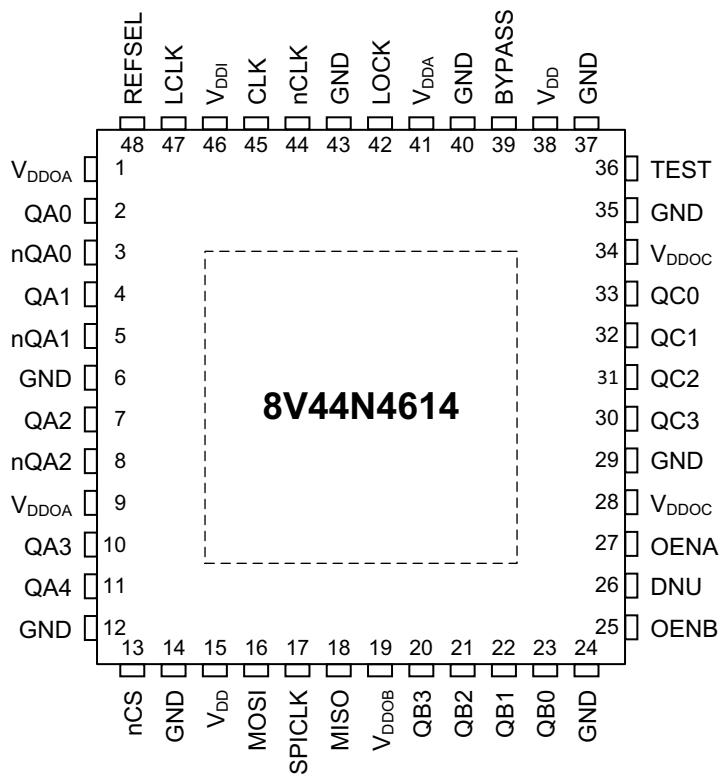


## General Description

The 8V44N4614 is a FemtoClock® NG Clock Generator. The device has been designed for frequency generation in high-performance systems such wireless base-band boards, for instance to drive the reference clock inputs of processors, PHY, switch and SerDes devices. The device is very flexible in frequency programming. It allows to generate the clock frequencies of 156.25MHz, 125MHz, 100MHz and 25MHz individually at three output banks. One output bank supports configurable LVDS, LVPECL, the other two output banks support LVCMOS output levels. All outputs are synchronized on the incident rising edge, regardless of the selected output frequency. Selective single-ended LVCMOS outputs can be configured to invert the output phase, effectively forming differential LVCMOS output pairs for noise reduction. The PLL reference signal is either a 25MHz, 50MHz, 100MHz or 200MHz differential or single-ended clock.


The device is optimized to deliver excellent period and cycle-to-cycle jitter performance, combined with good phase noise performance, and high power supply noise rejection.

The device is configured through an SPI serial interface. Outputs can be configured to any of the available output frequencies. Two hardware pins are available for selecting pre-set output enable/disable configurations. In each of these pre-set configurations, each output can be enabled/disabled individually. A separate test mode is available for an increase or decrease of the output frequencies in 19.53125ppm steps independent on the input frequency. The device is packaged in a lead-free (RoHS 6) 48-lead VFQFN package. The extended temperature range supports wireless infrastructure, telecommunication and networking end equipment requirements.


## Features

- Clock generator for wireless base-band systems
- Drives reference clock inputs of processors, PHY, switch and SerDes devices
- FemtoClock® NG technology
- Three low-skew, differential LVDS, LVPECL configurable clock outputs
- Ten low-skew, LVCMOS/LVTTL clock outputs
- Input: 200MHz, 100MHz, 50MHz, 25MHz single-ended (LVCMOS) or differential reference clock (LVDS, LVPECL)
- Output clocks support 156.25MHz, 125MHz, 100MHz and 25MHz
- Individual output disable (high-impedance)
- Two sets of output enable configurations
- PLL lock detect output
- Test mode with frequency margining with 19.53125ppm steps (range  $\pm 507.8125\text{ppm}$ )
- LVCMOS (1.8V, JESD8-7A) compatible SPI programming interface
- Cycle-to-cycle jitter: 10ps (typical)
- RMS period jitter: 1.6ps (typical)
- Phase noise (12kHz - 20MHz): 0.40ps (typical)
- 3.3V core and output supply
- -40°C to +85°C ambient operating temperature
- Lead-free (RoHS 6) 48-lead VFQFN packaging

## Block Diagram



## Pin Assignment



48-pin, 7mm x 7mm VFQFN Package

Table 1: Pin Descriptions

| Number                            | Name              | Type   |        | Description                                                                                                             |
|-----------------------------------|-------------------|--------|--------|-------------------------------------------------------------------------------------------------------------------------|
| 1, 9                              | V <sub>DDOA</sub> | Power  |        | Supply voltage for the QA bank clock outputs (3.3V).                                                                    |
| 2, 3                              | QA0, nQA0         | Output |        | Differential clock output A0. LVDS or LVPECL configurable output levels.                                                |
| 4, 5                              | QA1, nQA1         | Output |        | Differential clock output A1. LVDS or LVPECL configurable output levels.                                                |
| 6, 12, 14, 24, 29, 35, 37, 40, 43 | GND               | Power  |        | Negative supply voltage (GND).                                                                                          |
| 7, 8                              | QA2, nQA2         | Output |        | Differential clock output A2. LVDS or LVPECL configurable output levels.                                                |
| 10                                | QA3               | Output |        | Single-ended clock output A3. 3.3V LVCMOS/LVTTL output levels.                                                          |
| 11                                | QA4               | Output |        | Single-ended clock output A4. Complementary to QA3 when configured as inverted output. 3.3V LVCMOS/LVTTL output levels. |
| 13                                | nCS               | Input  | Pullup | SPI interface chip select input.<br>1.8V LVCMOS (JESD8-7A) interface levels, 3.3V tolerant.                             |
| 15, 38                            | V <sub>DD</sub>   | Power  |        | Core voltage for the device core (3.3V).                                                                                |
| 16                                | MOSI              | Input  | Pullup | Serial Control Port SPI Mode Data Input. 1.8V LVCMOS (JESD8-7A) interface levels. 3.3V tolerant.                        |
| 17                                | SPICLK            | Input  | Pullup | Serial Control Port SPI Mode Clock Input. 1.8V LVCMOS (JESD8-7A) interface levels. 3.3V tolerant.                       |

**Table 1: Pin Descriptions (Continued)**

| Number | Name               | Type   |                   | Description                                                                                                                                                  |
|--------|--------------------|--------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 18     | MISO               | Output |                   | Serial Control Port SPI Mode Data Output. 1.8V LVCMOS (JESD8-7A) output levels.                                                                              |
| 19     | V <sub>DDOB</sub>  | Power  |                   | Supply voltage for the QB bank clock outputs (3.3V).                                                                                                         |
| 20     | QB3                | Output |                   | Single-ended clock output B3. Complementary to QB2 when configured as inverted output. 3.3V LVCMOS/LVTTL output levels.                                      |
| 21     | QB2                | Output |                   | Single-ended clock output B2. 3.3V LVCMOS/LVTTL output levels.                                                                                               |
| 22     | QB1                | Output |                   | Single-ended clock output B1. Complementary to QB0 when configured as inverted output. 3.3V LVCMOS/LVTTL output levels.                                      |
| 23     | QB0                | Output |                   | Single-ended clock output B0. 3.3V LVCMOS/LVTTL output levels.                                                                                               |
| 25     | OENB               | Input  | Pulldown          | Output enable (active high). 3.3V LVCMOS/LVTTL interface levels. See <a href="#">Table 3J</a> for function.                                                  |
| 26     | DNU                | —      |                   | Do not connect and do not use.                                                                                                                               |
| 27     | OENA               | Input  | Pullup            | Output enable (active high). 3.3V LVCMOS/LVTTL interface levels. See <a href="#">Table 3J</a> for function.                                                  |
| 28, 34 | V <sub>DDOC</sub>  | Power  |                   | Supply voltage for the QC bank clock outputs (3.3V)                                                                                                          |
| 30     | QC3                | Output |                   | Single-ended clock output C3. Complementary to QC2 when configured as inverted output. 3.3V LVCMOS/LVTTL output levels.                                      |
| 31     | QC2                | Output |                   | Single-ended clock output C2. 3.3V LVCMOS/LVTTL output levels.                                                                                               |
| 32     | QC1                | Output |                   | Single-ended clock output C1. Complementary to QC0 when configured as inverted output. 3.3V LVCMOS/LVTTL output levels.                                      |
| 33     | QC0                | Output |                   | Single-ended clock output C0. 3.3V LVCMOS/LVTTL output levels.                                                                                               |
| 36     | TEST               | Input  | Pulldown          | Test mode control input. Compatible with LVCMOS/LVTTL (3.3V) signals. See <a href="#">Table 3C</a> for function.                                             |
| 39     | BYPASS             | Input  | Pulldown          | PLL Bypass control input. Compatible with LVCMOS/LVTTL (3.3V) signals. See <a href="#">Table 3B</a> for function.                                            |
| 41     | V <sub>DDA</sub>   | Power  |                   | Supply voltage for the internal PLL (3.3V)                                                                                                                   |
| 42     | LOCK               | Output |                   | PLL lock detect output. 3.3V LVCMOS/LVTTL output levels.                                                                                                     |
| 44     | nCLK               | Input  | Pullup / Pulldown | Inverting differential clock input. Inverting input is biased to V <sub>DD</sub> / 2 by default when left floating. Compatible with LVPECL and LVDS signals. |
| 45     | CLK                | Input  | Pulldown          | Non-inverting differential input clock. Compatible with LVPECL and LVDS signals.                                                                             |
| 46     | V <sub>DDI</sub>   | Power  |                   | Core voltage for the reference clock (input) circuits (3.3V)                                                                                                 |
| 47     | LCLK               | Input  | Pulldown          | Alternative clock input. Compatible with LVCMOS/LVTTL (3.3V) signals.                                                                                        |
| 48     | REFSEL             | Input  | Pulldown          | PLL reference select control input. Compatible with LVCMOS/LVTTL (3.3V) signals. See <a href="#">Table 3A</a> for function.                                  |
| —      | V <sub>EE_EP</sub> | Power  |                   | Exposed pad of package. Connect to GND.                                                                                                                      |

**Table 2. Pin Characteristics**

| Symbol         | Parameter               |                           | Test Conditions                       | Minimum | Typical | Maximum | Units      |
|----------------|-------------------------|---------------------------|---------------------------------------|---------|---------|---------|------------|
| $C_{IN}$       | Input Capacitance       |                           |                                       | 4       |         |         | pF         |
| $R_{PULLUP}$   | Input Pullup Resistor   |                           |                                       | 51      |         |         | k $\Omega$ |
| $R_{PULLDOWN}$ | Input Pulldown Resistor |                           |                                       | 51      |         |         | k $\Omega$ |
| $R_{OUT}$      | Output Impedance        | QA[3:4], QB[0:3], QC[0:3] | $V_{DDOA}, V_{DDOB}, V_{DDOC} = 3.3V$ |         | 25      |         | $\Omega$   |

## Functional Description

### Function Tables

**Table 3A. PLL Reference Signal Select<sup>1</sup>**

| Input       | Operation                                                            |
|-------------|----------------------------------------------------------------------|
| REFSEL      |                                                                      |
| 0 (default) | The differential CLK, nCLK input is the selected PLL reference input |
| 1           | The single-ended LCLK input is the selected PLL reference input      |

1. Asynchronous control.

**Table 3B. PLL Bypass Select<sup>1</sup>**

| Input       | Operation                                                                                                                        |
|-------------|----------------------------------------------------------------------------------------------------------------------------------|
| BYPASS      |                                                                                                                                  |
| 0 (default) | The PLL is used for frequency generation                                                                                         |
| 1           | The PLL is bypassed. The selected reference frequency is divided by the selected output divider. AC specifications do not apply. |

1. Asynchronous control.

**Table 3C. Test Mode Select<sup>1</sup>**

| Input       | Operation                                                                                                                                                                                       |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TEST        |                                                                                                                                                                                                 |
| 0 (default) | Normal operation. Selected PLL feedback divider is M = 100 (integer).<br>$f_{OUT} = \frac{f_{IN} * M}{P * N}$                                                                                   |
| 1           | Test mode and frequency margining is enabled. M <sub>T</sub> is variable. AC specifications do not apply.<br>$f_{OUT} = \frac{f_{IN} * M_T}{P * N}$<br>MT values are set by a SPI TEST register |

1. Asynchronous control.

**Table 3D. LOCK**

| Output | Operation                                |
|--------|------------------------------------------|
| LOCK   |                                          |
| 0      | PLL is not locked to the reference clock |
| 1      | PLL is locked to the reference clock     |

### Input Frequency Selection

The input divider P configures the input reference frequency to the PLL. P must be set to match the input frequency to the PLL feedback frequency at the phase detector. The feedback divider M is fixed to M = 100 in normal mode. The range of available P divider values supports the input frequencies of 25MHz, 50MHz, 100MHz or 200MHz. P can be set by the content of a SPI register (see [Table 3E](#)) and defaults to P = 8 after power-up.

**Table 3E. P[1:0] Input Divider Function Table**

| P           |             | $P = \frac{f_{IN} * M}{f_{VCO}}$              |
|-------------|-------------|-----------------------------------------------|
| P1          | P0          | Output Operation (f <sub>VCO</sub> = 2500MHz) |
| 0           | 0           | P = 1; f <sub>IN</sub> = 25MHz                |
| 0           | 1           | P = 2; f <sub>IN</sub> = 50MHz                |
| 1           | 0           | P = 4; f <sub>IN</sub> = 100MHz               |
| 1 (default) | 1 (default) | P = 8; f <sub>IN</sub> = 200MHz               |

### Output Frequency Selection

The output divider N of each of the three output banks controls the frequency for the outputs QA[0:4], QB[0:3] and QC[0:3] and can be set by the content of SPI registers (see [Table 3F](#)).

**Table 3F. Nm[1:0] Output Divider Function Table<sup>1</sup>**

| Nm  |     | Output Operation (f <sub>VCO</sub> = 2500MHz) |
|-----|-----|-----------------------------------------------|
| Nm1 | Nm0 |                                               |
| 0   | 0   | N = 16; f <sub>OUT_m</sub> = 156.25MHz        |
| 0   | 1   | N = 20; f <sub>OUT_m</sub> = 125MHz           |
| 1   | 0   | N = 25; f <sub>OUT_m</sub> = 100MHz           |
| 1   | 1   | N = 100; f <sub>OUT_m</sub> = 25MHz           |

1. "m" denotes output Bank A, B and C.

## LVC MOS Output Phase

Outputs of the 8V44N4614 can invert the output phase, forming a differential output with the neighboring LVC MOS output. Example

**Table 3G. LVC MOS Output Phase Inversion**

| INV <sub>n</sub> | Output operation LVC MOS outputs |
|------------------|----------------------------------|
| 0 (default)      | Normal                           |
| 1                | Inverted                         |

configuration to form differential LVC MOS outputs: Set to logic 1 (inverted): INVA4, INVB1, INVB3, INVC1 and INVC3:

- QA4 (co-located to QA3). Differential LVC MOS pair: QA3, QA4
- QB1 (co-located to QB0). Differential LVC MOS pair: QB0, QB1
- QB3 (co-located to QB2). Differential LVC MOS pair: QB2, QB3
- QC1 (co-located to QC0). Differential LVC MOS pair: QC0, QC1
- QC3 (co-located to QC2). Differential LVC MOS pair: QC2, QC3

When configured as differential LVC MOS, the outputs will generate less noise (better cycle-to-cycle and period jitter). The differential LVC MOS architecture of the device must be supported by equal line length, loading and differential routing on the application board.

## Configurable Output Levels

The three differential outputs of the QA bank can be individually configured for LVDS and LVPECL levels (see [Table 3H](#)). Settings are made through the SPI interface.

**Table 3H. LEV<sub>n</sub> Output Level Function Table<sup>1</sup>**

| LEV <sub>n</sub> | Output Level |
|------------------|--------------|
| 0 (default)      | LVDS         |
| 1                | LVPECL       |

1. n stands for a differential output of Bank A

## Output Enable Operation

The device supports an enable/disable (high-impedance) function for each individual output. The enable/disable state is pre-set by the content of two SPI registers sets, ENA[12:0] and ENB[12:0]. Each set contains 13 bits that is mapped 1:1 to the 13 outputs. A logic one in these register bits correspond to the output enable state, logic 0 to the output disable state. Two hardware pins (OENA and OENB) control which of ENA, ENB register sets configure the outputs enable state. For instance, if the hardware pins OENA = 1 and OENB = 0, the device selects the 13 ENA bits for controlling the individual output enable function; the ENB bits are ignored. By using the OENA and OENB hardware pins, the user can switch between two pre-configured output enable configuration sets, disable all outputs at once perform a logic-OR function between the two register sets (see [Table 3I](#)).

On power-up, the ENA and ENB register sets load default settings. These default settings can be customized during final test of each device using build-in one-time programmable cells.

After the first valid SPI write, the output enable state is controlled by the SPI registers. Setting and changing the output enable state through the SPI interface is asynchronous to the input reference clock.

**Table 3I. OENA, OENB Indirect Output Enable Control**

| OENA | OENB | Operation                                                                                                                                                                                                                                                                               |
|------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0    | 0    | All outputs are disabled regardless of the ENA[12:0], ENB[12:0] register bit contents.                                                                                                                                                                                                  |
| 0    | 1    | The output enable/disable state of each output is defined by the corresponding bit in the ENB[12:0] register set.                                                                                                                                                                       |
| 1    | 0    | The output enable/disable state of each output is defined by the corresponding bit in the ENA[12:0] register set. OENA=1, OENB=0 is the default configuration that is loaded on power-up if OENA and OENB are left open.                                                                |
| 1    | 1    | The output enable/disable state of each output is defined by the result of the logic-OR operation between the corresponding bits of the ENA[12:0], ENB[12:0] register sets. Example: the output QA1 is enabled if either EAN[1] or ENB[1] is set to logic 1, otherwise QA1 is disabled. |

**Table 3J. Individual Output Enable Control<sup>1, 2</sup>**

| Bit | Operation                                                                                                         |
|-----|-------------------------------------------------------------------------------------------------------------------|
| 0   | LVDS: Output Qn, nQn is disabled high-impedance state.<br>LVC MOS: Output Qn is disabled in high-impedance state. |
| 1   | LVDS: Output Qn, nQn is enabled.<br>LVC MOS: Output Qn is enabled.                                                |

1. n stands for an individual output (QA[0:4], QB[0:3] and QC[0:3]). The default / power-up state is one-time programmable.
2. See [Table 3I](#) for how the OENA, OENB inputs control the ENA and ENB registers.

## Test Mode: Output Frequency Margining

The 8V44N4614 supports a test operation by setting the TEST input to logic high level. In test mode, the PLL allows to vary its center frequency. While the input frequency stays constant, all outputs change its frequency following the PLL frequency variation. The test mode supports 19.53125ppm frequency steps and to a total

frequency variation range of  $\pm 507.8125\text{ppm}$ . To facilitate this test mode, the fractional PLL feedback divider  $M_T$  is used.  $M_T$  consists of an integer part ( $M_{INT}$ ) and a fractional part ( $M_{FRAC}$ ). The amount of frequency variation can be configured by the content of the Test Control SPI registers. [Table 3K](#) illustrates the available settings.

**Table 3K. Test Mode Frequency Variation**

| Output Frequency Variation<br>(ppm) | Absolute Frequency Variation |                      | M <sub>T</sub> (Binary) |                         |
|-------------------------------------|------------------------------|----------------------|-------------------------|-------------------------|
|                                     | from 100MHz (kHz)            | from 156.25MHz (kHz) | M <sub>INT</sub> [6:0]  | M <sub>FRAC</sub> [8:0] |
| -507.81250                          | -50.78125                    | -79.34570            | 1100011                 | 111100110               |
| -488.28125                          | -48.82813                    | -76.29395            | 1100011                 | 111100111               |
| .....                               | .....                        | .....                | .....                   | .....                   |
| -39.06250                           | -3.90625                     | -6.10352             | 1100011                 | 111111110               |
| -19.53125                           | -1.95313                     | -3.05176             | 1100011                 | 111111111               |
| 0.00000                             | 0                            | 0                    | 1100100                 | 000000000               |
| 19.53125                            | 1.95313                      | 3.05176              | 1100100                 | 000000001               |
| 39.06250                            | 3.90625                      | 6.10352              | 1100100                 | 000000010               |
| .....                               | .....                        | .....                | .....                   | .....                   |
| 488.28125                           | 48.82813                     | 76.29395             | 1100100                 | 000011001               |
| 507.81250                           | 50.78125                     | 79.34570             | 1100100                 | 000011010               |

## Serial Control Port Description

The 8V44N4614 has a serial control port capable of responding as a slave in an SPI configuration to allow read and write access to any of the internal registers ([Table 4A](#)) for device programming or read back. The SPI interface consists of the SPICLK (clock), MISO (serial data output), MOSI (serial data input) and nCS (chip select) pins. See [Figure 1](#) for a supported SPI configuration the specific sections for each register for details on meanings and default conditions.

### SPI Mode Operation

During a SPI data transfer, data is shifted out serially from MISO and shifted in serially from MOSI simultaneously. The SPI clock synchronizes both transmitting and receiving of the two serial data pins. A data transfer consists any integer multiple of 32 bits and is always initiated by a SPI master on the bus.

If nCS is at logic high, the MISO data output is in high-impedance state and the SPI interface of the 8V44N4614 is disabled.

Starting a data transfer requires nCS to set and hold at logic low level during the entire transfer. SPI word (32 bit) and back-to-back transfers of multiple words of 32 bits are supported, during multiple transfers nCS can stay at logic low level.

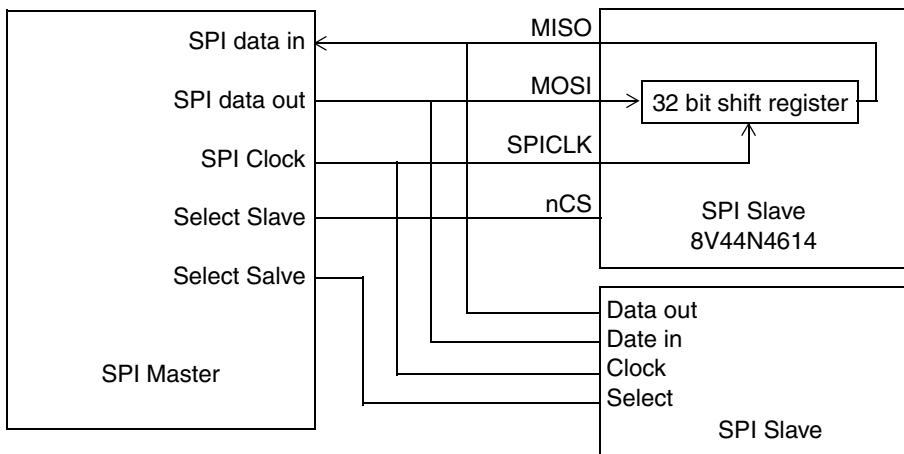
Setting nCS = 0 will enable the MISO output and present the last bit position of the shift register (D31) at that output. The *first* rising edge of SPICLK will transfer the bit applied to the MOSI input into the first bit, (bit position D0) of the internal shift register and the following SPICLK *falling* edge will output the next bit of the internal shift register to the MISO output. Each SPICLK cycle will further input one bit to

MOSI, shift the content of the shift register by one position and present the last bit to the MISO output. With a total of 32 SPICLK cycles, 32 bit are transferred from the master to the 8V44N4614 slave and also 32 bit are transferred from the slave to the master. During each transfer, the original data content of the internal shift register is replaced by the data shifted in through the MOSI pin.

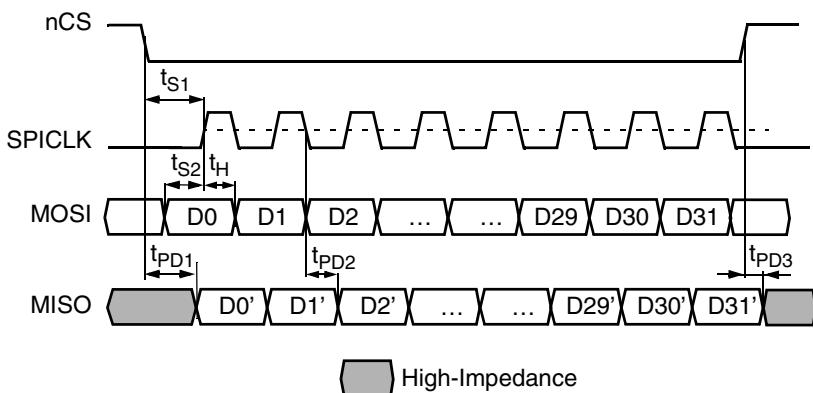
Internal register data is organized in SPI words of 32 bit. The first bit presented by the SPI master in each transfer is the LSB (least significant bit).

Write operation to a 8V44N4614 register: During a write transfer, a SPI master transfers one or more words of 32 bits data into the internal registers of the 8V44N4614. A write transfer must set the direction bit R/Wn (D4) to 0 (Write) and D0 to D3 must contain the 4-bit register base address A[0:3]. Bits D5 to 31 contain 27 bit of payload data, which is written into the base register addressed by A[0:3] at the end of the write transfer. The word format of the 32-bit word in the shift register is shown in [Table 3L](#). Each transferred SPI word writes the information to four internal 8-bit registers at once. The 8-bit registers in the 8V44N4614 have been organized so that the 5 address + direction bits in each 32-bit base register row are not used for data transfer (only 27 bits are used). Each base address supports 4 registers at the byte offsets 00, 01, 10 and 11.

Read operation from an internal register: a read operation contains of a single 32 bit transfer. The first bits shifted into the shift register are the 4 base address bits A[0:3] and the direction bit R/Wn (D4) which must be to 1 to indicate a read transfer. While these first five bits are shifted in, the MISO output presents the last 5 bits shifted into the shift register with the previous transfer. After the first 5 bits are shifted into MOSI, 27 bit register content addressed by A[0:3] are loaded into the shift register and the next 27 SPICLK clock cycles will then present the loaded register data on MISO and transfer these to the master.


Transfers must be completed with de-asserting nCS after any multiple 32 SPICLK cycles. If nCS is de-asserted at any other number of SPICLKs, the SPI behavior is undefined.

During both read and write operation, the MISO output remains active and each falling SPICLK edge clocks out the last bit of the serial shift register.


After nCS de-asserting to logic 1, the SPI bus is available to transfers to other slaves on the SPI bus. After power-up, the content of the shift register is 32x logic 0.

**Table 3L. SPI Mode Serial Word Structure**

|         | LSB                          |    |    |    |    |                               |                      |     | MSB |
|---------|------------------------------|----|----|----|----|-------------------------------|----------------------|-----|-----|
| Bit #   | D0                           | D1 | D2 | D3 | D4 | D5                            | ...                  | D30 | D31 |
| Meaning | A[0:3] Register Base Address |    |    |    |    | R/Wn<br>Read = 1<br>Write = 0 | D[5:31] Payload Data |     |     |
| Width   | 4                            |    |    |    |    | 1                             | 27                   |     |     |



**Figure 1. Supported SPI Slave Configuration**



**Figure 2. SPI Timing Diagram (Single Transfer)**

**Table 3M. SPI Read / Write Cycle Timing Parameters**

| Symbol    | Parameter                                   | Test Condition | Minimum | Maximum | Unit |
|-----------|---------------------------------------------|----------------|---------|---------|------|
| $f_{CLK}$ | SPICLK frequency                            |                |         | 20      | MHz  |
| $t_{S1}$  | Setup time, nLE to SPICLK (rising)          |                | 5       |         | ns   |
| $t_{S2}$  | Setup time, MOSI to SPICLK (rising)         |                | 5       |         | ns   |
| $t_H$     | Hold time, SPICLK (rising) to MOSI          |                | 5       |         | ns   |
| $t_{PD1}$ | Propagation delay, nLE to MISO enabled      |                |         | 5       | ns   |
| $t_{PD2}$ | Propagation delay, SPICLK (falling) to MISO |                |         | 5       | ns   |
| $t_{PD3}$ | Propagation delay, nLE to MISO disable      |                |         | 5       | ns   |

## Register Descriptions

The Serial Control port of the 8V44N4614 supports SPI mode operation, which is a 32-bit access.

**Table 4A** below indicates how registers may be accessed. In 32-bit SPI mode, the least significant 4-bits of the 32-bits shifted in to the serial control port shift register represent the base address of the 32-bit register as indicated in the 1st column in **Table 4A**. The 5th least significant bit indicates if this is a read (1) or write (0) access. The reader may note that all registers in the Byte Offset 0 column of the table do not make use of the lower 5-bits to support this mode of operation.

All writable register fields will come up with a default values as indicated in the Factory Defaults column unless altered by values loaded from non-volatile storage during the initialization sequence. Fixed read-only bits will have defaults as indicated in their specific register descriptions. Read-only status bits will reflect valid status of the conditions they are designed to monitor once the internal power-up reset has been released. Unused registers and bit positions are Reserved. Reserved bit fields will be unaffected by writes and are undefined on reads. Note: All registers listed as Reserved will be 0x00 on reads and unaffected by writes.

**Table 4A. SPI Register Map**

| Register<br>Base<br>Address<br>(binary) | Register Name                                                                                                                     |                                                                                                                                    |                                                                            |                                  |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------|
|                                         | Byte Offset = 11                                                                                                                  | Byte Offset = 10                                                                                                                   | Byte Offset = 01                                                           | Byte Offset = 00                 |
| 0000                                    | Register 3<br><b>LVC MOS Output Control</b><br>Output Enable Control<br>See <a href="#">Table 4D</a> and <a href="#">Table 4F</a> | Register 2<br><b>LVC MOS Output Control</b><br>See <a href="#">Table 4D</a>                                                        | Register 1<br><b>Divider Control</b><br>See <a href="#">Table 4B</a>       | Register 0<br><b>Reserved</b>    |
| 0001                                    | Register 7<br><b>Output Enable Control</b><br>See <a href="#">Table 4F</a>                                                        | Register 6<br><b>Output Enable Control</b><br>QA Output Level Control<br>See <a href="#">Table 4F</a> and <a href="#">Table 4H</a> | Register 5<br><b>Output Enable Control</b><br>See <a href="#">Table 4F</a> | Register 4<br><b>Reserved</b>    |
| 0010                                    | Register 11<br><b>Test Control</b><br>See <a href="#">Table 4J</a>                                                                | Register 10<br><b>Test Control</b><br>See <a href="#">Table 4J</a>                                                                 | Register 9<br><b>Test Control</b><br>See <a href="#">Table 4J</a>          | Register 8<br><b>Reserved</b>    |
| 0011                                    | Register 15<br><b>Reserved</b>                                                                                                    | Register 14<br><b>Reserved</b>                                                                                                     | Register 13<br><b>Reserved</b>                                             | Register 12<br><b>Reserved</b>   |
| 0100                                    | Register 19<br><b>Reserved</b>                                                                                                    | Register 18<br><b>Reserved</b>                                                                                                     | Register 17<br><b>Do not use</b>                                           | Register 16<br><b>Do not use</b> |

## Divider Control Register

Table 4B. Divider Control Register Bit Allocations

| Register | Register Bit |    |     |     |     |     |     |     |
|----------|--------------|----|-----|-----|-----|-----|-----|-----|
|          | D7           | D6 | D5  | D4  | D3  | D2  | D1  | D0  |
| 1        | P1           | P0 | NC1 | NC0 | NB1 | NB0 | NA1 | NA0 |

Table 4C. Divider Control Register Function Descriptions

| Bits                    | Name                    | Factory Default               | Function                                                                |      |
|-------------------------|-------------------------|-------------------------------|-------------------------------------------------------------------------|------|
| Nm[1:0]                 | Output Divider Setting  | NA = 01<br>NB = 11<br>NC = 10 | These bits control the selection of the divider N for the output clock: |      |
|                         |                         |                               | 00                                                                      | ÷16  |
|                         |                         |                               | 01                                                                      | ÷20  |
|                         |                         |                               | 10                                                                      | ÷25  |
|                         |                         |                               | 11                                                                      | ÷100 |
| P[1:0]                  | PLL Pre-Divider Setting | P = 11                        | These bits control the selection of the input pre-divider P:            |      |
|                         |                         |                               | 00                                                                      | ÷1   |
|                         |                         |                               | 01                                                                      | ÷2   |
|                         |                         |                               | 10                                                                      | ÷4   |
|                         |                         |                               | 11                                                                      | ÷8   |
| m = Output bank A, B, C |                         |                               |                                                                         |      |

## LVC MOS Output Control Register

Table 4D. LVC MOS Output Control Register Bit Allocations

| Register | Register Bit |       |          |         |         |         |         |         |
|----------|--------------|-------|----------|---------|---------|---------|---------|---------|
|          | D7           | D6    | D5       | D4      | D3      | D2      | D1      | D0      |
| 2        | INVC1        | INVC0 | INVB3    | INVB2   | INVB1   | INVB0   | INVA4   | INVA3   |
| 3        | INVC3        | INVC2 | Reserved | ENA_QA4 | ENA_QA3 | ENA_QA2 | ENA_QA1 | ENA_QA0 |

Table 4E. LVC MOS Output Control Register Function Descriptions

| Bits | Name                   | Factory Default                      | Function                                                                     |
|------|------------------------|--------------------------------------|------------------------------------------------------------------------------|
| INVn | Output Phase Inversion | Reg 2: 1010 1010<br>Reg 3: 1000 1101 | 0 = Qn output phase is normal (0°)<br>1 = Qn output phase is inverted (180°) |

## Output Enable Control Registers

Table 4F. Output Enable Control Register Bit Allocations

| Register | Register Bit |         |          |         |         |         |         |         |
|----------|--------------|---------|----------|---------|---------|---------|---------|---------|
|          | D7           | D6      | D5       | D4      | D3      | D2      | D1      | D0      |
| 3        | INVC3        | INVC2   | Reserved | ENA_QA4 | ENA_QA3 | ENA_QA2 | ENA_QA1 | ENA_QA0 |
| 5        | ENA_QC3      | ENA_QC2 | ENA_QC1  | ENA_QC0 | ENA_QB3 | ENA_QB2 | ENA_QB1 | ENA_QB0 |
| 6        | LEV2         | LEV1    | LEV0     | ENB_QA4 | ENB_QA3 | ENB_QA2 | ENB_QA1 | ENB_QA0 |
| 7        | ENB_QC3      | ENB_QC2 | ENB_QC1  | ENB_QC0 | ENB_QB3 | ENB_QB2 | ENB_QB1 | ENB_QB0 |

Table 4G. Output Enable Register Function Descriptions

| Bits                                   | Name                  | Factory Default                      | Function                                                                                                                                                     |
|----------------------------------------|-----------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ENA-n                                  | Clock Output Enable A | Reg 3: 1000 1101<br>Reg 5: 0011 0011 | 0 = Qn output is disabled in the high-impedance state<br>1 = Qn output is enabled<br>ENA bit settings are effective as described in <a href="#">Table 3I</a> |
| ENB-n                                  | Clock Output Enable B | Reg 6: 0000 0010<br>Reg 7: 1100 0100 | 0 = Qn output is disabled in the high-impedance state<br>1 = Qn output is enabled<br>ENB bit settings are effective as described in <a href="#">Table 3I</a> |
| n = Output (QA[0:4], QB[0:3], QC[0:3]) |                       |                                      |                                                                                                                                                              |

## Output Level Control Register

Table 4H. QA Output Level Control Register Bit Allocations

| Register | Register Bit |      |      |         |         |         |         |         |
|----------|--------------|------|------|---------|---------|---------|---------|---------|
|          | D7           | D6   | D5   | D4      | D3      | D2      | D1      | D0      |
| 6        | LEV2         | LEV1 | LEV0 | ENB_QA4 | ENB_QA3 | ENB_QA2 | ENB_QA1 | ENB_QA0 |

Table 4I. QA Output Level Control Register Function Descriptions

| Bits                      | Name                      | Factory Default | Function                                           |
|---------------------------|---------------------------|-----------------|----------------------------------------------------|
| LEVn                      | Differential Output Level | 0000 0010       | 0 = QAn output is LVDS<br>1 = QAn output is LVPECL |
| n = Output QA0, A1 and A2 |                           |                 |                                                    |

## Test Control Register

Table 4J. Test Control Register Bit Allocations

| Register | Register Bit |            |          |          |          |          |          |          |
|----------|--------------|------------|----------|----------|----------|----------|----------|----------|
|          | D7           | D6         | D5       | D4       | D3       | D2       | D1       | D0       |
| 9        | MT_INT6      | MT_INT5    | MT_INT4  | MT_INT3  | MT_INT2  | MT_INT1  | MT_INT0  | MT_FRAC8 |
| 10       | MT_FRAC7     | MT_FRAC6   | MT_FRAC5 | MT_FRAC4 | MT_FRAC3 | MT_FRAC2 | MT_FRAC1 | MT_FRAC0 |
| 11       | MT_FRAC0.1   | MT_FRAC0.2 | Reserved | SKEW     | CP_GAIN  | DSM_ORD1 | DSM_ORD0 | DITHER   |

Table 4K. Test Control Register Function Descriptions

| Bits                     | Name                                                | Factory Default | Function                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------|-----------------------------------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MT_INT[6:0]              | MT Feedback Divider,<br>Integer part                | 1100100         | Integer part of the test mode PLL feedback divider. The integer value of the feedback divider can be set directly to the desired value:                                                                                                                                                                                                                                                   |
|                          |                                                     |                 | <b>MT_INT[6:0]</b> <b>Integer (M<sub>T</sub>)</b>                                                                                                                                                                                                                                                                                                                                         |
|                          |                                                     |                 | 1100011 99                                                                                                                                                                                                                                                                                                                                                                                |
|                          |                                                     |                 | 1100100 100                                                                                                                                                                                                                                                                                                                                                                               |
| MT_FRAC[8:0]             | M <sub>T</sub> Feedback Divider,<br>Fractional part | 000000000       | The fractional value is set in increments of 19.53125ppm:                                                                                                                                                                                                                                                                                                                                 |
|                          |                                                     |                 | <b>MT_FRAC[8:0]</b> <b>ppm</b>                                                                                                                                                                                                                                                                                                                                                            |
|                          |                                                     |                 | 000000000 0.00000                                                                                                                                                                                                                                                                                                                                                                         |
|                          |                                                     |                 | 000000001 19.53125                                                                                                                                                                                                                                                                                                                                                                        |
|                          |                                                     |                 | 000000010 39.06250                                                                                                                                                                                                                                                                                                                                                                        |
|                          |                                                     |                 | ... ...                                                                                                                                                                                                                                                                                                                                                                                   |
|                          |                                                     |                 | 000011001 488.28125                                                                                                                                                                                                                                                                                                                                                                       |
|                          |                                                     |                 | 000011010 507.81250                                                                                                                                                                                                                                                                                                                                                                       |
| MT_FRAC0.1<br>MT_FRAC0.2 | M <sub>T</sub> Feedback Divider,<br>Fractional part | 00              |                                                                                                                                                                                                                                                                                                                                                                                           |
| CP_GAIN                  | Charge Pump Gain                                    | 0               | Leave at the default value                                                                                                                                                                                                                                                                                                                                                                |
| DSM_ORD[1:0]             | Delta-Sigma Order                                   | 00              | Leave at the default value                                                                                                                                                                                                                                                                                                                                                                |
| DITHER                   | DSM Dither Enable                                   | 0               | Leave at the default value                                                                                                                                                                                                                                                                                                                                                                |
| SKEW                     | Phase Delay                                         | 1               | 0 = No Phase Delay added<br>1 = Phase Delay added<br>÷16 output divider: 0ps<br>÷20 output divider: +225ps (typical)<br>÷25 output divider: +350ps (typical)<br>÷100 output divider: +530ps (typical)<br>Phase Delay values apply for the VCO frequency of 2500MHz.<br>SKEW = 1 adds phase delay between outputs that use different output dividers for reducing cycle and period jitter. |

## Register Defaults

This table contains the default settings that is loaded into the device after reset.

**Table 4L. Register Function Descriptions**

| Register | Table                | Name                                                          | Default      | Default Function                                                                                                                                                             |
|----------|----------------------|---------------------------------------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0        | –                    | Reserved                                                      | 000X XXXX    | None                                                                                                                                                                         |
| 1        | Table 4B             | <b>Divider Control</b>                                        | 1110 1101    | QA bank: output divider NA = $\div 20$<br>QB bank: output divider NB = $\div 100$<br>QC bank: output divider NC = $\div 25$<br>Input pre-divider: P = $\div 8$               |
| 2        | Table 4D             | <b>LVC MOS Output Control</b>                                 | 1010 1010    | QC1: inverted phase<br>QC0: normal phase<br>QB3: inverted phase<br>QB2: normal phase<br>QB1: inverted phase<br>QB0: normal phase<br>QA4: inverted phase<br>QA3: normal phase |
| 3        | Table 4D<br>Table 4F | <b>LVC MOS Output Control</b><br><b>Output Enable Control</b> | 1000 1101    | QC2: normal phase<br>QC3: inverted phase<br>Enabled: QA0, QA2, QA3 if OENA = 1                                                                                               |
| 4        | –                    | Reserved                                                      | 000X XXXX    | None                                                                                                                                                                         |
| 5        | Table 4F             | <b>Output Enable Control</b>                                  | 0011 0011    | Enabled: QB0, QB1, QC0, QC1 if OENA = 1                                                                                                                                      |
| 6        | Table 4F<br>Table 4H | <b>Output Enable Control, QA Output Level Control</b>         | 0000 0010    | LVDS levels: QA0, QA1, QA2<br>Enabled: QA1 if OENB = 1                                                                                                                       |
| 7        | Table 4F             | <b>Output Enable Control</b>                                  | 1100 0100    | Enabled: QC2, QC3, QB2 if OENB = 1                                                                                                                                           |
| 8        | –                    | Reserved                                                      | 000X XXXX    | None                                                                                                                                                                         |
| 9        | Table 4J             | <b>Test Control</b>                                           | 8: 1100 1000 | MT_INT = 100<br>MT_FRAC = 0                                                                                                                                                  |
| 10       |                      |                                                               | 9: 0000 0000 | M <sub>T</sub> = 100.0<br>Output variation = 0 ppm                                                                                                                           |
| 11       |                      |                                                               | 0001 0000    | SKEW = ON (additional delays are activated)                                                                                                                                  |
| 12       | –                    | Reserved                                                      | 000X XXXX    | None                                                                                                                                                                         |
| 13       | –                    | Reserved                                                      | 0000 0000    | None                                                                                                                                                                         |
| 14       | –                    | Reserved                                                      | 0000 0000    | None                                                                                                                                                                         |
| 15       | –                    | Reserved                                                      | 0000 0000    | None                                                                                                                                                                         |
| 16       | –                    | Reserved                                                      | 000X XXXX    | Do not use                                                                                                                                                                   |
| 17       | –                    | Reserved                                                      | 0000 0000    | Do not use.                                                                                                                                                                  |
| 18       | –                    | Reserved                                                      | 0000 0000    | None                                                                                                                                                                         |
| 19       | –                    | Reserved                                                      | 0000 0000    | None                                                                                                                                                                         |

## Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

**Table 5A. Absolute Maximum Ratings**

| Item                                                           | Rating         |
|----------------------------------------------------------------|----------------|
| Supply Voltage, $V_{DD}$                                       | 3.6V           |
| Inputs                                                         | 3.6V           |
| Outputs, $V_O$ (LVCMOS)                                        | 3.6V           |
| Outputs, $I_O$ (LVDS)<br>Continuous Current<br>Surge Current   | 10mA<br>15mA   |
| Outputs, $I_O$ (LVPECL)<br>Continuous Current<br>Surge Current | 50mA<br>100mA  |
| Storage Temperature, $T_{STG}$                                 | -65°C to 150°C |
| Maximum Junction Temperature, $T_{JMAX}$                       | 125°C          |
| ESD - Human Body Model; NOTE 1                                 | 2000V          |
| ESD - Charged Device Model; NOTE 1                             | 500V           |

NOTE: According to JEDEC JS-001-2012/JESD22-C101.

## DC Electrical Characteristics

Table 5B. **Power Supply DC Characteristics**,  $V_{DD} = V_{DDI} = V_{DDOA} = V_{DDOB} = V_{DDOC} = 3.3V \pm 5\%$ , GND = 0V,  $T_A = -40^\circ\text{C}$  to  $+85^\circ\text{C}$ <sup>1,2</sup>

| Symbol                  | Parameter             | Test Conditions | Minimum | Typical | Maximum | Units |
|-------------------------|-----------------------|-----------------|---------|---------|---------|-------|
| $V_{DD}$ , $V_{DDI}$    | Core Supply Voltage   |                 | 3.135   | 3.3     | 3.465   | V     |
| $V_{DDA}$               | Analog Supply Voltage |                 | 3.135   | 3.3     | 3.465   | V     |
| $V_{DDOX}$              | Output Supply Voltage |                 | 3.135   | 3.3     | 3.465   | V     |
| $I_{DD} + I_{DDI}$      | Core Supply Current   |                 |         | 208     | 248     | mA    |
| $I_{DDA}$               | Analog Supply Current |                 |         | 26      | 32      | mA    |
| $I_{DDOX}$ <sup>3</sup> | Output Supply Current |                 |         | 202     | 245     | mA    |

1.  $V_{DDOX}$  denotes  $V_{DDOA} = V_{DDOB} = V_{DDOC}$ .

2.  $I_{DDOX}$  denotes  $I_{DDOA}$ ,  $I_{DDOB}$ ,  $I_{DDOC}$ .

3. All differential outputs are set to LVDS mode and terminated with  $100\Omega$  resistors. All LVCMOS outputs are enabled with default frequencies and terminated with  $50\Omega$  to  $V_{DD}/2$ .

Table 5C. **LVC MOS (JESD8-7A, 1.8V) DC Characteristics**,  $V_{DD} = V_{DDI} = 3.3V \pm 5\%$ , GND = 0V,  $T_A = -40^\circ\text{C}$  to  $+85^\circ\text{C}$

| Symbol   | Parameter            |                   | Test Conditions                  | Minimum | Typical | Maximum | Units         |
|----------|----------------------|-------------------|----------------------------------|---------|---------|---------|---------------|
| $V_{IH}$ | Input High Voltage   |                   |                                  | 1.17    |         | 3.3     | V             |
| $V_{IL}$ | Input Low Voltage    |                   |                                  | -0.3    |         | 0.63    | V             |
| $I_{IH}$ | Input High Current   | SPICLK, nCS, MOSI | $V_{DD} = 3.465V, V_{IN} = 1.8V$ |         |         | 5       | $\mu\text{A}$ |
| $I_{IL}$ | Input Low Current    | SPICLK, nCS, MOSI | $V_{DD} = 3.465V, V_{IN} = 0V$   | -150    |         |         | $\mu\text{A}$ |
| $V_{OH}$ | Output High Voltage; | MISO              | $I_{OH} = -4\text{mA}$           | 1.35    |         |         | V             |
| $V_{OL}$ | Output Low Voltage;  | MISO              | $I_{OL} = 4\text{mA}$            |         |         | 0.45    | V             |

Table 5D. **LVC MOS (3.3V) DC Characteristics**,  $V_{DD} = V_{DDI} = V_{DDOX}$ <sup>1</sup> =  $3.3V \pm 5\%$ , GND = 0V,  $T_A = -40^\circ\text{C}$  to  $+85^\circ\text{C}$

| Symbol   | Parameter           |                                  | Test Conditions                | Minimum | Typical | Maximum | Units         |
|----------|---------------------|----------------------------------|--------------------------------|---------|---------|---------|---------------|
| $V_{IH}$ | Input High Voltage  |                                  |                                | 2.0     |         | 3.3     | V             |
| $V_{IL}$ | Input Low Voltage   |                                  |                                | -0.3    |         | 0.8     | V             |
| $I_{IH}$ | Input High Current  | OENA                             | $V_{DD} = V_{IN} = 3.465V$     |         |         | 5       | $\mu\text{A}$ |
|          |                     | LCLK, OENB, TEST, REFSEL, BYPASS | $V_{DD} = V_{IN} = 3.465V$     |         |         | 150     | $\mu\text{A}$ |
| $I_{IL}$ | Input Low Current   | OENA                             | $V_{DD} = 3.465V, V_{IN} = 0V$ | -150    |         |         | $\mu\text{A}$ |
|          |                     | LCLK, OENB, TEST, REFSEL, BYPASS | $V_{DD} = 3.465V, V_{IN} = 0V$ | -5      |         |         | $\mu\text{A}$ |
| $V_{OH}$ | Output High Voltage | QA[3:4], QB[0:3], QC[0:3], LOCK  | $I_{OH} = -12\text{mA}$        | 2.6     |         |         | V             |
| $V_{OL}$ | Output Low Voltage  | QA[3:4], QB[0:3], QC[0:3], LOCK  | $I_{OL} = 12\text{mA}$         |         |         | 0.55    | V             |

1.  $V_{DDOX}$  denotes  $V_{DDOA} = V_{DDOB} = V_{DDOC}$

Table 5E. **Differential Input DC Characteristics**,  $V_{DD} = V_{DDI} = 3.3V \pm 5\%$ , GND = 0V,  $T_A = -40^\circ\text{C}$  to  $+85^\circ\text{C}$

| Symbol    | Parameter                                 |           | Test Conditions                 | Minimum | Typical | Maximum   | Units         |
|-----------|-------------------------------------------|-----------|---------------------------------|---------|---------|-----------|---------------|
| $I_{IH}$  | Input High Current                        |           | $V_{DDI} = V_{IN} = 3.465V$     |         |         | 150       | $\mu\text{A}$ |
| $I_{IL}$  | Input Low Current                         | CLK       | $V_{DDI} = 3.465V, V_{IN} = 0V$ | -5      |         |           | $\mu\text{A}$ |
|           |                                           | nCLK      | $V_{DDI} = 3.465V, V_{IN} = 0V$ | -150    |         |           | $\mu\text{A}$ |
| $V_{PP}$  | Peak-to-Peak Voltage <sup>1</sup>         | CLK, nCLK |                                 | 0.20    |         | 1.3       | V             |
| $V_{CMR}$ | Common Mode Input Voltage <sup>1, 2</sup> |           |                                 | 1.125   |         | $V_{DDI}$ | V             |

1. Input voltage can not be less than GND – 300mV or more than  $V_{DDI}$ .

2. Common mode voltage is defined as the cross point.

Table 5F. LVDS DC Characteristics,  $V_{DDOA} = 3.3V \pm 5\%$ , GND = 0V,  $T_A = -40^\circ\text{C}$  to  $+85^\circ\text{C}$ 

| Symbol          | Parameter                   | Test Conditions | Minimum | Typical | Maximum | Units |
|-----------------|-----------------------------|-----------------|---------|---------|---------|-------|
| $V_{OD}$        | Differential Output Voltage |                 | 247     |         | 454     | mV    |
| $\Delta V_{OD}$ | $V_{OD}$ Magnitude Change   |                 |         |         | 50      | mV    |
| $V_{OS}$        | Offset Voltage              |                 | 1.125   |         | 1.4     | V     |
| $\Delta V_{OS}$ | $V_{OS}$ Magnitude Change   |                 |         |         | 50      | mV    |

Table 5G. LVPECL DC Characteristics,  $V_{DDOA} = 3.3V \pm 5\%$ , GND = 0V,  $T_A = -40^\circ\text{C}$  to  $+85^\circ\text{C}$ 

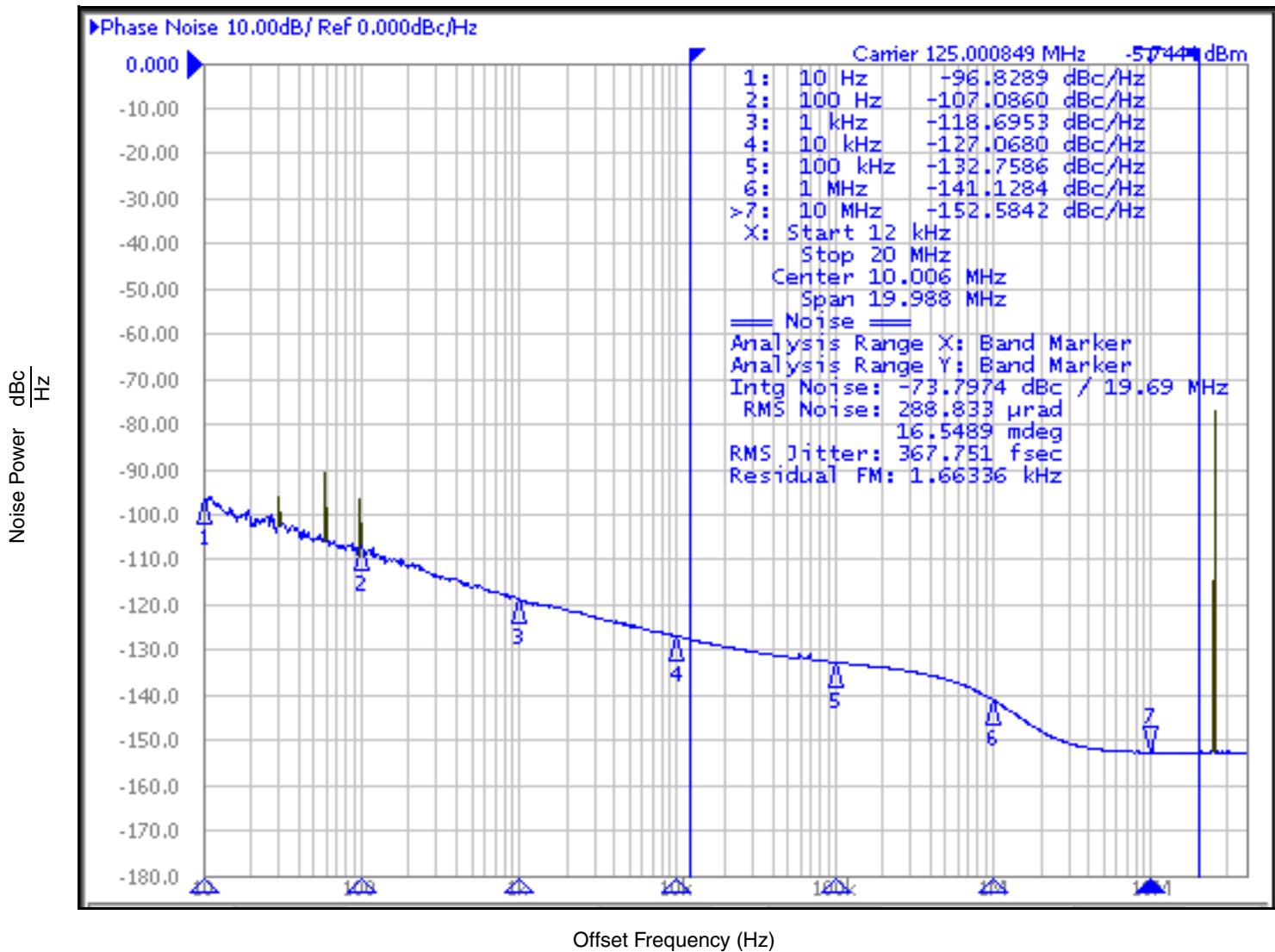
| Symbol      | Parameter                         | Test Conditions | Minimum          | Typical | Maximum          | Units |
|-------------|-----------------------------------|-----------------|------------------|---------|------------------|-------|
| $V_{OH}$    | Output High Voltage <sup>1</sup>  |                 | $V_{DDOA} - 1.2$ |         | $V_{DDOA} - 0.8$ | V     |
| $V_{OL}$    | Output Low Voltage <sup>1</sup>   |                 | $V_{DDOA} - 2.0$ |         | $V_{DDOA} - 1.7$ | V     |
| $V_{SWING}$ | Peak-to-Peak Output Voltage Swing |                 | 0.6              |         | 1.0              | V     |

1. NOTE: Outputs terminated with  $50\Omega$  to  $V_{DDOA} - 2V$ .

## AC Electrical Characteristics

Table 6. AC Characteristics,  $V_{DD} = V_{DDI} = V_{DDOA} = V_{DDOB} = V_{DDOC} = 3.3V \pm 5\%$ , GND = 0V,  $T_A = -40^\circ C$  to  $+85^\circ C$ <sup>1</sup>

| Symbol                    | Parameter                              | Test Conditions                                           |                      | Minimum | Typical | Maximum | Units |
|---------------------------|----------------------------------------|-----------------------------------------------------------|----------------------|---------|---------|---------|-------|
| $f_{OUT}$                 | Output Frequency                       | Nm[1:0] = 00                                              |                      | 156.25  |         |         | MHz   |
|                           |                                        | Nm[1:0] = 01                                              |                      | 125     |         |         | MHz   |
|                           |                                        | Nm[1:0] = 10                                              |                      | 100     |         |         | MHz   |
|                           |                                        | Nm[1:0] = 11                                              |                      | 25      |         |         | MHz   |
| $f_{IN}$                  | Input Frequency                        | P = $\div 1$                                              |                      | 25      |         |         | MHz   |
|                           |                                        | P = $\div 2$                                              |                      | 50      |         |         | MHz   |
|                           |                                        | P = $\div 4$                                              |                      | 100     |         |         | MHz   |
|                           |                                        | P = $\div 8$                                              |                      | 200     |         |         | MHz   |
| $t_{SK(O)}$               | Output Skew <sup>2 3</sup>             | Differential Outputs Only                                 |                      |         | 50      |         | ps    |
|                           |                                        | LVC MOS Outputs Only<br>(Same Divider)                    |                      |         | 180     |         | ps    |
|                           |                                        | LVC MOS Outputs Only<br>(Different Dividers) <sup>4</sup> |                      |         | 440     |         | ps    |
| $\delta_{JIT(PER)}$       | RMS<br>Period Jitter <sup>5</sup>      | QA[0:2],<br>nQA[0:2]                                      | 10K Cycles; Skew = 1 |         | 3       |         | ps    |
|                           |                                        | QA[3:4],<br>QB[0:3],<br>QC[0:3]                           | 10K Cycles; Skew = 0 |         | 4       |         | ps    |
|                           |                                        |                                                           | 10K Cycles           | 1.6     | 3       |         | ps    |
| $\delta_{JIT(CC)}$        | Cycle-to-Cycle<br>Jitter <sup>5</sup>  | QA[0:2],<br>nQA[0:2]                                      | 1K Cycles; Skew = 1  |         | 20      |         | ps    |
|                           |                                        | QA[3:4],<br>QB[0:3],<br>QC[0:3]                           | 1K Cycles; Skew = 0  |         | 25      |         | ps    |
|                           |                                        |                                                           | 1K Cycles            | 10      | 25      |         | ps    |
| $\delta_{JIT(\emptyset)}$ | RMS Phase Jitter (Random) <sup>5</sup> | 125MHz, Integration Range:<br>12kHz - 20MHz               |                      | 0.395   | 0.542   |         | ps    |
|                           |                                        | 100MHz, Integration Range:<br>12kHz - 20MHz               |                      | 0.402   | 0.567   |         | ps    |
|                           |                                        | 25MHz, Integration Range:<br>12kHz - 5MHz                 |                      | 0.428   | 0.533   |         | ps    |
| $t_R / t_F$               | Output Rise/Fall Time                  | LVC MOS, 35% to 65%                                       | 0.03                 | 0.17    | 0.99    |         | ns    |
|                           |                                        | LVDS, $\pm 200mV$ <sup>6</sup>                            | 0.06                 | 0.20    | 0.40    |         | ns    |
| odc                       | Output Duty Cycle <sup>7</sup>         |                                                           | 45                   | 50      | 55      |         | %     |
| $t_{LOCK}$                | PLL Lock Time                          | $V_{DD} = 3.3V$                                           |                      | 80      |         |         | ms    |

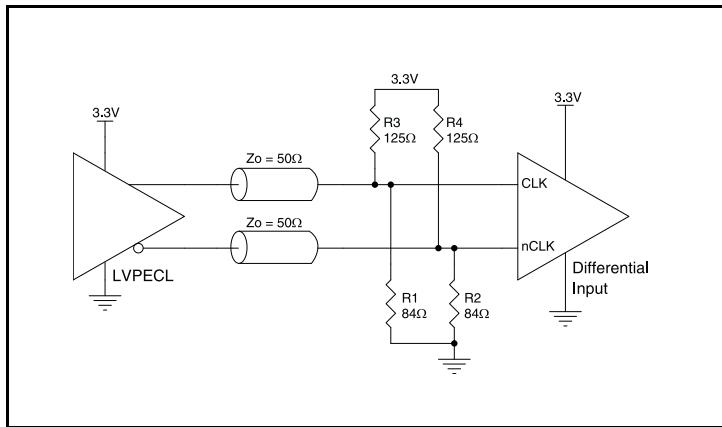

1. Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

2. This parameter is defined in accordance with JEDEC standard 65. Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the differential cross points for differential outputs and at  $V_{DDOX}/2$  for LVC MOS outputs.

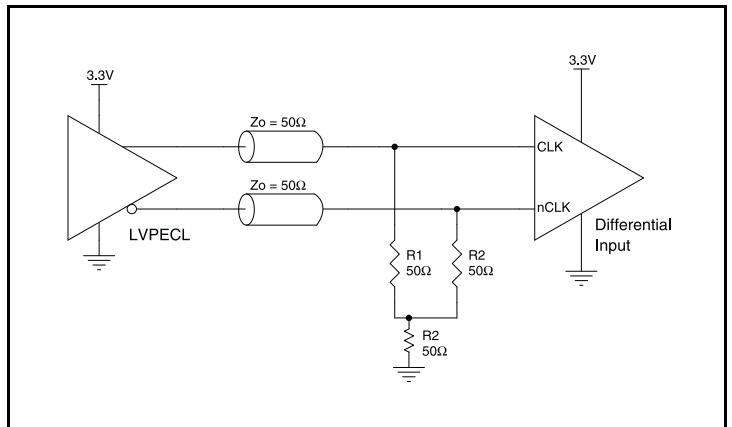
3. SKEW = OFF

4. Test is done under the following configuration: P = 8, NA = 100, NB = 25, NC = 20.  
NOTES continue on next page.
5. RMS Period Jitter, Cycle-to-Cycle Jitter and RMS Phase Jitter measurements are based on default configurations (Input Clock = 200MHz Differential, NA = 20, NB = 100, NC = 25 and QA4, QB1, QB3, QC1 and QC3 output phases are inverted) and Clean 200MHz input clock is from signal source SRS CG635.
6. Measure differentially QA[0:2] - nQA[0:2].
7. Input duty cycle = 50%

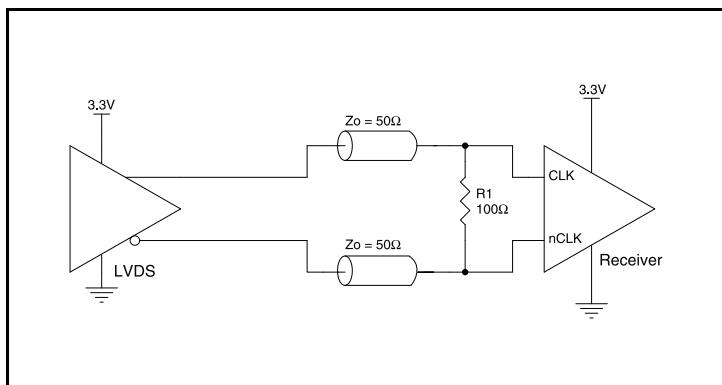
## Typical Phase Noise at 125MHz (LVDS Output), 12kHz – 20MHz




## Applications Information


### 3.3V Differential Clock Input Interface

The CLK /nCLK accepts LVDS, LVPECL and other differential signals. Both  $V_{SWING}$  and  $V_{OH}$  must meet the  $V_{PP}$  and  $V_{CMR}$  input requirements. *Figures 1A to 1C* show interface examples for the CLK/nCLK input driven by the most common driver types. The input

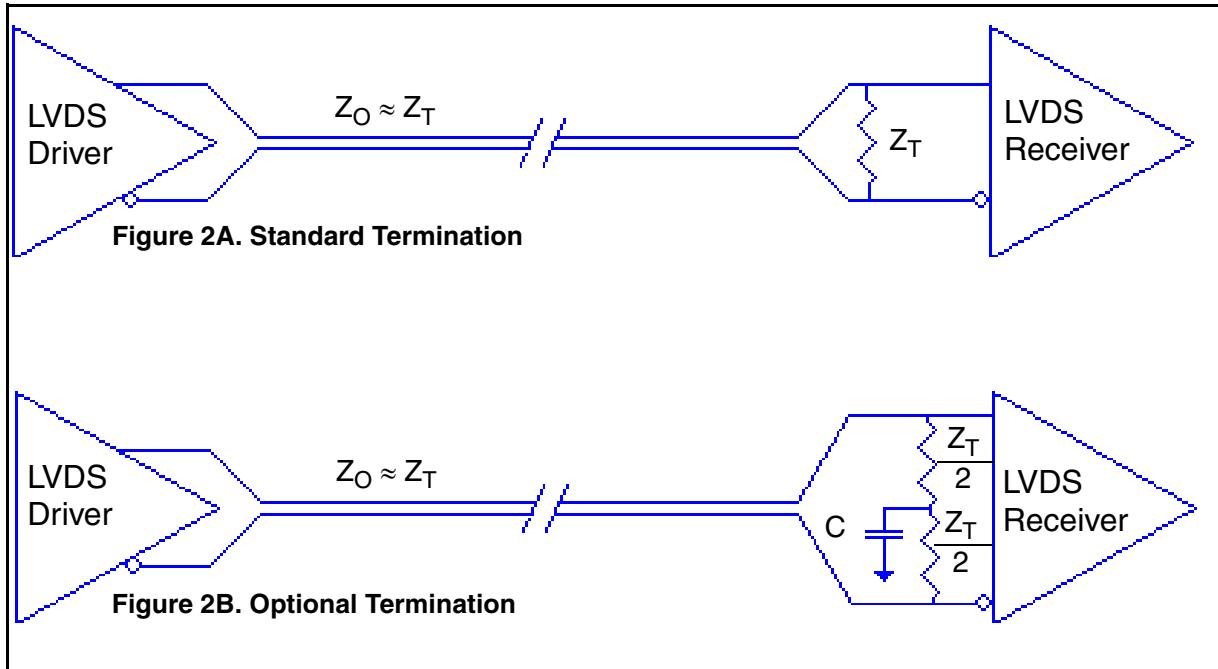

interfaces suggested here are examples only. If the driver is from another vendor, use their termination recommendation. Please consult with the vendor of the driver component to confirm the driver termination requirements.



**Figure 1A.** CLK/nCLK Input Driven by a 3.3V LVPECL Driver



**Figure 1B.** CLK/nCLK Input Driven by a 3.3V LVPECL Driver




**Figure 1C.** CLK/nCLK Input Driven by a 3.3V LVDS Driver

## LVDS Driver Termination

A general LVDS interface is shown in *Figure 2A*. Standard termination for LVDS type output structure requires both a  $100\Omega$  parallel resistor at the receiver and a  $100\Omega$  differential transmission line environment. In order to avoid any transmission line reflection issues, the  $100\Omega$  resistor must be placed as close to the receiver as possible. IDT offers a full line of LVDS compliant devices with two types of output structures: current source and voltage source. The

standard termination schematic as shown in Figure 2A can be used with either type of output structure. If using a non-standard termination, it is recommended to contact IDT and confirm if the output is a current source or a voltage source type structure. In addition, since these outputs are LVDS compatible, the amplitude and common mode input range of the input receivers should be verified for compatibility with the output.



LVDS Driver Termination

## Recommendations for Unused Input and Output Pins

## Inputs:

## LCLK Input

For applications not requiring the use of a alternative clock input, it can be left floating. Though not required, but for additional protection, a  $1\text{k}\Omega$  resistor can be tied from the LCLK input to ground.

## CLK/nCLK Inputs

For applications not requiring the use of the differential input, both CLK and nCLK can be left floating. Though not required, but for additional protection, a  $1\text{k}\Omega$  resistor can be tied from CLK to ground.

## LVC MOS Control Pins

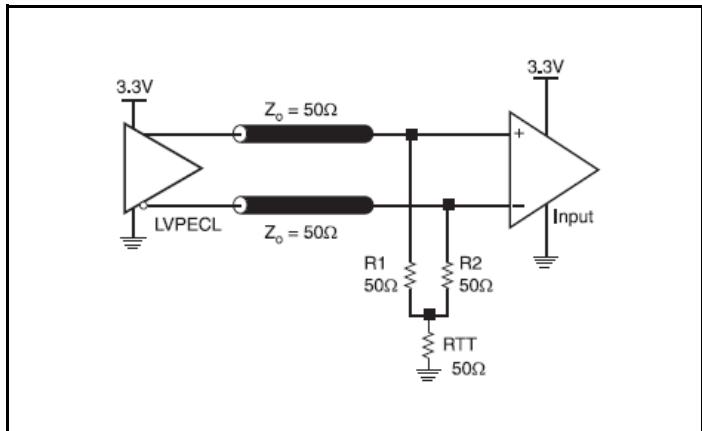
All control pins have internal pullups or pulldowns; additional resistance is not required but can be added for additional protection. A  $1\text{k}\Omega$  resistor can be used.

## Outputs:

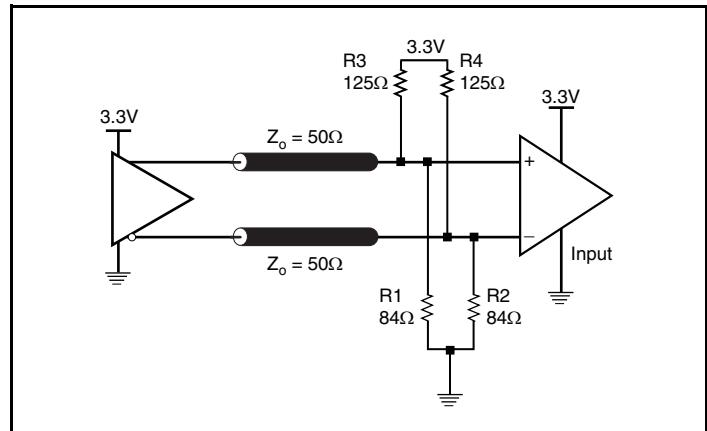
## LVPECL Outputs

All unused LVPECL output pairs can be left floating. We recommend that there is no trace attached. Both sides of the differential output pair should either be left floating or terminated.

## LVDS Outputs


All unused LVDS output pairs can be either left floating or terminated with  $100\Omega$  across. If they are left floating, there should be no trace attached.

## LVC MOS Outputs


All unused LVCMS outputs can be left floating. We recommend that there is no trace attached.

## Termination for 3.3V LVPECL Outputs

Figures 3A and 3B are examples of typical LVPECL output DC terminations.



**Figure 3A. 3.3V LVPECL Output Termination**



### Figure 3B. 3.3V LVPECL Output Termination

## VFQFN EPAD Thermal Release Path

In order to maximize both the removal of heat from the package and the electrical performance, a land pattern must be incorporated on the Printed Circuit Board (PCB) within the footprint of the package corresponding to the exposed metal pad or exposed heat slug on the package, as shown in *Figure 4*. The solderable area on the PCB, as defined by the solder mask, should be at least the same size/shape as the exposed pad/slug area on the package to maximize the thermal/electrical performance. Sufficient clearance should be designed on the PCB between the outer edges of the land pattern and the inner edges of pad pattern for the leads to avoid any shorts.

While the land pattern on the PCB provides a means of heat transfer and electrical grounding from the package to the board through a solder joint, thermal vias are necessary to effectively conduct from the surface of the PCB to the ground plane(s). The land pattern must be connected to ground through these vias. The vias act as "heat pipes". The number of vias (i.e. "heat pipes") are application specific

and dependent upon the package power dissipation as well as electrical conductivity requirements. Thus, thermal and electrical analysis and/or testing are recommended to determine the minimum number needed. Maximum thermal and electrical performance is achieved when an array of vias is incorporated in the land pattern. It is recommended to use as many vias connected to ground as possible. It is also recommended that the via diameter should be 12 to 13mils (0.30 to 0.33mm) with 1oz copper via barrel plating. This is desirable to avoid any solder wicking inside the via during the soldering process which may result in voids in solder between the exposed pad/slug and the thermal land. Precautions should be taken to eliminate any solder voids between the exposed heat slug and the land pattern. Note: These recommendations are to be used as a guideline only. For further information, please refer to the Application Note on the Surface Mount Assembly of Amkor's Thermally/Electrically Enhance Leadframe Base Package, Amkor Technology.

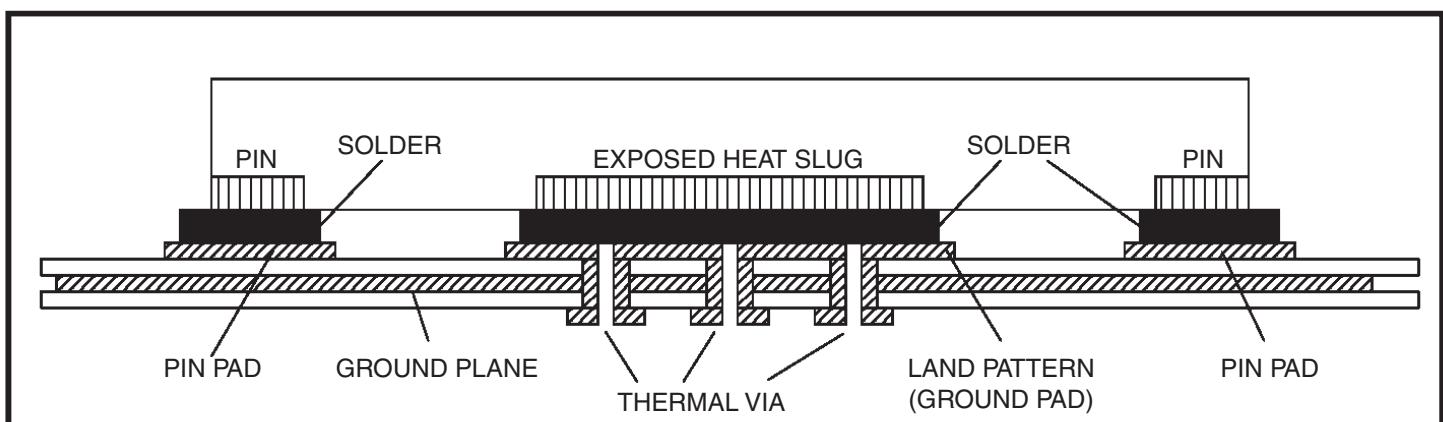


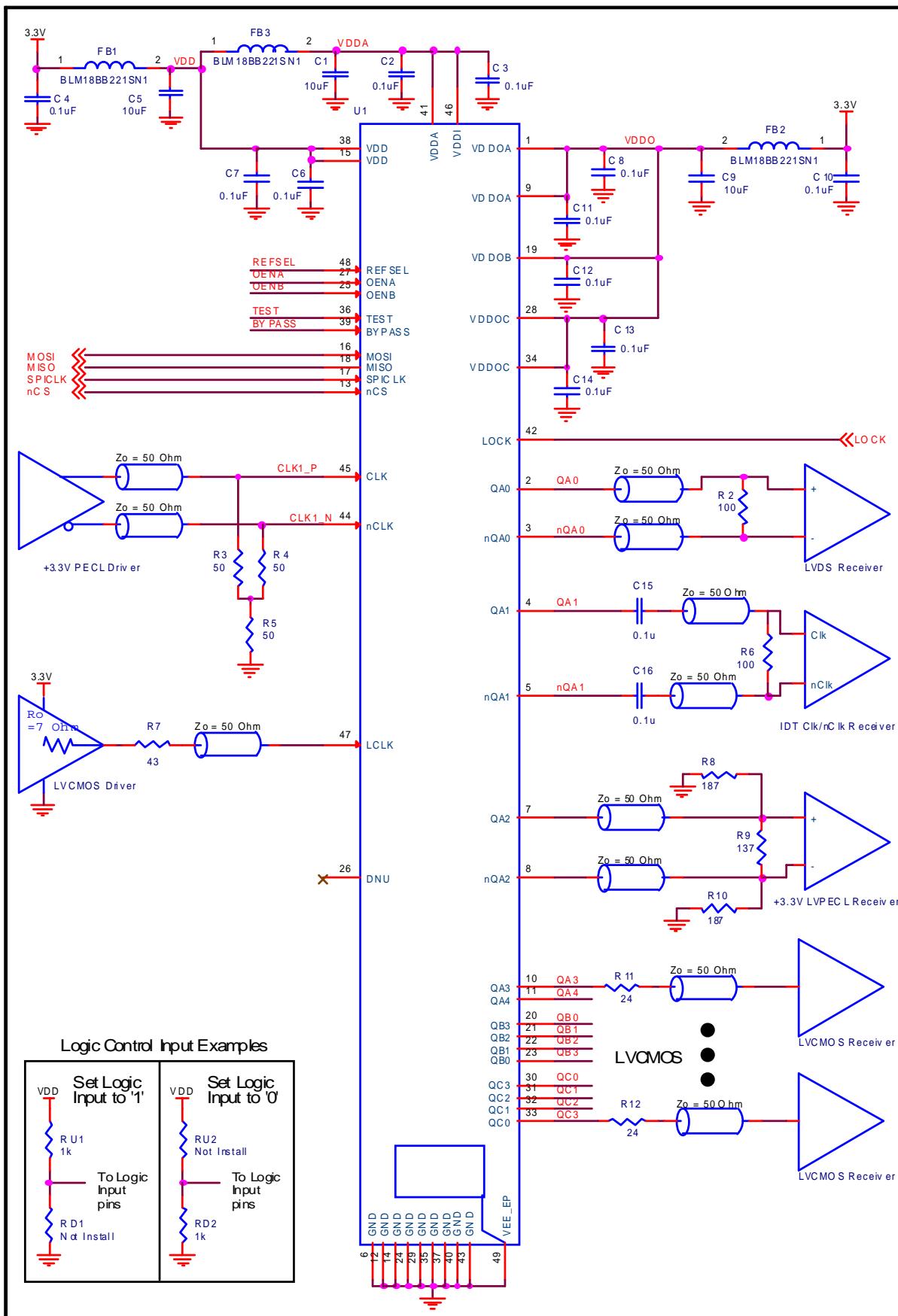

Figure 4. P.C. Assembly for Exposed Pad Thermal Release Path – Side View (drawing not to scale)

## Schematic Example

Figure 5 (next page) shows an example 8V44N4614 application schematic in which the device is operated at  $V_{DD} = 3.3V$ .

This example focuses on functional connections and is not configuration specific. Refer to the pin description and functional tables in the datasheet to ensure that the logic control inputs are properly set for the application.

Three different differential terminations are depicted. QA0 is the standard LVDS termination. QA1 is an example demonstrating how the IDT LVDS outputs can be directly AC coupled to IDT CLK, nCLK clock receiver inputs where the internal bias resistors of the receiver guarantee that the AC coupled LVDS clock is within the common mode range of the receiver. QA2 is an LVPECL Delta termination equivalent to the Wye termination shown on the CLK, nCLK input. This termination is easier to layout in comparison to the Wye termination.


As with any high speed analog circuitry, the power supply pins are vulnerable to random noise. To achieve optimum jitter performance, power supply isolation is required. The 8V44N4614 provides separate power supplies to isolate any high switching noise from coupling into the internal PLL. The Murata BLM18BB221SN1B ferrite bead shown in the schematic was selected for the flat frequency

response realized with the associated filter capacitors. The rated current for this bead is 450mA which will accommodate the maximum current for each power filter.

In order to achieve the best possible filtering, it is recommended that the placement of the filter components be on the device side of the PCB as close to the power pins as possible. If space is limited, the 10 ohm  $V_{CCA}$  resistor and the 0.1uF capacitor in each power pin filter should be placed on the device side. The other components can be on the opposite side of the PCB. Pull-up and pull-down resistors to set configuration pins can all be placed on the PCB side opposite the device side to free up device side area if necessary.

Power supply filter recommendations are a general guideline to be used for reducing external noise from coupling into the devices. The filter performance is designed for a wide range of noise frequencies. This low-pass filter starts to attenuate noise at approximately 10kHz. If a specific frequency noise component is known, such as switching power supplies frequencies, it is recommended that component values be adjusted and if required, additional filtering be added. Additionally, good general design practices for power plane voltage stability suggests adding bulk capacitance in the local area of all devices.

For additional layout recommendations and guidelines, contact [clocks@idt.com](mailto:clocks@idt.com).



## Power Considerations

This section provides information on power dissipation and junction temperature for the 8V44N4614. Equations and example calculations are also provided.

### 1. Power Dissipation.

The total power dissipation for the 8V44N4614 is the product of supply voltage and total current.

The following is the power dissipation for  $V_{DD} = 3.3V + 5\% = 3.465V$ , at ambient temperature of  $85^{\circ}C$ .

**Maximum current at  $85^{\circ}C$ ,  $I_{DD\_MAX} = 525mA$**

- Total Power Dissipation:  $P_D = V_{DD\_MAX} * I_{DD\_MAX} = 3.465V * 525mA = 1819.13mW$

### 2. Junction Temperature.

Junction temperature,  $T_j$ , signifies the hottest point on the device and exceeding the specified limit could cause device reliability issues. The maximum recommended junction temperature is  $125^{\circ}C$ .

The equation for  $T_j$  using  $\theta_{JA}$  is:  $T_j = \theta_{JA} * P_D + T_A$

$T_j$  = Junction Temperature

$\theta_{JA}$  = Junction-to-Ambient Thermal Resistance

$P_D$  = Device Power Dissipation (example calculation is in section 1 above)

$T_A$  = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance  $\theta_{JA}$  must be used. Assuming a 2-ground plane board and no air flow, the appropriate value of  $\theta_{JA}$  is  $21.0^{\circ}C/W$  per Table 7 below.

Therefore,  $T_j$  for an ambient temperature of  $85^{\circ}C$  with all outputs switching is:

$$85^{\circ}C + 1.819W * 21^{\circ}C/W = 123.2^{\circ}C. \text{ This is below the limit of } 125^{\circ}C.$$

This calculation is only an example.  $T_j$  will obviously vary depending on the number of loaded outputs, supply voltage, air flow, heat transfer method, the type of board (multi-layer) and the actual maintained board temperature. The below table is for two ground planes. The thermal resistance will change as the number of layers in the board changes or if the board size change and other changes in other factors impacts heat dissipation in the system.

**Table 7. Thermal Resistances for 48-Lead VFQFN Package**

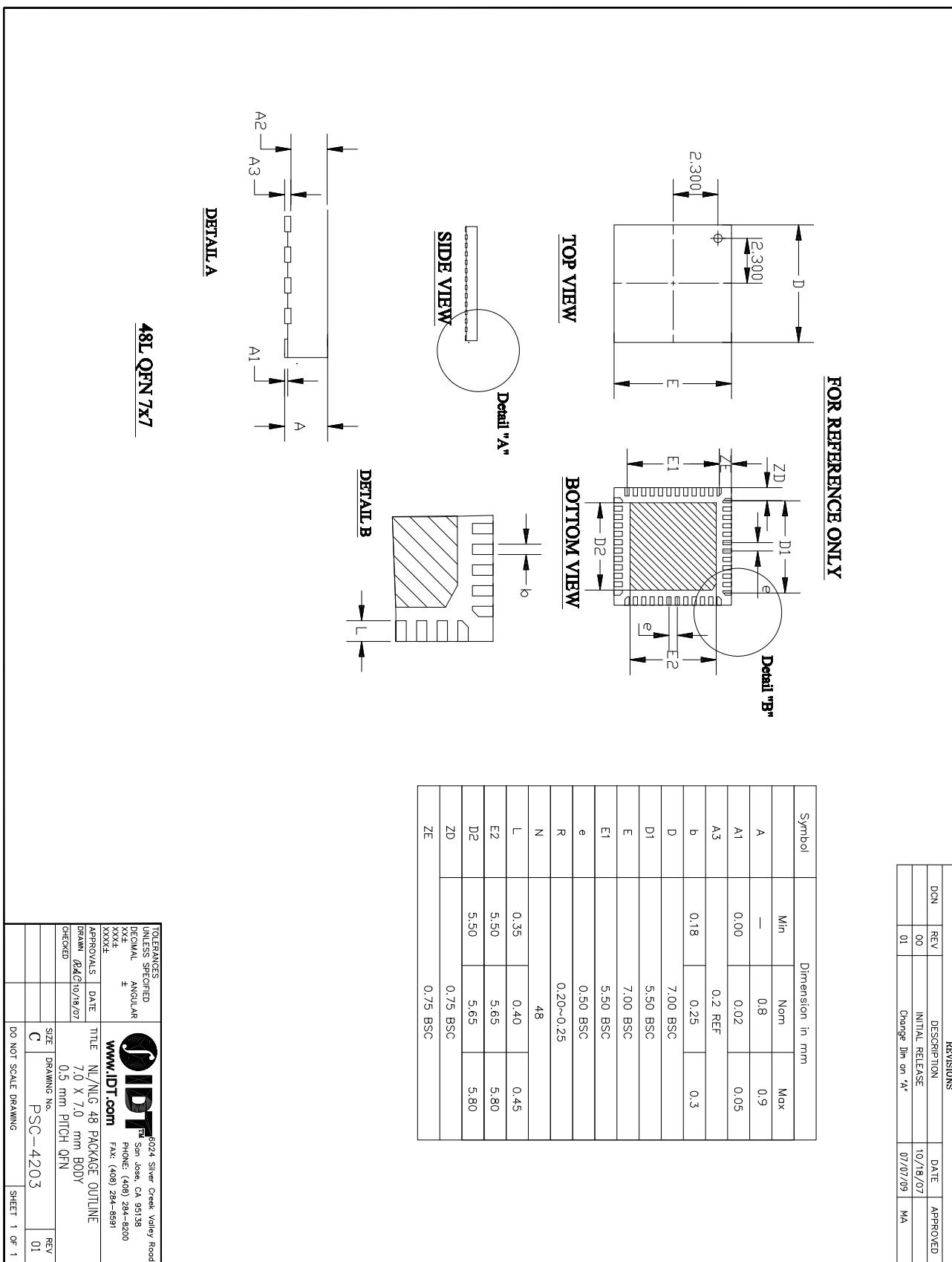
| Air Flow (m/s) | 0        | 1         | 2        |
|----------------|----------|-----------|----------|
| $\theta_{JB}$  | 1.45°C/W | 1.45°C/W  | 1.45°C/W |
| $\theta_{JA}$  | 21.0°C/W | 17.52°C/W | 16.1°C/W |

NOTE: Applicable to PCBs with two ground planes.

NOTE: ePAD size is 5.65mm x 5.65mm and connected to ground plane in PCB through 6 x 6 Thermal Via Array.

NOTE: In devices where most of the heat exits through the bottom ePAD,  $\theta_{JB}$  can be used for thermal calculations.

## Reliability Information


**Table 8.  $\theta_{JA}$  vs. Air Flow Table for a 48 Lead VFQFN**

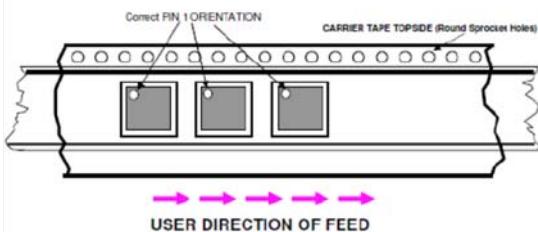
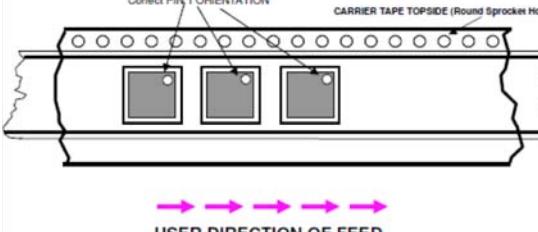
| $\theta_{JA}$ by Velocity                   |          |           |          |
|---------------------------------------------|----------|-----------|----------|
| Meters per Second                           | 0        | 1         | 2        |
| Multi-Layer PCB, JEDEC Standard Test Boards | 21.0°C/W | 17.52°C/W | 16.1°C/W |

## Transistor Count

The transistor count for 8V44N4614: 42,572

## Package Information





## Ordering Information

**Table 9. Ordering Information**

| Part/Order Number | Marking          | Package                  | Shipping Packaging                        | Temperature    |
|-------------------|------------------|--------------------------|-------------------------------------------|----------------|
| 8V44N4614NLGI     | IDT8V44N4614NLGI | 48 Lead VFQFN, Lead-Free | Tray                                      | -40°C to +85°C |
| 8V44N4614NLGI8    | IDT8V44N4614NLGI | 48 Lead VFQFN, Lead-Free | Tape & Reel, Pin 1 Orientation: EIA-481-C | -40°C to 85°C  |
| 8V44N4614NLGI/W   | IDT8V44N4614NLGI | 48 Lead VFQFN, Lead-Free | Tape & Reel, Pin 1 Orientation: EIA-481-D | -40°C to 85°C  |

NOTE: Parts that are ordered with an “G” suffix to the part number are the Pb-Free configuration and are RoHS compliant.

**Table 10. Pin 1 Orientation in Tape and Reel Packaging**

| Part Number Suffix | Pin 1 Orientation      | Illustration                                                                         |
|--------------------|------------------------|--------------------------------------------------------------------------------------|
| 8                  | Quadrant 1 (EIA-481-C) |    |
| /W                 | Quadrant 2 (EIA-481-D) |  |



## IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

### Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,  
Koto-ku, Tokyo 135-0061, Japan  
[www.renesas.com](http://www.renesas.com)

### Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

### Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit [www.renesas.com/contact-us/](http://www.renesas.com/contact-us/).