カタログ等資料中の旧社名の扱いについて

2010年4月1日を以ってNECエレクトロニクス株式会社及び株式会社ルネサステクノロジが合併し、両社の全ての事業が当社に承継されております。従いまして、本資料中には旧社名での表記が残っておりますが、当社の資料として有効ですので、ご理解の程宜しくお願い申し上げます。

ルネサスエレクトロニクス ホームページ (http://www.renesas.com)

2010 年 4 月 1 日 ルネサスエレクトロニクス株式会社

【発行】ルネサスエレクトロニクス株式会社 (http://www.renesas.com)

【問い合わせ先】http://japan.renesas.com/inquiry

ご注意書き

- 1. 本資料に記載されている内容は本資料発行時点のものであり、予告なく変更することがあります。当社製品のご購入およびご使用にあたりましては、事前に当社営業窓口で最新の情報をご確認いただきますとともに、当社ホームページなどを通じて公開される情報に常にご注意ください。
- 2. 本資料に記載された当社製品および技術情報の使用に関連し発生した第三者の特許権、著作権その他の知的 財産権の侵害等に関し、当社は、一切その責任を負いません。当社は、本資料に基づき当社または第三者の 特許権、著作権その他の知的財産権を何ら許諾するものではありません。
- 3. 当社製品を改造、改変、複製等しないでください。
- 4. 本資料に記載された回路、ソフトウェアおよびこれらに関連する情報は、半導体製品の動作例、応用例を説明するものです。お客様の機器の設計において、回路、ソフトウェアおよびこれらに関連する情報を使用する場合には、お客様の責任において行ってください。これらの使用に起因しお客様または第三者に生じた損害に関し、当社は、一切その責任を負いません。
- 5. 輸出に際しては、「外国為替及び外国貿易法」その他輸出関連法令を遵守し、かかる法令の定めるところにより必要な手続を行ってください。本資料に記載されている当社製品および技術を大量破壊兵器の開発等の目的、軍事利用の目的その他軍事用途の目的で使用しないでください。また、当社製品および技術を国内外の法令および規則により製造・使用・販売を禁止されている機器に使用することができません。
- 6. 本資料に記載されている情報は、正確を期すため慎重に作成したものですが、誤りがないことを保証するものではありません。万一、本資料に記載されている情報の誤りに起因する損害がお客様に生じた場合においても、当社は、一切その責任を負いません。
- 7. 当社は、当社製品の品質水準を「標準水準」、「高品質水準」および「特定水準」に分類しております。また、各品質水準は、以下に示す用途に製品が使われることを意図しておりますので、当社製品の品質水準をご確認ください。お客様は、当社の文書による事前の承諾を得ることなく、「特定水準」に分類された用途に当社製品を使用することができません。また、お客様は、当社の文書による事前の承諾を得ることなく、意図されていない用途に当社製品を使用することができません。当社の文書による事前の承諾を得ることなく、「特定水準」に分類された用途または意図されていない用途に当社製品を使用したことによりお客様または第三者に生じた損害等に関し、当社は、一切その責任を負いません。なお、当社製品のデータ・シート、データ・ブック等の資料で特に品質水準の表示がない場合は、標準水準製品であることを表します。

標準水準: コンピュータ、OA 機器、通信機器、計測機器、AV 機器、家電、工作機械、パーソナル機器、 産業用ロボット

高品質水準: 輸送機器(自動車、電車、船舶等) 交通用信号機器、防災・防犯装置、各種安全装置、生命維持を目的として設計されていない医療機器(厚生労働省定義の管理医療機器に相当)

特定水準: 航空機器、航空宇宙機器、海底中継機器、原子力制御システム、生命維持のための医療機器(生命維持装置、人体に埋め込み使用するもの、治療行為(患部切り出し等)を行うもの、その他直接人命に影響を与えるもの)(厚生労働省定義の高度管理医療機器に相当)またはシステム

- 8. 本資料に記載された当社製品のご使用につき、特に、最大定格、動作電源電圧範囲、放熱特性、実装条件その他諸条件につきまして<mark>は、当社保</mark>証範囲内でご使用ください。当社保証範囲を超えて当社製品をご使用された場合の故障および事故につきましては、当社は、一切その責任を負いません。
- 9. 当社は、当社製品の品質および信頼性の向上に努めておりますが、半導体製品はある確率で故障が発生したり、使用条件によっては誤動作したりする場合があります。また、当社製品は耐放射線設計については行っておりません。当社製品の故障または誤動作が生じた場合も、人身事故、火災事故、社会的損害などを生じさせないようお客様の責任において冗長設計、延焼対策設計、誤動作防止設計等の安全設計およびエージング処理等、機器またはシステムとしての出荷保証をお願いいたします。特に、マイコンソフトウェアは、単独での検証は困難なため、お客様が製造された最終の機器・システムとしての安全検証をお願いいたします。
- 10. 当社製品の環境適合性等、詳細につきましては製品個別に必ず当社営業窓口までお問合せください。ご使用に際しては、特定の物質の含有・使用を規制する RoHS 指令等、適用される環境関連法令を十分調査のうえ、かかる法令に適合するようご使用ください。お客様がかかる法令を遵守しないことにより生じた損害に関して、当社は、一切その責任を負いません。
- 11. 本資料の全部または一部を当社の文書による事前の承諾を得ることなく転載または複製することを固くお断りいたします。
- 12. 本資料に関する詳細についてのお問い合わせその他お気付きの点等がございましたら当社営業窓口までご 照会ください。
- 注 1. 本資料において使用されている「当社」とは、ルネサスエレクトロニクス株式会社およびルネサスエレクトロニクス株式会社がその総株主の議決権の過半数を直接または間接に保有する会社をいいます。
- 注 2. 本資料において使用されている「当社製品」とは、注 1 において定義された当社の開発、製造製品をいいます。

R1EX24512ASAS0I

Two-wire serial interface 512k EEPROM (64-kword × 8-bit)

RJJ03C0281-0002 暫定仕様 Rev.0.02 2008.5.16

概要

R1EX24xxx シリーズは 2 線式シリアルインターフェースの EEPROM (電気的に書き換え可能な ROM)です。最新の MNOS メモリ技術, CMOS プロセスおよび低電圧回路技術を採用し,低電源電圧動作・低消費電力・高速動作・高信頼性を実現しています。また 128 バイトページ書き換え機能により,データ書き換えが高速化されています。

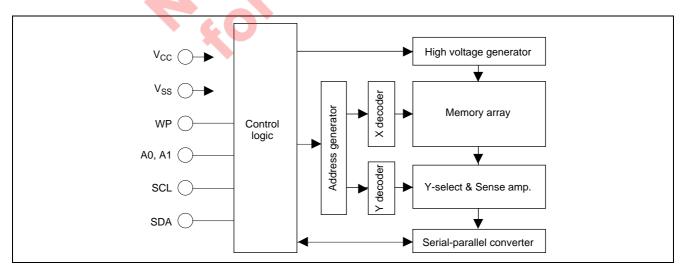
特長

- 単一電源:1.8V~5.5V
- 2線式シリアルインターフェース(I²Cバス)
- 動作周波数:1MHz(2.5V~5.5V)/400kHz(1.8V~5.5V)
- 消費電流
 - スタンバイ時: 2μA (max)
 - 読み出し時:1mA (max)
 - 書き換え時:5mA (max)
- ページ書き換え:ページサイズ 128 バイト
- 書き換え時間:5ms
- 書き換え回数:10⁶回
- データ保持:10年以上
- 小型パッケージ: SOP8 ピン
- 出荷形態
 - SOP8 ピン: 2,500IC/reel
- 温度範囲: -40~+85
- 本製品は鉛フリー仕様です。

暫定仕様:この製品は暫定仕様につき今後規格変更の可能性がありますのでご検討の際は,営業窓口にお問い合わせください。

製品ラインナップ

Type No.	Internal organization	Operating	Frequency	Package
		voltage		
R1EX24512ASAS0I	512k bit (65536 × 8-bit)	1.8V to 5.5V	400kHz	150 mil 8-pin plastic SOP
		2.5V to 5.5V	1MHz	PRSP0008DF-B (FP-8DBV)
				鉛フリー仕様


ピン配置

ピン説明

	Pin name	Function
A0 to A1		Device address
SCL		Serial clock input
SDA		Serial data input/output
WP		Write protect
V_{CC}		Power supply
V_{SS}		Ground
NC	8 7 6	No connection

ブロックダイアグラム

絶対最大定格

Parameter	Symbol	Value	Unit
	•		

R1EX24512ASAS0I

Supply voltage relative to V _{SS}	V _{cc}	-0.6 to +7.0	V
Input voltage relative to V _{SS}	Vin	$-0.5*^2$ to $+7.0*^3$	V
Operating temperature range*1	Topr	-40 to +85	°C
Storage temperature range	Tstg	-55 to +125	°C

【注】 1. データ保持含む

- 2. パルス幅が 50ns 以下の場合は, -3.0V
- 3. この値は V_{CC}+1.0V を超過しないでください。

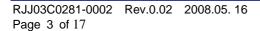
DC 動作条件

Parameter	Symbol	Min	Тур	Max	Unit
Supply voltage	V _{cc}	1.8	_	5.5	V
	V _{SS}	0	0	0	V
Input high voltage	V _{IH}	$V_{CC} \times 0.7$	_	V _{CC} + 0.5	V
Input low voltage	V_{IL}	-0.3* ¹	_	$V_{CC} \times 0.3$	V
Operating temperature	Topr	-40	_	+85	°C

【注】 1. パルス幅が 50ns 以下の場合は,-1.0V

DC 特性

 $(Ta = -40 \sim +85^{\circ}C, V_{CC} = 1.8 \text{ V} \sim 5.5\text{V})$


Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Input leakage current	ILI	_	_	2.0	μΑ	$V_{CC} = 5.5 \text{ V}, \text{ Vin} = 0 \text{ to } 5.5 \text{ V}$
Output leakage current	I _{LO}	_		2.0	μΑ	$V_{CC} = 5.5 \text{ V}, \text{ Vout} = 0 \text{ to } 5.5 \text{ V}$
Standby V _{CC} current	I _{SB}	_	1.0	2.0	μΑ	Vin = V _{SS} or V _{CC}
Read V _{CC} current	I _{CC1}	_	\	1.0	mA	V _{CC} = 5.5 V, Read at 400kHz
Write V _{CC} current	I _{CC2}	_		5.0	mA	V _{CC} = 5.5 V, Write at 400kHz
Output low voltage	V_{OL2}	_		0.4	V	$V_{CC} = 2.7 \text{ to } 5.5 \text{ V}, I_{OL} = 3.0 \text{mA}$
	V _{OL1}			0.2	V	$V_{CC} = 1.8 \text{ to } 2.7 \text{ V}, I_{OL} = 1.5 \text{mA}$

容量

 $(Ta = +25^{\circ}C, f = 1 \text{ MHz})$

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Input capacitance (A0 to A1, SCL, WP)	Cin* ¹	_		6.0	pF	Vin = 0 V
Output capacitance (SDA)	C _{I/O} *1	_		6.0	pF	Vout = 0 V

【注】 1. このパラメータは全数測定されたものではなく,サンプル値です。

AC 特性

 $(Ta = -40 \sim +85^{\circ}C, V_{CC} = 1.8 \sim 5.5 V)$

測定条件

• 入力パルスレベル:

● 入力立ち上がり / 立ち下がり時間: ≤ 20 ns

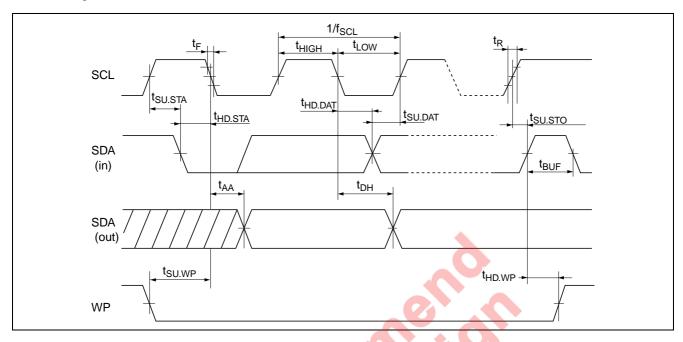
● 入出力タイミング参照レベル: 0.5×V_{CC}

• 出力負荷:1TTL Gate + 100 pF

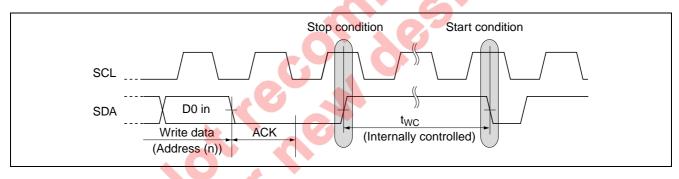
		V _{CC} =1.8V to 5.5V		V _{CC}	=2.5V to 5				
Parameter	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	Notes
Clock frequency	f _{SCL}	_	_	400	_	_	1000	kHz	
Clock pulse width low	t _{LOW}	1200	_	_	600	_	_	ns	
Clock pulse width high	t _{HIGH}	600		_	400	_		ns	
Noise suppression time	t _l	_	_	50	_		50	ns	1
Access time	t _{AA}	100		900	100		550	ns	
Bus free time for next mode	t _{BUF}	1200		_	500			ns	
Start hold time	t _{HD.STA}	600	_	_	250		_	ns	
Start setup time	t _{SU.STA}	600	_		250	-	_	ns	
Data in hold time	t _{HD.DAT}	0	_		0	. —	_	ns	
Data in setup time	t _{SU.DAT}	100	_	_	100		_	ns	
Input rise time	t _R	_	_	300) <u> </u>	300	ns	1
Input fall time	t _F	_		300		_	100	ns	1
Stop setup time	t _{SU.STO}	600	+	Y ->	250	_		ns	
Data out hold time	t _{DH}	50		_ (50	_		ns	
Write protect hold time	t _{HD.WP}	1200	(600	_		ns	
Write protect setup time	t _{SU.WP}	0			0			ns	
Write cycle time	t _{WC}		-	5			5	ms	2
Erase/Write Endurance			10 ⁶	<u> </u>		10 ⁶	_	cycles	3

RENESAS

【注】 1. このパラメータは全<mark>数測定された</mark>ものでなくサンプル値です。


- 2. twc は停止状態から書き込み(内部制御)終了までの時間です。
- 3. 全数測定されたものではなくサンプル値です。

 10^6 cycles (Ta = 25° C)


 10^5 cycles (Ta = 85° C)

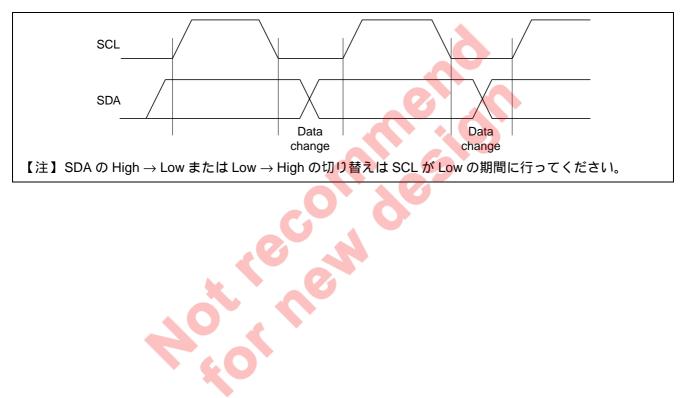
タイミング波形

Bus Timing

Write Cycle Timing

ピン機能

シリアルクロック(SCL)


シリアルデータ入出力のタイミングを設定するためのクロック入力端子です。クロックの立ち上がりでデータの取り込み,立ち下がりでデータを出力します。クロック周波数の最大値は 1MHz です。

シリアル入出力(SDA)

シリアルデータの入力・出力端子です。出力はオープンドレインになっていますので,抵抗でプルアップする必要があります。抵抗値については DC 特性の ' V_{OL} ' と ' I_{OL} ' および SDA 端子の負荷容量から,システムに適した値を求めてください。

後述のスタート・コンディション,ストップ・コンディションを除き,SDA 入力の切り替わりは,SCLが Low の期間内にする必要があります。

Data Validity (SDA data change timing waveform)

デバイス・アドレス(A0,A1)

本製品は同一データバス上に複数個 (最大 4 個)のデバイスを接続することができます。デバイス・アドレスは , 各々のデバイスを認識するために使用します。外部で V_{cc} または V_{ss} に接続してください。この V_{cc} , V_{ss} の組み合わせが , SDA 端子から入力されるデバイス・アドレス・コードと一致したデバイスが動作します。

Pin Connections for A0 to A1

		Pin connection		
	Max connect			
Memory size	number	A1	A0	Notes
512k bit	4	V_{CC}/V_{SS}	V_{CC}/V_{SS}	


【注】 1. V_{cc}/V_{ss}: フローティング時は V_{ss} になります。

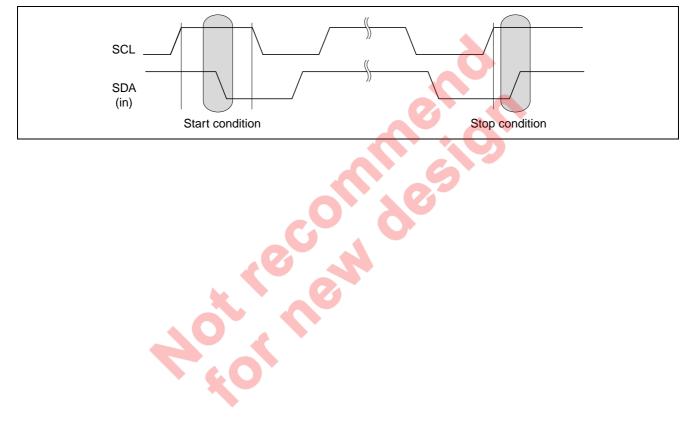
ライトプロテクト(WP)

ライトプロテクト端子を High にすると,メモリアレイの全領域が書き込み禁止になります。書き込み禁止になる領域を Write Protect Area に示します。ライトプロテクト端子が Low の場合は、全メモリアレイの書き換えができます。また、デバイスアドレス、メモリアドレス入力後は、Acknowledge"0"を出力しますが Write データ入力後は、Acknowledge"1"(No ACK)を出力します。ライトプロテクト端子が Low の場合は,全メモリアレイの書き換えができます。読み出しは,ライトプロテクト端子の High/Low にかかわらず可能です。

Write Protect Area

	Write protect area				
WP pin status	512k bit				
V _{IH}	Full (512k bit)				
V_{IL}	Normal read/write operation				

動作説明

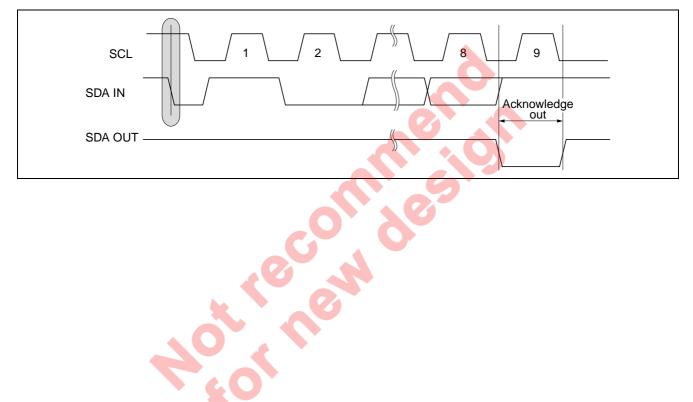

スタート・コンディション

Read, Write の動作を開始するには, SCL 入力が High の期間に, SDA 入力を High から Low にするスター ト・コンディションにする必要があります (Start condition and stop condition 参照)。

ストップ・コンディション

SCL 入力が High の期間に, SDA 入力を Low から High にすることで,ストップ・コンディションになり ます (Start condition and stop condition 参照) 。 Read の場合,ストップ・コンディションを入力すると Read が終了し,スタンバイ状態になります。Write の場合は,ストップ・コンディション入力で書き換えデータ の入力終了となり、メモリへの書き込みをtwcの期間実施した後、スタンバイモードになります(Write cycle timing 参照)。

Start Condition and Stop Condition



Acknowledge

アドレス情報, Read 情報等のシリアルデータは 8bit 単位で送受信が行われます。Acknowledge 信号は,この8ビットのデータが正常に送信または受信されたことを示す信号で, SCL の9クロック目に受信側が"0"を出力します。送信側は,この9クロック目で Acknowledge 信号を受信するために,バスを解放します。

EEPROM から見ると, Write の場合はすべて受信となるため, 8 ビットの受信が完了したら, 9 クロック目に EEPROM から Acknowledge "0"を出力します。Read の場合は, スタート・コンディションの後の 8 ビット受信後に Acknowledge "0"を出力します。これに続いて, EEPROM は Read データを 8 ビット単位で出力しますが, 出力後はバスを解放し, マスタ側から Acknowledge "0"が送られるのを待ちます。 Acknowledge "0"検出すると, EEPROM は次のアドレスの Read データを出力します。 Acknowledge "0"が検出されずにストップ・コンディションを受信すると, Read 動作を終了しスタンバイ状態になります。なお, Acknowledge "0"が検出されず, かつストップ・コンディションも送られて来ない場合は, データを出力せずにバス解放状態を持続します。

Acknowledge Timing Waveform

デバイス・アドレッシング

スタート・コンディションに続いて 8 ビットのデバイス・アドレス・ワードを入力します。この入力でデバイスは Read, Write の動作を開始します。デバイス・アドレス・ワードはデバイス・コード 4bit, デバイス・アドレス・コード 3bit, Read/Write コード 1bit の 3 つのコードで構成されています。

デバイス・アドレス・ワードの上位 4 ビットはデバイス・タイプを識別するデバイス・コードで,本製品では"1010"の固定コードになります。

デバイス・コードに続けてデバイス・アドレス・コード 3 ビットを入力します。デバイス・アドレス・コードはバスに最大 4 ケ接続されたデバイスのうち,どれを選択するかを決定します。前述のデバイス・アドレス端子 $A1 \sim A0$ の High, Low の接続が,入力されたデバイス・アドレス・コードと一致したデバイスが選択されます。

デバイス・アドレス・ワードの 8 ビット目は R/W(Read/Write)コードです。"0"入力の場合は Write 動作,"1"入力の場合は Read 動作になります。

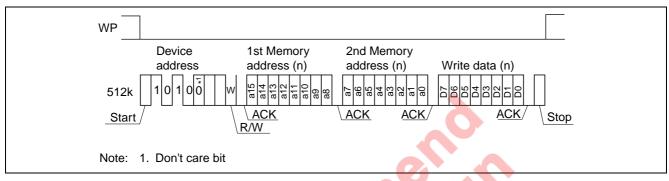
なお ,デバイス・コードが"1010"でない場合 ,もしくはデバイス・アドレス・コードが一致しない場合は , Read/Write 動作に入らず , スタンバイモードになります。

Device Address Word

	Device address word (8-bit)								
	Device code (fixed)				Device address code				R/W code*1
512k	1	0	1	0	0*2	A1		A0	R/W

recolline.

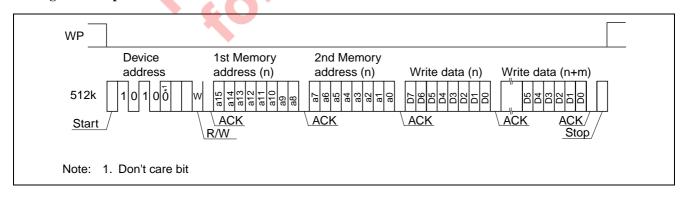
【注】 1. R/W="1"の場合は Read, R/W="0"の場合は Write になります。


2. Don't care bit.

Write 動作(WP=Low の時)

Byte Write: ライトプロテクト端子(WP)が Low 状態での Write 動作について

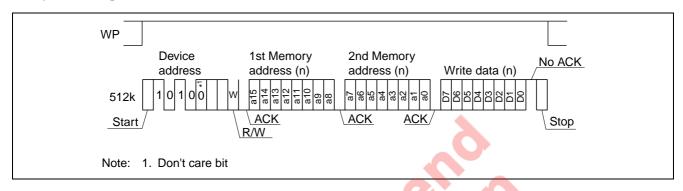
スタート・コンディションに続いて、Read/Write コードを"0"にしてデバイス・アドレス・ワード 8bit を入力すると、9bit 目に Acknowledge "0"を出力し、Write モードに入ります。この後、8bit×2 のメモリ・アドレスを入力します。メモリ・アドレスを入力すると、Acknowledge "0"を出力しますので、続いて Write データ 8bit を入力します。Write データを受け取ると EEPROM は Acknowledge "0"を出力します。こでストップ・コンディションを入力すると、LSI 内部で制御される書き換え動作に入り、書き換え動作終了まで、SCL、SDA の入力を受け付けなくなります。書き換え動作が終了すると自動的にスタンバイモードに戻ります。


Byte Write Operation

Page Write:

本製品は 128 バイトまでの任意のバイト数を一度に書き換えられる Page Write 機能を有しています。 Page Write では Byte Write と同様に , スタート・コンディション デバイス・アドレス・ワード メモリ・アドレス(n) Write データ(Dn)の順に , 9bit ごとの Acknowledge "0"出力を確認しながら入力します。Write データ(Dn)入力後にストップ・コンディションを入力しないで ,Write データ(Dn+1)を入力すると ,Page Write モードに入ります。Write データ(Dn+1)を入力した時点で ,ページ内アドレス(a0~a6)は自動的インクリメントされ(n+1)番地になります。このように ,Write データを次々と入力することができ ,Write データ入力ごとにページ内アドレスがインクリメントされ ,最大 128 バイトの Write データを入力できます。ページ内アドレス(a0~a6)がページの最終番地に達した場合は ,アドレスは "Roll Over"して ,ページの先頭アドレスに戻ります。"Roll Over"した場合は 同一アドレスにWrite データが2度(以上) 入力されることになりますが ,最後に入力した Write データが有効になります。ストップ・コンディションを入力すると ,Write データの入力を終了し ,書き換え動作に入ります。

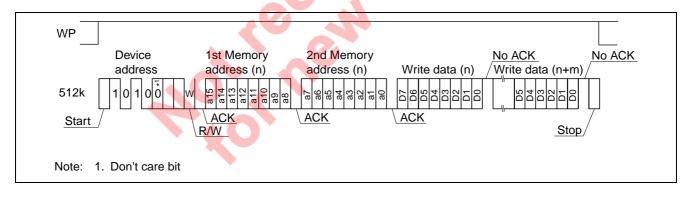
Page Write Operation



Write 動作(WP=Hight の時)

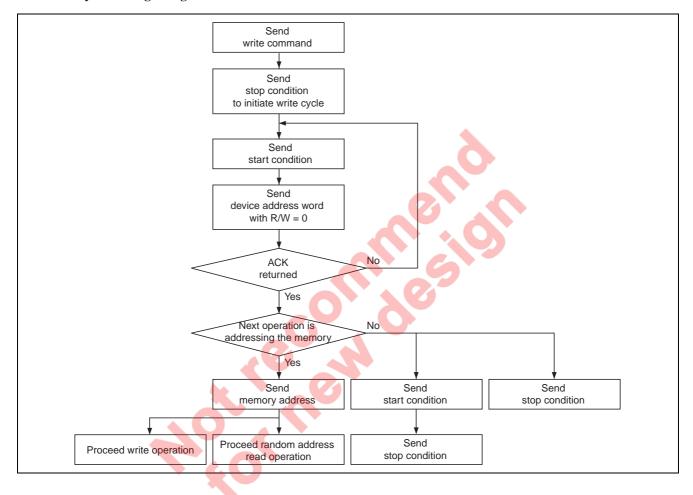
Byte Write: ライトプロテクト端子(WP)が Hight 状態での Write 動作について

スタート・コンディションに続いて, Read/Write コードを"0"にしてデバイス・アドレス・ワード 8bit を入力すると, 9bit 目に Acknowledge "0"を出力し, Write モードに入ります。この後, 8bit×2 のメモリ・アドレスを入力します。メモリ・アドレスを入力すると, Acknowledge "0"を出力しますので,続いて Write データ8bit を入力します。Write データを受け取ると EEPROM は Acknowledge "0"を出力します。Write データ8bit を入力後 EEPROM は、Acknowledge"1"(No ACK)を出力し、メモリのデータを書き換えません。


Byte Write Operation

Page Write:

Page Write では Byte Write と同様に ,スタート・コンディション デバイス・アドレス・ワード メモリ・アドレス(n)では , 9bit ごとに Acknowledge "0"を出力しますが、Write データ(Dn)入力後は , Acknowledge "1"を出力し。メモリのデータを書き換えません。


Page Write Operation

Acknowledge Polling:

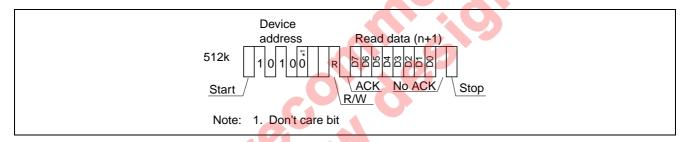
EEPROM が書き換え中か否かを判定する機能として, Acknowledge Polling があります。書き換え期間中にスタート・コンディションに続いてデバイス・アドレス・ワード 8bit を入力します。Acknowledge Polling の場合, Read/Write コードは"0"にしてください。9bit 目の Acknowledge で書き換え中か否かを判定します。Acknowledge "1"は書き換え中, Acknowledge "0"は書き換え終了を示します。Acknowledge Polling は, Write データ入力後, ストップ・コンディションが入力された時点から機能します(Write Cycle Polling using ACK 参照)。

Write Cycle Polling Using ACK

Read 動作

Read には, Current Address Read, Random Read, Sequential Read の3モードがあります。Read の起動方法はWrite と同様ですが,デバイス・アドレス・ワード 8bit 目の Read/Write コードに"1"を入力します。

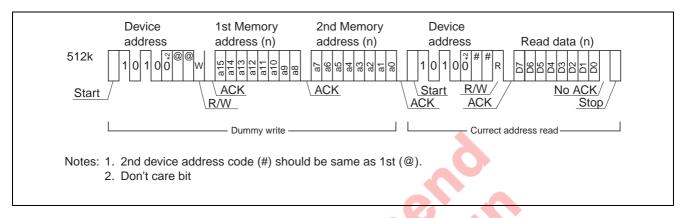
Current Address Read:


EEPROM 内部のアドレス・カウンタは,前回の Read もしくは Write で,最後にアクセスしたアドレス(n) を 1 番地インクリメントした(n+1)番地をキープしています。Current Address Read は,この内部アドレス・カウンタがキープしている(n+1)番地を Read するモードです。

Write と同様に,スタート・コンディション デバイス・アドレス・ワード(ただし R/W="1")の順に入力すると,Acknowledge "0"を出力したのち,(n+1)番地のデータ 8bit が上位からシリアルに出力されます。この後,Acknowledge "1"(Acknowledge の入力をせずに,バスを解放しても可) ストップ・コンディションの順で入力すると Read を終了し,スタンバイ状態に戻ります。

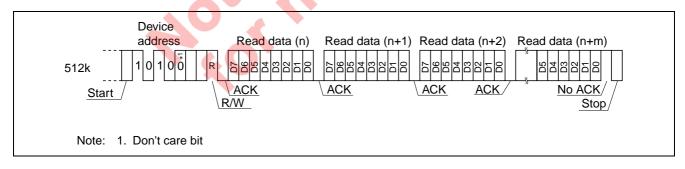
なお,前回が Read モードで最終アドレスをアクセスした場合, Current Address は"Roll Over"して0番地になります。また,前回がWrite モードでページの最終アドレスをアクセスした場合, Current Address はページ内で"Roll Over"して,ページの先頭アドレスになります。

Current Address は , 電源を OFF しないかぎり有効です。電源 ON 後の Current Address は不定になります。電源 ON 後の Read は次の Random Read でアドレスを指定してください。


Current Address Read Operation

Random Read:

アドレスを指定して Read するモードです。ダミーの Write モードで Read すべきアドレスを入力します。スタート・コンディション デバイス・アドレス・ワード (R/W="0") メモリ・アドレス $8bit \times 2$ の順に入力します。メモリ・アドレス入力後の Acknowledge "0"出力を確認したら,再度スタート・コンディションを入力し,上記の Current Address Read を行います。ダミーの Write モードで指定したアドレスのデータが出力されます。データ出力後に,Acknowledge "1" (Acknowledge の入力をせずに,バスを解放しても可)ストップ・コンディションの順で入力すると Read を終了し,スタンバイ状態に戻ります。


Random Read Operation

Sequential Read:

データを連続して Read するモードで, Current Address Read, Random Read ともに使用できます。8bit のデータを出力した後, Acknowledge "0"を入力すると, アドレスがインクリメントされ, 次の8bit のデータが出力されます。データ出力後に Acknowledge "0"の入力を続けると, アドレスをインクリメントしながら次々とデータを出力します。アドレスが最終アドレスになった場合は, 0番地に"Roll Over"します。"Roll Over"後も Sequential Read が可能です。動作を終了するには, Current Address Read, Random Read と同様に, Acknowledge "1"(Acknowledge の入力をせずに, バスを解放しても可) ストップ・コンディションの順で入力します。

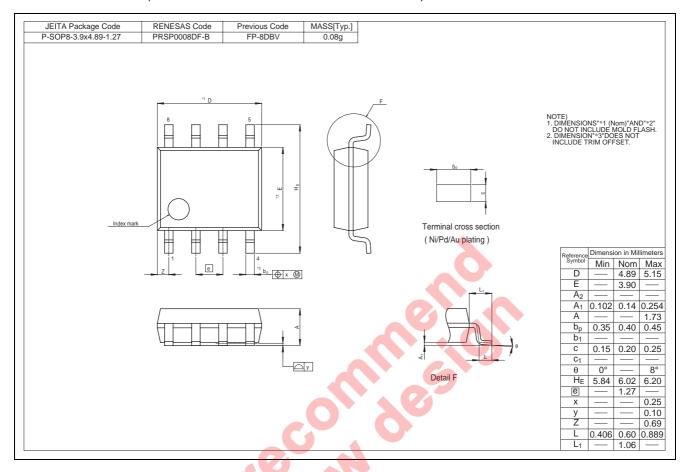
Sequential Read Operation

使用上の注意

電源 On/Off 時のデータ保護

電源 On/Off 時の誤動作により,データが破壊される場合があります。データ破壊を防止するため,本製品では Power on Reset 回路を内蔵しています。Power on Reset 回路が正しく動作するように,下記にご注意ください。

- 電源 On/Off 時には SCL,SDA を V_{CC} もしくは V_{SS} に固定し , クロックさせないこと
- 電源 Off はスタンバイ状態で行うこと
- 中間レベルからの電源 On は誤動作の原因になるため,電源 On 時には,必ず 0 V から立ち上げること
- 電源 On 時の立ち上げスピードは 10μs 以上にすること


ノイズ・キャンセル時間

SCL, SDA の両端子はノイズ・キャンセル機能を有しています。この機能により,幅 50ns 以下のパルスはキャンセルされます。幅 50ns を越えるパルスはアクティブなパルスとして認識しますので,幅 50ns 以上の誤パルスが発生しないようご注意ください。

外形寸法図

R1EX24512ASAS0I (PRSP0008DF-B / Previous Code: FP-8DBV)

-, -		
J/T≡	ᅵᆖᆈ우ᅾ	
ה ציו	「記録	•

R1EX24512ASAS0I データシート

Rev.	発行日	改訂内容		
itev.		ページ ポイント		
0.01	2007. 08. 30	_	新規作成	
0.01	2007. 08. 30	P3	Tstg - 65 - 55	
0.02	2000. 00. 10	P11	Write 動作説明を(WP=Low)と(WP=High)の場合にわけて説明	
		' ' '	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
			20 6	

本資料ご利用に際しての留意事項

- 本資料は、お客様に用途に応じた適切な弊社製品をご購入いただくための参考資料であり、本資料中に記載の技術情報について弊社または第三者の知的財産権 その他の権利の実施、使用を許諾または保証するものではありません。 本資料に記載の製品データ、図、表、ブログラム、アルゴリズムその他応用回路例など全ての情報の使用に起因する損害、第三者の知的財産権その他の権利に 対する侵害に関し、弊々は責任を負いません。 本資料に記載の製品および技術を大量破壊兵器の開発等の目的、軍事利用の目的、あるいはその他軍事用途の目的で使用しないでください。また、輸出に際し
- 本資料に記載の製品のよび収削を入車板を共命の開発等の目的、車事利用の目的、あるいはていた単事用途の目的で使用しないでくんさい。また、、軸口に除しては、「外国為替および外国貿易法」その他輸出関連法令を遵守し、それらの定めるところにより必要な手続を行ってください。 本資料に記載の製品データ、図、表、プログラム、アルゴリズムその他応用回路例などの全ての情報は本資料発行時点のものであり、弊社は本資料に記載した製品または仕様等を予告なしに変更することがあります。弊社の半導体製品のご購入およびご使用に当たりましては、事前に弊社営業窓口で最新の情報をご確認いただきますとともに、弊社ホームページ(http://www.renesas.com/などを通じて公開される情報に常にご注意ください。 本資料に記載した情報は、正確を期すため慎重に制作したものですが、万一本資料の記述の誤りに起因する損害がお客様に生じた場合においても、弊社はその

- 本資料に記載した情報は、止罐を期すため慎重に制作したものですが、カー本資料の記述の誤りに起因する損害がお客様に生じた場合においても、弊社はその責任を負いません。 本資料に記載の製品データ、図、表などに示す技術的な内容、プログラム、アルゴリズムその他応用回路例などの情報を流用する場合は、流用する情報を単独 で評価するだけでなく、システム全体で十分に評価し、お客様の責任において適用可否を判断してください。弊社は、適用可否に対する責任は負いません。 本資料に記載された製品は、各種安全装置や運輸・交通用、燃焼制御用、航空宇宙用、原子力、海底中継用の機器・システムなど、その故障や誤動作 が直接人命を脅かしあるいは人体に危害を及ぼすおそれのあるような機器・システムや特に高度な品質・信頼性が要求される機器・システムでの使用を意図し て設計、製造されたものではありません(弊社が自動車用と指定する製品を自動車に使用する場合を除きます)。これらの用途に利用されることをご検討の際 には、必ず事前に弊社営業窓口へご照会ください。なお、上記用途に使用されたことにより発生した損害等について弊社はその責任を負いかねますのでご了承
- 願います。 第7項にかかわらず、本資料に記載された製品は、下記の用途には使用しないでください。これら<mark>の用途に</mark>使用されたことにより発生した損害等につきましては、弊社は一切の責任を負いません。
- は、弊社は一切の責任を負いません。

 1)生命維持装置。
 2)人体に埋め込み使用するもの。
 3)治療行為(患部切り出し、薬剤投与等)を行うもの。
 4)その他、直接人命に影響を与えるもの。

 9. 本資料に記載された製品のご使用につき、特に最大定格、動作電源電圧範囲、放熱特性、実装条件およびその他諸条件につきましては、弊社保証範囲内でご使用ください。弊社保証値を越えて製品をご使用された場合の故障および事故につきましては、弊社はその責任を負いません。

 10. 弊社は製品の品質および信頼性の向上に努めておりますが、特に半導体製品はある確率で故障が発生したり、使用条件によっては誤動作したりする場合があります。弊社製品の故障または誤動作が生じた場合も人身事故、火災事故、社会的損害などを生じさせないよう、お客様の責任において冗長設計、延焼対策設計、誤動作防止設計などの安全設計(合むハードウェアおよびソフトウェア)およびエージング処理等、機器またはシステムとしての出荷保証をお願いいたします。特にマイコンソフトウェアは、単独での検証は困難なため、お客様が製造された最終の機器・システムとしての安全検証をお願いたします。特にマイコンソフトウェアは、単独での検証は困難なため、お客様が製造された最終の機器・システムとしての安全検証をお願いたします。製品が剥がれることがなきよう、お客様の責任において十分な安全設計をお願いします。お客様の製品への実装後に容易に本製品が剥がれることがなきよう、お客様の責任において十分な安全設計をか願いします。お客様の製品から剥がれた場合の事故につきましては、弊社はその責任を負いません。

- 1 と、本資料の全部または一部を弊社の文書による事前の承諾なしに<mark>転載または</mark>複製することを固くお断りいたします。 1 3 、本資料に関する詳細についてのお問い<mark>合わせ、そ</mark>の他お気付<mark>き</mark>の点等がございましたら弊社営業窓口までご照会ください。

営業お問合せ窓口 株式会社ルネサス販売

http://www.renesas.com

本			社	〒100-0004	千代田区大手町2-6-2 (日本ビル)	(03) 5201-5350		
西	東京	支	社	〒190-0023	立川市柴崎町2-2-23 (第二高島ビル)	(042) 524-8701		
東	北	支	社	∓ 980-0013	仙台市青葉区花京院1-1-20 (花京院スクエア)	(022) 221-1351		
()	わき	支	店	〒970-8026	いわき市平宇田町120番地ラトブ	(0246) 22-3222		
茨	城	支	店	〒312-0034	ひたちなか市堀口832-2 (日立システムプラザ勝田)	(029) 271-9411		
新	澙	支	店	〒950-0087	新潟市東大通1-4-2 (新潟三井物産ビル)	(025) 241-4361		
松	本	支	社	〒390-0815	松本市深志1-2-11 (昭和ビル)	(0263) 33-6622		
中	部	支	社	₹460-0008	名古屋市中区栄4-2-29 (名古屋広小路プレイス)	(052) 249-3330		
関	西	支	社	〒541-0044	大阪市中央区伏見町4-1-1 (明治安田生命大阪御堂筋ビル)	(06) 6233-9500		
北	陸	支	社	〒920-0031	金沢市広岡3-1-1 (金沢パークビル)	(076) 233-5980		
鳥	取	支	店	〒680-0822	鳥取市今町2-251 (日本生命鳥取駅前ビル)	(0857) 21-1915		
広	島	支	店	〒730-0036	広島市中区袋町5-25 (広島袋町ビルディング)	(082) 244-2570		
九	州	支	社	〒812-0011	福岡市博多区博多駅前2-17-1 (博多プレステージ)	(092) 481-7695		
営業お問い合わせ窓口の住所・電話番号は変更になることがあります。最新情報につきましては、弊社ホームページをご覧ください。								

■技術的なお問合せおよび資料のご請求は下記へどうぞ。

総合お問合せ窓口:コンタクトセンタ E-Mail: csc@renesas.com