RENESAS

HM-65642

8K x 8 Asynchronous CMOS Static RAM

Features

- No Pull-Up or Pull-Down Resistors Required
- · Easy Microprocessor Interfacing
- Dual Chip Enable Control

Ordering Information

Description

The HM-65642 is a CMOS 8192 x 8-bit Static Random Access Memory. The pinout is the JEDEC 28 pin, 8-bit wide standard, which allows easy memory board layouts which accommodate a variety of industry standard ROM, PROM, EPROM, EEPROM and RAMs. The HM-65642 is ideally suited for use in microprocessor based systems. In particular, interfacing with the Intersil 80C86 and 80C88 microprocessors is simplified by the convenient output enable (\overline{G}) input.

The HM-65642 is a full CMOS RAM which utilizes an array of six transistor (6T) memory cells for the most stable and lowest possible standby supply current over the full military temperature range.

PACKAGE	TEMPERATURE RANGE	(NOTE 1) 150ns/75 μ Α	(NOTE 1) 150ns/150 μ A	(NOTE 1) 200ns/250 μ A	PKG. NO.
CERDIP	-40 ^o C to +85 ^o C	-	HM1-65642-9	-	F28.6
JAN#	-55 ⁰ C to +125 ⁰ C	29205BXA	-	-	F28.6

NOTE:

1. Access Time/Data Retention Supply Current.

Pinout

PIN	DESCRIPTION
А	Address Input
DQ	Data Input/Output
E1	Chip Enable
E2	Chip Enable
W	Write Enable
G	Output Enable
NC	No Connections
GND	Ground
V _{CC}	Power

FN3005 Rev 2.00 May 2002

Functional Diagram

TRUTH TABLE

MODE	E1	E2	w	G
Standby (CMOS)	Х	GND	Х	Х
Standby (TTL)	VIH	Х	Х	Х
	Х	V _{IL}	Х	Х
Enable (High Z)	V _{IL}	VIH	VIH	V _{IH}
Write	V _{IL}	VIH	V _{IL}	Х
Read	V _{IL}	VIH	VIH	V _{IL}

FN3005 Rev 2.00 May 2002

Absolute Maximum Ratings

′Т
)
′ N
νN
N

Thermal Information

Thermal Resistance (Typical)	θ_{JA}	^θ JC 8 ^o C/W
CERDIP Package	45°C/W	
Maximum Storage Temperature Range	65 ⁰ 0	C to +150 ⁰ C
Maximum Junction Temperature		+175 ⁰ C
Maximum Lead Temperature (Soldering 10)s)	+300 ⁰ C

Die Characteristics

Gate Count 101,000 Gates

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

Operating Voltage Range	Input Low Voltage0.3V to +0.8V
Operating Temperature Range	Input High Voltage+2.2V to V _{CC} +0.3V
HM-65642-9	

DC Electrical Specifications V_{CC} = 5V \pm 10%; T_A = -40°C to +85°C (HM-65642-9)

		LIM	LIMITS		
SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSB1	Standby Supply Current (CMOS)	-	250	μΑ	E2 = GND, V _{CC} = 5.5V
ICCSB2	Standby Supply Current (TTL)	-	5	mA	E2 = 0.8V or $\overline{E1}$ = 2.2V, V _{CC} = 5.5V
ICCDR	Data Retention Supply Current	-	150	μA	E2 = GND, V _{CC} = 2.0V
ICCEN	Enabled Supply Current	-	5	mA	E2 = 2.2V, E1 = 0.8V, V _{CC} = 5.5V, IIO = 0mA
ICCOP	Operating Supply Current (Note 1)	-	20	mA	f = 1MHz, $\overline{E1}$ = 0.8V, E2 = 2.2V, V _{CC} = 5.5V, IIO = 0mA
II	Input Leakage Current	-1.0	+1.0	μA	$VI = V_{CC}$ or GND, $V_{CC} = 5.5V$
IIOZ	Input/Output Leakage Current	-1.0	+1.0	μA	E2 = GND, VIO = V_{CC} or GND, V_{CC} = 5.5V
VCCDR	Data Retention Supply Voltage	2.0	-	V	
VOH1	Output High Voltage	2.4	-	V	IOH = -1.0mA, V _{CC} = 4.5V
VOH2	Output High Voltage (Note 2)	V _{CC} -0.4	-	V	IOH = -100μA, V _{CC} = 4.5V
VOL	Output Low Voltage	-	0.4	V	IOL = 4.0mA, V _{CC} = 4.5V

Capacitance T_A = +25°C

SYMBOL	PARAMETER	MAX	UNITS	TEST CONDITIONS	
CI	Input Capacitance (Note 2)	12	pF	f = 1MHz, All measurements are	
CIO	Input/Output Capacitance (Note 2)	14	pF	referenced to device GND	

NOTES:

1. Typical derating 5mA/MHz increase in ICCOP.

2. Tested at initial design and after major design changes.

AC Electrical Specifications V_{CC} = 5V ±10%; T_A = -40°C to +85°C (HM-65642-9)

	PARAMETER			LIMITS			TEST
SYMBOL				MIN	MAX	UNITS	CONDITIONS
READ CYCLE							
(1) TAVAX	Read Cycle Time			150	-	ns	(Notes 1, 3)
(2) TAVQV	Address Access Time			-	150	ns	(Notes 1, 3)
(3) TE1LQV	Chip Enable Access Time		E1	-	150	ns	(Notes 2, 3)
(4) TE2HQV	Chip Enable Access Time		E2	-	150	ns	(Notes 1, 3)
(5) TGLQV	Output Enable Access Time			-	70	ns	(Notes 1, 3)
(6) TE1LQX	Chip Enable Valid to Output	On	E1	10	-	ns	(Notes 2, 3)
(7) TE2HQX	Chip Enable Valid to Output	On	E2	10	-	ns	(Notes 2, 3)
(8) TGLQX	Output Enable Valid to Outp	ut On	•	5	-	ns	(Notes 2, 3)
(9) TE1HQZ	Chip Enable Not Valid to Ou	Itput Off	E1	-	50	ns	(Notes 2, 3)
(10) TE2LQZ	Chip Enable Not Valid to Ou	Chip Enable Not Valid to Output Off E2		-	60	ns	(Notes 2, 3)
(11) TGHQZ	Output Enable Not Valid to Output Off			-	50	ns	(Notes 2, 3)
(12) TAXQX	Output Hold From Address Change			10	-	ns	(Notes 2, 3)
WRITE CYCLE				1			
(13) TAVAX	Write Cycle Time			150	-	ns	(Notes 1, 3)
(14) TWLWH	Write Pulse Width		90	-	ns	(Notes 1, 3)	
(15) TE1LE1H	Chip Enable to End of Write E1		90	-	ns	(Notes 1, 3)	
(16) TE2HE2L	Chip Enable to End of Write	Chip Enable to End of Write E2		90	-	ns	(Notes 1, 3)
(17) TAVWL	Address Setup Time	Late Write		0	-	ns	(Notes 1, 3)
(18) TAVE1L	Address Setup Time	Early Write	E1	0	-	ns	(Notes 1, 3)
(19) TAVE2H	Address Setup Time	Early Write	E2	0	-	ns	(Notes 1, 3)
(20) TWHAX	Write Recovery Time	Late Write		10	-	ns	(Notes 1, 3)
(21) TE1HAX	Write Recovery Time	Early Write	E1	10	-	ns	(Notes 1, 3)
(22) TE2LAX	Write Recovery Time	Early Write	E2	10	-	ns	(Notes 1, 3)
(23) TDVWH	Data Setup Time	Late Write		60	-	ns	(Notes 1, 3)
(24) TDVE1H	Data Setup Time	Early Write	E1	60	-	-	(Notes 1, 3)
(25) TDVE2L	Data Setup Time	Early Write	E2	60	-	ns	(Notes 1, 3)
(26) TWHDX	Data Hold Time	Late Write		5	-	ns	(Notes 1, 3)
(27) TE1HDX	Data Hold Time	Early Write	E1	10	-	ns	(Notes 1, 3)
(28) TE2LDX	Data Hold Time	Early Write	E2	10	-	ns	(Notes 1, 3)
(29) TWLQZ	Write Enable Low to Output	Write Enable Low to Output Off			50	ns	(Notes 2, 3)
(30) TWHQX	Write Enable High to Output	On		5	-	ns	(Notes 2, 3)

NOTES:

 Input pulse levels: 0V to 3.0V; Input rise and fall times: 5ns (max); Input and output timing reference level: 1.5V; Output load: 1 TTL gate equivalent, C_L = 50pF (min) - for C_L greater than 50pF, access time is derated by 0.15ns per pF.

2. Tested at initial design and after major design changes.

3. V_{CC} = 4.5V and 5.5V.

Low Voltage Data Retention

Intersil CMOS RAMs are designed with battery backup in mind. Data Retention voltage and supply current are guaranteed over the operating temperature range. The following rules ensure data retention:

- 1. The RAM must be kept disabled during data retention. This is accomplished by holding the E2 pin between -0.3V and GND.
- 2. During power-up and power-down transitions, E2 must be held between -0.3V and 10% of $V_{CC}.$
- 3. The RAM can begin operating one TAVAX after $\rm V_{CC}$ reaches the minimum operating voltage of 4.5V.

Read Cycles

FIGURE 2. READ CYCLE I: W, E2 HIGH; G, E1 LOW

Read Cycles

FIGURE 3. READ CYCLE II: W HIGH

Write Cycles

Write Cycles

FIGURE 6. WRITE CYCLE III: EARLY WRITE - CONTROLLED BY E2

Typical Performance Curve

FIGURE 7. TYPICAL ICCDR vs TA

© Copyright Intersil Americas LLC 2002. All Rights Reserved. All trademarks and registered trademarks are the property of their respective owners.

For additional products, see www.intersil.com/en/products.html

Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted in the quality certifications found at <u>www.intersil.com/en/support/qualandreliability.html</u>

Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

FN3005 Rev 2.00 May 2002

