To our customers,

Old Company Name in Catalogs and Other Documents

On April 1!, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESAS

8.

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,

especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

LENESANS

Application Note

Stepper Motor Control using
the uPD78F0714 Microcontroller

Document No. U17733EE1VOANOO
Date Published September 2005

© NEC Electronics Corporation 2005
Printed in Germany

NOTES FOR CMOS DEVICES

@ VOLTAGE APPLICATION WAVEFORM AT INPUT PIN
Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the
CMOS device stays in the area between Vi (MAX) and Vi1 (MIN) due to noise, etc., the device may
malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed,
and also in the transition period when the input level passes through the area between Vi. (MAX) and
Vi1 (MIN).

@ HANDLING OF UNUSED INPUT PINS
Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is
possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS
devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed
high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to Voo or GND
via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must
be judged separately for each device and according to related specifications governing the device.

@ PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as
much as possible, and quickly dissipate it when it has occurred. Environmental control must be
adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that
easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static
container, static shielding bag or conductive material. All test and measurement tools including work
benches and floors should be grounded. The operator should be grounded using a wrist strap.
Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for
PW boards with mounted semiconductor devices.

@ STATUS BEFORE INITIALIZATION
Power-on does not necessarily define the initial status of a MOS device. Immediately after the power
source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does
not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the
reset signal is received. A reset operation must be executed immediately after power-on for devices
with reset functions.

® POWER ON/OFF SEQUENCE

In the case of a device that uses different power supplies for the internal operation and external
interface, as a rule, switch on the external power supply after switching on the internal power supply.
When switching the power supply off, as a rule, switch off the external power supply and then the
internal power supply. Use of the reverse power on/off sequences may result in the application of an
overvoltage to the internal elements of the device, causing malfunction and degradation of internal
elements due to the passage of an abnormal current.

The correct power on/off sequence must be judged separately for each device and according to related
specifications governing the device.

@ INPUT OF SIGNAL DURING POWER OFF STATE
Do not input signals or an I/O pull-up power supply while the device is not powered. The current
injection that results from input of such a signal or /O pull-up power supply may cause malfunction and
the abnormal current that passes in the device at this time may cause degradation of internal elements.
Input of signals during the power off state must be judged separately for each device and according to
related specifications governing the device.

All other product, brand, or trade names used in this publication are the trademarks
or registered trademarks of their respective trademark owners.

Product specifications are subject to change without notice. To ensure that you have the latest product
data, please contact your local NEC Electronics sales office.

2 Application Note U17733EE1VOANOO

* The information in this document is current as of September, 2005. The information is subject to
change without notice. For actual design-in, refer to the latest publications of NEC Electronics data
sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not
all products and/or types are available in every country. Please check with an NEC Electronics sales
representative for availability and additional information.

 No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
appear in this document.

* NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from the use of NEC Electronics products listed in this document
or any other liability arising from the use of such products. No license, express, implied or otherwise, is
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.

e Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of a customer's equipment shall be done under the full
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
customers or third parties arising from the use of these circuits, software and information.

* While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC
Electronics products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment and anti-failure features.

 NEC Electronics products are classified into the following three quality grades: "Standard”, "Special" and
"Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-

designated "quality assurance program" for a specific application. The recommended applications of an NEC

Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of

each NEC Electronics product before using it in a particular application.

"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots.

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support).

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to
determine NEC Electronics' willingness to support a given application.

(Note)

(1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its
majority-owned subsidiaries.

(2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as
defined above).

M8E 02.11-1

Application Note U17733EE1VOANOOQ

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, please contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

e Device availability
e Orderinginformation

e Product release schedule

* Availability of related technical literature

e Development environment specifications (for example, specifications for third-party tools and
components, host computers, power plugs, AC supply voltages, and so forth)

e Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary

from country to country.

NEC Electronics America Inc.

Santa Clara, California

Tel: 408-588-6000
800-366-9782

Fax: 408-588-6130
800-729-9288

NEC Electronics (Europe) GmbH
Duesseldorf, Germany

Tel: 0211-65 03 1101

Fax: 0211-65 03 1327

Sucursal en Espana
Madrid, Spain

Tel: 091- 504 27 87
Fax: 091- 504 28 60

Succursale Francaise
Veélizy-Villacoublay, France
Tel: 01-30-67 58 00
Fax: 01-30-67 58 99

Filiale Italiana
Milano, Italy

Tel: 02-66 75 41
Fax: 02-66 75 42 99

Branch The Netherlands
Eindhoven, The Netherlands
Tel: 040-244 58 45

Fax: 040-244 45 80

Branch Sweden
Taeby, Sweden

Tel: 08-63 80 820
Fax: 08-63 80 388

United Kingdom Branch
Milton Keynes, UK

Tel: 01908-691-133
Fax: 01908-670-290

NEC Electronics Hong Kong Ltd.
Hong Kong

Tel: 2886-9318

Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch

Seoul, Korea

Tel: 02-528-0303

Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.
Singapore

Tel: 65-6253-8311

Fax: 65-6250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan

Tel: 02-2719-2377

Fax: 02-2719-5951

Application Note U17733EE1V0OANOQO

Table of Contents

Chapter L OVeIrVIeW . ..o e e e e 9
1.1 ADSHrACt . . oo 9
1.2 IntrodUCHiON . . . 9
1.3 Overview of UPD78F0714 10
Chapter 2 Stepper Motor BasSiCS.ottt e e e e 11
2.1 Stepper Motor BaSiCS . ..ottt 11
2.2 Stepper Motor Control Requirements i 14
Chapter 3 System Design CONCEPLt 17
3.1 System CONCEPt . ..o 17
3.2 System Configuration. e 18
Chapter 4 Hardware Configuration. e 19
4.1 PPD78F0714 Configurationt e e 19
4.2 Peripherals /O ASSIgNMENtSo e e 20
4.3 8-bit Timer HO FUNCLION e 22
4.4 8-bit Timer 5L FUNCLION. . ..o 23
45 Real Time Port O FUNCLION e e 24
4.6 16-bit Up/Down Counter FUNCLION e e e 27
4.7 Motor Specification. e 28
4.8 Encoder Specification 28
4.9 Stepper Motor Driving Circuit and User Interface Circuit. 29
Chapter 5 Software Process DescCription., 31
5.1 Demo Mode 32
5.2 Normal Mode e 32
5.3 Initialization oo 33
5.4 TM51Interval Timer 33
5.5 KeY DeleCl ..ot e 33
56 RTP Motor Signals e e e 34
5.7 Current Measurement. 35
5.8 AVBIAgE . . e 35
5.9 PWIM St art . . oo 35
5. 00 RaAMD .ttt 36
5.11 Stall_DetecCt 36
5.12 Pl-RegUIAtOr. . .. 36
Chapter 6 Software Flowcharts 37
6.1 Conceptand Main Flowchart. 37
6.2 Peripherals Initialization. 38
6.3 Main CoONCEPL . ..o e 39
6.4 DemoO CONCEPL. . ..t 40
6.5 RTP Motor Signals Concept. 41
6.6 Current Measurement. 43
6.7 AVEBIAOE . .ot 44
6.8 PWIM Start . ..ot e 45
6.9 RAM ... 46
6.10 Stall DeteCto 47
6.11 Pl-Regulator. e 48
Chapter 7 Program Listing i e e e 49

Application Note U17733EE1VOANOO 5

Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-5:
Figure 2-6:
Figure 3-1:
Figure 3-2:
Figure 3-3:

Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 4-6:
Figure 4-7:
Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 5-4:
Figure 6-1:
Figure 6-2:
Figure 6-3:
Figure 6-4:
Figure 6-5:
Figure 6-6:
Figure 6-7:
Figure 6-8:
Figure 6-9:

Figure 6-10:
Figure 6-11:
Figure 6-12:
Figure 6-13:
Figure 6-14:

List of Figures

[1Y o] 110 IS (=T] o 1= g 1V o) (o S 11
2 Phase Stepper Motor with one pole pair permanent magnet..............ccccvvvvncieenennn. 12
Energizing States FUl-StePuvuueiii i 13
Energizing States Half-Stepuiiiiiiiiiii e 13
Unipolar Stepper MOOr AriVE........ccoo i e e e e e e e e e e e e e e e e e e aeeaaeaanen 14
(1T ol = UN\Y, o] (o] g @da] gl e I I 1= o | o I 15
Principal Block Diagram of the System Configurationcccccceeceiiiiiiiiiiieee e, 17
System Configuration with the Peripherals of the uPD78F0714vvvviiiiiiiieennennn. 18
System Topology and Relationship between the Control Software

and the Hardware Of the SYStemovviiiiiiiiiiiii e 18
Timing of TMHO Interval Timer OPerationcccoovviiiiiiieeeeers e 22
Timing of TM51 Interval Timer Operation............cccooviiiiiiiiiieeie e 23
Block Diagram of Real-Time Output POrt RTPOoooiiiiiiiiresn e 24
Real-Time Output Port Operation Timing EXamplec.ovvviiiiiiiiiiiiiiii e, 26
Timing for Up/Down Counter in MOde 3ccoooiiii i 27
General Signal Process of the ENCOUETuuueiiiiiiiiiiic e 28
Motor Driver and User Interface for Stepper Motor Control...........ccceeeveveiiiiiiineenneenn, 30
Principal Data FIOW DIagramciiiiiiiiiieee e s a e n e e e aaaaaa e 31
INILIANIZALION PrOCESS. ...ttt e e e e e e e e eae s 33
Connection between TM00, TM50 and Motor Signalsccoovvviiiiiiieeeiiiiiin, 34
Connection between TM0O0, TMHO and AD CONVEISIONccccuvvviieieeeieeeneeiiiiiiieeee 35
Main Program FIOWCHAITuueeiiiii e e e e e e e e e 37
Peripherals INitialiZatiON............uueieiiii e e a e e e e ae e 38
Endless LOOP FUNCLON FIOWuuuiiiiiii i s e e e e e 39
DEemMO FUNCHON FIOW.....oiiiiiiie e e e 40
RTP_START FIOWCNAItiiieei ittt st e e e e e e s traeeeesans 41
TMB50_ISR FIOWCRAIT.......ciieeeeeeeeeeece e a e e e e aaaae e 41
TMOO_ISR FIOWCRAIT.......cicieeeeeeeee s a e r e e e e e aaae e 42
TMHO _ISR FIOWCNAITcoiieeeeeeeeee s e e e e e e aaaae e 43
AD_START FuNnction FIOWChAITuvuiiiiiiii e 43
Average FUNCLioN FIOWCHAM...........uuuiiiiii e 44
PWM_START FIOWCRHAITviiiieiiiiiiee sttt ettt e et e e nrae e e e 45
Y | L (o 1LY = T 46
STALL_DETECT FIOWCRNAI........eeiiiiiiiiiie ittt e snbee e e e 47
Pl-Regulator FIOWCRHAI............uuiiiii e e e e e 48

Application Note U17733EE1V0OANOQO

Table 1-1:
Table 4-1:
Table 4-2:
Table 5-1:

List of Tables

FUNCHONAT OULINE.....coiiiiiiiiies et e e e s 10
HPD78F0714 Peripherals 1/O ASSIGNMENTSuuiiiiiiiiiaae it 20
Relationship Between Settings of Each Bit of Control Register and Real-Time Output. 25
YY1 (o s W@ o 1= =1 1o o H PP PUPPPPPRPIOt 32

Application Note U17733EE1VOANOO 7

Application Note U17733EE1V0OANOQO

Chapter 1 Overview

1.1 Abstract

This application note shows how to implement a controller for a stepper motor using the pyPD78F0714

along with a simple analog Drive circuit.
Source code, schematic, bill of material, and board layout files are provided.

1.2 Introduction

Nowadays, stepper motors are used in a wide variety of applications. They are prevalent in consumer
office equipment such as printers, scanners, copiers and plotters. They also play an important role in
the industry, use in robotics or dashboard indicators, climate control systems in the automotive industry.
Purpose of this application note is to show how a stepper motor control is realised on the uPD78F0714
with as few external parts as possible. The software and hardware configurations published here are
just examples and are not intend for mass production.

Application Note U17733EE1VOANOOQ 9

Chapter 1 Overview

1.3 Overview of uPD78F0714

Table 1-1: Functional Outline
Item uPD78F0714
Flash memory
Internal (self-programming |32 KB
memory supported)
High-speed RAM |1 KB
Memory space 32 KB

X1 input clock (oscillation
frequency)

Ceramic/crystal/external clock oscillation
[20 MHz (Vpp = 4.0 t0 5.5 V)]

Ring-OSC clock (oscillation
frequency)

On-chip Ring oscillation (240 kHz (TYP.))

General-purpose registers

8 bits x 32 registers (8 bits x 8 registers x 4 banks)

Minimum instruction execution
time

0.1 ps/0.2 ps/0.4 ps/0.8 ps/1.6 ps (X1 input clock: @ fyp = 20 MHz operation)

8.3 us/16.6 ps/33.2 us/66.4 ps/132.8 us (TYP)
(Ring-OSC clock: @ fg = 240 kHz (TYP.) operation)

Instruction set

¢ 16-bit operation e Multiply/divide (8 bits x 8 bits, 16 bits + 8 bits)
¢ Bit manipulate (set, reset, test, and Boolean operation) e BCD adjust, etc.

Total: 48

1/0 ports CMOS I/0 40
CMOS input 8
e 10-bit inverter control timer: 1 channel
e 16-bit up/down counter: 1 channel

. ¢ 16-bit timer/event counter: 1 channel

Timers .
¢ 8-bit timer/event counter: 2 channels
e 8-bit timer: 1 channel
« Watchdog timer: 1 channel

Timer outputs

11 (inverter control output: 6)

Clock output

156.25 kHz, 312.5 kHz, 625 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz, 20 MHz
(X1 input clock: 20 MHz)

Buzzer output

2.44 kHz, 4.88 kHz, 9.77 kHz, 19.5 kHz (X1 input clock: 20 MHz)

Real-time output ports

e 8hits x 1 or 4 bits x 2
e 6 bits x 1 or 4 bits x 2

A/D converter

10-bit resolution x 8 channels

Serial interface

« UART mode: 1 channel
¢ 3-wire serial /0O mode: 1 channel

Multiplier/divider

« 16 bits x 16 bits = 32 bits (multiplication)
e 32 bits + 16 bits = 32 bits remainder of 16 bits (division)

Vectored Internal

20

interrupt sources |External

8

¢ Reset using RESET pin
Internal reset by watchdog timer

Reset

¢ Internal reset by power-on-clear

< Internal reset by low-voltage detector
Supply voltage Vpp=4.0t055V

Operating ambient temperature

Tp = -40 to +85°C

Package 64-pin plastic TQFP (fine pitch) (12 x 12)
Caution: The operating voltage range may be changed after evaluation of the device.
10 Application Note U17733EE1VOANOO

Chapter 2 Stepper Motor Basics

2.1 Stepper Motor Basics

A step motor is an electromagnetic, rotary actuator, which mechanically converts digital pulse inputs to
incremental shaft rotation. The rotation has not only a direct relation to the number of input pulses, but
its speed is related to the frequency of the pulses.

The motor is able to holds its' position (and its' load) between the steps without the aid of clutches or
brakes. Thus a step motor can be precisely controlled so that it rotates a certain number of steps, pro-
ducing mechanical motion through a specific distance, and then holds its load when it stops. Further-
more, it can repeat the operation at any prescribed number of times.

With the appropriate logic, step motors can be bi-directional, synchronous, provide rapid acceleration,
stopping, and reversal, and will interface easily with other digital mechanisms. They are further charac-
terized as having low rotor moment of inertia, no drift, and a nhon cumulative positioning error.
Generally step motors are operated without feedback in an open-loop manner and often match the per-
formance of more expensive DC Servo positioning Systems.

Stepper motors may be classified by their motor construction, drive topology, and stepping pattern.
There are several different types of stepper motor construction. These include variable reluctance, per-
manent magnet, and hybrid permanent magnet. This reference design is applicable to the permanent
magnet and hybrid two phase stepper motors.

The hybrid rotor is constructed using a cylindrical permanent magnet oriented with the north-south
polarity along the rotor axis. Two laminated end caps are used with many teeth around the periphery.
The north and south teeth are staggered to provide many effective poles using a single permanent
magnet. The stator laminates typically have four large forks. Each fork has many teeth. The teeth for the
two windings are also staggered to line up with the appropriate teeth on the rotor.

Figure 2-1: Hybrid Stepper Motor

Stator
Winding

— Stator

Rotor

north pole S | Non-torgue

producing flux

Torgue
producing flux

Stator

Fork
—1— Rotor

Application Note U17733EE1VOANOO 11

Chapter 2 Stepper Motor Basics

The drive topology of stepper motors is also an important criterion for choosing a motor.

Here are two main topologies to mention, unipolar and bipolar driving.

Unipolar stepping motors are composed of two windings, each with a center tap. The center taps are
either brought outside the motor as two separate wires or connected to each other internally and
brought outside the motor as one wire. As a result, unipolar motors have 5 or 6 wires. Regardless of the
number of wires, unipolar motors are driven in the same way. The center tap wire(s) is tied to a power
supply and the ends of the coils are alternately grounded.

Bipolar stepping motors are composed of two windings and have four wires. Unlike unipolar motors,
bipolar motors have no center taps. The advantage to not having center taps is that current runs
through an entire winding at a time instead of just half of the winding. As a result, bipolar motors pro-
duce more torque than unipolar motors of the same size. The draw back of bipolar motors, compared to
unipolar motors, is that more complex control circuitry is required by bipolar motors. That is the main
reason why in this application a unipolar drive topology is used, to keep the external parts at a mini-
mum.

The basic movement of the motor can be best shown by reducing the defaults to the simplest arrange-
ments. We look at the rotor as one permanent magnet with north-south polarity and the stator comes
down to four magnetic poles.

Figure 2-2: 2 Phase Stepper Motor with one pole pair permanent magnet

Permanent
Magnet

Phase
Windings

Unipolar stepping motors operate by attracting the north or south poles of the permanently magnetized
rotor to the stator poles. Thus, in these motors, the direction of the current through the stator windings
determines which rotor poles will be attracted to which stator poles. Current direction in unipolar motors
is dependent on which half of a winding is energized. Physically, the halves of the windings are wound
parallel to one another. Therefore, one winding acts as either a north or south pole depending on which
half is powered.

In the figure above you can see the four different energizing phases that are necessary to rotate the
shaft one time. In the first phase W1 and W2’ are energized, in the second the current flows through W1
and W2 etc. In this application design a variant where two windings are energized at the same time has
been chosen to produce more torque. The following figure shows the different energizing states for the
example motor above.

12 Application Note U17733EE1VOANOO

Chapter 2 Stepper Motor Basics

Figure 2-3: Energizing States Full-Step

1 2 3 4
Phase A | ; ; ; ; "
Phase A’ .
Phase B IZ
Phase B’ / 4

The example motor uses now only four steps for one rotation, in reality the angular resolution is wide
spread and depends on the motor data.

The angular resolution that can be executed depends on number of phases p and how many pole pairs
m there are:

360°
2:-p-m

(1)

The calculated stepper angle applies only with full step-by-step operation mode of the stepping motor.
In addition, the so-called half step modus and other step routines are possible. The differences are
described in the following.

The full step modus is already shown in the example above, means that you need four steps in the sim-
plest arrangements to obtain one shaft rotation. The angular resolution is 90 degrees.

The difference of the half step operation lies in the fact that the phase coils are not always energized at
the same time, but, as the associated figure shows also is switched off. Thus each step is halved, so
that for a revolution 8 steps are necessary. The stepper angle halved itself thus on 45 degrees.

Figure 2-4: Energizing States Half-Step

Phase A ; ; ; ;/
Phase A’ /

Phase B

Phase B’ / 4

Apart from the described kinds of step modes there is still the mini or micro step operation. By digital
tax logic the newest micro step systems reach 250 micro steps for each full step, thus max. 50000 steps
for each revolution. This application design doesn’t deal with the problems of micro stepping, so the two
main drive topologies here are full- and half step operation mode.

Application Note U17733EE1VOANOO 13

Chapter 2 Stepper Motor Basics

2.2 Stepper Motor Control Requirements

As already mentioned this application design deals with an unipolar drive topology and focuses on the
full and half-step operation mode. The principal driver design for an unipolar stepper motor is shown
below, in Figure 2- 5.

Figure 2-5: Unipolar Stepper Motor drive

Vcce
A
A
L
A
B B
Q1 Q2 Q3 Q4
— — # — —
< Y < [a [A
— = = =

GND

The circuit contains four power mosfets responsible for the current flow through the windings. The
center tap of the motor winding is connected to the positive voltage supply. Each coil can be energized
in either direction by turning on the appropriate MOSFET. The driving pattern is similar to the energizing
states shown in Figure 2-3 and 2-4.

When a motor is operated at a fixed rated voltage its torque output decreases as step rate rises. This is
because the increasing back EMF and the rise time of the coil current limits the power actually deliv-
ered to the motor. The effect is governed by the motor time constant (L/R). Because of their higher
winding resistance unipolar motors have a better L/R ratio than their bipolar equivalents.

The effect can be compensated by either increasing the power supply voltage to maintain constant cur-
rent as stepping rate increases, or by increasing supply voltage by a fixed

amount and adding series resistors to the circuit.

There is good reason to run a stepping motor at a supply voltage above that needed to push the maxi-
mum rated current through the motor windings. Running a motor at higher voltages leads to a faster rise
in the current through the windings when they are turned on, and this, in turn, leads to a higher cutoff
speed for the motor and higher torques at speeds above the cutoff.

In this application design a Pl Regulator is used to maintain current at an average user defined level.
The whole Pl Regulator is software based to keep external parts as few as possible.

14 Application Note U17733EE1VOANOO

Chapter 2 Stepper Motor Basics

The following figure shows a schematic for general motor control design with a microcontroller.

Figure 2-6: General Motor Control Design

Main Supply

4

Microcontroller
Power

Supply

Microcontroller > Driver —®» V| |-

Motor
Feedback

The functions of the components in detail:

Main Supply Provides circuit energy

Microcontroller Power Supply | Regulates voltage and current for the microcontroller

Produces the accurate signals for switching the mosfets also contains protection
circuit, which ensures on change of the clock frequency that the stepping motor
does not loose steps. Microcontroller observes and regulates the current flow
through the motor.

Microcontroller

Driver Switches the power necessary for the motor phases.

Gives continuously information about the current flow through the windings to

Current Sensor .
the microcontroller.

Stepper motor control requirements are summarized below:

 Driver circuit to provide necessary power for the stepper motor
» Current limiting device (software based)
 Interrupted based microcontroller algorithm to produce exact output signals

For the closed loop current control of the motor

* Measurement of the motor current
* PWM Signal to control motor current and power

Application Note U17733EE1VOANOO 15

[MEMO]

16 Application Note U17733EE1VOANOO

3.1 System Concept

Chapter 3 System Design Concept

Figure 3-1 shows the principal block diagram of the system concept for the stepper motor.

Figure 3-1:

Keys

Principal Block Diagram of the System Configuration

Current
Sensor

Motor Driver

uPD78F0714

Encoder (optional)

]

LEDs

The uPD78F0714 processes the feedback of the current sensor to control the motor driver that supplies
the current flow through the windings. An encoder can be optional added to get active feedback of the

rotor position.

Application Note U17733EE1VOANOO

17

Chapter 3 System Design Concept

3.2 System Configuration

Figure 3-2 shows the system configurations and the peripherals of the uPD78F0714 device used for the
stepper motor control.

Figure 3-2: System Configuration with the Peripherals of the uPD78F0714

Keyl Key2 Key3 Key4
16-bit |a - - - - - - A .
|
le| g-bit up-down(7777777 B |
Timer Counter '
51 L
Optional | !
2 Bbit [ap | ANIO |« Encoder 1.
S Timer 1
a Converter !
o HO [<—| ANIL ,L— -
16-bit Timer/ | 4 3 @
¢ Event Counter 00 |-» Real-Time Motor r
777777777777 | Port 0 Driver
8-bit Timer/ i
3 x LEDs Event Counter 50

Current Sensor

The Keys are control elements for enabling different running modes for the stepper motor.

The key inputs are sampled by the Interval Timer 51. The 16- Bit Timer/Event Counter 00 and Real—
Time Port 0 generate the motor signals for shaft rotation. The actual current flow is detected over extern
shunt resistors. The 8- Bit Timer HO communicates with A/D Converter and defines when to start a con-
version. In current dependence Timer 50 generates a PWM with different duty cycle to keep current at
the user defined set point. Optional an extern encoder can be implemented to observe the actual posi-
tion. The encoding of these signals can be realised with the 16- Bit Up/Down Counter. The three LED’s
visualize the different running modes the stepper motor is in. The function from each peripheral is
described in the next chapter. The system topology with the relationship between hardware and soft-
ware is shown in Figure 3- 3.

Figure 3-3: System Topology and Relationship between the Control Software
and the Hardware of the System

8 Bit Timer HO
Vet
i
_ VActual Shunt Resistor Voltage
A/D Converter [
DeItaV
Output
Duty Control
Y _— Cycle . Signal)
P1 Regulator 8 Bit Timer 50 Real-Time Port Motor Drive

18 Application Note U17733EE1VOANOO

Chapter 4 Hardware Configuration

This section describes the hardware requirements for this application example.

4.1 uPD78F0714 Configuration

The uPD78F0714 device is a

member of the high performance 78K Family 8-bit microcontrollers,

designed specifically for mid-range motor control. The configuration of the device and the operating
environment used in this application is listed below:

« CPU:

¢ Operating clock:

¢ Operating Voltage:
* Internal ROM:

¢ [Internal RAM:

« External expansion memory:

uPD78F0714

System clock 20 MHz
5V

32 Kbytes

1024 bytes

not used.

Application Note U17733EE1VOANOO 19

Chapter 4 Hardware Configuration

4.2 Peripherals I/0O Assignments

Table 4-1 lists all pins of the yPD78F0714 device and the ones that are used in this application are

described with their associated function.

20

Table 4-1: pPD78F0714 Peripherals I/O Assignments (1/2)

Pin No. Pin Name Mode Setting Function

1 AVREF Extern reference Voltage PIReg.

2 AVSS Connect to Ground

3 FLMDO Output Not used

4 VDD Power Supply

5 VSS Ground

6 X1 Input System Clock

7 X2 System Clock

8 RESET Input Reset Input

9 INTP3 Output Not used

10 INTP2 Output Not used

11 INTP1 Output Not used

12 INTPO Output Not used

13 P30 Output Not used

14 P31 Output Not used

15 P32 Output Not used

16 P33 Output Not used

17 P50 Output Not used

18 P51 Output Not used

19 P52 Output Not used

20 P53 Output Not used

21 P54 Output Not used

22 P55 Output Not used

23 P56 Output Not used

24 P57 Output Not used

25 EVSS Connect to Ground

26 EVDD Connect to VDD

27 RTP10 Output Not used

28 RTP11 Output Not used

29 RTP12 Output Not used

30 RTP13 Output Not used

31 RTP14 Output Not used

32 RTP15 Output Not used

33 P10 Output Not used

34 P11 Output Not used

35 P12 Output Not used

36 P13 Output Not used

37 P14 Output Not used

Application Note U17733EE1VOANOO

Chapter 4 Hardware Configuration

Table 4-1: uPD78F0714 Peripherals I/O Assignments (2/2)
Pin No. Pin Name Mode Setting Function
38 P15 Output Not used
38 P16 Output Not used
40 P17 Output Not used
41 RTPOO Output Phase A
42 RTPO1 Output Phase B
43 RTPO2 Output Phase A
44 RTPO3 Output Phase B
45 RTP0O4 Output Not used
46 RTPO5 Output Not used
47 RTPO6 Output Not used
48 RTPO7 Output Not used
49 P64 Input Tracer 1
50 P65 Input Tracer 2
51 P66 Input Tracer 3
52 P67 Input Tracer 4
53 P70 Output LED red
54 P71 Output LED yellow
55 P72 Output LED green
56 P73 Output Not used
57 ANI7 Output Not used
58 ANI6 Output Not used
59 ANI5 Output Not used
60 ANI4 Output Connect to Ground
61 ANI3 Output Connect to VDD
62 ANI2 Output Not used
63 ANI1 Input Voltage Shunt 2
64 ANIO Input Voltage Shunt 1

Application Note U17733EE1VOANOO

21

Chapter 4 Hardware Configuration

4.3 8-bit Timer HO Function

As shown in the hardware explanation, the time the AD conversion starts is determined by 8-bit timer
HO of the uPD78F0714 device.
The timer has the following operation modes:

* Interval timer
- Generates interrupt request at the preset time interval

* PWM output mode
- A pulse with an arbitrary duty and arbitrary cycle can be output

e Square-wave output
- Outputs a square wave with any selected frequency.

The interval timer mode was chosen, to define in dependence of 16-bit timer 00 how often an AD con-
version occurs in one motor step. An interrupt is generated at the user defined time and the AD conver-
sion is performed.Timer HO and TMOO work with the same frequency to guarantee synchronously
operating.

Figure 4-1 describes the principal flow of TMHO in the interval timer mode.

Figure 4-1: Timing of TMHO Interval Timer Operation

Count clock |||| ||||||||S<||||||

f Count start

8-bit timer counter HO 00H X 01H X X N X ooH X o1n X X ~ X ooH 00H
: A A

: Clear \ Clear

CMP00 N

TMHEO Jj g g |_

INTTMHO
Interval time
TOHO | .
<1> <2> <2> <3>
Level inversion, Level inversion,
match interrupt occurrence, match interrupt occurrence,
8-bit timer counter HO clear 8-bit timer counter HO clear

Interval time = (N +1)fcuT

22 Application Note U17733EE1VOANOO

Chapter 4 Hardware Configuration

4.4 8-bit Timer 51 Function
TM 51 has different operation modes:

* Interval timer
- Generates interrupt request at the preset time interval

» External event counter
- Counts number of external clock pulses to be input to the TI51 pin

e Square-wave output
- Outputs a square wave with any selected frequency

* PWM output
- A pulse with an arbitrary duty and arbitrary cycle can be output

Timer 51 is run in the interval mode to continuously check if a tracer is pressed, also handles the
bouncing control.
Following figure demonstrates the basic timing diagram for the interval mode.

Figure 4-2: Timing of TM51 Interval Timer Operation

I 1 I
TMsn countvalue __ 00H X01HX X N XooHXotHX X N Xoon¥oiHX X N X
A A

1
Count start Cllear Cllear !

CR5n N N N N

e u u —

Interrupt acknowledged Interrupt acknowledged

Interval time Interval time

Remark: Intervaltime=(N+1) xt
N = O0H to FFH
n=0,1

Application Note U17733EE1VOANOO 23

Chapter 4 Hardware Configuration

4.5 Real Time Port O Function

The Real -Time output Port (RTP) transfers previously set data in the real-time buffer register to the out-
put latch by hardware. The transfer is controlled with timer interrupts or external interrupt request gener-
ation. It is also possible to perform PWM modulation of a special pin with output pattern that can be
specified in one bit unit.

The uPD7F0714 has 2 channels of real-time output ports on chip. The RTPO port is shared with Port 4
and RTP1 is shared with inverter control timer. The real-time port used in this application is the RTPO
port. Therefore the function of the RTPO port will be described in detail.

Figure 4-3: Block Diagram of Real-Time Output Port RTPO

S Internal bus S

Real-time output port control
register 0 (RTPCO00)

Real-time output
buffer register 0
Higher 4 bits
(RTBHO0)

|RTPOE00‘RTPEGOO BYTEOO‘ EXTROOl

Real-time output
buffer register 0
Lower 4 bits
(RTBLOO)

Port mode
register 4 (PM4)

i

INTP2 (from outside) — .
INTTMOO (from TMOO) — -] Output trigger

INTTM51 (from TM51) .| controller

Real-time output port 0 Real-time output

TO50 (from TM50) output latch 1 port mode

register 0

(RTPMO0)
Port 4 ~
out Ot latch DC control
utpu PWM modulation register 00
(DCCTLO0)

P4n/RTPON pin output

50060660

PATIRTPOT7 -« o vveeeeee e P40/RTPOO

Remark: n=0to7

Figure 4-3 shows the block diagram of the real-time output port RTPO that shares the output with P4.

24 Application Note U17733EE1VOANOO

Chapter 4 Hardware Configuration

The real-time output buffer register 0 (RTBH00, RTBLO0O) is the register that holds the data in advance.
It is specified in entirely 8 bits that can be select either as 1 channel x 8 bits or 2 channels x 4 bits. The
real time output mode is set with the port mode register RTPMOO that allows 1-bit units selection. The
real-time output port control register RTPCOO sets the operating mode, enables/disables the operation
of the real-time output port. The DC control register DCCTLOO controls the PWM modulation, enabling/
disabling of the output waveform inversion.

The relationship between the register settings of the real-time output port and the effects on the output
is described in the Table 4-2 below:

Table 4-2: Relationship Between Settings of Each Bit of Control Register and Real-Time Output

PM4n P4n DCENOO INVOO l;V\YVI\IC/I((:Zng/ RTPOEOO | RTPMOON T?-;%ngnr;/ Pin P4n Status
1 X X X X X X X Input port
1 X X X x X X “high” output
0 X X “low” output
0 y y 0 x “low” output
1 0 “low” output
! 1 “high” output
0 X X “low” output
0 X “low” output
0 1 0 “low” output
! 1 “high” output
0 0 X x “TOS50" output
0 0 X “TO50" output
0 ! 1 0 “TO50" output
! 1 “high” output
! 0 X X “high” output
0 0 x “high” output
1 0 “high” output
1 ! 1 “low” output
0 X X “TO50” output
0 x “TOS50" output
! 1 0 “TOS50" output
! “low” output

Application Note U17733EE1VOANOO 25

Chapter 4 Hardware Configuration

The interaction between the generated signal from the 16-bit timer and the modulation of it with the real
time output port makes generation of a wide range of signal wave forms possible. The solution of the
signal generation for the control of the stepper motor drive circuit will be described in Chapter 5, where
the software will also be introduced and described. As already mentioned TMOO is responsible for the
general shape of the curve, where TM 50 generates the PWM. Following figure shows the connection
between these two timers.

Figure 4-4: Real-Time Output Port Operation Timing Example

8 bits x 1 channel, inverted output enabled, PWM modulation
(EXTROO =0, BYTEOO =1, INV0OO = 1, PWMCHO00 = 1, PWMCLO0O0 = 1)

e [T

| | | | | | | | |
| | | | | | | | |
CPU ‘ ‘ ‘ ‘ ! ! ‘ ‘ ‘
Operation Al Al Aa Al Al Al Al A A A
| | | | | | | : | ;
| | | | | | | I | I
RTBHOO, | | | | | | | I | ;
iy T e D D D D D &
1 1 1 1 1 1 1 [l 1
1 { 1 ! { 1 i 1 1
Output latch))))) b
P40 to P47 ! 01H ! 02H O3H 04H 05H 06H !
| | |
| | |

I I
| |
Output latch
P40
I
|

Output latch
P41

>
L[

I

| |

I I
Output latch ! !

I I

| |

P42

Output latch
P43

Output latch
P44 H

P45 H

Output latch

|

|

I

I

I

I

|

Output latch i
I

|

I

I

P46 H
|

I

Output latch
P47 H

Remark: A: INTTMOO software processing (RTBHO0O, RTBLOO write)

26 Application Note U17733EE1VOANOO

Chapter 4 Hardware Configuration

4.6 16-bit Up/Down Counter Function

As an additionally option an extern quadrature encoder can be added. To work with these signals the
16-bit up/down timer can be used. This timer can work with 2-phase extern encoder signals as the
count clock of the timer/counter via extern input pins. The following modes can be achieved with this

timer.

e Mode 1

- Counts the input pulses of the count pulse input pin. Up down is specified by the level of the

other input pin.

 Mode 2

- Counts up/down using the respective input pulses of the up count pulse input pin and down

count pulse input pin.

* Mode 3

- Counts up/down using the phase relationship of the pulses input to the 2 pins

 Mode 4

- Counts up/down using the phase relationship of the pulses input to the 2 pins. Counting is
done using the respective rising and falling edges of the pulses.

Mode 3 was chosen to keep exact track of the signal. Figure 4-5 shows basic working condition of the
timer for mode 3, TIT20IUD and TIT20CUD represent the two input pins.

Figure 4-5: Timing for Up/Down Counter in Mode 3

TIT20IUD
TIT20CUD J i i i : : : : |_
IT20UDC E 0007H XOOOSH X 0009HX 000AH X OOOQHX 0008H X 0007H

Up count

\
Down count

Application Note U17733EE1VOANOO 27

Chapter 4 Hardware Configuration

4.7 Motor Specification

The specification of the stepper motor used in this application note is as follows:

* Related Voltage 57V

e Current per Phase 1A

* Resistance per Phase 570

* Inductance 5.4 mH

All motors can be used that are able to work in the unipolar mode, the only difference must be made in
the user defined values, to adjust the software to the particular stepper motor.

In this application design the Oriental Motor PK264-01A stepper motor is used. Oriental Motors pro-
vides also a solution where the quadrature encoder, that fully satisfies the requirements, is already
included in the motor.

4.8 Encoder Specification

The optional included encoder should generally have following specification and provide the signals
shown in Figure 4-6.

» Supplied Voltage 5V
* Resolution per Step Up to 1024 Counts
* Load Capacity max. 100 pF

e TTL Compatible

Figure 4-6: General Signal Process of the Encoder

-2.4V

04V oy A
s1 s2 | s3

-2.4V
H -04V CH.B

Rotation

Amplitude

In order to shorten the rise time of the output pulse channel, the outputs be pulled up with a resistance
of 2.7 kQ.

28 Application Note U17733EE1VOANOO

Chapter 4 Hardware Configuration

4.9 Stepper Motor Driving Circuit and User Interface Circuit

Figure 4-7 is a schematic of the motor driver and user interface used in the development of this applica-

tion note.

Complete part list for Figure 4-7:

Resistors
R1...R4, R13, R14 10 kQ
R5, R17, R18, R19 330 Q
R6, R9...R12 100 Q
R7 1kQ
R8 10Q
R15,R16 0.25Q
R20, R21 2.7 kQ
Capacitors
c1 470 pF
c2 0.33 uF
C3 0.1 pF (ceramic)
c4 0.1 pF
C5 1pF
C6, C7 0.47 pF
Diodes
Zener Diodes
Z1 4.7V
72,73 23V
Shottky Diodes
D2... D5 | 1IN58190210
D1 | 1N4148
Mosfets
Q1. Q4 NEC NP36NO55HLE

Application Note U17733EE1VOANOO

29

Chapter 4 Hardware Configuration

Motor Driver and User Interface for Stepper Motor Control

Figure 4-7:

N9 QN9 aNg

ang
_ A
3 o [xz} [} MW
o 43 =1 @Nmm @ % @ 0L YNOSIY
M _H_Hm == AH ang Qng aND
A0 pE= T |ﬂ
=] =
15 = = = =
. — (az] s SEAY
(EIEIE 2 _”W :m ﬂm % ssh | |_||m.mm f-m & fm & fm @ fm @
ssad [O L o . "y N
S o/d
[lid £9d 7T
S 0id 994 S
59d £
7 AdINIFANI0ZLILIS5d Fad 53
2 g INKaNInZLILSS I e |
ang ang N9 adND EERT
m m H H < uzs [k EM __w ﬁm ﬂm
LM LEd + + &+
o o 5] ang
Y ¥ mOﬂ @Urlu_ P QINW/0Zd ang H
—1 <
— E0dLM/EYd _|||T|_
Pl W mw Z0dL8/zvd 3
L0d L L agAa 3
.J_w N ﬂ 00d L0 aga, wm mudlv oA IA mol_l ol =T
E 120432040 508 ’
|_H__ AT CE0dly 1 o H-
i ang
lﬂ_ FH_E WNEE
1 -
LNsta] & [
E— - Ay
I_.H_ T~ l0dL o -8 4
120 1333 .
oW Oz w__ . G Y a2
s OF — o - ;
i O Yo ¥ MNHDJ MNM o
W OF eo
.]
MO7 gE L =
L O 4] [
o UIBLLLA,

Vmain

Application Note U17733EE1V0OANOQO

30

Chapter 5 Software Process Description

This section describes the software implementation for this application example. Figure 5-1 shows the
principal data flow diagram and the relationship between the software modules and hardware peripher-
als that are involved in the control of the motor.

Figure 5-1: Principal Data Flow Diagram

RESET

Initalization

Tracer S2 - S5

d

DEMO Mode pree>e »(NORMAL Mode

1) DEMO Mode 2) NORMAL Mode

Starts when Demo
START is terminated
Tm51 Tm51
Interval Timer Interval Timer
Default
Stop if key is v

detected

Key_Detect
Timer start

Key_Detect
RTP
Motor Signals

Demo
Timer start

Current
Measurement

Current Motor Signals

Measurement Switch New Duty Actual
Switch New Dluty abp{)ro;ztriate Cycle v Current
appropriate Cycle it pattern
bit pattern y value
- PI_regulator Average
PI_regulator Average Real-Time
Real-Time Port
Port
OUTPUT
OUTPUT

The software can be separated into two main phases, the first one occurs right after initialization, the
application runs into demo mode, where a certain demo program is executed. The second phase is run
into as soon as an external switch is pressed, this terminates the demo program and leads to the nor-
mal working mode of the motor. From here on the motor can be driven in different pattern that are
described in the following chapter. The functions of the system shown in Figure 5-1 are sequential and
implemented and executed in the main endless loop of the software.

Application Note U17733EE1VOANOO 31

Chapter 5 Software Process Description

5.1 Demo Mode

In the demo mode the stepper motor can present the different working steps the motor is able to oper-
ate in. The mode is entered directly after switch on. The motor follows the user defined program as long
as no tracer is pressed. In this application design the motor rotates 90 degrees with a rotation speed of
1 RPM in detectable single steps and 270 degrees with a speed of 168 RPM in a continues way. Once
a tracer is pressed the demo mode is terminated and the motor stops.

5.2 Normal Mode

This is the mode where the motor is usual been driven. Four switches, S2 through S5, control how the
Stepper Motor Controller board operates. S2 controls direction. Each time S2 is pressed the motor
changes its direction of rotation. S3 controls how the motor is stepped. Each time S3 is pressed for less
than 1 second, the motor toggles between continuous mode and single step mode, this can only be per-
formed when the motor is standing still. Holding S3 down for more than 1 second toggles the stepping
sequence between full-stepping and half-stepping. Pressing S2 and S3 starts the motor in the continu-
ous mode, stopping the motor in this mode can be achieved by pressing switches S4 and S5. The
green LEDS is illuminated while operating in half-stepping mode. Otherwise, LED3 is off. Yellow LED2 is
illuminated while in single step mode, flashing while the motor rotates left, permanent if spinning right.
While operating in continuous mode, pressing S3 increases the motor's stepping rate, S4 decreases it.
For single step mode, the motor steps as long as S3 is pressed. S4 advances the motor one step each
time it is pressed.

The red LED1 shows that the motor is running and shuts off as soon as the motor stands.

Table 5-1: Switch Operation

Switch Operation

S2 Toggles Motor Direction

S2 & S3 | Starts motor in the continuous mode

S4 & S5 | Stops motor in the continuous mode

S3 Toggles between continuous and step mode (less than 1 second pressed)

S3 Toggles between full-stepping and half-stepping mode (more than 1 second pressed)

S4 Increases motor’s speed (continuous mode) / steps motor as long as pressed (step mode)
S5 Decreases motor’s speed (continuous mode) / single steps motor (step mode)

32 Application Note U17733EE1VOANOO

Chapter 5 Software Process Description

5.3 Initialization

The initialization process is responsible for the initializing the uPD78F0714 device after a system reset.
It configures the basic clock settings of the device, initializes the peripherals that are used for the motor
control application and disables/ enables interrupts. The initialization contains two parts as shown in
Figure 5-2, the first part that initializes the configuration of the device and the second part initialize the
peripherals with their operating mode.

Figure 5-2: Initialization Process
Configure Define
Peripherals operating mode
Initialization

Set processor Define and
Set port mode enable interrupts

5.4 TM51 Interval Timer

The timer TM51 is used to realize an interval timer function. It is used to generate an interrupt request
at the preset time interval. The interval time length is set to the period of T = 10.2 ms. Port six, the input
port for the switches, is masked in the ISR and checked every 10.2 ms. If a signal stands low for

20.4 ms, means that the ISR has occurred two times, the actual switch is considered pressed and
returned to the main loop. Different variables are generated. The timer is also responsible to keep a
counting variable for time variant applications, for instance the flashing of a led.

5.5 Key_ Detect

This function detects the key inputs and serves different system running modes depending on the key

input. The Key_Detect function is event controlled and it is executed only when a key entry is recog-
nized. The sample time of the key entry is defined with the elapse time of the TM51 ISR.

Application Note U17733EE1VOANOO 33

Chapter 5 Software Process Description

5.6 RTP Motor Signals

This process is responsible to generate the motor signals. It consists of three main functions. First func-
tion defines the real time output port, including port settings and enable pulse width modulation. The
second function contributes the bit patterns to drive the stepper motor. The timer TMOO is realised as an
interval timer function to generate an interrupt at a present time. Every time the ISR is executed a differ-
ent bit pattern is load to the real-time output buffer register 0, responsible to drive the mosfets in the
right order.

This function has to guarantee the exact bit pattern for every situation, including direction changes, half-
full step and start- stop mode. The position of the stepper is continuous tracked by a variable counting
how often the ISR is entered.

To generate the PWM for the real time output port the third function is used. TM50 works as an interval
timer. The timer works with a steady 5 MHz frequency, the duty cycle can differ from 0 to 100%. Value
of compare register CR50 modulates the duty cycle.

Figure 5-3 shows connection between TM00, TM50 and the generated output motor signals.

Figure 5-3: Connection between TM00, TM50 and Motor Signals

1

L1

-
[t

Phase A’

Phase B

ss |11 iy

S5

INTTMOO —|

|

— 1
— 1
1
1
<

;

34 Application Note U17733EE1VOANOO

Chapter 5 Software Process Description

5.7 Current Measurement

This process is responsible for measuring the voltage over the shunt resistors, which gives actual infor-
mation about the current flow through the windings. The measured value is used as a feedback for the
closed current loop control.

The timer TMHO is used to realize an interval timer function to generate an interrupt request at the pre-
set time interval. The interval time length is set to a period four times faster as TMOO frequency, to
ensure synchronously working both timers run with the same frequency.

The ADC function is executed every time TMHO interrupt service routine is active.

The interrupt request flag of the ADC function is polled and an AD conversion is executed each time the
interrupt request flag is detected high.

This procedure guarantees that an AD conversion only occurs at the defined time.

Figure 5-4 shows the basic working of TM0O, TMHO and the AD conversion.

Figure 5-4: Connection between TM00, TMHO and AD conversion

A

16-bit timer CRO0O

TMO0 . //
// croo -

/ /
L
/ _
P
Tt
8-bit timer & CMP0O
TMHo | CMPO0O CMP0O
Tt
INTTMHO 4 D1 D2 D3 D4
A/D conv.
Tt
5.8 Average

This function sequentially builds an average value over the actual value delivered by the current meas-
uring process. Purpose of this function is to filter out voltage ripples.

The Average function is event controlled and it is executed only when an AD conversion is recognized.
It also sets an overflow flag if the set point for regulation is exceeded.

5.9 PWM_Start

This small function limits the switch on current of the motor. Starting with a PWM duty cycle of 20% and
increasing it to 100% or the desired regulation set point.

Application Note U17733EE1VOANOO 35

Chapter 5 Software Process Description

5.10 Ramp

Stepper motors can not start, stop or change direction above there maximum start- stop frequency

without loosing steps. This frequency differs from motor to motor. To ensure the accurate steps, Ramp
function implements a speed ramp.

This function is also responsible for increasing and decreasing the motor speed if external tracer S4 or
S5 is pressed.

5.11 Stall Detect

Stall_Detect recognizes loosing steps if the motor is running too fast. As result of this detection, the
function slows the motor down with the goal to avoid step losses of the motor.

5.12 PI-Regulator

The PI-Regulator used is the classical Proportional Integral (PI) control method in the closed loop cur-

rent control of the stepper motor.
The regulator is based on the recursive Pl algorithm known also as the speed algorithm and takes the
form of:

G(s)=Kp+Ki*é

transformed into a discrete form:

K,*x,+K*> x,)

X, =X(n)-X(n-1)

where:
Kp presents the proportional gain
Ki present the integral gain
Xqg presents the voltage error

sz presents the accumulated voltage error

The coefficients K, and K; were derived empirically and optimized based on system behaviour pro-

duced by disturbances during the system testing.
The sample time of the regulator depends on the rotation speed of the motor. The function also normal-
ise the value and transforms the calculated regulated quantity into the duty cycle of the PWM signal.

36 Application Note U17733EE1VOANOO

Chapter 6 Software Flowcharts

This chapter describes the important functions used in the system of the stepper motor control applica-
tion. The functions that are responsible for the key input and the menu points are not included in this
chapter. Please refer in the software source codes if more information about these functions is needed.

6.1 Concept and Main Flowchart

Figure 6-1 shows the main program flowchart.

Figure 6-1: Main Program Flowchart

RESET

(Main Routine)

Disable all interrupts

Initialize Hardware

Initialize peripherals

Initialize variables

Enable all interrupts

Run interval timer
TM 51

Endless loop
|

Application Note U17733EE1VOANOO 37

Chapter 6 Software Flowcharts

6.2 Peripherals Initialization

Figure 6-2 shows the initialization of the used hardware peripherals of the uPD78F0714 device with
their operation mode in this application.

Figure 6-2: Peripherals Initialization

Initialize
Peripherals

38

— 8-bit Timer
8-bit Timer T™M50
TM50
8-bit Timer son (8 fimer 7
TM51 op timer
l l 8-bit Timer

8-bit Timer Set timer clock Stop timer TMHO
TMHO count P ::

6 b'iT' i Seti i ook 16-bit Timer
-bit Timer Set start value et timer clocl Stop timer TMOO
TMO00 for compare count

i register CR50 i i
AD Converter l Set start value Set timer clock Stop timer
Set timer for compare count
l interval mode register CR51 i
Real-Time Port l l Set motor
RTPO Disable output Set timer speed to start
and inversion interval mode value
Selt maskable D|saliIe oquut Set mode for CROO
interrupt and inversion as compare
register

AD Converter

i

(ReaI—Time Port)
Set ADC to RTPO
Select mode
Set conversion Set output ports
time

;

i

Set for software Enable RTP
trigger output
Select ANIO and Enable PWM
ANI1 as input modulation
pins L
l Enable
No power fail Inversion
detection l
i Enable
Disable PM40..PM43 as
maskable output
interrupt i
Set RTBLOO to

defined value

Application Note U17733EE1VOANOO

l

Set timer clock
count

l

Set CR00 and
CROL1 to defined
start values

:

Set maskable
interrupt

Chapter 6 Software Flowcharts

6.3 Main Concept

Figure 6-3 shows the endless loop of the main program used in this application.

Figure 6-3: Endless Loop Function Flow

(Endless loop)
i

Key_Detect

Average

NewADValue 1,2 =17

:

Overflow=1 && Motor rotates?
MotorStep = 7?

Pl-Regulator

Demo

Application Note U17733EE1VOANOO

39

Chapter 6 Software Flowcharts

6.4 Demo Concept

Figure 6-4 shows the flow chart of the demo program used in this application.

Figure 6-4: Demo Function Flow

Demo

Full_Step=1

MotorStand = 1?
StartCondition = 1?

MotorSpeed = StartSpeed

!

RTP_START

!

StartCondition = 0
MotorStand = 0

!

LED1 =on

Position = 90 degrees?

DemosSlowMode = 1
DutyCycle = 100
MotorSpeed = SlowMotorSpeed

Position = 180 degrees?,

DemoSlow = 1
MotorSpeed = StartSpeed

(RETURN)

40 Application Note U17733EE1VOANOO

Chapter 6 Software Flowcharts

6.5 RTP Motor Signals Concept

Figures 6-5 to 6-7 show the basic concept flow for generating the motor signals. Especially TM0OO and
TMS50 interrupt service routines are responsible for generating the motor signal pattern. The function
TMHO_START is starting the AD converter and will be explained in the next chapter.

Figure 6-5: RTP_START Flowchart

(RTP_START)

A

TM50_START

!

TMOO_START

!

TMHO_START

!

Enables RTP port operation
4bits * 2 channels

RETURN

Figure 6-6: TM50_ISR Flowchart

(T™s0_ISR)

Sets count clock to 5 MHz,
optional different count
clocks can be selected for
Demo mode, SlowDemo
mode and normal working
mode

(RETI)

Application Note U17733EE1VOANOO 41

42

Chapter 6 Software Flowcharts

Figure 6-7: TMOO_ISR Flowchart

TMOO_ISR

CRO00 = MotorSpeed / 2

CRO0 = MotorSpeed

|

different motor signals

Same procedure as for N
right direction only with

Direction = Right?

Position =0

| Synchronize Steps

!

| RightRotation = 1
\

DirectionChange?

Y

STALL_DETECT

Motor rotates &&
FullStep = 0?

Inc Step
Inc Position

Motor rotates &&
FullStep = 1?

Step = Step + 2
Position = Position + 2

—

RTBLOO = MotorSignall
right

RETI

Y
Motor rotates?
Y

Inc Step
Inc Position

RTBLOO = MotorSignal2
right

RETI

Motor rotates &&
FullStep = 0?

Inc Step
Inc Position

Motor rotates &&
FullStep = 1?

Step = Step + 2
Position = Position + 2

—

RTBLOO = MotorSignal3
right

Inc Step
Inc Position

RTBLOO = MotorSignal4
right

RETI

Motor rotates &&
FullStep = 0?

Inc Step
Inc Position

Motor rotates &&
FullStep = 1?

Step = Step + 2
Position = Position + 2

—

RTBLOO = MotorSignal5
right

RETI

Application Note U17733EE1VOANOO

Inc Step
Inc Position

RTBLOO = MotorSignal6
right

RETI

Motor rotates &&
FullStep = 0?

Inc Step
Inc Position

Motor rotates &&
FullStep = 1?

Step = Step + 2
Position = Position + 2

—

RTBLOO = MotorSignal7
right

RETI

Inc Step
Inc Position

RTBLOO = MotorSignal8
right

RETI

Chapter 6 Software Flowcharts

6.6 Current Measurement

As mentioned TMHO starts the AD conversion every time the timer ISR is entered. Figure 6-8 and 6-9
show the connection between the interrupt service routine and the AD polling.

Figure 6-8: TMHO_ISR Flowchart

TMHO_ISR
N CMPO00 =
MotorSpeed / 8

Y

CMPOO =
MotorSpeed / 4

AD_START

(RETI)

Figure 6-9: AD_START Function Flowchart

(AD_START)

ADCS =1 ADS = 0x01

! !

ADS = 0x00

{

ADIF =0
Y
Voltagel = ADCR

{

NewADValuel =1
(RETI)

Voltage2 = ADCR

!

NewADValue2 =1

Application Note U17733EE1VOANOO 43

Chapter 6 Software Flowcharts

6.7 Average

Figure 6-10 shows flow of the Average function.

44

\oltage2_average =
Average2

Figure 6-10: Average Function Flowchart

NewADValue2 = 1?

Voltage2_average =
Voltage2 >> 6

!

element2++

{

AVERAGE

NewADValuel = 1?

Voltagel_average =
Averagel

Voltagel_average =
Voltagel >> 6

!

elementl++

!

NewADValuel =0

!

NewADValue2 = 0

RETURN

Application Note U17733EE1VOANOO

Chapter 6 Software Flowcharts

6.8 PWM Start

Figure 6-11 shows the concept flow of PWM Start.

Figure 6-11: PWM_START Flowchart

(PWM_START)

/

AVERAGE

!

\oltage_array[element]=
Voltage_average

!

element++

<G>

element =0

{

Voltage_Difference

Voltage_Difference = 0?
Y

Increase DutyCycle

/
(RETURN)

Remain
old DutyCycle

Application Note U17733EE1VOANOO

45

Chapter 6 Software Flowcharts

6.9 Ramp

The Ramp function consists of two sub functions, RAMP_UP and RAMP_DOWN.

Figure 6-12 shows the process flow for the RAMP_UP function, RAMP_DOWN is not further described,
because it is very similar to the RAMP_UP function.

Figure 6-12: RAMP_UP Flowchart

MainG DirectionRamp =0
> .
MainCount =0 Tf'“” Pou_ntd MainCount =
'mererno TimePeriod ?

Stall=0

DirectionRamp = 1
MainCount =
sTimePeriod ?

DutyCycle = 80%

!

Increase

MotorSpeed
DutyCycle = 80% *
+ MainCount =0
Increase
MotorSpeed [
+ MotorSpeed > MotorSpeed =
MainCount =0 MaxSpeed? MaxSpeed

Increase
MainCount

/

(RETURN)

46 Application Note U17733EE1VOANOO

Chapter 6 Software Flowcharts

6.10 Stall Detect

Figure 6-13: STALL_DETECT Flowchart

STALL_DETECT

Stall=1
Increase Motor
Speed switch= 1?

MotorSpeed >
fastRotation
Stall = 0?

Decrease
MotorSpeed

Current_Array [element] =
actual value

* Y
Increase element Stall = 1
No key pressed?

N
element > 1? >
Stall =0

Y

Evaluate

Current_Difference
(RETURN)

Current_Difference
>2?

*N

element =0

’/ Stall=1

Application Note U17733EE1VOANOO

47

Chapter 6 Software Flowcharts

6.11 PI-Regulator

Figure 6-14 shows the function flow of the implemented PIl-Regulator in the system.

Figure 6-14: PI-Regulator Flowchart

(PI-Regulator)

A

XD = orderedVoltage - Voltage_average

!

Yp = XD *Kp

!

Integrator = Integrator + XD

!

Yi = Integrator * Ki

!

Y=Yp+Yi
Y
N |
. Y .
éb- Y =Ymin —
N |
A
DutyCycle =Y

RETURN

48 Application Note U17733EE1VOANOO

* %

11

Chapter 7 Program Listing

VERSI ON
DATE
LAST CHANGE

St epper nmo
Har dwar e |
V0. 1

07.07. 2005

tor contro
nitialisation

Hardware initialization

Devi ce:
Assenbl er:

C
Li

Conpi l er:
nker:

uPD78F0714

A78000 Ver si
| CC78000 Ver s
XLI NK Ver si

NEC El ectroni cs (Europe)
Qoerr at her

Strasse 4

D- 40472 Duessel dorf

#i ncl ude <i 078f0714. h>

#i nclude <intrinsics. h>

#i ncl ude <mi gration. h>

/***I

/*

* k%

HWUPD INIT

****/

/***/

voi d vHardwar el nit(voi d)

{

/1 port latch
PO = 0x00;
P1 = 0x00;
P2 = 0x00;
P3 = 0x00;
P4 = 0x00;
P5 = 0x00;
P6 = 0x00;
pP7 = 0x00;
/1 port node
PMD = 0xO00;
PML = 0x00
PM2 = 0x00
PMB = 0x00
PM4 = 0x00
PM6 = 0x00
PM6 = OxFF;
PM7 = OxFO;

/1
/1
/1
/1
/11
/1
/1
/1

/11
/1
/1
/1
/1
/1
/11
/1

set
set
set
set
set
set
set
set

out pu
out pu
out pu
out pu
out pu
out pu
out pu
out pu

port
port
port
port

0.1,
1
2
3
port 4
5
6
7

ou

port
port
port

t latch
t latch
t latch
t latch
t latch
t latch
t latch
t latch

to
to
to
to

to
to
to

~+
o
[eNeoNeoNoNeolNoNoNe]

0.2, 0.3 are input for
t put

I nput only

out put

out put

out put

i nput

out put

Application Note U17733EE1VOANOO

on X. XXX
on X. XXX
on X. XXX

Key 1,2 and 3

*/

49

Chapter 7 Program Listing

/1 pull up resistors

/*

PUO = 0x00; /'l no pull up-resistors
PU2 = 0x00; /'l no pull up-resistors
PU3 = 0x00; /1 no pull up-resistors
PU4 = 0x00; /1 no pull up-resistors
PU5 = 0x00; /1 no pull up-resistors
PU6 = 0x00; /!l no pull up-resistors
*/

/1 interrupt definition

| FOL = 0x00; /1 clear |INT request

| FOH = 0x00; /1 clear |INT request

| FAL = 0x00; /1 clear INT request

/l 76543210 Bit Nunber

MKOL = OxFF; /11111111
T L]l] _] _I NTLVI di sabl ed
Il _l_| __I'NTPO disabled

Il _l_l_l_____INTP1 enabled

I |l INTP2 enabled

Il ||l INTP3 enabled

N ___INTP4 disabled

I O ___INTP5 disabl ed

I I NTP6 di sabl ed

/[l 76543210 Bit Number

MKOH = OxFF; // OxEL; //'11111111
I)]l] I NTP7 di sabl ed

I 11l _l_l_] ___INTTWUD enabl ed
Il I NTTWCMB di sabl ed
Il I NTTWCM di sabl ed
Il INTTWCM di sabl ed

A O ___INTCMLO disabl ed

N ___INTCML1 disabled

I I NTCC10 disabl ed

// 76543210 Bit Nunber

MK1L = OxFF; //'11111111
Il _| _INTCC11 di sabl ed

I ||| _| ___I NTBEMFO enabl ed
Il INTTMD di sabl ed

I _l_l_l_l_____ INTTM1 disabled

Il _l_l_____ I NTSREOO disabled

I O ~__INTSROO disabl ed

N ___INTSTOO disabled

I INTTMBO di sabl ed

// 76543210 Bit Nunber

MK1H = OxFF; //'11111111
Il I _INTTMB1 di sabl ed DF

I)| ___INTTMHO disabl ed

I 1l _l_l_l_l____ INTCSI10 disabled
Il I NTDWJ di sabl ed
Il INTAD di sabl ed

N ~__Not USED disabled Read Only
N ~__Not USED disabled After Reset Value is 0!
I Not USED disabled Read Only

50 Application Note U17733EE1VOANOO

Chapter 7 Program Listing

PROL = OxFF; /1 INT low priority
PROH = OxFF; /1 INT low priority
PR1L = OxFF; /1 INT low priority
PR1H = OxFF; /1 INT low priority

/Il 76543210 Bit Nunber

EGP = 0x00; // 00O0O0OO0OO0O0O

EGN = 0x00; // 00O0OO0OO0OO0O0O

I | | _| _| _disabled ext. INT. TWTOFFP Security Shut Of TMW CQutputs
I | || ___INTP1 enabled Key 1 Input (rising Edge)

I | | INTP2 enabled Key 2 Input (rising Edge)

I | INTP3 enabled Key 3 Input (rising Edge)

/1 CLOCK Settings
OSTS = 0x05; // Set Stabilization Tine to 3.27 s
whil e(! OSTC bit.no0) // Get acknow edgnment for the stab. tine

{
_NOP() ;

/'l processor clock

PCC = 0x00; /1 with max Freq.
MOC = 0x00; /1 X1 GCscillator operating
MCM = 0x01; /1 X1 Input O ock

// Check if the X1 operates
whi | e(! MCM bi t. nol)

{

MOC = 0x00; /1 X1 GCscillator operating
MCM = 0x01; /1 X1 Input O ock

}

RCM = 0x01; /1 Ring- 0SC St opped

[1 VSWC = 0x02; /1 Insert Two wait state
WDTM = 0x77; /1 STOP Wat chdog TI MER!

}

Application Note U17733EE1VOANOO

Chapter 7 Program Listing

/ * e g ————— ==== e ——————
** PROJECT = Stepper Mbdtor

** MODULE = d obal Variabl es

** VVERSI ON = \0.1

** DATE = 07.07. 2005

** LAST CHANGE =

* %

* * s —————————————————————————— =_-=== ::::::::::::::*/
// s ————————— === =T
// d obal variables

// e g ————— ==== e ——————
/* User defined variables */

unsi gned int StartSpeed = 139;
unsi gned char DutyStart 80;
unsi gned i nt orderedVol t age

/* ADC vari abl es */

unsi gned int Vol tagel;
unsi gned int Vol tageZ2;
unsi gned char NewADVal uel;
unsi gned char NewADVal ue2;

/* Average variables */
unsi gned int Vol tagel average
unsi gned int Vol tage2_average

unsi gned char elenentl = O;
unsi gned char el enent2 = 0;
unsi gned char Overfl ow = O;
unsi gned char Vol tage_array[2];
/* Deno variables */

unsi gned char
unsi gned char

Deno 1;
DenpSl owvbde

/* KeyDetect variables */
unsi gned int Speed_ol d;

unsi gned char Cycle_ol d;

unsi gned char Start Condition
unsi gned char MtorStand = 1;
unsi gned char Direction_Ranp;
unsi gned char SingleStep = 0;
unsi gned char Full Step = 1;
unsi gned char Conti nues 1;

/* Pl variables */
int XD=0;
| ong Y=0;
| ong Yp=0;
| ong Yi =0;
I ong | ntegrator=0;

unsi gned char Y_max = 235;
unsi gned char Y_min = 0;

/* Ranp variables */

unsi gned int MinCount = 0;

52

0.

/] sets the starting speed of the notor
/] sets starting frequency for the PW
18; // sets the voltage value for the PIRegul ator

/1 indicates Overflow and starts regul ator

1

1

/] Delta X

/1 Y proportional
/1 Y integral part

part

/1 Y_max value set to 235, value is chosen
/1l to keep AD Converter tine in range

Application Note U17733EE1VOANOO

Chapter 7 Program Listing

/* RTP variables */

unsi gned char Step = 1;
unsi gned char Direction
unsi gned i nt Mt or Speed;
unsi gned char DutyCycle = 0;
unsi gned char RightRotation = 1;
unsigned int Position = O;

0;

/[* Tnbl Key variables */
unsigned int i = 0;

unsi gned char Key;

unsi gned char Tracer;

unsi gned char pressed;

unsi gned char LED Counter = O;

[* Stall variables */

unsi gned char Stall = 0;

signed char Current_Difference;

unsigned char Current_Array[2] = {0, 0};
unsi gned char el enentCurrent = 0;
signed char Current_Difference;

/* PWWVBtart variables */
unsi gned char el enent;
unsi gned char Vol tage_Difference;

Application Note U17733EE1VOANOO

Chapter 7 Program Listing

* %
* %
* %
* *
* %
* %
* %
* %
* %
* *
* %
* %
* %
* %
* %
* *
* %
* %
* %
* %

* %

I

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

VERSI ON
DATE
LAST CHANGE

= Stepper Mbdtor

= A/D Converter Initialisation
= V0.1

07. 07. 2005

Function for AD conversion by flag polling

Devi ce: uPD78F0714

Assenbl er: A78000 Ver si on X. XXX
C- Conpi l er: 1 CC78000 Ver si on X. XXX
Li nker: XLI NK Ver si on X. XXX

NEC El ectroni cs (Europe) GrbH
Cberrat her Strasse 4
D- 40472 Duessel dorf

s s ey -=-=== ::::::::::::::*/

<i 078f 0714. h>
<intrinsics.h>
<m gration. h>
“vari abl es. h”

voi d AD_I NI T(voi d)
voi d AD_START(voi d);
voi d AD_STCP(voi d)

/*:: === T

** oo —————————=—=— ==== ::::::::::::::*/

voi d AD_I NI T(voi d)

{

ADM = Ox1A;
ADS = 0x11;
PFM = 0x00
MK1H bit.no4 =
}

54

I/l sets Ad Converter to select nbde and 4.8 us conversion tine
/1l sets for software trigger, tine trigger and ANIO and AN 1
/'l input channe

/'l sets the whole PFMregister

1; /1 disable ADC | SR naskabl e interrupt

Application Note U17733EE1VOANOO

Chapter 7 Program Listing

/ *mm=mm—m==—= ==== S

** Startfunction of ADConverter

* %

Ak —m————————— = —_————————————————————————————————————

voi d AD_START(voi d)

{

ADCS = 1; /1 starts AD Conversion

ADS = 0x00; /1 AN O I nputchannel, Sel ectnode
AD F = 0;

whi | e(! ADI F)

Vol t agel = ADCR; /1 Vol tagel gets first AD val ue
NewADVal uel = 1; /1 NewADVal uel Flag is set

ADS = 0x01; /1 ANI'1 | nputchannel, Sel ectnode
AD F = 0;

whil e (!ADF)

Vol t age2 = ADCR; /1l Vol tage2 gets second AD val ue

NewADVal ue2 = 1; /1 NewADVal ue2 Flag is set

}

/*::::::::::: === e s s

** Stopfunction of ADConverter

* %

F e —— ———————————————————————————————————— — —

voi d AD_STOP(voi d)

{

ADCS = 0; /1l stops the AD Converter

Vol t agel /1 variables are set to defined val ues
Vol t age2
el ement 1
el enent 2

}

non
eLeee

Application Note U17733EE1VOANOO

Chapter 7 Program Listing

/* e —_——— —e e ———
** PROJECT = Stepper Mbdtor

** MODULE = AD average val ue evaluation, Stall detection

** VERS| ON = V0.1

** DATE 07. 06. 2005

** LAST CHANGE =

* %

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

s s ——————————— ==== ::::::::::::::*/

<i 078f0714. h>
<intrinsics. h>
<m gration. h>
“vari abl es. h”

voi d AVERAGE(voi d);
voi d STALL_DETECT(voi d);

* %

voi d AVERAGE(voi d)

{
i f (NewADVal uel) /'l for each winding a separate current is eval uated
{
if(elementl == 0)
{
Vol t agel_average =(Vol tagel >> 6);
el enent 1++;
}
el se
Vol t agel_average = (Vol tagel_average+(\Vol tagel >> 6))/2;
}
i f (NewADvVal ue2)
{
if(elenment2 == 0)
{
Vol t age2_average =(\Vol tage2 >> 6);
el ement 2++;
}
el se
Vol t age2_average = (Vol tage2_average+(Vol tage2 >> 6))/2;
}
if (Voltage2_average > orderedVoltage)
Overflow = 1; /1l COverflow Flag is set when setpoint is reached
if ((Voltage2_average < orderedVoltage - 3) && DutyCycle == 0)
Overflow = 0; /1 resets the Overflow Fl ag
NewADVal uel = 0;
NewADVal ue2 = O;
}
56 Application Note U17733EE1VOANOO

Chapter 7 Program Listing

* %

* %

Function to detect if the notor runs into critical area

=—=== */

voi d STALL_DETECT(voi d)

{
if

{

}
if

((MotorSpeed < 44 &I Stall))
/1 sets the speed fromwhere on the stall detection becones active

Current _Array[el enentCurrent] = Vol tage2_aver age;
el enent Curr ent ++;
/1 Current Array is filled with average values fromdifferent steps
if (elenmentCurrent > 1)
{
Current _Difference=(Current_Array[0] - Current_Array[1]);
if ((Current_Difference > 2) || (Current_Difference < -2))
Stall = 1; /1 Stall flag is set when there is a difference in
/1l the two val ues
el ement Current = O;

}
if (Stall && (Tracer == T3))
Mot or Speed = Mot or Speed + 2;
/!l slows the notor down to |leave critical area

(Stall && Tracer) Il clears the flag, so the notor can react to

/1 upcom ng changes
Stall = 0;

Application Note U17733EE1VOANOO 57

Chapter 7 Program Listing

/ * oo —-——--—-—-—--—o—--——o—-———————————————————=— —_——— —e e ———
** PROJECT = Stepper Mbdtor

** MODULE = Denopr ogram

** VERSI ON =\0.1

** DATE = 07.07. 2005

** | AST CHANGE =

* *

* % s ———————————— ==== e ——————

** Description: Little Denmb programthat starts if you turn on the board

* %

A e ————— e
** Environment: Devi ce: uPD78F0714

** Assenbl er: A78000 Ver si on X. XXX

*x C- Conpi l er: 1 CC78000 Ver si on X. XXX

i Li nker: XLI NK Ver si on X. XXX

K K o e o e o e
** By: NEC El ectroni cs (Europe) GrbH

** Cberrat her Strasse 4

** D- 40472 Duessel dorf

* %

* %

* % s ———————————————— === ========:=:===*/

#i ncl ude <i 078f0714. h>
#i ncl ude <intrinsics. h>
#i ncl ude <mgration. h>
#i ncl ude “vari abl es. h”

#def i ne STAND 0x00
#define LED1 P70
#defi ne LED2 P71
#define LED3 P72
#defi ne Degr 90 100
#defi ne Degr 180 200
#define Sl owibt or Speed 19999
#defi ne on 1

58 Application Note U17733EE1VOANOO

Chapter 7 Program Listing

voi d DEMJ(voi d);

extern void RTP_START(void);

/ e ———— — —_—————— e — —_—

** little denp-programthat |lets the steppernmotor turn 270 degrees in fast continues
** and 90 in slow single step node

R —m—m———————— = —_———————————————————————————————————— —_——— */

voi d DEMJ(voi d)

{
Full Step = 1;
if (Position == 0) /] sets the start position
{
if (StartCondition & Mt or St and)
{
Mot or Speed = StartSpeed;// sets the notorspeed to the user defined
start speed
RTP_START() ; /1 starts the notor
Mot or Stand = O;
StartCondition = O;
LED1 = on;
}
}
if (Position == Degr90) /1 motorposition = 90 degrees fromstartposition
{
DenoSl owivbde = 1; /1 sets DenpSl owmbde flag, to nanipul ate the PWM si gnal
DutyCycl e = 100;
Mot or Speed = S| owbt or Speed; // sets the notorspeed to a very slow rotating speed
}
if (Position == Degr180) /'l when notor reaches 180 degrees it goes back to
/1 normal node
{
DenoSl owvbde = 0;
Mbt or Speed = St art Speed,;
}
}

Application Note U17733EE1VOANOO 59

Chapter 7 Program Listing

/ * oo —-——--—-—-—--—o—--——o—-———————————————————=— —_——— —re e ————
** PROJECT = Stepper Mbdtor

** MODULE = Pl Regul at or

** VERS| ON = V0.1

** DATE = 07.07. 2005

** | AST CHANGE =

* *

Kk ——m——_——— - - - - — —— —— e

** Description: Cosed | oop regulation with an Pl Regul at or

* %

* % s s p——————— === =T
** Environment: Devi ce: uPD78F0714

** Assenbl er: A78000 Ver si on X. XXX

*x C- Conpi l er: 1 CC78000 Ver si on X. XXX

i Li nker: XLI NK Ver si on X. XXX

K K o e o e o e
** By: NEC El ectroni cs (Europe) GrbH

** Cberrat her Strasse 4

** D- 40472 Duessel dorf

* %

* %

K K o e o e o e o e

#i ncl ude <i 078f0714. h>
#i ncl ude <intrinsics. h>
#i ncl ude <mgration. h>
#i ncl ude “vari abl es. h”

/*Pl coefficients*/
#define KP(a) (((a) * 200)/100) /1 Kp value of the Pl Regul at or
#define Kli(a) (((a) * 600)/1000) // Ki value of the Pl Regul ator

voi d Pl Regul at or (voi d);

* %

voi d Pl Regul at or (voi d)

{
XD =- (orderedVoltage - Vol tage2_average);

/1 calculate XD

Yp = KP(XD); /] calculate Yp = XD * Kp;
Integrator = (Integrator + XD); /1 calculate Yi
Yi = Kli(Integrator); /1 update integrator Y(n) = Y(n-1) + Ki*XD(n)*T
Y = ((Yp + Yi)*254)/1024, /'l scale to PWM CYCLE
if (Y > Y_nmax) [limt Y

Y = Y_max;
el se
{

if (Y < Y_mn)

Y = Y_mn;

}
DutyCycle =Y; /1 DutyCycle gets new eval uated val ue
}

60 Application Note U17733EE1VOANOO

Chapter 7 Program Listing

/*::::::::::: —_——— —re e e e e e e e e e e e —— —_———
** PRQIECT = Stepper Mtor

** MODULE = PV\M Starting Ranp

** VERS| ON = V0.1

** DATE = 30. 03. 2005

** LAST CHANGE

* %

B T —— ——————— [—

** Description: Limts the switch on current

* %

*khk ——m—m——————— —_———————————————————————————————————— —_———

** Environment : Devi ce: uPD78F0714

** Assenbl er: A78000 Ver si on X. XXX

*x C- Compi l er: | CC78000 Ver si on X. XXX

* % Li nker: XLI NK Ver si on X. XXX

*h —————————— o e, e e e e e e ————

** By: NEC El ectroni cs (Europe) GrbH

** Cberrat her Strasse 4

** D- 40472 Duessel dorf

* %

** ———o——=—=—=== =_=== oo oo ————=—= =_=== */

#i ncl ude <i 078f0714. h>
#include <intrinsics. h>
#i ncl ude <mi gration. h>
#i ncl ude “vari abl es. h”

extern void AVERAGE(voi d);
voi d PWM START(voi d);

/ e ————— —_—————— e — —_—

** PWM Starting Ramp
** function for limting the “switch on current” of the notor

AR —m—m———————— = —_———————————————————————————————————— —_——— */

voi d PWM _START(voi d)
{
i f (Mai nCount >= 10)
Mai nCount = O;
Mai nCount ++;
AVERAGE() ;
Vol t age_array|[el ement] =Vol t age2_aver age;
/1l Array is used and the two val ues are conpared,
/1 to nmake sure that you aren't
el ement ++; /1 inthe rising tine of the curve
if (elenent > 1) /1 if motor is in static node, current is regul ated
{
el enent = 0O;
Vol tage_Di fference=Vol t age_array[0] - Vol tage_array[1] ;

if (!'Voltage_Difference & Mai nCount == 10)
{
DutyStart = DutyStart - 1,
DutyCycle = DutyStart;
}
el se
DutyCycle = DutyStart;
}

Application Note U17733EE1VOANOO 61

Chapter 7 Program Listing

** PROJECT = Stepper Mbdtor
** MODULE = SpeedRanp

** VERSI ON =\0.1

** DATE = 07.07. 2005

** | AST CHANGE =

* %

% ——m—m—m—m—m—— —————————————— e —— — — — — * [

/ X oo ———————— === T

** Ranp functions to |lower and rise nmotor speed for direction change or start, stop
* *

*h——m——m————— ————————————— e —— — — — — * |

voi d RAMP_DOMN(voi d)

{

i f (Mai nCount >1700)
Mai nCount = 0;

if (Direction_Ranp) /1 fast slowdown ranmp for the directi on change node
{
if (MainCount == 15) /1 Mai nCount val ue determ nes static behaviour to change
{ /1 the upward gradi ent change val ue; one M ncount ~
DutyCycle = 29;
Mai nCount = 0;
Mot or Speed = (Mbtor Speed + 1);
}
}
if (!Direction_Ranp && Mai nCount == 1700)
{ /1 node to slow down notor by pressing the tracers on the board
Mai nCount = 0;
Mot or Speed = Mot or Speed + 1;
}

if (MotorSpeed > Speed_nmin) // limts speed to user determ ned val ues
Mot or Speed = Speed_nmi n;

el se
Mai nCount ++;

}

62 Application Note U17733EE1VOANOO

Chapter 7 Program Listing

voi d RAMP_UP(voi d)
{

i f (Mai nCount >1700)
Mai nCount = 0;

if (Drection_Ranmp)

/1 fast speed-up ranp for the direction change node

{
i f (MainCount == 15)
{
DutyCycle = 29;
Mai nCount = 0;
Mot or Speed = (Motor Speed - 1);
}
}
if (!Direction_Ranp &% MainCount == 1700 &&! Stall)
{ /1 node to speed up notor by pressing the tracers on the board
Mai nCount = 0;
Mot or Speed = Mot or Speed - 1;
}

i f (MotorSpeed < 110)
{

Full Step = 0;

LED3 = 1;
}

/1 automatic shift into HalfStep to reach higher notor speed

i f (MotorSpeed <= Speed_nax)// limts notor speed

Mot or Speed = Speed_max;
el se
Mai nCount ++;

}

Application Note U17733EE1VOANOO

63

Chapter 7 Program Listing

/*:: —_——— —e e ———
** PROJECT = Stepper Mbdtor
** MODULE = TMDO, TMbO, RTP Initialisation and driving application
** VERS| ON = V0.1
** DATE = 30. 03. 2005
** LAST CHANGE =
* *
* % s ———————————— ==== ::::::::::::::*/
/*:: -=-=== e
** | SR of TMbO Ti mer
* %
* ¥ —————————————--————-—o————————————————————=— —_——— ::::::::::::::*/
#pragma vector = | NTTMbO_vect /1 8-bit Timer/event counters 50 | SR
#pragma bank = 2 /] Register Bank 2
__interrupt void Timer50(void) /1 Interrupt
{
if (MtorStand || DenpSl owvbde) /1 sets count clock to 5 MHz, you can set different
/1 clocks for different nodes
TCL50 = 0x03; /1 DenpSl owivbde

if (!MtorStand & & Denp && (! DenpSl owibde && Step == 1))

/]l count clock =5 WMHz for TM 50
TCL50 = 0x03; /1 Denmp Mbde normal speed
if (!MtorStand && Denp) /1 count clock =5 Mz for TM 50
TCL50 = 0x03; /1 Normal working phase
CR50 = DutyCycl e; /1 CR50 as conpare register with conpare val ue of
/1 duty cycle
}
/*:: =_-=== e ———————
** | SR of TMDO Ti nmer
* %
**:: === ::::::::::::::*/
#pragma vector = | NTTMDO_vect /1 16-bit Timer00 I SR
#pragma bank = 2 /'l Register Bank 2
__interrupt void Tiner00(void) /1 Interrupt
{
if (Full Step)
CRO0 = Mot or Speed,; /1 sets frequency for the Full Step node
if (!Full Step)
CRO0 = Motor Speed / 2; /1 doubles the frequency for the Hal fStep nobde so
/'l no step |oss occurs
if (!Direction) /1 Direction flag shows rotating direction of the notor

{
if (Position >= Degr360)
Position = O;

64 Application Note U17733EE1VOANOO

Chapter 7 Program Listing

if ('R ghtRotation && Conti nues)

}

switch (Step)

{

case 1: Step
br eak;
case 2: Step
br eak;
case 3: Step
br eak;
case 4: Step
br eak;
case 5. Step
br eak;
case 6: Step
br eak;
case 7: Step
br eak;
case 8. Step
br eak;

}
Ri ght Rot ati on

1

11
11
Il
Il
11

if (!'SingleStep & Step > 8)

Step = 1;

if (IRightRotation && Conti nues)

{

switch (Step)
{

case 1. Step
br eak;

case 2: Step
br eak;

case 3: Step
br eak;

case 4. Step
br eak;

case 5. Step
br eak;

case 6: Step
br eak;

case 7. Step
br eak;

case 8. Step
br eak;

}
Ri ght Rot ati on

1

different patterns nmust be used if notor
changes direction

in the continues node or single step node

Ri ght Rotation flag show if a direction change
has occurred

Application Note U17733EE1VOANOO

65

Chapter 7 Program Listing

66

switch (Step)

{
case 1:
STALL_DETECT() ;
/'l Inportant to call this function only once, to get right
/1 vol tage val ues
if (!'MtorStand &&! Ful | Step)
/1l in Hal fStep nbde, Step and Position are increased every
/1 runtrough by one
{
St ep++;
Posi ti on++;
}
if (!'MtorStand && Ful | Step)
/1 in Full Step node, Step and Position are increased every
/1 runtrough by two
{
Step = Step + 2;
Position = Position + 2;
}
RTBLOO = 0x009;
/'l suited value is witten to RTBLOO register and transferred
/1l to ReatTi nePort
br eak;
case 2:
if (!MotorStand)
{
St ep++;
Posi ti on++;
}
RTBLOO = 0xO0D;
br eak;
case 3:
if (!'MtorStand &&! Ful | Step)
{
St ep++;
Posi ti on++;
}
if (!MtorStand && Ful |l Step)
{
Step = Step + 2;
Position = Position + 2;
}
RTBLOO = 0x0C;
br eak;
case 4:
if (!MbtorStand)
{
St ep++;
Posi ti on++;
}
RTBLOO = OxOE;
br eak;

Application Note U17733EE1VOANOO

Chapter 7 Program Listing

case 5:
if (!MtorStand &&! Ful |l Step)
{
St ep++;
Posi ti on++;
}
if (!'MtorStand && Full Step)
{
Step = Step + 2;
Position = Position + 2;
}
RTBLOO = 0x06;
br eak;
case 6:
if (!MotorStand)
{
St ep++;
Posi ti on++;
}
RTBLOO = 0x07;
br eak;
case 7:
if (!'MtorStand &&! Full Step)
{
St ep++;
Posi ti on++;
}
if (!'MtorStand & Full Step)
{
Step = Step + 2;
Position = Position + 2;
}
RTBLOO = 0x03;
br eak;
case 8:
if (!MotorStand)
{
St ep++;
Posi ti on++;
}
RTBLOO = 0xOB;
br eak;

Application Note U17733EE1VOANOO

Chapter 7 Program Listing

el se

68

if (Position <= 0)
Posi ti on = 400;
if (RightRotation &&!
{
switch (Step)
{
case 1:
br eak;
case 2: Step =
br eak;
case 3: Step =
br eak;
case 4: Step =
br eak;
case 5: Step =
br eak;
case 6: Step =
br eak;
case 7: Step =
br eak;
case 8: Step =
br eak;

}
Ri ght Rot ati on

Step

Cont i nues)

8;

= 0;

if (!SingleStep & Step > 8)

Step = 1;

if (RightRotation & Conti nues)

{

switch (Step)

{

case 1:
br eak;

case 2: Step =
br eak;

case 3: Step =
br eak;

case 4: Step =
br eak;

case 5: Step =
br eak;

case 6: Step =
br eak;

case 7: Step =
br eak;

case 8: Step =
br eak;

}
Ri ght Rot ati on

Step

Application Note U17733EE1VOANOO

:0,

Chapter 7 Program Listing

switch (Step)
{
case 1
STALL_DETECT() ; /1
/1
if (!'MtorStand &&! Full Step) //
/1
{
St ep++;
Posi tion--;
}
if (!'MtorStand & Full Step) //
/1
{
Step = Step + 2;
Position = Position - 2;
}
RTBLOO =
br eak;

0x03;

case 2:
if (!MtorStand)
{
St ep++;
Posi tion--;
}
RTBLOO =
br eak;

0x07;

case 3:
if (!'MtorStand &&! Ful |l Step)
{
St ep++;
Posi tion--;
}
if (!'MtorStand & Full Step)
{
Step = Step + 2;
Position = Position - 2;
}
RTBLOO =
br eak;

0x06;

case 4:
i f (!MotorStand)
{
St ep++;
Posi tion--;
}
RTBLOO =
br eak;

0xO0E;

Application Note U17733EE1VOANOO

Inportant to call this function only
once, to get right voltage val ues

in Hal fStep node, Step is increased,
Posi tion decreased every runtrough by one

in Hal fStep node, Step is increased,
Posi tion decreased every runtrough by two

69

Chapter 7 Program Listing

case 5:
if (!'MtorStand &&! Ful | Step)
{
St ep++;
Posi tion--;
}
if (!'MtorStand && Ful | Step)
{
Step = Step + 2;
Position = Position - 2;
}
RTBLOO = 0x0C;
br eak;

case 6:
if (!MtorStand)
{
St ep++;
Position--;
}
RTBLOO = 0x0D;
br eak;

case 7:
if (!'MtorStand &&! Ful | Step)
{
St ep++;
Posi tion--;
}
if (!'MtorStand && Ful | Step)
{
Step = Step + 2;
Position = Position - 2;
}
RTBLOO = 0x09;
br eak;

case 8:
if (!MtorStand)
{
St ep++;
Position--;
}
RTBLOO = 0xOB;
br eak;

}

Application Note U17733EE1VOANOO

Chapter 7 Program Listing

** Definition of TMbO

** | nterval Tiner for PWM Mdul ation

=-=== e pu ey -=-=== */

voi d TMbO_I NI T(voi d)

{

TCE50 = 0; /1

TCL50 = 0x03; /1

CR50 = DutyStart; /1

TMC50 = 0x40; /1
/1

MK1L bit.no7 = 0; 1/

}

voi d TMbO_START(voi d)

{

CR50 = DutyStart; I

TCE50 = 1; /1
/1

}

voi d TMbO_STOP(voi d)

{

TCE50 = 0; /1

}

stops TMbO

count clock =5 Mz for TM 50

CR50 as conpare register with conpare value = DutyStart 80
i nversion disabled, F/F no change,

Ti mer output reset ->F/F set to zero & output disabled
Enabl e | SR mask | nterrupt

CR50 as conpare register with conpare value = DutyStart
starts TMbl, if the value TWMbl and CR51 match, INTTMb1l is
gener at ed

stops TMbO

** Definition of TMDO

** |nterval Timer for Mtor signals

=-=== s ———————— =-=== */

void TMDO_I NI T(voi d)

{
TMX00 = 0x00; 11

stops TMDO

Mot or Speed = Start Speed,;

CRCO0 = 0x00;

PRMDO = 0x02; /1
CRO1 = 0xO00; /1
CRO0 = Start Speed,; 1/
MK1L bit.no2 = 0; 1/
}

voi d TMDO_START(voi d)

{

Mot or Speed = St art Speed,;
TMC00 = 0x0C, /1
}

voi d TMDO_STOP(voi d)

{

TMC00 = 0x00; /1
}

Prescal er Port register, count clock is set to 78.125 kHz
sets unused CompareRegi ster CRO1 to defined val ues

sets user defined startspeed

Enabl e | SR mask | nterrupt

starts Timer, generates interrupt on match between TMDO and CROO

stops TMDO

Application Note U17733EE1VOANOO 71

Chapter 7 Program Listing

voi d RTP_I NI T(voi d)
{

PV
DCCTLOO
RTPMDO
RTBLOO

}

voi d RTP_START(voi d)
{

TVBO_START() ;
TMDO_START() ;
TMHO_START()
RTPCOO
| N\VOO

}

voi d RTP_STOP(voi d)
{
RTPCO0
I NVOO
TMHO_STOP() ;
TMDO_STOP() ;
TMBO_STOP() ;

}

OxFO; /] set ports P40 - P43 as output ports

OxEQ; /1 RTP output, PWM enabl ed, |nversion Enabl ed
0xO0F; /'l set RTPMDO - RTPMD3 as real time output ports
OxOF;

0x80; /1l enabl es operation, operation node 4bits * 2channel s
1; /'l enables inversion to fit the PAMinto the nmotor driving curve

0x00; /1 disabl es operation, operation node 4bits * 2channel s
0; /] disables inversion

72 Application Note U17733EE1VOANOO

Chapter 7 Program Listing

/ * —o—————————— —_——— —re e e e e e e e e e e e ——
** PRQIECT = Stepper Mtor

** MODULE = Main

** VERSI ON = V0.1

** DATE 07.07. 2005

** LAST CHANGE

* %

L —— ———————————————————————————————————— — —

#pragma | anguage = extended

/ * —===mm=——= ==== S

L —— ———————————————————————————————————— — —

#i ncl ude <i 078f0714. h>
#include <intrinsics. h>
#i ncl ude <mi gration. h>
#i ncl ude “vari abl es. h”

#pragma const seg=OPTBYTE
__root const char option = 0x00
#pragma const seg=def aul t

#define TRUE 1
#define FALSE 0O
#define LED1 P70
#define LED2 P71
#define LED3 P72
#defi ne STAND 0x00
#define T1 1
#define TiL 10
#define T2 2
#define T2L 20
#define T3 3
#define T3L 30
#define T4 4
#define T4L 40
#define T12 12
#define T34 34

Application Note U17733EE1VOANOO

Chapter 7 Program Listing

voi d mai n(voi d)

{
_D(); // Disable all interrupts

/[* uPD init */
vHardwarel nit(); /1 initialise the hardware

TVBO_I NI T() ;
TVBL INIT();
TVHO_I NI T() ;
TMDO_I NI T() ;
AD I NIT();
RTP_INIT();

_EQ);
/1 Enable all Interrupts
TMb1_START() ; /1 starts TMb1l in charge of tracer detection
while (1)
{
if (Denp) /'l starts Denp program
DEMX() ;
Key_ Detect();
if (NewADVal uel || NewADVal ue2)
AVERAGE() ;
if ((Overflow) && (!SingleStep) &&(!StartCondition ||!MtorStand) & (Step == 7)
&&! DenpS| owvbde)
Pl Regul ator (),

/I LED3 ~= 1, /'l Test LED
} /1 End of Endl ess Wile Loop
}

74 Application Note U17733EE1VOANOO

Chapter 7 Program Listing

/*::::::::::: —_——— —re e e e e e e e e e e e ——
** PRQIECT = Stepper Mtor

** MODULE = 8-bit TMHO Initialisation

** VERSI ON = V0.1

** DATE = 07.07. 2005

** | AST CHANGE =

* %

* % b p—p— =-=== s ————————

** Description: Determ nes AD conversion tine

* %

* % === === s ———— ===

** Environnment : Devi ce: uPD78F0714

** Assenbl er: A78000 Ver si on X. XXX

** C- Conpi l er: | CC78000 Ver si on X. XXX

*x Li nker: XLI NK Ver si on X. XXX

* % = =_-=== sy —————— ===

** By: NEC El ectroni cs (Europe) GrbH

** Cberrat her Strasse 4

** D- 40472 Duessel dorf

* %

** —————=—=—=== =_=== oo oo ————=—= =_=== */
/*::::::::::: === s ———— ===

** 1SR of TMHO Ti ner

** Interval Tiner

** o= === =_=== oo oo ————=—= =_=== */

#pragma vector = | NTTMHO_vect
#pragma bank = 3
__interrupt void TimerHO(void)

{
if (Full Step)
CMPOO = (MbdtorSpeed / 4);

el se
CMPOO = (MbdtorSpeed / 8);
AD_START() ;
/1 LED3 "= 1;
}
| *=========== —===

/1l 8-bit Tinmer/event counters 51 ISR
/'l Register Bank 3
[l Interrupt

/1 sets the frequency for the TMHO, how often the

/1 AD converter is active

/| Test LED

** Definition of TMHO Ti ner
** | nterval Tiner

** o= —===
void TMHO_I NI T(voi d)
{

TMHVDO = 0x30;
CMPOO = (StartSpeed / 4);

}

/] set CountsCl ock to 78.125 kHz
/1 sets CMPOO as conpare register with
/1 value = StartSpeed / 4

Application Note U17733EE1VOANOO

conpar e

*/

75

Chapter 7 Program Listing

** Start of TMb1l Ti nmer
** | nterval Tinmer

* % s s s s sy -=-=== ::::::::::::::*/

voi d TMHO_START(voi d)

{

CVMPO0 = 0x00;

MK1H_bit.nol = O; /1 enabl es naskabl e | nterrupt

TWVHEO = 1; /1 starts TMHO, if the value CMPOO and TMHO match, INTTMHO is
/'l generated

}

/* s s s s sy — -=-=== e

** Stop of TMb1 Ti mer
** | nterval Tinmer

* ¥ —————————————--———o—--—-———————————————————=— —_——— ::::::::::::::*/
voi d TMHO_STOP(voi d)

{

TWMHEO = O; [l stops TMHO

}

76 Application Note U17733EE1VOANOO

" " Although NEC hastaken all possible steps
aC S I I I I I e eSS ag e to ensure thatthe documentation supplied

to our customers is complete, bug free
and up-to-date, we readily accept that

From:)
errors may occur. Despite all the care and
precautions we've taken, you may
Name encounter problemsinthe documentation.
Please complete this form whenever
Company you'd like to report errors or suggest
improvements to us.
Tel. FAX
Address
Thank you for your kind support.
North America Hong Kong, Philippines, Oceania Asian Nations except Philippines
NEC Electronics America Inc. NEC Electronics Hong Kong Ltd. NEC Electronics Singapore Pte. Ltd.
Corporate Communications Dept. Fax: +852-2886-9022/9044 Fax: +65-6250-3583

Fax: 1-800-729-9288
1-408-588-6130

Europe Korea Japan
NEC Electronics (Europe) GmbH NEC Electronics Hong Kong Ltd. NEC Semiconductor Technical Hotline
Seoul Branch Fax: +81- 44-435-9608

Market Communication Dept.

Fax: +49(0)-211-6503-1344 Fax: 02-528-4411

Taiwan
NEC Electronics Taiwan Ltd.
Fax: 02-2719-5951

| would like to report the following error/make the following suggestion:

Document title:

Document number: Page number:

If possible, please fax the referenced page or drawing.

Document Rating Excellent Good Acceptable Poor
Clarity O O] O
Technical Accuracy O O O O
Organization O O O O

CS 99.1

[MEMO]

	COVER
	Table of Contents
	Chapter 1 Overview
	1.1 Abstract
	1.2 Introduction
	1.3 Overview of µPD78F0714
	Table 1-1: Functional Outline

	Chapter 2 Stepper Motor Basics
	2.1 Stepper Motor Basics
	Figure 2-1: Hybrid Stepper Motor
	Figure 2-2: 2 Phase Stepper Motor with one pole pair permanent magnet
	Figure 2-3: Energizing States Full-Step
	Figure 2-4: Energizing States Half-Step

	2.2 Stepper Motor Control Requirements
	Figure 2-5: Unipolar Stepper Motor drive
	Figure 2-6: General Motor Control Design

	Chapter 3 System Design Concept
	3.1 System Concept
	Figure 3-1: Principal Block Diagram of the System Configuration

	3.2 System Configuration
	Figure 3-2: System Configuration with the Peripherals of the µPD78F0714
	Figure 3-3: System Topology and Relationship between the Control Software and the Hardware of the System

	Chapter 4 Hardware Configuration
	4.1 µPD78F0714 Configuration
	4.2 Peripherals I/O Assignments
	Table 4-1: µPD78F0714 Peripherals I/O Assignments (1/2)

	4.3 8-bit Timer H0 Function
	Figure 4-1: Timing of TMH0 Interval Timer Operation

	4.4 8-bit Timer 51 Function
	Figure 4-2: Timing of TM51 Interval Timer Operation

	4.5 Real Time Port 0 Function
	Figure 4-3: Block Diagram of Real-Time Output Port RTP0
	Table 4-2: Relationship Between Settings of Each Bit of Control Register and Real-Time Output
	Figure 4-4: Real-Time Output Port Operation Timing Example

	4.6 16-bit Up/Down Counter Function
	Figure 4-5: Timing for Up/Down Counter in Mode 3

	4.7 Motor Specification
	4.8 Encoder Specification
	Figure 4-6: General Signal Process of the Encoder

	4.9 Stepper Motor Driving Circuit and User Interface Circuit
	Figure 4-7: Motor Driver and User Interface for Stepper Motor Control

	Chapter 5 Software Process Description
	Figure 5-1: Principal Data Flow Diagram
	5.1 Demo Mode
	5.2 Normal Mode
	Table 5-1: Switch Operation

	5.3 Initialization
	Figure 5-2: Initialization Process

	5.4 TM51 Interval Timer
	5.5 Key_Detect
	5.6 RTP Motor Signals
	Figure 5-3: Connection between TM00, TM50 and Motor Signals

	5.7 Current Measurement
	Figure 5-4: Connection between TM00, TMH0 and AD conversion

	5.8 Average
	5.9 PWM_Start
	5.10 Ramp
	5.11 Stall_Detect
	5.12 PI-Regulator

	Chapter 6 Software Flowcharts
	6.1 Concept and Main Flowchart
	Figure 6-1: Main Program Flowchart

	6.2 Peripherals Initialization
	Figure 6-2: Peripherals Initialization

	6.3 Main Concept
	Figure 6-3: Endless Loop Function Flow

	6.4 Demo Concept
	Figure 6-4: Demo Function Flow

	6.5 RTP Motor Signals Concept
	Figure 6-5: RTP_START Flowchart
	Figure 6-6: TM50_ISR Flowchart
	Figure 6-7: TM00_ISR Flowchart

	6.6 Current Measurement
	Figure 6-8: TMH0_ISR Flowchart
	Figure 6-9: AD_START Function Flowchart

	6.7 Average
	Figure 6-10: Average Function Flowchart

	6.8 PWM Start
	Figure 6-11: PWM_START Flowchart

	6.9 Ramp
	Figure 6-12: RAMP_UP Flowchart

	6.10 Stall Detect
	Figure 6-13: STALL_DETECT Flowchart

	6.11 PI-Regulator
	Figure 6-14: PI-Regulator Flowchart

	Chapter 7 Program Listing

