 器 ^(注1) MOSCSCR.MO SCSOKP = 1	有効		_	44.9	94.6	μs	
		システムクロッ クソースはメイ ンクロック発振 器を使用した PLL1P ^(注2) MOSCSCR.MO SCSOKP = 0	有効	t _{SBYPC} (注10)	_	2.21	2.27	ms	
		システムクロッ クソースはメイ ンクロック発振 器を使用した PLL1P ^(注2) MOSCSCR.MO SCSOKP = 1	有効		_	135	197	μs	
	メインクロック 発振器に外部ク ロックを入力	システムクロッ クソースはメイ ンクロック発振 器 ^(注3)	有効	t _{SBYEX} (注10)	_	44.9	94.6	μs	
		システムクロッ クソースはメイ ンクロック発振 器を使用した PLL1P ^(注4)	有効	t _{SBYPE} (注10)	_	135	197		
	システムクロック ロック発振器 ^{(注5}	フソースはサブク (i)	有効	t _{SBYSC} (注10)	_	480	481	μs	
	システムクロック HOCO クロック		有効	t _{SBYHO} (注10)	_	46.3	96.0	μs	
	システムクロック HOCO を使用し		有効	t _{SBYPH} (注10)	_	146	208	μs	
	システムクロック MOCO クロック		有効	t _{SBYMO} (注10)	_	44.6	87.5	μs	

表 2.50 低消費電力モードからの復帰タイミング (3/3)

項目			高速復帰機能	シンボル	Min	Тур	Max	単位	測定条件
ディープソフ トウェアスタ ンバイモード	ディープソフト ウェアスタンバ イモード1	DPSBYCR.DC SSMODE[1:0] = 00	_	t _{DSBY}	_	216	266	μs	☑ 2.35
からの復帰時間		DPSBYCR.DC SSMODE[1:0] = 01	_		_	296	346	μs	
		DPSBYCR.DC SSMODE[1:0] = 10	_		_	456	506	μs	
		DPSBYCR.DC SSMODE[1:0] = 11	_		_	776	826	μs	
	ディープソフト ウェアスタンバ イモード 2	DPSBYCR.DC SSMODE[1:0] = 00	_		_	216	266	μs	
		DPSBYCR.DC SSMODE[1:0] = 01	_		_	296	346	μs	
		DPSBYCR.DC SSMODE[1:0] = 10	_		_	456	506	μs	
		DPSBYCR.DC SSMODE[1:0] = 11	_		_	776	826	μs	
	ディープソフト ウェアスタンバ イモード 3	DPSBYCR.DC SSMODE[1:0] = 00	_		_	403	524	μs	
		DPSBYCR.DC SSMODE[1:0] = 01	_		_	483	604	μs	
		DPSBYCR.DC SSMODE[1:0] = 10	_		_	643	764	μs	
		DPSBYCR.DC SSMODE[1:0] = 11	_		_	963	1084	μs	
ディープソフト 機時間	·ウェアスタンバイ	′モード解除後待	_	t _{DSBYWT}	22.2	_	33.6	μs	

- 注 1. 水晶の周波数が 48 MHz (メインクロック発振器ウェイトコントロールレジスタ (MOSCWTCR) が 0x05) で、かつ内部クロックの分周設定のうち最も大きな値が 1 の場合
- 注 2. PLL1P の周波数が 1 GHz(メインクロック発振器ウェイトコントロールレジスタ (MOSCWTCR) が 0x05)で、かつ内部クロックの 分周設定のうち最も大きな値が 16 の場合
- 注 3. 外部クロックの周波数が 48 MHz(メインクロック発振器ウェイトコントロールレジスタ (MOSCWTCR) が 0x00)で、かつ内部クロックの分周設定のうち最も大きな値が 1 の場合
- 注 4. PLL1P の周波数が 1 GHz(メインクロック発振器ウェイトコントロールレジスタ (MOSCWTCR) が 0x00)で、かつ内部クロックの 分周設定のうち最も大きな値が 16 の場合
- 注 5. サブクロック発振器の周波数が 32.768 kHz で、かつ内部クロックの分周設定のうち最も大きな値が 1 の場合
- 注 6. HOCO 周波数が 20 MHz で、かつ内部クロックの分周設定のうち最も大きな値が 1 の場合
- 注 7. PLL 周波数が 1 GHz で、かつ内部クロックの分周設定のうち最も大きな値が 16 の場合
- 注8. MOCO 周波数が8 MHz で、かつ内部クロックの分周設定のうち最も大きな値が1の場合
- 注 9. 詳細は、SSCR1.SS2FR ビットを参照してください。
- 注 10. 復帰時間は次の式により計算できます: t_{Common} + max(t_{OSCSTB}, t_{PG1}, t_{PGCK}) + max(t_{PG2}, t_{LPW})。式の各変数は下表の値および式により求めることができます。表中の変数 n については、内部クロック (CPUCLK0, CPUCLK1, NPUCLK, ICLK, MRICLK, MRPCLK, PCLKn, FCLK, BCLK, BCLK) の分周設定 (m = A~E) のうち最も大きな値が選択されます。
 - 下表の t_{OSCSTB} は、各発振器が有効になっている時間を意味します。複数の発振器が有効になっているときの t_{OSCSTB} は、有効になっている発振器のうちで最長の t_{OSCSTB} となります。
- 注 11. ICLK 周波数は 250 MHz です。この復帰時間は t_{PG2} に対応します。
- 注 12. Ccyc が 27 の場合。表 2.52 を参照してください。

表 2.51 復帰時間を構成する要素

				Тур					Max							
モード	ウェイ クアッ プ時間	発振保 持	高速復帰機能	t _{Commo}	t _{OSCSTB} (注1)	t _{PG1}	t _{PGCK}	t _{PG2}	t _{LPW}	t _{Commo}	t _{OSCSTB} (注1)	t _{PG1}	t _{PGCK}	t _{PG2}	t _{LPW}	単位
ソフェトフェスタイド	ウェア 無効 スタン バイモ ード ———	MOSC 無効	有効	Ccyc (注2)/ f _{MOCO} + 2/f _{ICLK}	t _{MAINOS} CWT	t _{OSC} STB [/] f _{MOC} o +	(10.5 + 2.5n)/ f _{MOCO} + 2.5/	18/ f _{MOCO} + 9/ f _{ICLK}	2/f _{ICLK} + 2n/ f _{MOSC} + 2/	Ccyc (注2)/ f _{MOCO} + 2/f _{ICLK}	t _{MAINOS} CWT + 11/0.23	t _{OSC} stb/ f _{MOC} o +	(10.5 + 2.5n)/ f _{MOCO} + 2.5/	18/ f _{MOCO} + 9/ f _{ICLK}	2/f _{ICLK} + 2n/ f _{MOSC} + 2/	μs
-r		MOSC 有効	有効		3/0.262	208/ f _{MOC}	f _{SRCCL} K+ 2/ f _{ICLK}		f _{ICLK}		14/0.23 6	208/ f _{MOC}	f _{SRCCL} K+ 2/ f _{ICLK}		f _{ICLK}	μs
	t _{SBYPC}	MOSC 無効	有効		t _{MAINOS} CWT +31/0.2 62	11.6			2/f _{ICLK} + 2n/ f _{PLL} + 2/f _{ICLK}		t _{MAINOS} CWT + 42/0.23 6	51.0			2/f _{ICLK} + 2n/ f _{PLL} + 2/f _{ICLK}	μs
		MOSC 有効	有効		34/0.26 2						(14 + 31)/ 0.236				0/5	μs
	t _{SBYEX}	_	有効		3/0.262				2/f _{ICLK} + 2n/ f _{MOSC} + 2/ f _{ICLK}		14/0.23 6				2/f _{ICLK} + 2n/ f _{MOSC} + 2/ f _{ICLK}	μs
	t _{SBYPE}	_	有効		34/0.26 2				2/f _{ICLK} + 2n/ f _{PLL} + 2/f _{ICLK}		45/0.23 6				2/f _{ICLK} + 2n/ f _{PLL} + 2/f _{ICLK}	μs
	t _{SBYSC}	_	有効		0				2/f _{ICLK} + 2n/ f _{SOSC} + 2/ f _{ICLK}		0		2/f _{ICLK} + 2n/ f _{SOSC} + 2/ f _{ICLK}	μs		
	t _{SBYHO}	_	有効		20				2/f _{ICLK} + 2n/ f _{HOCO} + 2/ f _{ICLK}		67				2/f _{ICLK} + 2n/ f _{HOCO} + 2/ f _{ICLK}	μs
	tsbyph	_	有効		140				2/f _{ICLK} + 2n/ f _{PLL} + 2/f _{ICLK}		202				2/f _{ICLK} + 2n/ f _{PLL} + 2/f _{ICLK}	μs
	t _{SBYMO}	_	有効		0				2/f _{ICLK} + 2n/ f _{MOCO} + 2/ f _{ICLK}	0	0	-			2/f _{ICLK} + 2n/ f _{MOCO} + 2/ f _{ICLK}	μs

注. 周波数の単位は MHz 注 1. 複数の発振器が動作している場合、この列の動作発振器の最大値が適用されます。 注 2. Ccyc については、表 2.52 を参照してください。

表 2.52 Ccyc 値

SSCR1.SS2LP[1: 0]	VSCR.VSCM[2:0]	SVSCR.SVSCM[2:0]	{PLL1LDOCR.LD OSTP, PLL2LDOCR.LD OSTP, PLL1LDOCR.SK EEP, PLL2LDOCR.SK EEP}	{HOCOLDOCR.L DOSTP, HOCOLDOCR.S KEEP}	Ссус	単位
00: SS2LP_0	001: VSCR_1	001: SVSCR_1	{1, 1, x, x}または	{0, 0}	56	サイクル
			{x, x, 1, 1}	上記以外	27	サイクル
			上記以外	Don't care	237	サイクル
		010: SVSCR_2	Don't care	Don't care	379	サイクル
		011: SVSCR_3	Don't care	Don't care	591	サイクル
		100: SVSCR_4	Don't care	Don't care	696	サイクル
		101: SVSCR_5	Don't care	Don't care	802	サイクル
	010: VSCR_2	001: SVSCR_1	Don't care	Don't care	379	サイクル
		010: SVSCR_2	{1, 1, x, x}または	{0, 0}	56	サイクル
			{x, x, 1, 1}	上記以外	27	サイクル
			上記以外	Don't care	237	サイクル
		011: SVSCR_3	Don't care	Don't care	538	サイクル
		100: SVSCR_4	Don't care	Don't care	643	サイクル
		101: SVSCR_5	Don't care	Don't care	749	サイクル
01: SS2LP_1	001: VSCR_1	010: SVSCR_2	Don't care	Don't care	514	サイクル
		011: SVSCR_3	Don't care	Don't care	726	サイクル
		100: SVSCR_4	Don't care	Don't care	831	サイクル
		101: SVSCR_5	Don't care	Don't care	937	サイクル
	010: VSCR_2	010: SVSCR_2	{1, 1, x, x}または {x, x, 1, 1}	Don't care	162	サイクル
			上記以外	Don't care	327	サイクル
		011: SVSCR_3	Don't care	Don't care	673	サイクル
		100: SVSCR_4	Don't care	Don't care	778	サイクル
		101: SVSCR_5	Don't care	Don't care	884	サイクル

注. x: Don't care

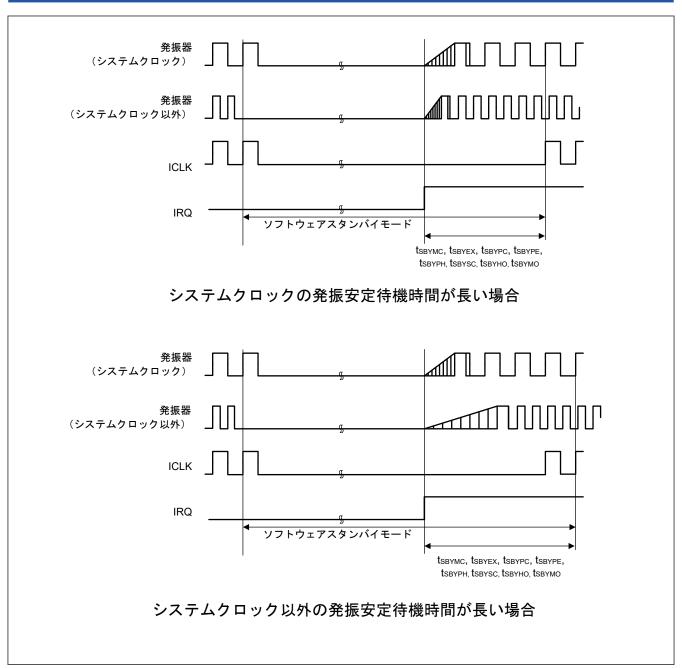


図 2.34 ソフトウェアスタンバイモード解除タイミング

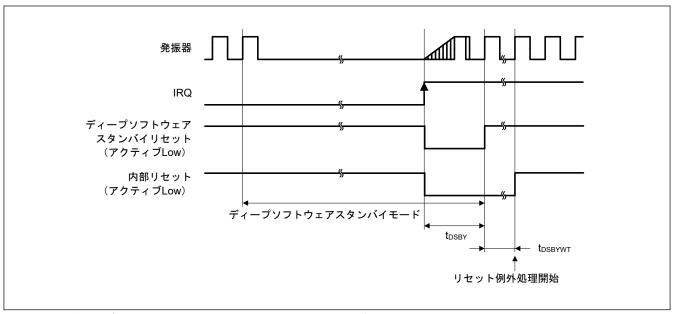


図 2.35 ディープソフトウェアスタンバイモード解除タイミング

2.3.5 NMI/IRQ ノイズフィルタ

表 2.53 NMI/IRQ ノイズフィルタ

項目	シンボル	Min	Тур	Max	単位	測定条件	
NMI パルス幅	t _{NMIW}	200			ns	NMI デジタルフィルタ	t _{Pcyc} × 2 ≦ 200 ns
		t _{Pcyc} × 2 ^(注1)		_		無効	t _{Pcyc} × 2 > 200 ns
		200	_	_		NMI デジタルフィルタ	$t_{\text{NMICK}} \times 3 \le 200 \text{ ns}$
		t _{NMICK} × 3.5 ^(注2)	_	_		有効	t _{NMICK} × 3 > 200 ns
IRQ パルス幅	t _{IRQW}	200		_	ns	IRQ デジタルフィルタ	t _{Pcyc} × 2 ≦ 200 ns
		t _{Pcyc} × 2 ^(注1)	_	_		無効	t _{Pcyc} × 2 > 200 ns
		200		_		IRQ デジタルフィルタ	$t_{\text{IRQCK}} \times 3 \le 200 \text{ ns}$
		t _{IRQCK} × 3.5 ^(注3)				有効	t _{IRQCK} × 3 > 200 ns

- 注. ソフトウェアスタンバイモード時は最小 200 ns です。
- 注. システムクロックソースを切り替える場合、切り替えるクロックソースの4クロックサイクルを足します。
- 注 1. t_{Pcvc} は PCLKB の周期を示します。
- 注 2. t_{NMICK} は、NMI デジタルフィルタサンプリングクロックの周期を示します。
- 注 3. t_{IRQCK} は、IRQi デジタルフィルタサンプリングクロックの周期を示します。

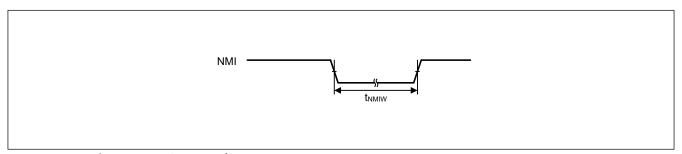


図 2.36 NMI 割り込み入力タイミング

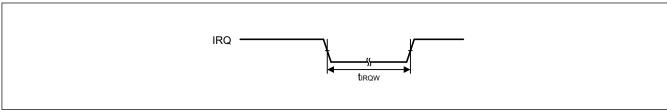


図 2.37 IRQ 割り込み入力タイミング

2.3.6 バスタイミング

表 2.54 パスタイミング (1/3)

条件 1: CS 領域コントローラ (CSC) 使用時

VCC = VCC_DCDC = VBATT = 1.62 V~3.6 V, VCC2 = 1.62 V~3.63 V

BCLK = 8~120 MHz, BCLKA = 8~120 MHz, EBCLK = 8~60 MHz (VCC = VCC_USB = VBATT = 2.70~3.63 V の場合)

BCLK = BCLKA = 8~60 MHz, EBCLK = 8~30 MHz (VCC = VCC_USB = VBATT = 1.62~3.63 V の場合)

出力負荷条件: VOH = VCC × 0.5, VOL = VCC × 0.5, C = 30 pF

EBCLK: PmnPFS レジスタのポート駆動能力ビットで高駆動出力が選択されています。 その他: PmnPFS レジスタのポート駆動能力ビットで中駆動出力が選択されています。

条件 2: SDRAM 領域コントローラ (SDRAMC) 使用時

BCLK = SDCLK = 8~125 MHz, BCLKA = SDCLK = 8~133 MHz VCC = VCC DCDC = VBATT = 3.0~3.63 V, VCC2 = 1.62 V~3.63 V 出力負荷条件: VOH = VCC × 0.5、VOL = VCC × 0.5、C = 15 pF

SDCLK: PmnPFS レジスタのポート駆動能力ビットで高速高駆動出力が選択されています。 その他: PmnPFS レジスタのポート駆動能力ビットで高駆動出力が選択されています。

条件 3: SDRAM 領域コントローラ (SDRAMC) および CS 領域コントローラ (CSC) 同時使用時

BCLK = SDCLK = 8~66 MHz, BCLKA = SDCLK = 8~66 MHz

VCC = VCC DCDC = VBATT = 3.0~3.63 V, VCC2 = 1.62 V~3.63V

出力負荷条件: VOH = VCC × 0.5、VOL = VCC × 0.5、C = 15 pF

EBCLK/SDCLK: PmnPFS レジスタのポート駆動能力ビットで高駆動出力が選択されています。

その他: PmnPFS レジスタのポート駆動能力ビットで中駆動出力が選択されています。

項目	条件	NEWN IE フェットで中駆動	シンボル	Min	Max	単位	測定条件
アドレス遅延時間	条件 1	2.70 V 以上	t _{AD}	1.0	12.5	ns	図 2.38~図 2.44
		1.62 V 以上		1.0	12.5	ns	
	条件 3	3.0 V 以上		1.0	10.8	ns	
バイトコントロール	条件 1	2.70 V 以上	t _{BCD}	1.0	12.5	ns	
遅延時間		1.62 V 以上		1.0	12.5	ns	
	条件 3	3.0 V 以上		1.0	10.8	ns	
CS 遅延時間	条件 1	2.70 V 以上	t _{CSD}	1.0	12.5	ns	
		1.62 V 以上		1.0	12.5	ns	
	条件 3	3.0 V 以上		1.0	10.8	ns	
ALE 遅延時間	条件 1	2.70 V 以上	t _{ALED}	1.0	12.5	ns	
		1.62 V 以上		1.0	12.5	ns	
	条件 3	3.0 V 以上		1.0	10.8	ns	
RD 遅延時間	条件 1	2.70 V 以上	t _{RSD}	1.0	12.5	ns	
		1.62 V 以上		1.0	12.5	ns	
	条件 3	3.0 V 以上		1.0	10.8	ns	
リードデータセット	条件 1	2.70 V 以上	t _{RDS}	12.5	_	ns	
アップ時間		1.62 V 以上		20.5	_	ns	
	条件 3	3.0 V 以上		10.8	_	ns	
リードデータホール	条件 1	2.70 V 以上	t _{RDH}	0	_	ns	
ド時間		1.62 V 以上		0	_	ns	
	条件 3	3.0 V 以上		0	_	ns	
WR/WRn 遅延時間	条件 1	2.70 V 以上	t _{WRD}	1.0	12.5	ns	
		1.62 V 以上		1.0	12.5	ns	
	条件 3	3.0 V 以上		1.0	10.8	ns	
ライトデータ遅延時	条件 1	2.70 V 以上	t _{WDD}	_	12.5	ns	
間		1.62 V 以上		_	12.5	ns	
	条件 3	3.0 V 以上		1.0	10.8	ns	

表 2.54 パスタイミング (2/3)

条件 1: CS 領域コントローラ (CSC) 使用時

VCC = VCC_DCDC = VBATT = 1.62 V~3.6 V, VCC2 = 1.62 V~3.63 V

BCLK = $8\sim$ 120 MHz, BCLKA = $8\sim$ 120 MHz, EBCLK = $8\sim$ 60 MHz(VCC = VCC_USB = VBATT = $2.70\sim3.63$ V の場合)

BCLK = BCLKA = 8~60 MHz, EBCLK = 8~30 MHz (VCC = VCC USB = VBATT = 1.62~3.63 V の場合)

出力負荷条件: VOH = VCC × 0.5, VOL = VCC × 0.5, C = 30 pF

EBCLK: PmnPFS レジスタのポート駆動能力ビットで高駆動出力が選択されています。 その他: PmnPFS レジスタのポート駆動能力ビットで中駆動出力が選択されています。

条件 2: SDRAM 領域コントローラ (SDRAMC) 使用時

BCLK = SDCLK = 8~125 MHz, BCLKA = SDCLK = 8~133 MHz VCC = VCC_DCDC = VBATT = 3.0~3.63 V, VCC2 = 1.62 V~3.63 V 出力負荷条件: VOH = VCC × 0.5、VOL = VCC × 0.5、C = 15 pF

SDCLK: PmnPFS レジスタのポート駆動能力ビットで高速高駆動出力が選択されています。 その他: PmnPFS レジスタのポート駆動能力ビットで高駆動出力が選択されています。

条件 3: SDRAM 領域コントローラ (SDRAMC) および CS 領域コントローラ (CSC) 同時使用時

BCLK = SDCLK = 8~66 MHz, BCLKA = SDCLK = 8~66 MHz VCC = VCC_DCDC = VBATT = 3.0~3.63 V, VCC2 = 1.62 V~3.63V 出力負荷条件: VOH = VCC × 0.5、VOL = VCC × 0.5、C = 15 pF

EBCLK/SDCLK: PmnPFS レジスタのポート駆動能力ビットで高駆動出力が選択されています。

その他: PmnPFS レジスタのポート駆動能力ビットで中駆動出力が選択されています。

項目	条件	VCC/VCC2	シンボル	Min	Max	単位	測定条件
ライトデータホール	条件 1	2.70 V 以上	t _{WDH}	1.0	_	ns	図 2.38~図 2.44
ド時間		1.62 V 以上		1.0	_	ns	
	条件 3	3.0 V 以上		1.0	10.8	ns	
WAIT セットアップ	条件 1	2.70 V 以上	t _{WTS}	12.5	_	ns	
時間 		1.62 V 以上		20.5	_	ns	
	条件 3	3.0 V 以上		10.8	_	ns	
WAIT ホールド時間	条件 1	2.70 V 以上	t _{WTH}	0	_	ns	
		1.62 V 以上		0	_	ns	
	条件 3	3.0 V 以上		0	_	ns	

表 2.54 パスタイミング (3/3)

条件 1: CS 領域コントローラ (CSC) 使用時

VCC = VCC_DCDC = VBATT = 1.62 V~3.6 V, VCC2 = 1.62 V~3.63 V

BCLK = $8\sim$ 120 MHz, BCLKA = $8\sim$ 120 MHz, EBCLK = $8\sim$ 60 MHz(VCC = VCC_USB = VBATT = $2.70\sim3.63$ V の場合)

BCLK = BCLKA = 8~60 MHz, EBCLK = 8~30 MHz (VCC = VCC USB = VBATT = 1.62~3.63 V の場合)

出力負荷条件: VOH = VCC × 0.5, VOL = VCC × 0.5, C = 30 pF

EBCLK: PmnPFS レジスタのポート駆動能力ビットで高駆動出力が選択されています。 その他: PmnPFS レジスタのポート駆動能力ビットで中駆動出力が選択されています。

条件 2: SDRAM 領域コントローラ (SDRAMC) 使用時

BCLK = SDCLK = 8~125 MHz, BCLKA = SDCLK = 8~133 MHz VCC = VCC_DCDC = VBATT = 3.0~3.63 V, VCC2 = 1.62 V~3.63 V 出力負荷条件: VOH = VCC × 0.5、VOL = VCC × 0.5、C = 15 pF

SDCLK: PmnPFS レジスタのポート駆動能力ビットで高速高駆動出力が選択されています。 その他: PmnPFS レジスタのポート駆動能力ビットで高駆動出力が選択されています。

条件 3: SDRAM 領域コントローラ (SDRAMC) および CS 領域コントローラ (CSC) 同時使用時

BCLK = SDCLK = 8~66 MHz, BCLKA = SDCLK = 8~66 MHz VCC = VCC_DCDC = VBATT = 3.0~3.63 V, VCC2 = 1.62 V~3.63V 出力負荷条件: VOH = VCC × 0.5、VOL = VCC × 0.5、C = 15 pF

EBCLK/SDCLK: PmnPFS レジスタのポート駆動能力ビットで高駆動出力が選択されています。

その他: PmnPFS レジスタのポート駆動能力ビットで中駆動出力が選択されています。

項目	条件	VCC/VCC2	シンボル	Min	Max	単位	測定条件
アドレス遅延 2	条件 2	3.0 V 以上	t _{AD2}	0.8	6.0	ns	図 2.45~図 2.51
(SDRAM)	条件 3	3.0 V 以上		0.8	10		
CS 遅延 2 (SDRAM)	条件 2	3.0 V 以上	t _{CSD2}	0.8	6.0	ns	
	条件 3	3.0 V 以上		0.8	10		
DQM 遅延 (SDRAM)	条件 2	3.0 V 以上	t _{DQMD}	0.8	6.0	ns	
	条件 3	3.0 V 以上		0.8	10		
CKE 遅延 (SDRAM)	条件 2	3.0 V 以上	t _{CKED}	0.8	6.0	ns	
	条件 3	3.0 V 以上		0.8	10		
リードデータセット	条件 2	3.0 V 以上	t _{RDS2}	2.1	_	ns	
アップ時間 2 (SDRAM)	条件 3	3.0 ∨ 以上		6.1	_		_
リードデータホール	条件 2	3.0 V 以上	t _{RDH2}	1.5	_	ns	
ド時間 2 (SDRAM)	条件 3	3.0 V 以上		1.5	_		
ライトデータ遅延 2	条件 2	3.0 V 以上	t _{WDD2}	_	6.0	ns	
(SDRAM)	条件 3	3.0 V 以上		_	10		
ライトデータホール	条件 2	3.0 V 以上	t _{WDH2}	0.8	_	ns	
ド時間 2 (SDRAM)	条件 3	3.0 V 以上		0.8	_		
WE 遅延 (SDRAM)	条件 2	3.0 V 以上	t _{WED}	0.8	6.0	ns	
	条件 3	3.0 V 以上		0.8	10		
RAS 遅延 (SDRAM)	条件 2	3.0 V 以上	t _{RASD}	0.8	6.0	ns	
	条件 3	3.0 V 以上		0.8	10		
CAS 遅延 (SDRAM)	条件 2	3.0 V 以上	t _{CASD}	0.8	6.0	ns	
	条件 3	3.0 V 以上		0.8	10		

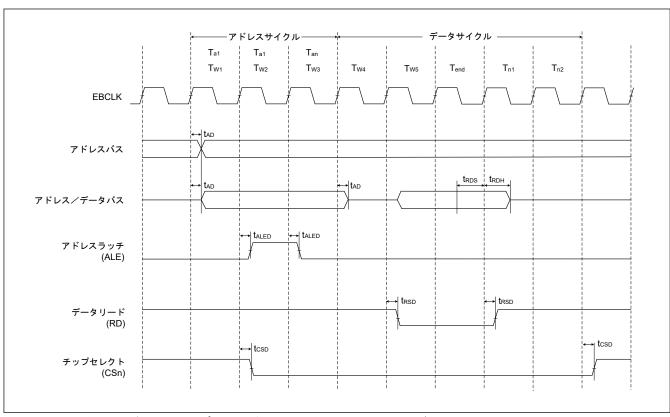


図 2.38 アドレス/データマルチプレクスバスのリードアクセスタイミング

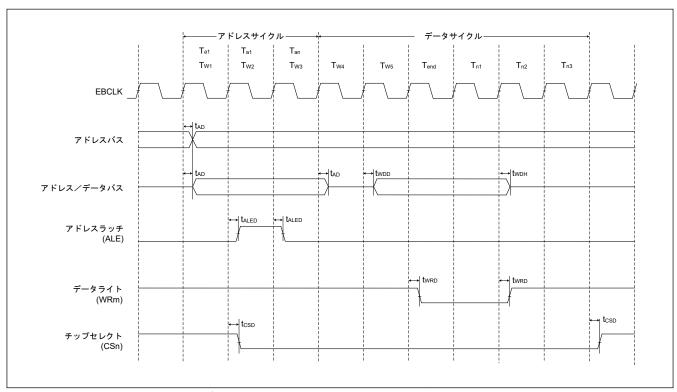


図 2.39 アドレス/データマルチプレクスパスのライトアクセスタイミング

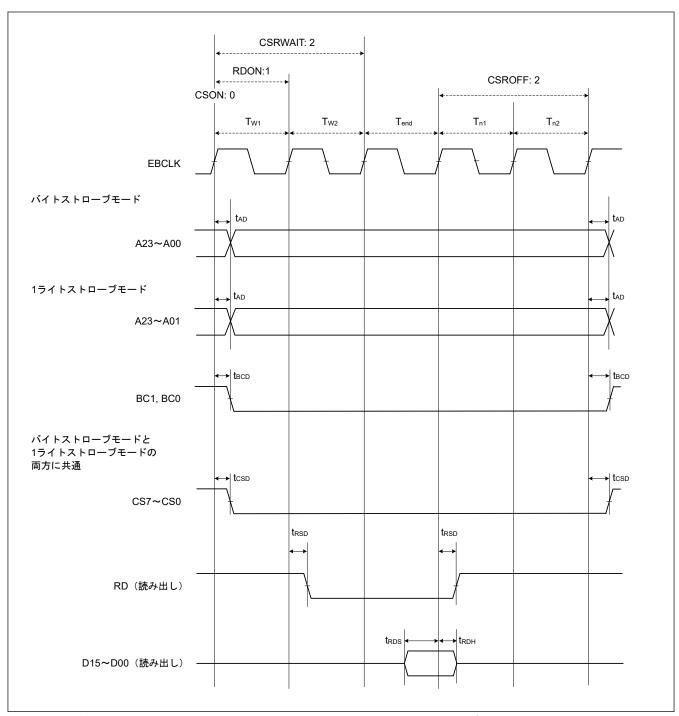


図 2.40 パスクロック同期を使用したノーマルリードサイクルの外部パスタイミング



図 2.41 パスクロック同期を使用したノーマルライトサイクルの外部パスタイミング

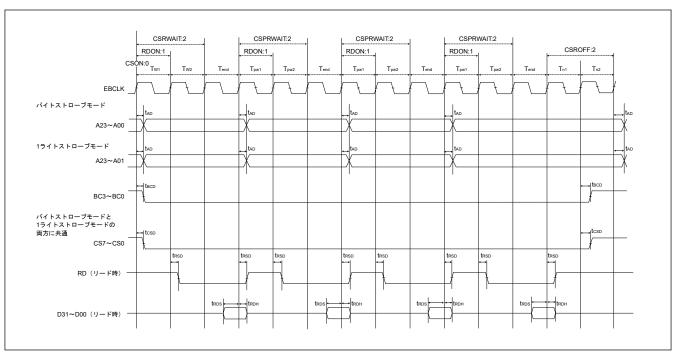


図 2.42 パスクロック同期を使用したページリードサイクルの外部パスタイミング

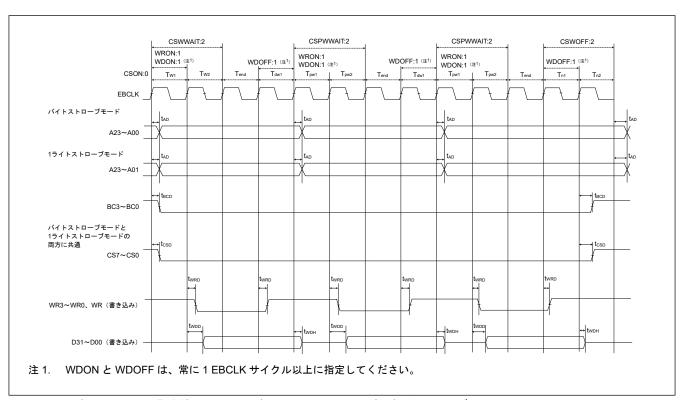


図 2.43 パスクロック同期を使用したページライトサイクルの外部パスタイミング

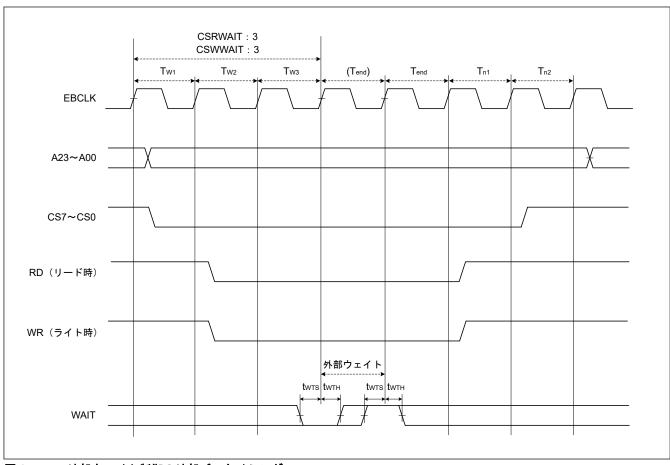


図 2.44 外部ウェイト制御の外部バスタイミング

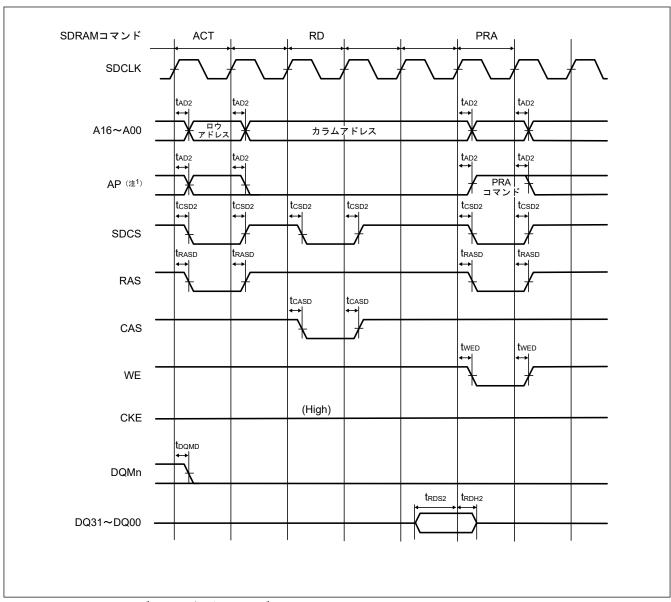


図 2.45 SDRAM シングルリードのタイミング

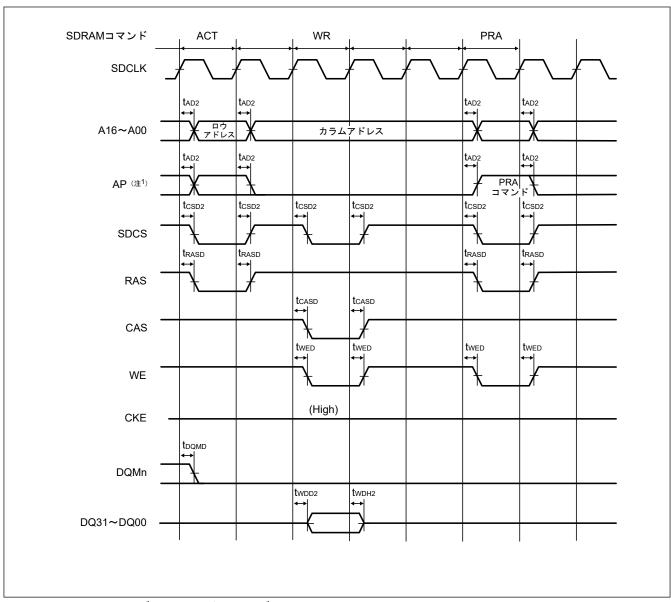


図 2.46 SDRAM シングルライトのタイミング

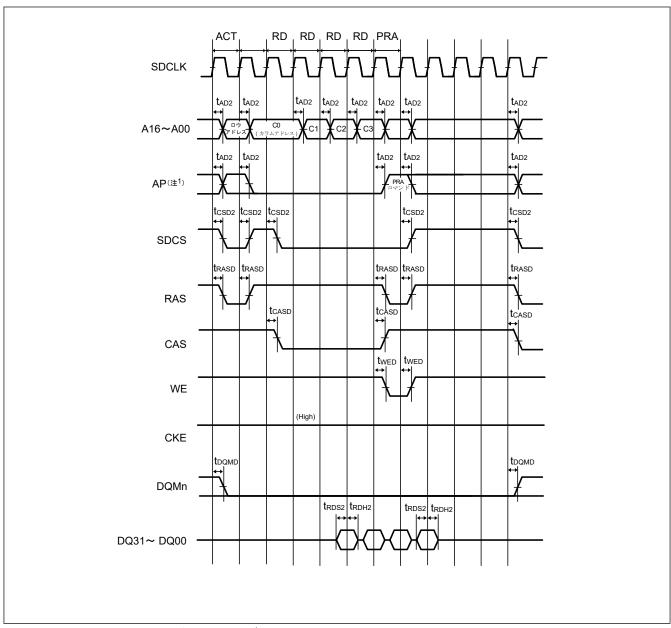


図 2.47 SDRAM マルチリードのタイミング

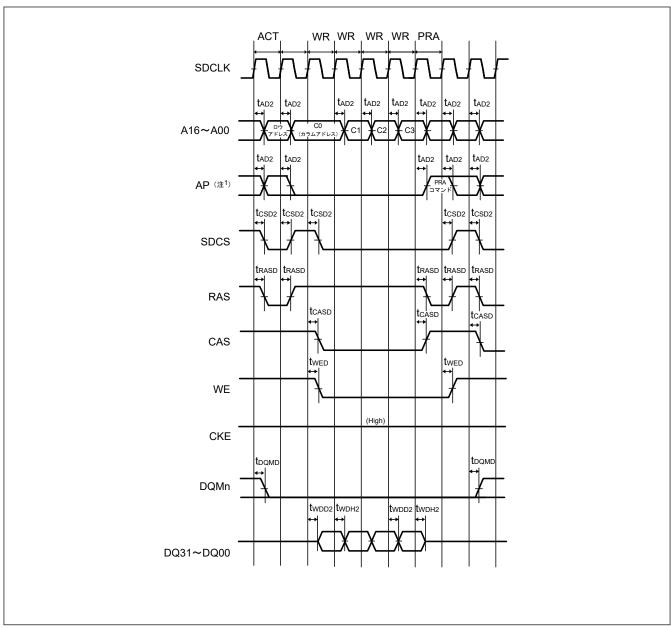


図 2.48 SDRAM マルチライトのタイミング

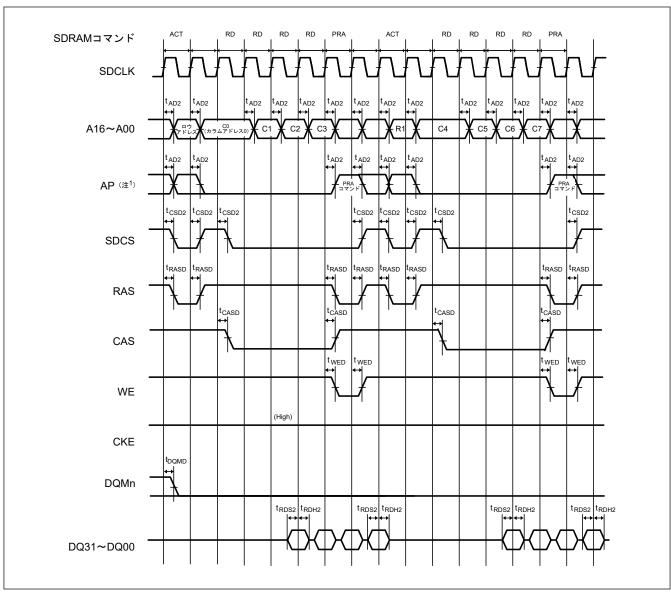


図 2.49 SDRAM マルチリードの行またぎのタイミング

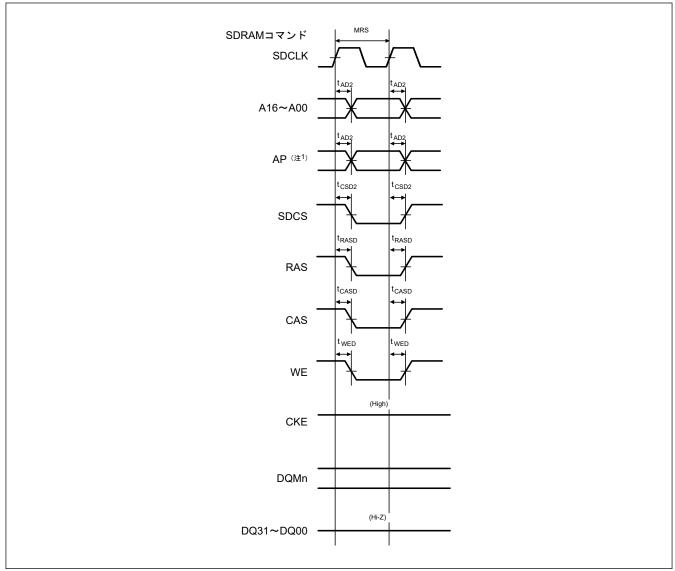


図 2.50 SDRAM モードレジスタの設定のタイミング

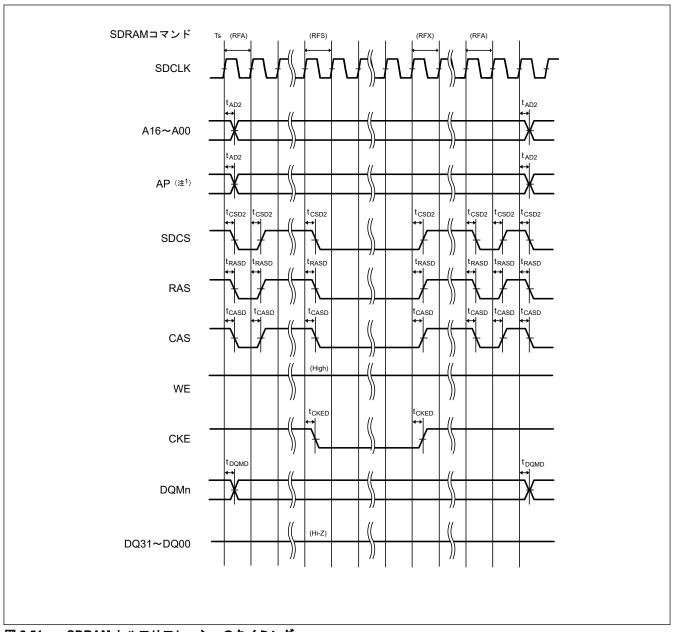


図 2.51 SDRAM セルフリフレッシュのタイミング

2.3.7 I/O ポート、POEG、GPT、AGT、ULPT、ADC のトリガタイミング

表 2.55 I/O ポート、POEG、GPT、AGT、ULPT、ADC のトリガタイミング (1/3)

GPT32 条件:

PmnPFS レジスタのポート駆動能力ビットで中駆動出力が選択されていること。

VCC I/O と VCC2 I/O に GPT 端子が指定されている場合、VCC = VCC2 のときに限って下記の特性が保証されます。

AGT 条件:

PmnPFS レジスタのポート駆動能力ビットで中駆動出力が選択されていること。

項目		シンボル	Min	Max	単位	測定条件
I/O ポート	入力データパルス幅	t _{PRW}	5.5	_	t _{lcyc}	図 2.52
	EXCIN 入力周波数	t _{EXCIN}	_	36	kHz	
	RTCICn (n = 0~2) 入力パルス幅	t _{RTCICW}	13.89	_	μs	図 2.53

表 2.55 I/O ポート、POEG、GPT、AGT、ULPT、ADC のトリガタイミング (2/3)

GPT32 条件:

PmnPFS レジスタのポート駆動能力ビットで中駆動出力が選択されていること。 VCC I/O と VCC2 I/O に GPT 端子が指定されている場合、VCC = VCC2 のときに限って下記の特性が保証されます。

PmnPFS レジスタのポート駆動能力ビットで中駆動出力が選択されていること。

項目	> V - 1 ME 2011000 = > 1 C 1 ME 201100000		シンボル	Min	Max	単位	測定条件
POEG	POEG 入力トリガパルス幅		t _{POEW}	3	_	t _{Pcyc}	図 2.54
	出力禁止時間	GTETRGn 端 子の入力レベ ル検出(フラグ 経由)	^t POEGDI	_	2 PCLK B + 0.34	μs	図 2.55 デジタルノイズフィ ルタを使用していな い場合 (POEGGn.NFEN = 0 (n = A~D))
		GPT からの出 カ停止信号の 検出(デッドタ イムエラー、同 時 High 出力、 または同時 Low 出力)	[†] POEGDE	_	0.5	μs	☑ 2.56
		コンパレータ からのエッジ 検出信号	t _{POEGDC}	_	3 PCLK B+ 0.5	μs	図 2.57 ACMPHS 用ノイズ フィルタを使用して おらず (CMPCTL.CDFS[1:0] = 00b)、ACMPHS による検出時間を除 外する場合の時間。
		レジスタ設定	t _{POEGDS}	_	0.3	μs	図 2.58 レジスタへのアクセ ス時間を含まない。
		発振停止検出	t _{POEGDOS}	_	1.3	μs	図 2.59
		コンパレータ からのレベル 検出信号	†POEGDDC	_	0.5	μs	図 2.60 ACMPHS 用ノイズ フィルタを使用して おらず (CMPCTL.CDFS[1:0] = 00b)、ACMPHS による検出時間を除 外する場合の時間。

表 2.55 I/O ポート、POEG、GPT、AGT、ULPT、ADC のトリガタイミング (3/3)

GPT32 条件:

PmnPFS レジスタのポート駆動能力ビットで中駆動出力が選択されていること。

VCC I/O と VCC2 I/O に GPT 端子が指定されている場合、VCC = VCC2 のときに限って下記の特性が保証されます。

AGT 条件:

PmnPFS レジスタのポート駆動能力ビットで中駆動出力が選択されていること。

項目				シンボル	Min	Max	単位	測定条件
GPT	インプットキャプチャパル	ス幅(サイク	単エッジ	t _{GTICW} (注1)	1.5	_	t _{PDcyc}	図 2.61
	ル)		両エッジ		2.5	_	1	
	インプットキャプチャパル	ス幅(回数)	2.70 V 以上	t _{GTICW} (注1)	8.3	_	ns	
			1.62 V 以上		10.0	_		
	GTIOCxY 出力スキュー	中駆動出力	2.70 V 以上	t _{GTISK}	_	4	ns	図 2.62
	(x = 0~3、Y = A または B)		1.62 V 以上		_	6		
		高駆動出力	2.70 V 以上			3.5		
			1.62 V 以上			4.5		
	GTIOCxY 出力スキュー	中駆動出力	2.70 V 以上		_	4		
	(x = 4~13、Y = A または B)		1.62 V 以上		_	6		
		高駆動出力	2.70 V 以上		_	3.5		
			1.62 V 以上		_	4.5		
	GTIOCxY 出力スキュー	中駆動出力	2.70 V 以上		_	6		
	(x = 0~13、Y = A または B)		1.62 V 以上		_	7		
		高駆動出力	2.70 V 以上		_	3.5		
			1.62 V 以上		_	5		
	OPS 出力スキュー	中駆動出力	2.70 V 以上	t _{GTOSK}	_	5	ns	図 2.63
	GTOUUP, GTOULO, GTOVUP, GTOVLO, GTOWUP, GTOWLO		1.62 V 以上		-	6		
GPT (PWM 遅	GTIOCxY 出力スキュー	中駆動出力	2.70 V 以上	t _{HRSK}	_	4	ns	図 2.64
延生成回路)	(x = 0~3、Y = A または B)		1.62 V 以上		_	6		
		高駆動出力	2.70 V 以上		_	3.5		
			1.62 V 以上		_	5		
AGT	AGTIO、AGTEE 入力サイク	ブル	2.70 V 以上	t _{ACYC} (注2)	100	_	ns	図 2.65
			1.62 V 以上		100	_		
	AGTIO、AGTEE 入力 High	レベル幅、	2.70 V 以上	t _{ACKWH} ,	40	_	ns	
	Low レベル幅		1.62 V 以上	t _{ACKWL}	40	_		
	AGTIO、AGTO、AGTOA、	AGTOB 出力	2.70 V 以上	t _{ACYC2}	62.5	_	ns	
	サイクル		1.62 V 以上		62.5	_		
ULPT	ULPTEE、ULPTEVI 入力サ	イクル	2.70 V 以上	t _{ULCYC} (注3)	32	_	μs	図 2.66
	ULPTEE、ULPTVI 入力 Hig Low レベル幅 ULPTO、ULPTOA、ULPTO		1.62 V 以上		32	_		
		gh レベル幅、	2.70 V 以上	t _{ULCKWH} ,	12	_	μs	
			1.62 V 以上	tulckwl	12	_		
		B 出力サイク	2.70 V 以上	t _{ULCYC2}	64	-	μs	
	ル		1.62 V 以上		64	_		
ADC	ADC トリガ入カパルス幅		2.70 V 以上	t _{TRGW}	1.5	_	t _{ADcyc}	図 2.67
			1.62 V 以上		3.0	-		

注. t_{lcyc} : ICLK の周期、 t_{Pcyc} : PCLKB の周期、 t_{PDcyc} : GTCLK の周期、 $t_{ULPTLCLK}$: ULPTLCLK の周期、 t_{ADcyc} : ADCLK の周期

注 2. 入力サイクルの制限:

ソースクロックを切り替え中でない場合: $t_{Pcyc} \times 2 < t_{ACYC}$ を満たす必要があります。ソースクロックを切り替え中の場合: $t_{Pcyc} \times 6 < t_{ACYC}$ を満たす必要があります。

注 3. 入力サイクルの制限:

ULPTEVI: t_{Pcyc} × 2 < t_{ULCYC} を満たす必要があります。 ULPTEE: t_{ULPTLCLK} × 2 < t_{ULCYC} を満たす必要があります。

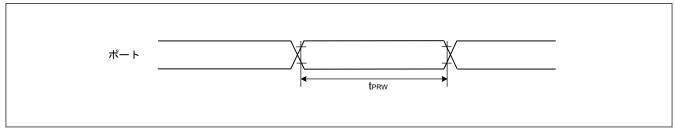


図 2.52 I/O ポート入力タイミング

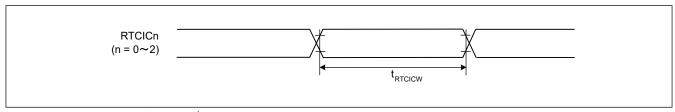


図 2.53 RTCICn 入力タイミング

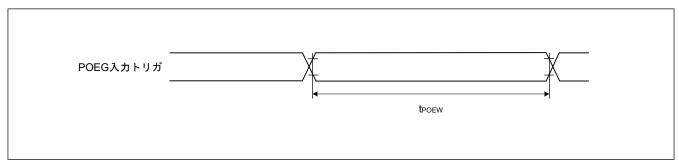


図 2.54 POEG 入力トリガタイミング

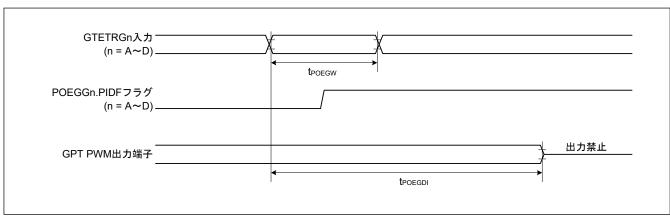
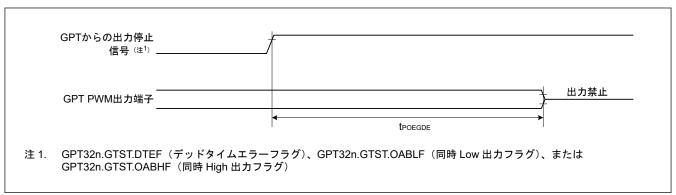



図 2.55 GTETRGn 端子の入力レベル検出に対応した検出フラグによる POEG の出力禁止時間

図 2.56 GPT からの出力停止信号の検出に対応した POEG の出力禁止時間

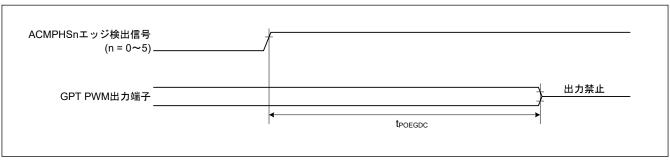


図 2.57 コンパレータからのエッジ検出信号に対応した POEG の出力禁止時間

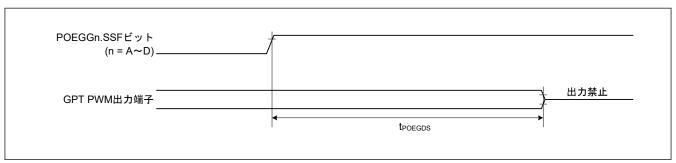


図 2.58 レジスタ設定に対応した POEG の出力禁止時間

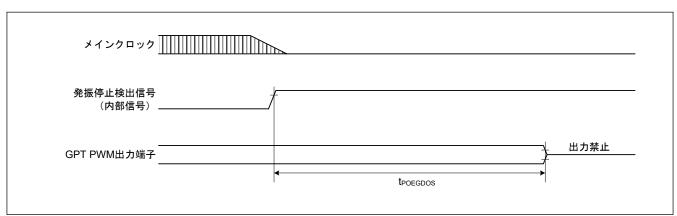


図 2.59 発振停止検出に対応した POEG の出力禁止時間

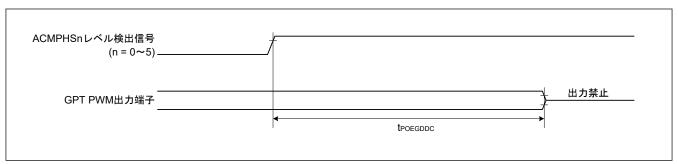


図 2.60 コンパレータからのレベル検出信号に対応した POEG の出力禁止時間

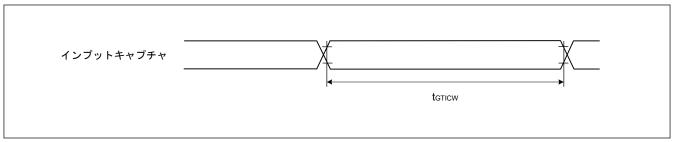


図 2.61 GPT インプットキャプチャタイミング

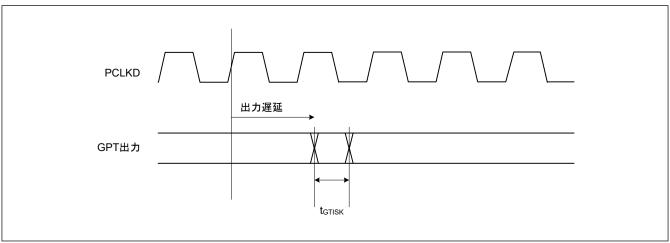


図 2.62 GPT 出力遅延スキュー

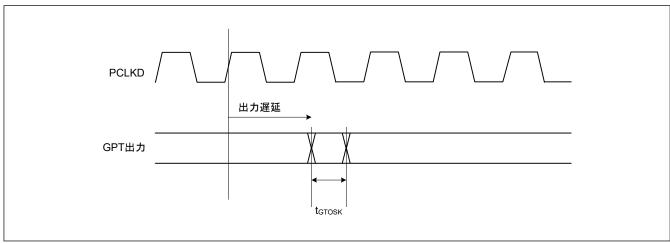


図 2.63 OPS の GPT 出力遅延スキュー

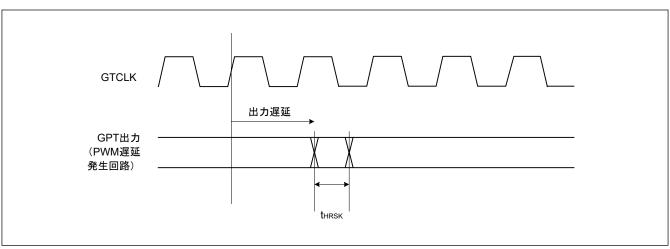


図 2.64 GPT (PDG) 出力遅延スキュー

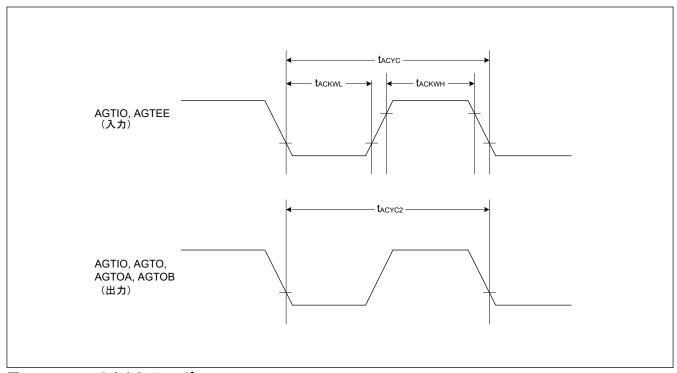


図 2.65 AGT 入出力タイミング

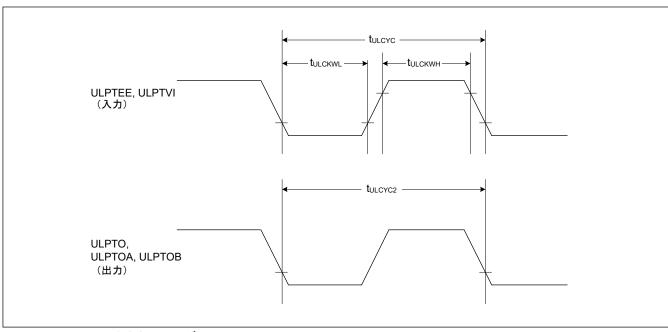


図 2.66 ULPT 入出力タイミング

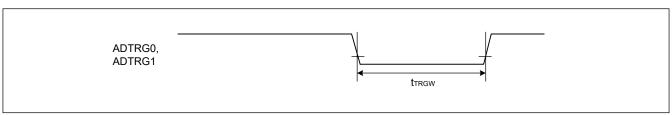


図 2.67 ADC トリガ入力タイミング

2.3.8 CAC タイミング

表 2.56 CAC タイミング

項目			シンボル	Min	Тур	Max	単位	測定条件
CAC	CACREF 入力パルス 幅	$t_{PBcyc} \le t_{cac}^{(\grave{\pm}1)}$	t _{CACREF}	$4.5 \times t_{cac} + 3 \times t_{PBcyc}$	_	_	ns	_
	YE	$t_{PBcyc} > t_{cac}^{(\grave{\pm}1)}$		$5 \times t_{cac} + 6.5 \times t_{PBcyc}$	_	_	ns	

注. t_{PBcyc}: PCLKB の周期

注 1. t_{cac} : CAC カウントクロックソースの周期

2.3.9 SCI タイミング

表 2.57 SCI タイミング(調歩同期式モード)

条件:

PmnPFS レジスタのポート駆動能力ビットで高駆動出力が選択されています。 VCC I/O と VCC2 I/O に SCI 端子が指定されている場合、VCC = VCC2 のときに限って下記の特性が保証されます。

項目	VCC/VCC2	シンボル	Min	Max	単位	備考
入力クロックサイクル	1.62 V 以上	t _{Scyc}	4.0	_	t _{Tcyc}	図 2.68
入力クロックパルス幅	1.62 V 以上	tsckw	0.4	0.6	t _{Scyc}	
入力クロック立ち上がり時間	1.62 V 以上	t _{SCKr}		0.1 ^(注1)	t _{Scyc}	
入力クロック立ち下がり時間	1.62 V 以上	tsckf	_	0.1 ^(注1)	t _{Scyc}	
出力クロックサイクル	1.62 V 以上	t _{Scyc}	6.0	_	t _{Tcyc}	
出力クロックパルス幅	1.62 V 以上	t _{SCKW}	0.4	0.6	t _{Scyc}	
出力クロック立ち上がり時間	2.70 V 以上	tsckr	_	3.3	ns	
	1.62 V 以上		_	6.6		
出カクロック立ち下がり時間	2.70 V 以上	tsckf		3.3	ns	
	1.62 V 以上		_	6.6		

注. tT_{cyc}: TCLK の周期。

注 1. 最長 1 μs

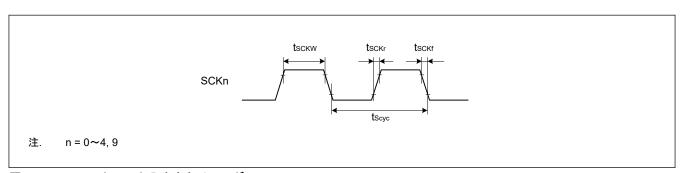


図 2.68 SCK クロック入出力タイミング

表 2.58 SCI タイミング(簡易 SPI) (1/3)

条件 1: VCC/VCC2 = 2.70 V 以上

PmnPFS レジスタのポート駆動能力ビットで高駆動出力が選択されています。

VCC I/O と VCC2 I/O に SCI 端子が指定されている場合、VCC = VCC2 のときに限って下記の特性が保証されます。

条件 2: VCC/VCC2 = 1.62 V 以上

以下の端子は、PmnPFS レジスタのポート駆動能力ビットで高速高駆動出力が選択されています: SCK1_A, SCK1_C, SCK3_A, SCK4_A, SCK4_B, SCK4_C, SCK6_B

その他の端子は、PmnPFS レジスタのポート駆動能力ビットで高駆動出力が選択されています。 VCC I/O と VCC2 I/O に SCI 端子が指定されている場合、VCC = VCC2 のときに限って下記の特性が保証されます。

項目		高速/デフ ォルト	VCC/VCC2	シンボル	Min	Max	単位	備考
SCK クロックサイ クル出力	マスター		2.70 V 以上	t _{SPcyc}	2 (TCLK ≦ 120 MHz) 4 (TCLK > 120 MHz)	65536	t _{Tcyc}	図 2.69
			1.62 V 以上		2 (TCLK ≦ 60 MHz) 4 (TCLK ≦ 120 MHz) 8 (TCLK > 120 MHz)	65536		
SCK クロックサイ スレーフ		_	2.70 V 以上		2	_]	
クル入力			1.62 V 以上		2 (TCLK ≦ 100 MHz) 4 (TCLK > 100 MHz)	_		
SCK クロック High	マスタ	_	1.62 V 以上	t _{SPCKWH}	0.4	_	t _{SPcyc}	
レベルパルス幅	スレーブ	_						
SCK クロック Low	マスタ	_	1.62 V 以上	t _{SPCKWL}	0.4	_	t _{SPcyc}	
レベルパルス幅	スレーブ	_						
SCK クロック立ち	出力	_	2.70 V 以上	t _{SPCKr} ,	_	3.3	ns	
-がり/立ち下が 時間 入力			1.62 V 以上	tspckf	_	6.6		
	入力	_	2.70 V 以上		_	0.1 (注3)	t _{SPcyc}	
			1.62 V 以上		_	0.1 (注3)		

表 2.58 SCI タイミング(簡易 SPI) (2/3)

条件 1: VCC/VCC2 = 2.70 V 以上

PmnPFS レジスタのポート駆動能力ビットで高駆動出力が選択されています。

VCC I/O と VCC2 I/O に SCI 端子が指定されている場合、VCC = VCC2 のときに限って下記の特性が保証されます。

条件 2: VCC/VCC2 = 1.62 V 以上

以下の端子は、PmnPFS レジスタのポート駆動能力ビットで高速高駆動出力が選択されています: SCK1_A, SCK1_C, SCK3_A, SCK4_A, SCK4_B, SCK4_C, SCK6_B

その他の端子は、PmnPFS レジスタのポート駆動能力ビットで高駆動出力が選択されています。 VCC I/O と VCC2 I/O に SCI 端子が指定されている場合、VCC = VCC2 のときに限って下記の特性が保証されます。

項目		高速/デフ ォルト	VCC/VCC2	シンボル	Min	Max	単位	備考
データ入力セット	マスタ	高速 ^(注1)	2.70 V 以上	t _{SU}	-1.5	_	ns	図 2.70, 図
アップ時間			1.62 V 以上	1	-1.5	_	1	2.71
		デフォルト	2.70 V 以上		2.0	_	1	
		(注2)	1.62 V 以上		2.0	_	1	
	スレーブ	デフォルト	2.70 V 以上		2.5	_		
		(注2)	1.62 V 以上		4.5	_		
データ入力ホール	マスタ	高速 ^(注1)	2.70 V 以上	t _H	7.5	_	ns	
ド時間			1.62 V 以上		9.5	_		
		デフォルト	2.70 V 以上		7.5	_		
	(注2)		1.62 V 以上		9.5	_		
	スレーブ デフォル		2.70 V 以上		2.5	_		
	(注2)		1.62 V 以上		4.5	_		
データ出力遅延時	寺 マスタ 高速 ^(注1)		2.70 V 以上	t _{OD}	_	3.0	ns	
間			1.62 V 以上		_	4.5		
		デフォルト	2.70 V 以上	_	_	3.5		
		(注2)	1.62 V 以上	7	_	5.5		
	スレーブ	高速 ^(注1)	2.70 V 以上	_	_	12.5		
			1.62 V 以上	_	_	20.5		
		デフォルト	2.70 V 以上		_	18.5		
		(注2)	1.62 V 以上		_	26.5		
データ出力ホール	マスタ	高速 ^(注1)	2.70 V 以上	t _{OH}	-3.0	_	ns	
ド時間			1.62 V 以上		-4.5	_	1	
		デフォルト	2.70 V 以上		-3.5	_	1	
		(注2)	1.62 V 以上	_	-5.5	_	1	
	スレーブ	デフォルト	2.70 V 以上		0.0	_		
		(注2)	1.62 V 以上		0.0	_		
データ立ち上がり	出力	_	2.70 V 以上	t _{Dr} 、t _{Df}	_	3.3	ns	
/立ち下がり時間			1.62 V 以上		_	6.6		
	入力	_	2.70 V 以上		_	1		
			1.62 V 以上		_	1		
SS 入力セットアップ	プ時間	_	1.62 V 以上	t _{LEAD}	1.0	_	t _{SPcyc}	図 2.72, 図
SS 入力ホールド時l	間	_	1.62 V 以上	t _{LAG}	1.0	_	t _{SPcyc}	2.73
 SS 入力立ち上がり <i>。</i> り時間	/立ち下が	_	1.62 V 以上	tssLr. tssLf	_	1	μs	_
			l .		1	1		

表 2.58 SCI タイミング(簡易 SPI) (3/3)

条件 1: VCC/VCC2 = 2.70 V 以上

PmnPFS レジスタのポート駆動能力ビットで高駆動出力が選択されています。

VCC I/O と VCC2 I/O に SCI 端子が指定されている場合、VCC = VCC2 のときに限って下記の特性が保証されます。

条件 2: VCC/VCC2 = 1.62 V 以上

以下の端子は、PmnPFS レジスタのポート駆動能力ビットで高速高駆動出力が選択されています: SCK1 A, SCK1 C, SCK3 A, SCK4 A, SCK4_B, SCK4_C, SCK6_B

その他の端子は、PmnPFS レジスタのポート駆動能力ビットで高駆動出力が選択されています。 VCC I/O と VCC2 I/O に SCI 端子が指定されている場合、VCC = VCC2 のときに限って下記の特性が保証されます。

項目	高速/デフ ォルト	VCC/VCC2	シンボル	Min	Max	単位	備考
スレーブアクセス時間	_	2.70 V 以上	t _{SA}	_	3 × t _{Tcyc} + 25	ns	図 2.72, 図 2.73
		1.62 V 以上		_	3 × t _{Tcyc} + 32		
スレーブ出力解放時間	_	2.70 V 以上	t _{REL}	_	3 × t _{Tcyc} + 25	ns	
		1.62 V 以上		_	3 × t _{Tcyc} + 32		

- t_{Tcyc}: TCLK の周期。 注.
- 注 1. 所属グループを示すため、_A、_B、_C などのように端子名の後ろに文字を付加した端子を使用してください。SCI0、SCI1、SCI2、 SCI3、および SCI9 は_A の例に該当し、SCI4 と SCI5 は_B の例に該当し、SCI6、SCI7、および SCI8 は_C の例に該当します。
- 注 2. 所属グループのすべての端子を使用できます。
- 最長 1 µs 注 3.

表 2.59 SCI タイミング(クロック同期式モード) (1/2)

条件 1: VCC/VCC2 = 2.70 V 以上

PmnPFS レジスタのポート駆動能力ビットで高駆動出力が選択されています。

VCC I/O と VCC2 I/O に SCI 端子が指定されている場合、VCC = VCC2 のときに限って下記の特性が保証されます。

条件 2: VCC/VCC2 = 1.62 V 以上

以下の端子は、PmnPFS レジスタのポート駆動能力ビットで高速高駆動出力が選択されています:SCK1_A, SCK1_C, SCK3_A, SCK4_A, SCK4 B, SCK4 C, SCK6 B

その他の端子は、PmnPFS レジスタのポート駆動能力ビットで高駆動出力が選択されています。

VCC I/O と VCC2 I/O に SCI 端子が指定されている場合、VCC = VCC2 のときに限って下記の特性が保証されます。

項目		高速/デフ ォルト	VCC/VCC2	シンボル	Min	Max	単位	備考
SCK クロックサイ クル出力	マスタ	_	2.70 V 以上	t _{Scyc}	2 (TCLK ≦ 120 MHz) 4 (TCLK > 120 MHz)	_	t _{Tcyc}	
			1.62 V 以上		2 (TCLK ≦ 60 MHz) 4 (TCLK ≦ 120 MHz) 8 (TCLK > 120 MHz)	_		
SCK クロックサイ	スレーブ	_	2.70 V 以上		2	_		
クル入力			1.62 V 以上		2 (TCLK ≦ 100 MHz) 4 (TCLK > 100 MHz)	_		
SCK クロック High	マスタ	_	1.62 V 以上	t _{SCKWH}	0.4	0.6	t _{Scyc}	
レベルパルス幅	スレーブ		1.62 V 以上					
SCK クロック Low	マスタ	_	1.62 V 以上	t _{SCKWL}	0.4	0.6	t _{Scyc}	
レベルパルス幅	スレーブ		1.62 V 以上					

表 2.59 SCI タイミング(クロック同期式モード) (2/2)

条件 1: VCC/VCC2 = 2.70 V 以上

PmnPFS レジスタのポート駆動能力ビットで高駆動出力が選択されています。

VCC I/O と VCC2 I/O に SCI 端子が指定されている場合、VCC = VCC2 のときに限って下記の特性が保証されます。

条件 2: VCC/VCC2 = 1.62 V 以上

以下の端子は、PmnPFS レジスタのポート駆動能力ビットで高速高駆動出力が選択されています: SCK1_A, SCK1_C, SCK3_A, SCK4_A, SCK4_B, SCK4_C, SCK6_B

その他の端子は、PmnPFS レジスタのポート駆動能力ビットで高駆動出力が選択されています。 VCC I/O と VCC2 I/O に SCI 端子が指定されている場合、VCC = VCC2 のときに限って下記の特性が保証されます。

項目		高速/デフ ォルト	VCC/VCC2	シンボル	Min	Max	単位	備考
SCK クロック立ち	出力	_	2.70 V 以上	t _{SCKr} , t _{SCKf}	_	3.3	ns	
上がり/立ち下が り時間			1.62 V 以上		_	6.6		
	入力	_	1.62 V 以上		_	0.1 (注3)	t _{Scyc}	
データ入力セット	マスタ	高速 ^(注1)	2.70 V 以上	t _{SU}	2.6	_	ns	
アップ時間			1.62 V 以上		2.6	_		
			2.70 V 以上		2.8	_		
		(注2)	1.62 V 以上		2.8	_		
	スレーブ		2.70 V 以上		3.3	_		
		(注2)	1.62 V 以上		5.3	_		
データ入力ホール	マスタ	高速 ^(注1)	2.70 V 以上	t _H	7.5	_	ns	
ド時間			1.62 V 以上		9.5	_		
			2.70 V 以上		7.5	_		
		(注2)	1.62 V 以上		9.5	_		
	スレーブ		2.70 V 以上		3.0	_		
		(注2)	1.62 V 以上		5.0	_		
データ出力遅延時	マスタ	高速 ^(注1)	2.70 V 以上	t _{OD}	_	5	ns	
間			1.62 V 以上		_	5		
			2.70 V 以上		_	7.3		
		(注2)	1.62 V 以上		_	7.3		
	スレーブ	高速 ^(注1)	2.70 V 以上		_	12.5		
			1.62 V 以上		_	20.5		
			2.70 V 以上		_	18.5		
		(注2)	1.62 V 以上		_	26.5		
データ立ち上がり	出力	_	2.70 V 以上	t _{Dr} 、t _{Df}	_	3.3	ns	
/立ち下がり時間			1.62 V 以上		_	6.6		
	入力	_	1.62 V 以上		_	1	μs	

t_{Tcyc}: TCLK の周期。 注.

所属グループを示すため、_A、_B、_C などのように端子名の後ろに文字を付加した端子を使用してください。SCI0、SCI1、SCI2、SCI3、および SCI9 は_A の例に該当し、SCI4 と SCI5 は_B の例に該当し、SCI6、SCI7、および SCI8 は_C の例に該当します。 注 1.

注 2. 所属グループのすべての端子を使用できます。

注 3. 最長 1 µs

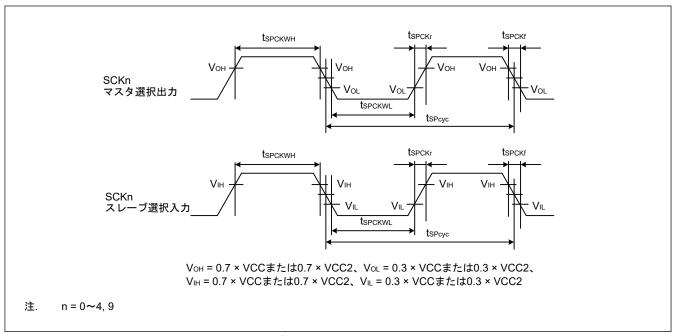


図 2.69 SCI 簡易 SPI モードクロックタイミング

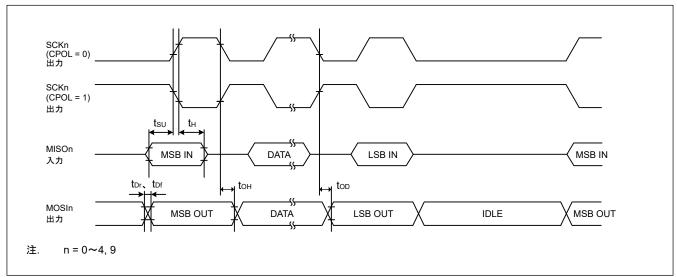


図 2.70 SCI 簡易 SPI モードタイミング (マスタ、CPHA = 0)

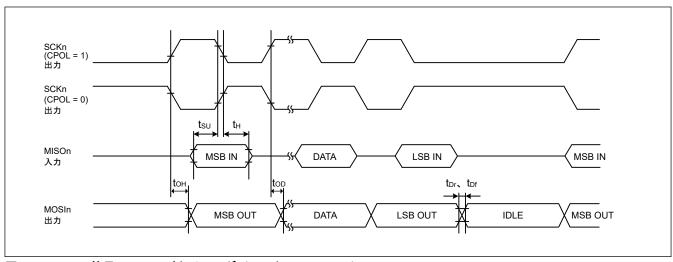


図 2.71 SCI 簡易 SPI モードタイミング(マスタ、CPHA = 1)

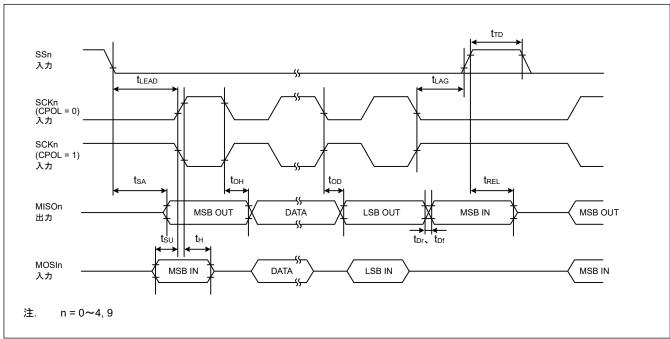


図 2.72 SCI 簡易 SPI モードタイミング (スレーブ、CPHA = 0)

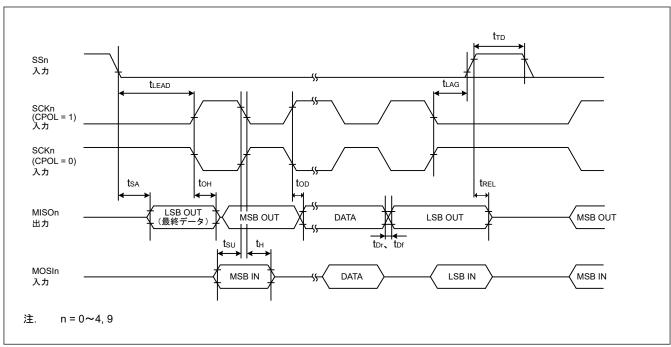


図 2.73 SCI 簡易 SPI モードタイミング(スレーブ、CPHA = 1)

表 2.60 SCI タイミング (簡易 IIC モード)

条件:

PmnPFS レジスタのポート駆動能力ビットで中駆動出力が選択されています。

VCC/VCC2: 1.62 V 以上

VCC I/O と VCC2 I/O に SCI 端子が指定されている場合、VCC = VCC2 のときに限って下記の特性が保証されます。

項目		シンボル	Min	Max	単位	備考
簡易 IIC(標準モ	SCL、SDA 入力立ち上がり時間	t _{Sr}	_	1000	ns	
- ド)	SCL、SDA 入力立ち下がり時間	t _{Sf}	_	300	ns	
	SCL、SDA 入力スパイクパルス除去時間	t _{SP}	0	4 × t _{Tcyc}	ns	
	データ入力セットアップ時間	t _{SDAS}	250	_	ns	
	データ入力ホールド時間	t _{SDAH}	0	_	ns	
	SCL、SDA の負荷容量	C _b (注1)	_	400	pF	
簡易 IIC(ファス	SCL、SDA 入力立ち上がり時間	t _{Sr}	_	300	ns	
トモード)	SCL、SDA 入力立ち下がり時間	t _{Sf}	_	300	ns	
	SCL、SDA 入力スパイクパルス除去時間	t _{SP}	0	4 × t _{Tcyc}	ns	
	データ入力セットアップ時間	t _{SDAS}	100	_	ns	
	データ入力ホールド時間	t _{SDAH}	0	_	ns	
	SCL、SDA の負荷容量	C _b (注1)	_	400	pF	

注. t_{Tcyc}: TCLK の周期。

注 1. C_b はバスラインの容量総計を意味します。

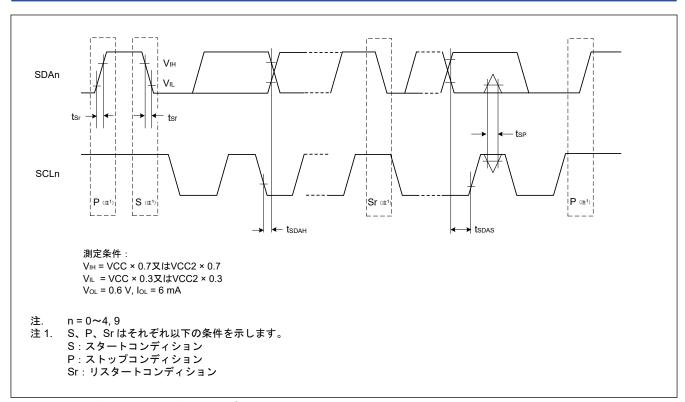


図 2.74 SCI 簡易 IIC モードタイミング

2.3.10 SPI タイミング

表 2.61 SPI タイミング (1/6)

条件:

1. 以下の端子は、PmnPFS レジスタのポート駆動能力ビットで高速高駆動出力が選択されています: RSPCLKA_B、RSPCLKB_B。 その他の端子は、PmnPFS レジスタのポート駆動能力ビットで高駆動出力が選択されています。

2. 所属グループを示すため、"_A"や"_B"などのように端子名の後ろに文字を付加した端子を使用してください。

項目		高速/デフォ ルト	VCC/VCC2	シンボル	Min	Max	単位	備考
RSPCK クロ	マスタ	高速 ^(注1)	3.00 V 以上	t _{SPcyc}	2	4096	t _{Tcyc}	図 2.75
ックサイクル		高速 ^(注1)	2.70 V 以上		2 (TCLK ≤ 166.6 MHz) 4 (TCLK > 166.6 MHz)	4096		
		高速 ^(注1)	1.62 V 以上		2 (TCLK ≤ 83.3 MHz) 4 (TCLK ≤ 166.6 MHz) 8 (TCLK > 166.6 MHz)	4096		
		デフォルト (注2)	3.00 V 以上		2 (TCLK ≦ 166.6 MHz) 4 (TCLK > 166.6 MHz)	4096		
		デフォルト ^(注2)	2.70 V 以上		2 (TCLK ≦ 120 MHz) 4 (TCLK ≦ 240 MHz) 8 (TCLK > 240 MHz)	4096		
		デフォルト (注2)	1.62 V 以上		2 (TCLK ≤ 60 MHz) 4 (TCLK ≤ 120 MHz) 8 (TCLK ≤ 240 MHz) 16 (TCLK > 240 MHz)	4096		
	スレーブ	高速 ^(注1)	3.00 V 以上		2 (TCLK ≤ 266 MHz) 4 (TCLK > 266 MHz)	_		
		高速 ^(注1)	2.70 V 以上		2 (TCLK ≦ 166.6 MHz) 4 (TCLK > 166.6 MHz)			
		高速 ^(注1)	1.62 V 以上		2 (TCLK ≤ 83.3 MHz) 4 (TCLK ≤ 166.6 MHz) 8 (TCLK > 166.6 MHz)	_		
		デフォルト ^(注2)	3.00 V 以上		2 (TCLK ≦ 166.6 MHz) 4 (TCLK > 166.6 MHz)	_		
		デフォルト (注2)	2.70 V 以上		2 (TCLK ≦ 120 MHz) 4 (TCLK ≦ 240 MHz) 8 (TCLK > 240 MHz)	_		
		デフォルト (注2)	1.62 V 以上		2 (TCLK ≤ 60 MHz) 4 (TCLK ≤ 120 MHz) 8 (TCLK ≤ 240 MHz) 16 (TCLK > 240 MHz)	_		

表 2.61 SPI タイミング (2/6)

条件:

1. 以下の端子は、PmnPFS レジスタのポート駆動能力ビットで高速高駆動出力が選択されています: RSPCLKA_B、RSPCLKB_B。 その他の端子は、PmnPFS レジスタのポート駆動能力ビットで高駆動出力が選択されています。

- 2. 所属グループを示すため、"_A"や"_B"などのように端子名の後ろに文字を付加した端子を使用してください。
- 3. VCC/VCC2 の条件「3.00 V 以上」に、負荷容量 C = 15 pF が印加されます。

項目		高速/デフォ ルト	VCC/VCC2	シンボル	Min	Max	単位	備考
RSPCK クロック High レ	マスタ	_	3.00 V 以上	tspckwh	(t _{SPcyc} - t _{SPCKr} - t _{SPCKf}) / 2 - 1	_	ns	図 2.75
ベルパルス幅		_	2.70 V 以上		(t _{SPcyc} - t _{SPCKr} - t _{SPCKf}) / 2 - 2			
		_	1.62 V 以上		(t _{SPcyc} - t _{SPCKr} - t _{SPCKf}) / 2 - 3	_		
	スレーブ	_	1.62 V 以上		0.4	_	t _{SPcyc}	
RSPCK クロック Low レ	マスタ	_	3.00 V 以上	tspckwl	(t _{SPcyc} - t _{SPCKr} - t _{SPCKf}) / 2 - 1	_	ns	
ベルパルス幅		_	2.70 V 以上		(t _{SPcyc} - t _{SPCKr} - t _{SPCKf}) / 2 - 2	_		
		_	1.62 V 以上		(t _{SPcyc} - t _{SPCKr} - t _{SPCKf}) / 2 - 3	_		
	スレーブ	_	1.62 V 以上		0.4	_	t _{SPcyc}	
RSPCKクロ	出力	高速 ^(注1)	3.00 V 以上	t _{SPCKr} ,	_	0.80	ns	1
ック立ち上が り/立ち下が		高速 ^(注1)	2.70 V 以上	t _{SPCKf}	_	1.40		
り時間		高速 ^(注1)	1.62 V 以上		_	2.50		
		デフォルト (注2)	3.00 V 以上		_	1.66		
		デフォルト (注2)	2.70 V 以上		_	3.30		
		デフォルト (注2)	1.62 V 以上		_	6.60		
入力 —	_	3.00 V 以上		_	0.1 ^(注3)	μs		
		_	2.70 V 以上		_	0.1 ^(注3)	1	
		_	1.62 V 以上		_	0.1 ^(注3)		

表 2.61 SPI タイミング (3/6)

条件:

1. 以下の端子は、PmnPFS レジスタのポート駆動能力ビットで高速高駆動出力が選択されています: RSPCLKA_B、RSPCLKB_B。 その他の端子は、PmnPFS レジスタのポート駆動能力ビットで高駆動出力が選択されています。

2. 所属グループを示すため、"_A"や"_B"などのように端子名の後ろに文字を付加した端子を使用してください。

		高速/デフォ	具何谷里 U = 13 pr				334 LL	***
項目	T	ルト	VCC/VCC2	シンボル	Min	Max	単位	備考
データ入力セットアップ時	マスタ	_	3.00 V 以上	t _{SU}	-2.5	_	ns	図 2.76, 図 2.77
ヴトアツノ時 間		_	2.70 V 以上		0.0	_		2.11
		_	1.62 V 以上		0.0	_		
	スレーブ	高速 ^(注1)	3.00 V 以上		1.5	_		
		高速 ^(注1)	2.70 V 以上		1.5	_		
		高速 ^(注1)	1.62 V 以上		1.5	_		
		デフォルト (注2)	3.00 V 以上		2.5	_		
		デフォルト (注2)	2.70 V 以上		2.5	_		
		デフォルト (注2)	1.62 V 以上		2.5	_		
データ入力ホ	マスタ	_	3.00 ∨ 以上	t _H	7.5	_	ns	
ールド時間		_	2.70 V 以上		7.5	_		
		_	1.62 V 以上		9.5	_		
	スレーブ	高速 ^(注1)	3.00 ∨ 以上		1.5	_		
		高速 ^(注1)	2.70 V 以上		1.5	_		
		高速 ^(注1)	1.62 V 以上		1.5	_		
		デフォルト (注2)	3.00 V 以上		2.5	_		
		デフォルト (注2)	2.70 V 以上		2.5	_		
		デフォルト (注2)	1.62 V 以上		5.5	_		

表 2.61 SPI タイミング (4/6)

条件:

1. 以下の端子は、PmnPFS レジスタのポート駆動能力ビットで高速高駆動出力が選択されています: RSPCLKA_B、RSPCLKB_B。

その他の端子は、PmnPFSレジスタのポート駆動能力ビットで高駆動出力が選択されています。

2. 所属グループを示すため、"_A"や"_B"などのように端子名の後ろに文字を付加した端子を使用してください。

項目		高速/デフォ ルト	其何谷重 C = 15 p	シンボル	Min	Max	単位	備考
SSL セットア ップ時間	マスタ	_	3.00 V 以上	t _{LEAD}	1 × t _{SPcyc} - 10	8 × t _{SPcyc} + 10	ns	図 2.76, 図 2.77
		_	2.70 V 以上		1 × t _{SPcyc} - 10	8 × t _{SPcyc} + 10		
		_	1.62 V 以上		1 × t _{SPcyc} - 10	8 × t _{SPcyc} + 10		
	スレーブ	_	3.00 V 以上		5.0	_	t _{Tcyc}	
		_	2.70 V 以上		5.0	_	1	
		_	1.62 V 以上		5.0	_	1	
SSL ホールド 時間	マスタ	_	3.00 V 以上	t _{LAG}	1 × t _{SPcyc} - 10	8 × t _{SPcyc} + 10	ns	
		_	2.70 V 以上		1 × t _{SPcyc} - 10	8 × t _{SPcyc} + 10		
-	_	1.62 V 以上		1 × t _{SPcyc} 10	8 × t _{SPcyc} + 10			
	スレーブ	_	3.00 V 以上		5.0	_	t _{Tcyc}	
		_	2.70 V 以上		5.0	_	1	
		_	1.62 V 以上		5.0	_	1	
TI SSP SS 入	スレーブ	_	3.00 V 以上	t _{TISS}	2.5	_	ns	図 2.81
カセットアッ プ時間		_	2.70 V 以上		2.5	_		
		_	1.62 V 以上		2.5	_		
TI SSP SS 入	スレーブ	_	3.00 V 以上	t _{TISH}	2.5	_	ns	
カホールド時 間		_	2.70 V 以上		2.5	_		
		_	1.62 V 以上		5.5	_		
TI SSP 次ア	スレーブ	_	3.00 ∨ 以上	t _{TIND}	2 × t _{Tcyc} + SLNDL × t _{Tcyc}	_	ns	
クセス時間		_	2.70 V 以上		2 × t _{Tcyc} + SLNDL × t _{Tcyc}	_	1	
		_	1.62 V 以上		2 × t _{Tcyc} + SLNDL × t _{Tcyc}	_		
TI SSP マス	TI SSP マス マスタ - タ SS 出力遅 エ	_	3.00 V 以上	t _{TISSOD}	_	4.0	ns	図 2.78
タ SS 出力遅 延		_	2.70 V 以上	1	_	8.0	1	
_		_	1.62 V 以上		_	8.0	1	

表 2.61 SPI タイミング (5/6)

条件:

1. 以下の端子は、PmnPFS レジスタのポート駆動能力ビットで高速高駆動出力が選択されています: RSPCLKA_B、RSPCLKB_B。

その他の端子は、PmnPFS レジスタのポート駆動能力ビットで高駆動出力が選択されています。

2. 所属グループを示すため、"_A"や"_B"などのように端子名の後ろに文字を付加した端子を使用してください。

項目		高速/デフォ ルト	頁何谷重 C = 15 pr VCC/VCC2	シンボル	Min	Max	単位	備考
データ出力遅	マスタ	_	3.00 V 以上	t _{OD1}	_	2.0	ns	図 2.76, 図
延時間		_	2.70 V 以上	001	_	3.0		2.77
		_	1.62 V 以上		_	6.0		
			3.00 V 以上	t _{OD2}	_	1.5		
		 高速 ^(注1)	2.70 V 以上		_	2.5		
		高速 ^(注1)	1.62 V 以上		_	4.5		
		デフォルト (注2)	3.00 V 以上		_	2.5		
		デフォルト (注2)	2.70 V 以上		_	2.5		
		デフォルト (注2)	1.62 V 以上		_	4.5		
	スレーブ	_	3.00 ∨ 以上	t _{OD}	_	10.0		
		_	2.70 V 以上		_	13.5		
		_	1.62 V 以上		_	21.5		
データ出力ホ ールド時間	マスタ	高速 ^(注1)	3.00 V 以上	t _{OH}	-1.5	_	ns	
一ルト时间		高速 ^(注1)	2.70 V 以上		-2.5	_		
		高速 ^(注1)	1.62 V 以上		-4.5	_		
		デフォルト (注2)	3.00 V 以上		-2.5	_		
		デフォルト (注2)	2.70 V 以上		-2.5	_		
		デフォルト (注2)	1.62 V 以上		-4.5	_		
	スレーブ	_	3.00 ∨ 以上		0.0	_		
		_	2.70 V 以上		0.0	_		
		_	1.62 V 以上		0.0	_		

表 2.61 SPI タイミング (6/6)

条件:

1. 以下の端子は、PmnPFS レジスタのポート駆動能力ビットで高速高駆動出力が選択されています: RSPCLKA_B、RSPCLKB_B。

その他の端子は、PmnPFS レジスタのポート駆動能力ビットで高駆動出力が選択されています。

- 2. 所属グループを示すため、"_A"や"_B"などのように端子名の後ろに文字を付加した端子を使用してください。
- 3. VCC/VCC2 の条件「3.00 V 以上」に、負荷容量 C = 15 pF が印加されます。

項目		高速/デフォ ルト	VCC/VCC2	シンボル	Min	Max	単位	備考
連続送信遅延 時間	マスタ	_	3.00 V 以上	t _{TD}	t _{SPcyc} + 2 × t _{Tcyc}	8 × t _{SPcyc} + 2 × t _{Tcyc}	ns	図 2.76, 図 2.77
		_	2.70 V 以上		t _{SPcyc} + 2 × t _{Tcyc}	8 × t _{SPcyc} + 2 × t _{Tcyc}		
		_	1.62 V 以上		t _{SPcyc} + 2 × t _{Tcyc}	8 × t _{SPcyc} + 2 × t _{Tcyc}		
	スレーブ	_	3.00 V 以上		t _{Tcyc}	_	ns	
		_	2.70 V 以上		t _{Tcyc}	_	1	
		_	1.62 V 以上		t _{Tcyc}	_	1	
MOSI, MISO	出力	_	3.00 V 以上	t _{Dr} 、t _{Df}	_	1.66	ns	
立ち上がり/ 立ち下がり時		_	2.70 V 以上		_	3.30		
	_	1.62 V 以上		_	6.60			
	入力	_	3.00 V 以上		_	1.0	μs	
		_	2.70 V 以上		_	1.0		
		_	1.62 V 以上		_	1.0		
SSL 立ち上が	出力	_	3.00 V 以上	t _{SSLr} ,	_	1.66	ns	
り/立ち下が り時間		_	2.70 V 以上	t _{SSLf}	_	3.30		
		_	1.62 V 以上		_	6.60		
	入力	_	3.00 V 以上		_	1.0	μs	
		_	2.70 V 以上		_	1.0		
		_	1.62 V 以上		_	1.0		
スレーブアク	スレーブ	_	3.00 V 以上	t _{SA}	_	20.0	ns	図 2.79, 図
セス時間	、時間 —	_	2.70 V 以上		_	20.0		2.80
		_	1.62 V 以上		_	25.0		
スレーブ出力	スレーブ出力 スレーブ - WY放時間 - -	_	3.00 V 以上	t _{REL}	_	20.0	ns	
严		_	2.70 V 以上		_	20.0		
		_	1.62 V 以上		_	25.0		

注 1. 所属グループを示すため、_A や_B などのように端子名の後ろに文字を付加した端子を使用してください。SPI0 と SPI1 は_B の例です。

注 2. 所属グループのすべての端子を使用できます。

注 3. 最長 1 μs

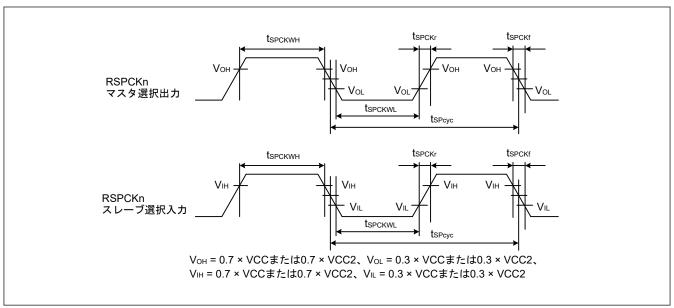


図 2.75 SPI クロックタイミング

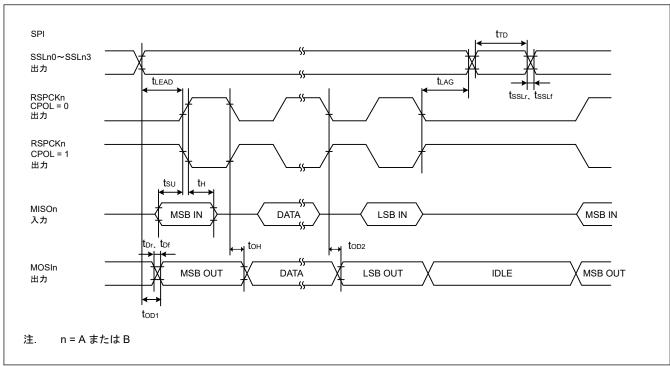


図 2.76 CPHA = 0 の場合におけるモトローラ SPI マスタの SPI タイミング

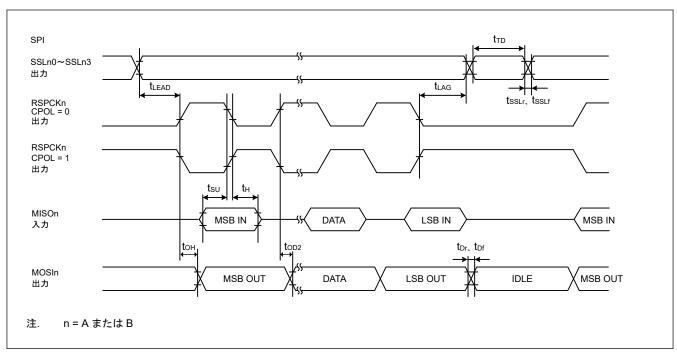


図 2.77 CPHA = 1 の場合におけるモトローラ SPI マスタの SPI タイミング

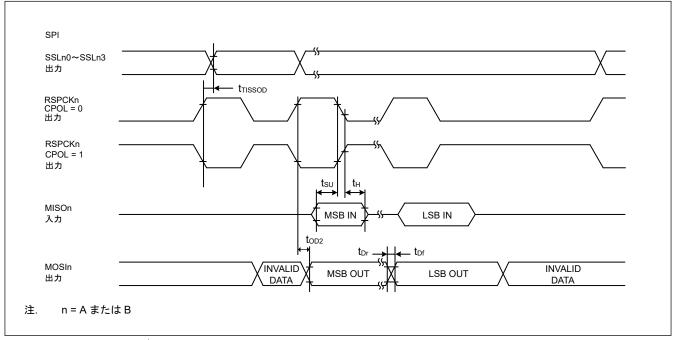


図 2.78 SPI タイミング (TI SSP マスタ)

図 2.79 CPHA = 0 の場合におけるモトローラ SPI スレーブの SPI タイミング

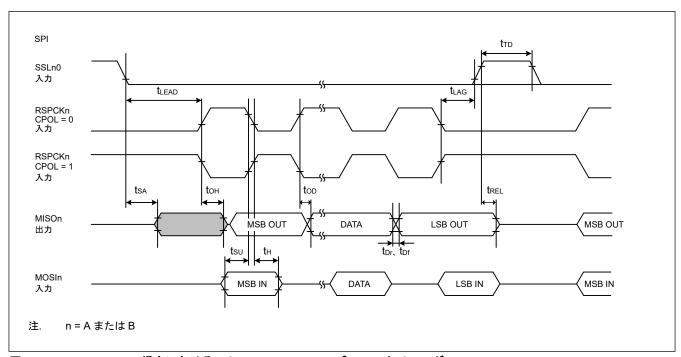


図 2.80 CPHA = 1 の場合におけるモトローラ SPI スレーブの SPI タイミング

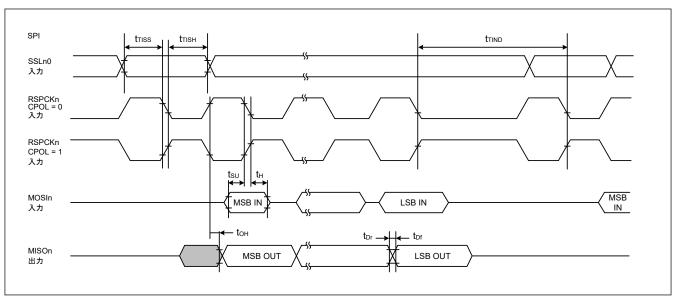


図 2.81 フレーム間の遅延がある送信における TI SSP スレーブの SPI タイミング

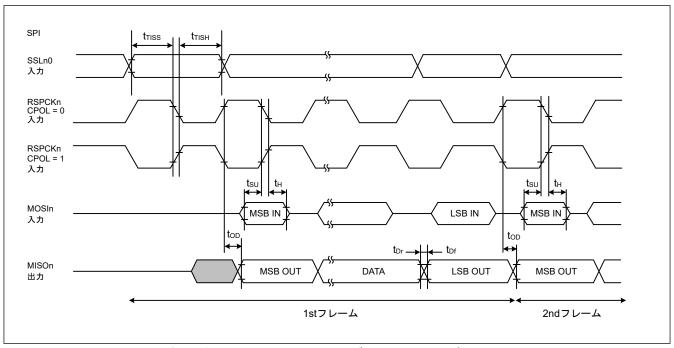


図 2.82 フレーム間の遅延がない送信における TI SSP スレーブの SPI タイミング

2.3.11 OSPI タイミング

表 2.62 OSPI タイミング (1/6)

条件:

以下の端子は、PmnPFS レジスタのポート駆動能力ビットで高速高駆動出力が選択されています:OM_n_SCLK、OM_n_SCLKN、

OM_n_SIO7-0、OM_n_DQS。 以下の端子は、PmPFS レジスタのポート駆動能力ビットで中駆動出力が選択されています:OM_n_CS0、OM_n_CS1。

負荷容量 C = 15 pF

項目		シンボル	VCC/VCC2	VDD	Min	Max	単位	備考
サイクルタイム	OM_DQS 端子な しの SDR	t _{PERIOD}	2.70 V 以上	VSCR_1、 電圧範囲 1	16.67	_	ns	図 2.83
				VSCR_2、 電圧範囲 2				
			1.62 V~ 2.00 V	VSCR_1、 電圧範囲 1	20.00	_		
				VSCR_2、 電圧範囲 2				
	OM_DQS 端子ありの SDR/DDR	t _{PERIOD}	2.70 V 以上	VSCR_1、 電圧範囲 1	6.00	_	ns	
				VSCR_2、 電圧範囲 2	7.50	_		
			1.62 V~ 2.00 V	VSCR_1、 電圧範囲 1				
				VSCR_2、 電圧範囲 2				
クロック出力スル	ーレート	t _{SRck}	2.70 V 以上	VSCR_1、 電圧範囲 1	0.94	_	V/ns	図 2.83
				VSCR_2、 電圧範囲 2	0.75	_		
			1.62 V~ 2.00 V	VSCR_1、 電圧範囲 1				
				VSCR_2、 電圧範囲 2				
クロックデューテ み	ィーサイクル歪	t _{CKDCD}	2.70 V 以上	VSCR_1、 電圧範囲 1	0	0.3	ns	図 2.83
				VSCR_2、 電圧範囲 2	0	0.375		
			1.62 V~ 2.00 V	VSCR_1、 電圧範囲 1				
				VSCR_2、 電圧範囲 2				
クロック最小パル	ス幅	t _{CKMPW}	2.70 V 以上	VSCR_1、 電圧範囲 1	2.7	_	ns	図 2.83
				VSCR_2、 電圧範囲 2	3.375	_		
		1.		VSCR_1、 電圧範囲 1				
				VSCR_2、 電圧範囲 2				

表 2.62 OSPI タイミング (2/6)

条件:

以下の端子は、PmnPFS レジスタのポート駆動能力ビットで高速高駆動出力が選択されています: OM_n_SCLK、OM_n_SCLKN、 $OM_n_SIO7-0,\ OM_n_DQS_\circ$

以下の端子は、PmnPFS レジスタのポート駆動能力ビットで中駆動出力が選択されています: OM_n_CS0、OM_n_CS1。

負荷容量 C = 15 pF 項目		シンボル	VCC/VCC2	VDD	Min	Max	単位	備考
差動クロック交差電	注圧	V _{ox} (AC)	2.70 V 以上	VSCR_1、 電圧範囲 1	0.2 × VCC2	0.6 × VCC2	V	図 2.83
				VSCR_2、 電圧範囲 2				
			1.62 V~ 2.00 V	VSCR_1、 電圧範囲 1				
				VSCR_2、 電圧範囲 2				
DS デューティーサイ	イクル歪み	t _{DSDCD}	2.70 V 以上	VSCR_1、 電圧範囲 1	0	0.24	ns	図 2.83
				VSCR_2、 電圧範囲 2	0	0.3		
			1.62 V~ 2.00 V	VSCR_1、 電圧範囲 1				
				VSCR_2、 電圧範囲 2				
DS 最小パルス幅		t _{DSMPW}	2.70 V 以上	VSCR_1、 電圧範囲 1	2.46	_	ns	図 2.83
				VSCR_2、 電圧範囲 2	3.075	_		
			1.62 V~ 2.00 V	VSCR_1、 電圧範囲 1				
				VSCR_2、 電圧範囲 2				
データ入出力スルー	・レート	t _{SR}	2.70 V 以上	VSCR_1、 電圧範囲 1	1.72	_	ns	図 2.83
				VSCR_2、 電圧範囲 2	1.37	_		
			1.62 V~ 2.00 V	VSCR_1、 電圧範囲 1	0.75	_		
				VSCR_2、 電圧範囲 2				
トアップ時間S	OM_DQS なしの ODR	t _{SU}	2.70 V 以上	VSCR_1、 電圧範囲 1	8.17	_	ns	図 2.84
(OM_SCLK/ OM_SCLKNに 対して)				VSCR_2、 電圧範囲 2				
			1.62 V~ 2.00 V	VSCR_1、 電圧範囲 1	13.0	_		
				VSCR_2、 電圧範囲 2				
データ入力ホー ルド時間		t _H	2.70 V 以上	VSCR_1、 電圧範囲 1	0.5		ns	
(OM_SCLK) OM_SCLKNに 対して)				VSCR_2、 電圧範囲 2				
			1.62 V~ VS	VSCR_1、 電圧範囲 1		_		
				VSCR_2、 電圧範囲 2				

表 2.62 OSPI タイミング (3/6)

条件:

以下の端子は、PmnPFS レジスタのポート駆動能力ビットで高速高駆動出力が選択されています: OM_n_SCLK、OM_n_SCLKN、 OM_n_SIO7-0、OM_n_DQS。

以下の端子は、PmnPFS レジスタのポート駆動能力ビットで中駆動出力が選択されています:OM_n_CS0、OM_n_CS1。 負荷容量 C = 15 pF

負荷容量 C = 15 pl 項目		シンボル	VCC/VCC2	VDD	Min	Max	単位	備考
データ出力有効 時間	OM_DQS なしの SDR	t _{OV} (注2)	2.70 V 以上	VSCR_1、 電圧範囲 1	_	5.4	ns	図 2.84
				VSCR_2、 電圧範囲 2				
			1.62 V~ 2.00 V	VSCR_1、 電圧範囲 1	_	6.9		
				VSCR_2、 電圧範囲 2				
データ出力ホー ルド時間		t _{OH}	2.70 V 以上	VSCR_1、 電圧範囲 1	-5.4	_	ns	
				VSCR_2、 電圧範囲 2				
			1.62 V~ 2.00 V	VSCR_1、 電圧範囲 1	-6.9	_		
				VSCR_2、 電圧範囲 2				
データ出力バッ ファオフ時間		t _{BOFF}	2.70 V 以上	VSCR_1、 電圧範囲 1	-5.4	_	ns	
				VSCR_2、 電圧範囲 2				
			1.62 V~ 2.00 V	VSCR_1、 電圧範囲 1	-6.9	_		
				VSCR_2、 電圧範囲 2				
データ入力セットアップ時間	OM_DQS/DDR 端子付き SDR	t _{SU}	2.70 V 以上	VSCR_1、 電圧範囲 1	-0.58	_	ns	図 2.85, 図 2.86
(OM_DQSに対 して)				VSCR_2、 電圧範囲 2	-0.7	_		
			1.62 V~ 2.00 V	VSCR_1、 電圧範囲 1				
				VSCR_2、 電圧範囲 2				
データ入力ホールド時間		t _H	2.70 V 以上	VSCR_1、 電圧範囲 1	1.88	_	ns	
(OM_DQSに対 して)				VSCR_2、 電圧範囲 2	2.375			
			1.62 V~ 2.00 V	VSCR_1、 電圧範囲 1				
				VSCR_2、 電圧範囲 2				

表 2.62 OSPI タイミング (4/6)

条件:

以下の端子は、PmnPFS レジスタのポート駆動能力ビットで高速高駆動出力が選択されています: OM_n_SCLK、OM_n_SCLKN、 OM_n_SIO7-0、OM_n_DQS。

以下の端子は、PmnPFS レジスタのポート駆動能力ビットで中駆動出力が選択されています:OM_n_CS0、OM_n_CS1。 負荷容量 C = 15 pF

負荷容量 C = 15 p		シンボル	VCC/VCC2	VDD	Min	Max	単位	備考
データ出力有効 時間	OM_DQS/DDR 端子付き SDR	t _{OV} ^(注2)	2.70 V 以上	VSCR_1、 電圧範囲 1	_	t _{PERIOD} /4 + 0.5	ns	図 2.85, 図 2.86
				VSCR_2、 電圧範囲 2	_	t _{PERIOD} /4 + 0.6		
			1.62 V~ 2.00 V	VSCR_1、 電圧範囲 1				
				VSCR_2、 電圧範囲 2				
データ出力ホー ルド時間		t _{OH}	2.70 V 以上	VSCR_1、 電圧範囲 1	0.7	_	ns	
				VSCR_2、 電圧範囲 2	0.9	_		
			1.62 V~ 2.00 V	VSCR_1、 電圧範囲 1				
				VSCR_2、 電圧範囲 2				
データ出力バッ ファオフ時間		t _{BOFF}	2.70 V 以上	VSCR_1、 電圧範囲 1	0.7	_	ns	
				VSCR_2、 電圧範囲 2	0.9	_		
			1.62 V~ 2.00 V	VSCR_1、 電圧範囲 1				
				VSCR_2、 電圧範囲 2				

表 2.62 OSPI タイミング (5/6)

条件:

以下の端子は、PmnPFS レジスタのポート駆動能力ビットで高速高駆動出力が選択されています: OM_n_SCLK、OM_n_SCLKN、 OM_n_SIO7-0、OM_n_DQS。

以下の端子は、PmnPFS レジスタのポート駆動能力ビットで中駆動出力が選択されています:OM_n_CS0、OM_n_CS1。 負荷容量 C = 15 pF

負荷容量 C = 15 pF 項目	シンボル	VCC/VCC2	VDD	Min	Max	単位	備考
クロック Low~CS Low	t _{CKLCSL}	2.70 V 以上	VSCR_1、 電圧範囲 1	4.8		ns	図 2.84、図 2.85、図 2.86
			VSCR_2、 電圧範囲 2	6	_		
		1.65 V~ 2.00 V	VSCR_1、 電圧範囲 1				
			VSCR_2、 電圧範囲 2				
CS Low~クロック High	t _{CSLCKH} (注3)	2.70 V 以上	VSCR_1、 電圧範囲 1	4.8	_	ns	
			VSCR_2、 電圧範囲 2	6	_		
		1.62 V~ 2.00 V	VSCR_1、 電圧範囲 1				
			VSCR_2、 電圧範囲 2				
CS Low~CS High	t _{CKLCSH}	2.70 V 以上	VSCR_1、 電圧範囲 1	4.8	_	ns	
			VSCR_2、 電圧範囲 2	6	_		
		1.62 V~ 2.00 V	VSCR_1、 電圧範囲 1				
			VSCR_2、 電圧範囲 2				
CS High〜クロック High	t _{CSHCKH}	2.70 V 以上	VSCR_1、 電圧範囲 1	4.8	_	ns	
			VSCR_2、 電圧範囲 2	6	_		
		1.62 V~ 2.00 V	VSCR_1、 電圧範囲 1				
			VSCR_2、 電圧範囲 2				

表 2.62 OSPI タイミング (6/6)

条件:

以下の端子は、PmnPFS レジスタのポート駆動能力ビットで高速高駆動出力が選択されています:OM_n_SCLK、OM_n_SCLKN、OM_n_SIO7-0、OM_n_DQS。

以下の端子は、PmnPFS レジスタのポート駆動能力ビットで中駆動出力が選択されています: OM_n_CS0、OM_n_CS1。

負荷容量 C = 15 pF

項目	シンボル	VCC/VCC2	VDD	Min	Max	単位	備考
DS Low 出力~CS High	tcsнcкн	2.70 V 以上	VSCR_1、 電圧範囲 1	0.8 × t _{PERIOD}	_	ns	図 2.87
			VSCR_2、 電圧範囲 2	0.8 × t _{PERIOD}	_		
		1.62 V~ 2.00 V	VSCR_1、 電圧範囲 1				
			VSCR_2、 電圧範囲 2				
CS High~DS トライステート	tcshdst	2.70 V 以上	VSCR_1、 電圧範囲 1	_	t _{PERIOD}	ns	
			VSCR_2、 電圧範囲 2	_	t _{PERIOD}		
		1.62 V~ 2.00 V	VSCR_1、 電圧範囲 1				
			VSCR_2、 電圧範囲 2				
CS Low~DS Low 入力 ^{(注1) (注3)}	t _{CSLDSL}	2.70 V 以上	VSCR_1、 電圧範囲 1	0	12.5	ns	
			VSCR_2、 電圧範囲 2	0	20		
		1.62 V~ 2.00 V	VSCR_1、 電圧範囲 1	0	12.5		
			VSCR_2、 電圧範囲 2				
DS トライステート~CS Low	t _{DSTCSL}	2.70 V 以上	VSCR_1、 電圧範囲 1	0	_	ns	
			VSCR_2、 電圧範囲 2	0	_		
		1.62 V~ 2.00 V	VSCR_1、 電圧範囲 1				
			VSCR_2、 電圧範囲 2				

注. n = 0, 1

注 1. OM_DQS 端子に接続された外部プルダウンで JESD251 プロファイル 1.0 メモリを使用する場合はこの制限に従う必要はありません。

注 2. 条件: COMCFG.OEASTEX = 1 注 3. 条件: LIOCFGCSx.CSASTEX = 1

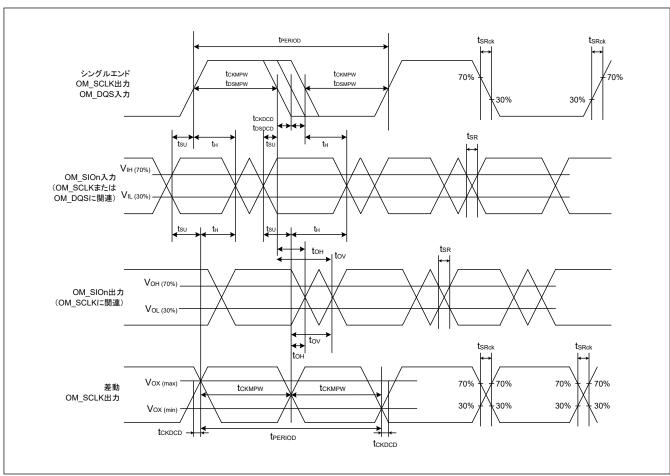


図 2.83 OSPI クロック/DS タイミング

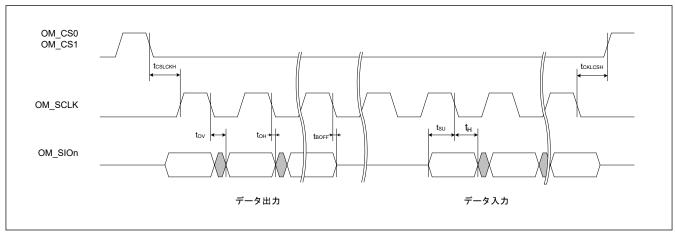


図 2.84 SDR 送受信タイミング(1S-1S-1S、1S-2S-2S、2S-2S-2S、1S-4S-4S、4S-4S-4S)

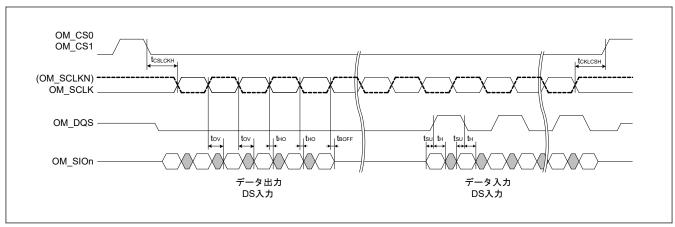


図 2.85 DDR 送受信タイミング(4S-4D-4D、8D-8D-8D)

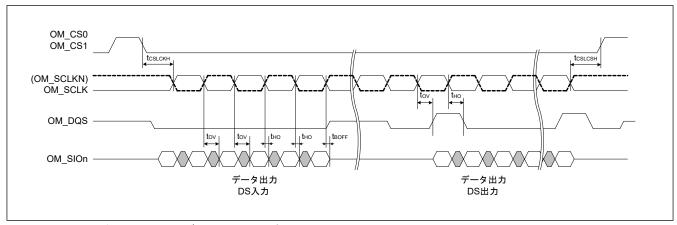


図 2.86 DDR 送受信タイミング(HyperRAM 書き込み)

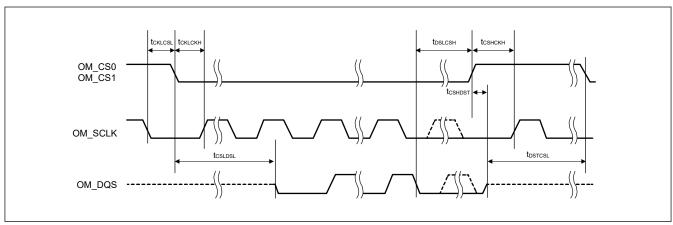


図 2.87 DS~CS 信号タイミング

2.3.12 IIC タイミング

表 2.63 IIC タイミング (1) (1/2)

条件:

1. 以下の端子の PmnPFS レジスタのポート駆動能力ビットにおいて、VCC が 2.70 V 以上の時は中駆動出力が選択され、 $1.62\sim1.95$ V の時は高駆動出力が選択されます。SDA0_B, SCL0_B, SDA1_B, SCL1_B, SDA2_B, SCL2_B

- 2. 以下の端子の設定は必要ありません: SCLO A, SDAO A。 SCL1 A, SDA1 A。 SCL2 A, SDA2 A。
- 3. 所属グループを示すため、"_A"や"_B"などのように端子名の後ろに文字を付加した端子を使用してください。

IIC インタフェースについては、電気的特性の AC タイミングを各グループで測定しています。

項目		シンボル	vcc	Min	Max	単位	測定条件
IIC	SCL 入力サイクル時間	t _{SCL}	2.70 V 以上	6 (12) × t _{IICcyc} + 1300	_	ns	図 2.88
(標準モード、 SMBus)			1.62~1.95 V				
ICFER.FMPE = 0	SCL 入力 High レベルパ	t _{SCLH}	2.70 V 以上	3 (6) × t _{IICcyc} + 300	_	ns	
	ルス幅		1.62~1.95 V				
	SCL 入力 Low レベルパ	t _{SCLL}	2.70 V 以上	3 (6) × t _{IICcyc} + 300	_	ns	
	ルス幅		1.62~1.95 V				
	SCL、SDA 立ち上がり時	t _{Sr}	2.70 V 以上	_	1000	ns	
	間		1.62~1.95 V				
	SCL、SDA 立ち下がり時	t _{Sf}	2.70 V 以上	_	300	ns	_
	間		1.62~1.95 V		1 (4) × t _{IICcyc}		
	SCL、SDA 入力スパイク	t _{SP}	2.70 V 以上	0		ns	_
	パルス除去時間		1.62~1.95 V				
\$ 2	ウェイクアップ機能が無	t _{BUF}	2.70 V 以上	3 (6) × t _{IICcyc} + 300	_	ns	
	効な場合の SDA 入力バ スフリー時間		1.62~1.95 V				
	ウェイクアップ機能が有 効な場合の SDA 入力バ スフリー時間	t _{BUF}	2.70 V 以上	3 (6) × t _{IICcyc} + 4 ×	_	ns	
			1.62~1.95 V	t _{Pcyc} + 300			
	ウェイクアップ機能が無	t _{STAH}	2.70 V 以上	t _{IICcyc} + 300	_	ns	
	効な場合のスタートコン ディション入力ホールド 時間		1.62~1.95 V				
	ウェイクアップ機能が有	t _{STAH}	2.70 V 以上	1 (5) × t _{IICcyc} + t _{Pcyc}	_	ns	
	効な場合のスタートコン ディション入力ホールド 時間		1.62~1.95 V	+ 300			
	リスタートコンディショ	t _{STAS}	2.70 V 以上	1000	_	ns	7
	ン入力セットアップ時間		1.62~1.95 V				
	ストップコンディション	t _{STOS}	2.70 V 以上	1000	_	ns	
	入力セットアップ時間		1.62~1.95 V				
	データ入力セットアップ	t _{SDAS}	2.70 V 以上	t _{IICcyc} + 50	_	ns	7
時 デ	時間		1.62~1.95 V				
	データ入力ホールド時間	t _{SDAH}	2.70 V 以上	0	_	ns	
	SD.		1.62~1.95 V				pF
	SCL、SDA の負荷容量 C _b	C _b	2.70 V 以上	_	400	pF	
			1.62~1.95 V				

表 2.63 IIC タイミング (1) (2/2)

条件:

1. 以下の端子の PmnPFS レジスタのポート駆動能力ビットにおいて、VCC が 2.70 V 以上の時は中駆動出力が選択され、1.62~1.95 V の時 は高駆動出力が選択されます。SDA0_B, SCL0_B, SDA1_B, SCL1_B, SDA2_B, SCL2_B

- 2. 以下の端子の設定は必要ありません: SCL0_A, SDA0_A。SCL1_A, SDA1_A。SCL2_A, SDA2_A。
- 3. 所属グループを示すため、"_A"や"_B"などのように端子名の後ろに文字を付加した端子を使用してください。

IIC インタフェースについては、電気的特性の AC タイミングを各グループで測定しています

項目			vcc	Min	Max	単位	測定条件
C .	SCL 入力サイクル時間	t _{SCL}	2.70 V 以上	6 (12) × t _{IICcyc} + 600	_	ns	図 2.88
ファストモー ヾ)			1.62~1.95 V				
CFER.FMPE = 0	SCL 入力 High レベルパ	t _{SCLH}	2.70 V 以上	3 (6) × t _{IICcyc} + 300	_	ns	
	ルス幅		1.62~1.95 V				
	SCL 入力 Low レベルパ	t _{SCLL}	2.70 V 以上	3 (6) × t _{IICcyc} + 300	_	ns	
	ルス幅		1.62~1.95 V				
	SCL、SDA 立ち上がり時	t _{Sr}	2.70 V 以上	20	300	ns	
	間		1.62~1.95 V				
	SCL、SDA 立ち下がり時	t _{Sf}	2.70 V 以上	20×(外付けプルアッ		ns	
	間		1.62~1.95 V	── プ電圧∕5.5 V) ^(注1)			
	SCL、SDA 入力スパイク	t _{SP}	2.70 V 以上	0	1 (4) × t _{IICcyc}	ns	
	パルス除去時間		1.62~1.95 V				
	ウェイクアップ機能が無 効な場合の SDA 入力バ スフリー時間	t _{BUF}	2.70 V 以上	3 (6) × t _{IICcyc} + 300	_	ns	
			1.62~1.95 V				
	ウェイクアップ機能が有 効な場合の SDA 入力バ スフリー時間	t _{BUF}	2.70 V 以上	3 (6) × t _{IICcyc} + 4 ×	_	ns	
			1.62~1.95 V	t _{Pcyc} + 300			
	ウェイクアップ機能が無 効な場合のスタートコン ディション入力ホールド 時間	t _{STAH}	2.70 V 以上	t _{IICcyc} + 300	_	ns	
			1.62~1.95 V				
	ウェイクアップ機能が有	t _{STAH}	2.70 V 以上	1 (5) × t _{IICcyc} + t _{Pcyc}	_	ns	
	効な場合のスタートコン ディション入力ホールド 時間		1.62~1.95 V	+ 300			
	リスタートコンディショ	t _{STAS}	2.70 V 以上	300	_	ns	
	ン入力セットアップ時間 		1.62~1.95 V				
	ストップコンディション	t _{STOS}	2.70 V 以上	300	_	ns	
	入力セットアップ時間		1.62~1.95 V				
	データ入力セットアップ	t _{SDAS}	2.70 V 以上	t _{IICcyc} + 50	_	ns	
	時間		1.62~1.95 V				
	データ入力ホールド時間	t _{SDAH}	2.70 V 以上	0	_	ns	
			1.62~1.95 V				
5	SCL、SDA の負荷容量 C	C _b	2.70 V 以上	_	400	pF	
			1.62~1.95 V				

注. t_{IICcyc} : IIC 内部基準クロック (IIC ϕ) サイクル、 t_{Pcyc} : PCLKB サイクル

注.

ICFER.NFE が 1 でデジタルフィルタが有効な場合、ICMR3.NF[1:0]が 11b であると()内の値が適用されます。 所属グループを示すため、"_A"や"_B"などのように端子名の後ろに文字を付加した端子を使用してください。IIC インタフェースについては、電気的特性の AC タイミングを各グループで測定しています。

注 1. SCLO_A、SDAO_A、SCL1_A、SDA1_A、SCL2_A、および SDA2_A に限りサポートされています。

表 2.64 IIC タイミング (2)

SCL0_A、SDA0_A、SCL1_A、SDA1_A の設定。PmnPFS レジスタのポート駆動能力ビットでは、SCL2_A 端子、SDA2_A 端子は必要あり ません。

項目		シンボル	vcc	Min	Max	単位	測定条件
IIC	SCL 入力サイクル時間	t _{SCL}	2.70 V 以上	6 (12) × t _{IICcyc} +	_	ns	図 2.88
(ファストモード +)			1.62~1.95 V	240			
ICFER.FMPE = 1	SCL 入力 High レベルパ	t _{SCLH}	2.70 V 以上	3 (6) × t _{IICcyc} + 120	_	ns	
	ルス幅 		1.62~1.95 V				
	SCL 入力 Low レベルパル	t _{SCLL}	2.70 V 以上	3 (6) × t _{IICcyc} + 120	_	ns	
	ス幅 		1.62~1.95 V				
	SCL、SDA 立ち上がり時	t _{Sr}	2.70 V 以上	_	120	ns	
	間		1.62~1.95 V				
	SCL、SDA 立ち下がり時	t _{Sf}	2.70 V 以上		120	ns	
	間		1.62~1.95 V				
	SCL、SDA 入力スパイク	t _{SP}	2.70 V 以上	0	1 (4) × t _{IICcyc}	ns	
	パルス除去時間		1.62~1.95 V		.,,		
	ウェイクアップ機能が無	t _{BUF}	2.70 V 以上	3 (6) × t _{IICcyc} + 120	_	ns	
	効な場合の SDA 入力バスフリー時間		1.62~1.95 V				
	ウェイクアップ機能が有 効な場合の SDA 入力バス フリー時間	t _{BUF}	2.70 V 以上	3 (6) × t _{IICcyc} + 4 × t _{Pcyc} + 120	_	ns	
			1.62~1.95 V				
	ウェイクアップ機能が無 効な場合のスタートコン ディション入力ホールド 時間	t _{STAH}	2.70 V 以上	t _{IICcyc} + 120	_	ns	
			1.62~1.95 V				
	ウェイクアップ機能が有	t _{STAH}	2.70 V 以上	1 (5) × t _{IICcyc} + t _{Pcyc} + 120	_	ns	
	効な場合のスタートコン ディション入力ホールド 時間		1.62~1.95 V				
	リスタートコンディショ	t _{STAS}	2.70 V 以上	120	_	ns	
	ン入力セットアップ時間 		1.62~1.95 V				
	ストップコンディション	t _{STOS}	2.70 V 以上	120	_	ns	
	入力セットアップ時間 		1.62~1.95 V				
	データ入力セットアップ	t _{SDAS}	2.70 V 以上	t _{IICcyc} + 30	_	ns	
	時間		1.62~1.95 V				
	データ入力ホールド時間	t _{SDAH}	2.70 V 以上	0	_	ns	
			1.62~1.95 V				
	SCL、SDA の負荷容量 C	C _b ^(注1)	2.70 V 以上	_	550	pF	
			1.62~1.95 V				

 t_{IICcyc} : IIC 内部基準クロック (IIC ϕ) サイクル、tPcyc : PCLKB サイクル 注.

注. ICFER.NFE が 1 でデジタルフィルタが有効な場合、ICMR3.NF[1:0]が 11b であると () 内の値が適用されます。 注 1. Cb はバスラインの容量総計を意味します。

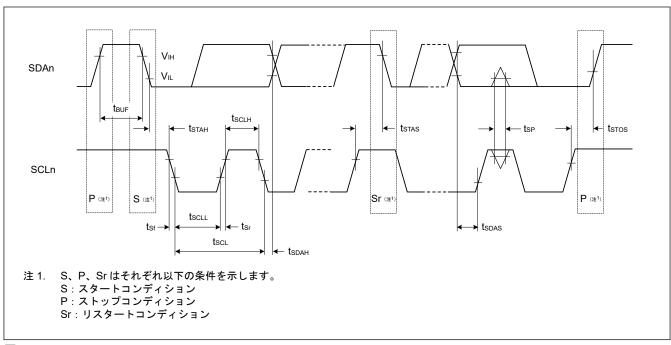


図 2.88 I²C パスインタフェース入出力タイミング

2.3.13 I3C タイミング

表 2.65 IIC タイミング (1)-1

パラメータ		シンボル	vcc	Min	Max	単位
IIC(標準モード、 SMBus)	SCL 入力サイクル時間	t _{SCL}	2.70 V 以上、 1.65~1.95 V	10 (18) × t _{I3Ccyc} + 1300	_	ns
BFCTL.FMPE = 0	SCL 入力 High レベルパ ルス幅	t _{SCLH}	2.70 V 以上、 1.65~1.95 V	5 (9) × t _{I3Ccyc} + 300	_	ns
	SCL 入力 Low レベルパル ス幅	t _{SCLL}	2.70 V 以上、 1.65~1.95 V	5 (9) × t _{I3Ccyc} + 300	_	ns
	SCL、SDA 立ち上がり時間	t _{Sr}	2.70 V 以上、 1.65~1.95 V	_	1000	ns
	SCL、SDA 立ち下がり時 t _{Sf} 2.70 V 以上、 1.65~1.95 V —		300	ns		
	SCL、SDA 入力スパイク パルス除去時間	t _{SP}	2.70 V 以上、 1.65~1.95 V	0	1 (4) × t _{I3Ccyc}	ns
	ウェイクアップ機能が無 効な場合の SDA 入力バス フリー時間	t _{BUF}	2.70 V 以上、 1.65~1.95 V	, , , , , , , , , , , , , , , , , , ,		ns
	ウェイクアップ機能が有 効な場合の SDA 入力バス フリー時間	t _{BUF}	2.70 V 以上、 1.65~1.95 V	5(9) × t _{I3Ccyc} + 4 × t _{Tcyc} + 300	_	ns
	ウェイクアップ機能が無 効な場合のスタートコン ディション入力ホールド 時間	t _{STAH}	2.70 V 以上、 1.65~1.95 V	t _{I3Ccyc} + 300	_	ns
	ウェイクアップ機能が有 効な場合のスタートコン ディション入力ホールド 時間	t _{STAH}	2.70 V 以上、 1.65~1.95 V	1(5) × t _{I3Ccyc} + t _{Tcyc} + 300	_	ns
	リスタートコンディショ ン入力セットアップ時間	t _{STAS}	2.70 V 以上、 1.65~1.95 V	1000	_	ns
	ストップコンディション 入力セットアップ時間	tsтоs	2.70 V 以上、 1.65~1.95 V	1000	_	ns
	データ入力セットアップ 時間 t _{SDAS} 2.70 V 以上、 1.65~1.95 V t _{I3Ccyc} + 50 データ入力ホールド時間 1.65~1.95 V 2.70 V 以上、 1.65~1.95 V 0		t _{l3Ccyc} + 50	_	ns	
			0	_	ns	
	SCL、SDA の負荷容量	C _b ^(注1)	2.70 V 以上、 1.65~1.95 V	_	400	pF

注. t_{I3Ccyc}: I3C 内部基準クロック (I3Cφ) サイクル、t_{Tcyc}: TCLK の周期。 注. INCTL.DNFE が 1 でデジタルフィルタが有効な場合、INCTL.DNFS[3:0]が 0011b であると括弧内の値が適用されます。 注 1. C_b はバスラインの容量総計を意味します。

表 2.66 IIC タイミング (1)-2

パラメータ		シンボル	vcc	Min	Max	単位
IIC (ファストモード)	SCL 入力サイクル時間	t _{SCL}	2.70 V 以上、 1.65~1.95 V	10 (18) × t _{I3Ccyc} + 600	_	ns
	SCL 入力 High レベルパ ルス幅	tsclh	2.70 V 以上、 1.65~1.95 V	5 (9) × t _{I3Ccyc} + 300	_	ns
	SCL 入力 Low レベルパルス幅	t _{SCLL}	2.70 V 以上、 1.65~1.95 V	5 (9) × t _{I3Ccyc} + 300	_	ns
	SCL、SDA 立ち上がり時間	t _{Sr}	2.70 V 以上、 1.65~1.95 V	20	300	ns
	SCL、SDA 立ち下がり時 間	t _{Sf}	2.70 V 以上、 1.65~1.95 V	20×(外付けプルアップ電 圧/3.6 V)	300	ns
	SCL、SDA 入力スパイク パルス除去時間	t _{SP}	2.70 V 以上、 1.65~1.95 V	0	1 (4) × t _{I3Ccyc}	ns
	ウェイクアップ機能が無 効な場合の SDA 入力バス フリー時間	t _{BUF}	2.70 V 以上、 1.65~1.95 V	5 (9) × t _{I3Ccyc} + 300	_	ns
	ウェイクアップ機能が有 効な場合の SDA 入力バス フリー時間		2.70 V 以上、 1.65~1.95 V	5(9) × t _{I3Ccyc} + 4 × t _{Tcyc} + 300	_	ns
	ウェイクアップ機能が無 効な場合のスタートコン ディション入力ホールド 時間	t _{STAH}	2.70 V 以上、 1.65~1.95 V	t _{I3Ccyc} + 300	_	ns
	ウェイクアップ機能が有 効な場合のスタートコン ディション入力ホールド 時間		2.70 V以上、 1.65~1.95 V	$1(5) \times t_{13\text{Ccyc}} + t_{\text{Tcyc}} + 300$	_	ns
	リスタートコンディショ ン入力セットアップ時間	t _{STAS}	2.70 V 以上、 1.65~1.95 V	300	_	ns
	ストップコンディション 入力セットアップ時間	tsтоs	2.70 V 以上、 1.65~1.95 V	300	_	ns
	データ入力セットアップ 時間	t _{SDAS}	2.70 V 以上、 1.65~1.95 V	t _{I3Ccyc} + 50	_	ns
	データ入力ホールド時間	t _{SDAH}	2.70 V 以上、 1.65~1.95 V	0	_	ns
	SCL、SDA の負荷容量	C _b ^(注1)	2.70 V 以上、 1.65~1.95 V	_	400	pF

注. t_{I3Ccyc}: I3C 内部基準クロック (I3Cφ) サイクル、t_{Tcyc}: TCLK の周期。 注. INCTL.DNFE が 1 でデジタルフィルタが有効な場合、INCTL.DNFS[3:0]が 0011b であると括弧内の値が適用されます。 注 1. C_b はバスラインの容量総計を意味します。

表 2.67 IIC タイミング (1)-3

項目		シンボル	vcc	Min	Max	単位
IIC (ファストモード	SCL 入力サイクル時間	t _{SCL}	2.70 V 以上、 1.65~1.95 V	10 (18) × t _{I3Ccyc} + 240	_	ns
+) BFCTL.FMPE = 1	SCL 入力 High レベルパ ルス幅	tsclh	2.70 V 以上、 1.65~1.95 V	5 (9) × t _{I3Ccyc} + 120	_	ns
	SCL 入力 Low レベルパル ス幅	t _{SCLL}	2.70 V 以上、 1.65~1.95 V	5 (9) × t _{I3Ccyc} + 120	_	ns
	SCL、SDA 立ち上がり時間	t _{Sr}	2.70 V 以上、 1.65~1.95 V	_	120	ns
	SCL、SDA 立ち下がり時 間	t _{Sf}	2.70 V 以上、 1.65~1.95 V	20×(外付けプルアップ電 圧/3.3 V)	120	ns
	SCL、SDA 入力スパイク パルス除去時間	t _{SP}	2.70 V 以上、 1.65~1.95 V	0	1 (4) × t _{I3Ccyc}	ns
	ウェイクアップ機能が無 効な場合の SDA 入力バス フリー時間	t _{BUF}	2.70 V 以上、 1.65~1.95 V	5 (9) × t _{I3Ccyc} + 120	_	ns
	ウェイクアップ機能が有 効な場合の SDA 入力バス フリー時間			5(9) × t _{I3Ccyc} + 4 × t _{Tcyc} + 120		ns
	ウェイクアップ機能が無 効な場合のスタートコン ディション入力ホールド 時間	t _{STAH}	2.70 V 以上、 1.65~1.95 V	t _{I3Ccyc} + 120	_	ns
	ウェイクアップ機能が有 効な場合のスタートコン ディション入力ホールド 時間			$1(5) \times t_{13\text{Ccyc}} + t_{\text{Tcyc}} + 120$		ns
	リスタートコンディショ ン入力セットアップ時間	t _{STAS}	2.70 V 以上、 1.65~1.95 V	120	_	ns
	ストップコンディション 入力セットアップ時間	t _{STOS}	2.70 V 以上、 1.65~1.95 V	120	_	ns
	データ入力セットアップ 時間	t _{SDAS}	2.70 V 以上、 1.65~1.95 V	t _{I3Ccyc} + 30	_	ns
	データ入力ホールド時間	t _{SDAH}	2.70 V 以上、 1.65~1.95 V	0	_	ns
	SCL、SDA の負荷容量	C _b ^(注1)	2.70 V 以上、 1.65~1.95 V	_	550	pF

注. t_{I3Ccyc}: I3C 内部基準クロック (I3Cφ) サイクル、t_{Tcyc}: TCLK の周期。 注. INCTL.DNFE が 1 でデジタルフィルタが有効な場合、INCTL.DNFS[3:0]が 0011b であると括弧内の値が適用されます。 注 1. C_b はバスラインの容量総計を意味します。

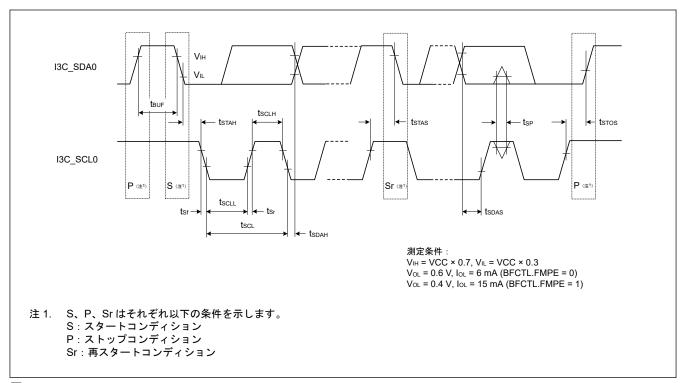


図 2.89 I²C パスインタフェース入出力タイミング

表 2.68 IIC タイミング (2)

パラメータ			シンボル	vcc	Min	Max	単位
IIC	SCL 入力サイクル	時間	t _{SCL}	3.00 V 以上	46 (48) × t _{I3Ccyc}	_	ns
(Hs モー ド)				1.65~1.95 V	46 (48) × t _{I3Ccyc}	_	
BFCTL.HS ME = 1	SCL 入力 High レ	Cb = 400 pF	t _{SCLH}	3.00 V 以上	29 (30) × t _{I3Ccyc}	_	ns
	ベルパルス幅			1.65~1.95 V	29 (30) × t _{I3Ccyc}	_	
		Cb = 100 pF	-	3.00 V 以上	13 (14) × t _{I3Ccyc}	_	
				1.65~1.95 V	13 (14) × t _{I3Ccyc}	_	
	SCL 入力 Low レ	Cb = 400 pF	t _{SCLL}	3.00 V 以上	69 (70) × t _{I3Ccyc}		ns
	ベルパルス幅			1.65~1.95 V	69 (70) × t _{I3Ccyc}		
		Cb = 100 pF	_	3.00 V 以上	33 (34) × t _{I3Ccyc}	_	
		·		1.65~1.95 V	33 (34) × t _{I3Ccyc}		
	SCL 立ち上がり	Cb = 400 pF	t _{SrCL}	3.00 V 以上		80	ns
	時間	Cb = 100 pF	SICL	1.65~1.95 V	_	80	
			_	3.00 V 以上	_	40	
				1.65~1.95 V	_	40	
	SDA 立ち上がり	Cb = 400 pF	t _{SrDA}	3.00 V 以上	_	160	ns
	時間	·	O.D.	1.65~1.95 V	_	160	
		Cb = 100 pF	_	3.00 V 以上	_	80	
				1.65~1.95 V	_	80	
	SCL 立ち下がり	Cb = 400 pF	t _{SfCL}	3.00 V 以上	_	80	ns
	時間			1.65~1.95 V	_	80	
		Cb = 100 pF		3.00 V 以上	_	40	
				1.65~1.95 V	_	40	
	SDA 立ち下がり	Cb = 400 pF Cb = 100 pF	t _{SfDA}	3.00 V 以上	_	160	ns
	時間			1.65~1.95 V	_	160	
				3.00 V 以上	_	80	
				1.65~1.95 V	_	80	
		パイクパルス除去時	t _{SP}	3.00 V 以上	0	1 (1) × t _{I3Ccyc}	ns
	間			1.65~1.95 V	0	1 (1) × t _{I3Ccyc}	
		ィション入力セット	t _{STAS}	3.00 V 以上	40	_	ns
	アップ時間			1.65~1.95 V	40	_	
		ション入力セットア	t _{STOS}	3.00 V 以上	40	_	ns
	ップ時間			1.65~1.95 V	40		
	データ入力セット	アップ時間	t _{SDAS}	3.00 V 以上	10	_	ns
				1.65~1.95 V	10		
	データ入力ホール ド時間	Cb = 400 pF	t _{SDAH}	3.00 V 以上	0	150	ns
	1 HAIHI			1.65~1.95 V	0	150	
		Cb = 100 pF		3.00 V 以上	0	70	
				1.65~1.95 V	0	70	
	SCL、SDA の負荷	容量	C _b ^(注1)	3.00 V 以上	_	400	pF
				1.65~1.95 V	_	400	

- 注. t_{I3Ccyc}: I3C 内部基準クロック (I3Cφ) サイクル。
- 注. INCTL.DNFE が 1 でデジタルフィルタが有効な場合、INCTL.DNFS[3:0]が 0011b であると括弧内の値が適用されます。
- 注 1. C_b はバスラインの容量総計を意味します。

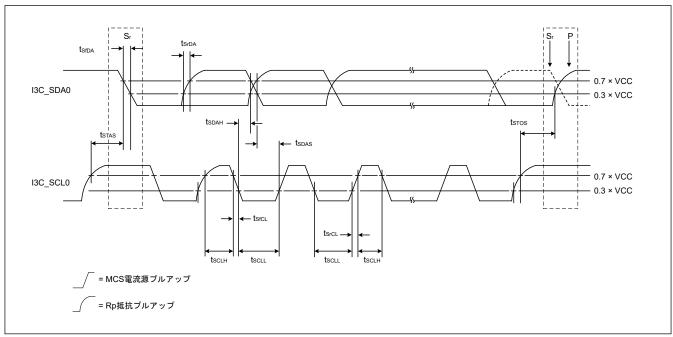


図 2.90 I²C バスインタフェース入出力タイミング(Hs モード)

表 2.69 I3C タイミング (オープンドレインタイミングパラメータ)

ペラメータ		シンボル	vcc	Min	Max	単位	測定条件	
3C	SCLクロッ	t _{LOW_OD} (注1)	3.00 V 以上	200	_	ns	図 2.93	
ープンド ノインタイ	ク Low 期間	(注2)	1.65~1.95 V	200	_			
ングパラ ニータ		t _{DIG_OD_L}	3.00 V 以上	t _{LOW_ODmin} + t _{fDA_ODmin}	_	ns	図 2.93	
			1.65~1.95 V	t _{LOW_ODmin} + t _{fDA_ODmin}	_			
	SCL クロッ	t _{HIGH} (注3)	3.00 V 以上	_	41	ns	図 2.91	
	ク High 期間	(注4)	1.65~1.95 V	_	41			
		t _{DIG_H}	3.00 V 以上	_	t _{HIGH} + t _{CF}	ns	図 2.91	
			1.65~1.95 V	_	t _{HIGH} + t _{CF}			
	SDA 信号立	t _{fDA_OD}	3.00 Ⅴ以上	t _{CF}	12	ns	図 2.93	
			1.65~1.95 V	t _{CF}	12			
	SDA データ	t _{SU_OD} (注1)	3.00 V 以上	12	1_	ns	図 2.92	
	プ時間オー プンドレイ	60_05	1.65~1.95 V	18	_			
	スタート (S)	t _{CAS} (注5) (注6)	3.00 ∨ 以上	38.4 ナノ	ENAS0: 1 μ	秒	図 2.93	
	コンディシ ョン後クロ				ENAS1: 100 μ			
	ック				ENAS2: 2 ₹ IJ			
					ENAS3: 50 ミリ			
			1.65~1.95 V	38.4 ナノ	ENAS0: 1 μ			
					ENAS1: 100 μ			
					ENAS2: 2 ≷ IJ			
					ENAS3: 50 ミリ			
	ストップ (P)	t _{CBP}	3.00 V 以上	t _{CASmin} / 2	_	秒	図 2.94	
	コンディシ ョン前クロ ック		1.65~1.95 V	t _{CASmin} / 2	_			
	ハンドオフ	t _{MMOverlap}	3.00 V 以上	t _{DIG_OD_Lmin}	_	ns	図 2.100	
	中のカレン トマスタか らセカンダ リマスタま でのオーバ ーラップ時 間		1.65~1.95 V	t _{DIG_OD_Lmin}	_			
	バス使用可	t _{AVAL} (注7)	3.00 V 以上	1		μs	_	
	能条件		1.65~1.95 V	1				
	バスアイド	t _{IDLE}	3.00 V 以上	1		ms	_	
	ル条件		1.65~1.95 V	1				
	SDA Low 駆	t _{MMLock}	3.00 V 以上	t _{AVALmin}	_	μs	図 2.100	
	動していない新マスタの内部時間		1.65~1.95 V	t _{AVALmin}	_			

- 注 1. t_{LOWmin} + t_{DS_ODmin} + t_{rDA_ODtyp} + t_{SU_Odmin} と近似的に同じです。 注 2. 安全な場合、すなわち SDA がすでに VIH を上回っている場合、マスタは短い Low 期間を使用する可能性があります。
- t_{SPIKE}、立ち上がり/立ち下がり時間、インターコネクトに基づきます。 注 3.
- この最大 High 期間は、レガシー I²C デバイスで信号を安全に確認できる場合や、インターコネクトを考慮した上で(バスが短い場 合など)、超過する場合があります。 製品仕様上、この最大値を保証できない場合、この最大値を変更し、ミックスバスで使用できないように指定してください。
- 注 5. I²C デバイスがスタートを確認する必要があるレガシーバス上

注 6. オプションの ENTASx CCC をサポートしていないスレーブは、ENTAS3 に示されている t_{CAS} 最大値を使用します。

注 7. Fm レガシー I^2 C デバイスのミックスバス上で、 t_{AVAL} は Fm バスフリー条件時間 (t_{BUF}) より 300 ns 短いです。

表 2.70 I3C タイミング(SDR モードおよび HDR-DDR モード用プッシュプルタイミングパラメータ)

パラメータ			シンボル	vcc	Min	Max	単位	測定条件
DR E —	SCL クロック周波	'数	f _{SCL} (注1)	3.00 V 以上	0.01	12.5	MHz	_
と HDR- DR モー				1.65~1.95 V	0.01	12.5		
の I3C 『ッシュ	SCL クロック Low	/期間	t _{LOW}	3.00 V 以上	27	_	ns	図 2.91
ルタイ				1.65~1.95 V	32	_		
ングパ メータ			t _{DIG_L} (注2)	3.00 V 以上	35	_	ns	図 2.91
			(注4)	1.65~1.95 V	40	_		
	ミックスバスにお		t _{HIGH_MIXE}	3.00 V 以上	24	_	ns	図 2.91
	クロックの High 其	阴間	D	1.65~1.95 V	27	_		
			t _{DIG_H_MIX}	3.00 V 以上	32	45	ns	図 2.91
			ED ^(注2) (注3)	1.65~1.95 V	35	45		
	SCL クロック Hig	h 期間	t _{HIGH}	3.00 V 以上	24	_	ns	図 2.91
				1.65~1.95 V	27	_		
			t _{DIG_H} (注2)	3.00 V 以上	32	_	ns	図 2.91
				1.65~1.95 V	35	_		
	スレーブ用データ出力クロッ ク		t _{SCO}	3.00 V 以上	_	12	ns	図 2.96
				1.65~1.95 V	_	12		
	SCL クロック立ち上がり時間		間 t _{CR}	3.00 V 以上	_	150×1/f _{SCL} (上 限 60)	ns	図 2.91
				1.65~1.95 V	_	150×1/f _{SCL} (上 限 60)		
	SCL クロック立ち下がり時間		t _{CF}	3.00 V 以上	_	150×1/f _{SCL} (上限60)	ns	図 2.91
				1.65~1.95 V	_	150×1/f _{SCL} (上限60)		
	プッシュプルモ	マスタ	t _{HD PP} (注4)	3.00 V 以上	t _{CR} + 3, t _{CF} + 3	_	_	図 2.95
	ードの SDA 信号 データホールド		(注5)	1.65~1.95 V	t _{CR} + 3, t _{CF} + 3	_	1	
		スレーブ	t _{HD_PP} (注5)	3.00 V 以上	0	_	_	図 2.95
				1.65~1.95 V	0	_		
	プッシュプルモー		t _{SU_PP}	3.00 V 以上	12	N/A	ns	図 2.97
	信号データセット	アップ		1.65~1.95 V	18	N/A	1	
	繰り返しのスター	ト (Sr) 後ク	t _{CASr}	3.00 V 以上	t _{CASmin}	N/A	ns	図 2.99
	ロック			1.65~1.95 V	t _{CASmin}	N/A	1	
	繰り返しのスター	ト (Sr) 前ク	t _{CBSr}	3.00 V 以上	t _{CASmin} / 2	N/A	ns	図 2.99
	ロック	, ,		1.65~1.95 V	t _{CASmin} / 2	N/A	1	E 2.00
<u> </u>	バスライン (SDA/	SCL) ごと	C _b	3.00 V 以上		50	pF	_
	ハスライン (SDA/SCL) こと の負荷容量	D	1.65~1.95 V		50	١٣.		

注 1. $f_{SCL} = 1 / (t_{DIG_L} + t_{DIG_H})$

注 2. t_{DIG_L} および $t_{DIG_H}^-$ は、 V_{IL} 、 V_{IH} を使用した I3C バスのレシーバー終了時の Low および High 期間クロックです。

注 3. ミックスバス上で I3C デバイスと通信する際は、 I^2 C デバイスが I3C シグナリングを有効な I^2 C シグナリングと解釈しないようにするため、 $t_{DIG_H_MIXED}$ 期間に制約を設ける必要があります。

注 4. 両エッジが使用されているとき、ホールド時間はそれぞれのエッジを満たす必要があります。すなわち、立ち下がりエッジクロックに対して $t_{CF}+3$ 、立ち上がりエッジクロックに対して $t_{CR}+3$ です。

注 5. ホールド時間パラメータは、SDR モードでは「 t_{HD_SDR} 」と表され、DDR モードでは「 t_{HD_DDR} 」と表されます。

表 2.71 I3C タイミング(HDR-TSP モードおよび HDR-TSL モード用プッシュプルタイミングパラメータ)

項目		シンボル	vcc	Min	Max	単位	測定条件
HDR-TSP モー	エッジ間期間	t _{EDGE} (注1) (注2)	3.00 V 以上	t _{DIG_H}	_	ns	図 2.101
ドおよび HDR-TSL モード用			1.65∼1.95 V	t _{DIG_H}	_		
│I3C プッシュプ │ルタイミング	"同時"変更信号 の間で許容され る差異	t _{SKEW}	3.00 V 以上	_	11	ns	
パラメータ			1.65~1.95 V	_	11		
	シンボル間の安 定した状態	t _{EYE}	3.00 V 以上	12	_	ns	
			1.65~1.95 V	12	_		
	連続するシンボ	t _{SYMBOL}	3.00 V 以上	t _{EDGE Min}	— ns		
	ル間の時間		1.65∼1.95 V	t _{EDGE Min}	_		
		tclock	3.00 V 以上	1 / f _{SCL} (Max)	_		
	ク 		1.65~1.95 V	1 / f _{SCL} (Max)	_		

- 注 1. 1 / (t_{EDGE} × 2) の割合でエッジ発生
- 注 2. ミックスバスでは、HDR-TSL は図 2.94 に示す最大 t_{DIG H MIXED} に従うこととします。

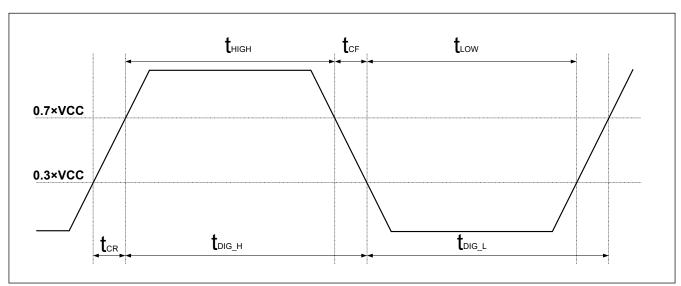


図 2.91 t_{DIG_H} 、 t_{DIG_L}

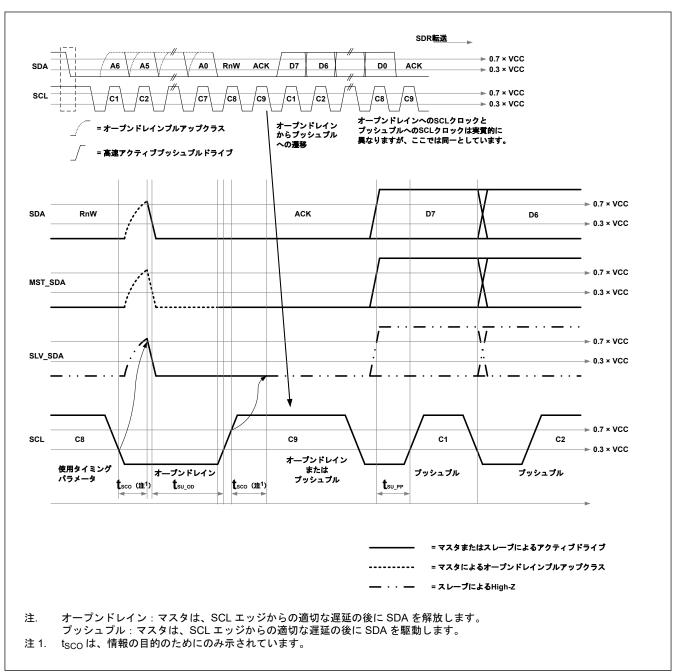


図 2.92 I3C データ転送 – スレーブによる ACK

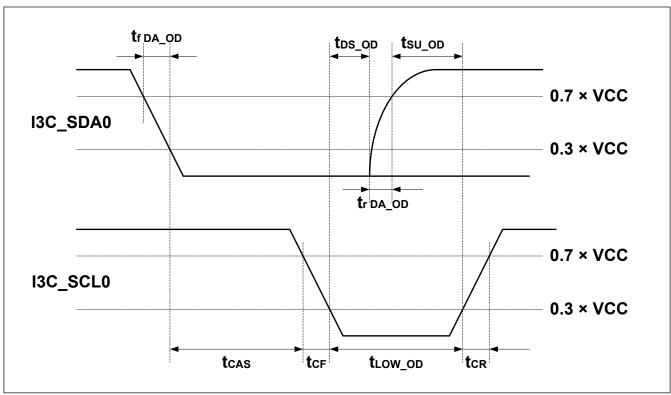


図 2.93 I3C スタートコンディションタイミング

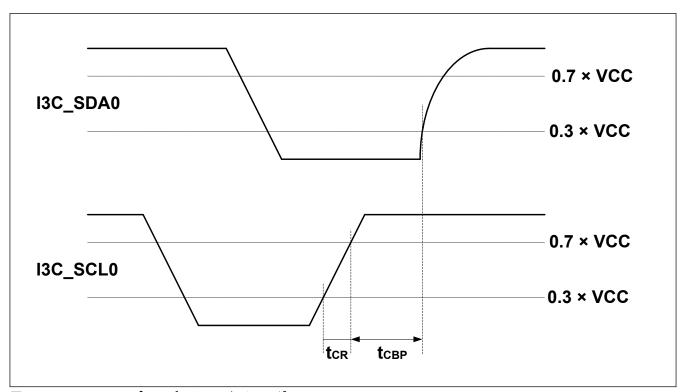


図 2.94 I3C ストップコンディションタイミング

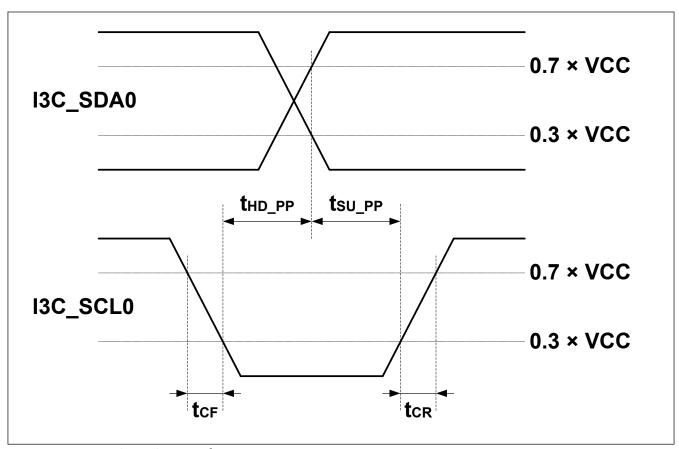


図 2.95 I3C マスタ出力タイミング

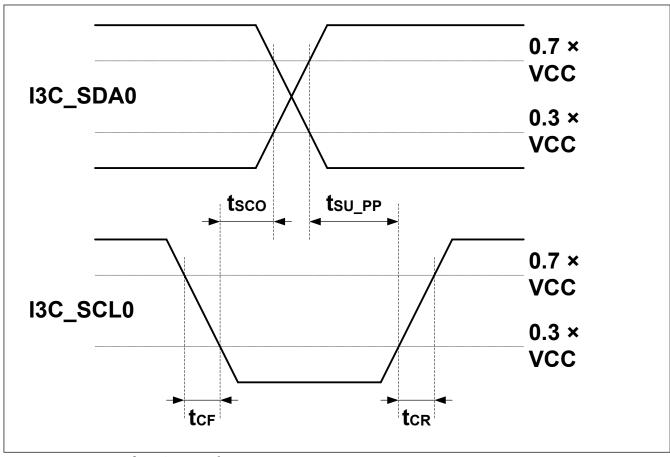


図 2.96 I3C スレーブ出力タイミング

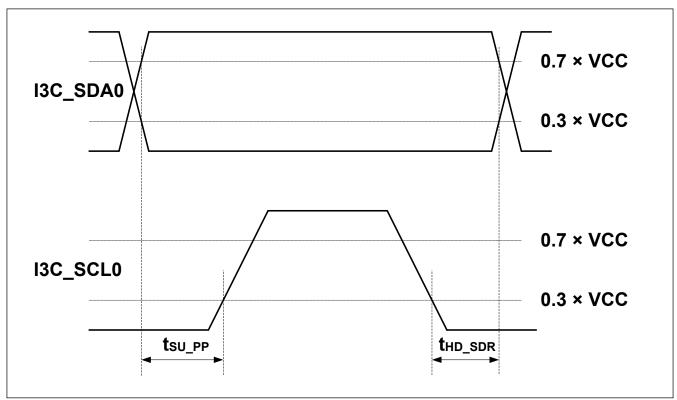


図 2.97 マスタ SDR タイミング

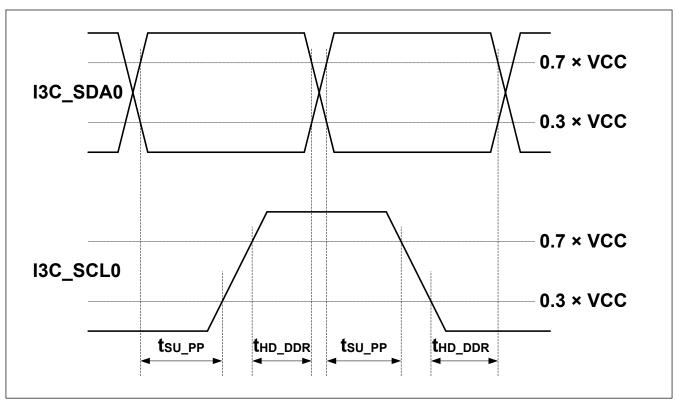


図 2.98 マスタ DDR タイミング

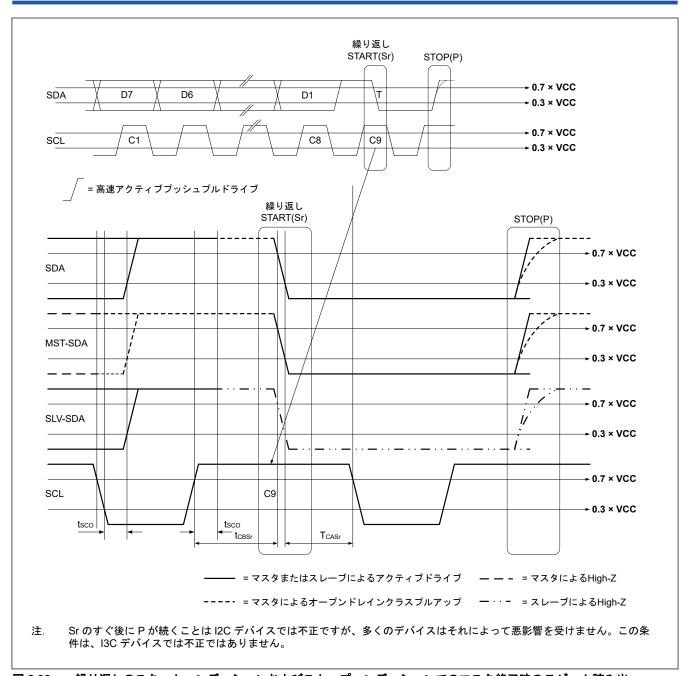


図 2.99 繰り返しのスタートコンディションおよびストップコンディションでのマスタ終了時の T ビット読み出し

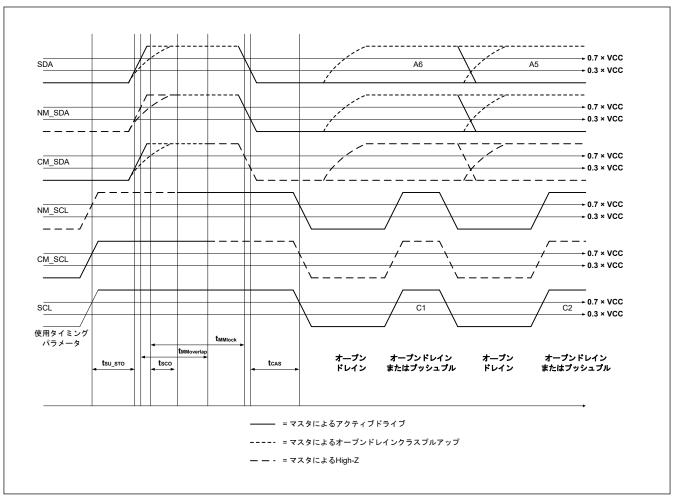
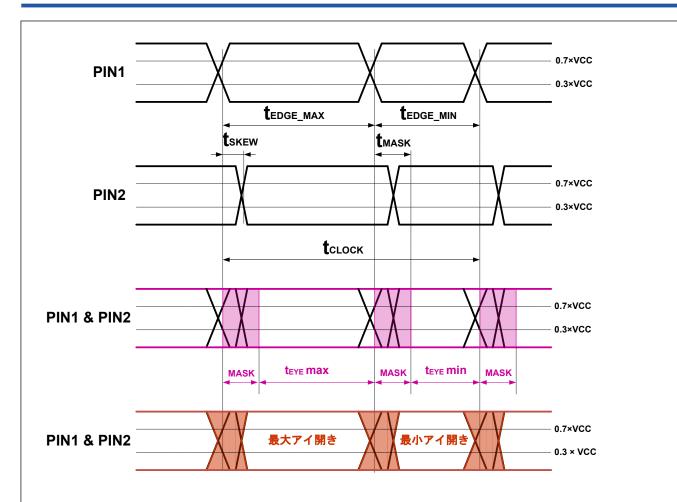



図 2.100 マスタ間のバス移管

設計条件

- 1. 図のようにSDAラインとSCLラインの間の負荷の大きさと駆動力の差異によって異なるスロープとなる。
- 2. 0.3 × Vooと0.7 × Vooの間では、それぞれマスク期間 (≧ 最大tskew + 最大立ち上がり時間/立ち下がり時間) はヒステリシスウィンドウを横断する時間だけ短縮する。

前提の単純化

- 1. tskewは両エッジともに同一。
- 2. ベースクロック (例: 12.5 MHz) は非対称。
- 3. 立ち下がりエッジは立ち上がりエッジに等しい。
- 4. マスクは可能な最後の瞬間からの開始として示される。ただし、ヒステリシスウインドウ分の遅延により 実際には左へ(開始点方向へ)ずれる可能性がある。

図 2.101 Ternary プロトコルタイミング

2.3.14 SSIE タイミング

SSIE タイミング 表 2.72

- (1) PmnPFS レジスタのポート駆動能力ビットで高駆動出力が選択されています。 (2) 属するグループを示すため、例えば_A、_B、_C といった文字が端子名に付加されています。同じ文字が付加された端子を使用してください。SSIE インタフェースについては、電気的特性の AC タイミングを各グループで測定しています。

項目			シンボル	vcc	Min	Max	単位	注記
SSIBCK	サイクル	マスタ	t _O	2.70 V 以上	80	_	ns	図 2.102
				1.62 V 以上	80	<u> </u>		
		スレーブ	t _l	2.70 V 以上	80	_	ns	
				1.62 V 以上	80	_		
	High レベル/	マスタ	t _{HC} /t _{LC}	2.70 V 以上	0.35	_	t _O	
	Low レベル			1.62 V 以上	0.35	<u> </u>		
		スレーブ	Ī	2.70 V 以上	0.35	_	t _l	
				1.62 V 以上	0.35	_		
	立ち上がり/立	マスタ	t _{RC} /t _{FC}	2.70 V 以上	_	0.15	t _O / t _I	
	ち下がり時間 			1.62 V 以上	_	0.15		
		スレーブ		2.70 V 以上	_	0.15	t _O / t _I	
			1	1.62 V 以上	_	0.15		
SSILRCK/	入力セットアッ	マスタ	t _{SR}	2.70 V 以上	12	_	ns	図 2.104 図
SSIFS, SSITXD0,	プ時間			1.62 V 以上	20	_		2.105
SSIRXD0, SSIDATA1		スレーブ		2.70 V 以上	12	_	ns	
SSIDAIAI				1.62 V 以上	12	_		
	入力ホールド時	マスタ	t _{HR}	2.70 V 以上	8	_	ns	
	間			1.62 V 以上	8	_		
		スレーブ		2.70 V 以上	15	_	ns	
				1.62 V 以上	15	<u> </u>		
	出力遅延時間	マスタ	t _{DTR}	2.70 V 以上	-10	5	ns	
				1.62 V 以上	-10	7		
		スレーブ		2.70 V 以上	0	20	ns	
				1.62 V 以上	0	25		
	SSILRCK/	スレーブ	t _{DTRW}	2.70 V 以上	_	20	ns	図 2.106(注1)
	SSIFS 変化時か らの出力遅延時 間			1.62 V 以上	_	25		
GTIOC2A,	サイクル	!	t _{EXcyc}	2.70 V 以上	20	_	ns	図 2.103
AUDIO_CLK				1.62 V 以上	40	_	1	
	High レベル/Lo	High レベル/Low レベル		2.70 V 以上	0.4	_	t _{EXcyc}	
			t _{EXL} /t _{EXH}	1.62 V 以上	0.4	_		
	立ち上がり時間/	/立ち下がり時間	t _{EXf} /t _{EXr}	2.70 V 以上	_	0.1 ^(注2)	t _{EXcyc}	
				1.62 V 以上	1_	0.1(注2)	1	

注 1. SSIE はスレーブモード送信用に 1 本の経路を備え、その経路により SSILRCK/SSIFS 端子からの信号入力が送信データの生成に使 用され、送信データが SSITXD0 端子または SSIDATA1 端子へ論理出力されます。

注 2. 最長 1 µs。

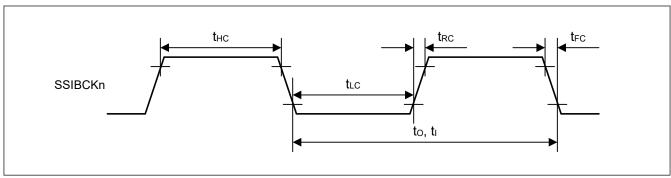


図 2.102 SSIE クロック入出力タイミング

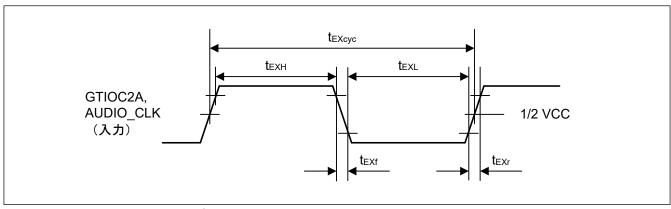


図 2.103 クロック入力タイミング

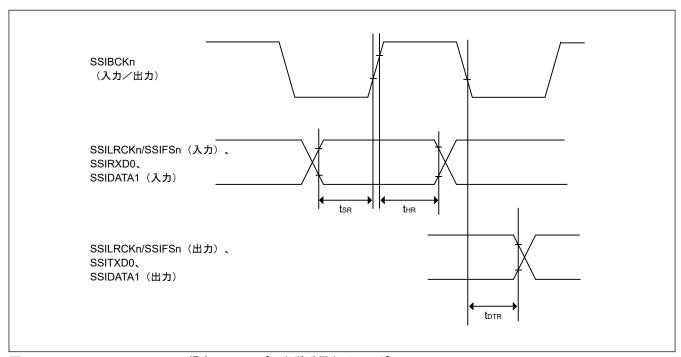


図 2.104 SSICR.BCKP = 0 の場合の SSIE データ送受信タイミング

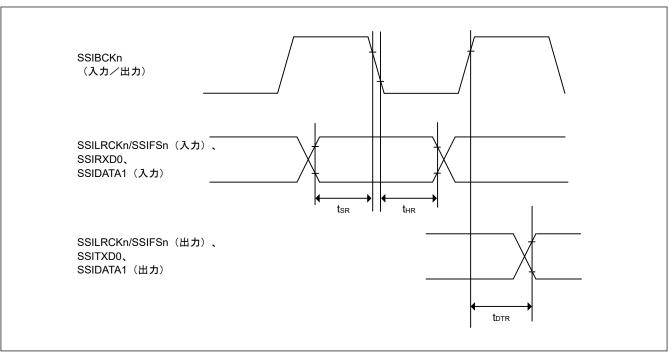


図 2.105 SSICR.BCKP = 1 の場合の SSIE データ送受信タイミング

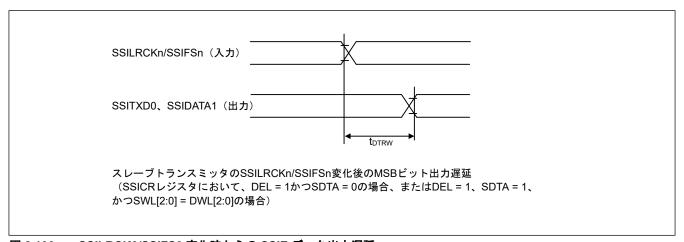


図 2.106 SSILRCK0/SSIFS0 変化時からの SSIE データ出力遅延

SD/MMC ホストインタフェースタイミング 2.3.15

表 2.73 SD/MMC ホストインタフェース信号タイミング

条件:

以下の端子は、PmnPFS レジスタのポート駆動能力ビットで高速高駆動出力が選択されています:

SD0CLK_A, SD0CLK_B, SD0CLK_C, SD1CLK_A, SD1CLK_B

その他の端子は、PmnPFS レジスタのポート駆動能力ビットで高駆動出力が選択されています。 クロックデューティー比は 50%です。

項目	シンボル	VCC/VCC2	Min	Max	単位	測定条件
SDCLK クロックサイク	tsdcyc	2.70 V 以上	20	_	ns	図 2.107
ル		1.70~1.95 V ^(注1)	20	_		
		1.70~1.95 V	40	_		
SDCLK クロック High レ	t _{SDWH}	2.70 V 以上	6.5	_	ns	
ベルパルス幅		1.70~1.95 V ^(注1)	6.5	_		
		1.70~1.95 V	13.0	_		
SDCLK クロック Low レ	t _{SDWL}	2.70 V 以上	6.5	_	ns	
ベルパルス幅		1.70~1.95 V ^(注1)	6.5	_		
		1.70~1.95 V	13.0	_		
SDCLK クロック立ち上	t _{SDLH}	2.70 V 以上	_	3	ns	
がり時間 		1.70~1.95 V ^(注1)	_	4		
		1.70∼1.95 V	_	8		
SDCLK クロック立ち下	t _{SDHL}	2.70 V 以上	_	3	ns	
がり時間		1.70~1.95 V ^(注1)	_	4		
		1.70~1.95 V	_	8		
SDCMD/SDDAT 出力デ	tsdodly	2.70 V 以上	-7.0	4.0	ns	
一タ遅延		1.70~1.95 V ^(注1)	-7.0	7.0		
		1.70~1.95 V	-15.0	15.0		
SDCMD/SDDAT 入力デ	t _{SDIS}	2.70 V 以上	4.5	_	ns	
ータセットアップ		1.70~1.95 V ^(注1)	4.5	_		
		1.70~1.95 V	20.0	_		
SDCMD/SDDAT 入力デ	tsdih	2.70 V 以上	1.5	_	ns	
ータホールド 		1.70~1.95 V	1.5			

属するグループを示すため、例えば_A、_Bといった文字が端子名に付加されています。同じ文字が付加された端子を使用してください。 SD/MMC ホストインタフェースについては、電気的特性の AC タイミングを各グループで測定しています。 SD1DATA タフェースについては、電気の特性の C タイミングを各グループで測定しています。 SD1DATA ON TO A WEST AND TO A 注.

注.

Ch0 グループ B ("SD0*_B") および Ch1 グループ A ("SD1*_A") にのみ対応 注 1.

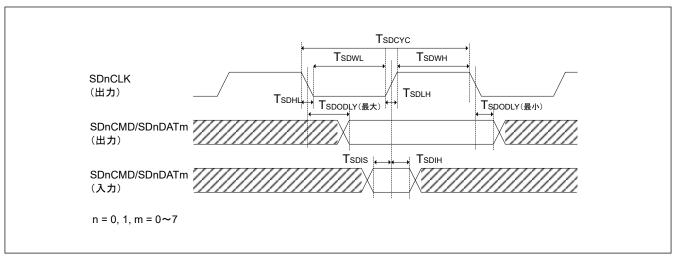


図 2.107 SD/MMC ホストインタフェース信号タイミング

2.3.16 CEU タイミング

表 2.74 キャプチャエンジンユニット信号タイミング

項目	シンボル	vcc	Min	Max	単位	測定条件
垂直同期 (VIO_VD) セットアップ時間(カメラク	t _{VVDS}	2.70 V 以上	2.0	_	ns	図 2.108
ロック立ち上がり)		1.62 V 以上	4.5	<u> </u>]	図 2.109
垂直同期 (VIO_VD) セットアップ時間(カメラク	t _{VVDS}	2.70 V 以上	2.5	<u> </u>	ns	
ロック立ち下がり)		1.62 V 以上	4.5	1-]	
垂直同期 (VIO_VD) ホールド時間	t _{VVDH}	2.70 V 以上	3.5	_	ns	
		1.62 V 以上	5.5	_		
水平同期 (VIO_HD) セットアップ時間(カメラク	t _{VHDS}	2.70 V 以上	2.0	_	ns	
ロック立ち上がり)		1.62 V 以上	4.5	-		
水平同期 (VIO_HD) セットアップ時間(カメラク	t _{VHDS}	2.70 V 以上	2.5	_	ns	
ロック立ち下がり)		1.62 V 以上	4.5	_		
水平同期 (VIO_HD) ホールド時間	t _{VHDH}	2.70 V 以上	3.5	-	ns	
		1.62 V 以上	5.5	-		
キャプチャ画像データ (VIO_D) セットアップ時	t _{VDTS}	2.70 V 以上	2.0	-	ns	
間(カメラクロック立ち上がり)		1.62 V 以上	4.5	-		
キャプチャ画像データ (VIO_D) セットアップ時間 (大人スラススカナナエデリン)	t _{VDTS}	2.70 V 以上	2.5		ns	
間(カメラクロック立ち下がり)		1.62 V 以上	4.5	-		
キャプチャ画像データ (VIO_D) ホールド時間	t _{VDTH}	2.70 V 以上	3.5		ns	
		1.62 V 以上	5.5	-		
カメラクロックサイクル	t _{VCYC}	2.70 V 以上	11.5		ns	
		1.62 V 以上	23.0	-		
カメラクロック High レベル幅	t _{VHW}	2.70 V 以上	0.4 × t _{VCYC}	-	ns	
		1.62 V 以上	0.4 × t _{VCYC}	<u> </u>]	
カメラクロック Low レベル幅	t _{VLW}	2.70 V 以上	0.4 × t _{VCYC}	1_	ns	
		1.62 V 以上	0.4 × t _{VCYC}	_		
フィールド識別信号 (VIO_FLD) セットアップ時	t _{VFDS}	2.70 V 以上	2.0	<u> </u>	ns	
間(カメラクロック立ち上がり)		1.62 V 以上	4.5	_	1	
フィールド識別信号 (VIO_FLD) セットアップ時	t _{VFDS}	2.70 V 以上	2.5	_	ns	1
間(カメラクロック立ち下がり)		1.62 V 以上	4.5	_		
フィールド識別信号 (VIO_FLD) ホールド時間	t _{VFDH}	2.70 V 以上	3.5	-	ns	1
		1.62 V 以上	5.5	_		

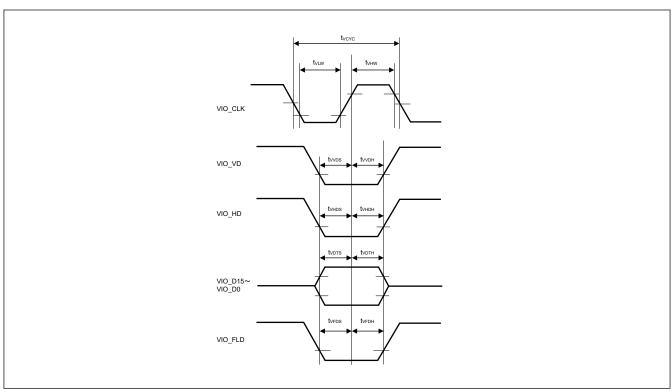


図 2.108 VIO_CLK の立ち上がりエッジによるデータキャプチャのキャプチャエンジンユニットモジュール信号 タイミング

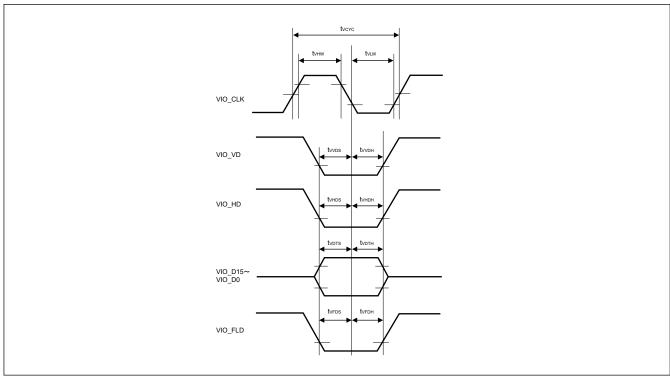


図 2.109 VIO_CLK の立ち下がりエッジによるデータキャプチャのキャプチャエンジンユニットモジュール信号 タイミング

2.3.17 CANFD タイミング

表 2.75 CANFD インタフェースタイミング

条件: VCC が 2.70 V 以上の場合、低駆動出力が選択されます。VCC が 1.62 V 以上の場合、中駆動出力が選択されます。

項目	シンボル	VCC/VCC2	Min	Max	単位	測定条件
内部遅延時間	t _{node}	2.70 V 以上	_	50	ns	図 2.110
		1.62 V 以上	_	50		
通信速度		2.70 V 以上	_	8	Mbps	
		1.62 V 以上	_	8		

注. 内部遅延時間 (t_{node}) = 内部転送遅延時間 (t_{output}) + 内部受信遅延時間 (t_{input})

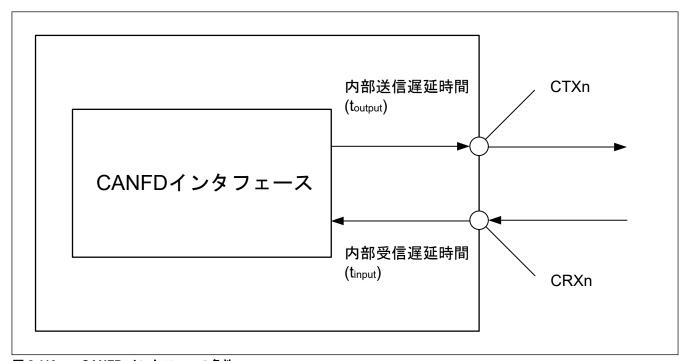


図 2.110 CANFD インタフェース条件

2.3.18 PDG タイミング

表 2.76 PDG タイミング

22	1 7 2 7				
項目	Min	Тур	Max	単位	測定条件
動作周波数	80	_	300	MHz	_
分解能		48.8	_	ps	GTDLYCR.FRANGE[1:0] = 00 および GPTCLK = 300 MHz
	_	52.1	_	ps	GTDLYCR.FRANGE[1:0] = 01 および GPTCLK = 300 MHz
DNL ^(注1)	_	±2.0	_	LSB	_

注 1. この値は、1-LSB 分解能の行間の差異を正規化します。

2.3.19 ESWM タイミング

表 2.77 ESWM タイミング (RMII)

条件:

1. 以下の端子は、PmnPFS レジスタのポート駆動能力ビットで中駆動出力が選択されています: ETn_MDC、ETn_MDIO。

2. ETn_MDC、ETn_MDIO 以外の端子の駆動能力の選択と電圧範囲。

● RMII の使用: 高駆動の選択、VCC = 2.7~3.6

項目			vcc	Min	Max	単位	測定条件
ESWM (RMII)	RMIIn_REF50CK サイクル時間 Tck 2.70 V 以上 20		20	_	ns	図 2.112	
	RMIIn_REF50CK 周波数、Typ. 50 MHz	_		_	50 + 100 ppm	MHz	
	RMIIn_REF50CK デューティー	_		35	65	%	
	RMIIn_REF50CK 立ち上がり/立ち下がり時間	Tckr/ckf		0.5	3.5	ns	
	RMIIn_xxxx ^(注1) 出力遅延時間	Тсо		2.5	12	ns	
	RMIIn_xxxx ^(注2) セットアップ時間	Tsu		3	_	ns	
	RMIIn_xxxx ^(注2) ホールド時間	Thd		1	_	ns	
	RMIIn_xxxx ^{(注1) (注2)} 立ち上がり/立ち下がり時間	Tr/Tf		0.5	4	ns	

- 注 1. RMIIn TX EN、RMIIn TXD1、RMIIn TXD0。
- 注 2. RMIIn_CRS_DV、RMIIn_RXD1、RMIIn_RXD0、RMIIn_RX_ER。

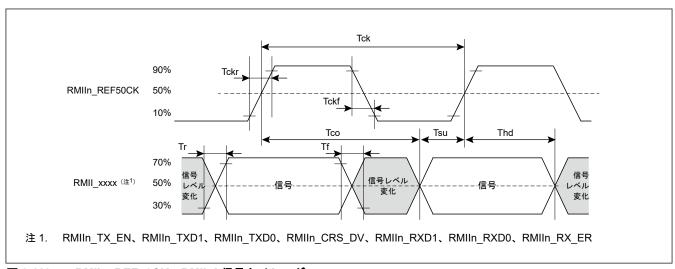


図 2.112 RMIIn_REF50CK、RMII の信号タイミング

表 2.78 ESWM タイミング (MII)

条件:

1. 以下の端子は、PmnPFS レジスタのポート駆動能力ビットで中駆動出力が選択されています: ETn_MDC、ETn_MDIO。

- 2. ETn_MDC、ETn_MDIO 以外の端子の駆動能力の選択と電圧範囲。
- MII の使用のみ:中駆動の選択、VCC = 2.7~3.6
- GMII と MII の使用: RGMII 2.50 V 駆動の選択、VCC = 2.3~2.7
- GMII と MII の使用: RGMII 3.30 V 駆動の選択、VCC = 3.0~3.6

項目		シンボル	vcc	Min	Max	単位	測定条件
ESWM (MII)	ETn_TX_CLK サイクル時間	t _{Tcyc}	2.30 V 以上	40	_	ns	_
	ETn_TX_EN 出力遅延時間	t _{TENd}		1	20	ns	図 2.113
	ETn_ETXD0~ETn_ETXD3 出力遅延時間	t _{MTDd}		1	20	ns	
	ETn_RX_CLK サイクル時間	t _{TRcyc}		40	_	ns	_
	ETn_RX_DV セットアップ時間	t _{RDVs}		10	_	ns	図 2.114
	ETn_RX_DV ホールド時間	t _{RDVh}		10	_	ns	
	ETn_ERXD0~ETn_ERXD3 セットアップ時間	t _{MRDs}		10	_	ns	
	ETn_ERXD0~ETn_ERXD3 ホールド時間	t _{MRDh}		10	_	ns	
	ETn_RX_ER セットアップ時間	t _{RERs}		10	_	ns	
	ETn_RX_ER ホールド時間	t _{RESh}	1	10	_	ns	

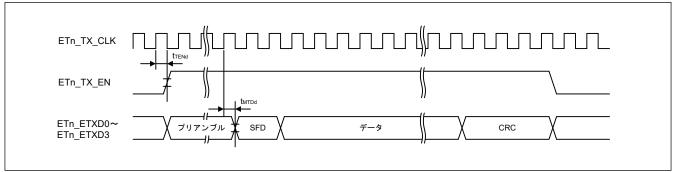


図 2.113 通常動作時の MII 送信タイミング

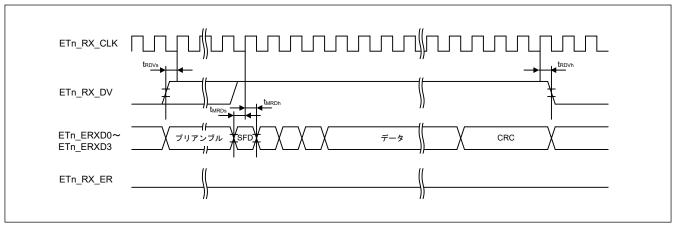


図 2.114 通常動作時の MII 受信タイミング

表 2.79 ESWM タイミング (GMII)

条件:

1. 以下の端子は、PmnPFS レジスタのポート駆動能力ビットで中駆動出力が選択されています: ETn_MDC、ETn_MDIO。

- 2. ETn_MDC、ETn_MDIO 以外の端子の駆動能力の選択と電圧範囲。
- 2.5 V での GMII の使用: RGMII 2.50 V 駆動の選択、VCC = 2.3~2.7
- 3.3 V での GMII の使用: RGMII 3.30 V 駆動の選択、VCC = 3.0~3.6

項目		シンボル	vcc	Min	Max	単位	測定条件	
ESWM (GMII)	ETn_GTX_CLK 周波数	t _{FREQ}	2.30 V~ 3.60 V	125 - 100 ppm	125 + 100 ppm	MHz	図 2.115 図 2.116	
	ETn_GTX_CLK 周期	t _{PERIOD}		7.5	8.5	ns		
	ETn_RX_CLK 周期	t _{PERIOD}		7.5	_	ns		
	ETn_GTX_CLK、ETn_RX_CLK 時間 High	t _{HIGH}		2.5	_	ns		
	ETn_GTX_CLK、ETn_RX_CLK 時間 Low	t _{LOW}		2.5	_	ns		
	ETn_GTX_CLK、ETn_RX_CLK 立ち上がり時間	t _R		_	1	ns		
	ETn_GTX_CLK、ETn_RX_CLK 立ち下がり時間	t _F		_	1	ns		
	ETn_GTX_CLK、ETn_RX_CLK スルーレートの大きさ(立ち上 がり) ^(注1)	_		0.6	_	V/ns		
	ETn_GTX_CLK、ETn_RX_CLK スルーレートの大きさ(立ち下 がり) ^(注1)	_		0.6	_ v	V/ns		
	TETN_GTX_CLK への ETN_TXD、ETN_TX_EN、 ETN_TX_ER セットアップと↑ ETN_RX_CLK への ETN_RXD、 ETN_RX_DV、ETN_RX_ER セットアップ	t _{SETUP}		2.5	_	ns		
	↑ETn_GTX_CLK からの ETn_TXD、ETn_TX_EN、 ETn_TX_ER ホールドと↑ ETn_RX_CLK からの ETn_RXD、ETn_RX_DV、 ETn_RX_ER ホールド	t _{HOLD}		0.5	_	ns		
	↑ETn_GTX_CLK への ETn_TXD、ETn_TX_EN、 ETn_TX_ER セットアップと↑ ETn_RX_CLK への ETn_RXD、 ETn_RX_DV、ETn_RX_ER セットアップ	t _{SETUP} (RCVR)		2	_	ns		
	↑GTX_CLK からの TXD、 TX_EN、TX_ER、ETn_TX_ER ホールドと↑RX_CLK からの RXD、RX_DV、RX_ER ホール ド	t _{HOLD} (RCVR)		0	_	ns		

注 1. クロックスキューレートは、立ち上がり/立ち下がり時間間隔全体の平均値ではなく、時間に関するクロック電位の変更の瞬時のレート (dV/dt) です。この仕様に従うと、クロック信号は、切り替え領域を経由して単調に立ち上がるか、または立ち下がることが保証されます。

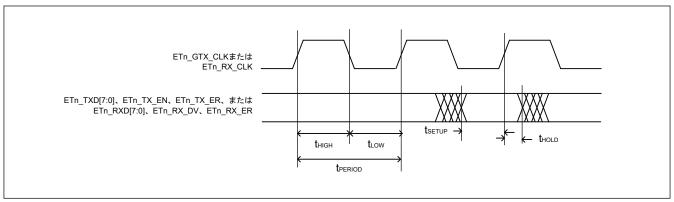


図 2.115 GMII タイミング

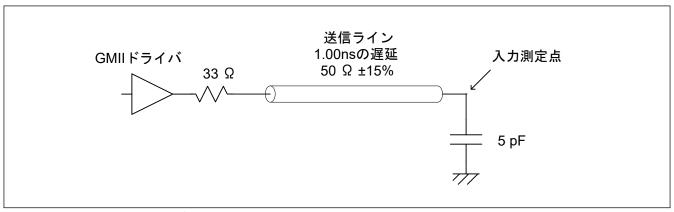


図 2.116 GMII 出力タイミング計測条件

表 2.80 ESWM タイミング (RGMII)

条件:

- 1. 以下の端子は、PmnPFS レジスタのポート駆動能力ビットで中駆動出力が選択されています: ETn_MDC、ETn_MDIO。
- 2. ETn_MDC、ETn_MDIO 以外の端子の駆動能力の選択と電圧範囲。
- 2.5 V での RGMII の使用: RGMII 2.50 V 駆動の選択、VCC = 2.3~2.7
- 3.3 V での RGMII の使用: RGMII 3.30 V 駆動の選択、VCC = 3.0~3.6

項目		シンボル	vcc	Min	Max	単位	測定条件
ESWM (RGMII)	クロック出力スキューへのデ ータ (送信部で) ^(注1)	T _{skewT}	2.30 V~ 3.60 V	-500	500	ps	図 2.117 図 2.118 図 2.440
	クロック入力スキューへのデ ータ (受信部で) ^(注1)	T _{skewR}		1	2.6	ns	2.119
	クロック出力セットアップへ のデータ(送信部統合遅延で)	T _{setupT}		1.2	_	ns	
	データ出力ホールドへのクロック (送信部統合遅延で)	T _{holdT}		1.2	_	ns	
	クロック入力セットアップへ のデータ(受信部統合遅延で)	T _{setupR}		1	_	ns	
	クロック入力ホールドへのデ ータ(受信部統合遅延で)	T _{holdR}		1	_	ns	
	クロックサイクル期間 ^(注2)	T _{cyc}		7.2	8.8	ns	
	ギガビットのデューティーサ イクル ^(注3)	Duty_G		45	55	%	
	10/100T のデューティーサイ クル ^(注3)	Duty_T		40	60	%	
	立ち上がり/立ち下がり時間 (20~80%)	T _r / T _f		_	0.75	ns	

注 1. これは、PC ボードの設計では、対応するクロック信号に 1.5 ns より長く、2.0 ns より短い追加のトレース遅延が追加されるように クロックをルーティングする必要があることを意味します。

- 注 2. 10 Mbps と 100 Mbps の場合、Tcyc はそれぞれ 400 ns +- 40 ns と 40 ns +- 4 ns に拡張されます。
- 注 3. デューティーサイクルは、最小デューティーサイクルが侵害されず、かつストレッチが最小遷移速度の 3 Tcyc 以下で発生しているかぎり、速度変更中または受信したパケットのクロックドメインへの遷移中にストレッチまたは縮小できます。

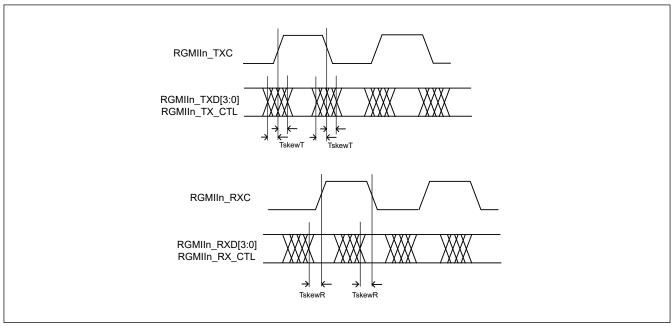


図 2.117 RGMII タイミング

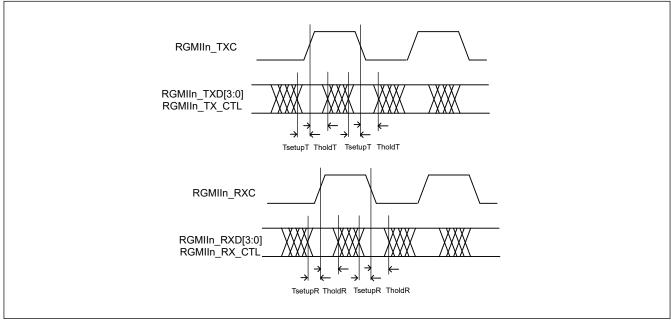


図 2.118 RGMII タイミング (RGMII-ID)

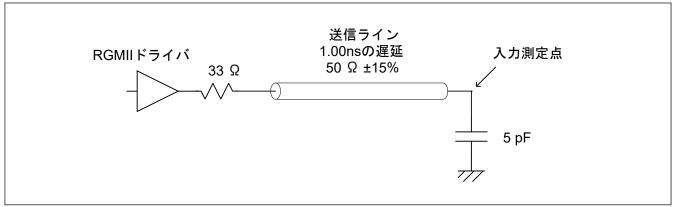


図 2.119 RGMII 出力タイミング計測条件

表 2.81 ESWM タイミング (ETn_MDIO, ETn_MDC)

条件:

1. PmnPFS レジスタのポート駆動能力ビットで中駆動出力が選択されています。

項目		シンボル	vcc	Min	Max	単位	測定条件
ESWM	ETHn_MDC 出力サイクル	t _{MDC}	2.70 V 以上	80	_	ns	図 2.120
(ETn_MDIO, ETn MDC)			2.30 V 以上	160	_	ns	
	ETHn_MDIO セットアップ時間(ETHn_MDC↑に関連)	t _{SMDIO}	2.70 V 以上	20	_	ns	
			2.30 V 以上	40	_	ns	
	ETHn_MDIO ホールド時間	t _{HMDIO}	2.70 V 以上	0	_	ns	
	(ETHn_MDC↑に関連)		2.30 V 以上	0	_	ns	
	ETHn_MDIO 出力遅延時間	t _{DMDIO}	2.70 V 以上	0	20	ns	
	(ETHn_MDC↑に関連)		2.30 V 以上	0	40	ns	

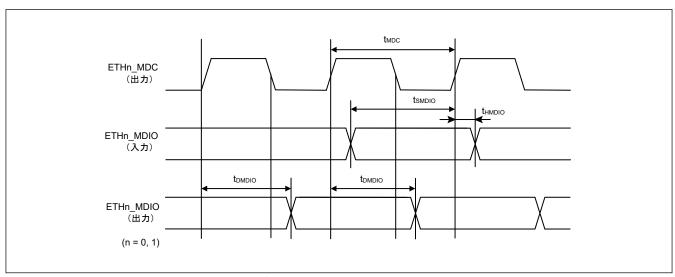


図 2.120 ETn_MDIO、ETn_MDC タイミング

2.3.20 PDMIF タイミング

表 2.82 PDMIF タイミング

条件: PmnPFS レジスタのポート駆動能力ビットで高駆動出力が選択されています。

項目	シンボル	vcc	Min	Max	単位	測定条件
クロック周期	t _{Psync}	2.70 V 以上	250	4000	ns	図 2.120
		1.62 V 以上	500	4000		
クロック High レ	t _{PDCKWH}	2.70 V 以上	t _{PSYNC} × 0.45	t _{PSYNC} × 0.55	ns	
ベル期間		1.62 V 以上	t _{PSYNC} × 0.45	t _{PSYNC} × 0.55		
クロック Low レ	t _{PDCKWL}	2.70 V 以上	t _{PSYNC} × 0.45	t _{PSYNC} × 0.55	ns	
ベル期間		1.62 V 以上	t _{PSYNC} × 0.45	t _{PSYNC} × 0.55		
クロック立ち上が	t _{PDCKr}	2.70 V 以上	_	3	ns	
り時間		1.62 V 以上	_	5		
クロック立ち下が	t _{PDCKf}	2.70 V 以上	_	3	ns	
り時間		1.62 V 以上	_	5		
セットアップ時間	t _{SU}	2.70 V 以上	15	_	ns	図 2.121 図 2.122
		1.62 V 以上	30	_		
ホールド時間	t _H	2.70 V 以上	0	_	ns	
		1.62 V 以上	0	_		

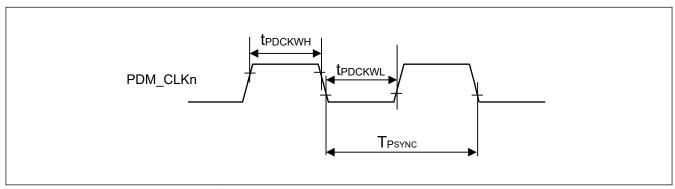


図 2.120 クロック出力のタイミング (PDM_CLKn)

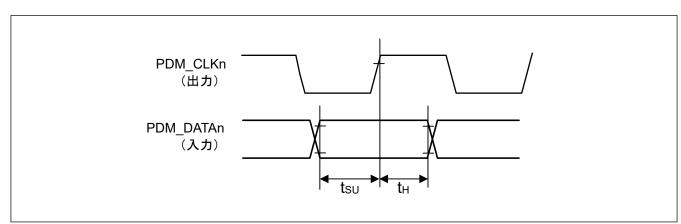


図 2.121 受信タイミング (PDM_CLKn の立ち上がりに同期)

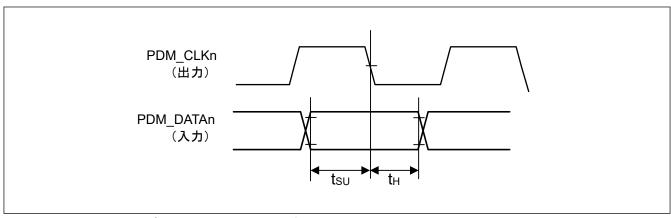


図 2.122 受信タイミング (PDM_CLKn の立ち下がりに同期)

2.4 USB 特性

2.4.1 USBFS タイミング

表 2.83 ホストに限定した USBFS 低速特性(USB_DP 端子および USB_DM 端子特性)

条件: VCC = VCC_USB = 3.0~3.6 V、USBCLK = 48 MHz

項目	項目		Min	Тур	Max	単位	測定条件
入力特性	入力 High レベル電圧	V _{IH}	2.0	_	_	V	_
	入力 Low レベル電圧	V _{IL}	_	_	0.8	V	_
	差動入力感度	V _{DI}	0.2	_	_	V	USB_DP - USB_DM
	差動コモンモードレンジ	V _{CM}	0.8	_	2.5	V	_
出力特性	出力 High レベル電圧	V _{OH}	2.8	_	3.6	V	I _{OH} = -200 μA
	出力 Low レベル電圧	V _{OL}	0.0	_	0.3	V	I _{OL} = 2 mA
	クロスオーバー電圧	V _{CRS}	1.3	_	2.0	V	図 2.123
	立ち上がり時間	t _{LR}	75	_	300	ns	
	立ち下がり時間	t _{LF}	75	_	300	ns	
	立ち上がり/立ち下がり時間比	t _{LR} / t _{LF}	80	_	125	%	t _{LR} / t _{LF}
プルアップ <i>/</i> プルダウン特 性	ホストコントローラモードにおける USB_DP、USB_DM のプルダウン抵抗	R _{pd}	14.25	_	24.80	kΩ	_

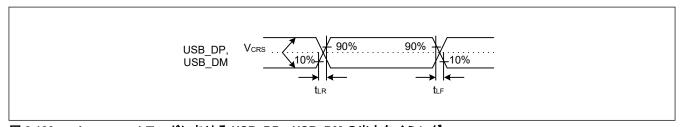


図 2.123 Low-speed モードにおける USB_DP、USB_DM の出力タイミング

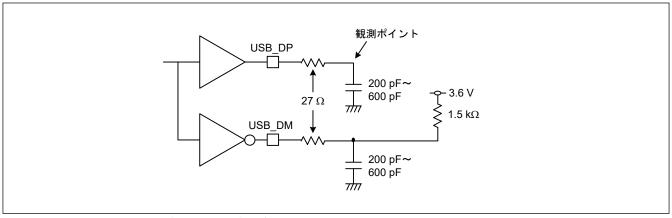


図 2.124 Low-speed モードにおける測定回路

表 2.84 USBFS フルスピード特性(USB_DP 端子および USB_DM 端子特性)

条件: VCC = VCC USB = 3.0~3.6 V、USBCLK = 48 MHz

項目		シンボル	Min	Тур	Max	単位	測定条件
入力特性	入力 High レベル電圧	V _{IH}	2.0	_	_	V	_
	入力 Low レベル電圧	V _{IL}	_	_	0.8	V	_
	差動入力感度	V _{DI}	0.2	_	_	V	USB_DP - USB_DM
	差動コモンモードレンジ	V _{CM}	0.8	_	2.5	V	_
出力特性	出力 High レベル電圧	V _{OH}	2.8	_	3.6	V	I _{OH} = -200 μA
	出力 Low レベル電圧	V _{OL}	0.0	_	0.3	V	I _{OL} = 2 mA
	クロスオーバー電圧	V _{CRS}	1.3	_	2.0	V	図 2.125
	立ち上がり時間	t _{LR}	4	_	20	ns	
	立ち下がり時間	t _{LF}	4	_	20	ns	
	立ち上がり/立ち下がり時間比	t _{LR} / t _{LF}	90	_	111.11	%	t _{FR} / t _{FF}
	出力抵抗	Z _{DRV}	28	_	44	Ω	USBFS: Rs = 27 Ω 含む
プルアップ/	デバイスコントローラモードにおける	R _{pu}	0.900	_	1.575	kΩ	アイドル状態の間
プルダウン特 性	DM プルアップ抵抗		1.425	_	3.090	kΩ	送受信中
	ホストコントローラモードにおける USB_DP、USB_DM のプルダウン抵抗	R _{pd}	14.25	_	24.80	kΩ	_

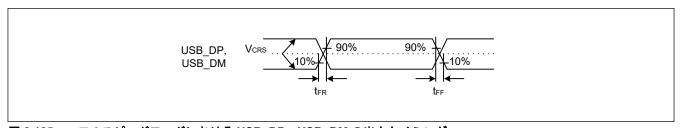


図 2.125 フルスピードモードにおける USB_DP、USB_DM の出力タイミング

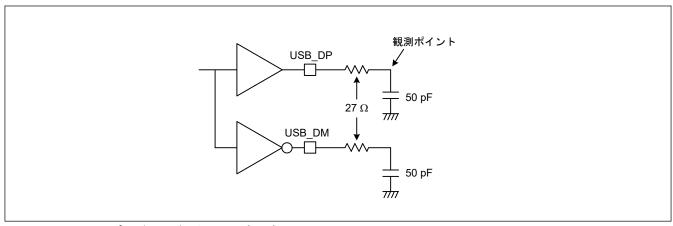


図 2.126 フルスピードモードにおける測定回路

2.4.2 USBHS タイミング

表 2.85 ホストに限定した USBHS 低速特性(USB_DP 端子および USB_DM 端子特性)

条件: USBHS_RREF = $2.2~k\Omega$ \pm 1%、USBMCLK = 12/20/24/48~MHz、USBCLK = 48~MHz、USB60CLK = 60~MHz

項目		シンボル	Min	Тур	Max	単位	測定条件
入力特性	入力 High レベル電圧	V _{IH}	2.0	_	_	V	_
	入力 Low レベル電圧	V _{IL}	_	_	0.8	V	_
	差動入力感度	V _{DI}	0.2	_	_	V	USB_DP - USB_DM
	差動コモンモードレンジ	V _{CM}	0.8	_	2.5	V	_
出力特性	出力 High レベル電圧	V _{OH}	2.8	_	3.6	V	I _{OH} = -200 μA
	出力 Low レベル電圧	V _{OL}	0.0	_	0.3	V	I _{OL} = 2 mA
	クロスオーバー電圧	V _{CRS}	1.3	_	2.0	V	図 2.127
	立ち上がり時間	t _{LR}	75	_	300	ns	
	立ち下がり時間	t _{LF}	75	_	300	ns	
	立ち上がり/立ち下がり時間比	t _{LR} / t _{LF}	80	_	125	%	t _{LR} / t _{LF}
プルアップ <i>/</i> プルダウン特 性	ホストコントローラモードにおける USB_DP、USB_DM のプルダウン抵抗	R _{pd}	14.25	_	24.80	kΩ	_

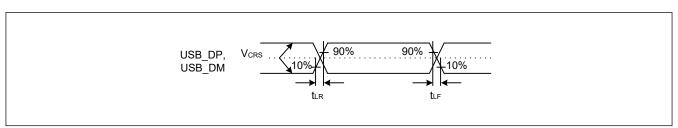


図 2.127 Low-speed モードにおける USB_DP、USB_DM の出力タイミング

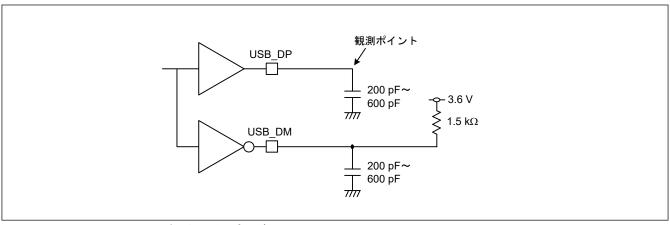


図 2.128 Low-speed モードにおける測定回路

表 2.86 USBHS フルスピード特性(USB_DP 端子および USB_DM 端子特性)

条件: USBHS RREF = 2.2 k Ω ± 1%、USBMCLK = 12/20/24/48 MHz、USBCLK = 48 MHz、USB60CLK = 60 MHz

項目		シンボル	Min	Тур	Max	単位	測定条件
入力特性	入力 High レベル電圧	V _{IH}	2.0	_	_	V	_
	入力 Low レベル電圧	V _{IL}	_	_	0.8	V	_
	差動入力感度	V _{DI}	0.2	_	_	V	USB_DP - USB_DM
	差動コモンモードレンジ	V _{CM}	0.8	_	2.5	V	_
出力特性	出力 High レベル電圧	V _{OH}	2.8	_	3.6	V	I _{OH} = -200 μA
	出力 Low レベル電圧	V _{OL}	0.0	_	0.3	V	I _{OL} = 2 mA
	クロスオーバー電圧	V _{CRS}	1.3	_	2.0	V	図 2.129
	立ち上がり時間	t _{LR}	4	_	20	ns	
	立ち下がり時間	t _{LF}	4	_	20	ns	
	立ち上がり/立ち下がり時間比	t _{LR} / t _{LF}	90	_	111.11	%	t _{FR} / t _{FF}
	出力抵抗	Z _{DRV}	40.5	_	49.5	Ω	Rs 未使用 (PHYSET.REPSEL[1:0] = 01b かつ PHYSET. HSEB = 0)
プルアップ/	デバイスコントローラモードにおける	R _{pu}	0.900	_	1.575	kΩ	アイドル状態の間
プルダウン特 性	DM プルアップ抵抗 		1.425	_	3.090	kΩ	送受信中
	ホストコントローラモードにおける USB_DP、USB_DM のプルダウン抵抗	R _{pd}	14.25	_	24.80	kΩ	_

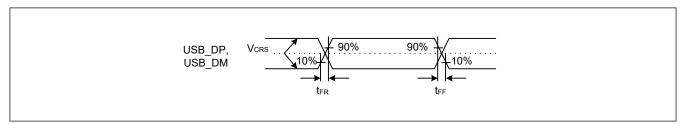


図 2.129 フルスピードモードにおける USB_DP、USB_DM の出力タイミング

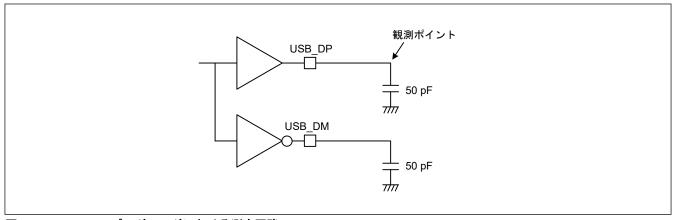


図 2.130 フルスピードモードにおける測定回路

表 2.87 USB 高速特性(USB_DP 端子および USB_DM 端子特性)

条件: USBHS RREF = $2.2 \text{ k}\Omega \pm 1\%$ 、USBMCLK = 12/20/24/48 MHz

項目		シンボル	Min	Тур	Max	単位	測定条件
入力特性	Squelch 検出感度	V _{HSSQ}	100	_	150	mV	図 2.131
	切断検出感度	V _{HSDSC}	525	_	648	mV	図 2.132
	コモンモード電圧	V _{HSCM}	-50	_	500	mV	_
出力特性	アイドル時	V _{HSOI}	-10	_	10	mV	_
	出力 High レベル電圧	V _{HSOH}	360	_	440	mV	_
	出力 Low レベル電圧	V _{HSOL}	-10	_	10	mV	_
	Chirp J 出力電圧(差分)	V _{CHIRPJ}	700	_	1100	mV	_
	Chirp K 出力電圧(差分)	V _{CHIRPK}	-900	_	-500	mV	_
AC 特性	立ち上がり時間	t _{HSR}	500	_	_	ps	_
	立ち下がり時間	t _{HSF}	500	_	_	ps	図 2.133
	出力抵抗	Z _{HSDRV}	40.5	_	49.5	Ω	

図 2.131 High-speed モードにおける USB_DP、USB_DM の Squelch 検出感度

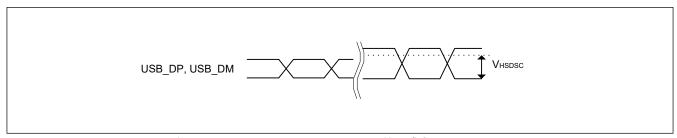


図 2.132 High-speed モードにおける USB_DP、USB_DM の切断検出感度

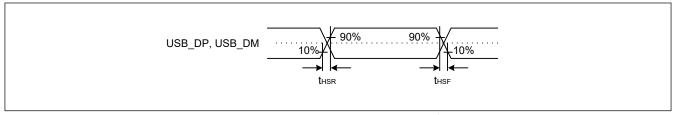


図 2.133 High-speed モードにおける USB_DP、USB_DM の出力タイミング

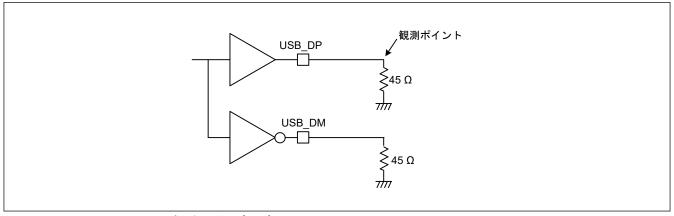


図 2.134 High-speed モードにおける測定回路

表 2.88 USBHS 高速特性(USB_DP 端子および USB_DM 端子特性)

条件: USBHS_RREF = 2.2 kΩ ± 1%、USBMCLK = 12/20/24/48 MHz

項目		シンボル	Min	Тур	Max	単位	測定条件
バッテリチャージ	D+シンク電流	I _{DP_SINK}	25	_	175	μA	_
ング規格 	D-シンク電流	I _{DM_SINK}	25	_	175	μΑ	_
	DCD ソース電流	I _{DP_SRC}	7	_	13	μΑ	_
	データ検出電圧	V _{DAT_REF}	0.25	_	0.4	V	_
	D+ソース電圧	V _{DP_SRC}	0.5	_	0.7	V	出力電流 = 250 µA
	D-ソース電圧	V _{DM_SRC}	0.5	_	0.7	V	出力電流 = 250 μA

2.5 ADC 特性

表 2.89 A/D 変換特性(共通) (1/3)

項目	Min	Тур	Max	単位	測定条件
A/D 変換クロック周波数 (ADCLK)	25	50	60	MHz	AVCC: 2.7~3.63 V
逐次比較時間	100		200	ns	VCC: 2.7~3.63 V VREFH0/VREFH: 2.7 V~AVCC

表 2.89 A/D 変換特性(共通) (2/3)

項目		2.7∼3.63 V, VREF				Min	Тур	Max	単位	測定条件		
A/D サンプリ ング時間 (通常	自己校正				SAR モード	1 × t _{ADcyc} + 40	_	_	ns	AVCC: 2.7~3.63 V VCC: 2.7~3.63 V		
フグ時间(通常モード)					オーバーサン プリングモー ド	1 × t _{ADcyc} + 40	_	_	ns	VREFH0/VREFH: 2.7 V~AVCC tCmp = 100 ns		
	自己診断				SAR モード	1 × t _{ADcyc} + 40	_	_	ns			
					オーバーサン プリングモー ド	1 × t _{ADcyc} + 40	_	_	ns			
	A/D 変換	高速チャネル	チャネル専用	(AN000~	SAR モード	1 × t _{ADcyc} + 40	ns					
			サンプル&ホ 一ルド回路不 使用時	AN005) (AN006~ AN011)	オーバーサン プリングモー ド	40	_	_	ns			
					(1 チャネル連 続スキャンモ ード)							
					オーバーサン プリングモー ド	1 × t _{ADcyc} + 40	_	_	ns			
					(シングル/連 続スキャンモ ード)							
			チャネル専用 サンプル&ホ ールド回路使	(AN000~ AN005) (AN006~	SAR モード	1 × t _{ADcyc} + 160	_	_	ns			
			用時	AN011)	ハイブリッド モード	1 × t _{ADcyc} + 160	_	_	ns			
		中速チャネル		(AN012~ AN015)	SAR モード	180	ns					
					オーバーサン プリングモー ド	200	_	_	ns			
		低速チャネル		(AN016~	SAR モード	400	_	_	ns			
			AN022)		オーバーサン プリングモー ド	400	_	_	ns			
A/D サンプリ ング時間 (高精度モー	自己校正				SAR モード	1 × t _{ADcyc} + 140 ^(注1)	_	_	ns			
F)					ハイブリッド モード	1 × t _{ADcyc} + 140 ^(注1)	_	_	ns			
	自己診断				SAR モード	1 × t _{ADcyc} + 140 ^(注1)	_	_	ns			
		T	T	T	ハイブリッド モード	1 × t _{ADcyc} + 140 ^(注1)	_	_	ns			
	A/D 変換	高速チャネル	チャネル専用 サンプル&ホ ールド回路不	(AN000~ AN005) (AN006~	SAR ŧ- ŀ	1 × t _{ADcyc} + 140 ^(注1)	_	_	ns			
			使用時	AN011)	ハイブリッドモード	1 × t _{ADcyc} + 140 ^(注1)	_	_	ns			
			チャネル専用 サンプル&ホ ールド回路使	(AN000~ AN005) (AN006~	SAR モード	1 × t _{ADcyc} + 320	_	_	ns			
			用時 	AN011)	ハイブリッド	1 × t _{ADcyc} + 320	_	_	ns			
		中速チャネル		(AN012~ AN015)	SAR E-F	400	_	_	ns			
		In the second	Α		ハイブリッド	440		_	ns			
		低速チャネル		(AN016~ AN022)	SAR E-F	840	_		ns			
			ANUZZI		ハイブリッド モード	840	_	_ _ ns				

表 2.89 A/D 変換特性(共通) (3/3)

条件: AVCC: 2.7~3.63 V, VCC: 2.7~3.63 V, VREFH0/VREFH: 2.7 V~AVCC

項目			Min	Тур	Max	単位	測定条件		
チャネル専用	サンプリング	自己校正			400	_	_	ns	AVCC: 2.7~3.63 V
サンプル&ホ ールド回路	時間	A/D 変換			400	_	_	ns	VCC: 2.7~3.63 V VREFH0/VREFH:
	ホールドモード	切り替え時間			40	_	_	ns	2.7 V~AVCC
	ホールド時間				_	_	5	μs	
動作安定時間	A/D 起動時間	2	-	_	μs				
	チャネル専用サ	ンプル&ホールト	:回路起動時間		2	_	_	μs	
	A/D 遮断時間		1	_	_	μs			
アナログ入力 電圧範囲	シングルエンド	入力電圧	ユニット0	AN000~ AN005, AN012, AN014	VREFL0	_	VRE FH0	V	_
				AN016~ AN018	VREFL0		VRE FH0	V	VCC ≧ VREFH0
					VREFL0	_	vcc	٧	VCC < VREFH0
				AN019~ AN022	VREFL0		VRE FH0	V	VCC2 ≧ VREFH0
				VREFL0	_	VCC 2	V	VCC2 < VREFH0	
		ユニット1	AN006~ AN011, AN013, AN015	VREFL	_	VRE FH	V	_	
				AN016~ AN018	VREFL	_	VRE FH	V	VCC ≧ VREFH
					VREFL	_	VCC	V	VCC < VREFH
				AN019~ AN022	VREFL		VRE FH	V	VCC2 ≧ VREFH
					VREFL	-	VCC 2	V	VCC2 < VREFH
	差動入力電圧 ^{(注}	(2)	ユニット0	AN000~ AN005	-VREFH0	-	+VR EFH 0	V	_
			ユニット1	AN006~ AN011	-VREFH	_	+VR EFH	V	_

- 注. t_{ADcyc}: ADCLK サイクル
- 注 t_{Cmp}: 逐次比較時間
- 注 1. t_{Cmp} が 100 ns よりも大きい場合、A/D サンプリング時間は以下の式よりも長くする必要があります。

 $1 \times t_{ADcyc} + 1.6 \times t_{Cmp}$

注 2. 差動入力電圧は (A_{INP} - A_{INN}) です。

A/D コンバータユニット 0:

- A_{INP} は A_{Nx} の入力電圧であり、VREFL0 $\leq A_{INP} \leq$ VREFH0 です。
- A_{INN} は A_{Ny} の入力電圧であり、 $VREFL0 \le A_{INN} \le VREFH0$ です。

A/D コンバータユニット 1:

- A_{INP} は A_{Nx} の入力電圧であり、VREFL ≦ A_{INP} ≦ VREFH です。
- A_{INN} は A_{NV} の入力電圧であり、VREFL ≦ A_{INN} ≦ VREFH です。

(x = 2i, y = 2i + 1, i = 0, 1, 2... (任意の整数))

表 2.90 A/D 変換特性(共通) (1/2)

項目						Min	Тур	Max	単位	測定条件		
A/D 変換クロッ	ク周波数 (AD	CLK)				25	50	60	MHz	AVCC: 1.62~2.7 V		
逐次比較時間						200	-	200	ns	VCC: 1.62~2.7 V VREFH0/VREFH: 1.62 V~AVCC		
A/D サンプリ ング時間 (通常	自己校正				SAR モード	1 × t _{ADcyc} + 420	-	_	ns	AVCC: 1.62~2.7 V VCC: 1.62~2.7 V		
モード)					オーバーサン プリングモー ド	1 × t _{ADcyc} + 420	_	_	ns	VREFH0/VREFH: 1.62 V~AVCC tCmp = 200 ns		
	自己診断				SAR モード	1 × t _{ADcyc} + 420	-	_	ns			
					オーバーサン プリングモー ド	1 × t _{ADcyc} + 420	-	_	ns			
	A/D 変換		チャネル専用サンプル&ホ	(AN000~ AN005)	SAR モード	1 × t _{ADcyc} + 420	-	_	ns			
			使用時		オーバーサン プリングモー ド(1 チャネル 連続スキャン モード)	440	_	_	ns			
		中凍チャネル			オーバーサン プリングモー ド(シングル/ 連続スキャン モード)	1 × t _{ADcyc} + 420	_	- ns				
		中速チャネル	•	(AN012~	SAR モード	560	-	_	ns			
				AN015)	オーバーサン プリングモー ド	560	_	ns				
		低速チャネル		(AN016~	SAR モード	800	-	_	ns			
				AN022)	オーバーサン プリングモー ド	800	-	_	ns			
A/D サンプリ ング時間	自己校正				SAR モード	1 × t _{ADcyc} + 780	-	_	ns			
(高精度モー ド)					ハイブリッド モード	1 × t _{ADcyc} + 780	-	_	ns			
	自己診断				SAR モード	1 × t _{ADcyc} + 780	_	_	ns			
					ハイブリッド モード	1 × t _{ADcyc} + 780	_	_	ns			
	A/D 変換	高速チャネル	チャネル専用 サンプル&ホ ールド回路不	(AN000~ AN005) (AN006~	SAR モード	1 × t _{ADcyc} + 780	_	_	ns			
			使用時	AN011)	ハイブリッド モード	1 × t _{ADcyc} + 780	_	_	ns			
		中速チャネル		(AN012~ AN015)	SAR モード	1200	_	_	ns			
				ANOTO	ハイブリッド モード	1200	_	_	ns			
		低速チャネル		(AN016~ AN022)	SAR モード	1680	-	_	ns			
				, ((1022)	ハイブリッド モード	1680	_	_	ns			
動作	A/D 起動時間	2	-	_	ns	AVCC: 1.62~2.7 V VCC: 1.62~2.7 V						
	A/D 遮断時間	A/D 遮断時間						-	ns	VREFH0/VREFH: 1.62 V~AVCC		

表 2.90 A/D 変換特性(共通) (2/2)

条件: AVCC: 1.62~2.7 V, VCC: 1.62~2.7 V, VREFH0/VREFH: 1.62 V~AVCC

項目				Min	Тур	Max	単位	測定条件
アナログ入力 電圧範囲	シングルエンド入力電圧	ユニット 0	AN000~ AN005, AN012, AN014	VREFL0	_	VRE FH0	V	_
			AN016~ AN018	VREFL0	_	VRE FH0	V	VCC ≧ VREFH0
				VREFL0	_	VC C	V	VCC < VREFH0
			AN019~ AN022	VREFL0	_	VRE FH0	V	VCC2 ≧ VREFH0
				VREFL0	_	VC C2	V	VCC2 < VREFH0
		ユニット1	AN006~ AN011, AN013, AN015	VREFL		VRE FH	V	_
			AN016~ AN018	VREFL	_	VRE FH	V	VCC ≧ VREFH
				VREFL	_	VC C	V	VCC < VREFH
			AN019~ AN022	VREFL	_	VRE FH	V	VCC2 ≧ VREFH
				VREFL	_	VC C2	V	VCC2 < VREFH
	差動入力電圧(注1)	ユニット 0	AN000~ AN005	-VREFH0	_	+VR EFH 0	V	_
		ユニット1	AN006~ AN011	-VREFH	_	+VR EFH	V	_

- 注. t_{ADcyc}: ADCLK サイクル
- 注 t_{Cmp}: 逐次比較時間
- 注 1. 差動入力電圧は (A_{INP} A_{INN}) です。

A/D コンバータユニット 0:

- A_{INP} は A_{Nx} の入力電圧であり、VREFL0 $\leq A_{INP} \leq VREFH0$ です。
- A_{INN} は A_{Ny} の入力電圧であり、VREFL0 $\leq A_{\text{INN}} \leq \text{VREFH0}$ です。

A/D コンバータユニット 1:

- A_{INP} は A_{Nx} の入力電圧であり、VREFL $\leq A_{INP} \leq VREFH$ です。
- A_{INN} は A_{Ny} の入力電圧であり、VREFL $\leq A_{INN} \leq VREFH$ です。

(x = 2i, y = 2i + 1, i = 0, 1, 2... (任意の整数))

表 2.91 A/D 変換特性(SAR モード: DCDC モード) (1/6)

項目	1,00.2.1	v, v 00. 2.1	7.00 V, VIVE 1107			Min	Тур	Max	単位	測定条件																							
SAR モー ド	分解能					_	-	12	ビット	_																							
SAR モー ド	シングルエン ド入力	通常モード	高精度チャネ ル (AN000~ AN005) (AN006~ AN011)	チャネル専用 サンプル&ホ ールド回路不 使用時	変換時間 ^(注1)	0.16	_	_	μs	 ADCLK: 50 MHz サンプリング時間: 3 ADCLK 逐次比較時間: 5 ADCLK 信号源インピーダンス: 50 Ω以下 																							
					オフセット誤	_	±3	±6.5	LSB	BGA パッケージ																							
					差	_	±3	±7.5	LSB	LQFP パッケージ																							
					フルスケール	_	±3	±6.5	LSB	BGA パッケージ																							
					誤差	_	±3	±7.5	LSB	LQFP パッケージ																							
					絶対精度	_	±4	±11	LSB	BGA パッケージ																							
						_	±4	±14	LSB	LQFP パッケージ																							
						DNL 微分非直線性誤差 (注3)	直線性誤差	_	±1	-1~ +1.5	LSB	BGA パッケージ																					
																	(/±3)	_	±1	-1~ +2.0	LSB	LQFP パッケージ											
					INL 積分非直	_	±2	±3	LSB	BGA パッケージ																							
	高精度チャネ ル (AN000~ AN005) (AN006~ AN011)		線性誤差	_	±2	±5	LSB	LQFP パッケージ																									
		AN005) (AN006~	チャネル専用 サンブル&ホ ールド回路使 用時	ップル&ホ ッド回路使	1.00			μs	 ADCLK: 50 MHz チャネル専用サンプル&ホールド回路のサンプリング時間: 35 ADCLK チャネル専用サンプル&ホールド回路のホールド回路のサンプル&ホールド回路のまた。 サンプリング時間: 8 ADCLK 逐次比較時間: 5 ADCLK 信号源インピーダンス: 50 Ω以下 																								
					オフセット誤	_	±1.5	±6.75	LSB	BGA パッケージ																							
					差	_	±1.5	±7.5	LSB	LQFP パッケージ																							
					フルスケール 誤差		±1.5	±6.75	LSB	BGA パッケージ																							
					· · · · · · · · · · · · · · · · · · ·	_	±1.5	±7.5	LSB	LQFP パッケージ																							
										i	i	絶	絶対精度						絶対精度	_	±5	±10.5	LSB	BGA パッケージ									
														_	±5	±11.5	LSB	LQFP パッケージ															
					DNL 微分非 直線性誤差 (注3)	_	±1	-1~ +1.5	LSB	BGA パッケージ																							
				(注: INI			_							-															(,±0)	_	±1	-1~ +2.0	LSB
															INL 積分非直 線性誤差	_	±2.5	±3.5	LSB	BGA パッケージ													
					水比缺左		±2.5	±5.5	LSB	LQFP パッケージ																							

表 2.91 A/D 変換特性(SAR モード: DCDC モード) (2/6)

項目		v, voc. <u>z.</u> .		VREFH: 2.7 V~.		Min	Тур	Max	単位	測定条件								
SAR モー ド	シングルエン ド入力	高精度モード	ル (AN000~ サンプル&	チャネル専用 サンプル&ホ ールド回路不 使用時	変換時間(注1)	0.26	_	_	μs	 ADCLK: 50 MHz サンブリング時間: 8 ADCLK 逐次比較時間: 5 ADCLK 信号源インピーダンス: 50 Ω 以下 								
					オフセット誤	_	±1.5	±4.5	LSB	BGA パッケージ								
					差	_	±1.5	±5.5	LSB	LQFP パッケージ								
					フルスケール 誤差	_	±1.5	±4.5	LSB	BGA パッケージ								
						_	±1.5	±5.5	LSB	LQFP パッケージ								
					絶対精度	_	±4	±7	LSB	BGA パッケージ								
							_	±4	±10	LSB	LQFP パッケージ							
					DNL 微分非 直線性誤差 (注3)	_	±1	-1~ +1.5	LSB	BGA パッケージ								
								(/±3)	_	±1	-1~ +2.0	LSB	LQFP パッケージ					
				INL 積分非直	_	±2	±3	LSB	BGA パッケージ									
				線性誤差	_	±2	±5	LSB	LQFP パッケージ									
		(AN006∼	レ (AN000~ サンプル&ホ N005) ールド回路使 AN006~ 用時	変換時間 ^(注2)	1.72	_	_	μs	 ADCLK: 50 MHz チャネル専用サンプル&ホールド回路のサンプリング時間: 63 ADCLK チャネル専用サンプル&ホールド回路のホールドモード遷移時間: 2 ADCLK サンプリング時間: 16 ADCLK 逐次比較時間: 5 ADCLK 信号源インピーダンス: 50 Ω 以下 									
					オフセット誤	_	±1.5	±6.75	LSB	BGA パッケージ								
					差	_	±1.5	±7.5	LSB	LQFP パッケージ								
					フルスケール	_	±1.5	±6.75	LSB	BGA パッケージ								
					誤差	_	±1.5	±7.5	LSB	LQFP パッケージ								
					絶対精度	_	±4.5	±9	LSB	BGA パッケージ								
					_	±4.5	±9.5	LSB	LQFP パッケージ									
			DNL 微分非直線性誤差	_	±1	-1 ~ +1.5	LSB	BGA パッケージ										
				(注3)	(/±3)	_	±1	-1~ +2.0	LSB	LQFP パッケージ								
														INL 積分非直	_	±2.5	±3.5	LSB
				線性誤差			±2.5	±4.5	LSB	LQFP パッケージ								

表 2.91 A/D 変換特性(SAR モード: DCDC モード) (3/6)

項目					Min	Тур	Max	単位	測定条件
SAR モー ド	シングルエン ド入力	通常モード	中速チャネル (AN012~ AN015)	変換時間(注1)	0.28	_	_	μs	 ADCLK: 50 MHz サンブリング時間: 9 ADCLK 逐次比較時間: 5 ADCLK 信号源インピーダンス: 50 Ω 以下
				オフセット誤	_	±1.5	±6.5	LSB	BGA パッケージ
				差	_	±1.5	±6.5	LSB	LQFP パッケージ
				フルスケール	_	±1.5	±6.5	LSB	BGA パッケージ
				誤差	_	±1.5	±6.5	LSB	LQFP パッケージ
				絶対精度	_	±4	±11	LSB	BGA パッケージ
					_	±4	±15	LSB	LQFP パッケージ
				DNL 微分非直線性誤差	-	±1	-1~ +1.5	LSB	BGA パッケージ
			(注3)	_	±1	-1~ +2.0	LSB	LQFP パッケージ	
				INL 積分非直	_	±2	±3	LSB	BGA パッケージ
				線性誤差	_	±2	±3	LSB	LQFP パッケージ
			低速チャネル (AN016~ AN022)	変換時間 ^(注1)	0.5	_	_	μs	 ADCLK: 50 MHz サンプリング時間: 20 ADCLK 逐次比較時間: 5 ADCLK 信号源インピーダンス: 50 Ω以下
				オフセット誤 差	_	±1.5	±6.5	LSB	_
				フルスケール 誤差	_	±1.5	±6.5	LSB	_
				絶対精度	_	±5.5	±11	LSB	_
				DNL 微分非 直線性誤差 (注3)	_	±1	-1~ +1.5	LSB	_
				INL 積分非直 線性誤差	_	±2	±4	LSB	_

表 2.91 A/D 変換特性(SAR モード: DCDC モード) (4/6)

項目					Min	Тур	Max	単位	測定条件
SAR モー ド	シングルエン ド入力	高精度モード	中速チャネル (AN012~ AN015)	変換時間(注1)	0.5	_	_	μs	 ADCLK: 50 MHz サンブリング時間: 20 ADCLK 逐次比較時間: 5 ADCLK 信号源インピーダンス: 50 Ω 以下
				オフセット誤	_	±1.5	±4.5	LSB	BGA パッケージ
				差	_	±1.5	±4.5	LSB	LQFP パッケージ
				フルスケール	_	±1.5	±4.5	LSB	BGA パッケージ
				誤差	_	±1.5	±4.5	LSB	LQFP パッケージ
				絶対精度	_	±4	±7	LSB	BGA パッケージ
					_	±4	±11	LSB	LQFP パッケージ
				DNL 微分非 直線性誤差	_	±1	-1~ +1.5	LSB	BGA パッケージ
		(注3)	_	±1	-1~ +2.0	LSB	LQFP パッケージ		
				INL 積分非直	_	±2	±3	LSB	BGA パッケージ
				線性誤差	_	±2	±4.5	LSB	LQFP パッケージ
			低速チャネル (AN016~ AN022)	変換時間(注1)	0.94	_	_	μs	 ADCLK: 50 MHz サンプリング時間: 42 ADCLK 逐次比較時間: 5 ADCLK 信号源インピーダンス: 50 Ω 以下
				オフセット誤 差	_	±1.5	±4.5	LSB	_
				フルスケール 誤差	_	±1.5	±4.5	LSB	_
				絶対精度	_	±5.5	±8	LSB	_
				DNL 微分非 直線性誤差 (注3)	_	±1	-1~ +1.5	LSB	_
				INL 積分非直 線性誤差	_	±2	±4	LSB	_

表 2.91 A/D 変換特性(SAR モード: DCDC モード) (5/6)

項目						Min	Тур	Max	単位	測定条件
SAR モー ド	差動入力	通常モード	高精度チャネ ル (AN000~ AN005) (AN006~ AN011)	チャネル専用 サンプル&ホ ールド回路不 使用時	変換時間(注1)	0.16	_	_	μs	 ADCLK: 50 MHz サンプリング時間: 3 ADCLK 逐次比較時間: 5 ADCLK 信号源インピーダンス: 50 Ω 以下
					オフセット誤 差	_	±2	±3.5	LSB	_
					フルスケール 誤差	_	±2	±3.5	LSB	_
					絶対精度	_	±3	±6	LSB	_
					DNL 微分非 直線性誤差 (注3)	_	±0.75	±1	LSB	_
					INL 積分非直 線性誤差	_	±1.5	±2	LSB	_
			高精度チャネ ル (AN000~ AN005) (AN006~ AN011)	チャネル専用 サンプル&ホ ールド回路使 用時	変換時間 ^(注2)	1.00	_	_	μѕ	 ADCLK: 50 MHz チャネル専用サンプル&ホールド回路のサンプリング時間: 35 ADCLK チャネル専用サンプル&ホールド回路のホールドモード遷移時間: 2 ADCLK サンプリング時間: 8 ADCLK 逐次比較時間: 5 ADCLK 信号源インピーダンス: 50 Ω 以下
					オフセット誤 差	_	±1.5	±6.75	LSB	_
					フルスケール 誤差	_	±1.5	±6.75	LSB	_
					絶対精度	_	±3.5	±10.5	LSB	_
					DNL 微分非 直線性誤差 (注3)	_	±1	-1~ +1.5	LSB	_
					INL 積分非直 線性誤差	_	±2.5	±3.5	LSB	_

表 2.91 A/D 変換特性 (SAR モード: DCDC モード) (6/6)

条件: AVCC: 2.7~3.63 V, VCC: 2.7~3.63 V, VREFH0/VREFH: 2.7 V~AVCC

項目		·	·			Min	Тур	Max	単位	測定条件
SAR モー ド	差動入力	高精度モード	高精度チャネ ル (AN000~ AN005) (AN006~ AN011)	チャネル専用 サンプル&ホ ールド回路不 使用時	変換時間(注1)	0.26	_	_	μs	 ADCLK: 50 MHz サンプリング時間: 8 ADCLK 逐次比較時間: 5 ADCLK 信号源インピーダンス: 50 Ω 以下
					オフセット誤 差	_	±1	±2.5	LSB	_
					フルスケール 誤差	_	±1	±2.5	LSB	_
					絶対精度	_	±2	±4	LSB	_
					DNL 微分非 直線性誤差 (注3)	_	±0.75	±1	LSB	_
					INL 積分非直 線性誤差	_	±1.5	±2	LSB	_
			高精度チャネル (AN000~ AN005) (AN006~ AN011)	チャネル専用 サンプル&ホ ールド回路使 用時	変換時間 ^(注2)	1.72	_	_	μs	 ADCLK: 50 MHz チャネル専用サンプル&ホールド回路のサンプリング時間: 63 ADCLK チャネル専用サンプル&ホールド回路のホールドモード遷移時間: 2 ADCLK サンプリング時間: 16 ADCLK 逐次比較時間: 5 ADCLK 信号源インピーダンス: 50 Ω以下
					オフセット誤 差	_	±1.5	±6.75	LSB	_
					フルスケール 誤差	_	±1.5	±6.75	LSB	_
					絶対精度	_	±3.5	±9	LSB	_
					DNL 微分非 直線性誤差 (注3)	_	±1	-1~ +1.5	LSB	_
					INL 積分非直 線性誤差	_	±2.5	±3.5	LSB	_

注. これらの仕様値は、1 つの ADC16H だけが動作中で、DAC12 と ACMPHS が動作しておらず、かつ A/D 変換中に外部バスへのアクセスがない場合に適用されます。

他の ADC ユニット、DAC12、または ACMPHS が動作中である、または A/D 変換中にバスアクセスが発生した場合は、記載した範囲に数値が収まらない可能性があります。

ADC16H使用時は、ポート0をデジタル出力として使用しないでください。

上記の特性は、AVCCO、AVSSO、VREFHO、VREFH、VREFLO、VREFL、および ADC16H の入力電圧が安定しているときの特性です。

- 注 1. チャネル専用サンプル&ホールド回路不使用時:変換時間は、サンプリング時間と逐次比較時間の合計です。測定条件には、上記の各ステートが示されています。
- 注 2. チャネル専用サンプル&ホールド回路使用時:変換時間は、チャネル専用サンプル&ホールド回路のサンプリング時間、ホールドモード切り替え時間、サンプリング時間、逐次比較時間の合計です。測定条件には、上記の各ステートが示されています。
- 注 3. DNL はヒストグラム法を使用して計測されるため、下限値は-1 になります。

表 2.92 A/D 変換特性(SAR モード:外部 VDD モード) (1/6)

項目		·	.63 V, VREFHU/			Min	Тур	Max	単位	測定条件
SAR モー ド	分解能					_	_	12	ビッ ト	_
SAR モー ド	シングルエン ド入力	通常モード	高精度チャネ ル (AN000~ AN005) (AN006~ AN011)	チャネル専用 サンプル&ホ ールド回路不 使用時	変換時間(注1)	0.16	_	_	μs	 ADCLK: 50 MHz サンプリング時間: 3 ADCLK 逐次比較時間: 5 ADCLK 信号源インピーダンス: 50 Ω 以下
					オフセット誤 差	_	±3	±6.5	LSB	_
					フルスケール 誤差	_	±3	±6.5	LSB	_
					絶対精度	_	±4	±11	LSB	_
					DNL 微分非 直線性誤差 (注3)	_	±1	-1~ +1.5	LSB	_
					INL 積分非直 線性誤差	_	±2	±3	LSB	_
			高精度チャネル (AN000~AN005) (AN006~AN011)	チャネル専用 サンプル&ホ ールド回路使 用時	変換時間(注2)	1.00	_	_	μs	 ADCLK: 50 MHz チャネル専用サンプル&ホールド回路のサンプリング時間: 35 ADCLK チャネル専用サンプル&ホールド回路のホールドモード遷移時間: 2 ADCLK サンプリング時間: 8 ADCLK 逐次比較時間: 5 ADCLK 信号源インピーダンス: 50 Ω以下
					オフセット誤 差	_	±1.5	±6.75	LSB	_
					フルスケール 誤差	_	±1.5	±6.75	LSB	_
					絶対精度	_	±5	±10.5	LSB	_
					DNL 微分非直線性誤差 (注3)	_	±1	-1~ +1.5	LSB	_
					INL 積分非直 線性誤差	_	±2.5	±3.5	LSB	_

表 2.92 A/D 変換特性(SAR モード:外部 VDD モード) (2/6)

項目		V, VCC: 2.7~3.	,			Min	Тур	Max	単位	測定条件
SAR モー ド	シングルエン ド入力	高精度モード	高精度チャネ ル (AN000~ AN005) (AN006~ AN011)	チャネル専用 サンプル&ホ ールド回路不 使用時	変換時間(注1)	0.26	_	_	μs	 ADCLK: 50 MHz サンプリング時間: 8 ADCLK 逐次比較時間: 5 ADCLK 信号源インピーダンス: 50 Ω 以下
					オフセット誤 差	_	±1.5	±4.5	LSB	_
					フルスケール 誤差	_	±1.5	±4.5	LSB	_
					絶対精度	_	±4	±7	LSB	_
					DNL 微分非 直線性誤差 (注3)	_	±1	-1~ +1.5	LSB	_
					INL 積分非直 線性誤差	_	±2	±3	LSB	_
			高精度チャネ ル (AN000~ AN005) (AN006~ AN011)	チャネル専用 サンプル&ホ ールド回路使 用時	変換時間 ^(注2)	1.72	_	_	μѕ	 ADCLK: 50 MHz チャネル専用サンプル&ホールド回路のサンプリング時間: 63 ADCLK チャネル専用サンプル&ホールド回路のホールドモード遷移時間: 2 ADCLK サンプリング時間: 16 ADCLK 逐次比較時間: 5 ADCLK 信号源インピーダンス: 50 Ω 以下
					オフセット誤 差	_	±1.5	±6.75	LSB	_
					フルスケール 誤差	_	±1.5	±6.75	LSB	
					絶対精度	_	±4.5	±9	LSB	_
					DNL 微分非 直線性誤差 (注3)	_	±1	-1~ +1.5	LSB	_
					INL 積分非直 線性誤差	_	±2.5	±3.5	LSB	_

表 2.92 A/D 変換特性(SAR モード:外部 VDD モード) (3/6)

項目					Min	Тур	Max	単位	測定条件
SAR モー ド	シングルエン ド入力	通常モード	中速チャネル (AN012~ AN015)	変換時間(注1)	0.28	_	_	μs	 ADCLK: 50 MHz サンブリング時間: 9 ADCLK 逐次比較時間: 5 ADCLK 信号源インピーダンス: 50 Ω以下
				オフセット誤 差	_	±1.5	±6.5	LSB	_
				フルスケール 誤差	_	±1.5	±6.5	LSB	_
				絶対精度	_	±4	±11	LSB	_
				DNL 微分非 直線性誤差 (注3)	_	±1	-1~ +1.5	LSB	_
				INL 積分非直 線性誤差	_	±2	±3	LSB	_
			低速チャネル (AN016~ AN022)	変換時間(注1)	0.5	_	_	μs	 ADCLK: 50 MHz サンブリング時間: 20 ADCLK 逐次比較時間: 5 ADCLK 信号源インピーダンス: 50 Ω以下
				オフセット誤 差	_	±1.5	±6.5	LSB	_
				フルスケール 誤差	_	±1.5	±6.5	LSB	_
				絶対精度	_	±5.5	±11	LSB	_
				DNL 微分非 直線性誤差 (注3)	_	±1	-1~ +1.5	LSB	_
				INL 積分非直 線性誤差	_	±2	±4	LSB	_

表 2.92 A/D 変換特性(SAR モード:外部 VDD モード) (4/6)

項目					Min	Тур	Max	単位	測定条件
SAR モー ド	シングルエン ド入力	高精度モード	中速チャネル (AN012~ AN015)	変換時間(注1)	0.5	_	_	μs	 ADCLK: 50 MHz サンブリング時間: 20 ADCLK 逐次比較時間: 5 ADCLK 信号源インピーダンス: 50 Ω以下
				オフセット誤 差	_	±1.5	±4.5	LSB	_
				フルスケール 誤差	_	±1.5	±4.5	LSB	_
				絶対精度	_	±4	±7	LSB	_
				DNL 微分非 直線性誤差 (注3)	_	±1	-1~ +1.5	LSB	_
				INL 積分非直 線性誤差	_	±2	±3	LSB	_
			低速チャネル (AN016~ AN022)	変換時間(注1)	0.94	_	_	μs	 ADCLK: 50 MHz サンプリング時間: 42 ADCLK 逐次比較時間: 5 ADCLK 信号源インピーダンス: 50 Ω 以下
				オフセット誤 差	_	±1.5	±4.5	LSB	_
				フルスケール 誤差	_	±1.5	±4.5	LSB	_
				絶対精度	_	±5.5	±8	LSB	_
				DNL 微分非 直線性誤差 (注3)	_	±1	-1~ +1.5	LSB	_
				INL 積分非直 線性誤差	_	±2	±4	LSB	_

表 2.92 A/D 変換特性(SAR モード:外部 VDD モード) (5/6)

項目						Min	Тур	Max	単位	測定条件
SAR モー ド	差動入力	通常モード	高精度チャネ ル (AN000~ AN005) (AN006~ AN011)	チャネル専用 サンプル&ホ ールド回路不 使用時	変換時間 ^(注1)	0.16	_	_	μs	 ADCLK: 50 MHz サンブリング時間: 3 ADCLK 逐次比較時間: 5 ADCLK 信号源インピーダンス: 50 Ω以下
					オフセット誤 差	_	±2	±3.5	LSB	_
					フルスケール 誤差	_	±2	±3.5	LSB	_
					絶対精度	_	±3	±6	LSB	_
					DNL 微分非 直線性誤差 (注3)	_	±0.75	±1	LSB	_
					INL 積分非直 線性誤差	_	±1.5	±2	LSB	_
			高精度チャネ ル (AN000~ AN005) (AN006~ AN011)	チャネル専用 サンプル&ホ ールド回路使 用時	変換時間(注2)	1.00	_	_	μѕ	 ADCLK: 50 MHz チャネル専用サンプル&ホールド回路のサンプリング時間: 35 ADCLK チャネル専用サンプル&ホールド回路のホールドード遷移時間: 2 ADCLK ザンブリング時間: 8 ADCLK 逐次比較時間: 5 ADCLK 信号源インピーダンス: 50 Ω以下
					オフセット誤 差	_	±1.5	±6.75	LSB	_
					フルスケール 誤差	_	±1.5	±6.75	LSB	_
					絶対精度	_	±3.5	±10.5	LSB	_
					DNL 微分非 直線性誤差 (注3)	_	±1	-1~ +1.5	LSB	_
					INL 積分非直 線性誤差	_	±2.5	±3.5	LSB	_

表 2.92 A/D 変換特性 (SAR モード:外部 VDD モード) (6/6)

条件: AVCC: 2.7~3.63 V, VCC: 2.7~3.63 V, VREFH0/VREFH: 2.7 V~AVCC

項目						Min	Тур	Max	単位	測定条件
SAR モー ド	差動入力	高精度モード	高精度チャネ ル (AN000~ AN005) (AN006~ AN011)	チャネル専用 サンプル&ホ ールド回路不 使用時	変換時間(注1)	0.26	_	_	μs	 ADCLK: 50 MHz サンプリング時間: 8 ADCLK 逐次比較時間: 5 ADCLK 信号源インピーダンス: 50 Ω 以下
					オフセット誤 差	_	±1	±2.5	LSB	_
					フルスケール 誤差	_	±1	±2.5	LSB	_
					絶対精度	_	±2	±4	LSB	_
					DNL 微分非 直線性誤差 (注3)	_	±0.75	±1	LSB	_
					INL 積分非直 線性誤差	_	±1.5	±2	LSB	_
			高精度チャネル (AN000~ AN005) (AN006~ AN011)	チャネル専用 サンプル&ホ ールド回路使 用時	変換時間 ^(注2)	1.72		_	μs	 ADCLK: 50 MHz チャネル専用サンプル&ホールド回路のサンプリング時間: 63 ADCLK チャネル専用サンプル&ホールド回路のホールドモード遷移時間: 2 ADCLK サンプリング時間: 16 ADCLK 逐次比較時間: 5 ADCLK 信号源インピーダンス: 50 Ω以下
					オフセット誤 差	_	±1.5	±6.75	LSB	_
					フルスケール 誤差	_	±1.5	±6.75	LSB	_
					絶対精度	_	±3.5	±9	LSB	_
					DNL 微分非 直線性誤差 (注3)	_	±1	-1~ +1.5	LSB	_
					INL 積分非直 線性誤差	_	±2.5	±3.5	LSB	_

注. これらの仕様値は、1 つの ADC16H だけが動作中で、DAC12 と ACMPHS が動作しておらず、かつ A/D 変換中に外部バスへのアクセスがない場合に適用されます。

他の ADC ユニット、DAC12、または ACMPHS が動作中である、または A/D 変換中にバスアクセスが発生した場合は、記載した範囲に数値が収まらない可能性があります。

ADC16H使用時は、ポート0をデジタル出力として使用しないでください。

上記の特性は、AVCCO、AVSSO、VREFHO、VREFH、VREFLO、VREFL、および ADC16H の入力電圧が安定しているときの特性です。

- 注 1. チャネル専用サンプル&ホールド回路不使用時:変換時間は、サンプリング時間と逐次比較時間の合計です。測定条件には、上記の各ステートが示されています。
- 注 2. チャネル専用サンプル&ホールド回路使用時:変換時間は、チャネル専用サンプル&ホールド回路のサンプリング時間、ホールドモード切り替え時間、サンプリング時間、逐次比較時間の合計です。測定条件には、上記の各ステートが示されています。
- 注 3. DNL はヒストグラム法を使用して計測されるため、下限値は-1 になります。

表 2.93 A/D 変換特性(SAR モード: DCDC モード) (1/4)

項目		·	·			Min	Тур	Max	単位	測定条件														
SAR モー ド	分解能					_	_	12	ビット	_														
SAR モー ド	シングルエン ド入力	通常モード	高精度チャネ ル (AN000~ AN005) (AN006~ AN011)	チャネル専用 サンプル&ホ ールド回路不 使用時	変換時間 ^(注1)	0.64	_	_	μs	 ADCLK: 50 MHz サンプリング時間: 22 ADCLK 逐次比較時間: 10 ADCLK 信号源インピーダンス: 50 Ω 以下 														
				オフセット誤 差 フルスケール 誤差 絶対精度	_	±3	±6.5	LSB	BGA パッケージ															
					左	_	±3	±8	LSB	LQFP パッケージ														
							_	±3	±6.5	LSB	BGA パッケージ													
							誤差 	_	±3	±8	LSB	LQFP パッケージ												
					絶対精度	_	±5.5	±11	LSB	BGA パッケージ														
						_	±5.5	±15	LSB	LQFP パッケージ														
					DNL 微分非 直線性誤差 (注2)	_	±1	-1~ +1.5	LSB	BGA パッケージ														
					(/±2)	_	±1	-1~ +2.0	LSB	LQFP パッケージ														
			INL 積分非直	_	±2	±3	LSB	BGA パッケージ																
					線性誤差	_	±2	±3.5	LSB	LQFP パッケージ														
SAR モー ド	シングルエン ド入力	高精度モード	ド 高精度チャネ チャネル専用 ル (AN000~ サンプル&ホ AN005) (AN006~ 使用時 AN011)		変換時間(注1)	1	_	_	μs	 ADCLK: 50 MHz サンプリング時間: 40 ADCLK 逐次比較時間: 10 ADCLK 信号源インピーダンス: 50 Ω以下 														
					オフセット誤	_	±1.5	±4.5	LSB	BGA パッケージ														
					差	_	±1.5	±5	LSB	LQFP パッケージ														
																		-	フルスケール	_	±1.5	±4.5	LSB	BGA パッケージ
																誤差	_	±1.5	±5	LSB	LQFP パッケージ			
												絶対精度	_	±5.0	±8	LSB	BGA パッケージ							
						_	±5.0	±11	LSB	LQFP パッケージ														
					DNL 微分非直線性誤差	_	±1	-1~ +1.5	LSB	BGA パッケージ														
					(注2)	_	±1	-1~ +1.5	LSB	LQFP パッケージ														
					INL 積分非直	_	±2	±3	LSB	BGA パッケージ														
					線性誤差	_	±2	±3.5	LSB	LQFP パッケージ														

表 2.93 A/D 変換特性(SAR モード: DCDC モード) (2/4)

項目					Min	Тур	Max	単位	測定条件
SAR モー ド	シングルエン ド入力	通常モード	中速チャネル (AN012~ AN015)	変換時間 ^(注1)	0.76	_	_	μs	 ADCLK: 50 MHz サンブリング時間: 28 ADCLK 逐次比較時間: 10 ADCLK 信号源インピーダンス: 50 Ω 以下
				オフセット誤	_	-	±6.5	LSB	BGA パッケージ
				差	_	±1.5	±7	LSB	LQFP パッケージ
				フルスケール	_	±1.5	±6.5	LSB	BGA パッケージ
				誤差	_	±1.5	±7	LSB	LQFP パッケージ
				絶対精度	_	±4	±11	LSB	BGA パッケージ
					_	±4	±15	LSB	LQFP パッケージ
				DNL 微分非直線性誤差	_	±1	-1~ +1.5	LSB	BGA パッケージ
		(注2)	(/±2)	_	±1	-1~ +2.0	LSB	LQFP パッケージ	
				INL 積分非直	_	±2	±3	LSB	BGA パッケージ
				線性誤差	_	±2	±4	LSB	LQFP パッケージ
			低速チャネル (AN016~ AN022)	変換時間 ^(注1)	1	_	_	μs	 ADCLK: 50 MHz サンプリング時間: 40 ADCLK 逐次比較時間: 10 ADCLK 信号源インピーダンス: 50 Ω以下
				オフセット誤 差	_	±1.5	±6.5	LSB	_
				フルスケール 誤差	_	±1.5	±6.5	LSB	_
				絶対精度	_	±5.5	±11	LSB	_
				DNL 微分非 直線性誤差 (注2)	_	±1	-1~ +1.5	LSB	_
				INL 積分非直 線性誤差	_	±2	±4	LSB	_

表 2.93 A/D 変換特性(SAR モード: DCDC モード) (3/4)

項目		·	2.7 V, VREFH0/VREFH: 1.62 V		Min	Тур	Max	単位	測定条件	
SAR モー ド	シングルエン ド入力	高精度モード	中速チャネル (AN012~ AN015)	変換時間 ^(注1)	1.4	_	_	μs	 ADCLK: 50 MHz サンプリング時間: 60 ADCLK 逐次比較時間: 10 ADCLK 信号源インピーダンス: 50 Ω 以下 	
				オフセット誤	_	±1.5	±4.5	LSB	BGA パッケージ	
				差	_	±1.5	±5	LSB	LQFP パッケージ	
				フルスケール	_	±1.5	±4.5	LSB	BGA パッケージ	
				誤差	_	±1.5	±5	LSB	LQFP パッケージ	
				絶対精度	_	±4	±8	LSB	BGA パッケージ	
					_	±4	±13	LSB	LQFP パッケージ	
				DNL 微分非 直線性誤差 (注2)	_	±1	-1~ +1.5	LSB	BGA パッケージ	
				(/±2)	_	±1	-1~ +2.0	LSB	LQFP パッケージ	
				INL 積分非直	_	±2	±3	LSB	BGA パッケージ	
				線性誤差	_	±2	±4	LSB	LQFP パッケージ	
			低速チャネル (AN016~ AN022) 変換時	変換時間 ^(注1)	1.88	_	_	μs	 ADCLK: 50 MHz サンプリング時間: 84 ADCLK 逐次比較時間: 10 ADCLK 信号源インピーダンス: 50 Ω 以下 	
				オフセット誤 差	_	±1.5	±4.5	LSB	_	
			<u> </u>		フルスケール 誤差	_	±1.5	±4.5	LSB	_
				絶対精度	_	±5.5	±8	LSB	_	
				DNL 微分非 直線性誤差 (注2)	_	±1	-1~ +1.5	LSB	_	
				INL 積分非直 線性誤差	_	±2	±4	LSB	_	
SAR モー ド	差動入力	通常モード	高精度チャネル (AN000~ AN005) (AN006~AN011)	変換時間 ^(注1)	0.64	_	_	μs	 ADCLK: 50 MHz サンプリング時間: 22 ADCLK 逐次比較時間: 10 ADCLK 信号源インピーダンス: 50 Ω 以下 	
			オフセット誤 差		±2	±3.5	LSB			
				フルスケール 誤差	_	±2	±3.5	LSB	_	
			絶対精度	_	±4.5	±6	LSB	_		
			DNL 微分非 直線性誤差 (注2)	_	±0.75	±1	LSB			
				INL 積分非直 線性誤差	_	±1.5	±2	LSB	_	

表 2.93 A/D 変換特性 (SAR モード: DCDC モード) (4/4)

条件: AVCC: 1.62~2.7 V, VCC: 1.62~2.7 V, VREFH0/VREFH: 1.62 V~AVCC

項目						Min	Тур	Max	単位	測定条件
SAR モー ド	差動入力	高精度モード	高精度チャネ ル (AN000~ AN005) (AN006~ AN011)	チャネル専用 サンプル&ホ ールド回路不 使用時	変換時間 ^(注1)	1	_	_	μs	 ADCLK: 50 MHz サンプリング時間: 40 ADCLK 逐次比較時間: 10 ADCLK 信号源インピーダンス: 50 Ω 以下
					オフセット誤 差	_	±1	±2.5	LSB	_
					フルスケール 誤差	_	±1	±2.5	LSB	_
					絶対精度	_	±3.5	±4.5	LSB	_
					DNL 微分非 直線性誤差 (注2)	_	±0.75	±1	LSB	_
					INL 積分非直 線性誤差	_	±1.5	±2	LSB	_

注. これらの仕様値は、1 つの ADC16H だけが動作中で、DAC12 と ACMPHS が動作しておらず、かつ A/D 変換中に外部バスへのアクセスがない場合に適用されます。

他の ADC ユニット、DAC12、または ACMPHS が動作中である、または A/D 変換中にバスアクセスが発生した場合は、記載した範囲に数値が収まらない可能性があります。

ADC16H 使用時は、ポート 0 をデジタル出力として使用しないでください。

上記の特性は、AVCC0、AVSS0、VREFH0、VREFH、VREFL0、VREFL、および ADC16H の入力電圧が安定しているときの特性です。

- 注 1. チャネル専用サンプル&ホールド回路不使用時:変換時間は、サンプリング時間と逐次比較時間の合計です。測定条件には、上記の 各ステートが示されています。
- 注 2. DNL はヒストグラム法を使用して計測されるため、下限値は-1 になります。

表 2.94 A/D 変換特性(SAR モード:外部 VDD モード) (1/4)

項目						Min	Тур	Max	単位	測定条件
SAR モー ド	分解能					_	_	12	ビッ ト	_
SAR モー ド	シングルエン ド入力	通常モード	高精度チャネ ル (AN000~ AN005) (AN006~ AN011)	チャネル専用 サンプル&ホ ールド回路不 使用時	変換時間(注1)	0.64	_	_	μs	 ADCLK: 50 MHz サンプリング時間: 22 ADCLK 逐次比較時間: 10 ADCLK 信号源インピーダンス: 50 Ω 以下
					オフセット誤 差	_	±3	±6.5	LSB	_
					フルスケール 誤差	_	±3	±6.5	LSB	_
					絶対精度	_	±5.5	±11	LSB	_
					DNL 微分非 直線性誤差 (注2)	_	±1	-1~ +1.5	LSB	_
					INL 積分非直 線性誤差	_	±2	±3	LSB	_
SAR モー ド	シングルエン ド入力	高精度モード	高精度チャネ ル (AN000~ AN005) (AN006~ AN011)	チャネル専用 サンプル&ホ ールド回路不 使用時	変換時間(注1)	1	_	_	μs	 ADCLK: 50 MHz サンプリング時間: 40 ADCLK 逐次比較時間: 10 ADCLK 信号源インピーダンス: 50 Ω 以下
					オフセット誤 差	_	±1.5	±4.5	LSB	_
					フルスケール 誤差	_	±1.5	±4.5	LSB	_
					絶対精度	_	±5.0	±8	LSB	_
					DNL 微分非 直線性誤差 (注2)	_	±1	-1~ +1.5	LSB	_
					INL 積分非直 線性誤差	_	±2	±3	LSB	_

表 2.94 A/D 変換特性(SAR モード:外部 VDD モード) (2/4)

項目					Min	Тур	Max	単位	測定条件
SAR モー ド	シングルエン ド入力	通常モード	中速チャネル (AN012~ AN015)	変換時間(注1)	0.76	_	_	μs	 ADCLK: 50 MHz サンプリング時間: 28 ADCLK 逐次比較時間: 10 ADCLK 信号源インピーダンス: 50 Ω 以下
				オフセット誤 差	_	±1.5	±6.5	LSB	_
				フルスケール 誤差	_	±1.5	±6.5	LSB	
				絶対精度	_	±4	±11	LSB	_
				DNL 微分非 直線性誤差 (注2)	_	±1	-1~ +1.5	LSB	_
				INL 積分非直 線性誤差	_	±2	±3	LSB	_
			低速チャネル (AN016~ AN022)	変換時間 ^(注1)	1	_	_	μs	 ADCLK: 50 MHz サンプリング時間: 40 ADCLK 逐次比較時間: 10 ADCLK 信号源インピーダンス: 50 Ω 以下
				オフセット誤 差	_	±1.5	±6.5	LSB	_
				フルスケール 誤差	_	±1.5	±6.5	LSB	
				絶対精度	_	±5.5	±11	LSB	_
				DNL 微分非 直線性誤差 (注2)	_	±1	-1~ +1.5	LSB	_
				INL 積分非直 線性誤差	_	±2	±4	LSB	_

表 2.94 A/D 変換特性(SAR モード:外部 VDD モード) (3/4)

項目	AVCC: 1.62~2.7	·				Min	Тур	Max	単位	測定条件
SAR モー ド	シングルエン ド入力	高精度モード	中速チャネル (AN015)	∕AN012~	変換時間(注1)	1.4	_	_	μs	 ADCLK: 50 MHz サンプリング時間: 60 ADCLK 逐次比較時間: 10 ADCLK 信号源インピーダンス: 50 Ω 以下
					オフセット誤 差	_	±1.5	±4.5	LSB	_
					フルスケール 誤差	_	±1.5	±4.5	LSB	_
					絶対精度	_	±4	±8	LSB	_
					DNL 微分非 直線性誤差 (注2)	_	±1	-1~ +1.5	LSB	_
					INL 積分非直 線性誤差	_	±2	±3	LSB	_
			低速チャネル (AN022)	(AN016∼	変換時間 ^(注1)	1.88	_	_	μs	 ADCLK: 50 MHz サンブリング時間: 84 ADCLK 逐次比較時間: 10 ADCLK 信号源インピーダンス: 50 Ω 以下
					オフセット誤 差	_	±1.5	±4.5	LSB	_
					フルスケール 誤差	_	±1.5	±4.5	LSB	_
					絶対精度	_	±5.5	±8	LSB	_
					DNL 微分非 直線性誤差 (注2)	_	±1	-1~ +1.5	LSB	_
					INL 積分非直 線性誤差	_	±2	±4	LSB	_
SAR モー ド	差動入力	通常モード	高精度チャネ ル (AN000~ AN005) (AN006~ AN011)	チャネル専用 サンプル&ホ ールド回路不 使用時	変換時間(注1)	0.64	_	_	μs	 ADCLK: 50 MHz サンブリング時間: 22 ADCLK 逐次比較時間: 10 ADCLK 信号源インピーダンス: 50 Ω 以下
					オフセット誤 差	_	±2	±3.5	LSB	_
					フルスケール 誤差	_	±2	±3.5	LSB	_
					絶対精度	_	±4.5	±6	LSB	
					DNL 微分非 直線性誤差 (注2)	_	±0.75	±1	LSB	_
					INL 積分非直 線性誤差	_	±1.5	±2	LSB	_

表 2.94 A/D 変換特性(SAR モード:外部 VDD モード) (4/4)

条件: AVCC: 1.62~2.7 V, VCC: 1.62~2.7 V, VREFH0/VREFH: 1.62 V~AVCC

項目						Min	Тур	Max	単位	測定条件
SAR モー ド	差動入力	高精度モード	高精度チャネ ル (AN000~ AN005) (AN006~ AN011)	チャネル専用 サンプル&ホ ールド回路不 使用時	変換時間 ^(注1)	1	_	_	μs	 ADCLK: 50 MHz サンプリング時間: 40 ADCLK 逐次比較時間: 10 ADCLK 信号源インピーダンス: 50 Ω以下
					オフセット誤 差	_	±1	±2.5	LSB	_
					フルスケール 誤差	_	±1	±2.5	LSB	_
					絶対精度	_	±3.5	±4.5	LSB	_
					DNL 微分非 直線性誤差 (注2)	_	±0.75	±1	LSB	_
					INL 積分非直 線性誤差	_	±1.5	±2	LSB	_

注. これらの仕様値は、1 つの ADC16H だけが動作中で、DAC12 と ACMPHS が動作しておらず、かつ A/D 変換中に外部バスへのアクセスがない場合に適用されます。

他の ADC ユニット、DAC12、または ACMPHS が動作中である、または A/D 変換中にバスアクセスが発生した場合は、記載した範囲に数値が収まらない可能性があります。

ADC16H 使用時は、ポート 0 をデジタル出力として使用しないでください。

上記の特性は、AVCC0、AVSS0、VREFH0、VREFH、VREFL0、VREFL、および ADC16H の入力電圧が安定しているときの特性です。

- 注 1. チャネル専用サンプル&ホールド回路不使用時:変換時間は、サンプリング時間と逐次比較時間の合計です。測定条件には、上記の 各ステートが示されています。
- 注 2. DNL はヒストグラム法を使用して計測されるため、下限値は-1 になります。

表 2.95 A/D 変換特性(オーバーサンプリングモードとハイブリッドモード)(1)

項目				Min	Тур	Max	単位	測定条件
オーバーサンプリングモー	分解能			_	_	16	ビット	_
ドとハイブリッドモード	オーバーサンプリング周期			0.16	_	_	μs	 ADCLK: 50 MHz サンプリング時間: 3 ADCLK 逐次比較時間: 5 ADCLK 断線検出アシスト機能不使用時 信号源インピーダンス: 50 Ω 以下
		ハイブリッドモ	≘— ド(注2)	0.18	_	_	μѕ	 ADCLK: 50 MHz サンプリング時間: 8 ADCLK 逐次比較時間: 5 ADCLK 断線検出アシスト機能不使用時 信号源インピーダンス: 50 Ω 以下
	デジタルフィル	Sinc フィルタ	初期遅延	_	22	_	/Fos	
	タ特性 ^(注1)		グループ遅 延	_	11	_		_
			正規化 遮断 周波数	_	0.033	_	Fin/Fos	_

注. Fos はオーバーサンプリング周波数です。

ハイブリッドモードでは、Fos は 1/(スキャングループに割り当てられた各アナログチャネルのオーバーサンプリング期間の合計)です。

- 注 1. 図 2.135 を参照してください。
- 注 2. チャネルごとの値です。

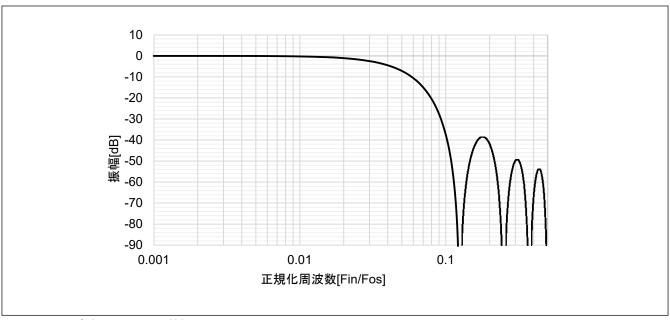


図 2.135 デジタルフィルタ特性 (Sinc フィルタ)

表 2.96 A/D 変換特性(オーバーサンプリングモードとハイブリッドモード)(2)

条件: AVCC: 2.7~3.63 V, VCC: 2.7~3.63 V, VREFH0/VREFH: 2.7 V~AVCC

項目				Min	Тур	Max	単位	測定条件
オーバーサンプリングモー	Sinc フィルタ	シングルエン ド入力 (AN000~	SNDR 信号 対ノイズの 歪み比	_	80	_	dB	● ADCLK: 50 MHz ● サンプリング時間: — 高速チャネル(オーバーサンプリングモード):
ドとハイ ブリッド モード		AN005) (AN006~ AN011) (AN012~ AN015)	ENOB:有効 ビット数	_	13	_	ビット	3 ADCLK - 高速チャネル(ハイブリッドモード): 8 ADCLK - 中速チャネル(オーバーサンプリングモード): 10 ADCLK - 中速チャネル(ハイブリッドモード): 22 ADCLK
		差動入力 (AN000~ AN005)	SNDR 信号 対ノイズの 歪み比	_	86	_	dB	 逐次比較時間: 5 ADCLK 信号源インピーダンス: 50 Ω 以下 入力周波数: オーバーサンプリングモード: 5 kHz
		(AN006~ AN011)	ENOB:有効 ビット数	_	14	_	ビット	- ハイブリッドモード:5 kHz - チャネル専用サンプル&ホールド回路不使用時

表 2.97 A/D 変換特性(オーバーサンプリングモードとハイブリッドモード)(3)

項目				Min	Тур	Max	単位	測定条件
オーバーサンプリングモー	Sinc フィルタ	シングルエン ド入力 (AN000~	SNDR 信号 対ノイズの 歪み比	_	74	_	dB	● ADCLK: 50 MHz ● サンプリング時間: - 高速チャネル(オーバーサンプリングモード):
ドとハイ ブリッド モード		AN005) (AN006~ AN011) (AN012~ AN015)	ENOB:有効 ビット数	_	12	_	ビット	22 ADCLK
		差動入力 (AN000~ AN005)	SNDR 信号 対ノイズの 歪み比	_	80	_	dB	 逐次比較時間: 10 ADCLK 信号源インピーダンス: 50 Ω 以下 入力周波数: オーバーサンプリングモード: 5 kHz
		(AN006~ AN011)	ENOB:有効 ビット数	_	13	_	ビット	- ハイブリッドモード:5 kHz - ハイブリッドモード:5 kHz • チャネル専用サンプル&ホールド回路不使用時

表 2.98 A/D 変換特性(オーバーサンプリングモード)

条件: AVCC: 2.7~3.63 V, VCC: 2.7~3.63 V, VREFH0/VREFH: 2.7 V~AVCC

項目				Min	Тур	Max	単位	測定条件
オーバーサンプリングモー	シングル エンド入	高精度チャネル (AN000~AN005)	オフセット誤差 ^(注3)	_	±0.5	±4	LSB	ADCLK: 50 MHz サンプリング時間: 3 ADCLK
ř	カ	(AN006~AN011)	ゲイン誤差(シ ングル/連続モ ード) ^(注3)	_	±1	±4	LSB	逐次比較時間:5 ADCLK信号源インピーダンス:50 Ω以下デジタルフィルタ:Sinc フィルタ
			ゲイン誤差(1 チャネル連続モ ード) ^(注3)	_	±1	±5	LSB	
			DNL 微分非直 線性誤差 ^(注1) (注2)	_	-1~ +1.5	-1~ +2.5	LSB	
			INL 積分非直線 性誤差 ^(注1)		±4	±8	LSB	
		中速チャネル (AN012~AN015)	オフセット誤差 ^(注3)	_	±0.5	±4	LSB	 ADCLK: 50 MHz サンプリング時間: 10 ADCLK 逐次比較時間: 5 ADCLK
			ゲイン誤差 ^(注3)	_	±1	±4	LSB	信号源インピーダンス:50 Ω以下
			DNL 微分非直 線性誤差 ^(注1) (注2)	_	-1~+2	-1~+4	LSB	● デジタルフィルタ: Sinc フィルタ
			INL 積分非直線 性誤差 ^(注1)	_	±4	±8	LSB	
		低速チャネル (AN016~AN022)	オフセット誤差 ^(注3)		±0.5	±4	LSB	ADCLK: 50 MHz サンプリング時間: 20 ADCLK オンプリング時間: 20 ADCLK
			ゲイン誤差 ^(注3)	_	±1	±4	LSB	● 逐次比較時間:5 ADCLK ● 信号源インピーダンス:50 Ω 以下
			DNL 微分非直 線性誤差 ^(注1) ^(注2)	_	-1~+2	-1~+4	LSB	● デジタルフィルタ:Sinc フィルタ
			INL 積分非直線 性誤差 ^(注1)		±4	±12	LSB	
	差動入力	高精度チャネル (AN000~AN005) (AN006~AN011)	オフセット誤差 ^(注3)	_	±0.25	±2	LSB	ADCLK: 50 MHz サンプリング時間: 3 ADCLK アンプリング時間: 5 ADCLK
		(ANOOU-SANUTT)	ゲイン誤差(シ ングル/連続モ ード) ^(注3)	_	±0.5	±2	LSB	逐次比較時間:5 ADCLK信号源インピーダンス:50 Ω以下デジタルフィルタ:Sinc フィルタ
			ゲイン誤差(1 チャネル連続モ ード) ^(注3)	_	±0.5	±2.5	LSB	
			DNL 微分非直 線性誤差 ^(注1) ^(注2)		-1~ +1.5	-1~ +2.0	LSB	
			INL 積分非直線 性誤差 ^(注1)	_	±3	±6	LSB	

注. これらの仕様値は、1 つの ADC16H だけが動作中で、DAC12 と ACMPHS が動作しておらず、かつ A/D 変換中に外部バスへのアク セスがない場合に適用されます。

他の ADC ユニット、DAC12、または ACMPHS が動作中である、または A/D 変換中にバスアクセスが発生した場合は、記載した範 囲に数値が収まらない可能性があります。

ADC16H 使用時は、ポート 0 をデジタル出力として使用しないでください。 上記の特性は、AVCCO、AVSSO、VREFHO、VREFH、VREFLO、VREFL、および ADC16H の入力電圧が安定しているときの特性で

- 注 1. 測定条件:アナログ入力電圧範囲の 0.2%~99.8%
- DNL はヒストグラム法を使用して計測されるため、下限値は-1になります。 注 2.
- この値は 12 ビット分解能に基づきます。 注 3.

A/D 変換特性(オーバーサンプリングモード) 表 2.99

条件: AVCC: 1.62~2.7 V, VCC: 1.62~2.7 V, VREFH0/VREFH: 1.62 V~AVCC

項目	2.7 V, VO	C: 1.62~2.7 V, VREF	110/ VIXLI 11. 1.02	Min		Max	単位	測定条件
オーバーサンプ	シングル	高精度チャネル	オフセット誤差	_	±0.5	±4	LSB	ADCLK: 50 MHz
リングモード	エンド入	(AN000~AN005)	(注3)					● サンプリング時間:22 ADCLK
	カ	(AN006~AN011)	ゲイン誤差(シ ングル/連続モ ード) ^(注3)	_	±1	±4	LSB	逐次比較時間:10 ADCLK信号源インピーダンス:50 Ω 以下デジタルフィルタ:Sinc フィルタ
			ゲイン誤差(1 チャネル連続モ ード) ^(注3)	_	±1	±5	LSB	
			DNL 微分非直 線性誤差 ^(注1) (注2)	_	-1~+2	-1~ +2.5	LSB	
			INL 積分非直線 性誤差 ^(注1)	_	±4	±8	LSB	
		中速チャネル (AN012~AN015)	オフセット誤差 ^(注3)	_	±0.5	±4	LSB	ADCLK: 50 MHz サンプリング時間: 28 ADCLK アンプリング時間: 40 ADCLK ADCLK
			ゲイン誤差 ^(注3)	_	±1	±4	LSB	● 逐次比較時間:10 ADCLK ● 信号源インピーダンス:50 Ω 以下
			DNL 微分非直 線性誤差 ^(注1) ^(注2)	_	-1~+2	-1~+4	LSB	● デジタルフィルタ:Sinc フィルタ
			INL 積分非直線 性誤差 ^(注1)	_	±4	±8	LSB	
		低速チャネル (AN016~AN022)	オフセット誤差 ^(注3)	_	±0.5	±4	LSB	ADCLK: 50 MHz サンプリング時間: 40 ADCLK オンプリング時間: 40 ADCLK
			ゲイン誤差 ^(注3)	_	±1	±4	LSB	● 逐次比較時間: 10 ADCLK ● 信号源インピーダンス: 50 Ω 以下
			DNL 微分非直 線性誤差 ^(注1) ^(注2)	_	-1~+2	-1~+4	LSB	● デジタルフィルタ:Sinc フィルタ
			INL 積分非直線 性誤差 ^(注1)	_	±4	±12	LSB	
	差動入力	高精度チャネル (AN000~AN005)	オフセット誤差 ^(注3)	_	±0.25	±2	LSB	ADCLK: 50 MHz サンプリング時間: 22 ADCLK
		(AN006~AN011)	ゲイン誤差(シ ングル/連続モ ード) ^(注3)	_	±0.5	±2	LSB	逐次比較時間:10 ADCLK信号源インピーダンス:50 Ω 以下デジタルフィルタ: Sinc フィルタ
			ゲイン誤差(1 チャネル連続モ ード) ^(注3)	_	±0.5	±2.5	LSB	
			DNL 微分非直 線性誤差 ^(注1) ^(注2)	_	-1~+2	-1~ +2.5	LSB	
			INL 積分非直線 性誤差 ^(注1)	_	±3	±6	LSB	

注. これらの仕様値は、1 つの ADC16H だけが動作中で、DAC12 と ACMPHS が動作しておらず、かつ A/D 変換中に外部バスへのアク セスがない場合に適用されます。

他の ADC ユニット、DAC12、または ACMPHS が動作中である、または A/D 変換中にバスアクセスが発生した場合は、記載した範 囲に数値が収まらない可能性があります。

ADC16H 使用時は、ポート 0 をデジタル出力として使用しないでください。 上記の特性は、AVCCO、AVSSO、VREFHO、VREFH、VREFLO、VREFL、および ADC16H の入力電圧が安定しているときの特性で

- 注 1. 測定条件:アナログ入力電圧範囲の 0.2%~99.8%
- DNL はヒストグラム法を使用して計測されるため、下限値は-1になります。 注 2.
- この値は12ビット分解能に基づきます。 注 3.

表 2.100 A/D 変換特性 (ハイブリッドモード)

条件: AVCC: 2.7~3.63 V. VCC: 2.7~3.63 V. VREFH0/VREFH: 2.7 V~AVCC

項目					Min	Тур	Max	単位	測定条件
ハイブリッドモー	チャネル専用サンプル&ホール	シングル エンド入	高精度チャネル (AN000~AN005)	オフセット誤差 ^(注4)	_	±0.5	±4	LSB	ADCLK: 50 MHz サンプリング時間:8 ADCLK
ド	ド回路不使用時	カ 	(AN006~AN011)	ゲイン誤差 ^(注4)	_	±1	±5	LSB	● 逐次比較時間:5 ADCLK● 信号源インピーダンス:50 Ω 以下
				DNL 微分非直 線性誤差 ^(注2) (注3)	_	-1~ +1.5	-1~ +2.5	LSB	デジタルフィルタ:Sinc フィルタ
				INL 積分非直線 性誤差 ^(注2)	_	±4	±8	LSB	-
			中速チャネル (AN012 ~AN015) ^(注1)	オフセット誤差 ^(注4)	_	±0.5	±4	LSB	ADCLK: 50 MHzサンプリング時間: 22 ADCLK
				ゲイン誤差 ^(注4)	_	±1	±5	LSB	■ 逐次比較時間:5 ADCLK■ 信号源インピーダンス:50 Ω 以下
				DNL 微分非直 線性誤差 ^(注2) (注3)	_	-1~+2	-1~+4	LSB	■ デジタルフィルタ:Sinc フィルタ
				INL 積分非直線 性誤差 ^(注2)	_	±4	±8	LSB	
			低速チャネル (AN016 ~AN022) ^(注1)	オフセット誤差 ^(注4)	_	±0.5	±4	LSB	ADCLK: 50 MHzサンプリング時間: 42 ADCLK
				ゲイン誤差 ^(注4)	_	±1	±5	LSB	■ 逐次比較時間:5 ADCLK■ 信号源インピーダンス:50 Ω 以下
				DNL 微分非直 線性誤差 ^(注2) ^(注3)	_	-1~+2	-1~+4	LSB	● デジタルフィルタ : Sinc フィルタ
				INL 積分非直線 性誤差 ^(注2)	_	±4	±12	LSB	-
		差動入力	高精度チャネル (AN000~AN005)	オフセット誤差 ^(注4)	_	±0.25	±2	LSB	ADCLK: 50 MHzサンプリング時間: 8 ADCLK
			(AN006~AN011)	ゲイン誤差 ^(注4)	_	±0.5	±2.5	LSB	■ 逐次比較時間:5 ADCLK■ 信号源インピーダンス:50 Ω 以下
				DNL 微分非直 線性誤差 ^(注2) ^(注3)	_	-1~ +1.5	-1~+2	LSB	● デジタルフィルタ:Sinc フィルタ
				INL 積分非直線 性誤差 ^(注2)	_	±3	±6	LSB	
	チャネル専用サ ンプル&ホール ド回路使用時	シングル エンド入 カ	高精度チャネル (AN000~AN005) (AN006~AN011)	オフセット誤差 ^(注4)	_	±0.5	±4	LSB	 ADCLK: 50 MHz チャネル専用サンプル&ホールド 回路のサンプリング時間:*
),	(ANOOU ANOTT)	ゲイン誤差 ^(注4)	_	±0.5	±4	LSB	ADCLK
				DNL 微分非直 線性誤差 ^(注2) ^(注3)	_	±1	-1~+2	LSB	 チャネル専用サンプル&ホールド 回路のホールドモード遷移時間: * ADCLK サンプリング時間: * ADCLK
				INL 積分非直線 性誤差 ^(注2)	_	±12	±16	LSB	● 逐次比較時間: * ADCLK● 信号源インピーダンス: 50 Ω 以下● デジタルフィルタ: Sinc フィルタ
		差動入力	高精度チャネル (AN000~AN005) (AN006~AN011)	オフセット誤差 ^(注4)	_	±0.5	±4	LSB	 ADCLK: 50 MHz チャネル専用サンプル&ホールド 回路のサンプリング時間:*
			(, 1,4000 /1,4011)	ゲイン誤差 ^(注4)	_	±0.5	±4	LSB	ADCLK
				DNL 微分非直 線性誤差 ^(注2) ^(注3)	_	±1	-1~+2	LSB	 チャネル専用サンプル&ホールド 回路のホールドモード遷移時間: * ADCLK サンプリング時間: * ADCLK
				INL 積分非直線 性誤差 ^(注2)	_	±4	±16	LSB	 逐次比較時間: * ADCLK 信号源インピーダンス: 50 Ω 以 デジタルフィルタ: Sinc フィル

注. これらの仕様値は、1 つの ADC16H だけが動作中で、DAC12 と ACMPHS が動作しておらず、かつ A/D 変換中に外部バスへのアクセスがない場合に適用されます。

ADC16H 使用時は、ポート 0 をデジタル出力として使用しないでください。

他の ADC ユニット、DAC12、または ACMPHS が動作中である、または A/D 変換中にバスアクセスが発生した場合は、記載した範囲に数値が収まらない可能性があります。

上記の特性は、AVCC0、AVSS0、VREFH0、VREFH、VREFL0、VREFL、および ADC16H の入力電圧が安定しているときの特性です。

- 注 1. チャネル専用サンプル&ホールド回路は、これらのチャネルでは使用できません。
- 注 2. 測定条件: アナログ入力電圧範囲の 0.2%~99.8%
- 注 3. DNL はヒストグラム法を使用して計測されるため、下限値は-1 になります。
- 注 4. この値は 12 ビット分解能に基づきます。

表 2.101 A/D 変換特性(ハイブリッドモード)

条件: AVCC: 1.62~2.7 V, VCC: 1.62~2.7 V, VREFH0/VREFH: 1.62 V~AVCC

項目	目						Max	単位	測定条件
ハイブリッ ドモード	チャネル専用サンプ ル&ホールド回路不 使用時	シングル エンド入 力	高精度チャネル (AN000~AN005) (AN006~AN011)	オフセット誤 差 ^(注3)	-	±0.5	±4	LSB	ADCLK: 50 MHz サンプリング時間: 40 ADCLK オファル対映器: 40 ADCLK スタル対映器: 40 ADCLK
	医角斑	,,,	(VIAOOO, - WINO II)	ゲイン誤差 ^(注3)	_	±1	±5	LSB	逐次比較時間: 10 ADCLK信号源インピーダンス:50 Ω 以下デジタルフィルタ: Sinc フィルタ
				DNL 微分非 直線性誤差 (注1)(注2)	_	-1~+2	-1~ +2.5	LSB	
				INL 積分非直 線性誤差 ^(注1)	_	±4	±8	LSB	
			中速チャネル (AN012~AN015)	オフセット誤 差 ^(注3)	_	±0.5	±4	LSB	ADCLK: 50 MHz サンプリング時間: 60 ADCLK オカリング時間: 40 ADCLK ADCLE ADCLE
				ゲイン誤差 ^(注3)	_	±1	±5	LSB	逐次比較時間: 10 ADCLK信号源インピーダンス:50 Ω 以下デジタルフィルタ: Sinc フィルタ
				DNL 微分非 直線性誤差 (注1)(注2)	_	-1~+2	-1~+4	LSB	
				INL 積分非直 線性誤差 ^(注1)	_	±4	±8	LSB	
			低速チャネル (AN016~AN022)	オフセット誤 差 ^(注3)	_	±0.5	±4	LSB	ADCLK: 50 MHz サンプリング時間: 84 ADCLK アンプリング時間: 84 ADCLK ATM Matter
				ゲイン誤差 ^(注3)	_	±1	±5	LSB	逐次比較時間: 10 ADCLK信号源インピーダンス:50 Ω 以下デジタルフィルタ: Sinc フィルタ
				DNL 微分非 直線性誤差 (注1)(注2)	_	-1~+2	-1~+4	LSB	
	差動力		INL 積分非直 線性誤差 ^(注1)	_	±4	±12	LSB		
		差動入力 高精度チャネル (AN000~AN005) (AN006~AN011)	(AN000~AN005)	オフセット誤 差 ^(注3)	_	±0.25	±2	LSB	ADCLK: 50 MHzサンプリング時間: 40 ADCLK
			ゲイン誤差 ^(注3)	_	±0.5	±2.5	LSB	逐次比較時間:10 ADCLK信号源インピーダンス:50 Ω 以下デジタルフィルタ: Sinc フィルタ	
			DNL 微分非 直線性誤差 (注1)(注2)	_	-1~+2	-1~ +2.5	LSB		
				INL 積分非直 線性誤差 ^(注1)	_	±3	±6	LSB	

注. これらの仕様値は、1 つの ADC16H だけが動作中で、DAC12 と ACMPHS が動作しておらず、かつ A/D 変換中に外部バスへのアクセスがない場合に適用されます。

他の ADC ユニット、DAC12、または ACMPHS が動作中である、または A/D 変換中にバスアクセスが発生した場合は、記載した範囲に数値が収まらない可能性があります。

ADC16H使用時は、ポート0をデジタル出力として使用しないでください。

上記の特性は、AVCC0、AVSS0、VREFH0、VREFH、VREFL0、VREFL、および ADC16H の入力電圧が安定しているときの特性です

- 注 1. 測定条件:アナログ入力電圧範囲の 0.2%~99.8%
- 注 2. DNL はヒストグラム法を使用して計測されるため、下限値は-1 になります。
- 注 3. この値は 12 ビット分解能に基づきます。

表 2.102 A/D 内部基準電圧特性 (1/2)

項目	Min	Тур	Max	単位	測定条件
A/D 内部基準電圧	0.77	0.8	0.84	V	_

表 2.102 A/D 内部基準電圧特性 (2/2)

項目	Min	Тур	Max	単位	測定条件
サンプリング時間	4.15	_	_	μs	_

表 2.103 D/A 出力の A/D 変換特性

項目	Min	Тур	Max	単位	測定条件
サンプリング時間	1	_	_	μs	_

2.6 DAC12 特性

表 2.104 D/A 変換特性

項目		シンボル	Min	Тур	Max	単位	測定条件	
分解能		_	_	-	12	ビット	_	
INL	VREFH ≧ 2.7 V	_	_	±2.0	±4.0	LSB	_	
	VREFH < 2.7 V	_	_	±4.0	±8.0			
DNL	VREFH ≧ 2.7 V	_	_	±0.5	±1.0	LSB	_	
	VREFH < 2.7 V	_	_	±1.0	±2.0			
変換時間	VREFH ≧ 2.7 V	t _{DCONV1} , t _{DCONV2}		_	3.5	μs	_	
	VREFH < 2.7 V		_	_	6			
出力先切り替え時間	VREFH ≧ 2.7 V	t _{DSLPUP1} , t _{DSLPUP2}		_	3.5	μs	_	
	VREFH < 2.7 V		_	_	6			
バッファ準備時間	VREFH ≧ 2.7 V	t _{DISOUT}	_	_	3.5	μs	_	
	VREFH < 2.7 V		_	_	6			
セットアップ時間		t _{SU}	_	_	4	ns	_	
負荷抵抗		_	5	_	_	kΩ	_	
負荷容量		_	_	_	50	pF	_	
出力電圧範囲	VREFH ≧ 2.7 V	_	0.20	_	VREFH - 0.20	V	_	
	VREFH < 2.7 V	_	0.34	_	VREFH - 0.34			

2.7 TSN 特性

表 2.105 TSN 特性

項目	シンボル	Min	Тур	Max	単位	測定条件
相対精度	_	-1.0	_	1.0	°C	A/D コンバータエラー は含まれません。
温度傾斜	_	_	2.7	_	mV/°C	_
出力電圧(25°C時)	_	_	1.24	_	V	_
温度センサ発振安定時間	t _{TSTBL}	_	_	30	μs	_
コンパレータ安定時間	t _{RSTBL}	_	_	30	μs	_
サンプリング時間	_	4.15	_	_	μs	_

2.8 OSC 停止検出特性

表 2.106 発振停止検出回路特性

項目	シンボル	Min	Тур	Max	単位	測定条件
検出時間	t _{dr}	_	_	1	ms	図 2.136

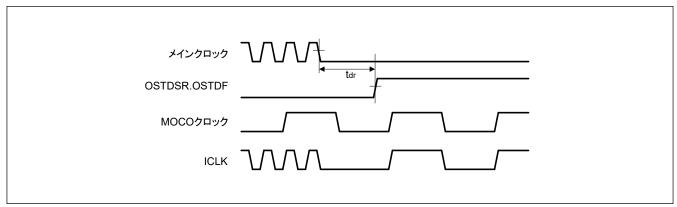


図 2.136 発振停止検出タイミング

表 2.107 サブクロック発振器停止検出回路の特性

項目	シンボル	Min	Тур	Max	単位	測定条件
検出時間	t _{dr}	_	_	2	ms	図 2.137

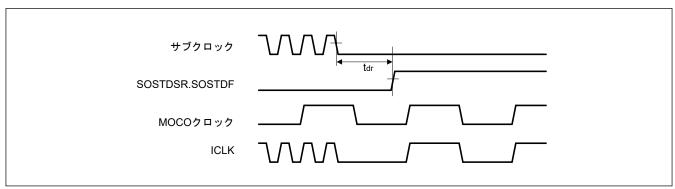


図 2.137 サブクロック発振停止検出タイミング

2.9 POR と PVD の特性

表 2.108 パワーオンリセット回路と電圧検出回路の特性 (1/2)

項目		シンボル	Min	Тур	Max	単位	測定条件
電圧検出レベル	パワーオンリセット (POR)	V _{POR1}	1.52	1.56	1.61	٧	図 2.138
		V _{POR2}	_	_	1.73		
	電圧検出回路 (PVD0)	V _{det0_0}	2.76	2.85	2.94		図 2.139
		V _{det0_1}	2.50	2.58	2.66		
		V _{det0_2}	2.08	2.15	2.22		
		V _{det0_3}	1.93	2.00	2.07		
		V _{det0_4}	1.84	1.90	1.96		
		V _{det0_5}	1.74	1.80	1.86	- - - - - - - -	
		V _{det0_6}	1.62	1.67	1.73		
		V _{det0_7}	1.51	1.56	1.61		
	電圧検出回路 (PVDn) (n = 1, 2, 4, 5)	V _{detn_0_rise}	4.23	4.39	4.54		図 2.140
		V _{detn_0_fall}	4.13	4.29	4.44		
		V _{detn_1_rise}	4.10	4.26	4.41		
		V _{detn_1_fall}	4.00	4.16	4.31		
		V _{detn_2_rise}	3.98	4.13	4.27		
		V _{detn_2_fall}	3.88	4.03	4.17		
		V _{detn_3_rise}	3.78	3.92	4.05		
		V _{detn_3_fall}	3.72	3.86	3.99		
		V _{detn_4_rise}	3.09	3.20	3.30	_	
		V _{detn_4_fall}	3.03	3.14	3.24		
		V _{detn_5_rise}	3.05	3.16	3.26		
		V _{detn_5_fall}	2.99	3.10	3.20		
		V _{detn_6_rise}	3.03	3.14	3.24		
		V _{detn_6_fall}	2.97	3.08	3.18		
		V _{detn_7_rise}	2.81	2.91	3.00		
		V _{detn_7_fall}	2.75	2.85	2.94		
		V _{detn_8_rise}	2.79	2.89	2.98		
		V _{detn_8_fall}	2.73	2.83	2.92		
		V _{detn_9_rise}	2.76	2.86	2.95		
		V _{detn_9_fall}	2.70	2.80	2.89		
		V _{detn_10_rise}	2.58	2.67	2.75		
		V _{detn_10_fall}	2.53	2.62	2.70		
		V _{detn_11_rise}	2.30	2.38	2.46		
		V _{detn_11_fall}	2.25	2.33	2.41		

表 2.108 パワーオンリセット回路と電圧検出回路の特性 (2/2)

項目		シンボル	Min	Тур	Max	単位	測定条件
電圧検出レベル	電圧検出回路 (PVDn) (n = 1, 2)	V _{detn_12_rise}	1.88	1.94	2.00	V	図 2.140
		V _{detn_12_fall}	1.84	1.90	1.96		
		V _{detn_13_rise}	1.84	1.90	1.96		
		V _{detn_13_fall}	1.80	1.86	1.92		
		V _{detn_14_rise}	1.72	1.78	1.84		
		V _{detn_14_fall}	1.68	1.74	1.80		
		V _{detn_15_rise}	1.66	1.72	1.77		
		V _{detn_15_fall}	1.62	1.68	1.73		
内部リセット時間	パワーオンリセット時間	t _{POR1}	_	_	6.7	ms	図 2.138
(注1)		t _{POR2}	_	_	1.6		
	PVD0 リセット時間	t _{PVD0}	_	_	(注1)		図 2.138
	PVD1 リセット時間	t _{PVD1}	_	_	(注1)		図 2.139
	PVD2 リセット時間	t _{PVD2}	_	_	(注1)		
	PVD4 リセット時間	t _{PVD4}	_	_	(注1)		
	PVD5 リセット時間	t _{PVD5}	_	_	(注1)		
最小 VCC 低下時	50 mV < VD	t _{VOFFP}	900	_	_	μs	図 2.138
間 (POR) ^(注2)	VD ≦ 50 mV		2000	_	_		
最小 VCC 低下時	PVD0	t _{VOFF}	25	_	_	μs	図 2.139
間 (PVD) ^(注2)	PVD1, PVD2, PVD4, PVD5		25	_	_	1	
応答遅延時間	50 mV < VD	t _{detp}	_	_	900	μs	図 2.138
(POR)	VD ≦ 50 mV		_	_	2000	1	
応答遅延時間	PVD0	t _{det}	_	_	25	μs	図 2.139, 図 2.140
(PVD)	PVD1, PVD2, PVD4, PVD5		_	_	25		
PVDn 動作安定時間	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	T _{d (E-A)}			20	μs	図 2.140

- 注 1. ディープソフトウェアスタンバイモードからの復帰時に内部リセット時間が最大になるため、 t_{PVD0} 、 t_{PVD1} 、 t_{PVD2} 、 t_{PVD4} 、および t_{PVD5} の最大値は、 t_{DSBY} の値と等しくなります。
- 注 2. 最小 VCC 低下時間は、VCC が POR/PVD の電圧検出レベル V_{POR1}、V_{det0}、V_{det1}、V_{det2}、V_{det4}、および V_{det5} の最小値を下回って いる時間を示します。

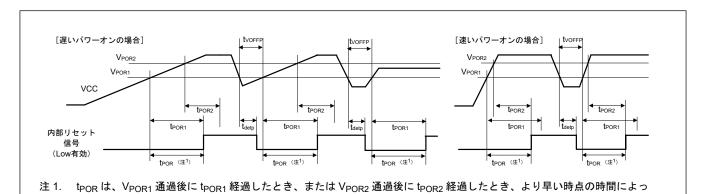


図 2.138 パワーオンリセットタイミング

て決定されます。

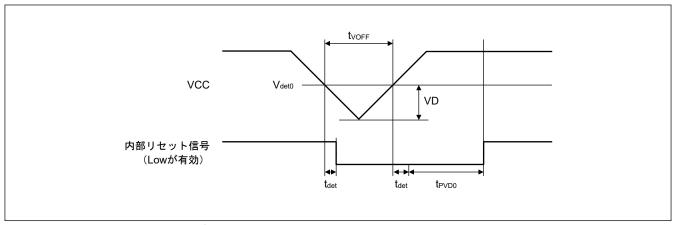


図 2.139 電圧検出回路タイミング (V_{det0})

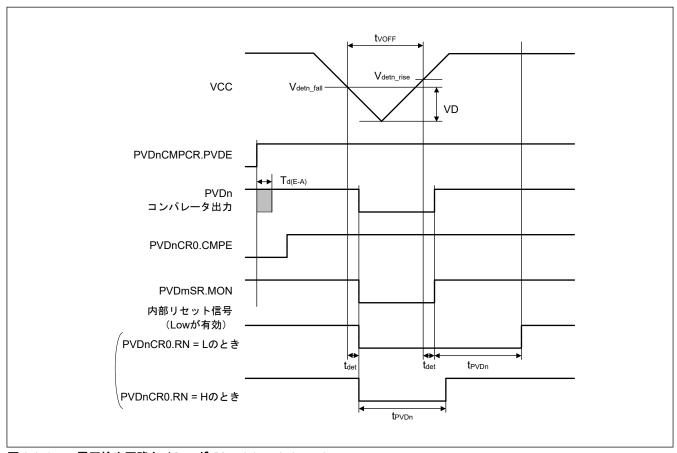


図 2.140 電圧検出回路タイミング (V_{detn}) (n = 1, 2, 4, 5)

2.10 外部 VDD タイミング特性

表 2.109 外部 VDD タイミング特性

項目	シンボル	Min	Тур	Max	単位	測定条件
外部 VDD の電源起動時におけるリセットホール ド時間(RES 端子を使用する場合)	t _{EXTVRH}	600.00	_		μs	図 2.141 図 2.142
外部 VDD の電源起動時における VDD 立ち上が り時間(RES 端子を使用しない場合)	t _{EXTVDD}	_	_	550	μs	

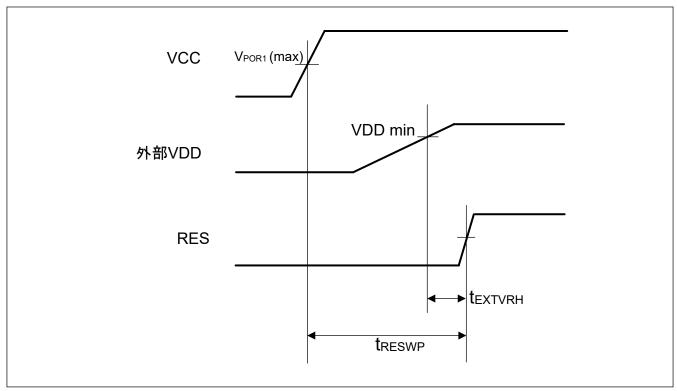


図 2.141 外部 VDD モードの電源起動シーケンス(RES 端子を使用する場合)

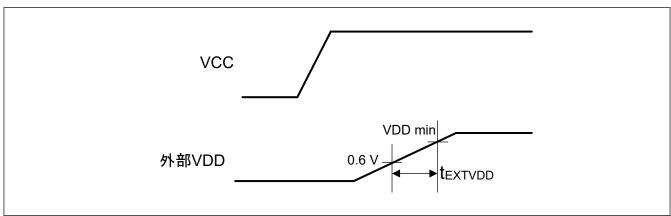


図 2.142 外部 VDD モードの電源起動シーケンス(RES 端子を使用しない場合)

2.11 コア電圧監視リセット特性

表 2.110 コア電圧監視リセット特性

項目			シンボル	Min	Тур	Max	単位	測定条件
電圧検出レベ	検出レベ コア電圧監視リセット (CVMR)		V _{det_VDDH}	1.05	1.10	1.15	V	図 2.143
ル	(CVIVIR)	VMR)		0.55	0.58	0.61		
内部リセット	コア電圧監視	DCDC モード	t _{CVM}	_	_	0.18	ms	
時間	リセット時間	外部 VDD モ ード		_	_	2.6		
最小 VDD 低下	/上昇時間 (C\	/MR)	t _{CVMOFF}	45	_	_	μs	
応答遅延時間 (答遅延時間 (CVMR)		t _{CVMdet}	_	_	45	μs	
ヒステリシス	ステリシス幅 (CVMR)		V _{CVMH}	_	0.225	_	V	

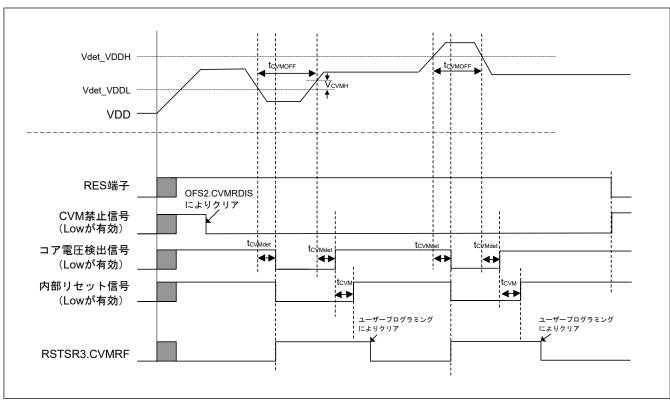


図 2.143 コア電圧監視リセット時間

2.12 温度監視リセット特性

表 2.111 温度監視リセット特性

項目	シンボル	Min	Тур	Max	単位	測定条件
高しきい値温度	T _{j_detect_H}	105	_	125	°C	図 2.144 図 2.145
低しきい値温度	T _{j_detect_L}	-40	_	-20	°C	凶 2.145

注. 温度監視リセットは、0~95°Cの製品(製品グループA)ではサポートされません。

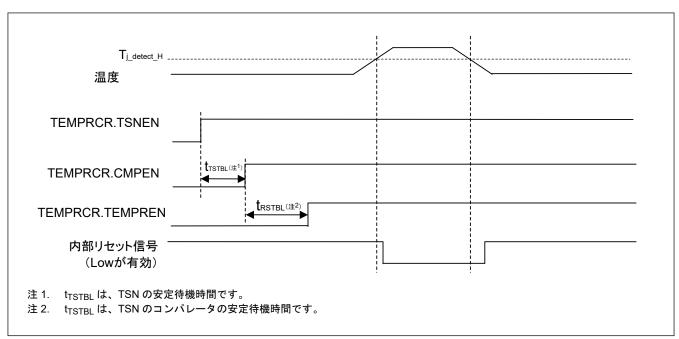


図 2.144 温度監視リセットのタイミング(高温検出)

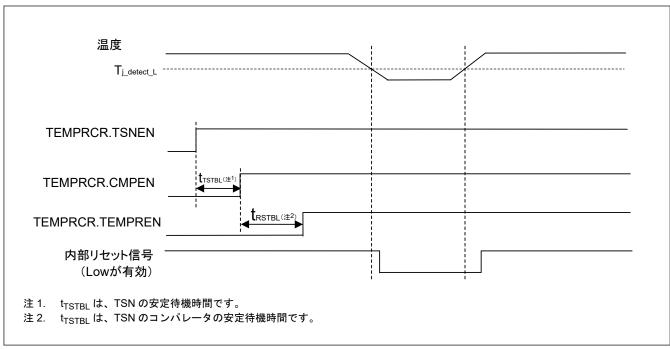


図 2.145 温度監視リセットのタイミング(低温検出)

2.13 VBATT 特性

表 2.112 バッテリバックアップ機能特性 (1/2)

条件: VCC = VCC DCDC = VCC USB = 1.62~3.63 V, VBATT = 1.62~3.63 V

項目	シンボル	Min	Тур	Max	単位	測定条件
バッテリバックアップ切り替え電圧レベル	V _{DETBATT_0}	2.760	2.850	2.940	V	図 2.146
ディープソフトウェアスタンバイモード 1/2 では OFS1.PVDAS と PVDLPSEL は 0 (PVD0 で	V _{DETBATT_1}	2.500	2.580	2.660		
は VDETVATT_n は VDSEL[2:0]の設定に従う) 	V _{DETBATT_2}	2.080	2.150	2.220		
	V _{DETBATT_3}	1.935	2.000	2.065		
	V _{DETBATT_4}	1.840	1.900	1.960		
	V _{DETBATT_5}	1.740	1.800	1.860		
	V _{DETBATT_6}	1.620	1.670	1.730		
バッテリバックアップ切り替え電圧レベル(上	V _{DETBATT_0}	2.710	2.800	2.890	V	
記以外)	V _{DETBATT_1}	2.450	2.530	2.610		
	V _{DETBATT_2}	2.030	2.100	2.170		
	V _{DETBATT_3}	1.885	1.950	2.015		
	V _{DETBATT_4}	1.790	1.850	1.910		
	V _{DETBATT_5}	1.690	1.750	1.810		
VCC 降下検出安定待機時間 ^(注2)	t _{DETWT}	_	_	20	μs	_
VCC 電圧低下による電源切り替え時の VBATT 下限電圧	V _{BATTSW}	1.8	_	_	V	図 2.146
電源切り替え開始時 VCC オフ期間 ^(注1) (ディープソフトウェアスタンバイモード 1/2 で OFS1.PVDAS と PVDLPSEL が 0)	t _{VOFFBATT}	25	_	_	μs	
電源切り替え開始時 VCC オフ期間 ^(注1) (上記以外)		25				

表 2.112 パッテリバックアップ機能特性 (2/2)

条件: VCC = VCC_DCDC = VCC_USB = 1.62~3.63 V, VBATT = 1.62~3.63 V

項目	シンボル	Min	Тур	Max	単位	測定条件
バックアップドメインパワーダウン検出レベル	V _{PDR (BATR)}	1.43	1.47	1.52	V	図 2.147
バックアップドメインのリセット信号アサート 時間遅延 ^(注3)	t _p (PDRL)	_	_	2000	μs	
バックアップドメインのリセット信号ネゲート 時間遅延	t _p (PDRH)	_	_	3000		
VBATT 監視動作安定時間 (VBATTMNSELR.VBTMNSEL を 1 に変更後)	t _{MONWT}	_	_	4.2	μs	_
VBATT 電圧監視レベル	V _{MONBATT}	_	VBATT / 6	_	V	_
VBATT 電流増加 (VBATTMNSELR.VBTTMNSEL = 1 の場合と VBATTMNSELR.VBTTMNSEL = 0 の場合の比 較)	I _{VBATTSELB}	_	1.35	2.00	μΑ	_
VCC 電流増加 (VBATTMNSELR.VBTTMNSEL = 1 の場合と VBATTMNSELR.VBTTMNSEL = 0 の場合の比較)	IVBATTSELC	_	15	25	μА	_

- 注 1. 電源切り替え開始時 VCC オフ期間は、VCC がバッテリバックアップ切り替え電圧レベル (V_{DETBATT}) の最小値を下回っている時間です。
 - さらに、この期間は VCC が電圧検出レベル VPOR1 の最小値を下回っている時間 tVOFFP です。
- 注 2. VBTBPCR2.VDETLVL が変更されるか、VBTBPCR1.BPWSWSTP が 1 から 0 に変更される安定時間。
- 注 3. VBATT_R がこの期間内に復帰すると、バックアップドメインリセット信号が発生しない可能性があります。

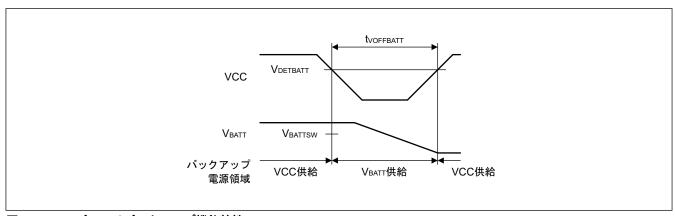


図 2.146 バッテリバックアップ機能特性

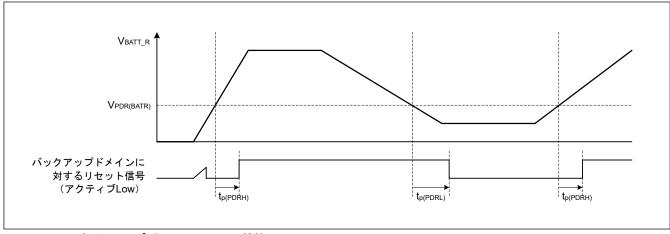


図 2.147 バックアップドメインリセット特性

2.14 ACMPHS 特性

表 2.113 ACMPHS

項目			シンボル	Min	Тур	Max	単位	測定条件
基準電圧範囲	基準電圧範囲				_	AVCC0	V	_
入力電圧範囲	ACMPHS0 , 1	IVCMP1~ IVCMP3	VI	0	_	AVCC0	V	_
	IVCMP0			0	_	AVCC0		VCC ≧ AVCC0
				0	_	vcc		VCC < AVCC0
	ACMPHS2,	3		0	_	AVCC0		_
出力遅延 ^(注1)		Td	_	50	100	ns	VI = VREF ± 100 mV	
内部基準電圧			Vref	0.77	0.8	0.84	V	_

注 1. 内部伝搬遅延の値です。

2.15 MRAM 特性

2.15.1 コード MRAM 特件

表 2.114 コード MRAM 特性

		3	MRICLK 250 MHz			MRICLK 200 MHz	_		MRICLK 150 MHz	_		MRICLK 133 MH				#
項目		ッンボラ	Min	Typ (注4)	Max	Min	Typ (注4)	Max	Min	Typ (注4)	Max	Min	Typ (注4)	Max	単位	測定条件
32 バイトのプログラム時間 (注7) (注8)	通常プロ グラムモ ード (MRPSC. MHSPEN = 0)	t _{PM} C	_	6.7 (注5) (注6)	83.3 (注6)	_	6.74 (注5) (注6)	83.6 (注6)	_	6.92 (注5) (注6)	85.6 (注6)	_	7.09 (注5) (注6)	87.3 (注6)	μs	
	高速プロ グラムモ ード (MRPSC. MHSPEN = 1)	t _{PM} C	_	4.7 (注5) (注6)	81.3 (注6)	_	4.74 (注5) (注6)	81.6 (注6)	_	4.92 (注5) (注6)	83.6 (注6)		5.09 (注5) (注6)	85.3 (注6)	μs	
再プログラムサ	イクル	N _{PC}	100000 (注1)	_	_	100000 (注1)		_	100000 (注1)	_	_	100000 (注1)	_	_		
データ保持時間	(注2)	t _{DRP}	10 ^(注2) (注3)	_		10 ^(注2) (注3)			10 ^(注2) (注3)			10 ^(注2) (注3)			年	Tj = +125 °C

- 注 1. 再プログラム後の、すべての特性を保証する最小回数です。保証範囲は 1~最小値です。
- 注 2. 書き換えが仕様範囲内で行われたときの特性の最小値です。
- 注 3. この結果は信頼性試験から得られたものです。
- 注 4. VCC = 3.3 V および室温における基準値
- 注 5. Typ 条件で 50%のビットの書き換えを実行します。
- 注 6. MRPCLK < 125 MHz の場合は、プログラム時間に MRPCLK 1 サイクルの時間を追加します。
- 注 7. 他の周波数での更新時間を計算するには、以下に示す近似式を使用します。 MRPCLK < 125 MHz の場合は、この式に 1/FMRPCLK [us]を追加します。(F_{MRICLK}: MRICLK の周波数[MHz]、F_{MRPCLK}: MRPCLK の周波数[MHz])
 - t_{PMC} (Typ) = 137.8/F_{MRICLK} + 6.452 [µs], t_{PMC} (Max) = 1879/F_{MRICLK} + 78.75 [µs] (通常プログラムモードの場合) t_{PMC} (Typ) = 137.8/F_{MRICLK} + 4.452 [µs], t_{PMC} (Max) = 1879/F_{MRICLK} + 76.75 [µs] (高速プログラムモードの場合)
- 注8. コード MRAM の読み出しおよびプログラム動作を同時に実行することはできません。この値は、読み出しとプログラムの間のアービトレーションのない独立したプログラム動作のためのものです。

2.15.2 オプション設定メモリ (MRAM 領域) 特性

表 2.115 エクストラ MRAM (MRAM 領域) 特性

		3	MRPCL 125 MHz			MRPCLI 100 MHz			MRPCL 75 MHz	K =		MRPCLI 66 MHz	K =			#
項目		ッンボラ	Min	Typ (注4)	Max	単位	測定条件									
16 バイトのプログラム時間 (注7) (注8)	通常プロ グラムモ ード (MRPSC. MHSPEN = 0)	t _{PM} E	_	6.82 (注5)	75.8 (注6)	_	7.06 (注5)	76.6 (注6)	_	7.53 (注5)	80.7 (注6)	_	8.08 (注5)	85.2 (注6)	μs	
	高速プロ グラムモ ード (MRPSC. MHSPEN = 1)	t _{PM}	_	4.82 (注5)	73.8 (注6)	_	5.06 (注5)	74.6 (注6)	_	5.53 (注5)	78.7 (注6)	_	6.08 (注5)	83.2 (注6)	μs	
再プログラムサ	イクル	N _{PC}	100000 (注1)	_	_	100000 (注1)	_	_	100000 (注1)	_	_	100000 (注1)	_			_
データ保持時間	(注2)	t _{DRP}	10 ^(注2) (注3)	_	_	10 ^(注2) (注3)	_		10 ^(注2) (注3)			10 ^(注2) (注3)	_		年	Tj = +125 °C

- 注 1. 再プログラム後の、すべての特性を保証する最小回数です。保証範囲は 1~最小値です。
- 注 2. 書き換えが仕様範囲内で行われたときの特性の最小値です。
- 注3. この結果は信頼性試験から得られたものです。
- 注 4. VCC = 3.3 V および室温における基準値
- 注 5. Typ 条件で 50%のビットの書き換えを実行します。
- 注 6. 図 x.x のタイムアウト値は、最大値の約 1.1 倍です。(t_{PME} + t_{PMC} + 読み出し時間(MRPCLK の 40 サイクル))
- 注 7. 他の周波数での更新時間を計算するには、以下に示す近似式を使用します。(F_{MRPCLK}: MRPCLK の周波数[MHz]) t_{PMC} (Typ) = 179.2/F_{MRPCLK} + 5.725 [µs], t_{PMC} (Max) = 1988/F_{MRPCLK} + 61.9 [µs] (通常プログラムモードの場合) t_{PMC} (Typ) = 179.2/F_{MRPCLK} + 3.725 [µs], t_{PMC} (Max) = 1988/F_{MRPCLK} + 59.9 [µs] (高速プログラムモードの場合)
- 注 8. エクストラ MRAM の読み出しおよびプログラム動作を同時に実行することはできません。この値は、読み出しとプログラムの間の アービトレーションのない独立したプログラム動作のためのものです。

2.15.3 オプション設定メモリ (ECC ありの OTP 領域) 特性

表 2.116 オプション設定メモリ(ECC ありの OTP 領域)特性

		3;	MRPCL 125 MHz			MRPCL 100 MH			MRPCL 75 MHz	K =		MRPCL 66 MHz	K =			##
項目		シンボル	Min	Typ (注1)	Max	Min	Typ (注1)	Max	Min	Typ (注1)	Max	Min	Typ (注1)	Max	単位	測定条件
16 バイトのプログラム時間 (注4) (注5)	Normal- speed 書 き込みモ ード (MWMCR. MWM[1:0] = 00)	t _{OTP}	_	8.05 (注2)	113 (注3)	_	8.05 (注2)	113 (注3)	_	8.05 (注2)	113 (注3)	_	8.05 (注2)	113 (注3)	ms	
	High- speed 書 き込みモ ード 0 (MWMCR. MWM[1:0] = 01)		_	4.03 (注2)	56.7 (注3)	_	4.03 (注2)	56.7 (注3)	_	4.03 (注2)	56.7 (注3)	_	4.03 (注2)	56.7 (注3)	ms	_
	High- speed 書 き込みモ ード 1 (MWMCR. MWM[1:0] = 10)		_	0.22 9 (注2)	3.14 (注3)	_	0.22 9 (注2)	3.14 (注3)	_	0.22 9 (注2)	3.14 (注3)	_	0.22 9 (注2)	3.14 (注3)	ms	_

- 注 1. VCC = 3.3 V および室温における基準値
- 注 2. Typ 条件で 50%のビットの書き換えを実行します。
- 注 3. 図 x.x のタイムアウト値は、最大値の約 1.1 倍です。(t_{OTPE} + t_{PMC} + 読み出し時間(MRPCLK の 40 サイクル))
- 注 4. 他の周波数での更新時間を計算するには、以下に示す近似式を使用します。(F_{MRPCLK}: MRPCLK の周波数[MHz])
 t_{OTPE} (Typ) = 0.5065/F_{MRPCLK} + 8.123 [ms], t_{OTPE} (Max) = 4.433/F_{MRPCLK} + 114.1 [ms] (Normal-speed モードの場合)
 t_{OTPE} (Typ) = 0.3389/F_{MRPCLK} + 4.067 [ms], t_{OTPE} (Max) = 2.428/F_{MRPCLK} + 57.08 [ms] (High-speed モード 0 の場合)
 t_{OTPE} (Typ) = 0.1458/F_{MRPCLK} + 0.2312 [ms], t_{OTPE} (Max) = 0.3904/F_{MRPCLK} + 3.166 [ms] (High-speed モード 1 の場合)
- 注 5. エクストラ MRAM の読み出しおよびプログラム動作を同時に実行することはできません。この値は、読み出しとプログラムの間の アービトレーションのない独立したプログラム動作のためのものです。

2.15.4 オプション設定メモリ (ECC なしの OTP 領域) 特性

表 2.117 オプション設定メモリ(ECC なしの OTP 領域)特性

		113	MRPCL 125 MHz	_		MRPCL 100 MH			MRPCL 75 MHz	K =		MRPCLI 66 MHz	K =			#
項目		が非べる	Min	Typ (注1)	Max	Min	Typ (注1)	Max	Min	Typ (注1)	Max	Min	Typ (注1)	Max	単位	測定条件
16 バイトのプログラム時間 (注4) (注5)	Normal- speed 書 き込みモ ード (MWMCR. MWM[1:0] = 00)	t _{OTP} ENE	_	14.1 (注2)	200 (注3)	_	14.1 (注2)	200 (注3)	_	14.1 (注2)	200 (注3)	_	14.1 (注2)	200 (注3)	ms	
	High- speed 書 き込みモ ード 0 (MWMCR. MWM[1:0] = 01)		_	7.07 (注2)	100 (注3)	_	7.07 (注2)	100 (注3)	_	7.07 (注2)	100 (注3)	_	7.07 (注2)	100 (注3)	ms	
	High- speed 書 き込みモ ード 1 (MWMCR. MWM[1:0] = 10)		_	0.45 8 (注2)	6.28 (注3)	_	0.45 8 (注2)	6.28 (注3)	_	0.45 8 (注2)	6.28 (注3)	_	0.45 8 (注2)	6.28 (注3)	ms	_

- 注 1. VCC = 3.3 V および室温における基準値
- 注 2. Typ 条件で 50%のビットの書き換えを実行します。
- 注 3. 図 x.x のタイムアウト値は、最大値の約 1.1 倍です。(t_{OTPENE} + t_{PMC} + 読み出し時間(MRPCLK の 40 サイクル))
- 注 4. 他の周波数での更新時間を計算するには、以下に示す近似式を使用します。(F_{MRPCLK}: MRPCLK の周波数[MHz])
 t_{OTPENE} (Typ) = 0.8486/F_{MRPCLK} + 14.25 [ms], t_{OTPENE} (Max) = 7.711/F_{MRPCLK} + 201.5 [ms](Normal-speed モードの場合)
 t_{OTPENE} (Typ) = 0.5479/F_{MRPCLK} + 7.133 [ms], t_{OTPENE} (Max) = 4.148/F_{MRPCLK} + 100.8 [ms](High-speed モード 0 の場合)
 t_{OTPENE} (Typ) = 0.2571/F_{MRPCLK} + 0.4627 [ms], t_{OTPENE} (Max) = 0.7401/F_{MRPCLK} + 6.333 [ms](High-speed モード 1 の場合)
- 注 5. エクストラ MRAM の読み出しおよびプログラム動作を同時に実行することはできません。この値は、読み出しとプログラムの間の アービトレーションのない独立したプログラム動作のためのものです。

2.15.5 MACI コマンド特性

表 2.118 MACI コマンド特性 (1/2)

		3	MRPCLK = 125 MHz				MRPCLK = 75 MHz		MRPCLK = 66 MHz				#			
項目	賃目 ペープ インス		Min	Typ (注1)	Max	Min	Typ (注1)	Max	Min	Typ (注1)	Max	Min	Typ (注1)	Max	単位	漫定条件
強制停止コマン 間 ^(注2)	ドの命令時	t _{FS}	_	_	3.35 (注3)	_	_	3.38 (注3)	_	_	3.47 (注3)	_	_	3.7 (注3)	μs	_
コンフィグレ ーション設定 の命令時間 (注2)	通常プロ グラムモ ード (MRPSC. MHSPEN = 0)	t _{PCF}	_	0.35	8.19 (注4)	_	0.35 6	8.3 (注4)	_	0.37	8.83 (注4)	_	0.39 9	9.42 (注4)	ms	
	高速プロ グラムモ ード (MRPSC. MHSPEN = 1)		_	0.06 65	7.85 (注4)	_	0.07 25	7.96 (注4)	_	0.08 82	8.5 (注4)	_	0.09 78	9.06 (注4)	ms	
インクリメント 命令時間 ^(注2)	カウンタの	t _{INC} C	_	0.25 2	1.61 (注5)	_	0.25 2	1.61 (注5)	_	0.25 2	1.61 (注5)	_	0.25 2	1.61 (注5)	ms	_

表 2.118 MACI コマンド特性 (2/2)

16									MRPCLK = 66 MHz				*		
項目	ツン光	Min	Typ (注1)	Max	Min	Typ (注1)	Max	Min	Typ (注1)	Max	Min	Typ (注1)	Max	単位	測定条件
読み出しカウンタの命令時 間 ^(注2)	t _{RD}	_	_	0.15 6 (注6)	_	_	0.18 2 (注6)	_	_	0.24 3 (注6)	_	_	0.27 6 (注6)	μs	_

- 注 1. VCC = 3.3 V および室温における基準値
- 注 2. 他の周波数での更新時間を計算するには、以下に示す近似式を使用します。(F_{MRPCLK}: MRPCLK の周波数[MHz]) t_{FS} (Max) = 38.62/F_{MRPCLK} + 3.155 [us]
 - t_{PCFG} (Typ) = 6.146/F_{MRPCLK} + 0.3133 [msec], t_{PCFG} (Max) = 266.5/F_{MRPCLK} + 6.331 [msec] (通常プログラムモードの場合)
 - t_{PCFG} (Typ) = 5.184/F_{MRPCLK} + 0.02754 [msec], t_{PCFG} (Max) = 267.5/F_{MRPCLK} + 6.025 [msec] (高速プログラムモードの場合)
 - $t_{INCC} \ (Typ) = 0.3348 / F_{MRPCLK} + 0.2533 \ [msec], \ t_{INCC} \ (Max) = 0.8698 / F_{MRPCLK} + 1.62 \ [msec]$
 - t_{RDC} (Max) = 19.13/ F_{MRPCLK} + 0.004099 [usec]
- 注 3. 図 x.x のタイムアウト値は、最大値の約 1.1 倍です。(t_{FS} + 読み出し時間(MRPCLK の 40 サイクル))
- 注 4. この表の値は、5 回プログラミング(16 バイト)の時間に基づいて計算されています。図 x.x のタイムアウト値は、最大値の約 1.1 倍です(t_{PCFG} + t_{PMC} + 読み出し時間(MRPCLK の 40 サイクル))。
- 注 5. この表の値は、2 回プログラミング(32 バイト)の時間に基づいて計算されています。図 x.x のタイムアウト値は、最大値の約 1.1 倍です(t_{INCC} + t_{PMC} + 読み出し時間(MRPCLK の 40 サイクル))。
- 注 6. カウンタの読み出し時間は、MRPCLK での 100 サイクル分です。図 x.x のタイムアウト値は、最大値の約 1.1 倍です(t_{RDC} + 読み出し時間(MRPCLK の 40 サイクル))。

2.15.6 W-HUK のゼロ化

表 2.119 W-HUK のゼロ化の特性

	いボル									MRPCLK = 66 MHz		位	定条件		
項目	3	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	東	黑
W-HUK のゼロ化のアクション時間 ^(注1)	t _{ZW} H	_	_	793		_	793	_	_	793		_	793	ms	_

注 1. 他の周波数での更新時間を計算するには、以下に示す近似式を使用します。(FMRPCLK: MRPCLK の周波数[MHz]) t_{ZWH} (Max) = 34.52/FMRPCLK + 799 [μ s]

2.15.7 MRAM 磁場耐性特性

表 2.120 MRAM 磁場耐性特性

項目		シンボル	Min	Тур	Max	単位	測定条件
動作	書き込み状態	G _{max_wr}	_	_	200	ガウス	_
	読み出し状態	G _{max_rd}	_	_	200	ガウス	_
	非アクセス時の状態	G _{max_noac}	_	_	500	ガウス	_
保管	,	G _{max_stg}	_	_	500	ガウス	適用温度は T _{stg} です。

2.16 バウンダリスキャン

表 2.121 バウンダリスキャン特性

項目	vcc	シンボル	Min	Тур	Max	単位	測定条件
TCK クロックサイクル時間	1.62 V 以 上	t _{TCKcyc}	100	_	_	ns	図 2.148
TCK クロック High レベルパルス 幅	1.62 V 以 上	tтскн	0.45	_	_	t _{TCKcyc}	
TCK クロック Low レベルパルス 幅	1.62 V 以 上	t _{TCKL}	0.45	_	_	t _{TCKcyc}	
TCK クロック立ち上がり時間	1.62 V 以 上	t _{TCKr}	_	_	0.05(注2)	t _{TCKcyc}	
TCK クロック立ち下がり時間	1.62 V 以 上	t _{TCKf}	_	_	0.05(注2)	t _{TCKcyc}	
TMS セットアップ時間	1.62 V 以 上	t _{TMSS}	20	_	_	ns	図 2.149
TMS ホールド時間	1.62 V 以 上	t _{TMSH}	20	_	_	ns	
TDI セットアップ時間	1.62 V 以 上	t _{TDIS}	20	_	_	ns	
TDI ホールド時間	1.62 V 以 上	t _{TDIH}	20	_	_	ns	
TDO データ遅延時間	1.62 V 以 上	t _{TDOD}	_	_	40	ns	
キャプチャレジスタセットアップ 時間	1.62 V 以 上	t _{CAPTS}	20	_	_	ns	図 2.150
キャプチャレジスタホールド時間	1.62 V 以 上	t _{CAPTH}	20	_	_	ns	
更新レジスタ遅延時間	1.62 V 以 上	tupdated	_	_	40	ns	
バウンダリスキャン回路起動時間 (注1)	1.62 V 以 上	T _{BSSTUP}	t _{RESWP}	_	_	_	図 2.151

注 1. パワーオンリセットが無効になるまで、バウンダリスキャンは機能しません。 注 2. 最長 1 μs

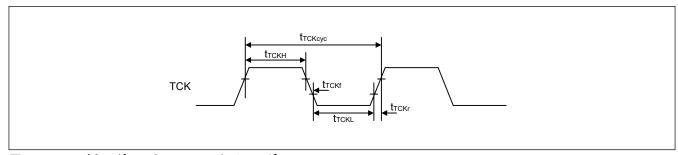


図 2.148 パウンダリスキャン TCK タイミング

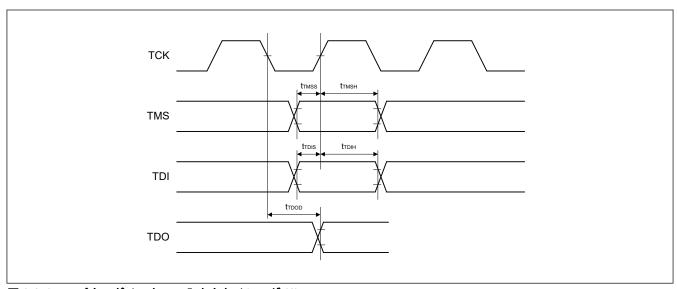


図 2.149 パウンダリスキャン入出力タイミング (1)

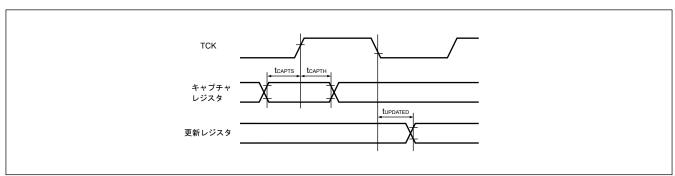


図 2.150 パウンダリスキャン入出力タイミング (2)

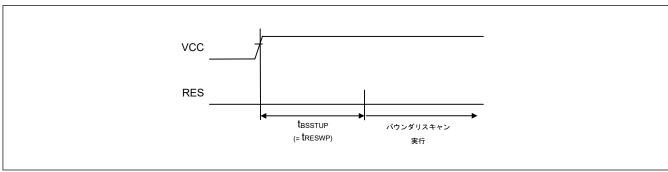


図 2.151 パウンダリスキャン回路起動タイミング

2.17 JTAG (Joint Test Action Group)

表 2.122 JTAG

項目	vcc	シンボル	Min	Тур	Max	単位	測定条件
TCK クロックサイクル時間	2.7 V 以上	t _{TCKcyc}	40.0	_	_	ns	図 2.152
	1.62 V 以 上		40.0	_	_	ns	
TCK クロック High レベルパルス	2.7 V 以上	t _{TCKH}	0.375	_	_	t _{TCKcyc}	
幅	1.62 V 以 上		0.375	_	_	t _{TCKcyc}	
TCK クロック Low レベルパルス	2.7 V 以上	t _{TCKL}	0.375	_	_	t _{TCKcyc}	
幅	1.62 V 以 上		0.375	_	_	t _{TCKcyc}	
TCK クロック立ち上がり時間	2.7 V 以上	t _{TCKr}	_	_	0.125 ^(注1)	t _{TCKcyc}	
	1.62 V 以 上		_	_	0.125 ^(注1)	t _{TCKcyc}	
TCK クロック立ち下がり時間	2.7 V 以上	t _{TCKf}	_	_	0.125 ^(注1)	t _{TCKcyc}	
	1.62 V 以 上		_	_	0.125 ^(注1)	t _{TCKcyc}	
TMS セットアップ時間	2.7 V 以上	t _{TMSS}	8.0	_	_	ns	図 2.153
	1.62 V 以 上		8.0	_	_	ns	
TMS ホールド時間	2.7 V 以上	t _{TMSH}	8.0	_	_	ns	
	1.62 V 以 上		8.0	_	_	ns	
TDI セットアップ時間	2.7 V 以上	t _{TDIS}	8.0	_	_	ns	
	1.62 V 以 上		8.0	_	_	ns	
TDI ホールド時間	2.7 V 以上	t _{TDIH}	8.0	_	_	ns	
	1.62 V 以 上		8.0	_	_	ns	
TDO データ遅延時間	2.7 V 以上	t _{TDOD}	_	_	20.0	ns	
	1.62 V 以 上		_	_	28.0	ns	

注 1. 最長 1 µs

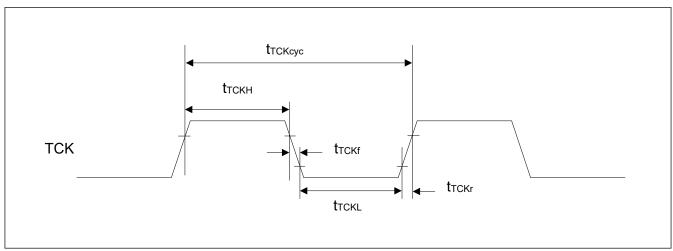


図 2.152 JTAG TCK タイミング

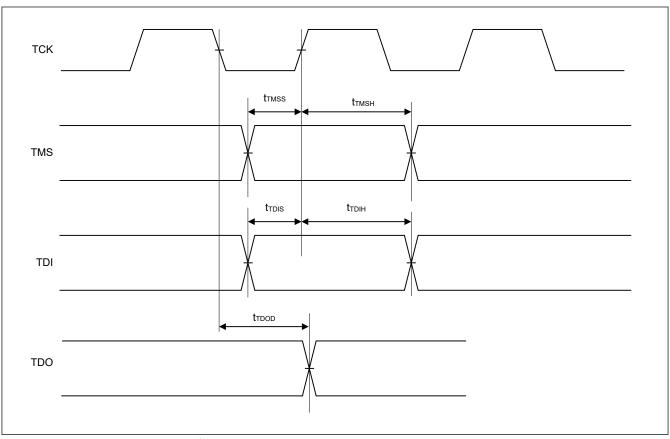


図 2.153 JTAG 入出力タイミング

2.18 シリアルワイヤデバッグ (SWD)

表 2.123 SWD

項目	vcc	シンボル	Min	Тур	Max	単位	測定条件
SWCLK クロックサイクル時間	2.7 V 以上	t _{SWCKcyc}	40.0	_	_	ns	図 2.154
	1.62 V 以上		40.0	_	_	ns	
SWCLK クロック High レベル	2.7 V 以上	tswckh	0.375	_	_	tswckcyc	
パルス幅 	1.62 V 以上		0.375	_	_	t _{SWCKcyc}	
SWCLK クロック Low レベル	2.7 V 以上	tswckl	0.375	_	_	t _{SWCKcyc}	
パルス幅	1.62 V 以上		0.375	_	_	tswckcyc	
SWCLK クロック立ち上がり時	2.7 V 以上	tswckr	_	_	0.125 ^(注1)	tswckcyc	
間	1.62 V 以上		_	_	0.125 ^(注1)	t _{SWCKcyc}	
SWCLK クロック立ち下がり時	2.7 V 以上	tswckf	_	_	0.125 ^(注1)	tswckcyc	
間	1.62 V 以上		_	_	0.125 ^(注1)	tswckcyc	
SWDIO セットアップ時間	2.7 V 以上	t _{SWDS}	8.0	_	_	ns	図 2.155
	1.62 V 以上		8.0	_	_	ns	
SWDIO ホールド時間	2.7 V 以上	t _{SWDH}	8.0	_	_	ns	
	1.62 V 以上		8.0	_		ns	
SWDIO データ遅延時間	2.7 V 以上	t _{SWDD}	2.0	_	28.0	ns	
	1.62 V 以上		2.0	_	32.0	ns	

注 1. 最長 1 µs

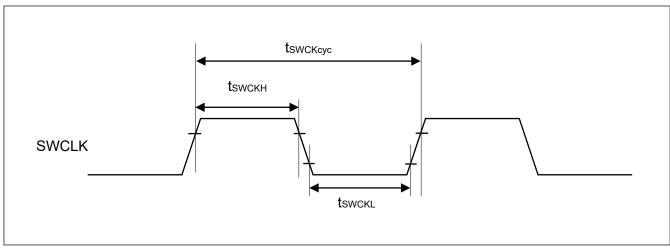


図 2.154 SWD SWCLK タイミング

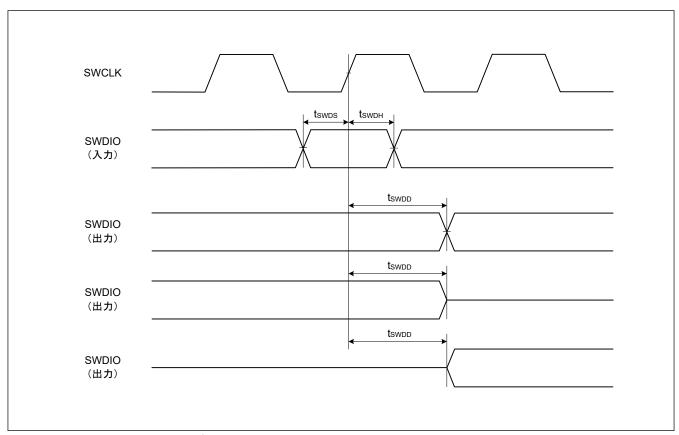


図 2.155 SWD 入出力タイミング

2.19 エンベデッドトレースマクロインタフェース (ETM)

表 2.124 ETM

条件: PmnPFS レジスタのポート駆動能力ビットで高速高駆動出力が選択されています。

項目	vcc	シンボル	Min	Тур	Max	単位	測定条件
TCLK クロックサイクル時間	2.7 V 以上	t _{TCLKcyc}	16	_	_	ns	図 2.156
	1.62 V 以 上		16	_	_	ns	
TCLK クロック High レベルパルス 幅	2.7 V 以上	t _{TCLKH}	7	_	_	ns	
	1.62 V 以 上		6	_	_	ns	
TCLK クロック Low レベルパルス	2.7 V 以上	t _{TCLKL}	7	_	_	ns	
幅	1.62 V 以 上		6	_	_	ns	
TCLK クロック立ち上がり時間	2.7 V 以上	t _{TCLKr}	_	_	1.0	ns	
	1.62 V 以 上		_	_	2.0	ns	
TCLK クロック立ち下がり時間	2.7 V 以上	t _{TCLKf}	_	_	1.0	ns	
	1.62 V 以 上		_	_	2.0	ns	
TDATA[3:0]出力有効時間	2.7 V 以上	t _{TRDV}	_	_	t _{TCLKcyc} /4 + 1.5	ns	図 2.157
	1.62 V 以 上		_	_	t _{TCLKcyc} /4 + 1.5	ns	
TDATA[3:0]出力ホールド時間	2.7 V 以上	t _{TRDH}	1.5	_	_	ns	
	1.62 V 以 上		1.5	_	_	ns	

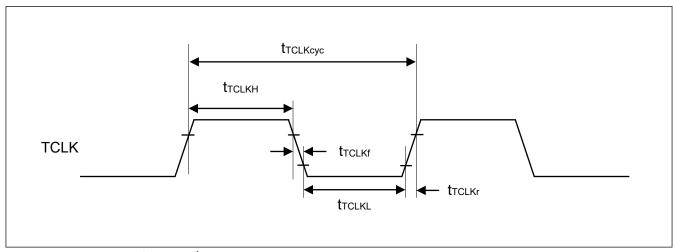


図 2.156 ETM TCLK タイミング

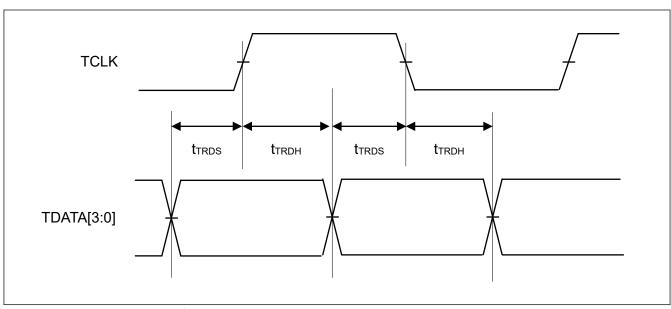
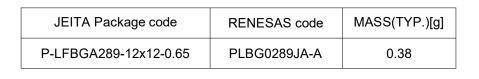


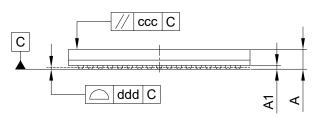
図 2.157 ETM 出力タイミング

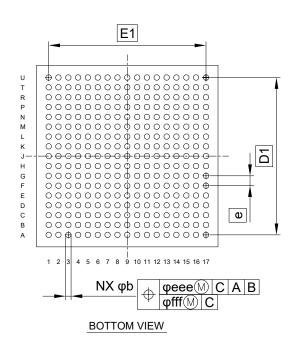
付録 1. 各プロセスモードのポート状態

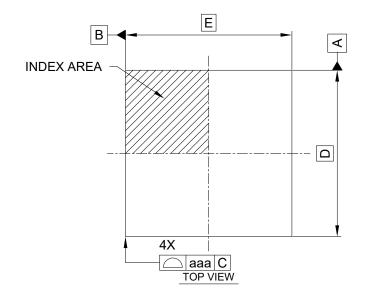
機能	端子機能	リセット	ソフトウェ: (SSTBY)	アスタンパイモード	ディープソフトウェア モード1、2、3 (DSTE		ディープソフトウェアスタンパ イモード解除後(スタートアップ モードに復帰)		
			OPE = 0	OPE = 1	DSTBY1	DSTBY2/ DSTBY3	IOKEEP = 0	IOKEEP = 1 ^(注1)	
モード	MD	プルアップ	Keep-I		Keep	Keep		Кеер	
JTAG/SWD	TCK/TMS/TDI/SWCLK	プルアップ	TCK/TDI/TMS/SWCLK 入力		TCK/TDI/TMS/SWCLK 入力		TCK/TDI/TMS/SWCLK 入力		
	TDO	出力	TDO 出力 T		TDO 出力		TDO 出力		
	SWDIO	プルアップ	SWDIO 入力	ו	SWDIO 入力		SWDIO 7	(カ	
トレース	TCLK/TDATAx/SWO	TCLK/ TDATAx/SWO 出 カ	TCLK/TDAT	Ax/SWO 出力	TCLK/TDATAx/SWO	出力	TCLK/TD	ATAx/SWO 出力	
IRQ	IRQx	Hi-Z	Hi-Z ^(注2)		Keep		Hi-Z	Keep	
	IRQx-DS(x: 5 以外)	Hi-Z	Hi-Z ^(注2)		Keep ^(注3)		Hi-Z	Keep	
	IRQ5-DS	Hi-Z	Hi-Z ^(注2)		Keep ^(注3)		Hi-Z	1	
AGT	AGTIOn	Hi-Z	AGTIOn 入:	 ხ	Keep		Hi-Z	Keep	
	AGTOn/AGTOAn/ AGTOBn	Hi-Z	AGTOn/AG	TOAn/AGTOBn 出力	Keep		Hi-Z	Keep	
ULPT	ULPTEEn/ULPTEVIn	Hi-Z	ULPTEEn/L	ILPTEVIn 入力	Keep		Hi-Z	Keep	
	ULPTEEn-DS/ ULPTEVIn-DS	Hi-Z	ULPTEEn-D)S/ULPTEVIn-DS 入力	ULPTEEn-DS/ ULPTEVIn-DS 入力	Hi-Z	Hi-Z	Кеер	
	ULPTOn/ULPTOAn/ ULPTOBn	Hi-Z	ULPTOn/UL カ	.PTOAn/ULPTOBn 出	Keep		Hi-Z	Keep	
	ULPTOn-DS/ULPTOAn- DS/ULPTOBn-DS	Hi-Z	ULPTOBn-DS 出力		ULPTOn/ULPTOAn-DS/ULPTOBn-DS 出力	Keep	Hi-Z	DSTBY1: ULPTOn/ ULPTOAn-DS/ ULPTOBn-DS 出力 DSTBY1、2から: Keep	
IIC	SCLn/SDAn	Hi-Z	Keep-O ^(注2)		Keep		Hi-Z	Keep	
I3C	I3C_SCL0/I3C_SDA0	Hi-Z	Keep-O ^(注2)		Hi-Z		Hi-Z	1	
USBFS	USB_OVRCURx	Hi-Z	Hi-Z ^(注2)		Кеер		Hi-Z	Keep	
	USB_OVRCURx-DS/ USB_VBUS	Hi-Z	Hi-Z ^(注2)		Keep ^(注3)	Keep	Hi-Z	Keep	
	USB_DP/USB_DM	Hi-Z	Keep-O ^(注4)		Keep ^(注3)	Keep	Hi-Z	Keep	
USBHS	USBHS_OVRCURx	Hi-Z	Hi-Z ^(注2)		Keep		Hi-Z	Keep	
	USBHS_OVRCURx-DS/ USBHS_VBUS	Hi-Z	Hi-Z ^(注2)		Keep ^(注3)	Keep	Hi-Z	Кеер	
	USBHS_DP/USBHS_DM	Hi-Z	Keep-O ^(注4)		Keep ^(注5)	Keep	Hi-Z	Кеер	
RTC	RTCICx	Hi-Z	Hi-Z ^(注2)		Keep ^(注3)	ļ.	Hi-Z	Keep	
	RTCOUT	Hi-Z	RTCOUT 出	カ	Keep		Hi-Z	Keep	
ACMPHS	VCOUT	Hi-Z	VCOUT 出力	d	Keep		Hi-Z	Keep	
CLKOUT	CLKOUT	Hi-Z	CLKOUT 出	カ	Кеер		Hi-Z	Кеер	
DAC	DAn	Hi-Z	D/A 出力保持		Keep		Hi-Z	Keep	
外部バス	EBCLK/SDCLK	Hi-Z	High レベル	出力	Keep		Hi-Z	Keep	
(CS、SDRAM 領域)	Dxx/DQxx	Hi-Z	Hi-Z		Hi-Z		Hi-Z	•	
	Axx/DQMx	Hi-Z	Hi-Z Keep-O		Keep		Hi-Z	Keep	
	BCx/CSx/RD/WRx/WE	Hi-Z	Hi-Z High レベル出力		Keep		Hi-Z	Keep	
	ALE	Hi-Z	Hi-Z	Low レベル出力	Keep		Hi-Z	Keep	
	CKE/SDCS/RAS/CAS	Hi-Z	Hi-Z SDSELF.SFEN = 0: High レベル出力 SDSELF.SFEN = 1: Low レベル出力		Keep		Hi-Z	Кеер	
P400/P401	IRQ5-DS 機能以外	Hi-Z			Hi-Z		Hi-Z	1	
その他	_	Hi-Z	Keep-O		Keep		Hi-Z	Keep	

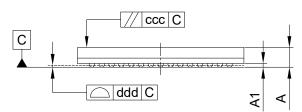

- 注. Hi-Z: ハイインピーダンス
 - Keep-O: 出力端子は前の値を保持します。入力端子はハイインピーダンスになります。

 - Keep-I:通常モード期間中と同様に、端子状態は保持されます。 Keep:ソフトウェアスタンバイモード期間中と同様に、端子状態は保持されます。
- DPSBYCR IOKEEP ビットが 0 になるまで、I/O ポートの状態が保持されます。 注 1.
- 端子が外部割り込み端子として使用され、ソフトウェアスタンバイの解除要因に指定されている場合、入力が許可されます。 注 2.
- 端子がディープソフトウェアスタンバイのキャンセル要因に指定された場合、入力が許可されます。 注 3.
- 注 4. 入力端子として使用されている端子への入力は許可されています。
- 注 5. ホスト動作では、USBHS.SYSCFG.DRPD ビットを 1 にして USBHS_DP および USBHS_DM プルダウン抵抗を有効にします。 デバイス動作では、USBHS.SYSCFG.DPRPU ビットを 1 にして DP プルアップ抵抗を有効にします。


付録 2. 外形寸法図


外形寸法図の最新版や実装に関する情報は、弊社のウェブサイトの「パッケージ」を参照してください。





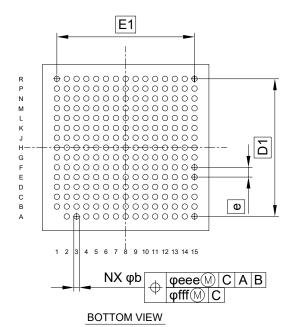

Reference	Dimen	sion in Mill	imeters
Symbol	Min.	Nom.	Max.
D	_	12.00	_
E	_	12.00	_
D1	_	10.40	
E1	_	10.40	_
Α	_	_	1.38
A1	0.20	_	_
b	0.31	0.36	0.41
е	_	0.65	_
aaa	_	_	0.15
ccc	_	_	0.20
ddd	_	_	0.10
eee	_	_	0.15
fff		_	0.08
N	_	289	_

図 A2.1 BGA 289 ピン

JEITA Package code	RENESAS code	MASS(TYP.)[g]
P-LFBGA224-11x11-0.65	PLBG0224JA-A	0.32

Reference	Dimen	sion in Mill	imeters
Symbol	Min.	Nom.	Max.
D	_	11.00	_
E	_	11.00	_
D1	_	9.10	_
E1	_	9.10	_
Α	_	_	1.38
A1	0.20	_	_
b	0.31	0.36	0.41
е	_	0.65	_
aaa	_	_	0.15
ccc	_	_	0.20
ddd	_	_	0.10
eee	_	_	0.15
fff	_	_	0.08
N	_	224	_

図 A2.2 BGA 224 ピン

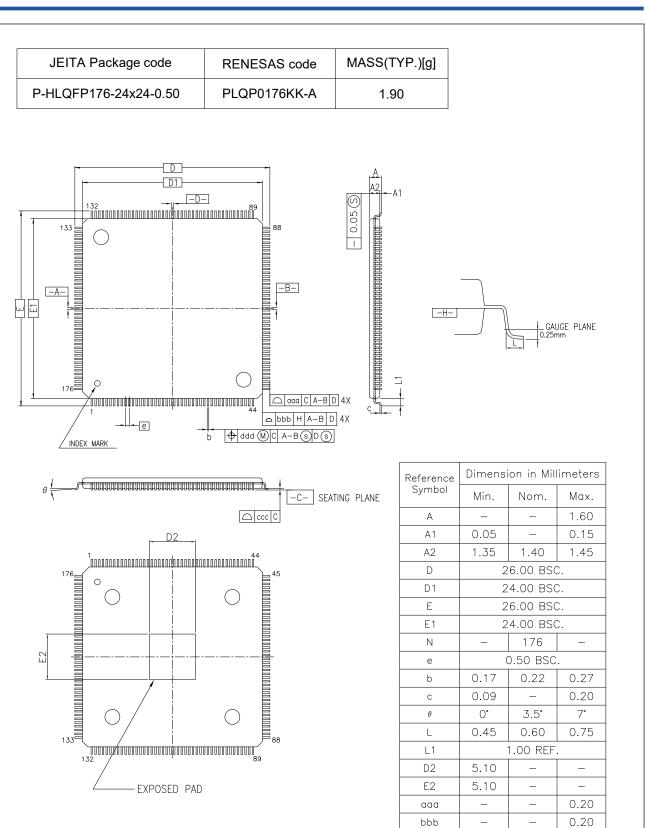


図 A2.3 HLQFP 176 ピン

ccc

ddd

0.08

0.08

付録 3. I/O レジスタ

この付録では、I/O レジスタアドレス、アクセスサイクルについて機能ごとに説明します。

3.1 周辺機能のベースアドレス

本マニュアルに記載の周辺機能のベースアドレスは下記のとおりです。表 A3.1 に、各周辺機能の名前、説明、ベースアドレスを示します。

表 A3.1 周辺機能のベースアドレス (1/4)

		セキュアエイリア ス領域内のセキュ アレジスタのベー		非セキュアエイリ アス領域内の非セ キュアレジスタの
機能	セキュアレジスタ名	スアドレス	非セキュアレジスタ名	ベースアドレス
Renesas メモリプロテクションユニット	テクションユニ RMPU		RMPU_NS	0x5000_0000
SRAM コントロール	SRAM	0x4000_2000	SRAM_NS	0x5000_2000
バス制御	BUS	0x4000_3000	BUS_NS	0x5000_3000
共通割り込みコントローラ	ICU_COMMON	0x4000_6000	ICU_COMMON_NS	0x5000_6000
CPU システムセキュリティコントロ ールユニット	CPSCU	0x4000_8000	CPSCU_NS	0x5000_8000
ダイレクトメモリアクセスコントロー ラ 00	DMAC00	0x4000_A000	DMAC00_NS	0x5000_A000
ダイレクトメモリアクセスコントロー ラ 01	DMAC01	0x4000_A040	DMAC01_NS	0x5000_A040
ダイレクトメモリアクセスコントロー ラ 02	DMAC02	0x4000_A080	DMAC02_NS	0x5000_A080
ダイレクトメモリアクセスコントロー ラ 03	DMAC03	0x4000_A0C0	DMAC03_NS	0x5000_A0C0
ダイレクトメモリアクセスコントロー ラ 04	DMAC04	0x4000_A100	DMAC04_NS	0x5000_A100
ダイレクトメモリアクセスコントロー ラ 05	DMAC05	0x4000_A140	DMAC05_NS	0x5000_A140
ダイレクトメモリアクセスコントロー ラ 06	DMAC06	0x4000_A180	DMAC06_NS	0x5000_A180
ダイレクトメモリアクセスコントロー ラ 07	DMAC07	0x4000_A1C0	_A1C0 DMAC07_NS	
DMAC モジュール起動 0	DMA0	0x4000_A800	DMA0_NS	0x5000_A800
データトランスファコントローラ 0	DTC0	0x4000_AC00	DTC0_NS	0x5000_AC00
割り込みコントローラ	ICU	0x4000_C000	ICU_NS	0x5000_C000
CPU コントロールレジスタ	CPU_CTRL	0x4000_F000	CPU_CTRL_NS	0x5000_F000
オンチップデバッグ	CPU_OCD	0x4001_1000	CPU_OCD_NS	0x5001_1000
デバッグ機能	CPU_DBG	0x4001_B000	CPU_DBG_NS	0x5001_B000
キャッシュ	キャッシュ	0x4001_C000	CACHE_NS	0x5001_C000
ТСМ	TCM	0x4001_C800	TCM_NS	0x5001_C800
システム制御	SYSC	0x4001_E000	SYSC_NS	0x5001_E000
プロセッサ間通信	IPC	0x4002_0000	IPC_NS	0x5002_0000
温度センサデータ	TSD	0x02C1_EDA0	TSD_NS	0x12C1_EDA0
MRAM システムレジスタ領域	MRAM	0x4013_C000	MRAM_NS	0x5013_C000
イベントリンクコントローラ	ELC	0x4020_1000	ELC_NS	0x5020_1000
リアルタイムクロック	RTC	0x4020_2000	RTC_NS	0x5020_2000
独立ウォッチドッグタイマ	IWDT	0x4020_2200	IWDT_NS	0x5020_2200

表 A3.1 周辺機能のベースアドレス (2/4)

		セキュアエイリア ス領域内のセキュ アレジスタのベー		非セキュアエイリ アス領域内の非セ キュアレジスタの
機能	セキュアレジスタ名	スアドレス	非セキュアレジスタ名	ベースアドレス
クロック周波数精度測定回路	CAC	0x4020_2400	CAC_NS	0x5020_2400
ウォッチドッグタイマ 0	WDT0	0x4020_2600	WDT0_NS	0x5020_2600
ウォッチドッグタイマ 1	WDT1	0x4020_2700	WDT1_NS	0x5020_2700
モジュールストップコントロールA、 B、C、D、E	MSTP	0x4020_3000	MSTP_NS	0x5020_3000
ペリフェラルセキュリティ制御ユニッ ト	PSCU	0x4020_4000	PSCU_NS	0x5020_4000
GPT 用ポート出カイネーブルモジュ ール	POEG	0x4021_2000	POEG_NS	0x5021_2000
超低消費電力タイマ 0	ULPT0	0x4022_0000	ULPT0_NS	0x5022_0000
超低消費電力タイマ 1	ULPT1	0x4022_0100	ULPT1_NS	0x5022_0100
低消費電力非同期汎用タイマ 0	AGT0	0x4022_1000	AGT0_NS	0x5022_1000
低消費電力非同期汎用タイマ 1	AGT1	0x4022_1100	AGT1_NS	0x5022_1100
12 ビット D/A コンバータ 0	DAC120	0x4023_3000	DAC120_NS	0x5023_3000
12 ビット D/A コンバータ 1	DAC121	0x4023_3100	DAC121_NS	0x5023_3100
温度センサ	TSN	0x4023_5000	TSN_NS	0x5023_5000
高速アナログコンパレータ 0	ACMPHS0	0x4023_6000	ACMPHS0_NS	0x5023_6000
高速アナログコンパレータ 1	ACMPHS1	0x4023_6100	ACMPHS1_NS	0x5023_6100
高速アナログコンパレータ 2	ACMPHS2	0x4023_6200	ACMPHS2_NS	0x5023_6200
高速アナログコンパレータ 3	ACMPHS3	0x4023_6300	ACMPHS3_NS	0x5023_6300
USB 2.0 FS モジュール	USBFS	0x4025_0000	USBFS_NS	0x5025_0000
SD ホストインタフェース 0	SDHI0	0x4025_2000	SDHI0_NS	0x5025_2000
SD ホストインタフェース 1	SDHI1	0x4025_2400	SDHI1_NS	0x5025_2400
パルス密度変調インタフェース	PDMIF	0x4025_6000	PDMIF_NS	0x5025_6000
拡張シリアルサウンドインタフェース (SSIE) 0	SSIE0	0x4025_D000	SSIE0_NS	0x5025_D000
拡張シリアルサウンドインタフェース (SSIE) 1	SSIE1	0x4025_D100	SSIE1_NS	0x5025_D100
Inter-Integrated Circuit 0	IIC0	0x4025_E000	IIC0_NS	0x5025_E000
Inter-Integrated Circuit 0 ウェイクアップユニット	IIC0WU	0x4025_E014	IIC0WU_NS	0x5025_E014
Inter-Integrated Circuit 1	IIC1	0x4025_E100	IIC1_NS	0x5025_E100
Inter-Integrated Circuit 2	IIC2	0x4025_E200	IIC2_NS	0x5025_E200
オクタシリアルペリフェラルインタフェース 0	OSPI0_B	0x4026_8000	OSPI0_B_NS	0x5026_8000
オクタシリアルペリフェラルインタフェース 1	OSPI1_B	0x4026_8400	OSPI1_B_NS	0x5026_8400
オンザフライ復号 0	DOTF0	0x4026_8800	DOTF0_NS	0x5026_8800
オンザフライ復号 1	DOTF1	0x4026_8900	DOTF1_NS	0x5026_8900
CRC 演算器	CRC	0x4031_0000	CRC_NS	0x5031_0000
データ演算回路	DOC_B	0x4031_1000	DOC_B_NS	0x5031_1000
32 ビット汎用 PWM タイマ 0	GPT320	0x4032_2000	GPT320_NS	0x5032_2000
32 ビット汎用 PWM タイマ 1	GPT321	0x4032_2100	GPT321_NS	0x5032_2100

表 A3.1 周辺機能のベースアドレス (3/4)

		セキュアエイリア ス領域内のセキュ アレジスタのベー		非セキュアエイリ アス領域内の非セ キュアレジスタの
機能	セキュアレジスタ名	スアドレス	非セキュアレジスタ名	ベースアドレス
32 ビット汎用 PWM タイマ 2	GPT322	0x4032_2200	GPT322_NS	0x5032_2200
32 ビット汎用 PWM タイマ 3	GPT323	0x4032_2300	GPT323_NS	0x5032_2300
32 ビット汎用 PWM タイマ 4	GPT324	0x4032_2400	GPT324_NS	0x5032_2400
32 ビット汎用 PWM タイマ 5	GPT325	0x4032_2500	GPT325_NS	0x5032_2500
32 ビット汎用 PWM タイマ 6	GPT326	0x4032_2600	GPT326_NS	0x5032_2600
32 ビット汎用 PWM タイマ 7	GPT327	0x4032_2700	GPT327_NS	0x5032_2700
32 ビット汎用 PWM タイマ 8	GPT328	0x4032_2800	GPT328_NS	0x5032_2800
32 ビット汎用 PWM タイマ 9	GPT329	0x4032_2900	GPT329_NS	0x5032_2900
32 ビット汎用 PWM タイマ 10	GPT3210	0x4032_2A00	GPT3210_NS	0x5032_2A00
32 ビット汎用 PWM タイマ 11	GPT3211	0x4032_2B00	GPT3211_NS	0x5032_2B00
32 ビット汎用 PWM タイマ 12	GPT3212	0x4032_2C00	GPT3212_NS	0x5032_2C00
32 ビット汎用 PWM タイマ 13	GPT3213	0x4032_2D00	GPT3213_NS	0x5032_2D00
出力相切り替えコントローラ	GPT_OPS	0x4032_3F00	GPT_OPS_NS	0x5032_3F00
汎用 PWM タイマクロックコントロー ラ	GPT_GTCLK	0x4032_3F10	GPT_GTCLK_NS	0x5032_3F10
PWM 遅延生成回路	PDG	0x4032_4000	PDG_NS	0x5032_4000
16 ビット A/D コンバータ	ADC_B	0x4033_8000	ADC_B_NS	0x5033_8000
キャプチャエンジンユニット	CEU	0x4034_8000	CEU_NS	0x5034_8000
USB 2.0 ハイスピードモジュール	USBHS	0x4035_1000	USBHS_NS	0x5035_1000
シリアルコミュニケーションインタフェース 0	SCI0_B	0x4035_8000	SCI0_B_NS	0x5035_8000
シリアルコミュニケーションインタフェース 1	SCI1_B	0x4035_8100	SCI1_B_NS	0x5035_8100
シリアルコミュニケーションインタフェース 2	SCI2_B	0x4035_8200	SCI2_B_NS	0x5035_8200
シリアルコミュニケーションインタフェース 3	SCI3_B	0x4035_8300	SCI3_B_NS	0x5035_8300
シリアルコミュニケーションインタフェース 4	SCI4_B	0x4035_8400	SCI4_B_NS	0x5035_8400
シリアルコミュニケーションインタフェース 5	SCI5_B	0x4035_8500	SCI5_B_NS	0x5035_8500
シリアルコミュニケーションインタフェース 6	SCI6_B	0x4035_8600	SCI6_B_NS	0x5035_8600
シリアルコミュニケーションインタフェース 7	SCI7_B	0x4035_8700 SCI7_B_NS		0x5035_8700
シリアルコミュニケーションインタフェース 8	SCI8_B	0x4035_8800	SCI8_B_NS	0x5035_8800
シリアルコミュニケーションインタフェース 9	SCI9_B	0x4035_8900	SCI9_B_NS	0x5035_8900
シリアルペリフェラルインタフェース 0	SPI0_B	0x4035_C000	SPI0_B_NS	0x5035_C000
シリアルペリフェラルインタフェース 1	SPI1_B	0x4035_C100		0x5035_C100
I3C バスインタフェース	13C	0x4035_F000	I3C_NS	0x5035_F000
MBRAM0 用エラー補正回路	ECCMB0	0x4036_F200	ECCMB0_NS	0x5036_F200

表 A3.1 周辺機能のベースアドレス (4/4)

機能	セキュアレジスタ名	セキュアエイリア ス領域内のセキュ アレジスタのベー スアドレス	非セキュアレジスタ名	非セキュアエイリ アス領域内の非セ キュアレジスタの ベースアドレス
MBRAM1 用エラー補正回路	ECCMB1	0x4036_F300	ECCMB1_NS	0x5036_F300
CANFD モジュール 0	CANFD0	0x4038_0000	CANFD0_NS	0x5038_0000
CANFD モジュール 1	CANFD1	0x4038_2000	CANFD1_NS	0x5038_2000
イーサネットメッセージ転送エンジン	MFWD	0x403C_0000	MFWD_NS	0x503C_0000
レイヤ3イーサネットスイッチモジ ュール	ESWM	0x403C_8000	ESWM_NS	0x503C_8000
イーサネット共通エージェント	COMA	0x403C_9000	COMA_NS	0x503C_9000
イーサネットエージェント 0	ETHA0	0x403C_A000	ETHA0_NS	0x503C_A000
イーサネット MAC 0	RMAC0	0x403C_B000	RMAC0_NS	0x503C_B000
イーサネットエージェント 1	ETHA1	0x403C_C000	ETHA1_NS	0x503C_C000
イーサネット MAC 1	RMAC1	0x403C_D000	RMAC1_NS	0x503C_D000
イーサネット CPU エージェント	GWCA0	0x403C_E000	GWCA0_NS	0x503C_E000
イーサネット汎用 PTP タイマ	GPTP	0x403E_0000	GPTP_NS	0x503E_0000
ポート0コントロールレジスタ	PORT0	0x4040_0000	PORT0_NS	0x5040_0000
ポート1コントロールレジスタ	PORT1	0x4040_0020	PORT1_NS	0x5040_0020
ポート2コントロールレジスタ	PORT2	0x4040_0040	PORT2_NS	0x5040_0040
ポート3コントロールレジスタ	PORT3	0x4040_0060	PORT3_NS	0x5040_0060
ポート4コントロールレジスタ	PORT4	0x4040_0080	PORT4_NS	0x5040_0080
ポート5コントロールレジスタ	PORT5	0x4040_00A0	PORT5_NS	0x5040_00A0
ポート6コントロールレジスタ	PORT6	0x4040_00C0	PORT6_NS	0x5040_00C0
ポート7コントロールレジスタ	PORT7	0x4040_00E0	PORT7_NS	0x5040_00E0
ポート8コントロールレジスタ	PORT8	0x4040_0100	PORT8_NS	0x5040_0100
ポート9コントロールレジスタ	PORT9	0x4040_0120	PORT9_NS	0x5040_0120
ポートAコントロールレジスタ	PORTA	0x4040_0140	PORTA_NS	0x5040_0140
ポートBコントロールレジスタ	PORTB	0x4040_0160	PORTB_NS	0x5040_0160
ポートCコントロールレジスタ	PORTC	0x4040_0180	PORTC_NS	0x5040_0180
ポートDコントロールレジスタ	PORTD	0x4040_01A0	PORTD_NS	0x5040_01A0
ポートEコントロールレジスタ	PORTE	0x4040_01C0	PORTE_NS	0x5040_01C0
ポートFコントロールレジスタ	PORTF	0x4040_01E0	PORTF_NS	0x5040_01E0
ポート G コントロールレジスタ	PORTG	0x4040_0200	PORTG_NS	0x5040_0200
Pmn 端子機能コントロールレジスタ	PFS	0x4040_0800	PFS_NS	0x5040_0800

注. 名称 = 周辺機能の名称

内容 = 周辺機能

ベースアドレス = 最下位の予約アドレスまたは周辺機能が使用するアドレス

3.2 アクセスサイクル

本項では、本マニュアルに記載の I/O レジスタのアクセスサイクル情報を示します。

- レジスタは対応するモジュールごとにグループ化されています。
- アクセスサイクル数については、指定の基準クロックのサイクル数を示しています。
- 内部 I/O 領域では、レジスタに割り当てられていない予約アドレスにアクセスしないでください。アクセスした場合、動作は保証されません。

● I/O アクセスサイクル数は、内部周辺バスのバスサイクル、分周クロック同期化サイクル、および各モジュールのウェイトサイクルによって異なります。分周クロック同期化サイクルは、ICLK と PCLK 間の周波数比によって異なります。

- ICLK 周波数と PCLK 周波数が等しいとき、分周クロック同期化サイクル数は常に一定です。
- ICLK 周波数が PCLK 周波数より大きいとき、分周クロック同期化サイクル数に少なくとも 1PCLK サイクル 追加されます。
- 書き込みアクセスのサイクル数は、非バッファラブル書き込みアクセスにより得られるサイクル数を示します。
- 注. CPU からのレジスタアクセスが、外部メモリへの命令フェッチや、DMAC や DTC のような他のバスマスタのバスアクセスと競合せずに実行された場合のサイクル数です。

表 A3.2 アクセスサイクル (1/3)

			アクセスサイクル数					
周辺機能のベース	アドレス ^(注1)		ICLK = PC	LK	ICLK > PC	CLK ^(注2)	サイクル	
アドレスシンボル	ここから	ここまで	読み出し	書き込み	読み出し	書き込み	単位	関連機能
RMPU, SRAM, BUS, ICU_COMMON, CPSCU, DMACOn, DMAO, DTCO, ICU, CPU_CTRL, CPU_OCD, CPU_DBG	0x4000_0000	0x4001_BFFF	3	2	3	2	ICLK	Renesas メモリテクションユートル、 SRAM コントール、、 BUS コントロール・ロール・ロール・ロール・ロール・ロール・ロール・ロール・ロール・ロール・
CACHE, TCM	0x4001_C000	0x4001_CFFF	5	4	5	4	ICLK	CM33 キャッシュ、 CM33 密接合メモリ
SYSC	0x4001_E000	0x4001_E9FF	4	3	2~4	1~3	PCLKB	システム制御
SYSC	0x4001_EA00	0x4001_ED7F	7	6	5~7	4~6	PCLKB	システム制御
IPC	0x4002_0000	0x4002_FFFF	3	2	3	2	ICLK	プロセッサ間通信
ELC, RTC	0x4020_1000	0x4020_21FF	4	3	2~4	1~3	PCLKB	イベントリンクコント ローラ、リアルタイム クロック
IWDT	0x4020_2200	0x4020_22FF	4	65	2~4	63~65	PCLKB	独立ウォッチドッグタ イマ
CAC, WDTn, MSTP, PSCU, POEG	0x4020_2400	0x4021_2FFF	4	3	2~4	1~3	PCLKB	クロック 周波数精度測定回路、ウウオールングルストップコントロール、ペリフェラルセキュリティコントロールエニット、プットイネーブルモジュール
ULPTn	0x4022_0000	0x4022_01FF	6	65	4~6	63~65	PCLKB	超低消費電力タイマn
AGTn	0x4022_1000	0x4022_11FF	6	3	4~6	1~3	PCLKB	低消費電力非同期汎用 タイマ n
DAC12n, TSN	0x4023_3000	0x4023_5FFF	4	3	2~4	1~3	PCLKB	12 ビット D/A コンバ ータ n、温度センサ

表 A3.2 アクセスサイクル (2/3)

			アクセスサイクル数						
	アドレス ^(注1)		ICLK = PC	LK	ICLK > PC	CLK ^(注2)	主2)		
周辺機能のベース アドレスシンポル	ここから	ここまで	読み出し	書き込み	読み出し	書き込み	サイクル 単位	関連機能	
ACMPHSn	0x4023_6000	0x4023_63FF	3	3	1~3	1~3	PCLKB	高速アナログコンパレ ータ n	
USBFS	0x4025_0000	0x4025_03FF	5	4	3~5	2~4	PCLKB	USB 2.0 FS モジュー ル	
USBFS	0x4025_0400	0x4025_04FF	4	65	2~4	63~65	PCLKB	USB 2.0 FS モジュー ル	
SDHIn, PDMIF, SSIEn, IICn, OSPIn, DOTFn	0x4025_2000	0x4026_89FF	4	3	2~4	1~3	PCLKB	SD ホストインタフェース n、パルス密度変調インタフェース、拡張シリアルサウンドインタフェース n、Inter-Integrated Circuit n、オクタシリアルペリフェラルインタフェースn、オンザフライ復号 n	
CRC, DOC	0x4031_0000	0x4031_1FFF	4	3	2~4	1~3	PCLKA	CRC 演算器、データ演 算回路	
GPT32n, GPT_OPS	0x4032_2000	0x4032_3F0F	9	6	7~9	4~6	PCLKA	32 ビット汎用 PWM タイマ n、出力相切り 替えコントローラ	
GPT_GTCLK	0x4032_3F10	0x4032_3F1F	4	3	2~4	1~3	PCLKA	汎用 PWM タイマクロ ック制御	
PDG	0x4032_4000	0x4032_4FFF	3	2	1~3	0~2	PCLKA	PWM 遅延生成回路	
ADC_B	0x4033_8000	0x4034_7FFF	4	3	2~4	1~3	PCLKA	A/D コンバータ	
CEU	0x4034_8000	0x4034_FFFF	7	5	5~7	3~5	PCLKA	キャプチャエンジンユ ニット	
USBHS ^(注3)	0x4035_1000	0x4035_115F	BWAIT+4	BWAIT+3	(BWAIT+2)~ (BWAIT+4)	(BWAIT+1)~ (BWAIT+3	PCLKA	USB 2.0 ハイスピード モジュール	
USBHS ^(注3)	0x4035_1160	0x4035_1167	BWAIT+4	130	(BWAIT+2)~ (BWAIT+4)	128~130	PCLKA	USB 2.0 ハイスピード モジュール	
USBHS	0x4035_1168	0x4035_116F	8	130	6~8	128~130	PCLKA	USB 2.0 ハイスピード モジュール	
SCIn, SPIn, I3C	0x4035_8000	0x4035_FFFF	4	3	2~4	1~3	PCLKA	シリアルコミュニケー ションインタフェース n、シリアルペリフェラ ルインタフェース n、 I3C バスインタフェー ス	
ECCMBn	0x4036_F200	0x4036_F3FF	5	4	3~5	2~4	PCLKA	MBRAMn 用エラー補 正回路	
CANFDn	0x4038_0000	0x4038_3FFF	4	3	2~4	1~3	PCLKA	CANFD モジュール n	
ESWM	0x403C_0000	0x403E_FFFF	14~16	4	7~12	2~4	PCLKA	レイヤ3イーサネット スイッチモジュール	
PORTn	0x4040_0000	0x4040_01FF	4	2	4	2	ICLK	ポート n コントロール レジスタ	
PFS	0x4040_0800	0x4040_0FFF	8	2	8	2	ICLK	Pmn 端子機能コント ロールレジスタ	
RSIP-E50D	-	-	3~5	2	1~6	0~2	PCLKA	Renesas セキュア IP	

表 A3.2 アクセスサイクル (3/3)

			アクセスサ	アクセスサイクル数					
周辺機能のベース	アドレス ^(注1)		ICLK = MRPCLK		ICLK > MRPCLK ^(注2)		サイクル		
アドレスシンボル	ここから	ここまで	読み出し	書き込み	読み出し	書き込み	単位	関連機能	
MRAM	0x4013_0000	0x4013_FFFF	4	3	2~4	1~3	MRPCLK	MRAM 制御	

- 注 1. 本表ではセキュアアドレスのみを示しています。非セキュアアドレスのアクセスサイクルは、セキュアアドレスのアクセスサイクル と同じです。
- 注 2. PCLK または MRPCLK のサイクル数が整数ではない(たとえば 1.5)場合、最小値は小数点以下を切り捨て、最大値は小数点以下を 切り上げます。たとえば、1.5~2.5 は、1~3 となります。 注 3. BWAIT は USBHS.BUSWAIT レジスタに説明されているウェイト数(サイクルではない)のことです。

付録 4. レジスタ R/W に関する注意事項

- セキュアバスマスタは、IDAU/SAU または MSAU によってセキュアに指定されているアドレスを使用してセキュアアクセスを発行します。
- セキュアバスマスタは、IDAU/SAU または MSAU によって非セキュアに指定されているアドレスを使用して 非セキュアアクセスを発行します。
- 非セキュアバスマスタは、IDAU/SAU または MSAU によって非セキュアに指定されているアドレスを使用して非セキュアアクセスを発行します。

表 A4.1 レジスタタイプに関する注意事項 (S-TYPE)

TYPE	UM 内での説明
S-TYPE-1	セキュアアクセスのみ本レジスタへ書き込み可能です。リードアクセスは常に許可されます。 非セキュアライトアクセスは無視されますが、TrustZone アクセスエラーは発生しません。
S-TYPE-2	リードアクセスは常に許可されます。 セキュリティ属性がセキュアに設定されている場合: ● セキュアライトアクセスが許可されます ● 非セキュアライトアクセスは無視されますが、TrustZone アクセスエラーは発生しません。
	セキュリティ属性が非セキュアに設定されている場合: ● セキュアライトアクセスは無視されますが、TrustZone アクセスエラーは発生しません。 ● 非セキュアアクセスが許可されます。
S-TYPE-3	セキュリティ属性がセキュアに設定されている場合: ● セキュアアクセスが許可されます。 ● 非セキュアライトアクセスは無視されます。非セキュアリードアクセスは 0 が読めます。TrustZone アクセスエラーが発生します。
	セキュリティ属性が非セキュアに設定されている場合: ● セキュアライトアクセスは無視され、セキュアリードアクセスは 0 が読めます。TrustZone アクセスエラーが発生します。 ● 非セキュアアクセスが許可されます。
S-TYPE-4	セキュリティ属性がセキュアに設定されている場合: ● セキュアアクセスが許可されます。 ● 非セキュアライトアクセスは無視され、非セキュアリードアクセスは 0 が読めます。TrustZone アクセスエラーは発生しません。
	セキュリティ属性が非セキュアに設定されている場合: ● セキュアライトアクセスは無視され、セキュアリードアクセスは 0 が読めます。TrustZone アクセスエラーは発生しません。 ● 非セキュアアクセスが許可されます。
S-TYPE-5	アクセスは常に許可されます。
S-TYPE-6	セキュアアクセスが許可されます。 非セキュアライトアクセスは無視され、非セキュアリードアクセスは 0 が読めます。TrustZone アクセスエラーが発生します。
S-TYPE-7	セキュアライトアクセスは無視され、セキュアリードアクセスは 0 が読めます。TrustZone アクセスエラーが発生します。 非セキュアアクセスが許可されます。

注. 非セキュアバスマスタは、IDAU/SAU または MSAU によりセキュアにマークされたアドレスを使用して、いかなるアクセスも発行しません。

表 A4.2 レジスタタイプに関する注意事項 (P-TYPE) (1/2)

TYPE	UM 内での説明
P-TYPE-1	プリビレッジライトアクセスが許可されます。リードアクセスは常に許可されます。 アンプリビレッジライトアクセスは無視されますが、TrustZone アクセスエラーは発生しません。
P-TYPE-2	プリビレッジアクセスが許可されます。 アンプリビレッジライトアクセスは無視され、アンプリビレッジリードアクセスは 0 が読めます。TrustZone アクセスエラー が発生します。
P-TYPE-3	プリビレッジ属性がプリビレッジに設定されている場合:
	プリビレッジ属性がアンプリビレッジに設定されている場合: ● プリビレッジアクセスとアンプリビレッジアクセスが許可されます。

表 A4.2 レジスタタイプに関する注意事項 (P-TYPE) (2/2)

TYPE	UM 内での説明
P-TYPE-4	プリビレッジ属性がプリビレッジに設定されている場合、
	プリビレッジ属性がアンプリビレッジに設定されている場合: ◆ プリビレッジアクセスとアンプリビレッジアクセスが許可されます。
P-TYPE-5	アクセスは常に許可されます。

付録 5. ペリフェラル変数

表 A5.1 に本マニュアルで使用されるモジュール名とペリフェラル変数の対応関係を示します。

表 A5.1 モジュール名とペリフェラル変数の対応関係

モジュール名	ペリフェラル変数
SCI	SCI_B
SPI	SPI_B
OSPI	OSPI_B
ADC16H	ADC_B
DAC12	DAC_B
DOC	DOC_B

RA8M2 データシート 改訂履歴

改訂履歴

Revision 1.00 — 2025 年 02 月 14 日

初版発行

Revision 1.10 — 2025 年 6 月 3 日

1. 概要

● 図 1.2 型名の読み方を更新

2. 雷気的特件:

- 2. 電気的特性を更新
- 2.1 絶対最大定格を更新
- 2.2.5 動作電流とスタンバイ電流を更新
- 2.3.10 SPI タイミングを更新
- 2.3.11 OSPI タイミングを更新
- 2.6. ADC 特性を更新
- 2.11 外部 VDD タイミング特性を追加

付録:

- 付録 2.の図 A2.3 HLQFP 176 ピンを更新
- 付録 5 の表 A5.1 モジュール名とペリフェラル変数の対応関係を更新

Revision 1.20 — 2025 年 8 月 27 日

1. 概要:

- 表 1.8 通信インタフェースを更新
- 表 1.15 端子機能を更新
- 表 1.16 標準製品の端子一覧を更新
- 表 1.17 SiP 製品の端子一覧を更新

2. 電気的特性:

- 表 2.16 High-speed モード、最大データ処理、CPU0 ディープスリープ、CPU1 有効、周辺クロック ON(DCDC モード)における電流を更新
- 表 2.18 High-speed モード、最大データ処理(MVE 動作)、周辺クロック OFF(DCDC モード)における電流を更新
- 表 2.19 High-speed モード、最大データ処理(MVE 動作)、周辺クロック OFF(外部 VDD モード)における電流を更新
- 表 2.20 High-speed モード、最大データ処理 (MVE 動作)、CPU0 有効、CPU1 ディープスリープ、周辺クロック OFF (DCDC モード) における電流を更新
- 表 2.21 High-speed モード、最大データ処理(MVE 動作)、CPU0 有効、CPU1 ディープスリープ、周辺クロック OFF(外部 VDD モード)における電流を更新
- 表 2.22 High-speed モード、最大データ処理、CPU0 ディープスリープ、CPU1 有効、周辺クロック OFF(DCDC モード)における 電流を更新
- 表 2.23 High-speed モード、最大データ処理、CPU0 ディープスリープ、CPU1 有効、周辺クロック OFF(外部 VDD モード)における電流を更新
- 表 2.24 High-speed モード、CPU スリープモード(DCDC モード)における電流を更新
- 表 2.26 High-speed モード、CPU0 スリープ、CPU1 ディープスリープ(DCDC モード)における電流を更新
- 表 2.28 High-speed モード、CPU0 ディープスリープ、CPU1 スリープ(DCDC モード)における電流を更新
- 表 2.30 High-speed モード、CPU ディープスリープモード(DCDC モード)における電流を更新

製品ご使用上の注意事項

ここでは、マイコン製品全体に適用する「使用上の注意事項」について説明します。個別の使用上の注意事項については、本ドキュメントおよびテクニカルアップデートを参照してください。

1. 静電気対策

CMOS 製品の取り扱いの際は静電気防止を心がけてください。CMOS 製品は強い静電気によってゲート絶縁破壊を生じることがあります。運搬や保存の際には、当社が出荷梱包に使用している導電性のトレーやマガジンケース、導電性の緩衝材、金属ケースなどを利用し、組み立て工程にはアースを施してください。プラスチック板上に放置したり、端子を触ったりしないでください。また、CMOS 製品を実装したボードについても同様の扱いをしてください。

2. 電源投入時の処置

電源投入時は、製品の状態は不定です。電源投入時には、LSIの内部回路の状態は不確定であり、レジスタの設定や各端子の状態は不定です。外部 リセット端子でリセットする製品の場合、電源投入からリセットが有効になるまでの期間、端子の状態は保証できません。同様に、内蔵パワーオン リセット機能を使用してリセットする製品の場合、電源投入からリセットのかかる一定電圧に達するまでの期間、端子の状態は保証できません。

3. 電源オフ時における入力信号

当該製品の電源がオフ状態のときに、入力信号や入出力プルアップ電源を入れないでください。入力信号や入出力プルアップ電源からの電流注入により、誤動作を引き起こしたり、異常電流が流れ内部素子を劣化させたりする場合があります。資料中に「電源オフ時における入力信号」についての記載のある製品は、その内容を守ってください。

4. 未使用端子の処理

未使用端子は、「未使用端子の処理」に従って処理してください。CMOS製品の入力端子のインピーダンスは、一般に、ハイインピーダンスとなっています。未使用端子を開放状態で動作させると、誘導現象により、LSI周辺のノイズが印加され、LSI内部で貫通電流が流れたり、入力信号と認識されて誤動作を起こす恐れがあります。

5. クロックについて

リセット時は、クロックが安定した後、リセットを解除してください。プログラム実行中のクロック切り替え時は、切り替え先クロックが安定した後に切り替えてください。リセット時、外部発振子(または外部発振回路)を用いたクロックで動作を開始するシステムでは、クロックが十分安定した後、リセットを解除してください。また、プログラムの途中で外部発振子(または外部発振回路)を用いたクロックに切り替える場合は、切り替え先のクロックが十分安定してから切り替えてください。

6. 入力端子の印加波形

入力ノイズや反射波による波形歪みは誤動作の原因になりますので注意してください。CMOS 製品の入力がノイズなどに起因して、V_□ (Max.) から V_□ (Min.) までの領域にとどまるような場合は、誤動作を引き起こす恐れがあります。入力レベルが固定の場合はもちろん、V_□ (Max.) から V_□ (Min.) までの領域を通過する遷移期間中にチャタリングノイズなどが入らないように使用してください。

7. リザーブアドレス (予約領域) のアクセス禁止

リザーブアドレス (予約領域) のアクセスを禁止します。アドレス領域には、将来の拡張機能用に割り付けられている リザーブアドレス (予約領域) があります。これらのアドレスをアクセスしたときの動作については、保証できませんので、アクセスしないようにしてください。

8. 製品間の相違について

型名の異なる製品に変更する場合は、製品型名ごとにシステム評価試験を実施してください。同じグループのマイコンでも型名が違うと、フラッシュメモリ、レイアウトパターンの相違などにより、電気的特性の範囲で、特性値、動作マージン、ノイズ耐量、ノイズ幅射量などが異なる場合があります。型名が違う製品に変更する場合は、個々の製品ごとにシステム評価試験を実施してください。

ご注意書き

- 1. 本資料に記載された回路、ソフトウェアおよびこれらに関連する情報は、半導体製品の動作例、応用例を説明するものです。回路、ソフトウェアおよびこれらに関連する情報を使用する場合、お客様の責任において、お客様の機器・システムを設計ください。これらの使用に起因して生じた損害(お客様または第三者いずれに生じた損害も含みます。以下同じです。)に関し、当社は、一切その責任を負いません。
- 2. 当社製品または本資料に記載された製品データ、図、表、プログラム、アルゴリズム、応用回路例等の情報の使用に起因して発生した第三者の特許権、 著作権その他の知的財産権に対する侵害またはこれらに関する紛争について、当社は、何らの保証を行うものではなく、また責任を負うものではありま せん。
- 3. 当社は、本資料に基づき当社または第三者の特許権、著作権その他の知的財産権を何ら許諾するものではありません。
- 4. 当社製品を組み込んだ製品の輸出入、製造、販売、利用、配布その他の行為を行うにあたり、第三者保有の技術の利用に関するライセンスが必要となる 場合、当該ライセンス取得の判断および取得はお客様の責任において行ってください。
- 5. 当社製品を、全部または一部を問わず、改造、改変、複製、リバースエンジニアリング、その他、不適切に使用しないでください。かかる改造、改変、 複製、リバースエンジニアリング等により生じた損害に関し、当社は、一切その責任を負いません。
- 6. 当社は、当社製品の品質水準を「標準水準」および「高品質水準」に分類しており、各品質水準は、以下に示す用途に製品が使用されることを意図して おります。

標準水準: コンピュータ、OA 機器、通信機器、計測機器、AV 機器、家電、工作機械、パーソナル機器、産業用ロボット等

高品質水準:輸送機器(自動車、電車、船舶等)、交通制御(信号)、大規模通信機器、金融端末基幹システム、各種安全制御装置等

当社製品は、データシート等により高信頼性、Harsh environment 向け製品と定義しているものを除き、直接生命・身体に危害を及ぼす可能性のある機器・システム(生命維持装置、人体に埋め込み使用するもの等)、もしくは多大な物的損害を発生させるおそれのある機器・システム(宇宙機器と、海底中継器、原子力制御システム、航空機制御システム、プラント基幹システム、軍事機器等)に使用されることを意図しておらず、これらの用途に使用することは想定していません。たとえ、当社が想定していない用途に当社製品を使用したことにより損害が生じても、当社は一切その責任を負いません。

- 7. あらゆる半導体製品は、外部攻撃からの安全性を 100%保証されているわけではありません。当社ハードウェア/ソフトウェア製品にはセキュリティ対策が組み込まれているものもありますが、これによって、当社は、セキュリティ脆弱性または侵害(当社製品または当社製品が使用されているシステムに対する不正アクセス・不正使用を含みますが、これに限りません。)から生じる責任を負うものではありません。当社は、当社製品または当社製品が使用されたあらゆるシステムが、不正な改変、攻撃、ウイルス、干渉、ハッキング、データの破壊または窃盗その他の不正な侵入行為(「脆弱性問題」といいます。)によって影響を受けないことを保証しません。当社は、脆弱性問題に起因しまたはこれに関連して生じた損害について、一切責任を負いません。また、法令において認められる限りにおいて、本資料および当社ハードウェア/ソフトウェア製品について、商品性および特定目的との合致に関する保証ならびに第三者の権利を侵害しないことの保証を含め、明示または黙示のいかなる保証も行いません。
- 8. 当社製品をご使用の際は、最新の製品情報(データシート、ユーザーズマニュアル、アプリケーションノート、信頼性ハンドブックに記載の「半導体デバイスの使用上の一般的な注意事項」等)をご確認の上、当社が指定する最大定格、動作電源電圧範囲、放熱特性、実装条件その他指定条件の範囲内でご使用ください。指定条件の範囲を超えて当社製品をご使用された場合の故障、誤動作の不具合および事故につきましては、当社は、一切その責任を負いません。
- 9. 当社は、当社製品の品質および信頼性の向上に努めていますが、半導体製品はある確率で故障が発生したり、使用条件によっては誤動作したりする場合があります。また、当社製品は、データシート等において高信頼性、Harsh environment 向け製品と定義しているものを除き、耐放射線設計を行っておりません。仮に当社製品の故障または誤動作が生じた場合であっても、人身事故、火災事故その他社会的損害等を生じさせないよう、お客様の責任において、冗長設計、延焼対策設計、誤動作防止設計等の安全設計およびエージング処理等、お客様の機器・システムとしての出荷保証を行ってください。特に、マイコンソフトウェアは、単独での検証は困難なため、お客様の機器・システムとしての安全検証をお客様の責任で行ってください。
- 10. 当社製品の環境適合性等の詳細につきましては、製品個別に必ず当社営業窓口までお問合せください。ご使用に際しては、特定の物質の含有・使用を規制する RoHS 指令等、適用される環境関連法令を十分調査のうえ、かかる法令に適合するようご使用ください。かかる法令を遵守しないことにより生じた損害に関して、当社は、一切その責任を負いません。
- 11. 当社製品および技術を国内外の法令および規則により製造・使用・販売を禁止されている機器・システムに使用することはできません。当社製品および 技術を輸出、販売または移転等する場合は、「外国為替及び外国貿易法」その他日本国および適用される外国の輸出管理関連法規を遵守し、それらの定 めるところに従い必要な手続きを行ってください。
- 12. お客様が当社製品を第三者に転売等される場合には、事前に当該第三者に対して、本ご注意書き記載の諸条件を通知する責任を負うものといたします。
- 13. 本資料の全部または一部を当社の文書による事前の承諾を得ることなく転載または複製することを禁じます。
- 14. 本資料に記載されている内容または当社製品についてご不明な点がございましたら、当社の営業担当者までお問合せください。
- 注 1. 本資料において使用されている「当社」とは、ルネサス エレクトロニクス株式会社およびルネサス エレクトロニクス株式会社が直接的、間接的に支配する会社をいいます。
- 注 2. 本資料において使用されている「当社製品」とは、注1において定義された当社の開発、製造製品をいいます。

(Rev.5.0-1 2020.10)

本社所在地

〒135-0061 東京都江東区豊洲 3-2-24 (豊洲フォレシア)

www.renesas.com

商標について

ルネサスおよびルネサスロゴはルネサス エレクトロニクス株式会社の 商標です。すべての商標および登録商標は、それぞれの所有者に帰属し ます。

お問合せ窓口

弊社の製品や技術、ドキュメントの最新情報、最寄の営業お問合せ窓口に関する情報などは、弊社ウェブサイトをご覧ください。

www.renesas.com/contact/