カタログ等資料中の旧社名の扱いについて

2010年4月1日を以ってNECエレクトロニクス株式会社及び株式会社ルネサステクノロジが合併し、両社の全ての事業が当社に承継されております。従いまして、本資料中には旧社名での表記が残っておりますが、当社の資料として有効ですので、ご理解の程宜しくお願い申し上げます。

ルネサスエレクトロニクス ホームページ (http://www.renesas.com)

2010 年 4 月 1 日 ルネサスエレクトロニクス株式会社

【発行】ルネサスエレクトロニクス株式会社(http://www.renesas.com)

【問い合わせ先】http://japan.renesas.com/inquiry

ご注意書き

- 1. 本資料に記載されている内容は本資料発行時点のものであり、予告なく変更することがあります。当社製品のご購入およびご使用にあたりましては、事前に当社営業窓口で最新の情報をご確認いただきますとともに、当社ホームページなどを通じて公開される情報に常にご注意ください。
- 2. 本資料に記載された当社製品および技術情報の使用に関連し発生した第三者の特許権、著作権その他の知的財産権の侵害等に関し、当社は、一切その責任を負いません。当社は、本資料に基づき当社または第三者の特許権、著作権その他の知的財産権を何ら許諾するものではありません。
- 3. 当社製品を改造、改変、複製等しないでください。
- 4. 本資料に記載された回路、ソフトウェアおよびこれらに関連する情報は、半導体製品の動作例、応用例を説明するものです。お客様の機器の設計において、回路、ソフトウェアおよびこれらに関連する情報を使用する場合には、お客様の責任において行ってください。これらの使用に起因しお客様または第三者に生じた損害に関し、当社は、一切その責任を負いません。
- 5. 輸出に際しては、「外国為替及び外国貿易法」その他輸出関連法令を遵守し、かかる法令の定めるところにより必要な手続を行ってください。本資料に記載されている当社製品および技術を大量破壊兵器の開発等の目的、軍事利用の目的その他軍事用途の目的で使用しないでください。また、当社製品および技術を国内外の法令および規則により製造・使用・販売を禁止されている機器に使用することができません。
- 6. 本資料に記載されている情報は、正確を期すため慎重に作成したものですが、誤りがないことを保証するものではありません。万一、本資料に記載されている情報の誤りに起因する損害がお客様に生じた場合においても、当社は、一切その責任を負いません。
- 7. 当社は、当社製品の品質水準を「標準水準」、「高品質水準」および「特定水準」に分類しております。また、各品質水準は、以下に示す用途に製品が使われることを意図しておりますので、当社製品の品質水準をご確認ください。お客様は、当社の文書による事前の承諾を得ることなく、「特定水準」に分類された用途に当社製品を使用することができません。また、お客様は、当社の文書による事前の承諾を得ることなく、意図されていない用途に当社製品を使用することができません。当社の文書による事前の承諾を得ることなく、「特定水準」に分類された用途または意図されていない用途に当社製品を使用したことによりお客様または第三者に生じた損害等に関し、当社は、一切その責任を負いません。なお、当社製品のデータ・シート、データ・ブック等の資料で特に品質水準の表示がない場合は、標準水準製品であることを表します。

標準水準: コンピュータ、OA 機器、通信機器、計測機器、AV 機器、家電、工作機械、パーソナル機器、産業用ロボット

高品質水準: 輸送機器(自動車、電車、<mark>船舶等</mark>)、交通用信号機器、防災・防犯装置、各種安全装置、生命 維持を目的として設計されていない医療機器(厚生労働省定義の管理医療機器に相当)

特定水準: 航空機器、航空宇宙機器、海底中継機器、原子力制御システム、生命維持のための医療機器(生命維持装置、人体に埋め込み使用するもの、治療行為(患部切り出し等)を行うもの、その他直接人命に影響を与えるもの)(厚生労働省定義の高度管理医療機器に相当)またはシステム

- 8. 本資料に記載された当社製品のご使用につき、特に、最大定格、動作電源電圧範囲、放熱特性、実装条件その他諸条件につきましては、当社保証範囲内でご使用ください。当社保証範囲を超えて当社製品をご使用された場合の故障および事故につきましては、当社は、一切その責任を負いません。
- 9. 当社は、当社製品の品質および信頼性の向上に努めておりますが、半導体製品はある確率で故障が発生したり、使用条件によっては誤動作したりする場合があります。また、当社製品は耐放射線設計については行っておりません。当社製品の故障または誤動作が生じた場合も、人身事故、火災事故、社会的損害などを生じさせないようお客様の責任において冗長設計、延焼対策設計、誤動作防止設計等の安全設計およびエージング処理等、機器またはシステムとしての出荷保証をお願いいたします。特に、マイコンソフトウェアは、単独での検証は困難なため、お客様が製造された最終の機器・システムとしての安全検証をお願いいたします。
- 10. 当社製品の環境適合性等、詳細につきましては製品個別に必ず当社営業窓口までお問合せください。ご使用に際しては、特定の物質の含有・使用を規制する RoHS 指令等、適用される環境関連法令を十分調査のうえ、かかる法令に適合するようご使用ください。お客様がかかる法令を遵守しないことにより生じた損害に関して、当社は、一切その責任を負いません。
- 11. 本資料の全部または一部を当社の文書による事前の承諾を得ることなく転載または複製することを固くお断りいたします。
- 12. 本資料に関する詳細についてのお問い合わせその他お気付きの点等がございましたら当社営業窓口までご 照会ください。
- 注1. 本資料において使用されている「当社」とは、ルネサスエレクトロニクス株式会社およびルネサスエレクトロニクス株式会社がその総株主の議決権の過半数を直接または間接に保有する会社をいいます。
- 注 2. 本資料において使用されている「当社製品」とは、注 1 において定義された当社の開発、製造製品をいいます。

静電気ノイズ・クリッピング・ダイオード ESD Noise Clipping Diode

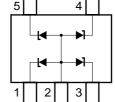
外形図(単位:mm)

 1.6 ± 0.1

1.2±0.1

NNCD6.8RL

5ピン超小型ミニモールド (フラット・リード・タイプ) ESD ノイズ・クリッピング・ダイオード (クワッド・タイプ,アノード共通)


NNCD6.8RLは,ESDノイズ保護用に開発した低容量タイプのダイオードです。電磁妨害に対するIEC61000-4-2試験に基づき接触放電にて8 kV以上のESD耐量を保証しており,データ通信における外部インタフェース回路保護に最適です。

5ピン超小型ミニモールド・フラット・リード・パッケージに4素子搭載しています。1素子あたりの実装面積は当社最小のパッケージである超小型ミニモールドの約38%であり、さらなる高密度実装が可能です。小型軽量化が求められる携帯電話、ポータブル・オーディオ、PDA、DSCなどのセットに最適です。

特徴

静電気放電イミュニティ試験(IEC61000-4-2)に基づき,接触放電にて最小8 kV耐量を保証しています。接合容量が10 pF TYP.と小さく,NNCD[]PLシリーズに比べて周波数特性に優れています。5ピン超小型ミニモールド・フラット・リード・パッケージに4素子搭載(アノード共通)しており,さら

J −ズ 5 4 C

1. K1: Cathode 1

電極接続図

2. A: Anode (common)

3. K2: Cathode 2 4. K3: Cathode 3

5. K4: Cathode 4

用 途

外部インタフェース回路のESD保護

なる高密度・自動実装が可能です。

絶対最大定格(TA = 25)

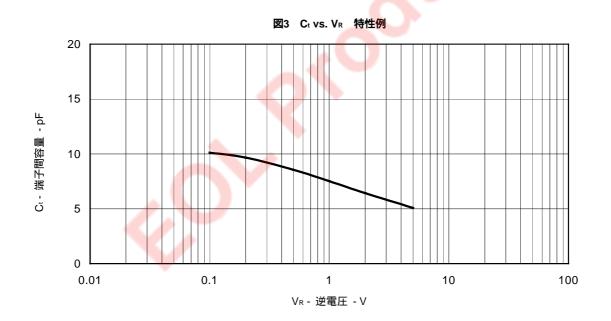
項目	略号	定格	単 位	備考
許容損失	Р	200	mW	トータル
サージ逆電力	Prsm	2(t = 10 μs , 1パルス)	W	
接合部温度	Tj	150		
保存温度	T _{stg}	−55 ~ + 150		

本資料の内容は、予告なく変更することがありますので、最新のものであることをご確認の上ご使用ください。

電気的特性 (TA = 25) (A-K1間, A-K2間, A-K3間, A-K4間)

	品名 降伏電圧 注						77.±7.		#### ## ## ## ## ## ## ## ## ## ## ## #	
品名	降伏電圧			端子間容量		逆電流		静電気耐量		
	Breakdown Voltage			Capacitance		Reverse Leakage		ESD Voltage		
	V _{BR} (V)			Ct (pF)		IR (μ A)		(kV)		
	MIN.	MAX.	I⊤ (mA)	TYP.	条件	MAX.	V _R (V)	MIN.	条件	
NNCD6.8RL	6.2 7.1							C = 150 pF		
			5	10	V _R = 0 V	2	3.5	8	R = 330 Ω	
		7.1			f = 1 MHz				接触放電	
								(IEC61000-4-2)		

注 VBRは通電後40 msで測定します。


2



特性曲線 (TA = 25°C)

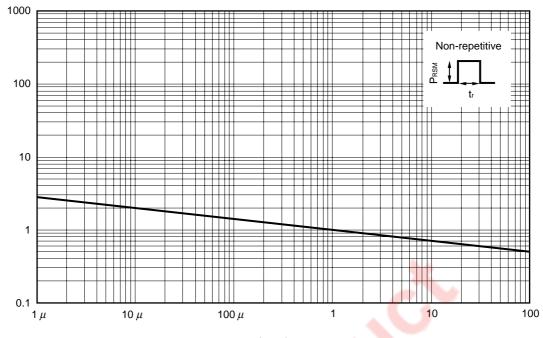

図1 P vs. TA 定格 P - 許容損失 - mW TA - 周囲温度 - °C

図2 It vs. VBR 特性例

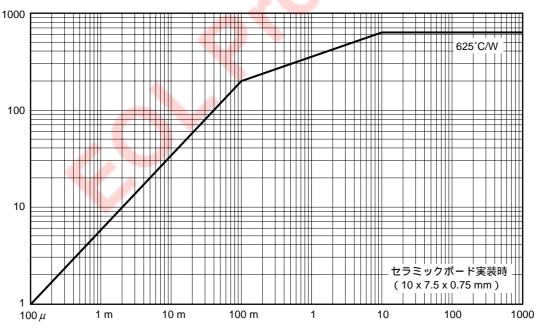


図4 サージ逆電力定格

tr - パルス幅 - ms

図5 過渡熱インピーダンス特性

時間 - s

Ztr - 過渡熱インピーダンス - 。C/W

- ◆本資料に記載されている内容は2003年4月現在のもので、今後、予告なく変更することがあります。量 産設計の際には最新の個別データ・シート等をご参照ください。
- 文書による当社の事前の承諾なしに本資料の転載複製を禁じます。当社は,本資料の誤りに関し,一切 その責を負いません。
- 当社は,本資料に記載された当社製品の使用に関連し発生した第三者の特許権,著作権その他の知的財産権の侵害等に関し,一切その責を負いません。当社は,本資料に基づき当社または第三者の特許権,著作権その他の知的財産権を何ら許諾するものではありません。
- 本資料に記載された回路,ソフトウエアおよびこれらに関する情報は,半導体製品の動作例,応用例を 説明するものです。お客様の機器の設計において,回路,ソフトウエアおよびこれらに関する情報を使 用する場合には,お客様の責任において行ってください。これらの使用に起因しお客様または第三者に 生じた損害に関し,当社は,一切その責を負いません。
- 当社は、当社製品の品質、信頼性の向上に努めておりますが、当社製品の不具合が完全に発生しないことを保証するものではありません。当社製品の不具合により生じた生命、身体および財産に対する損害の危険を最小限度にするために、冗長設計、延焼対策設計、誤動作防止設計等安全設計を行ってください。
- 当社は,当社製品の品質水準を「標準水準」,「特別水準」およびお客様に品質保証プログラムを指定していただく「特定水準」に分類しております。また,各品質水準は,以下に示す用途に製品が使われることを意図しておりますので,当社製品の品質水準をご確認ください。

標準水準:コンピュータ,OA機器,通信機器,計測機器,AV機器,家電,工作機械,パーソナル機器,産業用ロボット

特別水準:輸送機器(自動車,電車,船舶等),交通用信号機器,防災・防犯装置,各種安全装置, 生命維持を目的として設計されていない医療機器

特定水準:航空機器,航空宇宙機器,海底中継機器,原子力制御システム,生命維持のための医療機器,生命維持のための装置またはシステム等

当社製品のデータ・シート,データ・ブック等の資料で特に品質水準の表示がない場合は,標準水準製品であることを表します。意図されていない用途で当社製品の使用をお客様が希望する場合には,事前に当社販売窓口までお問い合わせください。

(注)

- (1)本事項に<mark>おいて使用されている「当社」とは、NECエレクトロニクス株式会社およびNECエレクトロニクス株式会社がその総株主の議決権の過半数を直接または間接に保有する会社をいう。</mark>
- (2)本事項におい<mark>て使用されている「当社製品」とは、(1)において定義された当社の開発、製造製品をいう。</mark>

M8E 02.11

【発行】

NECエレクトロニクス株式会社

〒211-8668 神奈川県川崎市中原区下沼部1753

電話(代表):044(435)5111

---- お問い合わせ先-

【ホームページ】

NECエレクトロニクスの情報がインターネットでご覧になれます。

URL(アドレス) http://www.necel.co.jp/

【営業関係,技術関係お問い合わせ先】

半導体ホットライン 電 話 : **044-435-9494** (電話:午前 9:00~12:00,午後 1:00~5:00) **E-mail**:info@lsi.nec.co.ip

【資料請求先】

NECエレクトロニクスのホームページよりダウンロードいただくか, NECエレクトロニクス特約店へお申し付けください。