カタログ等資料中の旧社名の扱いについて

2010年4月1日を以ってNECエレクトロニクス株式会社及び株式会社ルネサステクノロジが合併し、両社の全ての事業が当社に承継されております。従いまして、本資料中には旧社名での表記が残っておりますが、当社の資料として有効ですので、ご理解の程宜しくお願い申し上げます。

ルネサスエレクトロニクス ホームページ (http://www.renesas.com)

2010 年 4 月 1 日 ルネサスエレクトロニクス株式会社

【発行】ルネサスエレクトロニクス株式会社(http://www.renesas.com)

【問い合わせ先】http://japan.renesas.com/inquiry

ご注意書き

- 1. 本資料に記載されている内容は本資料発行時点のものであり、予告なく変更することがあります。当社製品のご購入およびご使用にあたりましては、事前に当社営業窓口で最新の情報をご確認いただきますとともに、当社ホームページなどを通じて公開される情報に常にご注意ください。
- 2. 本資料に記載された当社製品および技術情報の使用に関連し発生した第三者の特許権、著作権その他の知的 財産権の侵害等に関し、当社は、一切その責任を負いません。当社は、本資料に基づき当社または第三者の 特許権、著作権その他の知的財産権を何ら許諾するものではありません。
- 3. 当社製品を改造、改変、複製等しないでください。
- 4. 本資料に記載された回路、ソフトウェアおよびこれらに関連する情報は、半導体製品の動作例、応用例を説明するものです。お客様の機器の設計において、回路、ソフトウェアおよびこれらに関連する情報を使用する場合には、お客様の責任において行ってください。これらの使用に起因しお客様または第三者に生じた損害に関し、当社は、一切その責任を負いません。
- 5. 輸出に際しては、「外国為替及び外国貿易法」その他輸出関連法令を遵守し、かかる法令の定めるところにより必要な手続を行ってください。本資料に記載されている当社製品および技術を大量破壊兵器の開発等の目的、軍事利用の目的その他軍事用途の目的で使用しないでください。また、当社製品および技術を国内外の法令および規則により製造・使用・販売を禁止されている機器に使用することができません。
- 6. 本資料に記載されている情報は、正確を期すため慎重に作成したものですが、誤りがないことを保証するものではありません。万一、本資料に記載されている情報の誤りに起因する損害がお客様に生じた場合においても、当社は、一切その責任を負いません。
- 7. 当社は、当社製品の品質水準を「標準水準」、「高品質水準」および「特定水準」に分類しております。また、各品質水準は、以下に示す用途に製品が使われることを意図しておりますので、当社製品の品質水準をご確認ください。お客様は、当社の文書による事前の承諾を得ることなく、「特定水準」に分類された用途に当社製品を使用することができません。また、お客様は、当社の文書による事前の承諾を得ることなく、意図されていない用途に当社製品を使用することができません。当社の文書による事前の承諾を得ることなく、「特定水準」に分類された用途または意図されていない用途に当社製品を使用したことによりお客様または第三者に生じた損害等に関し、当社は、一切その責任を負いません。なお、当社製品のデータ・シート、データ・ブック等の資料で特に品質水準の表示がない場合は、標準水準製品であることを表します。

標準水準: コンピュータ、OA 機器、通信機器、計測機器、AV 機器、家電、工作機械、パーソナル機器、 産業用ロボット

高品質水準: 輸送機器(自動車、電車、船舶等) 交通用信号機器、防災・防犯装置、各種安全装置、生命維持を目的として設計されていない医療機器(厚生労働省定義の管理医療機器に相当)

特定水準: 航空機器、航空宇宙機器、海底中継機器、原子力制御システム、生命維持のための医療機器(生命維持装置、人体に埋め込み使用するもの、治療行為(患部切り出し等)を行うもの、その他直接人命に影響を与えるもの)(厚生労働省定義の高度管理医療機器に相当)またはシステム

- 8. 本資料に記載された<mark>当</mark>社製品のご<mark>使用</mark>につき、特に、最大定格、動作電源電圧範囲、放熱特性、実装条件その他諸条件につきましては、当社保証範囲内でご使用ください。当社保証範囲を超えて当社製品をご使用された場合の故障および事故につきましては、当社は、一切その責任を負いません。
- 9. 当社は、当社製品の品質および信頼性の向上に努めておりますが、半導体製品はある確率で故障が発生したり、使用条件によっては誤動作したりする場合があります。また、当社製品は耐放射線設計については行っておりません。当社製品の故障または誤動作が生じた場合も、人身事故、火災事故、社会的損害などを生じさせないようお客様の責任において冗長設計、延焼対策設計、誤動作防止設計等の安全設計およびエージング処理等、機器またはシステムとしての出荷保証をお願いいたします。特に、マイコンソフトウェアは、単独での検証は困難なため、お客様が製造された最終の機器・システムとしての安全検証をお願いいたします。
- 10. 当社製品の環境適合性等、詳細につきましては製品個別に必ず当社営業窓口までお問合せください。ご使用に際しては、特定の物質の含有・使用を規制する RoHS 指令等、適用される環境関連法令を十分調査のうえ、かかる法令に適合するようご使用ください。お客様がかかる法令を遵守しないことにより生じた損害に関して、当社は、一切その責任を負いません。
- 11. 本資料の全部または一部を当社の文書による事前の承諾を得ることなく転載または複製することを固くお断りいたします。
- 12. 本資料に関する詳細についてのお問い合わせその他お気付きの点等がございましたら当社営業窓口までご 照会ください。
- 注 1. 本資料において使用されている「当社」とは、ルネサスエレクトロニクス株式会社およびルネサスエレクトロニクス株式会社がその総株主の議決権の過半数を直接または間接に保有する会社をいいます。
- 注 2. 本資料において使用されている「当社製品」とは、注 1 において定義された当社の開発、製造製品をいいます。

HA16129AFPJ

シングルウォッチドッグタイマ

RJJ03F0115-0200

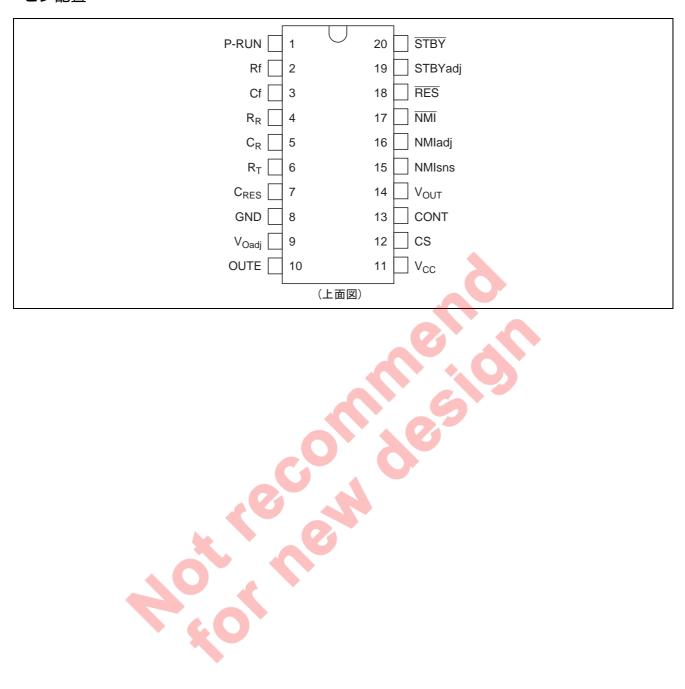
(Previous: ADJ-204-069A)

Rev.2.00 2005.06.15

概要

HA16129AFPJ は,マイコンの暴走を監視するウォッチドッグタイマ IC です。ウォッチドッグタイマ機能の他に,マイコンシステムに供給する高精度安定化電源機能,パワーオンリセット機能,電源電圧監視機能および,フェイルセイフティ機能(マイコン暴走時のマイコンの出力をマスクする機能)を内蔵しています。

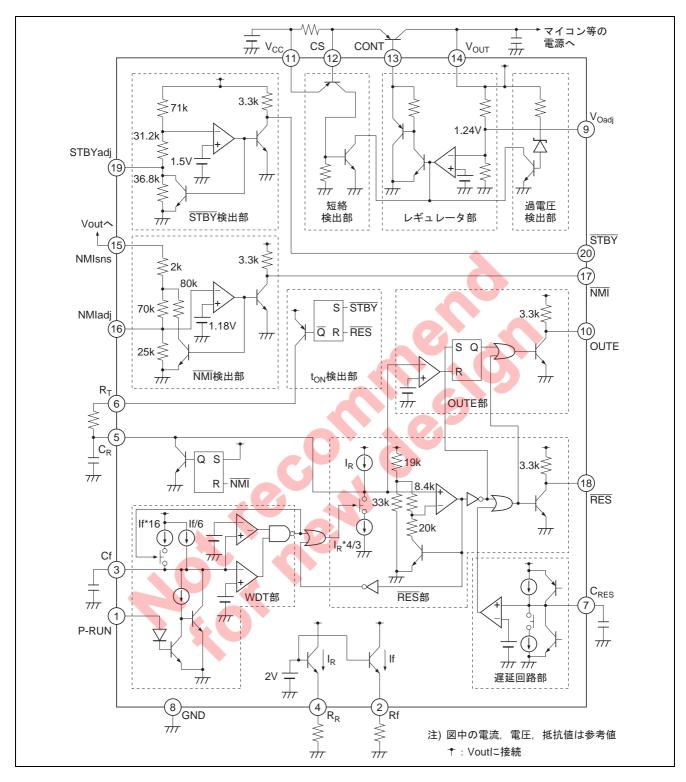
機能


- ウォッチドッグタイマ (以下 WDT.) 機能 マイコンが発生する P-RUN 信号をモニタし,マイコンが暴走した場合オートリセット (RES) 信号出力
- 安定化電源
 - マイコンへの電源供給
- パワーオン / クロックオフ機能 パワーオン機能は、電源投入時、マイコンに一定時間 RES 端子に"Lo"信号出力 クロックオフ機能は、マイコン暴走開始から一定時間遅れて RES 信号出力
- 電源監視機能 (LVI 機能)
 - 基準電圧 (V_{OUT}) が低下し \overline{NMI} 検出電圧 (4.63V $\overline{Typ})$, \overline{STBY} 検出電圧 (3.0V $\overline{Typ})$ 以下になった場合それ ぞれ \overline{NMI} 信号 , \overline{STBY} 信号出力 $(\overline{NMI}$ 検出は , $\overline{V_{CC}}$ $\overline{V_{OUT}}$ のどちらかの電圧検出が選択可能)
- OUTE 機能*¹ (フェイルセイフティ機能)
 マイコンが暴走時マイコンの出力をマスクするための信号出力
- RES 遅延機能
 - NMI 信号出力後の RES 信号が出力するまで遅延時間設定
- 保護機能
 - Vour の過電圧防止機能,短絡保護機能内蔵

【注】 1. OUTE 機能: OUTE は, OUT ENABLE の略

特長

- 高精度出力電圧 5±1.5%
- WDT.は,周波数およびデューティ検出方式
- 高精度電源監視機能 4.625V ± 0.125V
- OUTE 機能を内蔵
- 各機能は,外付け抵抗および容量により調整可能


ピン配置

端子機能

関係機能	ピン No.	記号	機能
WDT.	1	P-RUN	ウォッチドッグタイマ用パルス入力端子です。この入力パルスのデューティ サイクルと周波数によりオートリセット機能が制御されます。
	2	Rf	この端子に接続する抵抗で Cf 端子容量に流れる電流値を決定します。抵抗値は $100k\Omega\sim500k\Omega$ の範囲でご使用ください。
	3	Cf	Rf 端子で定められた電流を容量 Cf に充放電し,この端子の電位でウォッチドッグタイマの周波数帯を決定します。
t _{RH}	4	R _R	この端子に接続する抵抗で C_R 端子容量に流れる電流値を決定します。抵抗値は $100k\Omega\sim500k\Omega$ の範囲でご使用ください。
t _{OFF}	5	C _R	R_R 端子で決められた電流を容量 C_R に充放電し ,この端子の電位で \overline{RES} 機能 (t_{OFF},t_{RH},t_{RL}) を制御します。
ton	6	R _T	RES 機能の t_{ON} 時間のみを決定する抵抗 R_T を接続します。この抵抗で t_{ON} 時 C_R 容量に充電する電流値を決定します。 抵抗値は $100k\Omega \sim 500k\Omega$ の範囲でご使用ください。
t _r t _{RES}	7	C _{RES}	Rf 端子で決められた電流を容量 C _{RES} に <mark>充放</mark> 電し,この容量の電位で RES 遅 延時間 (t _r , t _{RES}) を決定します。
_	8	GND	GND へ接続する端子です。
V _{OUT}	9	V _{Oadj}	レギュレータの出力電圧 V _{OUT} を微 <mark>調整す</mark> る必要があるとき抵抗 R _{Oadj} を接続 します。V _{OUT} を可変しない場 <mark>合オー</mark> プンにし <mark>てくだ</mark> さい。
出力	10	OUTE	OUTE 出力端子です。
電源	11	V _{CC}	電源の入力端子です。
短絡検出	12	CS	短絡検出端子です。CS 端子と V _{CC} 端子 <mark>間に過電</mark> 流検出用の抵抗を接続します。本機能を使用しないときは,V _{CC} 端子とショートしてください。また, 外付けトラン <mark>ジスタ</mark> のエミッタを接続します。
V _{OUT}	13	CONT	外付けトランジスタのベースを接続します。
	14	V _{OUT}	レギュレ <mark>ータの</mark> 出力電圧 <mark>および IC</mark> 内部に電源を供給する端子です。外付けトラン <mark>ジスタ</mark> のコレクタを <mark>接続</mark> します。
NMI	15	NMIsns	本端子は, NMI 検出電圧をセンスする端子です。 V _{CC} を検出するときは V _{CC} 端子へ (ただし外付け抵抗が必要です), V _{OUT} より検出するときは V _{OUT} 端子へ接続します。
	16	NMladj	NMI 検出 <mark>電圧を</mark> 微調整するときに抵抗を接続します。微調整しないときは, オープンにしてください。
出力	17	NMI	NMI 出力端子です。
出力	18	RES	RES 出力端子です。
STBY	19	STBYadj	STBY 検出電圧を微調整するときに抵抗を接続します。微調整しないときは,オープンにしてください。
出力	20	STBY	STBY 出力端子です。

ブロックダイアグラム

機能説明

以下に各種機能説明をします。調整方法は計算式の項をご参照ください。

レギュレータ部

● V_{OUT}電圧

本 IC は , 外付けトランジスタのベース電流を制御して 5V の安定化電源を供給します。本 IC の外付けトランジスタのベースを引く最大電流 (CONT 端子最大電流) は ,20mA Max です。また V_{OUT} 出力は ,本 IC の内部回路用の電源にも使用しています。

 V_{OUT} 出力電圧が,低温時に発振しやすくなります。これは,外付けの平滑容量(電解コンデンサ)の実効値が低下するためと,セットでのインピーダンス等に関係します。セットでの発振の有無をご確認ください。

発振対策として,低インピーダンスの容量を使用する, V_{OUT} 端子—平滑容量を近傍に置く,CONT端子—外付け TRS のベース間に抵抗(10Ω 程度)を直列に挿入する等ありますのでご検討ください。

短絡検出部

V_{CC} 端子と CS 端子の間に電流検出抵抗 (R_{CS}) を接続し,この端子間電圧が V_{CS} 電圧 (700mV Typ) 以上になると CONT 端子の機能がオフし出力電圧の供給を停止します。

出力電圧 (Vout) 調整

出力電圧は,出力電圧調整端子(V_{Oadj})に外付け抵抗を接続<mark>すると電圧を調整でき</mark>ます。しかしなんらかの原因でこの V_{OUT} ラインの電圧が上昇し電圧調整範囲(7V Max)以上になるとマイコンを保護するため CONT 端子の機能がオフし出力電圧供給が停止します。

以下の項目は、タイミングチャートの項を参照しながらお読みください。

LVI (Low Voltage Inhibit)

NMI 検出電圧

電源の低下を監視する機能です。本機能は、検出する電源を V_{CC} または V_{OUT} のどちらかに選択できます。 V_{OUT} を検出する場合は検出電圧 (4.63 V Typ) 以下になると $\overline{\text{NMI}}$ 端子より"Lo"を出力し、電源電圧が一旦低下後上昇すると一定のヒステリシス電圧 (50mV Typ) を持って、 $\overline{\text{NMI}}$ 端子は"Hi"を出力します。選択する方法は、NMIsns 端子を V_{CC} 端子に接続するか、 V_{OUT} 端子に接続するかで決まります。 $(V_{CC}$ 検出の場合調整用の外付け抵抗が必要です。)

また,検出電圧の微調整はNMIadj端子により可能です。

STBY 検出電圧

 V_{OUT} の電圧低下を監視する機能です。 V_{OUT} 電圧をモニタし検出電圧 $(3.0V\ Typ)$ 以下になると \overline{STBY} 端子より"Lo"を出力します。電源電圧が低下後上昇すると一定のヒステリシス電圧 $(1.35V\ Typ)$ を持って, \overline{STBY} 端子は"Hi"を出力します。

また,検出電圧の微調整はSTBYadi端子により可能です。

機能開始電圧

出力端子 (RES, NMI, STBY, OUTE) が機能し始めるために必要な Vout電圧の最小値です。電源投入時 Vout電圧が何 V になったらこの出力端子が"Lo"出力になるかで規定しています。

ヒステリシス幅

LVI 機能で電源低下時の検出電圧と電源上昇時の解除電圧の差電圧です。

 $(V_{HYSN} = V_{NMI}' - V_{NMI}, V_{HYSS} = V_{STBY}' - V_{STBY})$

OUTE 機能

マイコンが暴走しているときマイコンの出力は,不定となり誤った出力信号で負荷を駆動してしまう可能性があります。本機能は,このマイコンの誤出力をマスクするものです。WDT.が正常時(\overline{RES} が"Hi") OUTE 出力は,"Hi"を保持します。WDT.が異常時(\overline{RES} がオートリセットパルス出力時)OUTE 出力は,"Lo"を保持します。ゆえにマイコン出力と OUTE 出力を本 IC の外部で AND 回路を経由することでマイコン暴走時マイコンの出力をマスクすることが可能です。

OUTE 出力は, Cg 端子が VthHcr2 以上で"Hi", VthLcr で"Lo"となります。

OUTE 機能使用時は,制約条件がありますので計算式の項をご参照ください。

RES 機能

• t_{RH}

マイコンからの P-RUN 信号が停止したときの \overline{RES} パルスの"Hi"出力時間です。 C_R の電位が VthHcr1 から VthLcr に達するまでの時間です。

t_{RL}

マイコンからの P-RUN 信号が停止したときの RES パルスの"Lo"出力時間です。 C_R の電位が VthLcr から VthHcr1 に達するまでの時間です。

t_{OFF}

 t_{OFF} は,マイコンが P-RUN 信号を停止してから \overline{RES} が"Lo"を出力<mark>す</mark>るまでの時間です。マイコン正常時 C_R 端子の電位は,(V_{OUT} – 0.2V) 程度 (P-RUN 信号の入力条件により変動する可能性がありますのでセットにて確認してください。)であり,この電位から VthLer に達するまでの時間です。

• t_{ON}

t_{ON} は , 電源投入時 NMI 出力が"Hi"になってから RES 出力が"Lo"を出力している時間です。t_{ON} は C_R 端子 の電位が 0V から VthHcr1 に達するまでの時間です。

t

 t_r は,電源上昇時に $\overline{\text{NMI}}$ 出力が"Lo" \rightarrow "Hi"後,一定時間遅らせて $\overline{\text{RES}}$ が"Lo" \rightarrow "Hi"になる時間です。 t_r 時間は, C_{RES} 端子の"Hi"電圧(約 1.9V)から $\overline{\text{Vtheres}}$ まで下降する時間です。

t_{RES}

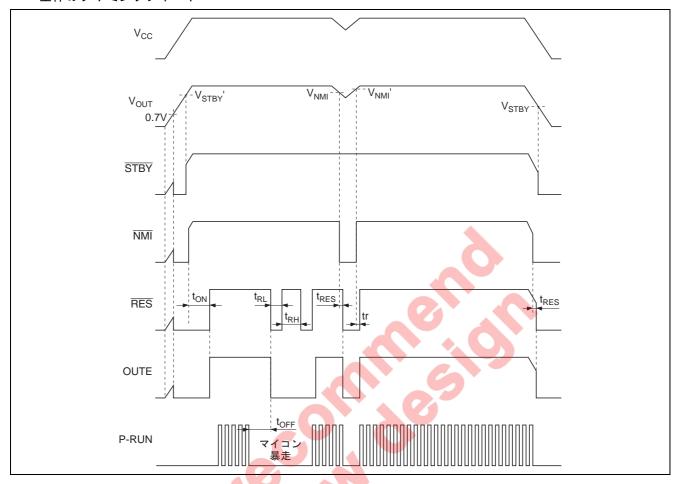
t_{RES} は ,電源下降時に NMI 出力が"Hi"→"Lo"後 ,一定時間遅らせて RES が"Hi"→"Lo"になる時間です。t_{RES} 時間は , C_{RES} 端子が 0V から Vthcres まで上昇する時間です。

WDT.機能

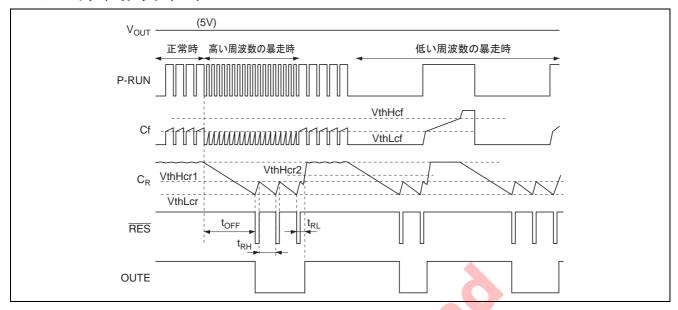
マイコンからの P-RUN <mark>信号のデューティと</mark>周波数から,マイコンの動作が正常状態か,暴走状態か判断し,暴走状態と判断した場合 RES 端子からリセットパルスを出力し,OUTE 端子は"Hi"→"Lo"を出力します。正常状態と判断した場合 RES 端子,OUTE 端子は"Hi"固定となります。

本機能は, P-RUN 信号により Cf 容量の電位が制御され,この Cf 端子の電位が VthLcf から VthHcf の間でリセットパルスをコントロールする C_R 容量を充電します。マイコンが正常かどうかの判断は,このとき C_R 容量の充放電のバランスで決定します。

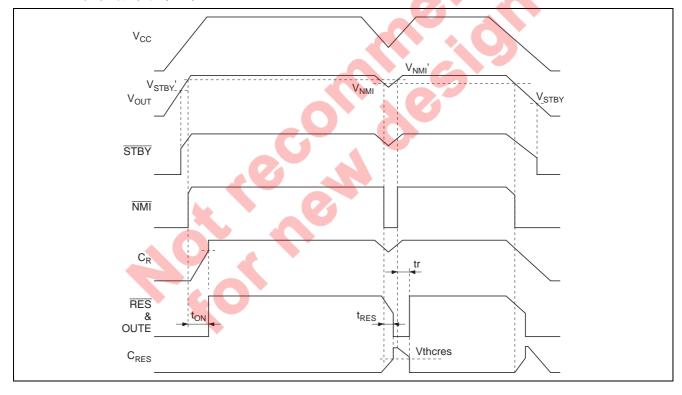
各種計算式


項目	計算式	備考
基準電圧	$V_{OUT} = 1.225 \left(1 + \frac{37 // R1}{12 // R2} \right)$	V _{OUT} 電圧は, V _{Oadj} 端子オープンで 5V ± 1.5%ですが, V _{OUT}
		電圧を外部で変更する場合,図のようにしてください。
	R1, R2; kΩ	
		V_{CC} CS $V_{OUT} \geqslant R1$
		V _{Oadj} Ó→ ≷ R2
短絡時	V_{CS} (700 mV Typ) $< I_{L} \cdot R_{CS}$	本機能が働くと,CS端子が外付けトランジスタのベース電
検出電圧		流が停止し V _{OUT} の出力を下げます。
		R _{cs} I _L
		
		V _{cc} CS V _{out}
OVP		
OVI		防止します。OVP電圧は固定です。
t _{RH} , t _{RL}	$t_{RH} = 3.3 \times C_R \cdot R_R$	リセットパル <mark>スの</mark> 周波数およ <mark>びデュ</mark> ーティを決めます。
	$t_{RL} = 1.1 \times C_R \cdot R_R$	t _{RL}
		RES
	11C D	
t _{ON}	$t_{ON} = 1.1 \times C_R \cdot R_T$	NMI が立ち上がってから RES 出力が解除されるまでの時間を設定します。
		NMI
		TVIVII
		RES ton
		ILS .
t _{OFF}	$t_{OFF} = 6.5 \times C_R \cdot R_R$	P-RUN パルスが停止してからリセットパルスが出力される
		までの時間を設定します。
		P-RUN
		RES t _{OFF}
V _{STBY}	(67.6	V _{OUT} が低下し STBY 信号を出力する電圧です。STBYsdj 端
7 3101	$V_{STBY} = 1.48 \times \left(\frac{67.6}{29.5 + 36.2 \text{ // R1}} + 1 \right)$	子と GND 間 (R3) に抵抗を付けることにより STBY 検出電
		圧を調整することができます。ただし,STBY 復帰電圧の調
		整はできません。
		V _{OUT} V _{STBY} V _{STBY}
		STBTadi STBY Vout VSTBY
		STBTauji
		R1 \$ \$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
		<u> </u>

(次頁へ続く)

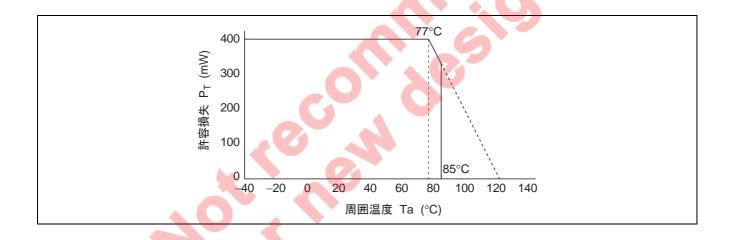

項目	計算式	備考
V _{NMI} (V _{OUT}	$V_{\text{NMI}} = 1.2 \times \left(1 + \frac{\text{R1} // 73}{\text{R2} // 25}\right)$	V _{OUT} が低下し NMI 信号を出力する電圧です。(NMIsns と V _{OUT} を接続した場合)
検出)	R1, R2; kΩ	NMladj 端子と V _{OUT} 間(R1),GND 間(R2)に抵抗を付け
		ることにより,NMI 検出電圧を微調整することができます。
		NMI V _{NMI}
V _{NMI} (V _{CC}	$V_{NMI} = 4.62 \times \left(\frac{R1}{R2 // 97.1} + 1 \right)$	V _{CC} が低下し NMI 信号を出力する電圧です。(NMIsns と V _{CC} を接続した場合)
検出)	復帰電圧	NMIsns 端子と V _{CC} 間(R1),GND 間(R2)に抵抗を付け
	$V_{NMI} = 4.68 \times \left(\frac{R1}{R2 // 45.5} + 1 \right)$	ることにより,NMI 検出電圧を微調整することができます。
	R2 // 45.5 / R1, R2; kΩ	THE VECTOR OF THE PROPERTY OF
		NMIsns NMI V _{CC} V _{NMI} V _{NM} NMI t
OUTE	$C_R \times R_R > 19.3 \times Cf \times Rf$	OUTE 機能を使用する場合 , マイコン暴走時本出力が誤った
		パルスを発生しないために左に示す式を満足させる必要が あります。
WDT.	0.31 × (Du = 24)	WDT.機能により P-RUN パルスが正常か異常か判断します。
WD1.	$f_{\text{Line1}} = \frac{0.31 \times (\text{Du} - 24)}{\text{Cf} \cdot \text{Rf}}$	P-RUN パルスが異常と判断した場合リセット信号を出力し
	f _{Line2} = 24% (固定)	ます。
	$f_{\text{Line3}} = \frac{0.024}{\text{Cf} \cdot \text{Rf}}$	正常領域は,図の f _{Line1} ~ f _{Line4} で囲まれた部分です。
	f _{Line4} = 99%	- f _{Line1}
	f _{Line1} とf _{Line3} との関係 f _{Line1} = f _{Line3} × 12.9 (Du – 24)	(ZH) 正常領域 f _{Line4}
	Du; P-RUN信号のデューティサイクル	Kine3 Line4 Line5 Lin
	*	Duty (%)

タイミングチャート


• 全体のタイミングチャート

• WDT.のタイミングチャート

• LVI のタイミングチャート



絶対最大定格

 $(Ta = 25^{\circ}C)$

項目	記号	定格値	単位
電源電圧	V _{cc}	40	V
CS 端子電圧	V _{CS}	V _{CC}	V
CONT 端子電流	I _{CONT}	20	mA
CONT 端子電圧	V _{CONT}	V_{CC}	V
Vout端子電圧	V _{OUT}	12	V
P-RUN 端子電圧	V _{PRUN}	V_{OUT}	V
NMIsns 端子電圧	V _{NMIsns}	V_{CC}	V
NMI 端子電圧	V _{NMI}	V_{OUT}	V
STBY 端子電圧	V _{STBY}	V_{OUT}	V
RES端子電圧	V _{RES}	V_{OUT}	V
OUTE 端子電圧	V _{OUTE}	V_{OUT}	V
許容損失* ¹	P _T	400	mW
動作温度範囲	Topr	−40 ~ +85	°C
保存温度	Tstg	−50 ~ +125	°C

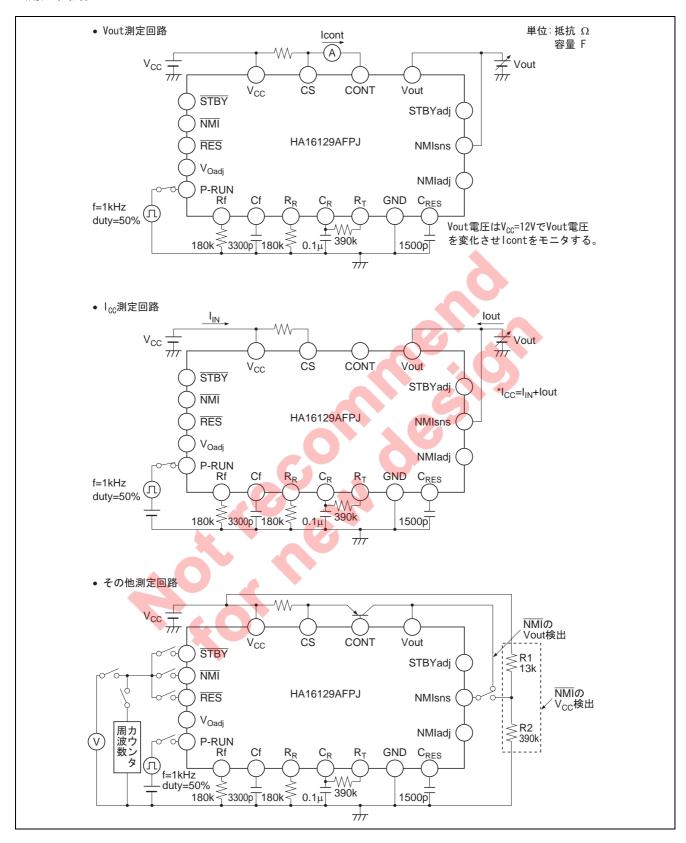
【注】 1. この値は $40 \times 40 \times (t)$ 1.6mm のガラスエポキシ基板配線密度 10%で実装した Ta=77% までの許容値であり,それ以上は 8.3mW/%C でディレーティングしてください。

電気的特性

 $(Ta = 25^{\circ}C,\ V_{CC} = 12V,\ V_{OUT} = 5.0V,\ Rf = R_R = 180k\Omega,\ Cf = 3300pF,\ C_R = 0.1\mu F,\ R_T = 390k\Omega,\ C_{RES} = 1500pF,\ R_{CS} = 0.2\Omega)$

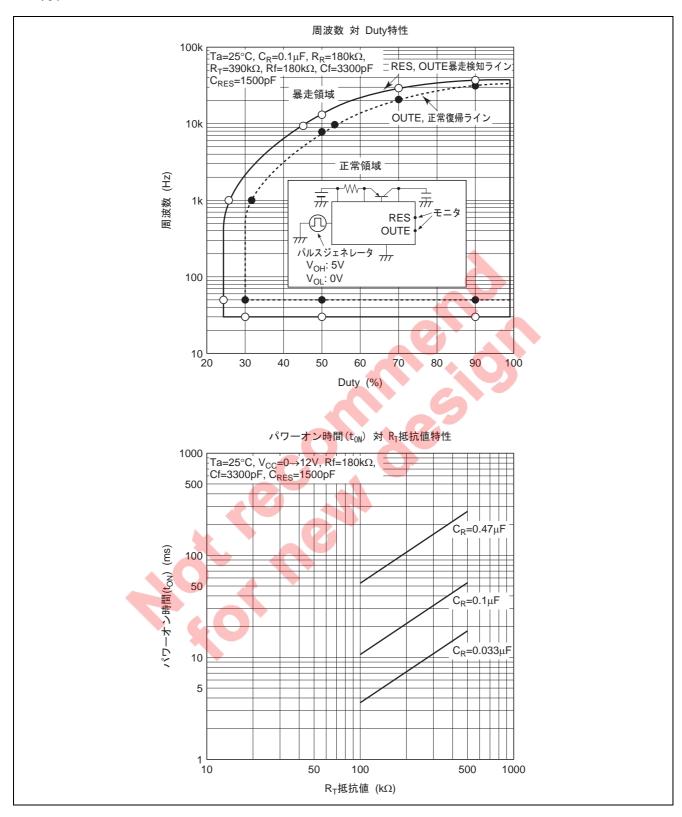
項目		記号	Min	Тур	Max	単位	測定条件
電源電流		I _{CC}	_	10	15	mA	
短絡検出電圧		V _{CS}	400	700	900	mV	V _{CS} = (V _{CC} 端子電圧 -CS 端子電圧)
レギュ レータ	出力電圧	V _{OUT}	4.925	5.00	5.075	V	V _{CC} = 12V, I _{CONT} = 5mA
部	入力電圧安定度	V _{O LINE}	-30	_	30	mV	$V_{CC} = 6 \sim 17.5V$, $I_{CONT} = 10$ mA
	負荷電流安定度	V _{O LOAD}	-30	_	30	mV	$I_{CONT} = 0.1 \sim 15 \text{mA}$
	リップル除去率	R _{REJ}	(45)	75	ı	dB	Vi = 0.5Vrms, fi = 1kHz
	出力電圧温度係数	δV _{OUT} /δ _T	_	40	(200)	ppm/°C	I _{CONT} = 5mA
	出力電圧調整範囲	V _{OMAX}	_	-	7.0	>	
P-RUN	入力"H"電圧	V _{IH}	2.0	-	-	>	
入力部	入力"L"電圧	V _{IL}	_	_	0.8	V	
	入力"H"電流	V _{IH}	_	300	500	μΑ	V _{IH} = 5.0V
	入力"L"電流	V _{IL}	- 5	0	5	μΑ	$V_{IL} = 0.0V$
NMI 出力部	"H"レベル	V _{OHN}	V _{OUT} -0.2	V _{оит}	V _{OUT} +0.2	V	I _{OHN} = 0mA
	"L"レベル	V _{OLN}	-	1-	0.4	V	$I_{OLN} = 2.0 \text{mA}$
	機能開始電圧	V _{STN}		0.7	1.4	V	
STBY 出力部	"H"レベル	Vons	V _{OUT} -0.2	V _{оит}	V _{OUT} +0.2	V	I _{OHS} = 0mA
	"L"レベル	Vols		(-0)	0.4	V	I _{OLS} = 2.0mA
	機能開始電圧	V _{STS}) - 4	0.7	1.4	V	
RES 出力部	"H"レベル	Vohr	V _{OUT} -0.2	V _{оит}	V _{OUT} +0.2	V	I _{OHR} = 0mA
	"L"レベル	V _{OLR}		—	0.4	V	$I_{OLR} = 2.0 \text{mA}$
	機能開始電圧	V _{STR}		0.7	1.4	V	
OUTE 出力部	"H"レベル	V _{OHE}	V _{OUT} -0.2	V _{OUT}	V _{OUT} +0.2	V	I _{OHE} = 0mA
	"L"レベル	V _{OLE}	_	_	0.4	V	$I_{OLE} = 2.0 \text{mA}$
	機能開始電圧	V _{STE}	_	0.7	1.4	V	
RES	パワーオンタイム	ton	25	40	60	ms	
機能	クロックオフタイム	t _{OFF}	80	130	190	ms	
	リセットパルス"H" タイム	t _{RH}	40	60	90	ms	
	リセットパルス"L" タイム	t _{RL}	15	20	30	ms	

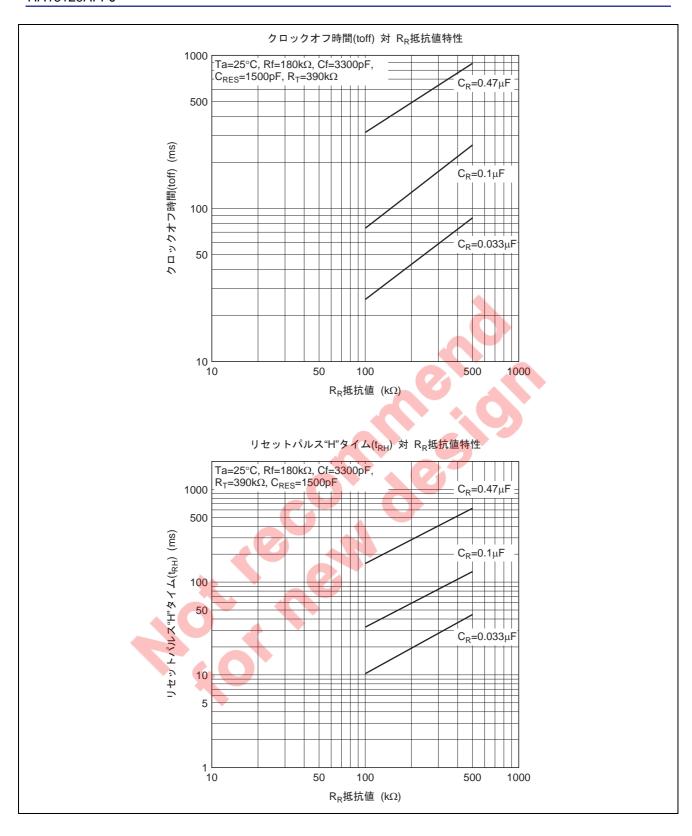
(次頁へ続く)

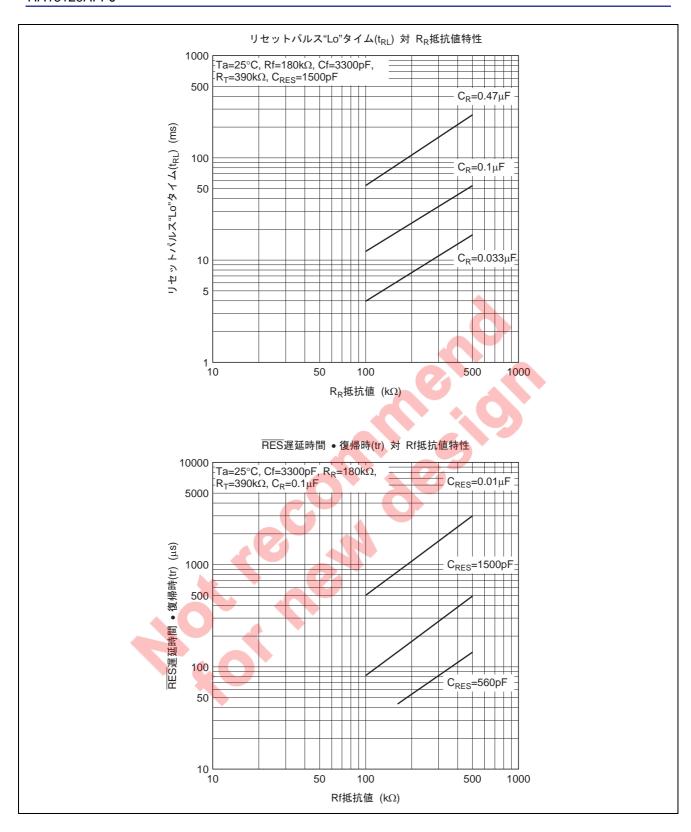

 $(Ta = 25^{\circ}C,\ V_{CC} = 12V,\ V_{OUT} = 5.0V,\ Rf = R_R = 180k\Omega,\ Cf = 3300pF,\ C_R = 0.1\mu F,\ R_T = 390k\Omega,\ C_{RES} = 1500pF,\ R_{CS} = 0.2\Omega)$

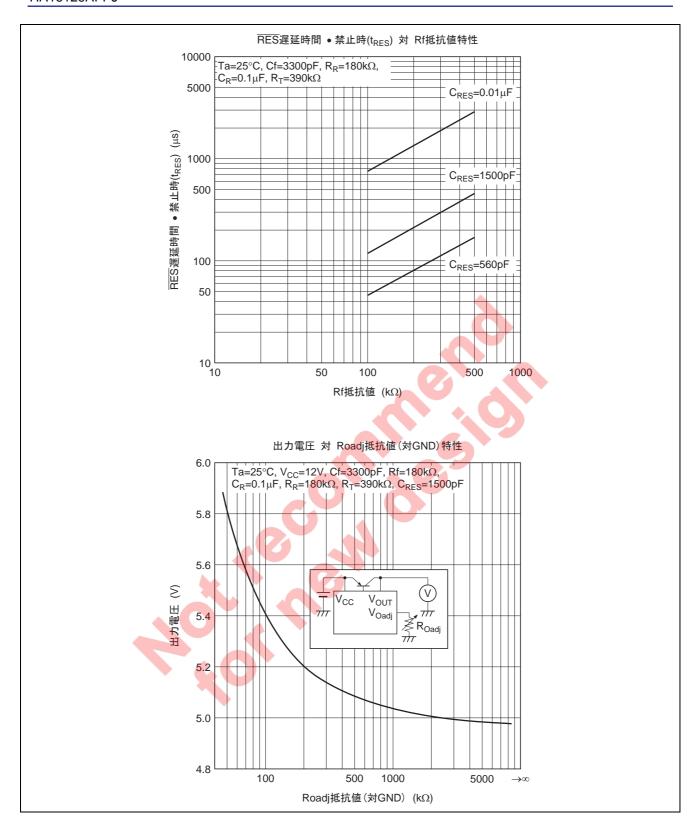
	項目		記号	Min	Тур	Max	単位	測定条件
LVI	NMI 機能 検出電圧 1		V _{NMI1}	4.5	4.63	4.75	V	
機能	(V _{OUT} 検出)	ヒステリシ	V _{HYSN1}	_	50	100	mV	
		ス幅 1						
		温度係数	$ \delta V_{NMI}/\delta_T $	1	100	(400)	ppm/°C	
	NMI 機能	検出電圧 2	V_{NMI2}	5.0	5.4	5.7	V	$R1 = 13k\Omega$,
	(V _{CC} 検出)							$R2 = 390k\Omega$
		ヒステリシ	V _{HYSN2}	0.5	0.8	1.3	V	$R1 = 13k\Omega$,
	ス							$R2 = 390k\Omega$
	STBY 機能	検出電圧	V_{STBY}	2.70	3.00	3.30	V	
			V _{HYSS}	1.20	1.35	1.50	V	
		温度係数	$ \delta V_{STBY}/\delta_T $	ı	100	(400)	ppm/°C	
RES	禁止時 復帰時		t _{RES}	(100)	200	(300)	μs	
遅延時間			t _r	(100)	200	(300)	μs	

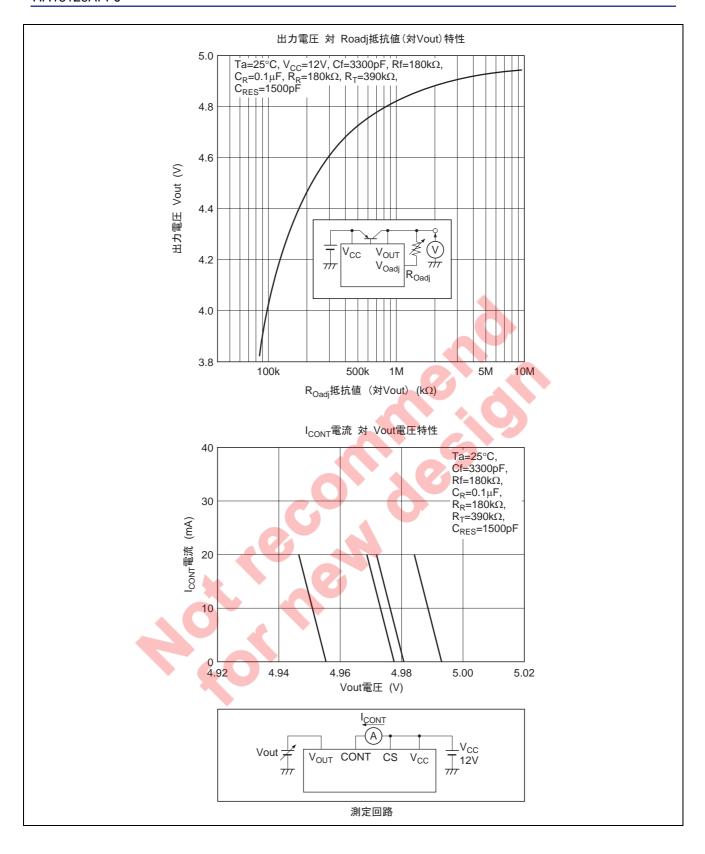
【注】()表示は設計参考値です。

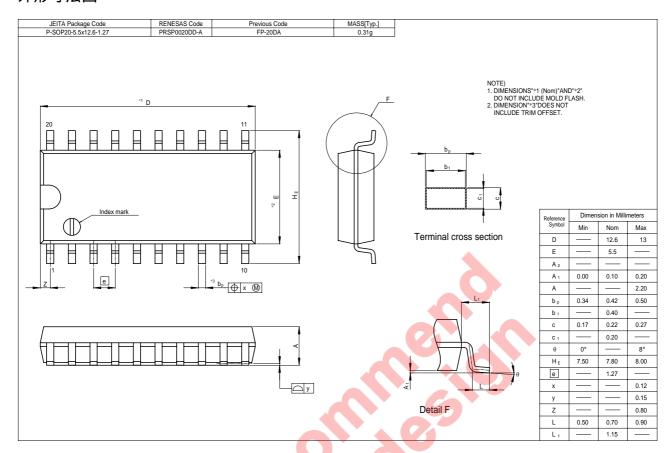

測定回路




システム回路例




主特性



外形寸法図

安全設計に関するお願い

- ス主成日に関うるの版が、 1. 弊社は品質、信頼性の向上に努めておりますが、半導体製品は故障が発生したり、誤動作する場合があります。弊社の半導体製品の故障又は誤動作によって結果として、人身事故 火災事故、社会的損害などを生じさせないような安全性を考慮した冗長設計、延焼対策設計、誤動作防止設計などの安全設計に十分ご留意ください。

- 本資料ご利用に際しての留意事項
 1. 本資料は、お客様が用途に応じた適切なルネサス テクノロジ製品をご購入いただくための参考資料であり、本資料中に記載の技術情報についてルネサス テクノロジが所有する知的財産権その他の権利の実施、使用を許諾するものではありません。
 2. 本資料に記載の製品データ、図、表、プログラム、アルゴリズムその他応用回路例の使用に起因する損害、第三者所有の権利に対する侵害に関し、ルネサス テクノロジは責任を負
- 2. 本資料に記載の製品データ、図、表、プログラム、アルコリムなその他於用回路例の使用に起因する損害、第三省所有の権利に対する侵害に関し、ルイザス デリノロジは責任を負いません。
 3. 本資料に記載の製品データ、図、表、プログラム、アルゴリズムその他全ての情報は本資料発行時点のものであり、ルネサス テクノロジは、予告なしに、本資料に記載した製品または仕様を変更することがあります。ルネサス テクノロジ半導体製品のご購入に当たりましては、事前にルネサス テクノロジ、ルネサス販売または特約店へ最新の情報をご確認頂きますとともに、ルネサス テクノロジホームページ(http://www.renesas.com)などを通じて公開される情報に常にご注意ください。
 4. 本資料に記載した情報は、正確を期すため、慎重に制作したものですが万一本資料の記述誤りに起因する損害がお客様に生じた場合には、ルネサス テクノロジはその責任を負いませな。

- せん。
 5. 本資料に記載の製品データ、図、表に示す技術的な内容、プログラム及びアルゴリズムを流用する場合は、技術内容、プログラム、アルゴリズム単位で評価するだけでなく、システム全体で十分に評価し、お客様の責任において適用可否を判断してください。ルネサステクノロジは、適用可否に対する責任は負いません。
 6. 本資料に記載された製品は、人命にかかわるような状況の下で使用される機器あるいはシステムに用いられることを目的として設計、製造されたものではありません。本資料に記載の製品を連輸、移動体用、医療用、航空宇宙用、原子力制御用、海底中継用機器あるいはシステムなど、特殊用途へのご利用をご検討の際には、ルネサステクノロジ、ルネサス販売または特約店へご照会ください。
 7. 本容料の影響、複製については、文書によるルネサステクノロジの事前の承諾が必要です。
- があた。 7. 本資料の転載、複製については、文書によるルネサステクノロジの事前の承諾が必要です。 8. 本資料に関し詳細についてのお問い合わせ、その他お気付きの点がございましたらルネサステクノロジ、ルネサス販売または特約店までご照会ください。

営業お問合せ窓口 株式会社ルネサス販売

CENESAS

http://www.renesas.com

本京西東い茨新松中関北広島	東 わ 浜 北 城潟本部西陸島R 京 き	支 支 支支支支支支支支	社社社社店店店社社社社店店	*	〒100-0004 〒212-0058 〒190-0023 〒980-0013 〒970-8026 〒312-0034 〒950-0087 〒390-0815 〒460-0008 〒541-0044 〒920-0031 〒730-0036	千代田区大手町2-6-2 (日本ビル) 川崎市幸区鹿島田890-12 (新川崎三井ビル) 立川市柴崎町2-2-23 (第二高島ビル2F) 仙台市青葉区花京院1-1-20 (花京院スクエア13F) いわき市平小太郎町4-9 (平小太郎ビル) ひたちなか市堀口832-2 (日立システムプラザ勝田1F) 新潟市東大通1-4-2 (新潟三井物産ビル3F) 松本市深志1-2-11 (昭和ビル7F) 名古屋市中区栄4-2-29 (名古屋広小路プレイス) 大阪市中央区伏見町4-1-1 (明治安田生命大阪御堂筋ビル) 金沢市広岡3-1-1 (金沢パークビル8F) 広島市中区第5-5-4 (日本生命島 郡町並ビル)	(03) 5201-5350 (044) 549-1662 (042) 524-8701 (022) 221-1351 (0246) 22-3222 (029) 271-9411 (025) 241-4361 (0263) 33-6622 (052) 249-3330 (06) 6233-9500 (076) 233-5980 (082) 244-2570
広	島	支	店		〒730-0036	広島市中区袋町5-25 (広島袋町ビルディング8F)	(082) 244-2570
鳥	取	支	店		〒680-0822	鳥取市今町2-251 (日本生命鳥取駅前ビル)	(0857) 21-1915
九	州	支	社		〒812-0011	福岡市博多区博多駅前2-17-1 (ヒロカネビル本館5F)	(092) 481-7695

■技術的なお問合せおよび資料のご請求は下記へどうぞ。

総合お問合せ窓口: コンタクトセンタ E-Mail: csc@renesas.com