

CCE4503

IO-Link Device Transceiver

The CCE4503 is an easy-to-use device side IO-Link compliant transceiver. It combines IO-Link compliant communication capability with advanced protection circuitry and additional features while keeping the application small and simple. Controlled by an UART interface (TXD, RXD, TXEN), the output drivers can be configured as PNP, NPN or Push-Pull. Three LDO options and an automatic wake-up detection simplify the overall system requirements and reduce the need for additional external circuitry. The integrated protection features such as reverse-polarity protection, overcurrent protection, undervoltage detection and thermal protection ensure a robust functionality and communication. With the small 3mm x 3mm DFN10 package size, it is especially suitable for space limited sensor and actuator applications.

Features

- IO-Link Compliant Transceiver
- One IO-Link channel with up to 250 mA permanent driving current
- 350 mA peak (typ.)
- Configurable PNP-, NPN- and
- Push-Pull mode
- Configurable current limit
- Configurable slew rate limitation for optimized EMC
- Wake-up detection
- Small DFN 10-pin package
- 3 LDO Options with up to 20 mA
- 3.3V LDO output
- 5V LDO output
- External LDO
- Reverse-polarity protection
- Overcurrent detection
- Undervoltage detection
- Overtemperature detection

Applications

- IO-Link Sensors
- IO-Link Actuators
- High voltage level shifter
- Industrial automation

Contents

1.	Over	rview	3
	1.1	Block Diagram	3
2.	Pin I	nformation	4
	2.1	Pin Assignment	4
	2.2	Pin Descriptions	4
	2.3	Pin Type Definition	5
3.	Cha	racteristics	6
	3.1	Absolute Maximum Ratings	6
	3.2	ESD Ratings	6
	3.3	Recommended Operating Conditions	7
	3.4	Electrical Characteristics	7
		3.4.1. Input / Output CQ	7
		3.4.2. Digital I/O	8
		3.4.3. 3.3V / 5V Voltage Regulator	9
	3.5	Thermal Characteristics	9
4.	Elec	trical Specifications	9
	4.1	Output Stage	10
	4.2	Current limit and slew rate configuration	
	4.3	Automatic Recovery	11
	4.4	Wake-up detection	11
	4.5	Error output handling	11
	4.6	Overtemperature detection	
	4.7	Allowed Reverse polarity connections	12
5.	Pack	cage Information	13
	5.1	Package Outlines	13
	5.2	Tape and Reel Information	14
	5.3	Soldering Information	14
6.	Orde	ering Information	15
7.	App	lication Information	15
8.	Revi	sion History	16

1. Overview

1.1 Block Diagram

Figure 2: Block Diagram

2. Pin Information

2.1 Pin Assignment

Figure 3: DFN10 Pinout Diagram (Top View)

2.2 Pin Descriptions

Pin Number	Pin Name	Туре	Rest State	Description
1	VDD	PWR		3.3V - 5V Supply Voltage Input / Output
2	NERR	OD	High-Z	Error Output (Overcurrent detection, Undervoltage detection, Overtemperature detection
3	RXD	DO		Channel signal output
4	TXD	DI, PU		Channel signal input
5	TXEN	DI, PD		Channel driver enable
6	ILIM	AI		Current Limit configuration
7	L-	PWR		Ground supply (IO-Link)
8	CQ	DIO		IO-Link data
9	L+	PWR		Positive supply (IO-Link)
10	NWUP	OD	High-Z	Wake-up detection (Channel short detection)
PAD	Thermal Pad	GND		Thermal Pad, connect to VSS or leave open

2.3 Pin Type Definition

Pin Type	Description
DI	Digital input
DO	Digital output
DIO	Digital input/output
OD	Digital Output open drain
PU	Pull-up resistor (fixed)
PD	Pull-down resistor (fixed)
PWR	Power
AI	Analog input
AO	Analog output
AIO	Analog input/output
BP	Back drive protection
SPU	Switchable pull-up resistor
SPD	Switchable pull-down resistor
GND	Ground

3. Characteristics

3.1 Absolute Maximum Ratings

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions can adversely impact product reliability and result in failures not covered by warranty.

Parameter	Conditions	Name	Min	Мах	Unit
Supply Voltage	Static, referenced to VL-	V _{L+} - V _{L-}	-40	40	V
Supply Voltage	Dynamic (t ≤ 100 µs)	V _{L+} - V _{Lpulse}	-42	42	V
Storage Temperature		T _{storage}	-55	+175	°C
Voltage at pin CQ	Referenced to VL-: Vcq - VL-	V _{CQ,max}	V _{L-} -1V	V _{L+} +1V	V
Voltage at all other pins	Referenced to V_{L}	V _{IOmax}	-0.7	V _{DD} +0.7	V
Logic Level Supply Voltage		VDD _{max}		6	V
Output current	At pin RXD, NWUP, NERR	I _{OutMax}	-5	5	mA

3.2 ESD Ratings

ESD Model/Test	Rating	Unit
Human Body Model (Tested per JS-001-2012 HBM)	4 (8 ¹)	kV
ESD Contact Discharge (Tested per IEC61000-4-2) ²	16	kV
Electrical Fast Transient (Burst) (Tested per IEC61000-4-4) ³	TBD	kV
Surge (Tested per IEC61000-4-5, adapted to 500 Ω 1.2/50 $\mu s)^4$	0.8 (5 ⁵)	kV
Latch-Up (Tested per JESD78E; Class 1 & 2)	100	mA

¹ Higher Rating for L+, L- and CQ

² Valid for L+, L- and CQ

³ Valid for L+, L- and CQ

⁴ Valid for L+, L- and CQ; 100 nF between L+ and L-, 1 µF between VDD and GND

⁵ Up to 5 kV with TVS Diodes (e.g. SMAJ33A) connected between L+, L- and CQ (higher Voltages have not been tested)

3.3 Recommended Operating Conditions

Parameter	Conditions	Pin	Name	Min	Тур	Max	Unit
Main Supply Voltage		7, 9	V _{L+}	7		36	V
Supply Voltage Ripple	Fripple = DC 100kHz V _{L+} > 12 V	9	ΔVL+			1	V
Voltage CQ	Receiver mode	8	Vcq_max	V _L .		V _{L+}	V
Logic Level Supply Voltage	External Supply	1	VDD	3		5.5	V
Operating Temperature	Ambient temperature		T _{amb}	-40		+125	°C
Junction Temperature			Tj	-40		+150	°C
LDO Output Current	3.3V LDO or 5V LDO	1	Ivdd			20	mA
ILIM External Resistor	To L-	6	Rilim	0		100	kΩ
LDO External Capacitor	To L-	1	Cldo	0.8	1	1.2	μF

3.4 Electrical Characteristics

The electrical parameters are valid for the entire range of operating conditions as specified under 3.3 "Recommended Operating conditions" unless noted otherwise.

3.4.1. Input / Output CQ

Parameter	Conditions	Pin	Name	Min	Тур	Max	Unit
Output voltage low level	active pull down, I₀∟=-200mA	8	Vol	0		1.5	V
Output voltage high level	active pull up, I _{он} =+200mA	8	Vон	V _{L+} - 1.5		V _{L+}	V
Leakage current	input enabled $0 \le V_{CQ} \le V_{L+} - 0.1 V$	8	lleak	-2		2	μA
Maximum Permanent Output Current	Current of CQ channel	8	I _{CQmax}	-250		250	mA
Output source current limit	$R_{ILIM} = 0 \text{ or } hZ$ $R_{ILIM} = 100 \text{ k}\Omega$	8	limP	300 35	350 50	400 70	mA
Output sink current limit	$R_{ILIM} = 0 \text{ or } hZ$ $R_{ILIM} = 100 \text{ k}\Omega$	8	limN	-400 -70	-350 -50	-300 -35	mA
Load capacitance		8	C∟			5	nF
Output rise/fall time (20% to 80%)	Open load, R _{ILIM} = 0 or hZ	8	t _{r,f}			869	ns
Switch On Time		8	t _{dly_lh}			4	μs

CCE4503 Datasheet

		1		1			
Switch Off Time		8	tdly_hl			4	μs
Short circuit detection time		8	Tshort			300	μs
Short circuit disable time	RILIM ≠ hZ	8	T _{SHORT_DIS}		15		ms
Wake-up detection time start		8	Twake_s	38	56	70	μs
Wake-up detection time end		8	T _{wake_e}	89	112	150	μs
Wake-up detection time delay		8	Twake_d			150	μs
Input threshold high level		8	Viн	10.5	11.75	13	V
Input threshold low level		8	VIL	8	9.75	11.5	V
Hysteresis between input thresholds high and low		8	V _{Hyst}		2		V

3.4.2. Digital I/O

Parameter	Conditions	Pin	Name	Min	Тур	Max	Unit
Input							-
Input Voltage LOW		4, 5	Vin_l			0.3 * VDD	V
Input Voltage HIGH		4, 5	V _{IN_H}	0.7 * VDD			V
Input Pull-Up current	V _{pin} =0V	4, 5	leu	4	30	110	μA
Input Pull-Down current	V _{pin} = VDD	4, 5	IPD	-110	-30	-4	μA
Output							-
Output Voltage LOW	lout_low = 2 mA	2, 3, 10	Vout_l			0.4	V
Output Voltage HIGH	lout_ніgh = 2 mA	3	Vout_н	0.8 * VDD			V

Parameter	Conditions	Pin	Name	Min	Тур	Max	Unit
Output Voltage VDD	3.3V Regulator	1	VDD3v3	3.0	3.3	3.6	V
	5V Regulator	1	VDD₅v	4.5	5	5.5	V
Voltage Drop	Load Current = 20 mA	1	V _{DO}			2	V
Output Current VDD		1	I _{VDD}			20	mA
Line regulation	I _{OUT} = 1 mA V _{L+} = 24 V	1	REG			2	mV/V
Load regulation	DC current up to 20 mA $V_{L+} = 24 V$	1				1	%
Power Supply rejection ratio	100 kHz, I _{OUT} = 20 mA	1	PSRR	40			dB
Power-On Threshold	Only applies to the driver without LDO (CCE4503- 0V)	1	V _{rst}	2.7		3.0	V
Undervoltage lockout voltage (V_{L+})		1	$V_{L+,min}$		6		V
Undervoltage lockout voltage (V_{DD})		1	$V_{\text{DD,min}}$			3	V
Start-up time		1				5	μs

3.4.3. 3.3V / 5V Voltage Regulator

3.5 Thermal Characteristics

Parameter	Description	Conditions	Min	Тур	Max	Unit
T _{ALARM_H}	Alarm temperature (higher threshold)		150	165	180	°C
T _{ALARM_L}	Alarm temperature (lower threshold)		140	155	170	°C
	Warning temperature (higher threshold)		125	140	155	°C
R _{tja}	Thermal resistance (junction to ambient)				30	K/W

4. Electrical Specifications

CCE4503 is a fully reverse polarity protected IO-Link device transceiver with one IO-Link channel. The system consists of a high voltage output stage with integrated overcurrent protection, a high voltage input stage with a spike-tolerant filter, a logic core with UART interface, an internal oscillator and an optional LDO. The LDO output voltage is factory programmed and needs to be specified with the order. To simplify the IO-Link protocol handling, a wake-up detection and automatic recovery function are implemented. Additional advanced protection features such as overtemperature detection and undervoltage detection ensure robust functionality in industrial applications. All pins are ESD-protected.

4.1 Output Stage

The output stage switches the output transistors in regard to TXD and TXEN. In IO-Link mode or Push-Pull mode TXEN is used to enable or disable the output stage. If TXEN is set high, the output stage is enabled and the output of CQ can be controlled by TXD (inverted). If TXEN is set low, the output stage is disabled and put into an inactive low-power state. RXD always reflects the current inverted state of CQ.

TXEN and TXD can also be used to configure the device in NPN, PNP and Push-Pull mode. See Table 1. NPN mode can be configured by setting TXD high and using TXEN as control pin. PNP mode can be configured by setting TXD low and using TXEN as control pin.

Mode	TXEN	TXD	CQ
IO-Link	0	0	High-Z
(regular operation) / Push-Pull	0	1	High-Z
	1	0	1
	1	1	0
NPN	0	1	High-Z
	1	1	0
PNP	0	0	High-Z
	1	0	1

 Table 1. Output stage truth table

4.2 Current limit and slew rate configuration

The driver slew rate as well as the current limit is configured by a resistor R_{ILIM} connected to ILIM. The value of the resistor intended for configuration is specified between 0Ω and $100 k\Omega$, where a lower resistor value leads to faster switching and higher maximum currents. The automatic recovery function is only available for $R_{ILIM} < 1 M\Omega$.

Resistor	Current limit	Slew rate	Automatic recovery	
0Ω - 100 kΩ	350 mA - 50 mA	Fast - slow	Yes	
Open (R _{ILIM} > 4 MΩ) 350 mA		Fast	No	

Table 2: Current limit and slew rate configuration

Note: If ILIM is left open ($R_{ILIM} > 4 M\Omega$) the output driver operates as if connected to VSS ($R_{ILIM} = 0 \Omega$), but with automatic recovery disabled.

4.3 Automatic Recovery

If a short is detected, the output stage is automatically disabled after the time t_{SHORT} . The automatic recovery function enables the output again after t_{SHORT_DIS} and checks if the overcurrent is still present (see Figure 4).

Figure 4: Automatic recovery

4.4 Wake-up detection

An overcurrent pulse of twake will be detected as wake-up pulse. When a wake-up pulse is detected, the output of NWUP will switch from high impedance to low until TXEN is toggled by the microcontroller.

An overcurrent pulse > t_{WAKE} will be detected as overcurrent fault condition.

An overcurrent pulse $< t_{WAKE}$ will not be detected.

4.5 Error output handling

The error output NERR combines the indication of three error sources and will be tied low if any fault condition is detected. The following error sources are indicated by NERR:

- Overtemperature
- Undervoltage
- Overcurrent

The overtemperature and undervoltage detections are combinational outputs and keep the NERR signal low as long as the error is present. The overcurrent detection is latched and will be reset when the CCE4503 leaves the transmit mode (TXEN = 0).

4.6 Overtemperature detection

The overtemperature detection detects 3 thresholds:

- At T_{WARNING} the output of NERR will be tied low. This is a combinational signal and cannot be reset by the MCU. It will be reset once the temperature drops below T_{WARNING}.
- At T_{ALARM_H}, the chip will switch off the outputs. This cannot be reset by the MCU.
- When the temperature drops again below T_{ALARM_L}, the output is released and can be controlled by TXEN and TXD.

4.7 Allowed Reverse polarity connections

The CCE4503 is designed to handle all possible permutations of reverse polarity.

5. Package Information

5.1 Package Outlines

JEDEC OUTLINE	1	MO-22	9		PAD SIZE	DAD SIZE D2		E2			L			LEAD	
PKG CODE	WD	FN(X3	10)		PAU SIZE	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	Pure Ti
SYMBOLS	MIN.	NOM.	MAX.]	73*X98* MIL	2.20	2.30	2.35	1.55	1.65	1.70	0.30	0.40	0.50	V
Α	0.70	0.75	0.80	1											
A1	0.00	0.02	0.05]	$ \square $										
A3	0.	203 R	EF.	1	(Ψ)	_									
b	0.18	0.25	0.30	1	3RD ANGLE SYS.										
D	3	.00 BS	SC	1											
E	3	.00 BS	SC	1											
е	0	.50 BS	SC]											
К	0.20	-	-]											

Figure 5: DFN10 Package Outline Drawing

5.2 Tape and Reel Information

5.3 Soldering Information

Refer to the IPC/JEDEC standard J-STD-020 for relevant soldering information. This document can be downloaded from <u>http://www.jedec.org</u>.

6. Ordering Information

The ordering number consists of the part number followed by a suffix (shown as "xx") indicating the LDO option. For details and availability, please consult your Renesas Electronics <u>local sales representative</u>.

Table 3: Ordering Information							
Part Number	Package	Size (mm)	Shipment Form	Pack Quantity			
CCE4503 xx LDO	DFN10	3 x 3	T&R	4000			

Part Number Legend:

7. Application Information

The CCE4503 may need to be connected to some external components depending on the desired operating environment:

- If an LDO is selected (5V or 3.3V), a 1 µF capacitor from VDD to L- must be provided by the customer
- Outputs NERR and NWUP are open-drain outputs. Usually, the internal pull-up resistors of the MCU can be used. If no pull-up resistors can be configured, the customer needs to connect external resistors.
- A resistor RLIM may be used to set the overcurrent limit and slew rate. For maximum slew rate and overcurrent limit, the pin can be connected to VSS or left open.

Figure 7: CCE4503 application

8. Revision History

Revision	Date	Description
2.8	04-Jan-2024	Moved Operating Temperature from Absolute Maximum Ratings to Recommended Operating Conditions
		Moved Junction Temperature from Absolute Maximum Ratings to Recommended Operating Conditions
2.7	15-Dez-2023	Added information about RXD in Output Stage
		Updated Voltage at pin CQ in Recommended Operating Conditions
		Updated Wake-up detection time T_{WAKE} in Input / Output CQ
		Changed specification for V _{OUT_L} , V _{OUT_H} , V _{IN_L} , V _{IN_H} , I _{PU} in Digital I/O Removed inductive load from Input / Output CQ
		Removed voltage limitation from condition of LDO output current in Recommended Operating
		Conditions
		Changed Tape and Reel Information (change of pin 1 location)
2.6	09-May-2023	Corrected part naming
		Updated Absolut Maximum Ratings
		Updated ESD Ratings
2.5	25-Jan-2023	Corrected formatting of document
		Added Chapter ESD Ratings
2.4	06-Dec-2022	Updated to Renesas
		Added Tape and Reel Information
2.3	23-Jul-2020	Changed Ordering Information
2.2	27-May-2020	Corrected Electrical Characteristics
2.1	26-May-2020	Corrected Electrical Characteristics
		Added Errata sheet note
2.0	20-Feb-2020	Initial version. Preliminary

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

© 2024 Renesas Electronics Corporation. All rights reserved.

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

https://www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

