To our customers,

Old Company Name in Catalogs and Other Documents

On April 1%, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESANS

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sal es office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

Y ou should not ater, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. Y ou are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. 'Y ou should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific’. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “ Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as“ Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is“ Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home el ectronic appliances, machine tools; persona electronic equipment; and industria robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific™: Aircraft; agrospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or heathcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

Y ou should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especialy with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics’ as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

REN ESAS APPLICATION NOTE

M32C/83,85 Group REJO05B0145-0100Z

Using Simple 1°C Bus Mode on M32C/83,85

REV.1.00
2003.08.22

1.0 Abstract

The M32C/83,85group of microcomputers contains an I’C bus circuit in their serial 1/0 circuit (UART).

The I2C bus circuit when used in combination with software makes it possible to control the IC bus interface.
This application note outlines I°C bus specifications and describes the I°C bus functions showing

the method and a sample program for using each function to materialize an I’C bus interface.

2.0 Introduction

This document was prepared to provide reference information on how to control the ’C bus

that is incorporated in the M32C/83,85 group of RENESAS CMOS microcomputers.

The information in this document only describes the communication operation of the rc bus,

and does not necessarily guarantee its performance in the user application.

Therefore, please make sure your application is thoroughly evaluated before putting it into use.

For details about the instruction architecture in the M32C/83,85 group of microcomputers,

please consult the M32C/80 Series Software Manual along with this document. For the hardware aspects of
the M32C/83,85 group of microcomputers, see the user's manual included with the microcomputer you use.
For the development support tools, see the user's manual included with each tool you use.

The example applications presented in this document assume use of the following type of microcomputer.

Microcomputer :M32C/83,85group (M3083XXXXP/3085XXXXP)

The readers of this document are assumed to have the basic knowledge of electrical

and logic circuits and microcomputers.

This document consists of three chapters.

The following suggests the chapters or sections to be consulted when specific information is needed.

-To know the structure of the serial I/0 in the M32C/83,85 group of microcomputers
See Section 1.1, “Functions Available with the Serial I/0,” in Chapter 1, “Functions of the M32C/83,85 UART.”

-To know the I°C bus block diagram and the register structure of the serial /0 in the M32C/83,85 group of microcomputers

See Sections 1.2 to 1.4 in Chapter 1, “Functions of the M32C/83,85 UART.”

-To understand how to use each function of the simple I’C bus in the M32C/83,85 group of microcomputers
See Chapter 2, “Each Function of Simple I°C Bus Mode.”

-To know the precautions to be taken when using 12C bus mode

See Chapter 3, “Precautions on Simple I°C Bus Mode.”

-To refer to a sample program for the I°C bus interface unit using the M32C/83 group of microcomputers
See Appendix, “Sample Program.”

3.0 Contents
Chapter 1 Functions of the M32C/83,85 UART

Chapter 2 Each Function of Simple I°C Bus Mode
Chapter 3 Precautions on Simple I°C Bus Mode
Appendix

*[2C-BUS is a registered trademark of Philips of the Netherlands.
*[EBus is a trademark of NEC Corporation of Japan.

Rev.1.00 2003.08.22 Page 1 of 83 RENESAS

M32C/83,85 Group

Using Simple I°C Bus Mode on M32C/83,85

Chapter 1

Functions of the M32C/83,85 UART

1.1
1.2
1.3

1.4

Functions Available with the Serial 1/0
Simple I’C Bus Mode Block Diagram
Changeable Pin Functions and Interrupt
Sources in Simple I’C Bus Mode
Register Settings during Simple

I’C Bus Mode

The serial I/0 in the M32C/83,85 group of microcomputers consists of five UART channels,from 0 to 4.
Each UART channel has a dedicated transfer clock generating timer and can operate independently of each other.
This chapter describes in detail how to set simple I’C bus mode which is one function of these UART channels.

Rev.1.00 2003.08.22

Page

2

of

83

RENESAS

M32C/83,85 Group

Using Simple I°C Bus Mode on M32C/83,85

1.1 Functions Available with the Serial I/0]
UART channels 0—4 are functionally the same. The IE-Bus or the I“C bus interface can be used

in any of these

UART channels 0—4 each is used in one of three modes available to choose:

channels.

Clock—synchronous serial I/O mode, Clock—asynchronous serial I/O mode or I°C interface mode.
The M32C/83,85 has bus collision detection and other necessary functions to materialize the IEBus interface.

For details about these functions, see the M32C/83,85 Data Sheet.

A block diagram of simple IC bus mode and various related regi’sters in the M32C/83,85 are explained
in this chapter. Various functions necessary to materialize the I°C bus interface in the M32C/83,85 are
detailed in the next chapter.

Configuration of the serial I/0 in the M32C/83,85

‘UARTO —

—[Clock synchronous serial /0

12C interface functions

‘UART1 —

‘UART2 —

‘UART3

| Clock asynchronous serial I/0
IEBus interface functions

—|:Clock synchronous serial /0
I°C interface functions

—l—_CIock asynchronous serial I/0

IEBus interface functions
—[Clock synchronous serial /0
I°C interface functions
—l—_CIock asynchronous serial I/0

IEBus interface functions

‘UART4

Clock synchronous serial I/0

L 1%C interface functions

—l—_CIock asynchronous serial I/0

IEBus interface functions

Clock synchronous serial /0

L 1°C interface functions
—l—_CIock asynchronous serial I/0

IEBus interface functions

Rev.1.00 2003.08.22

Page 3 of 83 RENESAS

M32C/83,85 Group

Using Simple I°C Bus Mode on M32C/83,85

1.2

SDAI(H

Simple 1°C Bus Mode Block Diagram

Simple I°C bus mode is used to materialize the I°C bus interface. Simple I’C bus mode is
entered into by setting the SMDO0-2 register bits to '010B’ and the I’C mode select bit [lICM] to 1.
This enables the circuit necessary to materialize the I°C bus interface.

A block diagram of simple I°C bus mode is shown below.

o<

STPSEL=1

start/stop condition generate block

» DMAO~3 request

SCLi{_H

Noise
F Filter

L

Noise
Filter

i=0-4
This block diagram is for the case where the UiMR register SMD2-0 bits = 010,
and the UiSMR register [ICM bit = 1.
[ICM: UiSMR register bit
[ICM2: UiSMR2 register bit
Note1: While the IICM bit = 1, even if the direction bit for any pin is set to 1 (= output), the pin can be read.

T

delay R SDASTSP
circuit —{ SCLSTSP
STPSEL=0 | . ICM2=1 UART; transfer/NACK
| transfer reglsterl- interrupt request
UARTI 9
ACK=1 ' IICM=1 and
. SDHI ALS [ICM2=0
ACKD register
) Arbitration —+ DMAO~3 request
[ICM2=1
I receive register I UARTI
UART: a —* receive/ACK
[ICM=1 and interrupt request
Start condition [ICM2=0
detection
|- S A bus —>—
R busy
Stop condition| |-
detection
Dqd NACK
Falling _m
edge 1 D
95 port register E ACK
in/output| R (Note 1)
[ICM=0 port .
STPSEL=0 Internal clock 9th Stat cc')ndltlon
. CELCQ_SWCZ LK pulse getectlond/
UARTI § — * St ition
TPSEL=1 op condi
[ICM=1 STPS external control detection
clock UARTi interrupt request

Falling edge of 9th pulse

SWC

Rev.1

.00 2003.08.22

Page

4 of 83

RENESAS

M32C/83,85 Group

Using Simple I°C Bus Mode on M32C/83,85

1.3 Changeable Pin Functions and Interrupt Sources in Simple I?C Bus Mode
The table below shows the function of each pin when simple I°C bus mode is selected.

Pin function

Simple I°C bus mode

Normal mode

P6_3 pin function

Start value of P6_3 output
P6_2 pin function

Read of the P6_2 pin

P6_1 pin function

SDAO (input/output)

When serial 1/0 is disabled, the value set in P6_2.

SCLO (input/output)

The pin is read no matter how the direction register is set.*
Port6_1

TXDO (output)

H level (when CLK polarity select bit=0)

RXDO (input)

The pin is read , when the direction register is 0.
GCLKO

P6_7 pin function

Start value of P6_7 output
P6_6 pin function

Read of the P6_6 pin

P6_5 pin function

SDAT (input/output)

When serial 1/0 is disabled, the value set in P6_7.

SCL1 (input/output)

The pin is read no matter how the direction register is set.*
Port6_5

TXD1(output)

H level (when CLK polarity select bit=0)
RXD1(input)

The pin is read , when the direction register is 0.
CLK1

P7_0 pin function

Start value of P7_0 output
P7_1 pin function

Read of the P7_1 pin

P7_2 pin function

SDA2 (input/output)

When serial 1/0 is disabled, the value set in P7_0.

SCL2 (input/output)

The pin is read no matter how the direction register is set.*
Port7.2

TXD2(output)

H level (when CLK polarity select bit=0)
RXD2(input)

The pin is read , when the direction register is 0.
CLK2

P9 2 pin function

Start value of P9_2 output
P9_1 pin function

Read of the P9_1 pin

P9 0 pin function

SDA3 (input/output)

When serial 1/0 is disabled, the value set in P9_2.

SCL3 (input/output)

The pin is read no matter how the direction register is set.*
Port9_0

TXD3(output)

H level (when CLK polarity select bit=0)
RXD3(input)

The pin is read , when the direction register is 0.
CLK3

P9 6 pin function

Start value of P9_6 output
P9 _7 pin function

Read of the P9_7 pin

P9 5 pin function

SDA4 (input/output)

When serial 1/0 is disabled, the value set in P9_6.

SCLA4 (input/output)

The pin is read no matter how the direction register is set.*
Port9_5

TXD4(output)

H level (when CLK polarity select bit=0)
RXD4(input)

The pin is read , when the direction register is 0.
CLK4

Precautions on using bit manipulating instructions for ports

If the data register (port latch) for any input/output port is rewritten using a bit manipulating instruction,

the value of some unspecified bit may change.
Reason: This is because the bit manipulating instructions are read—modify—write type instructions
and read or write to the register in bytes.
Therefore, if such an instruction is executed on some bits in any input/output port data register,

the following processing is applied to all bits in that data register.

-Bits set for input:

The pin value is read by the CPU, which after bit manipulation is written to the bit.

-Bits set for output:
The data register bit value is read by the CPU, which after bit manipulation is written back to the bit.

*: Be aware that if a read—modify—write instruction is executed on any port, the SCL or SDA output value may inadvertently be changed.

Rev.1.00 2003.08.22 Page 5 of 83 RENESAS

M32C/83,85 Group

Using Simple I°C Bus Mode on M32C/83,85

Interrupt sources

(i=0-4)

Function

Simple I’C bus mode(IICM=1)

Normal mode(IICM=0)

[IcM2] =0

[ICM2] =1

Interrupt sources of interrupt
numbers 39,40 and 41(NOTE 1)

Interrupt sources of interrupt
numbers 17,19,33,35 and 37

Interrupt sources of interrupt
numbers 18,20,34,36 and 38

DMA sources

Start/Stop condition detection

No acknowledgment detection
(NACK)

Acknowledgment detection
(ACK)

Acknowledgment detection
(ACK)

Start/Stop condition detection

UARTI transfer

UARTI receive

UARTI receive

Bus collision detection

UARTi transfer

UARTIi receive

UARTIi receive

Note 1: Interrupt sources of interrupt numbers 40 and 41 are assigned to UARTO0/3 and UART1/4, respectively.
Therefore, UARTO or 3 and UART1 or 4 must be chose one,when you use.

Rev.1.00 2003.08.22

Page

6 of 83

RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

1.4 Register Settings during Simple I°C Bus Mode
—Method for see the figure—

b7 b0
[T T <ol TiTo]
i -Set “0” when Simple I°C bus mode
: “Set “1” when Simple I°C bus mode
............................... Choose “17or"0"
.. Read only
Don't care(When write only set to “0”)
UARTi Transmit Buffer Register (Note 1) (=0-4) Symbol Address When reset
(b15) (68) UoTB 036B,5, 036A Indeterminate
b7 b0 b7 b0 U1TB 02EB,g , 02EA Indeterminate
DXDXDXDXDXIDXDX] | U2TB 03B, , 033A, Indeterminate
u3TB 032Bs, 032A¢ Indeterminate
U4TB 02FByg , 02FA ¢ Indeterminate
Bit symbol Function R|W
- Transmit data(The bit8 is ACK) —| O
No functions are assigned.

To write to these bits, write 0. When read, the values of these bits are indeterminate.

Note 1: Use the MOV instruction to write to this register.

UARTi Receive Buffer Register (i=0-4) Symbol Address When reset
(b15) (b8) UORB 036F 5, 036E;4 Indeterminate
b7 b0 b7 b0 U1RB 02EF ¢ , 02EE;4 Indeterminate
I><|><I><| [J | o |><|><| [J | [J U2RB 033F 5, 033E 4 Indeterminate
U3RB 032F 4, 032E¢ Indeterminate
U4RB 02FF,¢ , 02FE 4 Indeterminate
Bit symbol Bit name Function R
"""" - Receive data(The bit8 is ACK or R/W bit) O
_ No functions are assigned. _
To write to these bits, write 0. When read, the values of these bits are indeterminate.
ABT (A’\;*:Jizit)ion lost flag 0:No det‘.sction(win) o
1:Detection(lost)
OER Overrun error flag 0:Overrun error not occurred o
(Note 2) 1:Overrun error occurred
FER Framing error flag Has no effect during simple I2C bus mode. O
PER Parity error flag Has no effect during simple I2C bus mode. O
SUM Error sum flag Has no effect during simple I2C bus mode. O
Note 1: Only writing 0 is accepted.
Note 2: This bit is cleared to 0 by setting the serial /O mode select bits (address 036816, 02E816, 033816, 032816 or 02F816, bits 2-0)
to '000, or the receive enable bit to 0.
UARTi Baud Rate Register Notes 1, 2 (i=0-4) Symbol Address When reset
b7 b0 UOBRG 0369 Indeterminate
[[UIBRG 02E9, Indeterminate
U2BRG 033944 Indeterminate
U3BRG 0329 Indeterminate
U4BRG 02F9 Indeterminate
Bit symbol Functon Values that can be set | R
- Assuming the set value = n, BRG divides the count source by n + 1. 0044—FF¢ -

Note 1: Use the MOV instruction to write to this register.
Note 2: Make sure transmission is inactive when writing to this register.

Rev.1.00 2003.08.22 Page 7 of 83 RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

UARTI Transmit/receive mode Register 0 (i=0-4) Symbol Address When reset
b7 b6 b5 b4 b3 b2 bl b0 UOMR 0368 0046
[o DXIDXDX] o] 1]of UIMR 02E8, 0045
U2MR 03384 0046
U3MR 03284 0046
U4MR 02F8,4 0046
Bit symbol Bit name Function R|IW
SMDO . 000: Serial I/0 is no effect(Port control) OO
Smp1_|oonel /O mode 010: Simple I°C Bus Mode olo
select bit
SMD2 (Note 1) OO
o e deae ol
STPS |Stop bit length select bit Has no effect during simple I°C bus mode. O|O
PRY Odd/even parity select bit [Has no effect during simple I°C bus mode. O|O
PRYE |Parity enable bit Has no effect during simple I2C bus mode. OO
TxD,RxD input/ O:reversed
IOPOL |output polarity 1:No reversed O|0O
switch bit (Note 2)
Note1:To select simple I°C bus mode, make sure the serial I/O mode select bits are set to ‘010,
Note 2:In simple 1°C bus mode, set this bit to 1.
UARTi Transmit/receive Control Register 0 (i=0-4) Symbol Address When reset
b7 b6 b5 b4 b3 b2 bl b0 uoco 036C4 08¢
[1fo [[@X] [| u1co 02EC;s 084
u2co 033Cy4 08¢
u3co 032C4 08¢
u4co 02FCg 08¢
Bit symbol Bit name Function R W
GLKO 00:f1 is selected o
BRG count source 01:f8 is selected
CLKI select bit 10:f2n is selected olo
11:Must not be set
CRS CST/RTS function select bit [Has no effect during simple I°C bus mode. (0] K®)
0:Data present in transmit register O|—
. . (during transmission)
TXEPT |Transmit register empty flag
1:No data present in transmit register
(transmission completed)
0:CTS/RTS function enabled
CRD |CTS/RTS disable bit 1:CTS/RTS function disabled Oo|O
In simple 12C bus mode, set this bit to 1.
) 0:TXDi pin is CMOS output
NCH (DNa:?e?;Jtput select bit 1:TXDi pin is N-channel open drain output (6] KO)
In simple 12C bus mode, set this bit to 1.
0:Transmit data is output at falling edge of transfer
clock and receive data is input at rising edge
CKPOL |CLK polarity select bit 1 :Transmit data is output at rising edge of transfer | O | O
clock and receive data is input at falling edge
In simple 12C bus mode, set this bit to 0.
0:LSB first
UFORM |Transfer format select bit 1:MSB first OO

In simple 12C bus mode, set this bit to 1.

Note 1: The UART2 SDA and SCL pins are N—channel open—drain pins.
Therefore, CMOS output cannot be selected for these pins. When write , set U2CO’s bit 5 to 0.

Rev.1.00 2003.08.22 Page 8 of 83 RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

UARTI Transmit/receive Control Register 1 (i=0-4)

b7 b6 b5 b4 b3 b2 bl b0
[ofofo] [@] [ef |

Symbol Address When reset
uoct 036D 02
uict 02ED;¢ 02
u2ct 033D 02
u3ct 032D 02
U4ct 02FD;¢ 02
Bit symbol Bit name Function Rl W
O:Ti ission disabled
TE Transmit enable bit ransmission disable O| 0O
1: Transmission enabled
0: Dat: t in ti it buff ist
TI Transmit buffer empty flag ata present in .ransml u er regis e.r Ol|-—-
1: No data present in transmit buffer register
0:R tion disabled
RE |Receive enable bit coeption disable olo
1: Reception enabled
RI Receive complete flag 0: Data present in receive buffer register ol-
1: No data present in receive buffer register
UIRS UARTI trfnsn:)ljc Tﬁerrur)t 0: Transmit buffer empty (TI = 1) olo
cause select bit (Note 1: Transmit is completed (TXEPT = 1)
AR 0: Continuous receive mode disabled
UARTI ti i
UiRRM mode ;i:;l:si:us receive 1: Continuous receive mode enabled Oo|O
In simple 1°C bus mode, set this bit to 0.
0: No reverse
UILCH [|Data logic select bit 1: Reverse O| O
In simple 1%C bus mode, set this bit to 0.
Clock divide synchronizing stop 0: Synchronizing stop
UIERE |bit 1: Synchronous start Ol 0O
/error signal output enable bit . 2 Lo
In simple I°C bus mode, set this bit to 0.

Note 1: UIIRS has no effect when IICM = 1 and IICM2 = 0.

UARTI special mode register (i=0-4)

b7 b6 b5 b4 b3 b2 bl
[ofofo]ofo]e]

b0

[1]

Symbol Address When reset
UOSMR 0367,¢ 0044
U1SMR 02E74 0044
U2SMR 033744 0044
U3SMR 032744 0044
U4SMR 02F7¢ 0044
Bit symbol Bit name Function R | W | Related section
0: N | d
[ICM |lIC mode select bit(Note1) ormal mode O 1.3
1: IIC mode
ABC Arbitration lost detecting flag 0: Update per bit olo 25
control bit 1: Update per byte
0: STOP dition detected
BBS [Bus busy flag(Note2) gondition detecte o|lo| 22
1: START condition detected
0: Disabled
LSYN |SCLL sync output enable bit |1: Enabled o|Oo| ——
In simple 1%C bus mode, set this bit to 0.
ABSCS Bus collision d.etect sampling set this bit to 0. olo o
clock select bit
ACSE Auto clear function §e|ect bit set this bit to 0. olo o
of transmit enable bit
ssg [Transmit start condition set this bit to 0. olo| —-
select bit
SCLKDIV |Clock divide set bit set this bit to 0. O[O —-

Note 1 : To select simple I’C bus mode, make sure the serial I/O mode select bits are set to '010,.’

Note 2: Only writing O is accepted.

Rev.1.00 2003.08.22 Page

of

83

RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

b7

Lo]

UARTI special mode register 2 (i=0-4) Symbol Address When reset
b6 b5 b4 b3 b2 bl b0 UOSMR2 0366 0046
[T 1 [[[| U1SMR2 02E64 0045
U2SMR2 0336 0046
U3SMR2 0326 0046
U4SMR2 02F 6,4 0046
Bit symbol Bit name Function R Related section
[ICM2 |1IC mode select bit 2 See Tablel O -
CSC |Clock synchronous bit 0: Disabled O 25
1: Enabled
SWC |SCL wait output bit 0: Disabled O 2.4
1: Enabled
ALS |SDA output stop bit 0: Disabled O 25
1: Enabled
STAC |UART initialize bit 0: Disabled O 2.6
1: Enabled
SWC2 [SCL wait output bit 2 0: UART clock e 2.2
1: 0 output
SDHI |SDA output inhibit bit 0: Disabled O 2.6
1: Enabled (high impedance)
L 0: Synchronous disabled
SUTHIM Externallclock synchronizing 1: Synchronous enabled @] i
enable bit
In simple I°C bus mode, set this bit to 0.

Table 1. Functions during Simple I’C Bus Mode (IICM = 1)

Function

[IcM2] =0

[IcM2] =1

Interrupt sources of interrupt
numbers 39,40 and 41(Note 1)

Start/Stop condition detection

Start/Stop condition detection

Interrupt sources of interrupt
numbers 17,19,33,35 and 37

No acknowledgment detection
(NACK)

UARTI transfer

Interrupt sources of interrupt
numbers 18,20,34,36 and 38

Acknowledgment detection
(ACK)

UARTI receive

DMA sources

Acknowledgment detection
(ACK)

UARTI receive

The timing at which data is transferred from the
UARTI receive sift register to the receive buffer
register

The last receive clock pulse goes high

The last receive clock pulse goes low

The timing at whitch a UARTi-receive/

The last receive clock pulse goes high

Acknowledge—detected interrupt request generated|(Acknowledge detected)

The last receive clock pulse goes low
(UARTI receive)

Note 1: Interrupt sources of interrupt numbers 40 and 41 are assigned to UARTO0/3 and UART1/4, respectively.

Therefore, UARTO or 3 and UART1 or 4 must be chose one,when you use.

Rev.1.00 2003.08.22

Page 10 of

83 RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

UARTi special mode register 3 (i=0~4)

b7 b6 b5 b4 b3 b2 bl

b0

| [Jofofo]

[o]

Symbol
UOSMR3
U1SMR3
U2SMR3
U3SMR3
U4SMR3

Address
03654
02E544
0335
0325,
02F544

When reset
004
0046
0046
0046
0046

Bit symbol

Bit name

Function

Related section

SSE

ss port function enable bit

0: SS function disabled
1: SS function enabled
In simple I°C bus mode, set this bit to 0.

CKPH

Clock phase set bit

0: Without clock delay
1: With clock delay

2.6

DINC

Serial input port set bit

0: Select TxDi and RxDi (master mode)
1: Select STxDi and SRxDi (slave mode)
In simple I°C bus mode, set this bit to 0.

NODC

Clock output select bit

0: CLKi is CMOS output
1: CLKi is N—channel open drain output
In simple 1°C bus mode, set this bit to 0.

ERR

Fault error flag

0: Without fault error
1: With fault error
In simple I°C bus mode, set this bit to 0.

DLO

DL1

SDAI(TxDi) digital delay time
set bit (Note 1,2)

Note 1: These bits provide a digital means of generating a delay in SDAi (TxDi) output when using UARTI as the I’C bus interface.

DL2

000 :Without delay

001 :2-cycle of BRG count source
010 :3—cycle of BRG count source
011 :4—cycle of BRG count source
100 :5—cycle of BRG count source
101 :6—cycle of BRG count source
110 :7-cycle of BRG count source
111 :8-cycle of BRG count source

2.6

Otherwise, always be sure to set these bits to '000,.’

Note 2: If an external clock is selected, the actual delay is greater by about 100 ns than the set value.

Rev.1.00 2003.08.22

Page

11

of

83 RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

UARTi special mode register 4 (i=0~4)

b7 b6 b5 b4 b3 b2 bl

b0

Symbol Address When reset
UOSMR4 0364, 00,
UISMR4 02E4,, 00,
U2SMR4 0334, 00,
U3SMR4 0324, 00,
U4SMR4 02F4,4 00,
Bit symbol Bit name Function Related section
Start condition generate bit |0: Clear
STAREQ (Note1) 1 Start 2.2
Restart condition generate [0: Clear
RSTREQ bit(Note1) 1 Start 2.2
Stop condition generate bit |0: Clear
STPREQ (Note1) 1: Start 2.2
STSPSEL [SCL, SDA output select bit 0: Ordinal block 2.2
1: Start/stop condition generate block
ACKD [ACK data bit 0: ACK 2.3
1: NACK
ACKC |ACK data output enable bit 0: SI/O data output 2.3
1: ACKD output
0: Disabled
SCLH |SCL output stop enable bit sable 2.6
1: Enabled
0: SCL “L” hold disabled
SWC9 |SCL wait output bit 3 - ol disabie 26
1: SCL "L” hold enabled

Note 1: When each condition is generated, the bit is automatically cleared to 0.

Rev.1.00 2003.08.22

Page

12 of 83

RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

External interrupt request cause select register Symbol Address When reset
b7 b6 b5 b4 b3 b2 bl b0 IFSR 031F ¢ 0044
Bit symbol Bit name Function RW
_____________________ INTO interrupt polarity 0: One edge
IFSRO select bit(Note1,2) 1: Both edges ©
INT1 interrupt polarity 0 : One edge
IFSR1 select bit(Note1,2) 1: Both edges O|0
INT2 interrupt polarity 0 : One edge
IFSR2 select bit(Note1,2) 1: Both edges O|0
INT3 interrupt polarity 0 : One edge
IFSR3 select bit(Note1,2) 1: Both edges O|©0
INT4 interrupt polarity 0 : One edge
IFSR4 select bit(Note1,2) 1: Both edges O|0
INT5 interrupt polarity 0 : One edge
IFSRS select bit(Note1,2) 1: Both edges O|©o
0 : UART3 bus collision /start,stop detect/
IFSR6 UA|RT0§3 interrupt cause false error detect olo
select bi 1 : UARTO bus collision /start,stop detect/
false error detect
0 : UART4 bus collision /start,stop detect/
IFSR7 UA|RT11§3 interrupt cause false error detect olo
select bi 1 : UART1 bus collision /start,stop detect/
false error detect

Note 1: These bits are irrelevant to the simple 1°C bus.
Note 2: If “Level sense” is selected, set this bit to 0.

To select “Both edges,” make sure the corresponding INTi Interrupt Control Register's polarity select bit (bit 4) is set to 0 (= falling edge).

Rev.1.00 2003.08.22 Page 13 of 83 RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

Function select register A0

b7 b6 b5 b4 b3 b2 bl

b0

Note 1: These bits are irrelevant to the simple 12C bus.

Function select register Al

b7 b6 b5 b4 b3 b2 bl

b0

Symbol Address When reset
PSO 03B0,¢ 00,4
Bit symbol Bit name Function
Port P60 function select bit |0 :1/0 port
PS00 R
(Note1) 1 : UARTO output (RTS0)
Port P61 function select bit |0 :1/0 port
PSO0_1
(Note1) 1 : UARTO output (CLKO output)
0:1/0 port
PS0_2 |Port P62 function select bit /0 po
1 : Function that was selected in bit2 of PSLO
0:1/0 port
PS0_3 |Port P63 function select bit /0 po
1 : UARTO output (TXDO/SDAO)
Port P64 function select bit |0 :1/0 port
PS04 . N
(Note1) 1 : Function that was selected in bit4 of PSLO
Port P65 function select bit |0 :1/0 port
PS0.5
(Note1) 1: UARTT output (CLK1 output)
0:1/0 port
PS0 6 |Port P66 function select bit /0 po
1 : Function that was selected in bit6 of PSLO
0:1/0 port
PS0_7 |Port P67 function select bit /0 po
1: UART1 output (TXD1/SDAT1)
Symbol Address When reset
PS1 03B1¢ 00,4
Bit symbol Bit name Function
0:1/0 port
PS1.0 |Port P70 function select bit /0 po
1 : Function that was selected in bit0 of PSL1
0:1/0 port
PS1_1 |Port P71 function select bit /0 po
1 : Function that was selected in bit1 of PSL1
Port P72 function select bit |0 :1/0 port
PS1.2) oo
(Note1) 1 : Function that was selected in bit2 of PSL1
0:1/0 port
PS1_3 |Port P73 function select bit /0 po
1 : Function that was selected in bit3 of PSL1
Port P74 function select bit |0 :1/0 port
PS14 . oo
(Note1) 1 : Function that was selected in bit4 of PSL1
Port P75 function select bit |0 :1/0 port
PS15) oo
(Note1) 1 : Function that was selected in bit5 of PSL1
Port P76 function select bit |0 :1/0 port
PS1.6 . oo
(Note1) 1 : Function that was selected in bit6 of PSL1
) ~[0:1/0 port
PS1.7 Port P77 function select bit 1 : Intelligent 1/0 group 0 output

(Notel)

(OUTCO1/1SCLKO)

Note 1: These bits are irrelevant to the simple 12C bus.

Rev.1.00 2003.08.22

Page

14

of

83

RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

Function select register A3 (Notel) Symbol Address When reset
b7 b6 b5 b4 b3 b2 bl b0 PS3 03B5¢ 004
Bit symbol Bit name Function
Port P90 function select bit |0 :1/0 port
PS3.0 N
ote2) 1 : UART3 output (CLK3)
0:1/0 port
PS3_1 |Port P91 function select bit /0 po
1 : Function that was selected in bit1 of PSL3
0:1/0 port
PS3_2 |Port P92 function select bit /0 po
1 : Function that was selected in bit2 of PSL3
Port P93 function select bit |0 :1/0 port
PS3.3 N —
ote2) 1 : UART3 output (RTS3)
Port P94 function select bit |0 :1/0 port
PS3.4 N —
ote2) 1 : UART4 output (RTS4)
Port P95 function select bit |0 :1/0 port
PS3.5 N
ote2) 1 : UART4 output (CLK4)
0:1/0 port
PS3.6 |Port P96 function select bit /0 po
1 : UART4 output (TXD4/SDA4)
0:1/0 port
PS3_7 |Port P97 function select bit /0 po
1 : Function that was selected in bit7 of PSL3

Note 1: To rewrite this register, make sure the PRCR register PRC2 bit is set to 1 (write enabled).

Note 2: These bits are irrelevant to the simple 12C bus.

Function select register BO Symbol Address When reset
b7 b6 b5 b4 b3 b2 bl b0 PSLO 03B2;4 00,6
[of [of o Jofo]

Bit symbol Bit name Function

Reserve bit

Must always be “0”.

Port P62 peripheral function
select bit

0 : UARTO output (SCLO)
1 : UARTO output (STXDO)

Reserve bit

Must always be “0”.

Port P64 peripheral function
select bit(Note1)

0 : UART1 output (RTS1)
1 : Intelligent I/0 group 2 output
(OUTC21/1SCLK2)

Reserve bit

Must always be “0”.

Port P66 peripheral function
select bit

0 : UART1 output (SCL1)
1 : UART1 output (STXD1)

Reserve bit

Must always be “0”.

Note 1: This bit is irrelevant to the simple 12C bus.

Rev.1.00 2003.08.22 Page 15 of

83

RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

Function select register B1

b7 b6 b5 b4 b3 b2 bl

b0

Lol T T T 11

Symbol Address When reset
PSL1 03B344 0046
Bit symbol Bit name Function
PSL1 0 Port P70 peripheral function : Function that was selected in bit0 of PSC

select bit

: Timer output (TAOOUT)

Port P71 peripheral function

: Function that was selected in bit1 of PSC

0
1
0
PSL1_1 .
~ [select bit 1 : UART2 output (STXD2)
Port P72 peripheral function |0 : Function that was selected in bit2 of PSC
PSL1.2 .)
select bit(Note1) 1 : Timer output (TATOUT)
Port P73 peripheral function |0 : Function that was selected in bit3 of PSC
PSL1.3)
select bit(Note1) 1 : Three—-phase PWM output (V)
Port P74 peripheral function |0 : Function that was selected in bit4 of PSC
PSL1.4 lect bit(Note1)
select bitiNote 1 : Three—phase PWM output (W)
Port P75 peripheral function |0 : Function that was selected in bits of PSC
PSL1.5 . .
select bit(Note1) 1 : Intelligent 1/0 group 1 output (OUTC12)
PSL1 6 Port P76 peripheral function |0 : Function that was selected in bit16of PSC
- 1

select bit(Note1)

: Timer output (TA3OUT)

Reserve bit

Must always be “0”.

Note 1: These bits are irrelevant to the simple 12C bus.

Fu Function select register B3

b7 b6 b5 b4 b3 b2 bl

b0

[o]

Symbol Address When reset
PSL3 03B344 004
Bit symbol Bit name Function

Reserve bit

Must always be “0”.

PSL3 1 Port P91 peripheral function |0 : UART3 output (SCL3)
~|select bit 1: UART3 output (STXD3)
.) 0 : UART3 output (TXD3/SDA3)
PSL3 2 Port P92 peripheral function) .
_ select bit 1 : Intelligent I/0 group 2 output
(OUTC20/IEOUT)

Port P93 peripheral function |0 : Input peripheral function enabled(Expect DAO output)
PSL33 lect bit(Note1,2)

select br otel, 1 : Input peripheral function disabled (DAO output)

Port P94 peripheral function |0 : Input peripheral function enabled(Expect DA1 output)
PSL3.4 lect bit(Note1,2)

select br otel, 1 : Input peripheral function disabled (DA1 output)

Port P95 peripheral function |0 : Input peripheral function enabled(Expect ANEXO output)
PSL35 lect bit(Note1,2)

select br otel, 1 : Input peripheral function disabled (ANEXO output)

Port P96 peripheral function |0 : Input peripheral function enabled(Expect ANEX1 output)
PSL3_6 lect bit

select br 1 : Input peripheral function disabled (ANEX1 output)

Port P97 peripheral function |0 : UART4 output (SCL4)
PSL3T |select bit(Note2)

select brtiNote 1 : UART4 output (STXD4)

Note 1: These bits are irrelevant to the simple 12C bus.

Note 2: DAO, DA1, ANEXO or ANEX1 can be used even when these bits are set to 0,

in which case the power supply current may increase

, however.

Rev.1.00 2003.08.22

Page

16 of 83

RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

Function select register C Symbol Address When reset
b7 b6 b5 b4 b3 b2 bl b0 PSC 03AF ¢ 00X0 0000,

LI DI T 1T 1]

Bit symbol Bit name Function R|W
0 : UART2 output (TXD2/SDA2)
1 : Intelligent 1/0 group 2 output Oo|O
(OUTC20/ ISTXD2/IEOUT)
0 : UART2 output (SCL2)
1 : Intelligent I/0 group 2 output (OUTC22)
Port P72 peripheral function |0 : UART2 output (CLK2)
1:
0:
1:

Port P70 peripheral function
select bit

..................... PSC_O

Port P71 peripheral function
select bit

.............................. PSC_1

... PSC.2 .
select bit(Note1) Three—phase PWM output (V)

UART2 output (RTS2)
Intelligent I/0 group 1 output o|0O
(OUTC10/ ISTXD1/BE10UT)
Port P74 peripheral function 0+ Timer output (TA20UT)
PSC_4 select bit(Note1) 1 : Intelligent I/0 group 1 output o|0O
(OUTC11/ ISCLK1)

Noting is assigned. When write, set to “0”.
When read, its content is indeterminate.

Port P73 peripheral function
select bit(Note1)

PSC_3

.) 0 : Intelligent I/0 group 0 output
PSC 6 Port P76 peripheral function olo
_ select bit(Note1) (OUTCO00/ISTXD0/BEOOUT)

1 : CAN output (CANOUT)

Port P77 peripheral function |0 : Enabled _
PSC7 select bit(Note1) 1 - Disabled o

Note 1: These bits are irrelevant to the simple 12C bus.

Szerial /0 used in simple Method for set function select register
1°C bus mode
UARTO PS0_2=1 PS0_.3=1 PSL0_2=0
UART1 PS0_6=1 PS0_7=1 PSL0_6=0
UART2 PS1.0=1 PS1_1=1 PSL10=0 PSL1.1=0 PSC_0=0 PSC_1=0
UART3 PS3_1=1 PS3.2=1 PSL3_.1=0 PSL3.2=0
UART4 PS3_6=1 PS3_7=1 PSL3_6=0

Rev.1.00 2003.08.22 Page 17 of 83 RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

Chapter 2
Each Function of Simple I°C Bus Mode

2.1 Method for Sending and Receiving Byte Data
2.2 Start and Stop Conditions

2.3 Acknowledge

2.4 Judgment of the Specified Local Address
2.5 Arbitrating Contention for Communication
2.6 Other Functions

This chapter explains how to use each hardware function of simple I°C bus mode in order
to materialize the I°C bus interface when using the M32C/83,85 in simple 1°C bus mode.

Rev.1.00 2003.08.22 Page 18 of 83 RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

2.1 Method for Sending and Receiving Byte Data

The following explains how to set the registers to send SCL in simple I°C bus mode by using the M32C/83,85
as the master, as well as how to set the registers to send and receive one byte of data.

Method for generating SCL (during master)

Before the M32C/83,85 can be used as the master, the speed of the transmit clock (SCL) must be set.
To set it, use the registers described below as in the case of ordinary serial /0 transmission.

SCL is sent out within 1.5 SCL cycles after writing data to the transmit buffer.

[SCL transmit timing]

fx: BRG count source Max 1.5cycle
n: UIBRG set value (i = 0-4) —]
SCL: Waveform when CKPH = 1 fx —s=[_n*1 'r i o
Data write
I I o B e B e

SCL output start

For details about CKPH, see the clock delay function in Section 2.6, “Other Functions.”
[Related Registers]

UARTI transmit/receive mode register (i=0-4)
b7 b6 b5 b4 b3 b2 bl b0 UOMR:0368,,, UIMR:02E8,, U2MR:0338,,

M{) ol 1]o U3MR:0328,, U4MR:02F8,q

[SMD]010: Simple IC Bus Mode
[CKDIR] 0: Selected internal clock (during master. When slave mode, 1:Selected external clock)
[IOPOL]0:No reversed

UARTi special mode register (i=0-4)
b7 b6 b5 b4 b3 b2 bl b0 UOSMR:0367,5, UTSMR:02E7;;, U2SMR:0337,
[ofofofo]o]@] [U3SMR:0327,4, U4SMR:02F7,

""""""""""" [ICM]1 : Simple 1°C Bus Mode
"""""""""""""""""" [ABC] Arbitration—lost is updated O:per bit or 1:per byte

UARTI transmit/receive control register 0 (i=0-4)
b7 b6 b5 b4 b3 b2 bl b0 U0C0:036C,5, UTCO:02EC,;, U2C0:033C,

[1[of1[1]0]X] | | U3C0:032C,5, U4C0:02FCyq

B [CLK1] [CLKO] selecte BRG count source

0 0 :flis selected, 0 1 :f8 is selected, 1 0 :f2n is selected, 1 1 :Must not be set
[CRD] 1 :CTS/RTS function disabled
[NCH] 1:SCL/SDA pin is N-channel open drain output(Note1)

[CKPOL] 0 :Transmit data is output at falling edge of transfer clock and receive data is input at rising edge
[UFORM] Transfer format select 0 :LSB first or 1 :MSB first

Note 1: The UART2 SDA and SCL pins are N-channel open—drain pins.
CMOS output cannot be selected for these pins. When write , To write to bit 5, write 0.

Rev.1.00 2003.08.22 Page 19 of 83 RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

Method for generating SCL (during master)(CGontinued from the preceding page)

UARTI special mode register 3 (=0-4)
b7 b6 b5 b4 b3 b2 bl b0 UOSMR3:0365,5, U1SMR3:02E5,; U2SMR3:0335,,

LI [Jo]o|o]i]o] U3SMR3:0325,, , U4SMR3: 025,

""""""""""""""""" [CKPH] 0:Without clock delay 1:With clock delay

[DL2][DL1][DLO] This bit set digital delay time

000:Without delay 001:2-cycle of BRG count source

010:3-cycle of BRG count source 011:4-cycle of BRG count source

100:5-cycle of BRG count source 101:6—cycle of BRG count source
110: 7—-cycle of BRG count source 111:8-cycle of BRG count source

For details about CKPH, see the clock delay function in Section 2.6, “Other Functions.
For details about DL2, DL1 and DLO, see the digital output delay function in Section 2.6, Other Functions.”

UARTI bit rate generator (i=0-4)
b7 bo UOBRG:0369, , UIBRG:02E9,, , U2BRG: 0339,
| | U3BRG:0329,, , U4BRG:02F9,

: BRGi divides the count source by n+1
[Example settings]
To set the transmission rate to 100 kbps when using a 10 MHz original oscillator frequency
UiMR = 00000010, (In simple I°C mode, with internal clock selected)
-UiC0 = 10010000, (BRG count source chosen to be f1)
- UIBRG =49

[Settings during slave]

To use the M32C/83,85 as a slave, set the UARTi Transmit/receive Mode Register (UIMR) bit 3 [CKDIR] = 1 to select
an external clock.

In this case, settings of the BRG count source select bits [CLKO], [CLK1] and those of the UARTi Baud Rate Register
(UBRG) have no effect.

Rev.1.00 2003.08.22 Page 20 of 83 RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

Method for sending byte data

When the M32C/83,85 is operating as a transmitter, 8bits transmit data is sent out from the SDA pin.

In this case,the SDA pin of the M32C/83,85 must be released (high—impedance state) in order to receive

an acknowledge signal at the 9th transmit clock pulse. This is accomplished by setting the appropriate data in the
transmit buffer. Set 9 bits of data in the transmit buffer. In the ’C bus, send the data beginning with the MSB.

In the M32C/83,85,if the transfer format is set to MSB first and 9 bits long, the data is sent out in order
of bit 7 — bit 6 — ...— bit 0 — bit 8. Therefore, the timing at which an acknowledge signal can be received is when
the MSB bit is sent out.For the SDA pin to be released at this time, set data “1” in the MSB bit, which causes

the SDA output of the M32C/83,85 to be placed in the high—-impedance state. This is how to send byte data.

[Related Registers]

UARTI transmit buffer register (=0-4) UOTB:036B4 , 036A,; U1TB:02EB s 02EA;q
(b15) (b8) U2TB:033B;, 033A; U3TB:032B;5 032A;
b0 b7 b0 U4TB:02FB,; , 02FA 4

b7
XIXIXIXIXIXIX |

Transmit data
Release SDA at ACK timing

[Timing Figure]

1 2 3 4 5 6 7 8 ACK
—_—
e UMM
——— || ———m

|

i

M32C/83,85 = 5 ;

(Transmit side) L Transmit data I
output SDA

UITB—1XX4 | Release SDA(Hi-Z)

Rev.1.00 2003.0822 Page 21 of 83 RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

Method for receiving byte data

When the M32C/83,85 is operating as a receiver, the SDA pin of the M32C/83,85 must be released (high-impedance stat
while receiving 8 bits of data from the SDA pin. Furthermore, at the 9th clock pulse, the SDA pin must be pulled low

to generate an acknowledge signal. This operation can be accomplished simply because if judgment of the receiver
address specified on the master side has finished, and if it has been confirmed that data is being sent

to the local device,an acknowledge signal can be sent by writing the appropriate data to the transmit buffer.

Even when receiving data, set 9 bits of data as dummy data in the transmit buffer of the M32C/83,85 as

when sending data. To release the SDA pin while sending 8 bits of data, set data “1” in the 8 low—order bits.

To generate an acknowledge signal, set data '0’ in the last bit to be sent (bit 8). This is how to receive byte data.

[Related Registers]

UARTi receive buffer register (i =0-4) UOTB:036B,s, U1TB:02EB,¢, 02EA;
(b15) (b8) U2TB:033B,, 033A,5, U3TB:032B,, , 032A,q
b7 b0 b7 U4TB:02FB,, 02FA,q

DXIXIXIXIXIX v4!!........

Release SDA
ACK output
[Timing Figure]
SCL ‘_| 2|_| 3|_| 4|_| 5|_| 6|_| 7 8 ACK
s — | | | J |
i
M32C/83,85 :
(receive side) o i
output SDA]l :
E Release SDA(Hi-2) : |
P -

| UiTB— ACK'L’ output

Rev.1.00 2003.08.22 Page 22 of 83 RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

Transmit and receive interrupts

When the M32C/83,85 is operating as a transmitter, completion of data transmission can be detected

by a “UARTi Transmit Interrupt.” Similarly, when the M32GC/83,85 is operating as a receiver, completion

of data reception can be detected by a “"UARTi Receive Interrupt.” These interrupts are assigned

to interrupt numbers 17-20 and interrupt numbers 33-38, respectively. The interrupt sources

for these interrupt numbers respectively are chosen to be UARTI transmission and UARTI reception

by setting the I’C mode select bit 2 [lICM2] = 1. In this case, the timing at which a transmit interrupt is generated is
when the start pulse of the transmit clock goes low if UARTI transmit interrupt source select bit [UiIRS] = 0 or
when the first bit of the next data goes low if [UIIRS] = 1 (when CKPH = 1). The timing at which a receive interrupt is
generated is when the last receive clock pulse goes low.

(For details, see Table 1, “Functions during Simple I’C Bus Mode (IICM = 1),” for UARTi Special Mode Register 2

in Section 1.4, “Register Settings during Simple I°C Bus Mode.”)

Be aware that if the receive buffer is read before the last receive clock pulse goes high

(e.g., during a reception—finished interrupt in simple I°C bus mode), the received data has

its bit positions changed when read out. (See the timing diagram shown in the page that follows.)

[Related Registers]
UARTI special mode register (=0-4)

b7 b6 b5 b4 b3 b2 bl b0 UOSMR:0367,;, UTSMR:02E7,;, U2SMR:0337,,
[ofofofof[o]@] [U3SMR:0327,;, U4SMR:02F 7,

[CM]1 : Simple I°C Bus Mode
[ABC] Arbitration—lost is updated O:per bit or 1:per byte

UARTI special mode register 2 (i=0-4)
b7 b6 b5 b4 b3 b2 bl b0 UOSMR2:0366,; UTSMR2:02E6,5 U2SMR2:0336,

ol [[| [| b U3SMR2:0326,, , U4SMR2: 02F6,

[ICM2] 1:UARTi transfer/receive interrupt

[CSC] 0:Clock synchronous is disabled 1:Clock synchronous is enabled
"""""""""""""""""""""""" [SWC] 0: SCL wait output is disabled 1:SCL wait output is enabled
[ALS] 0: SDA output stop is disabled 1:SDA output stop is enabled
[STAC] 0: UARTI initialize is disabled 1:UARTi initialize is enabled
[SWC2] 0:UARTi clock 1:SCL output “L”

[SDHI] 0: SDA output enable 1:SDA output disable (Hi-Z)

In simple 12C bus mode, set this bit to 0.

UARTI special mode register 3 (=0-4)
b7 b6 b5 b4 b3 b2 bl b0 UOSMR3:0365,;, UTSMR3:02E5,, U2SMR3:0335,

LI] Jo]o|o]i]o] U3SMR3: 0325, , UASMR3: 02F5,

................................ [CKPH] 1W|th Clock delay

[DL2][DL1][DLO] This bit set digital delay time

000:Without delay 001:2-cycle of BRG count source

010:3-cycle of BRG count source 011:4—cycle of BRG count source

100:5-cycle of BRG count source 101:6—cycle of BRG count source
110: 7-cycle of BRG count source 111:8-cycle of BRG count source

For details about CKPH, see the clock delay function in Section 2.6, “Other Functions.
” For details about DL2, DL1 and DLO, see the digital output delay function in Section 2.6, “Other Functions.”

Rev.1.00 2003.08.22 Page 23 of 83 RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

Transmit and receive interrupts (Continued from the preceding page)

UARTI transmit/receive control register 1 (i=0-4)
b7 b6 b5 b4 b3 b2 bl b0 UOC1:036D,4 , U1C1:02ED,, U2C1:033D,4
[o]o]of [@]1]@] 1] U3C1:032D, , U4CT:02FD; 4

- [TE] 1:Transmit is enabled
[RI] 1:Receive is enabled
[UilRS]this bit select UARTi transmit interrupt cause

0:Transmit buffer empty 1:Transmit is completed
[UiRRM] 0:UARTi continuous receive mode is disabled
[UiLCH] 0:Data logic is no reversed
[UiERE] 0:Error signal output is disabled

UARTI Transmit interrupt control register (i=0~4)
b7 b6 b5 b4 b3 b2 bl b0 SOTIC: 0090, , S1TIC:0092,5 S2TIC:0089;

[ILVL] This bit select interrupt priority level

1~7:Interrupt priority level is selected

When not using interrupts, set these bits to 0 (disable).

[IR] 0:When interrupt requested,set this bit to 1.

UARTI receive interrupt control register (=0~4)
b7 b6 b5 b4 b3 b2 bl b0 SORIC:0072,¢ , SIRIC:0074,4 , S2RIC:006B;

Wol | | | S3RIC: 006D, , S4RIC : 006F

[ILVL] This bit select interrupt priority level

1~7:Interrupt priority level is selected

When not using interrupts, set these bits to 0 (disable).

[IR] 0:When interrupt requested,set this bit to 1.

For interrupts to be generated upon interrupt request, set the I flag to 1.

Rev.1.00 2003.08.22 Page 24 of 83 RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

[Timing Figure] (When IICM2=1)

SDA 'I D7 'IDG I. D5 I. D4 'I D3 1 D2 { D1 'I DO 'I ACKD ‘I'I':

UARTi transmit interrupt UARTi receive interrupt |_pg pd UARTI transmit interrupt

request generated request generated request generated

(When [UIIRS] =0) (When [CKPH]=1and
[UiIRS] =1)

Data readout during
this interval

.«
UARTi receive buffer register (i=0~4)

(b15) (b8) UORB: 036F, , 036E,, UIRB:02EF, 02EE;
b7 b0 b7 bO U2RB:033F,; 033E; USRB:032F,; 032E,,

DXDXDX] o[@ DXDX]po] | p7|D6] 5] 04| D3] D2] D1 U4RB: 02FF , 02FE 4

it will be seen that 8bit receive data is stored in the buffer

Indeterminate

If data is read from the receive buffer before the last receive clock pulse goes high

after the 8'th receive clock pulse (e.g., during a reception—finished interrupt in simple ’C bus mode),

it will be seen that the data is stored in the buffer in order of DO and D7-D1 as shown above.

Then, when the data is read from the buffer after the last receive clock pulse goes high

(e.g., during a transmission—finished interrupt in simple I°C bus mode), the data is read out in order of ACKD and D7-DO.

UARTI receive buffer register (i=0~4) (Afer the last receive clock pulse)
(b15) (68) UORB:036F s , 036E,; UTRB:02EF,; 02EE
b0 b7 b U2RB:033F,; 033E,; USRB:032F,; 032E,

b7 0
DXDXDX] @] @ XX acko [p7]p6] 5] 04] D3] 2] D1]DO] U4RB:02FF 5 , 02FE

receive data

Rev.1.00 2003.08.22 Page 25 of 83 RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

2.2 Start and Stop Conditions

UARTI generates a start condition when it starts sending or receiving data, or a stop condition

when it finishes sending or receiving data.

The M32C/83,85 when used as a slave provides the function in hardware to assert an interrupt to detect

the start or stop condition generated by the master. When used as the master, the M32C/83,85 provides

the function in hardware to generate and send start and stop conditions. This function is called

the “Start/stop Condition Detection Interrupt.” Furthermore, the M32C/83,85 provides two other functions in hardware,
one to detect the bus usage condition to know whether the bus is busy when it generates a start condition,

and one to forcibly output a low—level signal from the SCL pin to disable clock outputs

from other devices before it starts communication after sending a start condition.

The former is called the “Bus Busy Detection Function,” and the latter is called the “SCL Pin Low Output Function 2.”

Rev.1.00 2003.08.22 Page 26 of 83 RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

Detecting the start and stop conditions

The start condition is recognized as a high—to—low transition of SDA when SCL is high,

and the stop condition is recognized as a low—to—high transition of SDA when SCL is high.

These conditions can be detected using the M32C/83,85's Start/stop Condition Detection Interrupt.
This interrupt is assigned to the software interrupt numbers 39-41.

When I°C mode is selected (IICM = 1), the interrupt sources of interrupt numbers 39-41 change to
the Start/stop Condition Detection Interrupt. If this interrupt is detected, check

the bus busy flag (BBS) to determine which condition, start or stop, has occurred. Note, however,
that the start/stop condition detection setup time and hold time in the M32C/83,85 do not always conform to
I°C bus standards. (See the Start/stop Condition Setup and Hold Times in Section 3.1, “Electrical
Characteristics.”)

[Related Registers]
UARTI special mode register (=0-4)

b7 b6 b5 b4 b3 b2 bl b0 UOSMR:0367,;, UTSMR:02E7,;, U2SMR:0337,,
[ofofofof[o]@] [U3SMR:0327,;, U4SMR:02F 7,

- [ICM]1 : Simple I’C Bus Mode
[ABC] Arbitration—lost is updated O:per bit or 1:per byte

UARTI Bus collision detection interrupt control register (i=0~4)
b7 b6 b5 b4 b3 b2 bl b0 BCN2IC : 008F ;¢ , BCNOIC/BCN3IC :0071,5 BCN1IC/BCN4IC: 00914

[ILVL] This bit select interrupt priority level

1~7:Interrupt priority level is selected

When not using interrupts, set these bits to 0 (disable).

[IR] 0:When interrupt requested,set this bit to 1.

External interrupt request cause select register
b7 b6 b5 b4 b3 b2 bl b0 IFSR:031F 44

These bits are irrelevant to the simple I2C bus.

UARTO/3 interrupt request cause select bit
0: UARTS3 bus collision, start/stop detection or fault error detection

1: UARTO bus collision, start/stop detection or fault error detection

UART1/4 interrupt request cause select bit
0: UART4 bus collision, start/stop detection or fault error detection

1: UARTT1 bus collision, start/stop detection or fault error detection

For interrupts to be generated upon interrupt request, set the I flag to 1.

Rev.1.00 2003.0822 Page 27 of 83 RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

Detecting the start and stop conditions (Continued from the preceding page)
[Timing Figure]
st :Start condition detection. sp :Stop condition detection

SCL SCL .
H
H
SDA ! i
[
—\i\— L SDA j
H i
H i
n 1 +
(st/sp detection interrupt (st/sp detection interrupt (st/sp detection interrupt st/sp detection interrupt
request generated) request generated) request generated) request generated)
STSPSEL = 0 (when st detected) STSPSEL = 1 STSPSEL = 0 (when sp detected) STSPSEL = 1(after completion of
IfBBS=1, (after completion of If BBS :.1, sp genfratlon)
then st is generated. st generation) then sp is generated. If BBS = .1,
IfFBBS =1, then sp is generated.
then st is generated.
i Setup time Hold time E
SCL
SDA

(Stat condition detection)

SDA

(Stop condition detection) 1
3-6 cycles (setup and hold times)

Cycle number shows main clock input oscillation frequency f(XIN)cycle number.

bl b LT T PR

Rev.1.00 2003.08.22 Page 28 of 83 RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

Sending out the start, stop and restart conditions

When the M32C/83,85 is operating as the master, the start, stop and restart conditions can be generated in hardware.
Set the STAREQ bit to 1 (= start), and a start condition is generated.

Set the STPREQ bit to 1 (= start), and a stop condition is generated (after waiting until SCL is released if SCL is low).
Set the RSTREQ bit to 1 (= start), and a restart condition is generated (after waiting until SCL is released if SCL is low).
Setting the STSPSEL bit to 1 outputs each condition generated above.

[Related Registers]

UARTI transmit/receive mode register (i=0-4)
b7 b6 b5 b4 b3 b2 bl b0 UOMR:0368,,, UTMR:02E8,, U2MR:0338,,

0 U3MR:0328,, U4MR:02F8,;

b [SMDI010: Simple I°C Bus Mode
[CKDIR] 0: Selected internal clock
[IOPOL]0:No reversed

UARTI transmit/receive control register 0 (=0-4)
b7 b6 b5 b4 b3 b2 bl b0 U0C0:036C,5, UTCO:02EC,;, U2C0:033C,

[1[of1[1]0]X] | | U3C0:032C,;, U4C0:02FCiq

[CLK1] [CLKO] selecte BRG count source

0 0 :flis selected, 0 1 :f8 is selected. 1 0 :f2n is selected. 1 1 :Must not be set
[CRD] 1 :CTS/RTS function disabled
[NCH] 1:SCL/SDA pin is N-channel open drain output(Note1)

[CKPOL] 0 :Transmit data is output at falling edge of transfer clock and receive data is input at rising edge
[UFORM] Transfer format is selected 1 :MSB first
Note 1: The UART2 SDA and SCL pins are N-channel open—drain pins.
CMOS output cannot be selected for these pins. When write , To write to bit 5, write 0.
UARTI bit rate generator (i=0-4)
b7 b0 UOBRG: 03695, UIBRG:02E9,; , U2BRG: 0339
| | U3BRG: 0329, , U4BRG: 02F9,

BRGi divides the count source by n+1

UARTi special mode register (i=0-4)
b7 b6 b5 b4 b3 b2 bl b0 UOSMR:0367,5, UTSMR:02E7;;, U2SMR:0337,
[ofofofo]o]@] [U3SMR:0327,4, U4SMR:02F7,

..................... [IICM]1 : Simple I2C Bus Mode
""""""""""""""""""""" [ABC] Arbitration—lost is updated O:per bit or 1:per byte

Rev.1.00 2003.08.22 Page 29 of 83 RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

Sending out the start, stop and restart conditions (Continued from the preceding page)

UARTI special mode register 2 (=0-4)
b7 b6 b5 b4 b3 b2 bl bO UOSMR2:0366,, U1SMR2:02E6,, U2SMR2:0336
[o]o ol | | | | U3SMR2: 0326, , U4SMR2: 02F6,,

[ICM2] (For details, see Table 1, “Functions during Simple 1°C Bus Mode (IICM = 1),”
for UARTI Special Mode Register 2 in Section 1.4, “Register Settings during Simple I°C Bus Mode.”)
[CSC] 0:Clock synchronous is disabled 1:Clock synchronous is enabled
[SWC] 0:SCL wait output is disabled 1:SCL wait output is enabled
[ALS] 0: SDA output stop is disabled 1:SDA output stop is enabled
[STAC] 0: UARTI initialize is disabled
[SWC2] 0:UARTi clock 1:SCL output “L”
[SDHI] 0: SDA output enable
In simple I°C bus mode, set this bit to 0.

UARTI special mode register 3 (=0-4)
b7 b6 b5 b4 b3 b2 bl b0 UOSMR3:0365,;, UTSMR3:02E5,, U2SMR3:0335,

L] | Jo]o]o 0| U3SMR3: 0325, , UASMR3: 02F5,

""""""""""""""""""" [CKPH] 0:Without clock delay 1:With clock delay

[DL2][DL1][DLO] This bit set digital delay time

000:Without delay 001:2-cycle of BRG count source

010:3-cycle of BRG count source 011:4—cycle of BRG count source

100:5-cycle of BRG count source 101:6—cycle of BRG count source
110: 7-cycle of BRG count source 111:8-cycle of BRG count source

UARTI special mode register 4 (=0-4)
b7 b6 b5 b4 b3 b2 bl bO UOSMR4:0364,5 , UTSMR4:02E4,, U2SMR4:0334,
[| Tol 111 | |] U3SMR4:0324,, , U4SMR4: 02F 4,

[STAREQ] 0:Clear 1:Start

- [RSTAREQ] 0:Clear 1:Start

[STPREQ] 0:Clear 1:Start

[STSPSEL] 1:Start/stop condition generate block selected
[ACKD] 0:ACK 1:NACK

[ACKC] 0:SI/0 data output

[SCLHI] 0:Disabled 1:Enabled

[SWC9] 0:SCL “L"hold disabled 1:SCL “L”hold enabled

Rev.1.00 2003.0822 Page 30 of 83 RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

Sending out the start, stop and restart conditions (Continued from the preceding page)
[Timing Figure]

STSPSEL=0 STSPSEL=1 STSPSEL=0 STSPSEL=1 STSPSELZO

Egipipl(qigipigigil
TLL,’:—’::‘"::: A

STAREQ=1

- TPREQ=1 .
Start condition generate Interrupt s Q Stop condition generate Interrupt

Rev.1.00 2003.08.22 Page 31 of 83 RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

Bus Busy Detection

Before a start condition can be sent out, it is necessary to confirm that the other device has released
control of the bus. In simple I’C bus mode of the M32C/83,85, the bus usage condition can be detected

by checking the bus busy flag (BBS).

The BBS flag is set to 1 when a start condition is detected or cleared to 0 when a stop condition is detected.
Therefore, if BBS = 1 when the master attempts to send a start condition,

it must wait until BBS is cleared to 0 before sending a start condition because the bus is being used by

the other device.

[Related Registers]
UARTI special mode register (i=0-4)

b7 b6 b5 b4 b3 b2 bl b0 UOSMR:0367,;, UISMR:02E7,;, U2SMR:0337,,
[ofofof[ofo]e® 1 U3SMR:0327,5, U4SMR:02F7,,

---------------------- [ICM]1: Simple I°C Bus Mode
""""""""""""""""" [ABC] Arbitration—lost is updated O:per bit or 1:per byte
"""""""""""""""""""""""" [BBS] 0: Bus is released; 1: Bus is being used. (Only writing 0 is accepted)

Rev.1.00 2003.08.22 Page 32 of 83 RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

SCL Pin Low Output Function 2

Although the bit displacement condition shown below can be avoided by using a clock delay function (see Section 2.6,
“Other Functions”), the explanation here is given assuming a diverted use of the conventional simple I’C bus
firmware that does not have this new function available. The serial I/O of the M32C/83,85 requires 1.5 transfer clock
(SCL) cycles at maximum before the transfer clock (SCL in simple ’C bus mode) is sent out

after writing transmit data to the transmit buffer. Furthermore, because the SCL synchronization function of the M32C/83,8!
(see Section 2.5, “Arbitrating Contention for Communication”) becomes effective after sending the first SCL pulse,

if another device sends the first clock pulse before the clock line (SCL) synchronization function becomes effective
(see the upper timing diagram), a bit displacement may occur.

For this reason, the M32C/83,85 has a SCL pin low output function to disable clock outputs from other devices
after sending a start condition. If this function is used, the transmitting device can start outputting

a low—level signal from the SCL pin at the same time it writes data to the transmit buffer,

thus keeping other devices in a wait state (see the lower timing diagram). This function is enabled

by setting the wait output bit 2 [SWC2] = 1, and is disabled by clearing this bit to 0.

[Related Registers]
UARTI special mode register 2 (=0-4)
b7 b6 b5 b4 b3 b2 bl b0 UOSMR2:0366,, U1SMR2:02E6,, U2SMR2:0336,

[of Te] 1 1 | | | U3SMR2:0326,5 , U4SMR2: 02F6,

I [ICM2] (For details, see Table 1, “Functions during Simple I2C Bus Mode (IICM = 1),”
for UARTI Special Mode Register 2 in Section 1.4, “Register Settings during Simple 1C Bus Mode.”)

[CSC] 0:Clock synchronous is disabled 1:Clock synchronous is enabled
[SWC] 0:SCL wait output is disabled 1:SCL wait output is enabled
[ALS] 0: SDA output stop is disabled 1:SDA output stop is enabled
[STAC] 0: UARTI initialize is disabled 1:UARTi initialize is enabled
[swc2] 1:SCL output “L”

[SDHI] 0: SDA output enable 1:SDA output disable (Hi-Z)

In simple I°C bus mode, set this bit to 0.

[Timing Figure]
When not using the SCL pin low output function

transmit data write

+‘ 1 2 - % Normally, a bit displacement occurs
M32G/83,85 i | |_“
SCL output
1 2] 3 -
Other device's | | | |
SCL output I
SDA | | W
& 4 s
t—-" SCL synchronous function

Max 1.5 SCL cycles E becomes effective

When using the SCL pin low output function

[swc2] =0
transmit data write [SWC2] =1
_LJ' L 2 N
M32C/83,85 . | |_
SCL output |_- H
i —
E Extended to more than | i
£ 1.5 SCL cycles ! !
] E | H
£ : | —
SDA i | A .f
H [:

-

I-_'.=" SCL synchronous function
becomes effective

Rev.1.00 2003.08.22 Page 33 of 83 :{ENES]_\S

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

2.3 Acknowledge

During data transmission/reception, an acknowledge signal (ACK) is attached every byte.

When the M32C/83,85 is operating as a transmitter, the presence of ACK returned from

the receiver needs to be detected for each byte transmitted. To this end, the M32C/83,85 has

two necessary functions in hardware: Acknowledge Detected Interrupt and Acknowledge Undetected Interrupt.
Also, when the M32C/83,85 is operating as a receiver in one—for—one communication, ACK can easily
be generated by setting data ‘0’ in the 9th bit of the transmit data. (For details, see Section 2.1,
“Method for Sending and Receiving Byte Data.”)

Before the Acknowledge Detected Interrupt and Acknowledge Undetected Interrupt can be used,

the I°C mode select bit 2 (IICM2) must be set to 0. This setting makes the interrupt source

of interrupt number 17, 19, 33, 35 or 37 and that of interrupt number 18, 20, 34, 36 or 38

usable as the Acknowledge Undetected Interrupt and Acknowledge Detected Interrupt, respectively.
In that case, the timing at which data is transferred from the UARTI receive buffer

to the receive buffer register is when the last receive clock pulse goes high.

(For details, see Table 1, “Functions during Simple I°C Bus Mode (IICM = 1),
for UARTi Special Mode Register 2 in Section 1.4, Register Settings during Simple I°C Bus Mode.”)

Rev.1.00 2003.08.22 Page 34 of 83 RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

Acknowledge Detected

If the SDA line on the transmitter side that has been released (i.e., in the high—-impedance state) is found low

at the rising edge of the 9th transmit clock pulse, the transmitter can recognize that ACK has been returned
from the receiver. For the M32C/83,85, the presence of ACK can be detected using

the “Acknowledge Detected Interrupt” function. This interrupt is assigned to the software interrupt

number 18, 20, 34, 36 or 38, and the interrupt source of that interrupt number is made the Acknowledge Detected
Interrupt only when I2C mode is selected (IICM = 1) and the I°C mode select bit 2 (IICM2) is set to 0.

[Related Registers]
UARTI special mode register (i=0-4)

b7 b6 b5 b4 b3 b2 bl b0 UOSMR:0367,;, UTSMR:02E7,;, U2SMR:0337
[ofofofo]o]@] [U3SMR:0327,;, U4SMR:02F7,,

[ICM]1 : Simple I’C Bus Mode
[ABC] Arbitration—lost is updated O:per bit or 1:per byte

UARTi special mode register 2 (=0-4)
b7 b6 b5 b4 b3 b2 bl b0 UOSMR2:0366,, U1SMR2:02E6,, U2SMR2:0336,
(ol [[T [[| [o U3SMR2:0326,, , USSMR2: 02F6,

[1ICM2] 0: Acknowledge detection.” undetected interrupt is disabled
[CSC] 0:Clock synchronous is disabled 1:Clock synchronous is enabled
[SWC] 0:SCL wait output is disabled 1:SCL wait output is enabled
[ALS] 0: SDA output stop is disabled 1:SDA output stop is enabled
[STAC] 0: UARTI initialize is disabled 1:UARTi initialize is enabled
[SWC2] 0:UARTi clock 1:SCL output “L”

[SDHI] 0: SDA output enable 1:SDA output disable (Hi-Z)

In simple 1%C bus mode, set this bit to 0.

UARTI receive interrupt control register (i=0~4) —When using the Acknowledge Detected Interrupt—
b7 b6 b5 b4 b3 b2 bl bO SORIC:0072,¢ , STRIC:0074,¢ , S2RIC:006B,4

[ILVL] This bit select interrupt priority level

1~7:Interrupt priority level is selected

When not using interrupts, set these bits to 0 (disable).

[IR] 0:When interrupt requested,set this bit to 1.
For the interrupt to be generated upon interrupt request, set the I flag to 1.

[Timing Figure]
(When CKPH=0) (When CKPH=1)
!) 8 ACK

CETR T - 1 2 - 8 ACK
scL _

Acknowledge detected
interrupt

i Acknowledge detected
request generated 1

i interrupt
""" - request generated
SDA I{ -]'l £ SDA .'{ :'| Pl
‘ - .

Transfer to the UiRB register

Transfer to the UiRB register

Rev.1.00 2003.08.22 Page 35 of 83 :{ENES]_\S

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

Acknowledge Undetected

If the SDA line on the transmitter side that has been released (i.e., in the high—-impedance state) is found high

at the rising edge of the 9th transmit clock pulse, the transmitter recognizes that ACK has not been returned
from the receiver. For the M32C/83,85, the absence of ACK can be detected using the “Acknowledge Undetected
Interrupt” function. This interrupt is assigned to the software interrupt numbers 17, 19, 33, 35 and 37,

and the interrupt sources of these interrupt numbers are made the Acknowledge Undetected Interrupt

only when I°C mode is selected (IICM = 1) and the I°’C mode select bit 2 (IICM2) is set to 0.

[Related Registers]
UARTI special mode register (i=0-4)

b7 b6 b5 b4 b3 b2 bl b0 UOSMR:0367,;, UTSMR:02E7,;, U2SMR:0337
[ofofofo]o]@] [U3SMR:0327,;, U4SMR:02F7,,

[ICM]1 : Simple I’C Bus Mode
[ABC] Arbitration—lost is updated O:per bit or 1:per byte

UARTi special mode register 2 (=0-4)
b7 b6 b5 b4 b3 b2 bl b0 UOSMR2:0366,, U1SMR2:02E6,, U2SMR2:0336,
(ol [[T [[| [o U3SMR2:0326,, , USSMR2: 02F6,

[1ICM2] 0: Acknowledge detection.” undetected interrupt is disabled
[CSC] 0:Clock synchronous is disabled 1:Clock synchronous is enabled
[SWC] 0:SCL wait output is disabled 1:SCL wait output is enabled
[ALS] 0: SDA output stop is disabled 1:SDA output stop is enabled
[STAC] 0: UARTI initialize is disabled 1:UARTi initialize is enabled
[SWC2] 0:UARTi clock 1:SCL output “L”

[SDHI] 0: SDA output enable 1:SDA output disable (Hi-Z)

In simple 1%C bus mode, set this bit to 0.

UARTi Transmit interrupt control register (i=0~4) —When using the Acknowledge Undetected Interrupt—
b7 b6 b5 b4 b3 b2 bl b0 SOTIC:0090,4 , S1TIC:0092,5 S2TIC:0089;¢

[ILVL] This bit select interrupt priority level

1~7:Interrupt priority level is selected

When not using interrupts, set these bits to 0 (disable).

[IR] 0:When interrupt requested,set this bit to 1.
For the interrupt to be generated upon interrupt request, set the I flag to 1.
[Timing Figure]

(When CKPH=0) (When CKPH=1)

1 2 8 ACK 1 2 8 ACK
_l_l_l_l__l_l_l_T_. soL ._|_|__|_|__T_l
SCL Acknowledge undetected —_— -
H interrupt ! Acknowledge undetected
i request generated i interrupt

y_i_ i _ request generated
H i
SDA 1{ | SDA 1{ !

f t

Transfer to the UiRB register Transfer to the UiRB register

Rev.1.00 2003.08.22 Page 36 of 83 :{ENES]_\S

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

2.4 Judgment of the Specified Local Address

When the M32C/83,85 is operating as a slave, the address sent from the master is compared with the local address
and when they match, the slave sends an acknowledge signal to the master. In simple I’C bus mode of the M32C/83,85,
these address comparison and acknowledge transmission are performed in software. However,

because the SCL pin must be held low to keep the master waiting during that time, two necessary functions are
provided in hardware: SCL Pin Low Output Function and ACK/NACK Transmit Function.

Rev.1.00 2003.0822 Page 37 of 83 RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

ACK/NACK Transmit Function

The M32C/83,85 can send ACK or NACK by setting it in the 9th bit of the transmit data, as well as by controlling the ACK
data bit (ACKD) after setting the ACK data output enable bit (ACKC) = 1.When the M32C/83,85 is operating as a slave, the
address sent from the master is compared with the local address and when they match, the slave sends an acknowledge
signal to the master. In simple I’C bus mode of the M32C/83,85, these address comparison and acknowledge transmission ar
performed in software. In that case, acknowledge transmission is accomplished by setting ACKC to 1 which enables ACK

or NACK to be sent out.

[Related Registers]
UARTI special mode register (i=0-4)

b7 b6 b5 b4 b3 b2 bl b0 UOSMR:0367,;, UTSMR:02E7,;, U2SMR:0337
[ofofofo]o]@] [U3SMR:0327,;, U4SMR:02F7,,

[ICM]1 : Simple I’C Bus Mode
[ABC] Arbitration—lost is updated O:per bit or 1:per byte

UARTi special mode register 2 (=0-4)
b7 b6 b5 b4 b3 b2 bl b0 UOSMR2:0366,5 U1SMR2:02E6,; U2SMR2:0336,

(ol [[[| | b U3SMR2:0326,5 , U4SMR2: 02F6,

[IICM2] 1:UARTI transfer/receive interrupt

[CSC] 0:Clock synchronous is disabled 1:Clock synchronous is enabled
""""""""""""""""""""""""" [SWC] 0:SCL wait output is disabled 1:SCL wait output is enabled
[ALS] 0: SDA output stop is disabled 1:SDA output stop is enabled
[STAC] 0: UARTI initialize is disabled 1:UARTi initialize is enabled
[SWC2] 0:UARTi clock 1:SCL output “L”

[SDHI] 0: SDA output enable 1:SDA output disable (Hi-Z)

In simple 1%C bus mode, set this bit to 0.

UARTI special mode register 4 (i=0-4)
b7 b6 b5 b4 b3 b2 bl b0 UOSMR4: 0364, , UISMR4:02E4,; U2SMR4:0334,,

[[T o] | | | U3SMR4:0324,, , U4SMR4: 02F 4,

S—— [STAREQ] 0:Clear 1:Start

[RSTAREQ] 0:Clear 1:Start

[STPREQ] 0:Clear 1:Start

[STSPSEL] 0:Serial 1/0 block

[ACKD] 0:ACK 1:NACK

[ACKC] 1:ACK data (ACKD) output

[SCLHI] O:Disabled 1:Enabled

[SWC9] 0:SCL “L”hold disabled 1:SCL “L"hold enabled

[Timing Figure]

ACKC=0 ACKC=1 ACKC=0

SDA::'::_ _:I:_ ;Ii: ¥ X X roox ,'::ACK/I;ACK

receive interrupt transmit interrupt

ACKD bit control

Rev.1.00 2003.08.22 Page 38 of 83 :{ENES]_\S

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

SCL Pin Low Output Function

In the I’C bus, the specified slave address is sent in the first byte after detecting a start condition (during

7-bit address mode). The slave requires processing to compare the 7 bits of received data in the first byte sent

from the master with its local address, as well as to generate (or not to generate) an acknowledge signal synchronously
with the 9th clock pulse. The M32C/83,85 has the SCL Pin Low Output Function to accomplish this processing.

This function enables the M32C/83,85 to output a low—level signal from the SCL pin synchronously with the negative
transition of the 9th SCL pulse after receiving the first 8 bits of data, thereby forcibly keeping the master waiting.
Then, when the M32C/83,85 has finished address comparison processing in software, it can generate (or not generate)
an acknowledge signal by using the ACK/NACK Transmit Function (explained earlier in this section). (When using the
M32C/83,85 in one—for-one communication, address reception and acknowledge transmission can be accomplished
following the method explained in Section 2.1, “Method for Sending and Receiving Byte Data.”)

This function is enabled to work by setting the wait output bit (SWC) to 1, and is disabled by setting SWC to 0.

Also, when the SCL pin is pulled low by this function, it can be returned high by setting SWC to 0. When using

this function to perform address comparison processing, be aware that the content of the receive buffer register is
read out before the last clock pulse goes high, the received data thus read out has its bit positions changed.

(See the transmit interrupt/receive interrupt timing diagrams in Section 1.1.)

[Related Registers]

UARTI special mode register 2 (i=0-4)
b7 b6 b5 b4 b3 b2 bl b0 UOSMR2:0366,5 UTSMR2:02E6,; U2SMR2:0336,,

[of [[| 1 U3SMR2:0326,, , U4SMR2: 02F6,

--------------------- [ICM2] 1:UARTi transfer/receive interrupt

[CSC] 0:Clock synchronous is disabled 1:Clock synchronous is enabled
[SWC] 1:SCL wait output is enabled

[ALS] 0: SDA output stop is disabled 1:SDA output stop is enabled
[STAC] 0: UARTI initialize is disabled 1:UARTi initialize is enabled
[SWC2] 0: UARTi clock 1:SCL output “L”

[SDHI] 0: SDA output enable 1:SDA output disable (Hi-Z)

In simple 12C bus mode, set this bit to 0.

[Timing Figure]

1 9 8 g Fem=msmmmmmem=— —m =
SCL !
1
Synchronously with this timing, * }
. the M32C/83,85 outputs a low—level signal (Address comparison processing SWC=0
swe=t from the SCL pin, thereby fixing SCL output low, and acknowledge processing) SCL Rel d

Ty

Receive interrupt request is
generated when [ICM2 = 1

Rev.1.00 2003.0822 Page 39 of 83 RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

Example of Local Address Judgment

The slave address is specified in one of two formats available: 7-bit address and 10-bit address.

The following explains how the received slave address is determined and responded to by using the 7-bit address
format as an example. The same applies to the 10-bit address format.

In the example below, note that a first byte receive interrupt is generated after receiving a start bit.

Note also that SWC is assumed to have been set to 1 (SCL Pin Low Output Function enabled) before receiving
the first byte, and that only part of the interrupt handling routine is shown.

[Flow chart]

* Settings in the main routine (Example)

*SWC =1 (SCL Pin Low Output Function is enabled)

-IICM2 = 1 (Interrupt source of interrupt number 18, 20, 34, 36 or 38 is used as the receive interrupt,
which is generated on the positive transition of the last clock pulse)

*S2RIC = 7 (Receive interrupt is enabled)

‘Iflag = 1 (Interrupts enabled) UARTIi receive buffer register (i=0~4)

UORB:036F 5 , 036E,; U1RB:02EF 5 02EE,q

[first byte receive interrupt] U2RB:033F;¢ 033E;; USRB:032F5 032E,
U4RB:02FF,4 , 02FE ¢
| Receive data is got | (b15) (b8)

b7 b0

b0 b7
DXIXIXT @] @ DXDX]rw| o766 [b5]b4] b3[b2] b1

Slave address ==

No

Local address : H
R/W R/W § ‘- Receive data

[ACKD bit set to 717 |

|:| Slave address

[Ackc bit set to 717 | Yes

[ACKD bit set to 70" |

[Ackc bitsetto 717 | * ACK is sent out.

——

UARTi special mode register 4 (=0-4)
SCL pin low output is released UOSMR4:0364,; , UISMR4:02E4,, U2SMR4:0334,
[swcl =0 U3SMR4:0324,; , U4SMR4:02F4,¢

b7 b6 b5 b4 b3 b2 bl b0
* [T L Tofo] T T

S—— [STAREQ] 0:Clear 1:Start
~ [RSTAREQ] 0:Clear 1:Start
" [STPREQ] 0:Clear 1:Start
[STSPSEL] 0:Serial 1/0 block
[ACKD] 0:ACK
[ACKC] 1:ACK data (ACKD) output
[SCLHI] O:Disabled 1:Enabled
[swcol

0:SCL “L"hold disabled

1:SCL “L"hold enabled

Rev.1.00 2003.08.22 Page 40 of 83 RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

2.5 Arbitrating Contention for Communication

When using the I°C bus in a multi-master environment, it is possible that two or more masters generate a start
condition attempting to start data transmission at the same time (giving rise to the need to arbitrate contention).
In the I°C bus system, contention for communication between multiple masters is resolved by arbitration.

Simple I°C bus mode of the M32C/83,85 provides two necessary functions in hardware to recover communication
in case of arbitration—lost. These functions are called the “Arbitration—lost Detection Function” and the ”

SDA Output Disable Function in Case of Arbitration—lost.” In addition to recovery from arbitration—lost,

simple I°C bus mode has the “SCL Synchronizing Function” as a means of arbitrating contention

for communication based on clock synchronization.

Rev.1.00 2003.08.22 Page 41 of 83 RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

Arbitration—lost Detection Function (i = 0-4)

Simple I’C bus mode of the M32C/83,85 has an arbitration—lost detection flag [ABT]. This flag is assigned

to the UARTI Receive Buffer Register bit 3. If unmatching of the internal data level and the SDA level is detected on
the positive transition of SCL, the arbitration—lost detection flag [ABT] is set to 1. The arbitration—lost detection flag
control bit [ABC] may be used to choose whether the arbitration—lost detection flag is to be updated every bit (= 0)
or updated every byte (= 1). The ABC bit must be fixed to 0 when both FC mode select bit (IICM)

and I’C mode select bit 2 (ICM2) = 1. The SDA output is high and SDA input is low at the time an acknowledge
signal is received, causing the arbitration—lost detection flag to be set. Therefore, the arbitration—lost detection flag
must be cleared to 0 before transmission can start.

[Related Registers]

UARTi receive buffer register (i=0~4) UORB:036F 5 , 036E,; U1RB:02EF,; 02EE,q
(b15) (b8) U2RB:033F,; 033E,; U3RB:032F 5 032,
b0 b7 b0 U4RB:02FF,s, 02FE,q

XIXDTofeX}I [T T T TP T T

receive data

[ABT] 0:No detection (win) 1:Detection(lost)
(Only writing “0” is accepted.)

UARTI special mode register (i=0-4)

b7 b6 b5 b4 b3 b2 bl bO UOSMR:0367,;, UTSMR:02E7,;, U2SMR:0337,,

[ofofof[of[o]@]]1] U3SMR:0327,5, U4SMR:02F7,,

[CM]1 : Simple I°C Bus Mode
[ABC] Arbitration—lost is updated O:per bit or 1:per byte

Rev.1.00 2003.08.22 Page 42 of 83 RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

SDA Output Disable Function in Case of Arbitration—lost

If the master detects occurrence of an arbitration—lost condition, it must turn the SDA output off at that point

in time. Simple I’C bus mode of the M32C/83,85 allows to select the function to automatically turn the SDA output off
in hardware when an arbitration—lost condition occurs. This function is enabled by setting the SDA output stop bit
[ALS] to 1, and is disabled by setting it to 0. If the SDA output is turned off by this function, it can be turned back on
again by clearing the SDA output stop bit [ALS] or the arbitration—lost detection flag [ABT]. Note that while this
function is enabled, an arbitration—lost condition is assumed to have occurred when receiving an acknowledge

signal and the SDA output is turned off. Therefore, clear the arbitration—lost detection flag [ABT] to 0 before sending
the next byte data. Also make sure the arbitration—lost detection flag control bit [ABC] is fixed to 0.

[Related Registers]
UARTI special mode register 2 (i=0-4)

b7 b6 b5 b4 b3 b2 bl b0 UOSMR2:0366,, UTSMR2:02E6,; U2SMR2:0336,
[of [1 I:] | | | U3SMR2:0326,, , U4SMR2: 02F6,

E— [ICM2] (For details, see Table 1, “Functions during Simple I?C Bus Mode (IICM = 1),”

i for UARTI Special Mode Register 2 in Section 1.4, “Register Settings during Simple I°C Bus Mode.”)
; - [CSC] 0:Clock synchronous is disabled 1:Clock synchronous is enabled
B [SWC] 0:SCL wait output is disabled 1:SCL wait output is enabled
[ALS] 1:SDA output stop is enabled
[STAC] 0: UARTI initialize is disabled 1:UARTi initialize is enabled
[SWC2] 0: UARTi clock 1:SCL output “L”
[SDHI] 0: SDA output enable 1:SDA output disable (Hi-Z)
In simple 12C bus mode, set this bit to 0.

[Timing Figure]

seL I S O R

M32C/83,85 | 1 i
SDA output —— 1 SDA output OFF

i In case of Arbitration—lost

Rev.1.00 2003.08.22 Page 43 of 83 RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

SCL Synchronizing Function

If the M32C/83,85 is connected to a device whose processing speed is slow, a situation may occur that some other
device pulls the SCL line low to forcibly keep the clock sent from the master waiting. Simple C bus mode of

the M32C/83,85 has the function called the “SCL Synchronizing Function” which automatically places

the M32C/83,85 into a wait state when its SCL line is pulled low by other devices, and when the SCL line is returned
high, places it out of the wait state. This function is enabled to work by setting the clock synchronization bit

[CSC] to 1, and is disabled by setting it to O.

This function can only be used when using the M32C/83,85 as the master (internal clock mode).
[Related Registers]

UARTI special mode register 2 (i=0-4)
b7 b6 b5 b4 b3 b2 bl b0 UOSMR2:0366,; UTSMR2:02E6,; U2SMR2:0336,,

[of [[[| U3SMR2:0326,, , U4SMR2: 02F6,

[ICM2] (For details, see Table 1, “Functions during Simple I?C Bus Mode (IICM = 1),”
for UARTI Special Mode Register 2 in Section 1.4, “Register Settings during Simple I°C Bus Mode.”)
[CSC] 1:Clock synchronous is enabled
[SWC] 0:SCL wait output is disabled 1:SCL wait output is enabled
[ALS] 0: SDA output stop is disabled 1:SDA output stop is enabled
[STAC] 0: UARTI initialize is disabled 1:UARTI initialize is enabled
[SWC2] 0: UARTi clock 1:SCL output “L”
[SDHI] 0: SDA output enable 1:SDA output disable (Hi-Z)
In simple 12C bus mode, set this bit to 0.

[Timing Figure]

SCL pin 1 i
I
H
1
i
————y e :
M32C/83,85' s internal SCL IR HTE
Although the M32C/83,85's internal SCL output is originally high, The M32C/83,85's internal SCL output goes high,
it changes to low when the SCL line is pulled low, but because the SCL line is held low, the timer stops
and the timer starts counting the low-level interval. counting the high-level interval during this period.
—_ ; -
M32C/83,85's UART clock ! i .
1

Although the M32C/83,85's internal SCL output goes high,
this remains low because the SCL line is held low.

M320/83,85_|||||||||||||||||||
BRG clock
!
i 1 2 3 4 5 6 7 8 9 i
soL T U UL
L
! SCL Synchronizing Function is effect
transmit data write during this interval

.

Rev.1.00 2003.08.22 Page 44 of 83 RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

2.6 Other Functions
In addition to the functions described in Sections 2.1 to 2.5, the simple I°C bus mode of
the M32C/83,85 has the following function in hardware that facilitates I°C bus control.

SDA Output Disable Function

When the M32C/83,85 is operating as a slave, if the address specified by the master and the local address are found not
matching by address determination in the first byte after receiving a start condition, the M32C/83,85 must turn the SDA
output off(placed in the high—impedance state). To turn the SDA output off in such a case, set data 'IFFh’ in the
M32C/83,85's transmit buffer register every 9th SCL pulse (every time a receive interrupt request is generated).

Or the M32C/83,85's SDA Output Disable Function may be used to turn the SDA output off. This function is enabled

by setting the SDA output disable bit [SDHI] to 1, in which case the M32C/83,85's SDA output can be placed

in the high—-impedance state without having to set data '1FFh’ in the transmit buffer register. This function is disabled

by setting the SDA output disable bit [SDHI] to 0, in which case the value set in the transmit buffer is output
synchronously with the next SCL input.

[Related Registers]
UARTI special mode register 2 (=0-4)

b7 b6 b5 b4 b3 b2 bl b0 UOSMR2:0366,;, UTSMR2:02E6,, U2SMR2:0336,
(ol [[| | || U3SMR2: 0326, , U4SMR2: 02F6,,

b [ICM2] (For details, see Table 1, “Functions during Simple 1°C Bus Mode (IICM = 1),”
for UARTI Special Mode Register 2 in Section 1.4, “Register Settings during Simple I°C Bus Mode.”)
[CSC] 0:Clock synchronous is dsiabled 1:Clock synchronous is enabled
[SWC] 0:SCL wait output is disabled 1:SCL wait output is enabled
[ALS] 0: SDA output stop is disabled 1:SDA output stop is enabled
[STAC] 0: UARTI initialize is disabled 1:UARTi initialize is enabled
[SWC2] 0:UARTi clock 1:SCL output “L”
[SDHI] 1:SDA output disable (Hi-Z)
In simple I°C bus mode, set this bit to 0.

Rev.1.00 2003.08.22 Page 45 of 83 RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

UARTI Initialization Function (i = 0-4)

Simple I’C bus mode of the M32C/83,85 has the function to automatically initialize UARTi synchronously with the timing
at which a start condition is detected. This function is used when the M32C/83,85 is operating as a slave.

This function is enabled by setting the UARTi initialization bit [STAC] to 1, and is disabled by setting it to O.

When a start bit is detected, UARTI is initialized in the manner described below.

(1) The transmit register is initialized, and the content of the transmit buffer register is transferred to the

transmit register. This eliminates the need to set data in the transmit buffer register newly again when receiving data,
and UARTI starts sending data synchronously with the next clock pulse supplied. However, because the transmit data
here is the same data that was being transmitted last, the SDA output disable bit [SDHI] must be set to 1 in order

to disable the transmit data from being output.

(2) The receive register is initialized, and UARTI starts receiving data synchronously with the next clock pulse
supplied. No overrun error occurs at this time, because the receive register is initialized before reading data out of
the receive buffer register.

(3) The wait output bit [SWC] is set to 1. The SLC pin low output function is thereby enabled, and a low-level signal is
output from the SCL pin on the negative transition of the 9th transfer clock pulse.

This function can only be used when an external clock is selected. Note also that if this function is enabled

when UARTI starts sending or receiving, the transmit buffer empty flag does not change state.

[Related Registers]
UARTI special mode register 2 (i=0-4)

b7 b6 b5 b4 b3 b2 bl b0 UOSMR2:0366,, U1SMR2:02E6,; U2SMR2:0336,
(of [I:] 1 | | | U3SMR2:0326,, , U4SMR2: 02F6,

E— [ICM2] (For details, see Table 1, “Functions during Simple I?C Bus Mode (IICM = 1),”
i for UARTI Special Mode Register 2 in Section 1.4, “Register Settings during Simple I°C Bus Mode.”)
- [CSC] 0:Clock synchronous is disabled 1:Clock synchronous is enabled
"""""""""""""""""""""""" [SWC] 0:SCL wait output is disabled 1:SCL wait output is enabled
[ALS] 0: SDA output stop is disabled 1:SDA output stop is enabled
[STAC] 0: UARTI initialize is disabled 1:UARTi initialize is enabled
[SWC2] 0: UARTi clock 1:SCL output “L”
[SDHI] 0: SDA output enable 1:SDA output disable (Hi-Z)
In simple 12C bus mode, set this bit to 0.

Rev.1.00 2003.08.22 Page 46 of 83 RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

SCL Output Stop Function

When using the I’C bus in a multi-master environment, it is possible that while the M32C/83,85 is operating as

the master sending or receiving data, other masters will generate a stop condition. In such a case, the M32C/83,85
must release SCL and SDA to terminate communication. The SDA Output Disable Function in Case of Arbitration—lost
(see Section 2.5, “Arbitrating Contention for Communication”) may be used to release SDA. The SCL Output Stop
Function described here may be used to release SCL. This function is enabled by setting SCLHI to 1.

[Related Registers]

UARTI special mode register (i=0-4)
b7 b6 b5 b4 b3 b2 bl bO UOSMR:0367,5, UTSMR:02E7,5, U2SMR:0337,

[ofofofo]o]e® 1 U3SMR:0327,;, U4SMR:02F7,,

---------------------- [ICM]1: Simple I°C Bus Mode
[ABC] Arbitration—lost is updated O:per bit or 1:per byte

[BBS] 0: Bus is released; 1: Bus is being used. (Only writing 0 is accepted)

UARTi special mode register 4 (=0-4)
b7 b6 b5 b4 b3 b2 bl b0 UOSMR4: 03645 , UISMR4:02E4,; U2SMR4:0334,,

[[][] U3SMR4:0324,, , UASMR4: 02F4,,

[STAREQ] 0:Clear 1:Start

[RSTAREQ] 0:Clear 1:Start

... [STPREQ] 0:Clear 1:Start

[STSPSEL] 0:Serial I/0 block 1:Start/stop condition generate block selected
[ACKD] 0:ACK 1:NACK

[ACKC] 0:S1/0 data output 1:ACK data (ACKD) output

[SCLHI] 1:Enabled

[SWC9] 0:SCL “L"hold disabled 1:SCL “L”hold enabled

[Timing Figure]

Stop condition is generated(BBS=0)
SCL output stop

SGL pin | |

M32C/83,85's internal SCL | |

INIEIEE g T —

M32C/83,85's internal SDA l'—-l -
—_—

-

Arbitration lost is generated
| SDA output stop

Other device's SDA f L

I 1 b

2

R —

Rev.1.00 2003.08.22 Page 47 of 83 RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

SCL Pin Low Output Function 2

When performing slave transmission in the I’c bus, the master generates (or not generate) an acknowledge signal
synchronously with the 9th clock pulse. At this time, the slave checks for acknowledge and if an acknowledge signal
is detected, continues to send (by setting the next transmit data). If an acknowledge signal is not detected, the slave
terminates transmission. As a function to perform this processing, the M32C/83,85 has SCL Pin Low Output Function 2.
This function enables the M32C/83,85 to output a low—level signal from the SCL pin synchronously with the negative
transition of the 9th SCL pulse after receiving the first 9 bits of data (ACK/NACK), thereby forcibly keeping the
master waiting. Then, when the M32C /83,85 has finished acknowledge determination processing in software,

it can continue to send or terminate transmission as necessary.

This function is enabled to work by setting the wait output bit 2 [SWC9] to 1, and is disabled by setting it to 0.

If the SCL pin is pulled low (= 0) by this function, it can be returned high by setting SWC9 to 0.

[Related Registers]

UARTI special mode register 4 (i=0-4)
b7 b6 b5 b4 b3 b2 bl b0 UOSMR4: 0364, , UISMR4:02E4,; U2SMR4:0334,,

]| U3SMR4:0324,, , U4SMR4: 02F 4,

S— [STAREQ] 0:Clear 1:Start

[RSTAREQ] 0:Clear 1:Start

[STPREQ] 0:Clear 1:Start

[STSPSEL] 0:Serial I/0 block 1:Start/stop condition generate block selected
[ACKD] 0:ACK 1:NACK

[ACKC] 0:S1/0 data output 1:ACK data (ACKD) output

[SCLHI] O:Disabled 1:Enabled

[SWC9] 1:SCL “L"hold enabled

[Timing Figure]

: 9 9 1 SWC9=0
SCL i SCL is released

(Acknowledge determination
processing and transmission

On this negative transition, continue/terminate processing)

the SCL line is pulled low by the
M32C//83,85, with SCL thereby fixed low. [r o

SWC9=1

™

Transmit interrupt request is
generated when [ICM2 = 1

Rev.1.00 2003.08.22 Page 48 of 83 RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

Clock Delay Function

When using the M32C/83,85 in the I’‘c bus, UARTi (i = 0-4) may be used by making most of a clock delay function.
This function makes it possible to output a clock waveform in which SCL is low at the beginning and again low at end,
with the result that start and stop conditions are connected smoothly. Furthermore, because a write to

the UiRB register occurs on the negative transition of the 8th SCL pulse and the positive transition

of the 9th SCL pulse, it is made possible to receive the ACK/NACK bit. What's more, if ICM2 = 1, a transmit interrupt
can be generated after receiving the ACK/NACK bit. This function is enabled by setting IICM to 1 and then CKPH to 1.

[Related Registers]

UARTI special mode register (i=0-4)
b7 b6 b5 b4 b3 b2 bl b0 UOSMR:0367,;, UISMR:02E7,;, U2SMR:0337,,
[ofofofof0o]e® 1 U3SMR:0327,,, U4SMR:02F7,,

- [ICM]1: Simple I°C Bus Mode
[ABC] Arbitration—lost is updated O:per bit or 1:per byte

""""""""""""""""""""""" [BBS] 0: Bus is released; 1: Bus is being used. (Only writing 0 is accepted)

UARTi special mode register 3 (=0-4)
b7 b6 b5 b4 b3 b2 bl b0 UOSMR3:0365,5, UTSMR3:02E5,, U2SMR3: 0335,
L 1] Jolofofi]o] U3SMR3:0325,; , UsSMR3:02F5,

................................ [CKPH] 1:With clock delay
[DL2][DL1][DLO] This bit set digital delay time

000:Without delay 001:2-cycle of BRG count source

010:3-cycle of BRG count source 011:4-cycle of BRG count source

100:5—cycle of BRG count source 101:6—cycle of BRG count source

110: 7—cycle of BRG count source 111:8-cycle of BRG count source

[Timing Figure]
*CKPH = 0 (no clock delay)
IICM =1 (12C mode)
IICM2 = 1 (UART transmit/receive

e 011) O A i

SDA j(mxoe;{os:l:m}{_m ¥ b2 X b1 X DO];‘:Ds

receive interrupt transmit interrupt

-CKPH = 1 (clock delay inserted)
[ICM =1 (12C mode) Transfer to the UiRB register
[ICM2 = 1 (UART transmit/receive interrupt)

811 FERTRRE] oy A g gy Ty R g g A g i
SDA _::l[m W o X5 W D4 Wz X o2 X D1 Ko {DB

receive interrupt transmit interrupt

t

Transfer to the UiRB register (twice)

Rev.1.00 2003.08.22 Page 49 of 83 :{ENES]_\S

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

UART Output Digital Delay Function

When performing transmission in the I’c bus, the SDA output data must be changed over while SCL remains low.
If SDA changes state while SCL is high, a start or stop condition may be detected erratically.

The M32C/83,85 uses the UART Output Digital Delay Function to ensure that the SDA output data will be changed
while SCL is low.

This function is enabled by setting ICM to 1 and then DL0-2 to any value between '1’ to '7.

[Related Registers]

UARTI special mode register (i=0-4)
b7 b6 b5 b4 b3 b2 bl b0 UOSMR:0367,;, UISMR:02E7,;, U2SMR:0337,,
[ofofofo]o]e® 1 U3SMR:0327,;, U4SMR:02F7,,

---------------------- [ICM]1: Simple I°C Bus Mode
[ABC] Arbitration—lost is updated O:per bit or 1:per byte

[BBS] 0: Bus is released; 1: Bus is being used. (Only writing 0 is accepted)

UARTi special mode register 3 (=0-4)
b7 b6 b5 b4 b3 b2 bl b0 UOSMR3:0365,5, UTSMR3:02E5,, U2SMR3: 0335,
L1] Jolofofi]o] U3SMR3:0325,5 , UASMR3: 02F5,

................................ [CKPH] 1:With clock delay

[DL2][DL1][DLO] This bit set digital delay time

000:Without delay 001:2-cycle of BRG count source

010:3-cycle of BRG count source 011:4-cycle of BRG count source
100:5—cycle of BRG count source 101:6—cycle of BRG count source

110: 7—cycle of BRG count source 111:8-cycle of BRG count source

UARTI transmit/receive control register 0 (i=0-4)
b7 b6 b5 b4 b3 b2 bl b0 U0C0:036C,5, U1C0:02EC,5, U2C0:033C,q
[1[of1[1]0]X] | | U3C0:032C,5, U4CO:02FCyq

B [CLK1] [CLKO] selecte BRG count source

0 0 :flis selected, 0 1 :f8 is selected, 1 0 :f2n is selected. 1 1 :Must not be set
[CRD] 1 :CTS/RTS function disabled
[NCH] 1:SCL/SDA pin is N-channel open drain output(Note1)

[CKPOL] 0 :Transmit data is output at falling edge of transfer clock and receive data is input at rising edge
[UFORM] Transfer format select :MSB first
Note 1: The UART2 SDA and SCL pins are N—channel open—drain pins.

CMOS output cannot be selected for these pins. When write , To write to bit 5, write 0.

[Timing Figure]

SCL |

S0 A A X_ XA X X
! A A A

}

N
Nl e

[DL2~0]=

SDA output changeover timing when DL2-0 are set to any value between “0” to”7”

Rev.1.00 2003.08.22 Page 50 of 83 RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

Chapter 3

Precautions on Simple 1°C Bus Mode

3.1 Electrical Characteristics

This chapter describes the precautions and limitations to be observed when using simple I°C bus mode
of the M32C/83,85 to control the I°C bus protocol.

Rev.1.00 2003.08.22 Page 51 of 83 RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

3.1 Electrical Characteristics
The electrical characteristics of the M32C/83,85 do not all conform to and partly differ from I°C bus standard:
The I°C bus standards are listed in the table below.

Parameter Symbol [Standard mode High—speed mode |Unit

Min. Max. Min. Max.

Low Level Input Voltage: VIL \Y

When the input level is constant -0.5 15 -0.5 15

When the input level changes with VDD -0.5 0.3vDD [-0.5 0.3vDD

High Level Input Voltage: VIH \Y

When the input level is constant 3.0 *1) 3.0 *1)

When the input level changes with VDD 0.7VDD |*1) 0.7VDD |*1)

Schmitt Trigger Input Hysteresis: Vhys \%

When the input level is constant n/a n/a 0.2 —

When the input level changes with VDD n/a n/a 0.05VDD|—

Pulse width of spikes suppressed by an input tsp n/a n/a 0 50 ns

filter

Low Level Output Voltage (Open—drain \%

or open—collector):

When sink current = 3 mA VOL1 0 04 0 04

When sink current = 6 mA VOL2 |n/a n/a 0 0.6

Output fall time from VIH min. to VIL max. when |toF ns

buscapacitance = 10 pF to 400 pF (up to 6 mA

through VOL2parallel resistance):

When maximum sink current at VOL1 =3 mA - 250 ? 20+0.1Cb 250

When maximum sink current at VOL2 = 6 mA n/a n/a 250 ¥

Input current at each 1/0 pin when input voltage [li Ua

= 0.4V to 0.9 VDD max. —10 |10 —10° |10?

Capacitance of each 1/0 pin Ci — 10 — 10 pF

n/a = Not available

1) Maximum VIH = VDD max. + 0.5 V

2) Cb = capacitance (in pF) on one bus line. The maximum tF (300 ns) of the SDA and SCL bus lines are
greater than the maximum tOF (250 ns) at the output stage.

Consequently, series protective resistors (Rs) can be connected between the SDA/SCL pins and the
SDA/SCL bus lines without causing the fall time to exceed the maximum rated tF.

3) It is necessary that when VDD supply is cut off, /O pins will not disturb the SDA and SCL lines.

Rev.1.00 2003.0822 Page 52 of 83 RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

Start/Stop Condition Setup and Hold Times
The M32C/83,85's start/stop condition detection setup and hold times do not always

conform to I°C bus standards.(During high-speed mode)

The M32C/83,85's start/stop condition detection setup and hold times during this mode
are given below.

Setup times Hold time
H

SCL .E E I_

Setup time > 3-6 cycles Note 1 : i i

Hold time > 3-6 cycles Note 1 SDA ! i
(Start Condition) E H
SDA H i i

(Stop Condition)

Note 1: The duration of time here is indicated by the number of main clock input f(Xin) cycles.

In high—speed mode I’C bus standards, both the start condition and stop condition setup and hold
times are stipulated to be 600 ns at minimum. On the other hand, the M32C/83,85's setup and hold
times are equal to 6 f(Xin) cycles at minimum. Consequently, if the main clock f(Xin) of 10 MHz

is used, the setup and hold times of the M32C/83,85's simple I°C bus is 600 ns at minimum, compliant
with the high—speed mode I°C bus standards. However, if the main clock of less than 10 MHz is used,
the M32C/83,85’s setup and hold times do not satisfy the high—-speed mode I’C bus standards.

Rev.1.00 2003.0822 Page 53 of 83 RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

High and Low Level Input Voltages
The electrical characteristics of the M32C/83,85 are such that when operating with 2.7 V to 5.5 V,
the high and low level input voltages respectively are guaranteed to be
High level input voltage (VIH) = 0.8 Vcc min.
Low level input voltage (VIL) = 0.2 Vcc max.
These values differ from I°C bus standards, in which VIH and VIL respectively are stipulated to be
3 V and 1.5 V when operating with 5 V, or 0.7 V and 0.3 V when operating with a supply voltage
other than that.

Also, the M32C/83,85's output low voltage (VOL) is guaranteed to be 2.0 V max.when Vcc =5V
and IOL = 5 mA. This also differ from I°C bus standards, in which VOL is stipulated to be 0.6 V

max. (at IOL = 6 mA).

In the standard characteristics of the M32C/83,85, however, the output low voltage (VOL) is approx.
0.6 V when Vcc =5V and IOL = 5 mA.

3.2 Limitations on Maximum Transfer Rate by BRG Count Source
The time that the M32C/83,85 requires before it can recognize the SCL level depends on the
sampling period. At maximum, this is equivalent to three BRG count source clock cycles.
Therefore, the maximum transfer rate of the I2C bus that can be connected to the simple
I°C bus of the M32C/83,85 is limited by the operating clock frequency of the M32C/83,85 and the
clock period of the BRG count source selected by the BRG count source setting bit.
Unless the I°C bus is used at the transfer rate that satisfies the condition given below,
a bit displacement may occur.
Maximum transfer rate of I°C bus (Hz) < BRG count source (Hz) / 3
Example: When the original oscillator frequency is 10 MHz and the selected BRG count source is fc32,
Maximum transfer rate of I°C bus (Hz) < 10 MHz / 32 / 3 = 104 Kbps
The maximum transfer rate of the I°C bus in this case is 104 Kbps.

3.3 Limitations on Maximum oscillation frequency for Simple I°C Bus mode
The maximum oscillation frequency is depend on M32C/83,85 chip’s Maximum oscillation frequency.
Therefore, The maximum oscillation frequency is 30MHz.

Rev.1.00 2003.08.22 Page 54 of 83 RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

4.0 Reference

Renesas Technology Corporation Semiconductor Home Page
http://www.renesas.com

E—mail Support
E—mail: support_apl@renesas.com

Data Sheet
M32C/83 group REV.1.02
(Use the latest version on the home page: http://www.renesas.com)

Rev.1.00 2003.0822 Page 55 of 83 RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

- Appendix
I’C Bus Controller Software Specifications

*This program is provided for only reference purposes, and does not guarantee the communication
operation of the I°C bus in user applications. Furthermore, because the communication operation
in a system cannot be evaluated with this software alone,

it is recommended that the communication operation be evaluated in the user’s final system.

Table of Contents

1. Overview

2. Functional Description
2.1 Addresses
2.2 Transfer Rate
2.3 Transfer Data Length
2.4 Multi-Masters

3. Hardware Description

4. How to Use
4.1 How to Incorporate
4.2 Memory Used
4.3 Functions

5. Program List

Rev.1.00 2003.08.22 Page 56 of 83 :{ENES]_\S

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

1. Overview

This software is designed to implement the I?C bus communication protocol by controlling the simple
I°C bus hardware built into the M32C/83 group of microcomputers.

The I°C bus communication protocol can be complied with when used under the conditions given below.
<{Operating condition>
Oscillator frequency: 20 MHz (zero wait, not divided)
[Note] If used without 20MHz,UiBRG and UiSMR3's DL2-0 must be set suitable value.
For reference about it,see Method for Sending and Receiving Byte Data in Section 2.1, the clock delay function in Section 2.6,
Chapter 3 Precautions on Simple 12C Bus Mode
{Specificational limitations>
-Communication between only 7-bit address devices is supported.
*No special addresses (e.g., general call address) can be used.
-Coexistence with other I°C bus compatible protocols such as C-BUS and M3L-BUS is not supported.
* No communication formats in which slaves are switched over by using a restart condition cannot be
put onto the bus. (Communication may be adversely affected.)
*Because the bus collision interrupt vector is shared, UARTO and UART3 cannot be used in
I’C bus mode at the same time. Nor can UART1 and UART4 be used at the same time.

2. Functional Description

2.1 Addresses
<{Master device>
Send and receive data to and from slave devices with 7-bit addresses.
<Slave devices>
Have a 7-bit address.

Note: Transmission/reception to and from special addresses (e.g., general call address) is not supported.

2.2 Transfer Rate
The useful transfer rate is 0 to 100 Kbps. Therefore, communication with high—speed mode masters
cannot be performed.
2.3 Transfer Data Length
<{Master device>
Can send and receive 1 to 256 bytes of data.
<Slave devices>
The data length is passed to iic_index which is the argument to the iicO_slave_end() function.
Its range is 1 to 256.

2.4 Multi—-Masters
Multiple devices connected to the I°C bus can send data to other devices.

3. Hardware Description

The M32C/83's UARTI (i = 0-4) and its internal simple I°C bus hardware only are used to implement

the I°C bus communication protocol. The appropriate pullup resistors that suit the user system need
to be selected.

M32/83
A.L s
L
e IT
UARTi 2
I . SDA ["CBus
-Simple I’CBus
|\ HA/ W

Rev.1.00 2003.08.22 Page 57 of 83 RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

4. How to Use
4.1 How to Incorporate
[ncrt.a30]
(1) Add the line shown below as the last section entry in the near area.

It determines a location in which the 10 bytes of RAM used by the I’C bus software is reserved.

.section iicbus, data, align

(2) Add the interrupt vectors shown below. (i= 0-4)

Software interrupt numbers 39, 40 and 41 (bus collision detection interrupt)
.glb s?s_int

Iword s?s_int (? = 0-4)

Software interrupt numbers 18, 20, 34, 36 and 38 (UARTi receive interrupt)
.glb s?r_int

Iword s?rint (? = 0-4)

Software interrupt numbers 19, 33, 35 and 37 (UARTi transmit interrupt)
.glb s?t_int

Iword s?t_int (? = 0-4)

[Access—inhibited registers]
Do not modify the registers listed below.

(i = 0-4. However, this is limited to the UART that is using the 1’c bus.)

Register name bit

7/6[(5]14]13[2[1]0
UARTI Bus collision detection interrupt control register | X | X| X | X[X | X| X | X
UARTi Transmit control register X[x| x| x| x| x|x]|x
UARTi Receive control register X[x| x| x| x| x|x]|x
UARTi Special mode register X[x| x| x| x| x|x]|x
UARTI Special mode register 2 X[x| x| x| x| x|x]|x
UARTI Special mode register 3 X[x| x| x| x| x|x]|x
UARTI Special mode register 4 X[x| x| x| x| x|x]|x
UARTi Transmit/receive mode register X[X| X[X]|X]|X|[X]|X
UARTI Bit rate generator X|X| x| x|x|x|x]|x
UARTI Transfer buffer register X[x| x| x| x| x|x]|x
UARTi Transmit/receive control register 0 X[X]| X[X]|X]|X|[X]|X
UARTi Transmit/receive control register 1 X[X]| X[X]|X]|X|[X]|X
UARTi Receive buffer register X[x| x| x| x| x|x]|x
Port P6 register x1| x1|O[O] x| xol O] O
Port P6 direction register x1| x 1| QO] x0 xo| O] O
Port P7 register O|O|O|O|O|0O] x 2 x2
Port P7 direction register O|O|O|O|O|0O] x 2 x2
Port P9 register x4 x4 O|O|O| x3|x31 O
Port P9 direction register x4 x4 O|O|O| x3|x31 O
Function select register AO x1| x 1| QO] x0] xo| O] O
Function select register Al O|O|O|O|O|0O] x 2 x2
Function select register A3 x4 x4 O|O|O| x3|x31 O
Function select register BO x1| x 11 QO] x0] xo| O] O
Function select register B1 O|O|O|O|O|0O] x 2 x2
Function select register B3 x4 x4 O|O|O| x3|x31 O
Function select register C O|O|O|O|O|0O] x 2 x2
External interrupt request cause select register x| xAlOQ|O]O[O]|O|O

xi: Access is inhibited when using UARTI as the simple I°C bus. (i = 0-4)
xA: Access is inhibited when using UART] as the simple I°C bus. (G=0o0r3)
xB: Access is inhibited when using UARTk as the simple I°C bus. (k = 1 or 4)

Rev.1.00 2003.0822 Page 53 of 83 RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

4.2 Memory Used
RAM size: 10 bytes
ROM size: 1,430 bytes

4.3 Functions
- Initialization function:
char iic_ini (char SWITCH);
Description: This function initializes the I2C bus to allow for transmission/reception to be
performed on it. When this processing is completed and interrupts are enabled, UARTI starts
operating as a slave device. Furthermore, by calling the functions to start master
transmission/reception described below, UARTi can operate as a master device.

Arguments SWITCH 0:1°C facility disabled

1: I°C facility enabled
Returns 0: Failed

1: Succeeded
Other:

If the I°C facility is disabled, the next functions indicated cannot be used.

- Master start function
char iic_master_start (char SLAVE, char RW, char * BUF, char LEN);
Description: This function starts master control.

Before this function can be used, the I°C bus must be readied for use by iic_ini.

Arguments SLAVE 0x00-0x7f: Slave device address to be specified

RW 0: Master transmit operation
1: Master receive operation
*BUF : Pointer to the transmit or receive buffer
LEN 0x00-0xff: Communication data length
Returns 0: Failed to start master control

1: Succeeded to start master control

-Master EEPROM random read start function
char iic_master_randomread (char SLAVE, char ROM_ADR, char * BUF, char LEN);
Description: This function starts random read on EEPROM.

Before this function can be used, the I°C bus must be readied for use by iic_ini.

Arguments SLAVE 0x00-0x7f: EEPROM address to be specified
ROM_ADR : Address in EEPROM from which to read

*BUF : Pointer to the receive buffer
LEN 0x00—-0xff: Number of received data
Returns 0: Failed to start master control

1: Succeeded to start master control

Rev.1.00 2003.08.22 Page 59 of 83 RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

[1°C Bus Software Functions Created by the User]

In the I°C bus software, the following functions are called that have as arguments the
transmit/receive status and the data count thereof.

These functions must be supplied to the I°C bus software by the user.

-Master control—finished function
void iic_master_end (char STATUS);

Description: This function is called by the firmware after master control is completed.
The status in which master communication has terminated is notified to the user by the
arguments below.

Arguments STATUS High—order 4 bits 0: Master transmission

: Master reception

: EEPROM random read

: Terminated normally

: Lost in first byte bus contention
: Lost in bus contention

: Terminated in NACK

. Start condition error

: Stop condition error

: Unknown error

Low—order 4 bits

DO WN—-ON—=

Returns None
Other: Called from within the interrupt handling of the I°C bus software.

- Slave check function
*char iic_id_chk (char ID, char RW);

Description: This function is called by the firmware after receiving the first byte.
The contents of requests from the master to slaves are notified to the user by the arguments
shown below. If a null pointer is returned, slave specification is denied; if a pointer to the
communication buffer is returned, slave operation is initiated.

Arguments ID 0x00-0x7f: Slave device address specified by the master
RW 0: Reception requested by the master (Slave performs reception)
1: Transmission requested by the master (Slave performs transmission)
Returns NULL pointer : Slave specification denied
pointer : Pointer to the transmit or receive buffer

-Slave control—finished function
void iic_slave_end (char STATUS, char IIC_INDEX);

Description: This function is called by the firmware after slave control is completed.
The status in which slave communication has terminated is notified to the user by the
arguments below.

Arguments STATUS High—order 4 bits 0: Slave reception

: Slave transmission

: Terminated normally

: Lost in bus contention

: Terminated in NACK

: Start condition error

: Stop condition error

: Unknown error
[IC_INDEX 0x00—0xff: Number of received data

Returns None

Low—order 4 bits

OB WN—=-O—=

Rev.1.00 2003.0822 Page 60 of 83 RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

4.4 Communication Method
441 Preparation
For I’C bus communication to be performed, iic_ini must be called at the initial stage of program
operation (such as the initial routine) as shown by an example below.
When calling iic_ini, pass one argument to it.

The first argument indicates whether the I°C bus facility is enabled or not.

(System initialize function)
char iic_ini(1); //1IC-Bus Initialize
asm(“fset I”); //Flag | set

4.4.2 Master Communication

To start master communication, call iic_master_start. When calling iic_master_start, pass four
arguments to it.

The first argument specifies the address of the other device to which to send. Do not use any
functional address to specify this address.

The second argument specifies the type of master communication to be performed, transmission
or reception. If the value is 0, transmission is performed; if 1, reception is performed.

The third argument specifies the start address of a location in which data is to be stored.

If this location is not freed until after master communication terminates, this location can be
anywhere in the RAM area with the near attribute.

The fourth argument specifies the transmit data length. If the value 0 is specified, 256 bytes are
transmitted which is the maximum transmit data length available.

Note that iic_master_start has a return value. It returns the value 0 when master communication is
started, or the value 1 when master communication is not started.

In the example below, 5 bytes of data is transmitted from iic_ram to the slave device whose address
iS 5516'
Example:
if (iic_master_start (0x55, 0, char *iic_ram, 5)'=0){
// Processing to check whether master communication has failed
lelse{
// Processing to check whether master communication has started
}

Rev.1.00 2003.08.22 Page 61 of 83 RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

When master communication has finished, the I°C bus software calls iic_master_end. This

function needs to be created by the user. When the I°C bus software calls iic_master_end,
it passes one argument to the called function. This argument indicates the status in which
master communication has terminated. The content of the status is shown in Section 4.3.
Next, an example of iic_master_end is shown below.

//Prototype
void iic_master_end(char);
//Master control finished function
void iic_master_end(char status){
if((status&0xf0)==0x10){ //Transmit mode
switch (status&0x0f){ //Transmit status processing
case 0:
//Terminated normally
break;
case 1:
//Detected NACK signal when transmitted the first byte
break;
case 2:
//Detected NACK signal when transmitted on end after second byte
break;
case 3:
//Lost in bus contention
break;
case 4:
//Start condition error
break;
case 9:
//Stop condition error
default:break;
}
lelse if((status&0xf0)==0x20){ //Receive mode
//Receive status processing. Perform this processing
} //in the same way as for transmit status processing.
lelse if((status&0xf0)==0x30){ //EEPROM mode
//EEPROM mode status processing. Perform this processing
} //in the same way as for transmit status processing.

}

Rev.1.00 2003.08.22 Page 62 of 83 RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

44.3 Slave Communication

When receiving one byte of data from the master, the I°C bus software calls the iic_id_chk function.
This function needs to be created by the user.

The I°C bus software passes the contents of requests made to slaves by the master to the called
function by using the arguments shown below.

The first argument indicates the address of the slave device specified by the master.

The second argument indicates the content of communication requested by the master.

If the function returns a null pointer, it means that slave specification is defined; if a

pointer to the communication buffer is returned, it means that slave operation is started.

//Prototupe
* char iic_id_chk(char, char);

//Slave check function

unsigned char sw_buf[256] //Transmit buffer
unsigned char sr_buf[256] //Receive buffer
* char iic_id_chk(char ID, char RW){
if(ID==0x55){ //when local-unit’'s address is 0x55
if(R/W==1){
return(&sw_buf[0]); //Slave transmission
lelse{
return(&sr_buf[0]); //Slave reception
}
lelse{
return(0) //Nothing slave control
}

Rev.1.00 2003.08.22 Page 63 of 83 :{ENES]_\S

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

When slave communication has finished, the I°C bus software calls iic_slave_end. This function need

to be created by the user. When the I°C bus software calls iic_slave_end, it passes two arguments to
the called function.

The first argument indicates the status of slave communication.

The second argument indicates the number of data received by the slave.

The contents of the status are shown in Section 4.3.

Next, an example of iic_slave_end is shown below.

//Prototupe
void iic_slave_end(char,char);

//Slave check function
void iic_slave_end(char status,char iic_index){
if((status&0xf0)==0x10){ //Transmit mode
switch (status&0x0f){ //Transmit status processing
case 0:
//Terminated normally
break;
case 1:
//Detected NACK signal when transmitted the first byte
break;
case 2:
//Detected NACK signal when transmitted on end after second byte
break;
case 3:
//Lost in bus contention
break;
case 4:
//Start condition error
break;
case 9:
//Stop condition error
default:break;
}
lelse{ //Receive mode
switch (status&0x0f){ //Receive status processing
case 0:
//Terminated normally(Received data that size of iic_index)
break;
case 1:
//Detected NACK signal when transmitted the first byte
break;
case 2:
//Detected NACK signal when transmitted on end after second byte
break;
case 3:
//Lost in bus contention
break;
case 4:
//Start condition error
break;
case 9:
//Stop condition error
default:break;

Rev.1.00 2003.08.22 Page 64 of 83 :{ENES]_\S

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

5. Program List

/¥ file comment” kkkkkkrrrrrkikkibbbbbbllbllllkkkkkkkkkkkkbbblbblblllkkkkkkkokok
;System: 1 1C-BUS F/W Ver0. 81 (Sample program)

;0utline description: M32G/83(20 MHz, not divided internally)
;Multi-master/slave communication

;Communication rate: 100 Kbps

;Functional addresses and 10-bit addresses inhibited

;0nly G language supported for the interface

G bus, M3Low, etc. cannot be connected

;None of fail-safe features incorporated

;Date:Sep. /5/2002 (Thu)

;0bject file name:i2cbus.c

; copyright 2003 Renesas Technology Corporation
; and Renesas Solutions Corporation

;77 file comment end””kkkkkkkkkkkkkkkkkbblblblllklkkkkkkkkkkkblblblllkokkk ok /
/AR AR AFFFFAAIAAFF A AF A I A FFAF A I FAAIAAFFFFAAAAAFF A
; Prototype definition
Rkl kol kool lololkokkk ok /
#define uarti 0 //Used UARTx when #define uarti x (x=0~4)

#if varti ==

unsigned char iicO_ini (unsigned char) ;
unsigned char iicO_master_start (unsigned char,
unsigned char,
unsigned charx,
unsigned char) ;
unsigned char iic0_master_randomread (unsigned char,
unsigned char,
unsigned charx,
unsigned char) ;
void iicO_master_end(unsigned char) ;
unsigned char* iic0O_id_check (unsigned char,
unsigned char) ;
void iicO_slave_end(unsigned char,
unsigned char) ;
void sOs_int (void) ;
void sOr_int(void) ;
void sOt_int(void);
#elif varti ==
unsigned char iicl_ini (unsigned char) ;
unsigned char iicl_master_start (unsigned char,
unsigned char,
unsigned charx,
unsigned char) ;
unsigned char iicl_master_randomread (unsigned char,
unsigned char,
unsigned charx,
unsigned char) ;
void iicl_master_end(unsigned char) ;
unsigned char* iicl_id_check (unsigned char,
unsigned char) ;
void iicl_slave_end(unsigned char,
unsigned char) ;
void sls_int(void);
void slr_int(void);
void s1t_int(void);

Rev.1.00 2003.08.22 Page 65 of 83 RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

#elif varti ==
unsigned char iic2_ini (unsigned char) ;
unsigned char iic2_master_start (unsigned char,
unsigned char,
unsigned charx,
unsigned char) ;
unsigned char iic2_master_randomread (unsigned char,
unsigned char,
unsigned charx,
unsigned char) ;
void iic2_master_end(unsigned char) ;
unsigned char* iic2_id_check (unsigned char,
unsigned char) ;
void iic2_slave_end(unsigned char,
unsigned char) ;
void s2s_int(void) ;
void s2r_int(void) ;
void s2t_int(void);
#elif varti ==
unsigned char iic3_ini (unsigned char) ;
unsigned char iic3_master_start (unsigned char,
unsigned char,
unsigned charx,
unsigned char) ;
unsigned char iic3_master_randomread (unsigned char,
unsigned char,
unsigned charx,
unsigned char) ;
void iic3_master_end(unsigned char) ;
unsigned char* iic3_id_check (unsigned char,
unsigned char) ;
void iic3_slave_end(unsigned char,
unsigned char) ;
void s3s_int(void) ;
void s3r_int(void) ;
void s3t_int(void);
#elif varti ==
unsigned char iic4_ini (unsigned char) ;
unsigned char iic4_master_start (unsigned char,
unsigned char,
unsigned charx,
unsigned char) ;
unsigned char iic4_master_randomread (unsigned char,
unsigned char,
unsigned charx,
unsigned char) ;
void iic4_master_end(unsigned char) ;
unsigned char* iic4_id_check (unsigned char,
unsigned char) ;
void iic4_slave_end(unsigned char,
unsigned char) ;
void sds_int(void) ;
void s4r_int(void) ;
void s4t_int(void);
#endif
static void sta_int(void);
static void stp_int(void);

Rev.1.00 2003.08.22 Page 66 of 83 RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

#if varti ==

#tpragma
#tpragma
#tpragma
#pragma
#pragma
#pragma
#tpragma
#pragma
#tpragma
#pragma
#pragma
#tpragma
#tpragma
#tpragma
#pragma
#pragma
#pragma
#pragma

ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS

#elif varti ==

#tpragma
#pragma
#pragma
#pragma
#tpragma
#pragma
#tpragma
#pragma
#tpragma
#tpragma
#tpragma
#tpragma
#tpragma
#tpragma
#tpragma
#tpragma
#tpragma
#tpragma

ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS

#elif varti ==

#tpragma
#tpragma
#tpragma
#tpragma
#tpragma
#tpragma
#tpragma
#tpragma
#tpragma
#tpragma
#tpragma
#tpragma
#tpragma
#tpragma
#tpragma
#tpragma
#pragma
#pragma

ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS

uismr4 0364H
uismr3 0365H
uismr2 0366H
uismr 0367H
uimr 0368H
uibrg 0369H
uitb 036aH
uicO0 036¢H
uicl 036dH
uirb 036eH
beniic 0071H
sitic 0090H
siric 0072H
psO 03bOH
ps!0 03b2H
p6 03cOH
pd6 03c2H
ifsr 031fH

uismr4 02e4H
uismr3 02e5H
uismr2 02e6H
uismr 02e7H
uimr 02e8H
uibrg 02e9H
uitb 02eaH
uicO0 02ecH
uicl 02edH
uirb 02eeH
beniic 0091H
sitic 0092H
siric 0074H
psO 03bOH
psl10 03b2H
p6 03cOH
pd6 03c2H
ifsr 031fH

uismrd4 0334H
uismr3 0335H
uismr2 0336H
uismr 0337H
uimr 0338H
uibrg 0339H
uitb 033aH
uicO0 033cH
uicl 033dH
uirb 033eH
beniic 008fH
sitic 0089H
siric 006bH
psl 03b1H
psl1 03b3H
psc 03afH
p7 03clH
pd7 03c3H

Rev.1.00 2003.08.22

Page 67

of

83

RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

#elif varti ==
#pragma ADDRESS uismr4 0324H
#pragma ADDRESS uismr3 0325H
#pragma ADDRESS uismr2 0326H
#pragma ADDRESS uismr 0327H
#pragma ADDRESS uimr 0328H
#pragma ADDRESS uibrg 0329H
#pragma ADDRESS uitb 032aH
#pragma ADDRESS uicO 032cH
#pragma ADDRESS uicl 032dH
#pragma ADDRESS uirb 032eH
#pragma ADDRESS bcniic 0071H
#pragma ADDRESS sitic 008bH
#pragma ADDRESS siric 006dH
#pragma ADDRESS ps3 03b5H
#pragma ADDRESS ps|3 03b7H
#pragma ADDRESS p9 03c5H
#pragma ADDRESS pd9 03c7H
#pragma ADDRESS ifsr 031fH
#elif varti ==
#pragma ADDRESS uismr4 02f4H
#pragma ADDRESS uismr3 02f5H
#pragma ADDRESS uismr2 02f6H
#pragma ADDRESS uismr 02f7H
#pragma ADDRESS uimr 02f8H
#pragma ADDRESS uibrg 02f9H
#pragma ADDRESS uitb 02faH
#pragma ADDRESS uicO 02fcH
#pragma ADDRESS uicl 02fdH
#pragma ADDRESS uirb 02feH
#pragma ADDRESS bcniic 0091H
#pragma ADDRESS sitic 008dH
#pragma ADDRESS siric 006fH
#pragma ADDRESS ps3 03b5H
#pragma ADDRESS ps|3 03b7H
#pragma ADDRESS p9 03c5H
#pragma ADDRESS pd9 03c7H
#pragma ADDRESS ifsr 031fH
#tendif
#pragma ADDRESS prcr 000aH
union{
struct{
char b0:1;
char b1:1;
char b2:1;
char b3:1;
char b4:1;
char b5:1;
char b6:1;
char b7:1;
Jbit;
char byte;
tbeniic, sitic, siric, prer,
uimr,uibrg, uicO, uicl, uismr, uismr2, uismr3, uismr4,
#if varti == 0 || varti ==
ps0, ps!0, p6, pd6, ifsr;
#telif varti == 2
psl, psl1, psc, p7, pd7;
#elif varti == 3 || uvarti ==
ps3, psl3, p9, pd9, ifsr;
#tendif

—_ e

Rev.1.00 2003.08.22 Page 68 of 83 RENESAS

M32C/83,85 Group

Using Simple I°C Bus Mode on M32C/83,85

union{

struct{

char b0:1;

char b1:1;

char b2:1;

char b3:1;

char b4:1;

char b5:1;

char b6:1;

char b7:1;

char b8:1;

char b9:1;

char b10:1;

char b11:1;

char b12:1;

char b13:1;

char b14:1;

char b15:1;

Jbit;

struct{

char bytel:8;

char byteh:8;

}byte;

int word;
luithb, uirb;
#tdefine UiSMR4 uismr4. byte
#tdefine UiSMR3 uismr3. byte
#tdefine UiSMR2 uismr2. byte
#tdefine UiSMR uismr.byte
#tdefine UiMR uimr. byte
#tdefine UiBRG uibrg. byte
#tdefine UiTB uitb. word
#tdefine UiCO uicO. byte
#tdefine UiCl uicl. byte
#tdefine UiRB uirb. word
#tdefine SiSIC beniic. byte
#tdefine SiTIC sitic. byte
#tdefine SiRIC siric.byte
#tdefine
#tdefine
#tdefine
#tdefine
#tdefine ackd uismr4.bit. b4
#tdefine ackc uismr4.bit. bb
#tdefine sclhi uismr4.bit. b6
#tdefine swc9 uismr4.bit. b7
#tdefine ckdir uimr.bit.b3
#tdefine csc uismr2.bit. bl
#tdefine swc uismr2.bit. b2
#tdefine als uismr2.bit. b3
#tdefine stc uismr2.bit. b4
#tdefine abl uirb.bit.b11
#tdefine PRCR prcr. byte
#if varti ==
#tdefine ps_scl ps0.bit. b2
#tdefine psl_scl psl0.bit. b2
#tdefine ps_sda ps0.bit. b3
#tdefine p_sda p6.bit. b3
#tdefine p_scl p6.bit.b2
#tdefine pd_sda pd6.bit. b3
#tdefine pd_scl pd6.bit.b2
#tdefine IFSR ifsr.byte

stareq uismrd.bit.b0 // Start condition generate bit
rstareq uismrd.bit. bl // Restart condition generate bit
stpreq uismrd.bit.b2 // Stop condition generate bit
stspsel uismr4.bit.b3 // SCL, SDA output select bit

// ACK data bit

// ACK data output enable bit

// SCL output stop enable bit

// SCL wait output bit3(final pulse)
// Internal/external clock select bit
// Glock synchronous bit

// SCL wait output bit(9th pulse)

// SDA output stop bit

// UARTi initialize bit

// Arbitration lost detecting flag
//

// Function select A reg. scl bit
// Function select B reg. scl bit
// Function select A reg. sda bit
// SDA port data bit

// SCL port data bit

// SDA port direction bit

// SCL port direction bit

//

Rev.1.00 2003.08.22 Page 69

of 83 RENESAS

M32C/83,85 Group

Using Simple I°C Bus Mode on M32C/83,85

#elif varti ==
#tdefine ps_scl ps0.bit. b6 // Function select A reg. scl bit
#tdefine psl_scl psl0.bit.b6 // Function select B reg. scl bit
#tdefine ps_sda ps0.bit. b7 // Function select A reg. sda bit
#tdefine p_sda pb6.bit. b7 // SDA port data bit
#tdefine p_scl pb6.bit. b6 // SCL port data bit
#tdefine pd_sda pd6.bit. b7 // SDA port direction bit
#tdefine pd_scl pd6.bit. b6 // SCL port direction bit
#tdefine IFSR ifsr.byte //
#elif varti ==
#tdefine ps_scl psl.bit. bl // Function select A reg. scl bit
#tdefine psl_scl psl1.bit.bl // Function select B reg. scl bit
#tdefine psc_scl psc.bit. bl // Function select C reg. scl bit
#tdefine ps_sda psl.bit. b0 // Function select A reg. sda bit
#tdefine psl_sda psl1.bit.b0 // Function select B reg. sda bit
#tdefine psc_sda psc.bit. b0 // Function select C reg. sda bit
#tdefine p_sda p7.bit. b0 // SDA port data bit
#tdefine p_scl p7.bit. bl // SCL port data bit
#tdefine pd_sda pd7.bit. b0 // SDA port direction bit
#tdefine pd_scl pd7.bit. bl // SCL port direction bit
#elif varti ==
#tdefine ps_scl ps3.bit. bl // Function select A reg. scl bit
#tdefine psl_scl psl3.bit. b1 // Function select B reg. scl bit
#tdefine ps_sda ps3.bit. b2 // Function select A reg. sda bit
#tdefine psl_sda psl3.bit.b2 // Function select B reg. sda bit
#tdefine p_sda p9.bit. b2 // SDA port data bit
#tdefine p_scl p9.bit. bl // SCL port data bit
#tdefine pd_sda pd9.bit. b2 // SDA port direction bit
#tdefine pd_scl pd9.bit. bl // SCL port direction bit
#tdefine IFSR ifsr.byte //
#elif varti ==
#tdefine ps_scl ps3.bit. b7 // Function select A reg. scl bit
#tdefine psl_scl psl3.bit.b7 // Function select B reg. scl bit
#tdefine ps_sda ps3.bit. b6 // Function select A reg. sda bit
#tdefine p_sda p9.bit. b6 // SDA port data bit
#tdefine p_scl p9.bit. b7 // SCL port data bit
#tdefine pd_sda pd9.bit. b6 // SDA port direction bit
#tdefine pd_scl pd9.bit. b7 // SCL port direction bit
#tdefine IFSR ifsr.byte //
#tendif
SRR AR A A A AF A FF A A I A I AFFHAAAAAFFHHA
; Memories definition
skl kkkkokooololololokokok ok /
typedef union{
struct{
unsigned char b0:1;
unsigned char bl:1;
unsigned char b2:1;
unsigned char b3:1;
unsigned char b4:1;
unsigned char b5:1;
unsigned char b6:1;
unsigned char b7:1;
Jbit;
unsigned char all;
}byte_dt;
Rev.1.00 2003.08.22 Page 70 of 83 RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

typedef union{
struct{
unsigned char b0:1;
unsigned char b1:1;
unsigned char b2:1;
unsigned char b3:1;
unsigned char b4:1;
unsigned char b5:1;
unsigned char b6:1;
unsigned char b7:1;
unsigned char b8:1;
unsigned char b9:1;
unsigned char b10:1;
unsigned char b11:1;
unsigned char b12:1;
unsigned char b13:1;
unsigned char b14:1;
unsigned char b15:1;
Ibit;
struct{
unsigned char byte0:8;
unsigned char bytel:8;

}byte;

unsigned int all;

}word_dt;

static byte_dt iic_md; // 11Cbus mode
#tdefine iic_mode iic_md.all
#tdefine f_rw iic_md.bit.b0 // O:wite 1:read
#tdefine f_ms iic_md.bit. b4 // 0O:slave 1:master
#tdefine f_ep iic_md.bit. b5 // 0O:slave 1:master
#tdefine f_sr iic_md.bit. b7 // 0O:receive 1:send
static byte_dt iic_sl; // Master 1st byte
#tdefine iic_slave iic_sl.all
#tdefine iic_rw iic_sl.bit.b0 // O:write 1:read

static unsigned char iic_length; // Master length
static unsigned char iic_index;

static unsigned char *iic_pointer; // pointer
static unsigned char iic_eeplen; //

static unsigned char iic_eepadr; //

; I1Cbus initialize function

;”“func comment end”” /
#if varti ==
unsigned char iicO_ini (unsigned char ini) {
#telif varti ==
unsigned char iicl_ini (unsigned char ini) {
#telif varti ==
unsigned char iic2_ini (unsigned char ini) {
#telif varti ==
unsigned char iic3_ini (unsigned char ini) {
#elif varti ==
unsigned char iic4_ini (unsigned char ini) {
#endif
if(ini == 1){ // 11Cbus mode initialize (START)
UiMR = 0x0a; // 9bit S1/0 mode (ext. clock)
UiBRG = 100-1; // 100KBPS
UiCO = 0xb0; // MSB first, f1,Nch, CTS disable
UiSMR = 0x01; // 11Cbus mode, Arbitration lost flag Update per byte

UiSMR2 = 0x11; // transfer/receive interrupt, disalbe Clock sync, UART initialize enable
UiSMR3 = 0x62; // SDA delay = 4-cycle of BRG count source

UiSMR4 = 0x30; // ACK data output (SDA="H")

UiGl = 0x15; // Transfer/Receive enable

Rev.1.00 2003.08.22 Page 71 of 83 RENESAS

M32C/83,85 Group

Using Simple I°C Bus Mode on M32C/83,85

#if varti ==
ps_scl = 1;
ps_sda = 1;
psl_scl = 0;
IFSR |= 0x40;

#elif varti == 1
ps_scl = 1;
ps_sda = 1;
psl_scl = 0;
pd_sda = 0;
pd_scl = 0;
IFSR |= 0x80;

#telif varti == 2
ps_scl = 1;
ps_sda = 1;
psl_scl =0
psl_sda = 0;
psc_scl = 0;
psc_sda = 0;
pd_sda = 0;
pd_scl = 0;

#telif varti == 3
PRCR = 0x04;
ps_scl = 1;
PRCR = 0x04;
ps_sda = 1;
psl_scl = 0;
psl_sda = 0;
PRCR = 0x04;
pd_sda = 0;
PRCR = 0x04;
pd_scl = 0;
[FSR &= Oxbf;

#elif varti ==
PRCR = 0x04;
ps_scl = 1;
PRCR = 0x04;
ps_sda = 1;
psl_scl = 0;
PRCR = 0x04;
pd_sda = 0;
PRCR = 0x04;
pd_scl = 0;
[FSR &= 0x7f;

#tendif
iic_mode = 0x00;
iic_index = 0x00;
SiSIC = 0x00;
SiTIC = 0x00;

}SiRIC = 0x01;
elsef

SiSIC = 0x00;
SiTIC = 0x00;
SiRIC = 0x00;
UiC1 = 0x10;
UiSMR2 = 0x01;
return(1) ;

}

// 0:port62 1:psl62

// 0:port63 1:TXDO/SDAO
// 0:SCLO 1:STXDO

//

// 0:port66 1:psl67

// 0:port67 1:TXD1/SDA1
// 0:SCL1 1:STXD1

// SDA-port input

// SCL-port input

//

// O:port71 1:psl71

// 0:port70 1:psl70

// 0:psc71 1:STXD2

// 0:psc70 1:TAOout

// 0:SCL2 1:0UTC22

// 0:SDA2/TXD2 1:|Eout/1STXD2/0UTC20
// SDA-port input

// SCL-port input

// 0:port91 1:psl91

// 0:port92 1:psl92

// 0:SCL3 1:STXD3

// 0:SDA3/TXD3 1:IEout/0UTC20
// SDA-port input

// SCL-port input

//

// 0:port97 1:psl97

// 0:port96 1:TXD4/SDA4
// 0:SCL4 1:STXD4

// SDA-port input

// SCL-port input
//

// Slave mode
//
// Receive int. enable

// Invalidate |1Cbus (Stop sequence)

// Transfer/Receive disable
// UART initialize disable

Rev.1.00 2003.08.22

Page

72 of 83 RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

; |'1Cbus master mode starts function

V77 func comment end” skl okskkoesklkskeokkkokoskokkoeokskokokokd oo /
#if varti ==
unsigned char iicO_master_start(unsigned char slave
#elif varti ==
unsigned char iicl_master_start(unsigned char slave
#elif varti ==
unsigned char iic2_master_start(unsigned char slave
#elif varti ==
unsigned char iic3_master_start(unsigned char slave
#elif varti ==
unsigned char iic4_master_start(unsigned char slave
#tendif
unsigned char rw,
unsigned char *buf,
unsigned char len) {
if(uismr.bit.b2 == 1) {
}return(O);
elsef
asm(“pushc FLG”) ;
asm(“felr 17);
UiSMR = 0x01; // All bit clear without bit0
UiSMR4 = 0x70; // SCL and SDA is output”H”
UiMR = 0x00; //
UiMR = 0x02; //
UiBRG = 100-1; //
SiSIC = 0x01; // Start con. int. enable
UiG1 = 0x10; // Transfer/Receive disable
UiSMR2 = 0x03; // UART init. disable, Clock sync. enable
UiSMR4 = 0x71; // Start condition generate
UiSMR4 = 0x09; // STSP output enable
iic_slave = slave << 1, //
iic_length = len; //
iic_pointer = buf; //
if(rw == 0) { //
iic_mode = 0x10; // Master transfer mode
iic_rw = 0;
]
elsel
iic_mode = 0x11; // Master receive mode
iic_rw=1;
asm(“popc FLG”);
return(1);
}
}
/Rfksksoksokskoksokskoksoksksoksokskoksokskkoksekoksoksokokekoksokokskokokokokkokoksokdokoksokokokok koo ook ok
; 1'1C master EEPROM randam-read function
V77 func comment end” skl okskioeksklkskeokkkokskolkoreokskokokok oo /

#if varti ==

unsigned char iicO_master_randomread (unsigned char slave

#elif varti ==

unsigned char iicl_master_randomread (unsigned char slave

#elif varti ==

unsigned char iic2_master_randomread (unsigned char slave

#elif varti ==

unsigned char iic3_master_randomread (unsigned char slave

Rev.1.00 2003.08.22 Page 73 of 83

RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

#elif varti ==
unsigned char iic4_master_randomread (unsigned char slave
#tendif
unsigned char rom_adr
unsigned char *buf,
unsigned char len) {
if(uismr.bit.b2 == 1) {

}return(O):
else{
UiSMR = 0x01; // All bit clear without bit0
UiSMR4 = 0x70; // SCL and SDA is output”H”
UiMR = 0x00; //
UiMR = 0x02; //
UiBRG = 100-1; //
SiSIC = 0x01; // Start int. enable
UiCl = 0x10; // Transfer/Receive disable
UiSMR2 = 0x03; // UART init. disable, Clock sync. enable
UiSMR4 = 0x71; // Start condition generate
UiSMR4 = 0x09; // STSPoutput enable
iic_slave = slave << 1, //
iic_length = 1; //
iic_eeplen = len; //
iic_eepadr = rom_adr; //
iic_pointer = buf; //
iic_mode = 0x30; // Master transfer mode
iic_rw = 0;
return(1) ;
}
}
/FRpkoksoksskokokskokoksRskoksokkokoksok ook koo kekoksok ook kokoksokkskoksokskokoksokskokoksokkokokokkokokdok Kok
; 11C start/stop condition interrupt function
V77 func comment end” skkkkkkokkkiskokslkakokkkokoksolokokkkokokskolokeokkkskoookkokokok o /
#if varti ==

#pragma INTERRUPT sOs_int
void sOs_int (void) {

felif varti ==

#pragma INTERRUPT si1s_int
void sls_int(void) {

felif varti ==

#pragma INTERRUPT s2s_int
void s2s_int (void) {

felif varti ==

#pragma INTERRUPT s3s_int
void s3s_int (void) {

ftelif varti ==

#pragma INTERRUPT s4s_int
void sds_int(void) {

#tendif

if(uismr.bit.b2 == 1){ // Start condition interrupt
sta_int();

else{ // Stop condition interrupt
stp_int();

}

}

Rev.1.00 2003.08.22 Page 74 of 83 RENESAS

M32C/83,85 Group

Using Simple I°C Bus Mode on M32C/83,85

[1C start condition function

;77 func comment end”kkkkkkkkkkkkkkkkkkkkblblbllblll kol kkkkokkooolollolokokokok /

static void sta_int (void) {
word_dt temp;

UiCl = 0x10; // Transfer/Receive disable
UiCl = 0x15; // Transfer/Receive enable
UiMR = 0x02;
UiSMR4 = 0x00; // STSPSEL = 0 (SI/0 output sel)
temp. byte. byte0 = iic_slave; // Slave address set
temp. byte. bytel = 0x01; // NACK data set
UiTB = temp. all; // Start 1st byte transfer
UiRB = 0x00; // Arbitration lost flag clear
UiSMR2 = Ox1f; // UART init. enable, Clock sync. enable
SiSIC = 0x01; // Stop int. enable
SiRIC = 0x01; // /Receive int. enable
}iic_index = 0x00; //
SRR AR AF A A ARSI FF A A I A I A AFFHAAAAAFF A
; 11C stop condition function
V77 func comment end” skl okskkoesklokskeokskkokoskokokoreokskokokokd oo /

static void stp_int(void) {
PRCR = 0x04;

ps_scl = 0;

PRCR = 0x04;

ps_sda = 0;

UiMR = 0x00;

slave

UiMR = 0x0a;
UiSMR2 = 0x11;
UiSMR4 = 0x30;
UiC1 = 0x15;
PRCR = 0x04;
ps_scl = 1;
PRCR = 0x04;
ps_sda = 1;
SiRIC = 0x01;
SiTIC = 0x00;
SiSIC = 0x00;
if(f_ms == 0 && f_sr == 0) {
——iic_index;
#if varti ==

iic0_slave_end (0x00, iic_index) ;

#elif varti ==

iicl_slave_end (0x00, iic_index) ;

#elif varti ==

iic2_slave_end (0x00, iic_index) ;

#elif varti ==

iic3_slave_end (0x00, iic_index) ;

#elif varti ==

iic4d_slave_end (0x00, iic_index) ;

#tendif
}
iic_mode = 0x00;
iic_index = 0x00;
}

// port set (Purpose:TXFUL, TBFUL flag must be cleared when

// receive)

// ext. clock sel

// ACK data output”H”

// transfer/receive enable

// receive int. enable
// transfer int. disable

// start/stop int. disable

// slave

// slave
// slave
// slave
// slave
// slave

// slave
//

receive

receive
receive
receive
receive

receive

mode

complete
complete
complete
complete

complete

Rev.1.00 2003.08.22 Page 75 of

83 RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

» 11C receive(Falling edge of 9th pulse) interrupt function
V77 func comment end” skl okskkoesklkskeokkkokoskokkoeokskokokokd oo /
#if varti ==

#pragma INTERRUPT sOr_int

void sOr_int (void) {

#elif varti ==

#pragma INTERRUPT sir_int

void s1r_int (void) {

#elif varti ==

#pragma INTERRUPT s2r_int

void s2r_int (void) {

#elif varti ==

#pragma INTERRUPT s3r_int

void s3r_int (void) {

#elif varti ==

#pragma INTERRUPT s4r_int

void s4r_int (void) {

#tendif
word_dt temp;
temp. all = UiRB; // Read receive buffer
if(iic_index == 0x00) { // = 0On the 1st time =
f sr = f_ms ~ temp.bit.b8; // Saved transfer/receive flags
if(fms == 1) { // = When master=
if(abl == 1) { // = When Arbitration lost =
#if varti == 0
i ic0_master_end (0x03) ; // Arbitration lost error found
#elif varti ==
iic1_master_end (0x03) ; // Arbitration lost error found
#telif varti ==
i ic2_master_end (0x03) ; // Arbitration lost error found
#elif varti ==
i ic3_master_end (0x03) ; // Arbitration lost error found
#elif varti ==
i ic4_master_end (0x03) ; // Arbitration lost error found
#tendif
fms =0; // Changed slave mode
f_sr = “f_sr; // Reversed transfer/receive mode
UiMR = 0OxOa;
}goto ri_slave; // Go to slave function
elsel // = When Arbitration win =
SiTIC = 0x01; // Transfer int. enable
}UiSMR2 = Ox1b; // Released SCL line
]
elsel // = When Slave =
ri_slave:
temp. bit. b7 = 0; // Masked bit7
if(f_sr == 1) {
#if varti ==

iic_pointer = iic0_id_check (temp. byte. byte0, 1); // Slave transfer request
#elif varti ==

iic_pointer = iicl_id_check (temp. byte. byte0, 1); // Slave transfer request
#elif varti ==

iic_pointer = iic2_id_check (temp. byte. byte0, 1); // Slave transfer request
#elif varti ==

Rev.1.00 2003.08.22 Page 76 of 83 RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

#elif varti ==
iic_pointer = iic4_id_check (temp. byte. byte0, 1); // Slave transfer request
#en?if
elsel
#if varti ==
iic_pointer = iic0_id_check (temp. byte. byte0,0); // Slave receive request
#elif varti ==
iic_pointer = iicl_id_check (temp. byte. byte0,0); // Slave receive request
#elif varti ==
iic_pointer = iic2_id_check (temp. byte. byte0,0); // Slave receive request
#elif varti ==
iic_pointer = iic3_id_check (temp. byte. byte0,0); // Slave receive request
#elif varti ==
iic_pointer = iic4_id_check (temp. byte. byte0,0); // Slave receive request
#en?if
if(iic_pointer 1= 0) { // Agreed address
UiSMR4 = 0xa0; // ACK-data output enable
// When Falling edge of last pulse,
// “L"hold enable
SiTIC = 0x01; // Transfer int. enable
SiSIC = 0x01; // Start/stop int. enable
if(f_sr == 1) {

temp. byte. byteO

temp. byte. bytel = 0x01;
}UiTB = temp.all;
elsef
UiTB = 0x00ff;
}
}
elsel
UiSMR4 = 0x30;
UiMR = 0x0a;
stc = 1;
SiRIC = 0x01;
iic_mode = 0x00;
iic_index = 0x00;

}
UiSMR2 = Ox11;
}
}

elsef
if(fms == 1) {
if(f_sr == 1) {
if(abl == 1){
#if varti ==

i icO_master_end (0x02) ;

#telif uarti

i ic1_master_end (0x02) ;

#telif uarti

i ic2_master_end (0x02) ;

#telif uarti

i ic3_master_end (0x02) ;

#telif uarti

i ic4_master_end (0x02) ;

#tendif

*iic_pointer;

// send-data set

// NACK-send set
// Datal transfer start

// dummy data (with ACK)transfer start

// disagreed address
// NACK-data output enable

// UART initialize enable
//

// ALS clear, GSC clear (for Arbitration lost)

// = On and after the 2nd time =

// = When master=
// = When transfer =

// = When Arbitration lost =

// Arbitration lost error

// Arbitration lost error

// Arbitration lost error

// Arbitration lost error

// Arbitration lost error

found
found
found
found

found

Rev.1.00 2003.08.22

Page 77

of 83 RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

UiMR = 0x0a; // Ext. clock sel
UiSMR4 = 0x30; //
UiSMR2 = Ox11; //
iic_mode = 0x00; // Slave mode set
}iic_index = 0x00; //
else{ // = When Arbitration win =
als = 0; // When Arbitration lost, SDA “HiZ” disable
}SiTIC = 0x01; // Transfer int. enable
}
elsel // = When receive =
abl = 0; // Arbitration lost flag clear
}SiTIC = 0x01; // Transfer int. enable
}swc =0; // Released SCL |ine
elsel // = When slave =
if(f_sr == 1) { // = When transfer =
temp. byte. byte0 = *iic_pointer; // send-data set
temp. byte. bytel = 0x01; // NACK-data set
}UiTB = temp. all; // Datal transfer start
elsel // = When receive =
}UiTB = 0x00ff; //
SiTIC = 0x01; // Transfer int. enable
swec = 0; //
swc9 = 1; //
]
}
}
/Fpksksoksoksksoksoksksoksokskokokskoksokskskoksokoksoksokoksokokoksokskoksokkokoksok koo kokoksokkokokok ook ok ok
711G transfer (Falling edge of last pulse) interrupt function
;77 func comment end”kkkkkkkkkkkkkkkkkkkkblblblblblllk kol kkkkkkkokkokololololkokokok /
#if varti ==

#pragma INTERRUPT sOt_int
void sOt_int (void) {
#elif varti ==
#pragma INTERRUPT sit_int
void s1t_int (void) {
#elif varti ==
#pragma INTERRUPT s2t_int
void s2t_int (void) {
#elif varti ==
#pragma INTERRUPT s3t_int
void s3t_int (void) {
#elif varti ==
#pragma INTERRUPT s4t_int
void s4t_int (void) {
#tendif

word_dt temp;

temp. all = UiRB;

if(iic_index == 0x00) { // = 0On the 1st time =
if(fms == 1) { // = When master =
if(temp.bit. b8 == 1) { // = When NACK found =
if(f_ep == 0) {
if(f_sr == 1) {

Rev.1.00 2003.08.22 Page 78 of 83 RENESAS

M32C/83,85 Group

Using Simple I°C Bus Mode on M32C/83,85

#if varti ==
i icO_master_end (0x03) ; // When the 1st byte , NACK found finish
#elif varti ==
iicl_master_end (0x03) ; // When the 1st byte , NACK found finish
#elif varti ==
iic2_master_end (0x03) ; // When the 1st byte , NACK found finish
#elif varti ==
iic3_master_end (0x03) ; // When the 1st byte , NACK found finish
#elif varti ==
iic4_master_end (0x03) ; // When the 1st byte , NACK found finish
#tendif
elsef
#if varti ==
iicO_master_end (0x13) ; // When the 1st byte , NACK found finish
#elif varti ==
iicl_master_end(0x13); // When the 1st byte , NACK found finish
#elif varti ==
iic2_master_end (0x13) ; // When the 1st byte , NACK found finish
#elif varti ==
iic3_master_end(0x13); // When the 1st byte , NACK found finish
#elif varti ==
iic4_master_end (0x13) ; // When the 1st byte , NACK found finish
#tendif
]
elsef
#if varti ==
iicO_master_end (0x23) ; // When the 1st byte , NACK found finish
#telif varti ==
iicl_master_end (0x23) ; // When the 1st byte , NACK found finish
#elif varti ==
iic2_master_end (0x23) ; // When the 1st byte , NACK found finish
#elif varti ==
iic3_master_end (0x23) ; // When the 1st byte , NACK found finish
#elif varti ==
iic4_master_end (0x23) ; // When the 1st byte , NACK found finish
#end;f
als = 0; // When Arbitration lost, SDA “HiZ” disable
UiSMR4 = 0x04; // Stop condition generate
UiSMR4 = 0x3c; // ST/SP output enable
UiSMR2 = 0x01; //
SiRIC = 0x01; // receive int. enable
}
elsel // = When ACK found =
if(f_sr == 0) { // = When receive =
als = 0; // When Arbitration lost, SDA “HiZ” disable
if(iic_length == 1) { // = When receive at the last byte=
}UiTB = 0x01ff; // Send NACK
elsef // = When continuous receive =
}UiTB = 0x00ff; // Send ACK
}
Rev.1.00 2003.08.22 Page 79 of 83 RENES/_\S

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

else{ // = When transfer =

if(f_ep == 0) {

temp. byte. byte0 = *iic_pointer;

elsef

temp. byte. byte0 = iic_eepadr;

0x01;

temp. byte. bytel
UiTB = temp. all;
abl = 0;

als = 1;

}

swe = 1;

SiRIC = 0x01;
if(fep==0 1| f_sr ==
++iic_pointer;

// NACK-data set

// Arbitration lost flag clear
// When Arbitration lost, SDA “HiZ” disable

// SCL”L"Hold enable
// Receive int. enable

0){ // When EEPROM read mode address set, Pointer no touch

// Pointer moved

}
++iic_index;
}
]
elsel // = When slave =
UiMR = 0x0a; // Ext. clock sel
stspsel = 0; // S1/0 output enable
ackc = 0; // ACKoutput disable
swc9 = 0; // SCL”L"Hold3 disable
swc = 1; // SCL”L"Hold enable
++iic_pointer; // Pointer moved
++iic_index;
SiRIC = 0x01;
]
}
elsel // = 0n and after the 2nd time =
if(fms == 1) { // = When master =
if(iic_length == iic_index){ // = When last data =
if(f_sr == 0) { // = When receive =

—iic_pointer;

*iic_pointer = temp. byte. bytel;

++iic_pointer;

if(abl = 1){
ackd = 1;
ackc = 1;
UiMR = 0x0a;
if(f_ep == 0) {
#if varti ==
i icO_master_end (0x10) ;
#elif varti ==
iic1_master_end (0x10) ;
#elif varti ==
i ic2_master_end (0x10) ;
#elif varti ==
i ic3_master_end (0x10) ;
#elif varti ==
i ic4_master_end (0x10) ;
#endif}
elsel

// Arbitration lost found(Self-uint send NACK < other-master
// send ACK)

// Other-master still transmitting, So transmit finish and stop
// condition no generate

// Ext. clock sel

// Master normally finish
// Master normally finish
// Master normally finish
// Master normally finish

// Master normally finish

Rev.1.00 2003.08.22 Page 80

of 83 RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

#if varti ==
i ic0_master_end (0x20) ; // Master normally finish
#elif varti ==
iicl_master_end(0x20); // Master normally finish
#elif varti ==
iic2_master_end (0x20) ; // Master normally finish
#elif varti ==
i ic3_master_end (0x20) ; // Master normally finish
#elif varti ==
i ic4_master_end (0x20) ; // Master normally finish
#endif}
iic_mode = 0x00;
}iic_index = 0x00;
elsef
UiSMR4 = 0x04;
UiSMR4 = 0x3c; // Stop condition generate
if(f_ep == 0) {
#if varti ==
i ic0_master_end (0x10) ; // Master normally finish
#elif varti ==
iicl_master_end(0x10); // Master normally finish
#elif varti ==
iic2_master_end (0x10); // Master normally finish
#elif varti ==
i ic3_master_end (0x10); // Master normally finish
#elif varti ==
i ic4_master_end (0x10) ; // Master normally finish
#tendif
elsel
#if varti ==
i ic0_master_end (0x20) ; // Master normally finish
#telif varti ==
iicl_master_end (0x20); // Master normally finish
#elif varti ==
iic2_master_end (0x20) ; // Master normally finish
#elif varti ==
i ic3_master_end (0x20) ; // Master normally finish
#elif varti ==
i ic4_master_end (0x20) ; // Master normally finish
#tendif
]
}
}
else{
if(f_ep == 0) {
#if varti ==
i ic0_master_end (0x00) ; //
#elif varti ==
iic1_master_end (0x00); //
#elif varti ==
iic2_master_end (0x00) ; //
#elif varti ==
iic3_master_end (0x00); //
#elif varti ==
i ic4_master_end (0x00) ; //
#tendif

Rev.1.00 2003.08.22 Page 81 of 83 RENESAS

M32C/83,85 Group
Using Simple I°C Bus Mode on M32C/83,85

// Stop condition generate

UiSMR4 = 0x04;

UiSMR4 = 0x3c;
elsef

iic_mode = 0x31;
iic_length = iic_eeplen;
iic_rw=1;

UiSMR4 = 0x02;

UiSMR4 = 0x3a;

}

}
UiSMR2 = 0x03;
SiRIC = 0x01;
}SiTIC = 0x00;
elsel
if(f_sr == 0) {
——iic_pointer;

// Restart condition generate

//

// receive int

. enable

// transfer int. disable

// = When cont
// = When rece

*iic_pointer = temp. byte. bytel;

++iic_pointer;
++iic_pointer;
++iic_index;

if(iic_length ==
UiTB = 0x01ff;
}

elsef
UiTB = 0x00ff;
}

swe = 1;

SiRIC = 0x01;

}

else{

if (temp.bit. b8 == 1) {
#if varti

i icO_master_end (0x03) ;

#elif varti ==

i ic1_master_end (0x03) ;
#elif varti ==

i ic2_master_end (0x03) ;
#elif varti ==

i ic3_master_end (0x03) ;
#elif varti ==

i ic4_master_end (0x03) ;
#tendif

als = 0;

UiSMR4 = 0x04;

UiSMR4 = 0x3c;

UiSMR2 = 0x01;

SiRIC = 0x01;

inue =
ive =

// Pointer moved

iic_index) {

// Send NACK

// Send ACK

// receive int

. enable

// = When transfer =
// = When NACK found =

// When N byte
// When N byte
// When N byte
// When N byte
// When N byte

// Stop condit
//

// receive int

NACK found finish
NACK found finish
NACK found finish
NACK found finish
NACK found finish

ion generate

. enable

Rev.1.00 2003.08.22 Page 82

of 83

RENESAS

M32C/83,85 Group

Using Simple I°C Bus Mode on M32C/83,85

elsef
temp. byte. byte0

// = When ACK found =

*iic_pointer;

temp. byte. bytel = 0x01; // NACK-data set
UiTB = temp. all;
abl = 0; // Arbitration lost flag clear
als = 1; // When Arbitration lost, SDA “HiZ” disable
swe = 1;
SiRIC = 0x01; // receive int. enable
++iic_pointer; // Pointer moved
++jic_index;
}
}
}
]
elsel // = When slave =
UiMR = OxOa;
if(f_sr == 1) { // = When transfer =
if(temp.bit. b8 == 1) { // = When NACK found =
ackd = 1; // Output NACK-data
ackc = 1; // NACK-data output enable
swc9 = 0; // SCL”L"Hold3 disable
SiSIC = 0x00; // stop int. disable
SiRIC = 0x01; // Receive int. enable
#if varti ==
iicO_slave_end(0x10, iic_index); // Slave transfer complete
#elif varti ==
iicl_slave_end(0x10, iic_index):; // Slave transfer complete
#elif varti ==
iic2_slave_end(0x10, iic_index); // Slave transfer complete
#telif varti ==
iic3_slave_end(0x10, iic_index); // Slave transfer complete
#elif varti ==
iic4_slave_end(0x10, iic_index): // Slave transfer complete
#tendif
iic_index = 0x00; //
}iic_mode = 0x00; // Slave mode set
else{ // = When ACK =
swc9 = 0; // SCL”L”HOLD3 disable
swc = 1; // SCL”L”HOLD enable

++iic_pointer;
++iic_index;
SiRIC = 0x01;
}

// Pointer moved

elsel // = When receive =

—iic_pointer;

*iic_pointer = temp. byte. byte0;

++iic_pointer;
UiTB = 0x00ff;
swc9 = 0;

swe = 1;
++iic_pointer;
++iic_index;
SiRIC = 0x01;

// Send ACK

// SCL”L”HOLD3 disable
// SCL”L”HOLD enable
// Pointer moved

Rev.1.00 2003.08.22 Page 83

of 83 RENESAS

Keep safety first in your circuit designs!

® Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more
reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors
may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Notes regarding these materials

® These materials are intended as a reference to assist our customers in the selection of the Renesas Technology
Corporation product best suited to the customer’s application; they do not convey any license under any
intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party.

® Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third—party’s
rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application
examples contained in these materials.

® Al information contained in these materials, including product data, diagrams, charts, programs and algorithms
represents information on products at the time of publication of these materials, and are subject to change by
Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore
recommended that customers contact Renesas Technology Corporation or an authorized Renesas Technology
Corporation product distributor for the latest product information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors. Renesas Technology
Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or
errors. Please also pay attention to information published by Renesas Technology Corporation by various
means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com).

® When using any or all of the information contained in these materials, including product data, diagrams, charts,
programs, and algorithms, please be sure to evaluate all information as a total system before making a final
decision on the applicability of the information and products. Renesas Technology Corporation assumes no
responsibility for any damage, liability or other loss resulting from the information contained herein.

® Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or
system that is used under circumstances in which human life is potentially at stake. Please contact Renesas
Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering
the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation,
vehicular, medical, aerospace, nuclear, or undersea repeater use.

® The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or
in part these materials.

® If these products or technologies are subject to the Japanese export control restrictions, they must be exported
under a license from the Japanese government and cannot be imported into a country other than the approved
destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

® Please contact Renesas Technology Corporation for further details on these materials or the products contained
therein.

