
 

To our customers, 
 

Old Company Name in Catalogs and Other Documents 

 
On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology 

Corporation, and Renesas Electronics Corporation took over all the business of both 
companies. Therefore, although the old company name remains in this document, it is a valid 
Renesas Electronics document. We appreciate your understanding. 
 

Renesas Electronics website: http://www.renesas.com 
 
 
 
 

April 1st, 2010 
Renesas Electronics Corporation 

 
 
 
 
 
Issued by: Renesas Electronics Corporation (http://www.renesas.com) 

Send any inquiries to http://www.renesas.com/inquiry. 

 



Notice 
1. All information included in this document is current as of the date this document is issued. Such information, however, is 

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please 
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to 
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website. 

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights 
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.  
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights 
of Renesas Electronics or others. 

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. 
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of 

semiconductor products and application examples.  You are fully responsible for the incorporation of these circuits, software, 
and information in the design of your equipment.  Renesas Electronics assumes no responsibility for any losses incurred by 
you or third parties arising from the use of these circuits, software, or information. 

5. When exporting the products or technology described in this document, you should comply with the applicable export control 
laws and regulations and follow the procedures required by such laws and regulations.  You should not use Renesas 
Electronics products or the technology described in this document for any purpose relating to military applications or use by 
the military, including but not limited to the development of weapons of mass destruction.  Renesas Electronics products and 
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited 
under any applicable domestic or foreign laws or regulations. 

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics 
does not warrant that such information is error free.  Renesas Electronics assumes no liability whatsoever for any damages 
incurred by you resulting from errors in or omissions from the information included herein. 

7. Renesas Electronics products are classified according to the following three quality grades:  “Standard”, “High Quality”, and 
“Specific”.  The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as 
indicated below.  You must check the quality grade of each Renesas Electronics product before using it in a particular 
application.  You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior 
written consent of Renesas Electronics.  Further, you may not use any Renesas Electronics product for any application for 
which it is not intended without the prior written consent of Renesas Electronics.  Renesas Electronics shall not be in any way 
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an 
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written 
consent of Renesas Electronics.  The quality grade of each Renesas Electronics product is “Standard” unless otherwise 
expressly specified in a Renesas Electronics data sheets or data books, etc. 

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual 
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots. 

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support. 

“Specific”:  Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or 
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare 
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life. 

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, 
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation 
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or 
damages arising out of the use of Renesas Electronics products beyond such specified ranges. 

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have 
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, 
Renesas Electronics products are not subject to radiation resistance design.  Please be sure to implement safety measures to 
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a 
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire 
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures.  Because 
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system 
manufactured by you. 

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental 
compatibility of each Renesas Electronics product.  Please use Renesas Electronics products in compliance with all applicable 
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS 
Directive.  Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with 
applicable laws and regulations. 

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas 
Electronics. 

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this 
document or Renesas Electronics products, or if you have any other inquiries. 

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries. 

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics. 



Application Note

Stepper Motor Control using
the µPD78F0714 Microcontroller

Document No. U17733EE1V0AN00 
Date Published September 2005

 NEC Electronics Corporation 2005
Printed in Germany



2 Application Note U17733EE1V0AN00

All other product, brand, or trade names used in this publication are the trademarks 
or registered trademarks of their respective trademark owners.

Product specifications are subject to change without notice. To ensure that you have the latest product
data, please contact your local NEC Electronics sales office.

1

2

3

4

VOLTAGE APPLICATION WAVEFORM AT INPUT PIN
Waveform distortion due to input noise or a reflected wave may cause malfunction.  If the input of the 
CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may 
malfunction.  Take care to prevent chattering noise from entering the device when the input level is fixed, 
and also in the transition period when the input level passes through the area between VIL (MAX) and 
VIH (MIN).

HANDLING OF UNUSED INPUT PINS
Unconnected CMOS device inputs can be cause of malfunction.  If an input pin is unconnected, it is 
possible that an internal input level may be generated due to noise, etc., causing malfunction.  CMOS 
devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed 
high or low by using pull-up or pull-down circuitry.  Each unused pin should be connected to VDD or GND 
via a resistor if there is a possibility that it will be an output pin.  All handling related to unused pins must 
be judged separately for each device and according to related specifications governing the device.

PRECAUTION AGAINST ESD 
A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and 
ultimately degrade the device operation.  Steps must be taken to stop generation of static electricity as 
much as possible, and quickly dissipate it when it has occurred.  Environmental control must be 
adequate. When it is dry, a humidifier should be used.  It is recommended to avoid using insulators that 
easily build up static electricity.  Semiconductor devices must be stored and transported in an anti-static 
container, static shielding bag or conductive material.  All test and measurement tools including work 
benches and floors should be grounded.  The operator should be grounded using a wrist strap. 
Semiconductor devices must not be touched with bare hands.  Similar precautions need to be taken for 
PW boards with mounted semiconductor devices.

STATUS BEFORE INITIALIZATION
Power-on does not necessarily define the initial status of a MOS device.  Immediately after the power 
source is turned ON, devices with reset functions have not yet been initialized.  Hence, power-on does 
not guarantee output pin levels, I/O settings or contents of registers.  A device is not initialized until the 
reset signal is received.  A reset operation must be executed immediately after power-on for devices 
with reset functions.

POWER ON/OFF SEQUENCE 
In the case of a device that uses different power supplies for the internal operation and external 
interface, as a rule, switch on the external power supply after switching on the internal power supply. 
When switching the power supply off, as a rule, switch off the external power supply and then the 
internal power supply. Use of the reverse power on/off sequences may result in the application of an 
overvoltage to the internal elements of the device, causing malfunction and degradation of internal 
elements due to the passage of an abnormal current. 
The correct power on/off sequence must be judged separately for each device and according to related 
specifications governing the device. 

INPUT OF SIGNAL DURING POWER OFF STATE 
Do not input signals or an I/O pull-up power supply while the device is not powered.  The current 
injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and 
the abnormal current that passes in the device at this time may cause degradation of internal elements.
Input of signals during the power off state must be judged separately for each device and according to 

related specifications governing the device. 

NOTES FOR CMOS DEVICES 

5

6



3Application Note U17733EE1V0AN00

The information in this document is current as of September, 2005. The information is subject to 
change without notice.  For actual design-in, refer to the latest publications of NEC Electronics data 
sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products.  Not 
all products and/or types are available in every country.  Please check with an NEC Electronics sales 
representative for availability and additional information.
No part of this document may be copied or reproduced in any form or by any means without the prior     
written consent of NEC Electronics.  NEC Electronics assumes no responsibility for any errors that may 
appear in this document.
NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual 
property rights of third parties by or arising from the use of NEC Electronics products listed in this document 
or any other liability arising from the use of such products.  No license, express, implied or otherwise, is 
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
Descriptions of circuits, software and other related information in this document are provided for illustrative 
purposes in semiconductor product operation and application examples. The incorporation of these 
circuits, software and information in the design of a customer's equipment shall be done under the full 
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by 
customers or third parties arising from the use of these circuits, software and information.
While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, 
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely.  To 
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC 
Electronics products, customers must incorporate sufficient safety measures in their design, such as 
redundancy, fire-containment and anti-failure features.
NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and 
"Specific".  
The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-
designated "quality assurance program" for a specific application.  The recommended applications of an NEC 
Electronics product depend on its quality grade, as indicated below.  Customers must check the quality grade of 
each NEC Electronics product before using it in a particular application. 

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC 
Electronics data sheets or data books, etc.  If customers wish to use NEC Electronics products in applications 
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to 
determine NEC Electronics' willingness to support a given application.

(Note)

•

•

•

•

•

•

M8E  02. 11-1

(1)

(2)

"NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its 
majority-owned subsidiaries.
"NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as 
defined above).

Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots.
Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support).
Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

"Standard":

"Special":

"Specific":



4 Application Note U17733EE1V0AN00

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, please contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

• Device availability

Ordering information

Product release schedule

Availability of related technical literature

Development environment specifications (for example, specifications for third-party tools and
components, host computers, power plugs, AC supply voltages, and so forth)

Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary
from country to country.

NEC Electronics America Inc.
Santa Clara, California
Tel: 408-588-6000

800-366-9782
Fax: 408-588-6130

800-729-9288

NEC Electronics (Europe) GmbH
Duesseldorf, Germany
Tel: 0211-65 03 1101
Fax: 0211-65 03 1327

Sucursal en España
Madrid, Spain
Tel: 091- 504 27 87
Fax: 091- 504 28 60

Succursale Française
Vélizy-Villacoublay, France
Tel: 01-30-67 58 00
Fax: 01-30-67 58 99

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.
Singapore
Tel: 65-6253-8311
Fax: 65-6250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-2719-2377
Fax: 02-2719-5951

Filiale Italiana
Milano, Italy
Tel: 02-66 75 41
Fax: 02-66 75 42 99

Branch The Netherlands
Eindhoven, The Netherlands
Tel: 040-244 58 45
Fax: 040-244 45 80

Branch Sweden
Taeby, Sweden
Tel: 08-63 80 820
Fax: 08-63 80 388

United Kingdom Branch
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290

•

•

•

•

•



5Application Note U17733EE1V0AN00

Table of Contents

Chapter 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Overview of µPD78F0714  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Chapter 2 Stepper Motor Basics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1  Stepper Motor Basics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Stepper Motor Control Requirements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Chapter 3 System Design Concept  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1 System Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 System Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Chapter 4 Hardware Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1 µPD78F0714 Configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Peripherals I/O Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 8-bit Timer H0 Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.4 8-bit Timer 51 Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.5 Real Time Port 0 Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.6 16-bit Up/Down Counter Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.7 Motor Specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.8 Encoder Specification  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.9 Stepper Motor Driving Circuit and User Interface Circuit . . . . . . . . . . . . . . . . . . . . . . 29

Chapter 5 Software Process Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.1 Demo Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2 Normal Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.4 TM51 Interval Timer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.5 Key_Detect  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.6 RTP Motor Signals  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.7 Current Measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.8 Average . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.9 PWM_Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.10 Ramp  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.11 Stall_Detect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.12 PI-Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Chapter 6 Software Flowcharts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.1 Concept and Main Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.2 Peripherals Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.3 Main Concept  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.4 Demo Concept. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.5 RTP Motor Signals Concept. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.6 Current Measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.7 Average . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.8 PWM Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.9 Ramp  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.10 Stall Detect  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.11 PI-Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Chapter 7 Program Listing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



6 Application Note U17733EE1V0AN00

List of Figures

Figure 2-1: Hybrid Stepper Motor .................................................................................................. 11
Figure 2-2: 2 Phase Stepper Motor with one pole pair permanent magnet ................................... 12
Figure 2-3: Energizing States Full-Step ......................................................................................... 13
Figure 2-4: Energizing States Half-Step ........................................................................................ 13
Figure 2-5: Unipolar Stepper Motor drive....................................................................................... 14
Figure 2-6: General Motor Control Design..................................................................................... 15
Figure 3-1: Principal Block Diagram of the System Configuration ................................................. 17
Figure 3-2: System Configuration with the Peripherals of the µPD78F0714 ................................. 18
Figure 3-3: System Topology and Relationship between the Control Software 

and the Hardware of the System................................................................................. 18
Figure 4-1: Timing of TMH0 Interval Timer Operation ................................................................... 22
Figure 4-2: Timing of TM51 Interval Timer Operation.................................................................... 23
Figure 4-3: Block Diagram of Real-Time Output Port RTP0.......................................................... 24
Figure 4-4: Real-Time Output Port Operation Timing Example ..................................................... 26
Figure 4-5: Timing for Up/Down Counter in Mode 3 ...................................................................... 27
Figure 4-6: General Signal Process of the Encoder ...................................................................... 28
Figure 4-7: Motor Driver and User Interface for Stepper Motor Control......................................... 30
Figure 5-1: Principal Data Flow Diagram....................................................................................... 31
Figure 5-2: Initialization Process.................................................................................................... 33
Figure 5-3: Connection between TM00, TM50 and Motor Signals ................................................ 34
Figure 5-4: Connection between TM00, TMH0 and AD conversion .............................................. 35
Figure 6-1: Main Program Flowchart ............................................................................................. 37
Figure 6-2: Peripherals Initialization............................................................................................... 38
Figure 6-3: Endless Loop Function Flow ....................................................................................... 39
Figure 6-4: Demo Function Flow.................................................................................................... 40
Figure 6-5: RTP_START Flowchart ............................................................................................... 41
Figure 6-6: TM50_ISR Flowchart................................................................................................... 41
Figure 6-7: TM00_ISR Flowchart................................................................................................... 42
Figure 6-8: TMH0_ISR Flowchart .................................................................................................. 43
Figure 6-9: AD_START Function Flowchart .................................................................................. 43
Figure 6-10: Average Function Flowchart........................................................................................ 44
Figure 6-11: PWM_START Flowchart ............................................................................................. 45
Figure 6-12: RAMP_UP Flowchart................................................................................................... 46
Figure 6-13: STALL_DETECT Flowchart......................................................................................... 47
Figure 6-14: PI-Regulator Flowchart................................................................................................ 48



List of Tables

Table 1-1: Functional Outline........................................................................................................... 10
Table 4-1: µPD78F0714 Peripherals I/O Assignments.................................................................... 20
Table 4-2: Relationship Between Settings of Each Bit of Control Register and Real-Time Output . 25
Table 5-1: Switch Operation ............................................................................................................ 32
7Application Note U17733EE1V0AN00



8 Application Note U17733EE1V0AN00



Chapter 1 Overview

1.1 Abstract

This application note shows how to implement a controller for a stepper motor using the µPD78F0714
along with a simple analog Drive circuit. 
Source code, schematic, bill of material, and board layout files are provided.

1.2 Introduction

Nowadays, stepper motors are used in a wide variety of applications. They are prevalent in consumer
office equipment such as printers, scanners, copiers and plotters. They also play an important role in
the industry, use in robotics or dashboard indicators, climate control systems in the automotive industry.
Purpose of this application note is to show how a stepper motor control is realised on the µPD78F0714
with as few external parts as possible. The software and hardware configurations published here are
just examples and are not intend for mass production.
9Application Note U17733EE1V0AN00



Chapter 1 Overview
1.3 Overview of µPD78F0714 

Caution: The operating voltage range may be changed after evaluation of the device.

Table 1-1: Functional Outline

Item µPD78F0714

Internal 
memory

Flash memory 
(self-programming 
supported)

32 KB

High-speed RAM 1 KB

Memory space 32 KB

X1 input clock (oscillation 
frequency)

Ceramic/crystal/external clock oscillation 
[20 MHz (VDD = 4.0 to 5.5 V)]

Ring-OSC clock (oscillation 
frequency)

On-chip Ring oscillation (240 kHz (TYP.))

General-purpose registers 8 bits × 32 registers (8 bits × 8 registers × 4 banks)

Minimum instruction execution 
time

0.1 µs/0.2 µs/0.4 µs/0.8 µs/1.6 µs (X1 input clock: @ fXP = 20 MHz operation)

8.3 µs/16.6 µs/33.2 µs/66.4 µs/132.8 µs (TYP.) 
(Ring-OSC clock: @ fR = 240 kHz (TYP.) operation)

Instruction set
• 16-bit operation   • Multiply/divide (8 bits × 8 bits, 16 bits ÷ 8 bits)
• Bit manipulate (set, reset, test, and Boolean operation)   • BCD adjust, etc.

I/O ports
Total: 48
CMOS I/O 40
CMOS input 8

Timers

• 10-bit inverter control timer: 1 channel

• 16-bit up/down counter: 1 channel
• 16-bit timer/event counter: 1 channel

• 8-bit timer/event counter: 2 channels

• 8-bit timer: 1 channel
• Watchdog timer: 1 channel

Timer outputs 11 (inverter control output: 6)

Clock output
156.25 kHz, 312.5 kHz, 625 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz, 20 MHz 
(X1 input clock: 20 MHz)

Buzzer output 2.44 kHz, 4.88 kHz, 9.77 kHz, 19.5 kHz (X1 input clock: 20 MHz)

Real-time output ports
• 8 bits × 1 or 4 bits × 2

• 6 bits × 1 or 4 bits × 2

A/D converter 10-bit resolution × 8 channels

Serial interface
• UART mode: 1 channel
• 3-wire serial I/O mode: 1 channel 

Multiplier/divider
• 16 bits × 16 bits = 32 bits (multiplication)
• 32 bits ÷ 16 bits = 32 bits remainder of 16 bits (division)

Vectored 
interrupt sources

Internal 20

External 8

Reset

• Reset using RESET pin

• Internal reset by watchdog timer

• Internal reset by power-on-clear
• Internal reset by low-voltage detector

Supply voltage VDD = 4.0 to 5.5 V

Operating ambient temperature TA = -40 to +85°C 

Package 64-pin plastic TQFP (fine pitch) (12 × 12)
10 Application Note U17733EE1V0AN00



Chapter 2 Stepper Motor Basics

2.1  Stepper Motor Basics

A step motor is an electromagnetic, rotary actuator, which mechanically converts digital pulse inputs to
incremental shaft rotation. The rotation has not only a direct relation to the number of input pulses, but
its speed is related to the frequency of the pulses. 
The motor is able to holds its' position (and its' load) between the steps without the aid of clutches or
brakes. Thus a step motor can be precisely controlled so that it rotates a certain number of steps, pro-
ducing mechanical motion through a specific distance, and then holds its load when it stops. Further-
more, it can repeat the operation at any prescribed number of times. 
With the appropriate logic, step motors can be bi-directional, synchronous, provide rapid acceleration,
stopping, and reversal, and will interface easily with other digital mechanisms. They are further charac-
terized as having low rotor moment of inertia, no drift, and a non cumulative positioning error. 
Generally step motors are operated without feedback in an open-loop manner and often match the per-
formance of more expensive DC Servo positioning Systems. 
Stepper motors may be classified by their motor construction, drive topology, and stepping pattern.
There are several different types of stepper motor construction. These include variable reluctance, per-
manent magnet, and hybrid permanent magnet. This reference design is applicable to the permanent
magnet and hybrid two phase stepper motors. 
The hybrid rotor is constructed using a cylindrical permanent magnet oriented with the north-south
polarity along the rotor axis. Two laminated end caps are used with many teeth around the periphery.
The north and south teeth are staggered to provide many effective poles using a single permanent
magnet. The stator laminates typically have four large forks. Each fork has many teeth. The teeth for the
two windings are also staggered to line up with the appropriate teeth on the rotor. 

Figure 2-1: Hybrid Stepper Motor

W1

W2

Rotor
north pole

N

Stator
Winding

Stator
Fork

N

S

Stator

Rotor

Non-torgue
producing flux

Torgue
producing flux
11Application Note U17733EE1V0AN00



Chapter 2 Stepper Motor Basics
The drive topology of stepper motors is also an important criterion for choosing a motor.
Here are two main topologies to mention, unipolar and bipolar driving.
Unipolar stepping motors are composed of two windings, each with a center tap. The center taps are
either brought outside the motor as two separate wires or connected to each other internally and
brought outside the motor as one wire. As a result, unipolar motors have 5 or 6 wires. Regardless of the
number of wires, unipolar motors are driven in the same way. The center tap wire(s) is tied to a power
supply and the ends of the coils are alternately grounded.
Bipolar stepping motors are composed of two windings and have four wires. Unlike unipolar motors,
bipolar motors have no center taps. The advantage to not having center taps is that current runs
through an entire winding at a time instead of just half of the winding. As a result, bipolar motors pro-
duce more torque than unipolar motors of the same size. The draw back of bipolar motors, compared to
unipolar motors, is that more complex control circuitry is required by bipolar motors. That is the main
reason why in this application a unipolar drive topology is used, to keep the external parts at a mini-
mum.
The basic movement of the motor can be best shown by reducing the defaults to the simplest arrange-
ments. We look at the rotor as one permanent magnet with north-south polarity and the stator comes
down to four magnetic poles.

Figure 2-2: 2 Phase Stepper Motor with one pole pair permanent magnet

Unipolar stepping motors operate by attracting the north or south poles of the permanently magnetized
rotor to the stator poles. Thus, in these motors, the direction of the current through the stator windings
determines which rotor poles will be attracted to which stator poles. Current direction in unipolar motors
is dependent on which half of a winding is energized. Physically, the halves of the windings are wound
parallel to one another. Therefore, one winding acts as either a north or south pole depending on which
half is powered.
In the figure above you can see the four different energizing phases that are necessary to rotate the
shaft one time. In the first phase W1 and W2’ are energized, in the second the current flows through W1
and W2 etc. In this application design a variant where two windings are energized at the same time has
been chosen to produce more torque. The following figure shows the different energizing states for the
example motor above.

S

N

Permanent
Magnet

Phase
Windings

N

N

W1

W1'
W2'' W2

a)

N

N

W1

W1''
W2' W2

b)

S

N

N

N

W1

W1'
W2' W2

c) d)

S

N

N

N

W1

W1''
W2' W2

N

S

12 Application Note U17733EE1V0AN00



Chapter 2 Stepper Motor Basics
Figure 2-3: Energizing States Full-Step

The example motor uses now only four steps for one rotation, in reality the angular resolution is wide
spread and depends on the motor data.
The angular resolution that can be executed depends on number of phases p and how many pole pairs
m there are:

(1)

The calculated stepper angle applies only with full step-by-step operation mode of the stepping motor.
In addition, the so-called half step modus and other step routines are possible. The differences are
described in the following.
The full step modus is already shown in the example above, means that you need four steps in the sim-
plest arrangements to obtain one shaft rotation. The angular resolution is 90 degrees. 
The difference of the half step operation lies in the fact that the phase coils are not always energized at
the same time, but, as the associated figure shows also is switched off. Thus each step is halved, so
that for a revolution 8 steps are necessary. The stepper angle halved itself thus on 45 degrees.

Figure 2-4: Energizing States Half-Step

Apart from the described kinds of step modes there is still the mini or micro step operation. By digital
tax logic the newest micro step systems reach 250 micro steps for each full step, thus max. 50000 steps
for each revolution. This application design doesn’t deal with the problems of micro stepping, so the two
main drive topologies here are full- and half step operation mode. 

Phase A

Phase A’

Phase B

Phase B’

1 2 3 4

α = °
⋅ ⋅
3 6 0
2 p m

Phase A

Phase A’

Phase B

Phase B’

1 2 3 4 5 6 7 8
13Application Note U17733EE1V0AN00



Chapter 2 Stepper Motor Basics
2.2 Stepper Motor Control Requirements 

As already mentioned this application design deals with an unipolar drive topology and focuses on the
full and half-step operation mode. The principal driver design for an unipolar stepper motor is shown
below, in Figure 2- 5.

Figure 2-5: Unipolar Stepper Motor drive

The circuit contains four power mosfets responsible for the current flow through the windings. The
center tap of the motor winding is connected to the positive voltage supply. Each coil can be energized
in either direction by turning on the appropriate MOSFET. The driving pattern is similar to the energizing
states shown in Figure 2-3 and 2-4.

When a motor is operated at a fixed rated voltage its torque output decreases as step rate rises. This is
because the increasing back EMF and the rise time of the coil current limits the power actually deliv-
ered to the motor. The effect is governed by the motor time constant (L/R). Because of their higher
winding resistance unipolar motors have a better L/R ratio than their bipolar equivalents. 
The effect can be compensated by either increasing the power supply voltage to maintain constant cur-
rent as stepping rate increases, or by increasing supply voltage by a fixed
amount and adding series resistors to the circuit.
There is good reason to run a stepping motor at a supply voltage above that needed to push the maxi-
mum rated current through the motor windings. Running a motor at higher voltages leads to a faster rise
in the current through the windings when they are turned on, and this, in turn, leads to a higher cutoff
speed for the motor and higher torques at speeds above the cutoff. 
In this application design a PI Regulator is used to maintain current at an average user defined level.
The whole PI Regulator is software based to keep external parts as few as possible. 

Q1 Q2 Q3 Q4

GND

M

A

A

B B

Vcc
14 Application Note U17733EE1V0AN00



Chapter 2 Stepper Motor Basics
The following figure shows a schematic for general motor control design with a microcontroller.

Figure 2-6: General Motor Control Design

The functions of the components in detail:

Stepper motor control requirements are summarized below:

• Driver circuit to provide necessary power for the stepper motor

• Current limiting device (software based)

• Interrupted based microcontroller algorithm to produce exact output signals

For the closed loop current control of the motor

• Measurement of the motor current

• PWM Signal to control motor current and power

Main Supply Provides circuit energy

Microcontroller Power Supply Regulates voltage and current for the microcontroller

Microcontroller

Produces the accurate signals for switching the mosfets also contains protection 
circuit, which ensures on change of the clock frequency that the stepping motor 
does not loose steps. Microcontroller observes and regulates the current flow 
through the motor. 

Driver Switches the power necessary for the motor phases.

Current Sensor
Gives continuously information about the current flow through the windings to 
the microcontroller.

MDriver

Main Supply

Motor
Feedback

Microcontroller
Power
Supply

Microcontroller
15Application Note U17733EE1V0AN00



[MEMO]
16 Application Note U17733EE1V0AN00



Chapter 3 System Design Concept

3.1 System Concept 

Figure 3-1 shows the principal block diagram of the system concept for the stepper motor.

Figure 3-1: Principal Block Diagram of the System Configuration

The µPD78F0714 processes the feedback of the current sensor to control the motor driver that supplies
the current flow through the windings. An encoder can be optional added to get active feedback of the
rotor position. 

Motor Driver

Keys µPD78F0714

LEDs

M
 Encoder ( optional )Current

Sensor
17Application Note U17733EE1V0AN00



Chapter 3 System Design Concept
3.2 System Configuration

Figure 3-2 shows the system configurations and the peripherals of the µPD78F0714 device used for the
stepper motor control.

Figure 3-2: System Configuration with the Peripherals of the µPD78F0714

The Keys are control elements for enabling different running modes for the stepper motor.
The key inputs are sampled by the Interval Timer 51. The 16- Bit Timer/Event Counter 00 and Real–
Time Port 0 generate the motor signals for shaft rotation. The actual current flow is detected over extern
shunt resistors. The 8- Bit Timer H0 communicates with A/D Converter and defines when to start a con-
version. In current dependence Timer 50 generates a PWM with different duty cycle to keep current at
the user defined set point. Optional an extern encoder can be implemented to observe the actual posi-
tion. The encoding of these signals can be realised with the 16- Bit Up/Down Counter. The three LED’s
visualize the different running modes the stepper motor is in. The function from each peripheral is
described in the next chapter. The system topology with the relationship between hardware and soft-
ware is shown in Figure 3- 3.

Figure 3-3: System Topology and Relationship between the Control Software 
and the Hardware of the System

Key1 Key2 Key3 Key4

A

B

3 x LEDs

8-bit
Timer

51

8-bit
Timer

H0

A/D
Converter ANI1

ANI0

16-bit
up-down
Counter

Real-Time
Port 0

16-bit Timer/
Event Counter 00

8-bit Timer/
Event Counter 50

I/O
 P

or
ts

Optional
Encoder

Motor
Driver

Current Sensor

M

PI Regulator

A/D Converter

8 Bit Timer 50 Real-Time Port Motor Drive M

8 Bit Timer H0

V

V

V
Set

Actual

Delta

Y Duty
Cycle

Output
Control
Signal

Shunt Resistor Voltage
18 Application Note U17733EE1V0AN00



Chapter 4 Hardware Configuration

This section describes the hardware requirements for this application example.

4.1 µPD78F0714 Configuration

The µPD78F0714 device is a member of the high performance 78K Family 8-bit microcontrollers,
designed specifically for mid-range motor control. The configuration of the device and the operating
environment used in this application is listed below:

• CPU: µPD78F0714

• Operating clock: System clock 20 MHz 

• Operating Voltage: 5 V

• Internal ROM: 32 Kbytes

• Internal RAM: 1024 bytes

• External expansion memory: not used.
19Application Note U17733EE1V0AN00



Chapter 4 Hardware Configuration
4.2 Peripherals I/O Assignments

Table 4-1 lists all pins of the µPD78F0714 device and the ones that are used in this application are
described with their associated function.

Table 4-1: µPD78F0714 Peripherals I/O Assignments (1/2)

Pin No. Pin Name Mode Setting Function

1 AVREF Extern reference Voltage PIReg.

2 AVSS Connect to Ground

3 FLMD0 Output Not used

4 VDD Power Supply

5 VSS Ground

6 X1 Input System Clock

7 X2 System Clock

8 RESET Input Reset Input

9 INTP3 Output Not used

10 INTP2 Output Not used

11 INTP1 Output Not used

12 INTP0 Output Not used

13 P30 Output Not used

14 P31 Output Not used

15 P32 Output Not used

16 P33 Output Not used

17 P50 Output Not used

18 P51 Output Not used

19 P52 Output Not used

20 P53 Output Not used

21 P54 Output Not used

22 P55 Output Not used

23 P56 Output Not used

24 P57 Output Not used

25 EVSS Connect to Ground

26 EVDD Connect to VDD

27 RTP10 Output Not used

28 RTP11 Output Not used

29 RTP12 Output Not used

30 RTP13 Output Not used

31 RTP14 Output Not used

32 RTP15 Output Not used

33 P10 Output Not used

34 P11 Output Not used

35 P12 Output Not used

36 P13 Output Not used

37 P14 Output Not used
20 Application Note U17733EE1V0AN00



Chapter 4 Hardware Configuration
38 P15 Output Not used

38 P16 Output Not used

40 P17 Output Not used

41 RTP00 Output Phase A

42 RTP01 Output Phase B

43 RTP02 Output Phase A

44 RTP03 Output Phase B

45 RTP04 Output Not used

46 RTP05 Output Not used

47 RTP06 Output Not used

48 RTP07 Output Not used

49 P64 Input Tracer 1

50 P65 Input Tracer 2

51 P66 Input Tracer 3

52 P67 Input Tracer 4

53 P70 Output LED red

54 P71 Output LED yellow

55 P72 Output LED green

56 P73 Output Not used

57 ANI7 Output Not used

58 ANI6 Output Not used

59 ANI5 Output Not used

60 ANI4 Output Connect to Ground

61 ANI3 Output Connect to VDD

62 ANI2 Output Not used

63 ANI1 Input Voltage Shunt 2

64 ANI0 Input Voltage Shunt 1

Table 4-1: µPD78F0714 Peripherals I/O Assignments (2/2)

Pin No. Pin Name Mode Setting Function
21Application Note U17733EE1V0AN00



Chapter 4 Hardware Configuration
4.3 8-bit Timer H0 Function

As shown in the hardware explanation, the time the AD conversion starts is determined by 8-bit timer
H0 of the µPD78F0714 device.
The timer has the following operation modes:

• Interval timer
- Generates interrupt request at the preset time interval

• PWM output mode
- A pulse with an arbitrary duty and arbitrary cycle can be output

• Square-wave output
- Outputs a square wave with any selected frequency.

The interval timer mode was chosen, to define in dependence of 16-bit timer 00 how often an AD con-
version occurs in one motor step. An interrupt is generated at the user defined time and the AD conver-
sion is performed.Timer H0 and TM00 work with the same frequency to guarantee synchronously
operating.
Figure 4-1 describes the principal flow of TMH0 in the interval timer mode. 

Figure 4-1: Timing of TMH0 Interval Timer Operation

00H

Count clock

Count start

8-bit timer counter H0

CMP00

TMHE0

INTTMH0

TOH0

01H N

Clear

Interval time

Clear

N

00H 01H N 00H 01H 00H

<2> 
Level inversion,

match interrupt occurrence,
8-bit timer counter H0 clear

<2> 
Level inversion,

match interrupt occurrence,
8-bit timer counter H0 clear

<3><1>
22 Application Note U17733EE1V0AN00



Chapter 4 Hardware Configuration
4.4 8-bit Timer 51 Function

TM 51 has different operation modes:

• Interval timer
- Generates interrupt request at the preset time interval

• External event counter
- Counts number of external clock pulses to be input to the TI51 pin

• Square-wave output
- Outputs a square wave with any selected frequency

• PWM output
- A pulse with an arbitrary duty and arbitrary cycle can be output

Timer 51 is run in the interval mode to continuously check if a tracer is pressed, also handles the
bouncing control.
Following figure demonstrates the basic timing diagram for the interval mode.

Figure 4-2: Timing of TM51 Interval Timer Operation

Remark: Interval time = (N + 1) × t
N = 00H to FFH
n = 0, 1

t

Count clock

TM5n count value

CR5n

TCE5n

INTTM5n

Count start Clear Clear

00H 01H N 00H 01H N 00H 01H N

NNNN

Interrupt acknowledged Interrupt acknowledged

Interval timeInterval time
23Application Note U17733EE1V0AN00



Chapter 4 Hardware Configuration
4.5 Real Time Port 0 Function

The Real -Time output Port (RTP) transfers previously set data in the real-time buffer register to the out-
put latch by hardware. The transfer is controlled with timer interrupts or external interrupt request gener-
ation. It is also possible to perform PWM modulation of a special pin with output pattern that can be
specified in one bit unit.
The µPD7F0714 has 2 channels of real-time output ports on chip. The RTP0 port is shared with Port 4
and RTP1 is shared with inverter control timer. The real-time port used in this application is the RTP0
port. Therefore the function of the RTP0 port will be described in detail.

Figure 4-3: Block Diagram of Real-Time Output Port RTP0

Remark: n = 0 to 7

Figure 4-3 shows the block diagram of the real-time output port RTP0 that shares the output with P4.

Internal bus

RTPOE00 RTPEG00 BYTE00 EXTR00

Output trigger
controller

Real-time output port 0
output latch

Port 4
output latch

PWM modulation

INTP2 (from outside)
INTTM00 (from TM00)
INTTM51 (from TM51)

TO50 (from TM50)

RTP07 · · · · · · · · · · · · · · · · · · · RTP00

P47/RTP07 · · · · · · · · · · · · · · · P40/RTP00

Real-time output port control
register 0 (RTPC00)

Real-time output
buffer register 0

Lower 4 bits
(RTBL00)

Port mode
register 4 (PM4)

Real-time output
port mode
register 0
(RTPM00)

DC control
register 00
(DCCTL00)

Real-time output
buffer register 0

Higher 4 bits
(RTBH00)4

P47 · · · · · · · · · · · · · · · · · · · · · P40

P4n/RTP0n pin output
24 Application Note U17733EE1V0AN00



Chapter 4 Hardware Configuration
The real-time output buffer register 0 (RTBH00, RTBL00) is the register that holds the data in advance.
It is specified in entirely 8 bits that can be select either as 1 channel x 8 bits or 2 channels x 4 bits. The
real time output mode is set with the port mode register RTPM00 that allows 1-bit units selection. The
real-time output port control register RTPC00 sets the operating mode, enables/disables the operation
of the real-time output port. The DC control register DCCTL00 controls the PWM modulation, enabling/
disabling of the output waveform inversion.
The relationship between the register settings of the real-time output port and the effects on the output
is described in the Table 4-2 below:

Table 4-2: Relationship Between Settings of Each Bit of Control Register and Real-Time Output

PM4n P4n DCEN00 INV00
PWMCH00/
PWMCL00

RTPOE00 RTPM00n
RTBH00m/
RTBL00m

Pin P4n Status

1 × × × × × × × Input port

0

1 × × × × × × “high” output

0

0 × ×

0 × × “low” output

1

0 × “low” output

1
0 “low” output

1 “high” output

1

0

0

0 × × “low” output

1

0 × “low” output

1
0 “low” output

1 “high” output

1

0 × × “TO50” output

1

0 × “TO50” output

1
0 “TO50” output

1 “high” output

1

0

0 × × “high” output

1

0 × “high” output

1
0 “high” output

1 “low” output

1

0 × × “TO50” output

1

0 × “TO50” output

1
0 “TO50” output

0 “low” output
25Application Note U17733EE1V0AN00



Chapter 4 Hardware Configuration
The interaction between the generated signal from the 16-bit timer and the modulation of it with the real
time output port makes generation of a wide range of signal wave forms possible. The solution of the
signal generation for the control of the stepper motor drive circuit will be described in Chapter 5, where
the software will also be introduced and described. As already mentioned TM00 is responsible for the
general shape of the curve, where TM 50 generates the PWM. Following figure shows the connection
between these two timers.

Figure 4-4: Real-Time Output Port Operation Timing Example

8 bits × 1 channel, inverted output enabled, PWM modulation
(EXTR00 = 0, BYTE00 = 1, INV00 = 1, PWMCH00 = 1, PWMCL00 = 1)

Remark: A: INTTM00 software processing (RTBH00, RTBL00 write)

A

01H 02H 03H 04H 05H 06H 07H 08H 09H

01H

H

H

H

H

02H 03H 04H 05H 06H 07H 08H 09H

0AH

A A A A A A A A A

INTTM00

CPU
Operation

RTBH00, 
RTBL00  

Output latch
P40

Output latch
P41

Output latch
P42

Output latch
P43

Output latch
P44

Output latch
P45

Output latch
P46

Output latch
P47

Output latch
P40 to P47
26 Application Note U17733EE1V0AN00



Chapter 4 Hardware Configuration
4.6 16-bit Up/Down Counter Function

As an additionally option an extern quadrature encoder can be added. To work with these signals the
16-bit up/down timer can be used. This timer can work with 2-phase extern encoder signals as the
count clock of the timer/counter via extern input pins. The following modes can be achieved with this
timer.

• Mode 1
- Counts the input pulses of the count pulse input pin. Up down is specified by the level of the 

other input pin. 

• Mode 2
- Counts up/down using the respective input pulses of the up count pulse input pin and down 

count pulse input pin.

• Mode 3
- Counts up/down using the phase relationship of the pulses input to the 2 pins

• Mode 4
- Counts up/down using the phase relationship of the pulses input to the 2 pins.  Counting is 

done using the respective rising and falling edges of the pulses.

Mode 3 was chosen to keep exact track of the signal. Figure 4-5 shows basic working condition of the
timer for mode 3, TIT20IUD and TIT20CUD represent the two input pins.

Figure 4-5: Timing for Up/Down Counter in Mode 3

0007H

TIT20IUD

TIT20CUD

IT20UDC 0008H

Up count Down count

0009H 000AH 0009H 0008H 0007H
27Application Note U17733EE1V0AN00



Chapter 4 Hardware Configuration
4.7 Motor Specification

The specification of the stepper motor used in this application note is as follows:

• Related Voltage 5.7 V

• Current per Phase 1 A

• Resistance per Phase 5.7 Ω

• Inductance 5.4 mH

All motors can be used that are able to work in the unipolar mode, the only difference must be made in
the user defined values, to adjust the software to the particular stepper motor.
In this application design the Oriental Motor PK264-01A stepper motor is used. Oriental Motors pro-
vides also a solution where the quadrature encoder, that fully satisfies the requirements, is already
included in the motor.

4.8 Encoder Specification

The optional included encoder should generally have following specification and provide the signals
shown in Figure 4-6.

• Supplied Voltage 5 V

• Resolution per Step Up to 1024 Counts 

• Load Capacity  max. 100 pF 

• TTL Compatible

Figure 4-6: General Signal Process of the Encoder

In order to shorten the rise time of the output pulse channel, the outputs be pulled up with a resistance
of 2.7 kΩ.

Rotation

CH. A

CH. B

-2.4 V

-2.4 V

-0.4 V

-0.4 V

C

p

S2S1 S3

µ

A
m

pl
itu

de
28 Application Note U17733EE1V0AN00



Chapter 4 Hardware Configuration
4.9 Stepper Motor Driving Circuit and User Interface Circuit

Figure 4-7 is a schematic of the motor driver and user interface used in the development of this applica-
tion note. 

Complete part list for Figure 4-7:

Resistors

R1...R4, R13, R14 10 kΩ

R5, R17, R18, R19 330 Ω

R6, R9...R12 100 Ω

R7 1 kΩ

R8 10 Ω

R15,R16 0.25 Ω

R20, R21 2.7 kΩ

Capacitors

C1 470 µF

C2 0.33 µF

C3 0.1 µF (ceramic)

C4 0.1 µF

C5 1 µF

C6, C7 0.47 µF

Diodes

Zener Diodes

Z1 4.7 V

Z2, Z3 23 V

Shottky Diodes

D2... D5 1N58190210

D1 1N4148

Mosfets

Q1... Q4 NEC NP36N055HLE
29Application Note U17733EE1V0AN00



Chapter 4 Hardware Configuration
Figure 4-7: Motor Driver and User Interface for Stepper Motor Control
30 Application Note U17733EE1V0AN00



Chapter 5 Software Process Description

This section describes the software implementation for this application example. Figure 5-1 shows the
principal data flow diagram and the relationship between the software modules and hardware peripher-
als that are involved in the control of the motor.

Figure 5-1: Principal Data Flow Diagram

The software can be separated into two main phases, the first one occurs right after initialization, the
application runs into demo mode, where a certain demo program is executed. The second phase is run
into as soon as an external switch is pressed, this terminates the demo program and leads to the nor-
mal working mode of the motor. From here on the motor can be driven in different pattern that are
described in the following chapter. The functions of the system shown in Figure 5-1 are sequential and
implemented and executed in the main endless loop of the software. 

Initialization

RESET

DEMO Mode

Default

Tracer S2 - S5
pressed

NORMAL Mode

Tm51
Interval Timer

LEDs

Key_Detect

PI_regulator

START

Real-Time
Port

OUTPUT

Demo

Average

Current
Measurement

Stop if key is
detected

Default

1) DEMO Mode

New Duty
Cycle

Actual
value

Switch
appropriate
bit pattern

Timer start

RTP
Motor Signals

Starts when Demo
is terminated

2) NORMAL Mode

Tm51
Interval Timer

LEDs

Key_Detect

PI_regulator Average

PWM_Start
Current

MeasurementRTP
Motor Signals

Real-Time
Port

OUTPUT

Actual
Current

New Duty
Cycle

Switch
appropriate
bit pattern

Timer start

Ramp
31Application Note U17733EE1V0AN00



Chapter 5 Software Process Description
5.1 Demo Mode

In the demo mode the stepper motor can present the different working steps the motor is able to oper-
ate in. The mode is entered directly after switch on. The motor follows the user defined program as long
as no tracer is pressed. In this application design the motor rotates 90 degrees with a rotation speed of
1 RPM in detectable single steps and 270 degrees with a speed of 168 RPM in a continues way. Once
a tracer is pressed the demo mode is terminated and the motor stops.

5.2 Normal Mode

This is the mode where the motor is usual been driven. Four switches, S2 through S5, control how the
Stepper Motor Controller board operates. S2 controls direction. Each time S2 is pressed the motor
changes its direction of rotation. S3 controls how the motor is stepped. Each time S3 is pressed for less
than 1 second, the motor toggles between continuous mode and single step mode, this can only be per-
formed when the motor is standing still. Holding S3 down for more than 1 second toggles the stepping
sequence between full-stepping and half-stepping. Pressing S2 and S3 starts the motor in the continu-
ous mode, stopping the motor in this mode can be achieved by pressing switches S4 and S5. The
green LED3 is illuminated while operating in half-stepping mode. Otherwise, LED3 is off. Yellow LED2 is
illuminated while in single step mode, flashing while the motor rotates left, permanent if spinning right.
While operating in continuous mode, pressing S3 increases the motor's stepping rate, S4 decreases it.
For single step mode, the motor steps as long as S3 is pressed. S4 advances the motor one step each
time it is pressed.
The red LED1 shows that the motor is running and shuts off as soon as the motor stands.

Table 5-1: Switch Operation

Switch Operation

S2 Toggles Motor Direction

S2 & S3 Starts motor in the continuous mode

S4 & S5 Stops motor in the continuous mode

S3 Toggles between continuous and step mode (less than 1 second pressed)

S3 Toggles between full-stepping and half-stepping mode (more than 1 second pressed)

S4 Increases motor’s speed (continuous mode) / steps motor as long as pressed (step mode)

S5 Decreases motor’s speed (continuous mode) / single steps motor (step mode)
32 Application Note U17733EE1V0AN00



Chapter 5 Software Process Description
5.3 Initialization

The initialization process is responsible for the initializing the µPD78F0714 device after a system reset.
It configures the basic clock settings of the device, initializes the peripherals that are used for the motor
control application and disables/ enables interrupts. The initialization contains two parts as shown in
Figure 5-2, the first part that initializes the configuration of the device and the second part initialize the
peripherals with their operating mode.

Figure 5-2: Initialization Process

5.4 TM51 Interval Timer

The timer TM51 is used to realize an interval timer function. It is used to generate an interrupt request
at the preset time interval. The interval time length is set to the period of T = 10.2 ms. Port six, the input
port for the switches, is masked in the ISR and checked every 10.2 ms. If a signal stands low for 
20.4 ms, means that the ISR has occurred two times, the actual switch is considered pressed and
returned to the main loop. Different variables are generated. The timer is also responsible to keep a
counting variable for time variant applications, for instance the flashing of a led. 

5.5 Key_Detect

This function detects the key inputs and serves different system running modes depending on the key
input. The Key_Detect function is event controlled and it is executed only when a key entry is recog-
nized. The sample time of the key entry is defined with the elapse time of the TM51 ISR. 

Initialization

Configure
Peripherals

Define
operating mode

Set processor
clock

Set port mode
Define and

enable interrupts
33Application Note U17733EE1V0AN00



Chapter 5 Software Process Description
5.6 RTP Motor Signals

This process is responsible to generate the motor signals. It consists of three main functions. First func-
tion defines the real time output port, including port settings and enable pulse width modulation. The
second function contributes the bit patterns to drive the stepper motor. The timer TM00 is realised as an
interval timer function to generate an interrupt at a present time. Every time the ISR is executed a differ-
ent bit pattern is load to the real-time output buffer register 0, responsible to drive the mosfets in the
right order. 
This function has to guarantee the exact bit pattern for every situation, including direction changes, half-
full step and start- stop mode. The position of the stepper is continuous tracked by a variable counting
how often the ISR is entered. 
To generate the PWM for the real time output port the third function is used. TM50 works as an interval
timer. The timer works with a steady 5 MHz frequency, the duty cycle can differ from 0 to 100%. Value
of compare register CR50 modulates the duty cycle. 
Figure 5-3 shows connection between TM00, TM50 and the generated output motor signals.

Figure 5-3: Connection between TM00, TM50 and Motor Signals

Phase A

Phase A’

Phase B

Phase B’

INTTM00

INTTM50

1 2 3 4
34 Application Note U17733EE1V0AN00



Chapter 5 Software Process Description
5.7 Current Measurement

This process is responsible for measuring the voltage over the shunt resistors, which gives actual infor-
mation about the current flow through the windings. The measured value is used as a feedback for the
closed current loop control.
The timer TMH0 is used to realize an interval timer function to generate an interrupt request at the pre-
set time interval. The interval time length is set to a period four times faster as TM00 frequency, to
ensure synchronously working both timers run with the same frequency.
The ADC function is executed every time TMH0 interrupt service routine is active.
The interrupt request flag of the ADC function is polled and an AD conversion is executed each time the
interrupt request flag is detected high.
This procedure guarantees that an AD conversion only occurs at the defined time.
Figure 5-4 shows the basic working of TM00, TMH0 and the AD conversion.

Figure 5-4: Connection between TM00, TMH0 and AD conversion

5.8 Average

This function sequentially builds an average value over the actual value delivered by the current meas-
uring process. Purpose of this function is to filter out voltage ripples.   
The Average function is event controlled and it is executed only when an AD conversion is recognized.
It also sets an overflow flag if the set point for regulation is exceeded. 

5.9 PWM_Start

This small function limits the switch on current of the motor. Starting with a PWM duty cycle of 20% and
increasing it to 100% or the desired regulation set point.

CR00

CR00

CR00

CMP00

D1 D2 D3 D4

t

t

t

16-bit timer
TM00

8-bit timer
TMH0

INTTMH0
A/D conv.

CMP00
CMP00
35Application Note U17733EE1V0AN00



Chapter 5 Software Process Description
5.10 Ramp

Stepper motors can not start, stop or change direction above there maximum start- stop frequency
without loosing steps. This frequency differs from motor to motor. To ensure the accurate steps, Ramp
function implements a speed ramp.
This function is also responsible for increasing and decreasing the motor speed if external tracer S4 or
S5 is pressed.   

5.11 Stall_Detect

Stall_Detect recognizes loosing steps if the motor is running too fast. As result of this detection, the
function slows the motor down with the goal to avoid step losses of the motor.

5.12 PI-Regulator

The PI-Regulator used is the classical Proportional Integral (PI) control method in the closed loop cur-
rent control of the stepper motor.
The regulator is based on the recursive PI algorithm known also as the speed algorithm and takes the
form of:

transformed into a discrete form:

where:        
          Kp           presents the proportional gain

          Ki            present the integral gain

          Xd           presents the voltage error           

The coefficients Kp and Ki were derived empirically and optimized based on system behaviour pro-
duced by disturbances during the system testing.
The sample time of the regulator depends on the rotation speed of the motor. The function also normal-
ise the value and transforms the calculated regulated quantity into the duty cycle of the PWM signal. 

S
KKsG ip

1*)( +=

)(∑+ didp XKXK **

( ) ( )1−−= nXnXXd

presents the accumulated voltage error∑ dX
36 Application Note U17733EE1V0AN00



Chapter 6 Software Flowcharts

This chapter describes the important functions used in the system of the stepper motor control applica-
tion. The functions that are responsible for the key input and the menu points are not included in this
chapter. Please refer in the software source codes if more information about these functions is needed.

6.1 Concept and Main Flowchart

Figure 6-1 shows the main program flowchart.

Figure 6-1: Main Program Flowchart

Main Routine

Disable all interrupts

Initialize Hardware

Initialize peripherals

Initialize variables

Enable all interrupts

Run interval timer
TM 51

Endless loop

RESET
37Application Note U17733EE1V0AN00



Chapter 6 Software Flowcharts
6.2 Peripherals Initialization

Figure 6-2 shows the initialization of the used hardware peripherals of the µPD78F0714 device with
their operation mode in this application.

Figure 6-2: Peripherals Initialization

Initialize
Peripherals

8-bit Timer
TM50

8-bit Timer
TM51

8-bit Timer
TMH0

16-bit Timer
TM00

AD Converter

Real-Time Port
RTP0

8-bit Timer
TM50

Stop timer

Set timer clock
count

Set start value
for compare

register CR50

Set timer
interval mode

Disable output
and inversion

Set maskable
interrupt

8-bit Timer
TM51

Stop timer

Set timer clock
count

Set start value
for compare

register CR51

Set timer
interval mode

Disable output
and inversion

8-bit Timer
TMH0

Stop timer

Set timer clock
count

16-bit Timer
TM00

Stop timer

Set motor
speed to start

value

Set mode for CR00
as compare

register

Set timer clock
count

Set CR00 and
CR01 to defined

start values

Set maskable
interrupt

AD Converter

Set ADC to
Select mode

Set conversion
time

Set for software
trigger

Select ANI0 and
ANI1 as input

pins

No power fail
detection

Disable
maskable
interrupt

Real-Time Port
RTP0

Set output ports

Enable RTP
output

Enable PWM
modulation

Enable
Inversion

Enable
PM40..PM43 as

output

Set RTBL00 to
defined value
38 Application Note U17733EE1V0AN00



Chapter 6 Software Flowcharts
6.3 Main Concept

Figure 6-3 shows the endless loop of the main program used in this application.

Figure 6-3: Endless Loop Function Flow

Endless loop

Demo = 1? Demo

NewADValue 1,2 =1? Average

PI-RegulatorOverflow=1 && Motor rotates?
MotorStep = 7?

Y

Y

N

Key_Detect

Y

N

N

39Application Note U17733EE1V0AN00



Chapter 6 Software Flowcharts
6.4 Demo Concept

Figure 6-4 shows the flow chart of the demo program used in this application.

Figure 6-4: Demo Function Flow

Demo

Position = 0?

RTP_START

Full_Step = 1

MotorSpeed = StartSpeed

StartCondition = 0
MotorStand = 0

LED1 = on

Position = 90 degrees?

MotorStand = 1?
StartCondition = 1?

DemoSlowMode = 1
DutyCycle = 100

MotorSpeed = SlowMotorSpeed

Position = 180 degrees?

DemoSlow = 1
MotorSpeed = StartSpeed

RETURN

Y

N

Y

N

Y

N

Y

N

40 Application Note U17733EE1V0AN00



Chapter 6 Software Flowcharts
6.5 RTP Motor Signals Concept

Figures 6-5 to 6-7 show the basic concept flow for generating the motor signals. Especially TM00 and
TM50 interrupt service routines are responsible for generating the motor signal pattern. The function
TMH0_START is starting the AD converter and will be explained in the next chapter. 

Figure 6-5: RTP_START Flowchart

Figure 6-6: TM50_ISR Flowchart

RTP_START

TM50_START

TM00_START

TMH0_START

Enables RTP port operation
4bits * 2 channels

RETURN

TM50_ISR

Sets count clock to 5 MHz,
optional different count

clocks can be selected for
Demo mode, SlowDemo

mode and normal working
mode

RETI
41Application Note U17733EE1V0AN00



Chapter 6 Software Flowcharts
Figure 6-7: TM00_ISR Flowchart

TM00_ISR

RETI

FullStep =1?

CR00 = MotorSpeed

CR00 = MotorSpeed / 2

Direction = Right?

Position >= 360 DegreesPosition = 0

DirectionChange?Synchronize Steps

RightRotation = 1

Step = 1?

STALL_DETECT

Motor rotates &&
FullStep = 0?

Inc Step
Inc Position

Motor rotates &&
FullStep = 1?

 Step = Step + 2
Position = Position + 2

RTBL00 = MotorSignal1
right

Step = 2?

Motor rotates?

Inc Step
Inc Position

RTBL00 = MotorSignal2
right

Step = 3?

Motor rotates &&
FullStep = 0?

Inc Step
Inc Position

Motor rotates &&
FullStep = 1?

 Step = Step + 2
Position = Position + 2

RTBL00 = MotorSignal3
right

Step = 4?

Motor rotates?

Inc Step
Inc Position

RTBL00 = MotorSignal4
right

Step = 7?

Motor rotates &&
FullStep = 0?

Inc Step
Inc Position

Motor rotates &&
FullStep = 1?

 Step = Step + 2
Position = Position + 2

RTBL00 = MotorSignal7
right

Step = 6?

Motor rotates?

Inc Step
Inc Position

RTBL00 = MotorSignal6
right

Step = 5?

Motor rotates &&
FullStep = 0?

Inc Step
Inc Position

Motor rotates &&
FullStep = 1?

 Step = Step + 2
Position = Position + 2

RTBL00 = MotorSignal5
right

Step = 8?

Motor rotates?

Inc Step
Inc Position

RTBL00 = MotorSignal8
right

RETI

RETI

RETI

RETI

RETI

RETI

RETI

Same procedure as for
right direction only with
different motor signals

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y Y

Y

Y

Y

Y

Y

Y

N

N

N

Y

N

N

N

N

Y

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

42 Application Note U17733EE1V0AN00



Chapter 6 Software Flowcharts
6.6 Current Measurement

As mentioned TMH0 starts the AD conversion every time the timer ISR is entered. Figure 6-8 and 6-9
show the connection between the interrupt service routine and the AD polling.

Figure 6-8: TMH0_ISR Flowchart

Figure 6-9: AD_START Function Flowchart

TMH0_ISR

FullStep = 1?
CMP00 =

MotorSpeed / 8

CMP00 =
MotorSpeed / 4

AD_START

RETI

Y

N

AD_START

RETI

ADCS = 1

ADS = 0x00

ADIF = 0

Voltage1 = ADCR

ADIF = 1?

NewADValue1 = 1

ADS = 0x01

ADIF = 0

ADIF =1?

Voltage2 = ADCR

NewADValue2 = 1

Y

N Y

N

43Application Note U17733EE1V0AN00



Chapter 6 Software Flowcharts
6.7 Average 

Figure 6-10 shows flow of the Average function.

Figure 6-10: Average Function Flowchart

AVERAGE

element1++

Voltage1_average =
Voltage1 >> 6

NewADValue1 = 0

NewADValue1 = 1?

NewADValue2 = 0

element1 = 0
Voltage1_average =

 Average1

element2++

Voltage2_average =
Voltage2 >> 6

NewADValue2 = 1?

element2 = 0
Voltage2_average =

 Average2

RETURN

Y

Y

N

N

Y

N

Y

N

44 Application Note U17733EE1V0AN00



Chapter 6 Software Flowcharts
6.8 PWM Start 

Figure 6-11 shows the concept flow of PWM Start.

Figure 6-11: PWM_START Flowchart

PWM_START

AVERAGE

Voltage_array[element]=
Voltage_average

element++

element > 1?

element = 0

Voltage_Difference

Voltage_Difference = 0?

Increase DutyCycle

Remain
 old DutyCycle

Y

N

RETURN
45Application Note U17733EE1V0AN00



Chapter 6 Software Flowcharts
6.9 Ramp

The Ramp function consists of two sub functions, RAMP_UP and RAMP_DOWN. 
Figure 6-12 shows the process flow for the RAMP_UP function, RAMP_DOWN is not further described,
because it is very similar to the RAMP_UP function. 

Figure 6-12: RAMP_UP Flowchart

RAMP

DutyCycle = 80%

Increase
MotorSpeed

MainCount >
TimePeriod

MainCount = 0

MainCount = 0

DirectionRamp = 1
MainCount =

sTimePeriod ?

DirectionRamp = 0
MainCount =
TimePeriod ?

Stall = 0

DutyCycle = 80%

Increase
MotorSpeed

MainCount = 0

MotorSpeed >
MaxSpeed?

MotorSpeed =
MaxSpeed

Increase
MainCount

RETURN

Y

N

Y

N

Y

N

Y

N

46 Application Note U17733EE1V0AN00



Chapter 6 Software Flowcharts
6.10 Stall Detect

Figure 6-13: STALL_DETECT Flowchart

STALL_DETECT

 Current_Array [element] =
actual value

Increase element

element > 1?

Evaluate
Current_Difference

MotorSpeed >
fastRotation
Stall = 0?

Current_Difference
> 2?

Stall = 1

element = 0

Stall = 1
Increase Motor

Speed switch= 1?

Decrease
MotorSpeed

Stall = 1
No key pressed?

Stall = 0

RETURN

Y

N

Y

N

Y

N

Y

N

Y

N

47Application Note U17733EE1V0AN00



Chapter 6 Software Flowcharts
6.11 PI-Regulator

Figure 6-14 shows the function flow of the implemented PI-Regulator in the system.

Figure 6-14: PI-Regulator Flowchart

PI-Regulator

Y > Ymax?

XD = orderedVoltage - Voltage_average

Yp = XD * Kp

Integrator = Integrator + XD

Yi = Integrator * Ki

Y = Yp + Yi

Y < Ymin?

DutyCycle = Y

RETURN

Y = Ymax

Y = Ymin

Y

Y

N

N

48 Application Note U17733EE1V0AN00



Chapter 7 Program Listing

/*==================================================================================
** PROJECT = Stepper motor control
** MODULE = Hardware Initialisation
** VERSION = V0.1
** DATE = 07.07.2005
** LAST CHANGE =
**
** =================================================================================
** Description: Hardware initialization
**
** =================================================================================
** Environment: Device:         uPD78F0714
**              Assembler:      A78000         Version X.XXX
**              C-Compiler:     ICC78000       Version X.XXX
**              Linker:         XLINK          Version X.XXX
** =================================================================================
** By: NEC Electronics (Europe) GmbH
** Oberrather Strasse 4
** D-40472 Duesseldorf
**
**
** ===============================================================================*/
// INCLUDE the HEADER FOR THE 78F0714 Device!!!!!!

#include <io78f0714.h>
#include <intrinsics.h>
#include <migration.h>

/*********************************************/
/****        H/W UPD INIT                 ****/
/*********************************************/
void vHardwareInit(void)
{

// port latch

P0   = 0x00; // set output latch to 0
P1   = 0x00; // set output latch to 0
P2   = 0x00; // set output latch to 0
P3   = 0x00; // set output latch to 0
P4   = 0x00; // set output latch to 0
P5   = 0x00; // set output latch to 0
P6   = 0x00; // set output latch to 0
P7   = 0x00; // set output latch to 0

// port mode
PM0  = 0x00; // port 0.1, 0.2, 0.3 are input for Key 1,2 and 3
PM1  = 0x00; // port 1 output
PM2  = 0x00; // port 2 = Input only
PM3  = 0x00; // port 3 = output
PM4  = 0x00; // port 4 = output
PM5  = 0x00; // port 5 = output
PM6  = 0xFF; // port 6 = input
PM7  = 0xF0; // port 7 = output
49Application Note U17733EE1V0AN00



Chapter 7 Program Listing
// pull up resistors
/*
PU0 = 0x00; // no pull up-resistors
PU2 = 0x00; // no pull up-resistors
PU3 = 0x00; // no pull up-resistors
PU4 = 0x00; // no pull up-resistors
PU5 = 0x00; // no pull up-resistors
PU6 = 0x00; // no pull up-resistors
*/
// interrupt definition
IF0L = 0x00; // clear INT request
IF0H = 0x00; // clear INT request
IF1L = 0x00; // clear INT request

// 7 6 5 4 3 2 1 0 Bit Number
MK0L = 0xFF;            // 1 1 1 1 1 1 1 1
// |_|_|_|_|_|_|_|_INTLVI disabled
// |_|_|_|_|_|_|___INTP0  disabled
// |_|_|_|_|_|_____INTP1  enabled
// |_|_|_|_|_______INTP2  enabled
// |_|_|_|_________INTP3  enabled
// |_|_____________INTP4  disabled
// |_|_____________INTP5  disabled
// |_______________INTP6  disabled

// 7 6 5 4 3 2 1 0 Bit Number
MK0H = 0xFF;//0xE1;     // 1 1 1 1 1 1 1 1
// |_|_|_|_|_|_|_|_INTP7     disabled
// |_|_|_|_|_|_|___INTTW0UD  enabled
// |_|_|_|_|_|_____INTTW0CM3 disabled
// |_|_|_|_|_______INTTW0CM4 disabled
// |_|_|_|_________INTTW0CM5 disabled
// |_|_____________INTCM10   disabled
// |_|_____________INTCM11   disabled
// |_______________INTCC10   disabled

// 7 6 5 4 3 2 1 0 Bit Number
MK1L = 0xFF;            // 1 1 1 1 1 1 1 1
// |_|_|_|_|_|_|_|_INTCC11   disabled
// |_|_|_|_|_|_|___INTBEMF0  enabled
// |_|_|_|_|_|_____INTTM0    disabled
// |_|_|_|_|_______INTTM01   disabled
// |_|_|_|_________INTSRE00  disabled
// |_|_____________INTSR00   disabled

// |_|_____________INTST00   disabled
// |_______________INTTM50   disabled

// 7 6 5 4 3 2 1 0 Bit Number
MK1H = 0xFF;    // 1 1 1 1 1 1 1 1
// |_|_|_|_|_|_|_|_INTTM51   disabled DF
// |_|_|_|_|_|_|___INTTMH0   disabled
// |_|_|_|_|_|_____INTCSI10  disabled
// |_|_|_|_|_______INTDMU    disabled
// |_|_|_|_________INTAD     disabled
// |_|_____________Not USED  disabled Read Only
// |_|_____________Not USED  disabled After Reset Value is 0!
// |_______________Not USED  disabled Read Only
50 Application Note U17733EE1V0AN00



Chapter 7 Program Listing
PR0L = 0xFF; // INT low priority
PR0H = 0xFF; // INT low priority
PR1L = 0xFF; // INT low priority
PR1H = 0xFF; // INT low priority

// 7 6 5 4 3 2 1 0 Bit Number
EGP = 0x00; // 0 0 0 0 0 0 0 0
EGN = 0x00; // 0 0 0 0 0 0 0 0
//         |_|_|_|_disabled ext. INT. TW0TOFFP Security Shut Off TMW Outputs
//         |_|_|___INTP1 enabled Key 1 Input (rising Edge)
//         |_|_____INTP2 enabled Key 2 Input (rising Edge)
//         |_______INTP3 enabled Key 3 Input (rising Edge)

//CLOCK Settings

OSTS = 0x05; // Set Stabilization Time to 3.27 ms

while(!OSTC_bit.no0) // Get acknowledgment for the stab. time
{
_NOP();
}

// processor clock
PCC  = 0x00; // with max Freq.

MOC  = 0x00; // X1 Oscillator operating
MCM  = 0x01; // X1 Input Clock

//Check if the X1 operates
while(!MCM_bit.no1)
{
MOC  = 0x00; // X1 Oscillator operating
MCM  = 0x01; // X1 Input Clock
}

RCM  = 0x01; // Ring-OSC Stopped

//VSWC = 0x02; // Insert Two wait state

WDTM = 0x77; // STOP Watchdog TIMER!
}

51Application Note U17733EE1V0AN00



Chapter 7 Program Listing
/*==================================================================================
** PROJECT = Stepper Motor
** MODULE = Global Variables
** VERSION = V0.1
** DATE = 07.07.2005
** LAST CHANGE =
**
** ===============================================================================*/

//==================================================================================
// Global variables
//==================================================================================

/* User defined variables */
unsigned int StartSpeed = 139; // sets the starting speed of the motor 
unsigned char DutyStart = 80; // sets starting frequency for the PWM
unsigned int orderedVoltage = 18; // sets the voltage value for the PIRegulator 

/* ADC variables */
unsigned int Voltage1;
unsigned int Voltage2;
unsigned char NewADValue1;
unsigned char NewADValue2;

/* Average variables */
unsigned int Voltage1_average = 0;
unsigned int Voltage2_average = 0;
unsigned char element1 = 0;
unsigned char element2 = 0;
unsigned char Overflow = 0; // indicates Overflow and starts regulator
unsigned char Voltage_array[2];

/* Demo variables */
unsigned char Demo = 1;
unsigned char DemoSlowMode = 0;

/* KeyDetect variables */
unsigned int Speed_old;
unsigned char Cycle_old;
unsigned char StartCondition = 1;
unsigned char MotorStand = 1;
unsigned char Direction_Ramp;
unsigned char SingleStep = 0;
unsigned char FullStep = 1;
unsigned char Continues = 1;

/* PI variables */
int XD=0; // Delta X
long Y=0;
long Yp=0; // Y proportional part
long Yi=0; // Y integral part
long Integrator=0;
unsigned char Y_max = 235; // Y_max value set to 235, value is chosen
unsigned char Y_min = 0; // to keep AD Converter time in range

/* Ramp variables */
unsigned int MainCount = 0;
52 Application Note U17733EE1V0AN00



Chapter 7 Program Listing
/* RTP variables */
unsigned char Step = 1;
unsigned char Direction = 0;
unsigned int MotorSpeed;
unsigned char DutyCycle = 0;
unsigned char RightRotation = 1;
unsigned int Position = 0;

/* Tm51 Key variables */
unsigned int i = 0;
unsigned char Key;
unsigned char Tracer;
unsigned char pressed;
unsigned char LED_Counter = 0;

/* Stall variables */
unsigned char Stall = 0;
signed char Current_Difference;
unsigned char Current_Array[2] = {0, 0};
unsigned char elementCurrent = 0;
signed char Current_Difference;

/* PWMStart variables */
unsigned char element;
unsigned char Voltage_Difference;
53Application Note U17733EE1V0AN00



Chapter 7 Program Listing
/*==================================================================================
** PROJECT = Stepper Motor
** MODULE = A/D Converter Initialisation
** VERSION = V0.1
** DATE = 07.07.2005
** LAST CHANGE =
**
** =================================================================================
** Description: Function for AD conversion by flag polling
**
** =================================================================================
** Environment: Device:         uPD78F0714
**              Assembler:      A78000         Version X.XXX
**              C-Compiler:     ICC78000       Version X.XXX
**              Linker:         XLINK          Version X.XXX
** =================================================================================
** By: NEC Electronics (Europe) GmbH
** Oberrather Strasse 4
** D-40472 Duesseldorf
**
**
** ===============================================================================*/
// INCLUDE the HEADER FOR THE uPD78F0714 Device!!!!!!

#include <io78f0714.h>
#include <intrinsics.h>
#include <migration.h>
#include “variables.h”

void AD_INIT(void);
void AD_START(void);
void AD_STOP(void);

/*==================================================================================
** Initfunction of ADConverter
**
**================================================================================*/

void AD_INIT(void)
{
ADM = 0x1A; // sets Ad Converter to select mode and 4.8 us conversion time
ADS = 0x11; // sets for software trigger, time trigger and ANI0 and ANI1

// input channel
PFM = 0x00; // sets the whole PFM register
MK1H_bit.no4 = 1; // disable ADC ISR maskable interrupt
}

54 Application Note U17733EE1V0AN00



Chapter 7 Program Listing
/*==================================================================================
** Startfunction of ADConverter
**
**================================================================================*/

void AD_START(void)
{
ADCS = 1; // starts AD Conversion
ADS = 0x00; // ANI0 Inputchannel, Selectmode
ADIF = 0;
while(!ADIF)

;
Voltage1 = ADCR; // Voltage1 gets first AD value
NewADValue1 = 1; // NewADValue1 Flag is set
ADS = 0x01; // ANI1 Inputchannel, Selectmode
ADIF = 0;
while (!ADIF)

;
Voltage2 = ADCR; // Voltage2 gets second AD value
NewADValue2 = 1; // NewADValue2 Flag is set
}

/*==================================================================================
** Stopfunction of ADConverter
**
**================================================================================*/

void AD_STOP(void)
{
ADCS = 0; // stops the AD Converter
Voltage1 = 0; // variables are set to defined values
Voltage2 = 0;
element1 = 0;
element2 = 0;
}

55Application Note U17733EE1V0AN00



Chapter 7 Program Listing
/*==================================================================================
** PROJECT = Stepper Motor
** MODULE = AD average value evaluation, Stall detection
** VERSION = V0.1
** DATE = 07.06.2005
** LAST CHANGE =
**
** ===============================================================================*/

#include <io78f0714.h>
#include <intrinsics.h>
#include <migration.h>
#include “variables.h”

void AVERAGE(void);
void STALL_DETECT(void);

/*==================================================================================
** Function to build average value of all incoming current values and to detect overflow
**
**================================================================================*/

void AVERAGE(void)
{
if (NewADValue1) // for each winding a separate current is evaluated
{

if(element1 == 0)
{

Voltage1_average =(Voltage1 >> 6);
element1++;

}
else

Voltage1_average = (Voltage1_average+(Voltage1 >> 6))/2;
}
if (NewADValue2)
{

if(element2 == 0)
{

Voltage2_average =(Voltage2 >> 6);
element2++;

}
else

Voltage2_average = (Voltage2_average+(Voltage2 >> 6))/2;
}
if (Voltage2_average > orderedVoltage)

Overflow = 1; // Overflow Flag is set when setpoint is reached
if ((Voltage2_average < orderedVoltage - 3) && DutyCycle == 0)

Overflow = 0; // resets the Overflow Flag
NewADValue1 = 0;
NewADValue2 = 0;
}

56 Application Note U17733EE1V0AN00



Chapter 7 Program Listing
/*==================================================================================
** Function to detect if the motor runs into critical area
**
**================================================================================*/

void STALL_DETECT(void)
{         
if ((MotorSpeed < 44 &&!Stall))

// sets the speed from where on the stall detection becomes active
{

Current_Array[elementCurrent] = Voltage2_average;
elementCurrent++;
 // Current Array is filled with average values from different steps
if (elementCurrent > 1)
{

Current_Difference=(Current_Array[0] - Current_Array[1]);
if ((Current_Difference > 2) || (Current_Difference < -2))

Stall = 1; // Stall flag is set when there is a difference in
// the two values

elementCurrent = 0;
}
if (Stall && (Tracer == T3))

MotorSpeed = MotorSpeed + 2;
// slows the motor down to leave critical area

}
if (Stall &&!Tracer) // clears the flag, so the motor can react to

// upcoming changes
Stall = 0;

}

57Application Note U17733EE1V0AN00



Chapter 7 Program Listing
/*==================================================================================
** PROJECT = Stepper Motor
** MODULE = Demoprogram
** VERSION = V0.1
** DATE = 07.07.2005
** LAST CHANGE =
**
** =================================================================================
** Description: Little Demo program that starts if you turn on the board
**
** =================================================================================
** Environment: Device:         uPD78F0714
**              Assembler:      A78000         Version X.XXX
**             C-Compiler:     ICC78000       Version X.XXX
**             Linker:         XLINK          Version X.XXX
** =================================================================================
** By: NEC Electronics (Europe) GmbH
** Oberrather Strasse 4
** D-40472 Duesseldorf
**
**
** ===============================================================================*/

#include <io78f0714.h>
#include <intrinsics.h>
#include <migration.h>
#include “variables.h”

#define STAND           0x00
#define LED1            P70
#define LED2            P71
#define LED3            P72
#define Degr90          100
#define Degr180         200
#define SlowMotorSpeed  19999
#define on              1
58 Application Note U17733EE1V0AN00



Chapter 7 Program Listing
void DEMO(void);

extern void RTP_START(void);

/*==================================================================================
** Little demo-program that lets the steppermotor turn 270 degrees in fast continues
** and 90 in slow single step mode
**================================================================================*/

void DEMO(void)
{
FullStep = 1;
if (Position == 0) // sets the start position
{

if (StartCondition && MotorStand)
{

MotorSpeed = StartSpeed;// sets the motorspeed to the user defined 
startspeed
RTP_START(); // starts the motor
MotorStand = 0;
StartCondition = 0;
LED1 = on;

}
}
if (Position == Degr90) // motorposition = 90 degrees from startposition
{

DemoSlowMode = 1;    // sets DemoSlowMode flag, to manipulate the PWM signal
DutyCycle = 100;
MotorSpeed = SlowMotorSpeed;  // sets the motorspeed to a very slow rotating speed

}
if (Position == Degr180) // when motor reaches 180 degrees it goes back to

// normal mode
{

DemoSlowMode = 0;
MotorSpeed = StartSpeed;

}
}

59Application Note U17733EE1V0AN00



Chapter 7 Program Listing
/*==================================================================================
** PROJECT = Stepper Motor
** MODULE = PIRegulator
** VERSION = V0.1
** DATE = 07.07.2005
** LAST CHANGE =
**
** =================================================================================
** Description: Closed loop regulation with an PIRegulator
**
** =================================================================================
** Environment: Device:         uPD78F0714
**              Assembler:      A78000         Version X.XXX
**              C-Compiler:     ICC78000       Version X.XXX
**              Linker:         XLINK          Version X.XXX
** =================================================================================
** By: NEC Electronics (Europe) GmbH
** Oberrather Strasse 4
** D-40472 Duesseldorf
**
**
** ===============================================================================*/

#include <io78f0714.h>
#include <intrinsics.h>
#include <migration.h>
#include “variables.h”

/*PI coefficients*/
#define KP(a) (((a) * 200)/100) // Kp value of the PI Regulator
#define KI(a) (((a) * 600)/1000) // Ki value of the PI Regulator

void PIRegulator(void);

/*==================================================================================
** PIRegulator
**
**================================================================================*/

void PIRegulator(void)
{
XD =- (orderedVoltage - Voltage2_average);

// calculate XD
Yp = KP(XD); // calculate Yp = XD * Kp;
Integrator = (Integrator + XD); // calculate Yi
Yi = KI(Integrator); // update integrator Y(n) = Y(n-1) + Ki*XD(n)*T
Y = ((Yp + Yi)*254)/1024; // scale to PWM CYCLE

if (Y > Y_max) // limit Y
Y = Y_max;

else
{

if (Y < Y_min)
Y = Y_min;

}

DutyCycle = Y;                   // DutyCycle gets new evaluated value
}

60 Application Note U17733EE1V0AN00



Chapter 7 Program Listing
/*==================================================================================
** PROJECT = Stepper Motor
** MODULE = PWM Starting Ramp
** VERSION = V0.1
** DATE = 30.03.2005
** LAST CHANGE =
**
** =================================================================================
** Description: Limits the switch on current
**
** =================================================================================
** Environment: Device:         uPD78F0714
**              Assembler:      A78000         Version X.XXX
**              C-Compiler:     ICC78000       Version X.XXX
**              Linker:         XLINK          Version X.XXX
** =================================================================================
** By: NEC Electronics (Europe) GmbH
** Oberrather Strasse 4
** D-40472 Duesseldorf
**
** ===============================================================================*/

#include <io78f0714.h>
#include <intrinsics.h>
#include <migration.h>
#include “variables.h”

extern void AVERAGE(void);
void PWM_START(void);

/*==================================================================================
** PWM Starting Ramp
** function for limiting the “switch on current” of the motor
**================================================================================*/

void PWM_START(void)
{         
if (MainCount >= 10)

MainCount = 0;
MainCount++;
AVERAGE();
Voltage_array[element]=Voltage2_average;

// Array is used and the two values are compared,
// to make sure that you aren't

element++; // in the rising time of the curve
if (element > 1) // if motor is in static mode, current is regulated
{

element = 0;
Voltage_Difference=Voltage_array[0]-Voltage_array[1];

}
if (!Voltage_Difference && MainCount == 10)
{

DutyStart = DutyStart - 1;
DutyCycle = DutyStart;

}
else

DutyCycle = DutyStart;
}

61Application Note U17733EE1V0AN00



Chapter 7 Program Listing
/*==================================================================================
** PROJECT = Stepper Motor
** MODULE = SpeedRamp
** VERSION = V0.1
** DATE = 07.07.2005
** LAST CHANGE =
**
** ===============================================================================*/

/*==================================================================================
** Ramp functions to lower and rise motor speed for direction change or start, stop
**
**================================================================================*/

void RAMP_DOWN(void)
{
if (MainCount>1700)

MainCount = 0;
if (Direction_Ramp) // fast slowdown ramp for the direction change mode
{

if (MainCount == 15) // MainCount value determines static behaviour to change
{   // the upward gradient change value; one Maincount ~

DutyCycle = 29;
MainCount = 0;
MotorSpeed = (MotorSpeed + 1);

}
}
if (!Direction_Ramp && MainCount == 1700)
{                     // mode to slow down motor by pressing the tracers on the board

MainCount = 0;
MotorSpeed = MotorSpeed + 1;

}
if (MotorSpeed > Speed_min) // limits speed to user determined values

MotorSpeed = Speed_min;
else

MainCount++;
}

62 Application Note U17733EE1V0AN00



Chapter 7 Program Listing
void RAMP_UP(void)
{
if (MainCount>1700)
MainCount = 0;
if (Direction_Ramp) // fast speed-up ramp for the direction change mode
{

if (MainCount == 15)
{

DutyCycle = 29;
MainCount = 0;
MotorSpeed = (MotorSpeed - 1);

}
}
if (!Direction_Ramp && MainCount == 1700 &&!Stall)
{ // mode to speed up motor by pressing the tracers on the board

MainCount = 0;
MotorSpeed = MotorSpeed - 1;

}
if (MotorSpeed < 110) // automatic shift into HalfStep to reach higher motor speed
{

FullStep = 0;
LED3 = 1;

}
if (MotorSpeed <= Speed_max)// limits motor speed

MotorSpeed = Speed_max;
else

MainCount++;
}

63Application Note U17733EE1V0AN00



Chapter 7 Program Listing
/*==================================================================================
** PROJECT = Stepper Motor
** MODULE = TM00, TM50, RTP Initialisation and driving application
** VERSION = V0.1
** DATE = 30.03.2005
** LAST CHANGE =
**
** ===============================================================================*/

/*==================================================================================
** ISR of TM50 Timer
**
**================================================================================*/

#pragma vector = INTTM50_vect // 8-bit Timer/event counters 50 ISR
#pragma bank = 2 // Register Bank 2
__interrupt void Timer50(void) // Interrupt
{
if (MotorStand || DemoSlowMode) // sets count clock to 5 MHz, you can set different

// clocks for different modes
TCL50 = 0x03; // DemoSlowMode

if (!MotorStand && Demo && (!DemoSlowMode && Step == 1))
// count clock = 5 MHz for TM 50

TCL50 = 0x03; // Demo Mode normal speed
if (!MotorStand &&!Demo) // count clock = 5 MHz for TM 50

TCL50 = 0x03; // Normal working phase
CR50 = DutyCycle; // CR50 as compare register with compare value of

// duty cycle
}

/*==================================================================================
** ISR of TM00 Timer
**
**================================================================================*/

#pragma vector = INTTM00_vect // 16-bit Timer00 ISR
#pragma bank = 2 // Register Bank 2
__interrupt void Timer00(void) // Interrupt
{
if (FullStep)

CR00 = MotorSpeed; // sets frequency for the FullStep mode
if (!FullStep)

CR00 = MotorSpeed / 2; // doubles the frequency for the HalfStep mode so
// no step loss occurs

if (!Direction) // Direction flag shows rotating direction of the motor
{

if (Position >= Degr360)
Position = 0;
64 Application Note U17733EE1V0AN00



Chapter 7 Program Listing
if (!RightRotation &&!Continues)
// different patterns must be used if motor
// changes direction 

{ // in the continues mode or single step mode
switch (Step) // RightRotation flag show if a direction change

// has occurred
{
case 1: Step = 7;
break;
case 2: Step = 6;
break;
case 3: Step = 5;
break;
case 4: Step = 4;
break;
case 5: Step = 3;
break;
case 6: Step = 2;
break;
case 7: Step = 1;
break;
case 8: Step = 8;
break;
}
RightRotation = 1;

}
if (!SingleStep && Step > 8)

Step = 1;
if (!RightRotation && Continues)
{

switch (Step)
{
case 1: Step = 8;
break;
case 2: Step = 7;
break;
case 3: Step = 6;
break;
case 4: Step = 5;
break;
case 5: Step = 4;
break;
case 6: Step = 3;
break;
case 7: Step = 2;
break;
case 8: Step = 1
break;
}
RightRotation = 1;

}

65Application Note U17733EE1V0AN00



Chapter 7 Program Listing
switch (Step)
{
case 1:

STALL_DETECT();
// Important to call this function only once, to get right
// voltage values

if (!MotorStand &&!FullStep)
            // in HalfStep mode, Step and Position are increased every

// runtrough by one
{

Step++;
Position++;

}
if (!MotorStand && FullStep)

// in FullStep mode, Step and Position are increased every
// runtrough by two

{
Step = Step + 2;
Position = Position + 2;

}
RTBL00 = 0x09;

// suited value is written to RTBL00 register and transferred
// to ReatTimePort

break;
case 2:

if (!MotorStand)
{
Step++;
Position++;
}
RTBL00 = 0x0D;
break;

case 3:
if (!MotorStand &&!FullStep)
{
Step++;
Position++;
}
if (!MotorStand && FullStep)
{
Step = Step + 2;
Position = Position + 2;
}
RTBL00 = 0x0C;
break;

case 4:
if (!MotorStand)
{
Step++;
Position++;
}
RTBL00 = 0x0E;
break;
66 Application Note U17733EE1V0AN00



Chapter 7 Program Listing
case 5:
if (!MotorStand &&!FullStep)
{
Step++;
Position++;
}
if (!MotorStand && FullStep)
{
Step = Step + 2;
Position = Position + 2;
}
RTBL00 = 0x06;
break;

case 6:
if (!MotorStand)
{
Step++;
Position++;
}
RTBL00 = 0x07;
break;

case 7:
if (!MotorStand &&!FullStep)
{
Step++;
Position++;
}
if (!MotorStand && FullStep)
{
Step = Step + 2;
Position = Position + 2;
}
RTBL00 = 0x03;
break;

case 8:
if (!MotorStand)
{
Step++;
Position++;
}
RTBL00 = 0x0B;
break;

}
}

67Application Note U17733EE1V0AN00



Chapter 7 Program Listing
else
{

if (Position <= 0)
Position = 400;

if (RightRotation &&!Continues)
{

switch (Step)
{
case 1: Step = 7;

break;
case 2: Step = 6;

break;
case 3: Step = 5;

break;
case 4: Step = 4;

break;
case 5: Step = 3;

break;
case 6: Step = 2;

break;
case 7: Step = 1;

break;
case 8: Step = 8;

break;
}
RightRotation = 0;

}
if (!SingleStep && Step > 8)

Step = 1;
if (RightRotation && Continues)
{

switch (Step)
{
case 1: Step = 8;

break;
case 2: Step = 7;

break;
case 3: Step = 6;

break;
case 4: Step = 5;

break;
case 5: Step = 4;

break;
case 6: Step = 3;

break;
case 7: Step = 2;

break;
case 8: Step = 1;

break;
}
RightRotation = 0;

}

68 Application Note U17733EE1V0AN00



Chapter 7 Program Listing
switch (Step)
{
case 1

STALL_DETECT(); // Important to call this function only
// once, to get right voltage values

if (!MotorStand &&!FullStep) // in HalfStep mode, Step is increased,
// Position decreased every runtrough by one

{
Step++;
Position--;

}
if (!MotorStand && FullStep) // in HalfStep mode, Step is increased,

// Position decreased every runtrough by two
{

Step = Step + 2;
Position = Position - 2;

}
RTBL00 = 0x03;
break;

case 2: 
 if (!MotorStand)
{

Step++;
Position--;

}
RTBL00 = 0x07;
break;

case 3:
if (!MotorStand &&!FullStep)
{

Step++;
Position--;

}
if (!MotorStand && FullStep)
{

Step = Step + 2;
Position = Position - 2;

}
RTBL00 = 0x06;
break;

case 4:   
if (!MotorStand)
{

Step++;
Position--;

}
RTBL00 = 0x0E;
break;
69Application Note U17733EE1V0AN00



Chapter 7 Program Listing
case 5:    
if (!MotorStand &&!FullStep)
{

Step++;
Position--;

}
if (!MotorStand && FullStep)
{

Step = Step + 2;
Position = Position - 2;

}
RTBL00 = 0x0C;
break;

case 6:   
if (!MotorStand)
{

Step++;
Position--;

}
RTBL00 = 0x0D;
break;

case 7:   
if (!MotorStand &&!FullStep)
{

Step++;
Position--;

}
if (!MotorStand && FullStep)
{

Step = Step + 2;
Position = Position - 2;

}
RTBL00 = 0x09;
break;

case 8:   
if (!MotorStand)
{

Step++;
Position--;

}
RTBL00 = 0x0B;
break;
}

}
}

70 Application Note U17733EE1V0AN00



Chapter 7 Program Listing
/*==================================================================================
** Definition of TM50
** Interval Timer for PWM Modulation
**================================================================================*/

void TM50_INIT(void)
{
TCE50 = 0; // stops TM50
TCL50 = 0x03; // count clock = 5 MHz for TM 50
CR50  = DutyStart; // CR50 as compare register with compare value = DutyStart 80
TMC50 = 0x40; // inversion disabled, F/F no change,

// Timer output reset ->F/F set to zero & output disabled
MK1L_bit.no7 = 0; // Enable ISR mask Interrupt
}

void TM50_START(void)
{
CR50  = DutyStart; // CR50 as compare register with compare value = DutyStart
TCE50 = 1; // starts TM51, if the value TM51 and CR51 match, INTTM51 is

// generated
}

void TM50_STOP(void)
{
TCE50 = 0; // stops TM50
}

/
*===================================================================================
** Definition of TM00
** Interval Timer for Motor signals
**================================================================================*/

void TM00_INIT(void)
{
TMC00 = 0x00; // stops TM00
MotorSpeed  = StartSpeed;
CRC00  = 0x00;
PRM00  = 0x02; // Prescaler Port register, count clock is set to 78.125 kHz
CR01 = 0x00; // sets unused CompareRegister CR01 to defined values
CR00 = StartSpeed; // sets user defined startspeed
MK1L_bit.no2 = 0; // Enable ISR mask Interrupt
}

void TM00_START(void)
{
MotorSpeed = StartSpeed;
TMC00 = 0x0C; // starts Timer, generates interrupt on match between TM00 and CR00
}

void TM00_STOP(void)
{
TMC00 = 0x00; // stops TM00
}

71Application Note U17733EE1V0AN00



Chapter 7 Program Listing
/*==================================================================================
** Definition of RTPs
**
**================================================================================*/

void RTP_INIT(void)
{
PM4       = 0xF0; // set ports P40 - P43 as output ports
DCCTL00   = 0xE0; // RTP output, PWM enabled, Inversion Enabled
RTPM00    = 0x0F; // set RTPM00 - RTPM03 as real time output ports
RTBL00    = 0x0F;
}

void RTP_START(void)
{
TM50_START();
TM00_START();
TMH0_START();
RTPC00    = 0x80; // enables operation, operation mode 4bits * 2channels
INV00     = 1; // enables inversion to fit the PWM into the motor driving curve
}

void RTP_STOP(void)
{
RTPC00    = 0x00; // disables operation, operation mode 4bits * 2channels
INV00     = 0; // disables inversion
TMH0_STOP();
TM00_STOP();
TM50_STOP();
}

72 Application Note U17733EE1V0AN00



Chapter 7 Program Listing
/*==================================================================================
** PROJECT = Stepper Motor
** MODULE = Main
** VERSION = V0.1
** DATE = 07.07.2005
** LAST CHANGE =
**
** ===============================================================================*/

#pragma language = extended
/* =================================================================================
** include
** ===============================================================================*/

#include <io78f0714.h>
#include <intrinsics.h>
#include <migration.h>
#include “variables.h”

#pragma constseg=OPTBYTE
__root const char option = 0x00;
#pragma constseg=default

#define TRUE  1
#define FALSE 0
#define LED1  P70
#define LED2  P71
#define LED3  P72
#define STAND 0x00
#define T1    1
#define T1L   10
#define T2    2
#define T2L   20
#define T3    3
#define T3L   30
#define T4    4
#define T4L   40
#define T12   12
#define T34   34
73Application Note U17733EE1V0AN00



Chapter 7 Program Listing
/*==================================================================================
** MAIN
**
**================================================================================*/

void main(void)
{

_DI(); // Disable all interrupts

/* uPD init */
vHardwareInit(); // initialise the hardware

TM50_INIT();
TM51_INIT();
TMH0_INIT();
TM00_INIT();
AD_INIT();
RTP_INIT();

_EI();
// Enable all Interrupts
TM51_START(); // starts TM51 in charge of tracer detection
while (1)
{
if (Demo) // starts Demo program
DEMO();
Key_Detect();
if (NewADValue1 || NewADValue2)

AVERAGE();
if ((Overflow) && (!SingleStep) &&(!StartCondition ||!MotorStand) && (Step == 7) 
&&!DemoSlowMode)

PIRegulator(),
//LED3 ^= 1; // Test LED

} //End of Endless While Loop
}

74 Application Note U17733EE1V0AN00



Chapter 7 Program Listing
/*==================================================================================
** PROJECT = Stepper Motor
** MODULE = 8-bit TMH0 Initialisation
** VERSION = V0.1
** DATE = 07.07.2005
** LAST CHANGE =
**
** =================================================================================
** Description: Determines AD conversion time
**
** =================================================================================
** Environment: Device:         uPD78F0714
** Assembler:      A78000         Version X.XXX
** C-Compiler:     ICC78000       Version X.XXX
** Linker:         XLINK          Version X.XXX
** =================================================================================
** By: NEC Electronics (Europe) GmbH
** Oberrather Strasse 4
** D-40472 Duesseldorf
**
** ===============================================================================*/

/*==================================================================================
** ISR of TMH0 Timer
** Interval Timer
**================================================================================*/

#pragma vector = INTTMH0_vect // 8-bit Timer/event counters 51 ISR
#pragma bank = 3 // Register Bank 3
__interrupt void TimerH0(void) // Interrupt
{
if (FullStep)

CMP00 = (MotorSpeed / 4); // sets the frequency for the TMH0, how often the
// AD converter is active

else
CMP00 = (MotorSpeed / 8);

AD_START();
//LED3 ^= 1; // Test LED
}

/*==================================================================================
** Definition of TMH0 Timer
** Interval Timer
**================================================================================*/
void TMH0_INIT(void)
{
TMHMD0 = 0x30; // set CountsClock to 78.125 kHz
CMP00 = (StartSpeed / 4); // sets CMP00 as compare register with compare

// value = StartSpeed / 4
}

75Application Note U17733EE1V0AN00



Chapter 7 Program Listing
/*==================================================================================
** Start of TM51 Timer
** Interval Timer
**================================================================================*/
void TMH0_START(void)
{
CMP00 = 0x00;
MK1H_bit.no1 = 0; // enables maskable Interrupt
TMHE0 = 1; // starts TMH0, if the value CMP00 and TMH0 match, INTTMH0 is

// generated
}

/*==================================================================================
** Stop of TM51 Timer
** Interval Timer
**================================================================================*/
void TMH0_STOP(void)
{
TMHE0 = 0; // stops TMH0
}

76 Application Note U17733EE1V0AN00



Although NEC has taken all possible steps
to ensure that the documentation supplied
to our customers is complete, bug free
and up-to-date, we readily accept that
errors may occur.  Despite all the care and
precautions we've taken, you may
encounter problems in the documentation.
Please complete this form whenever
you'd like to report errors or suggest
improvements to us.

Hong Kong, Philippines, Oceania
NEC Electronics Hong Kong Ltd.
Fax:  +852-2886-9022/9044

Korea
NEC Electronics Hong Kong Ltd.
Seoul Branch
Fax:  02-528-4411

Taiwan
NEC Electronics Taiwan Ltd.
Fax:  02-2719-5951

Address

North America
NEC Electronics America Inc.
Corporate Communications Dept.
Fax: 1-800-729-9288

1-408-588-6130

Europe
NEC Electronics (Europe) GmbH
Market Communication Dept.
Fax:  +49(0)-211-6503-1344

 

Asian Nations except Philippines
NEC Electronics Singapore Pte. Ltd.
Fax:  +65-6250-3583

Japan
NEC Semiconductor Technical Hotline

I would like to report the following error/make the following suggestion:

Document title:

Document number: Page number:

Thank you for your kind support.

If possible, please fax the referenced page or drawing.

Excellent Good Acceptable PoorDocument Rating

Clarity

Technical Accuracy

Organization

CS  99.1

Name

Company

From:

Tel. FAX

Facsimile  Message

Fax:  +81- 44-435-9608



[MEMO]


	COVER
	Table of Contents
	Chapter 1 Overview
	1.1 Abstract
	1.2 Introduction
	1.3 Overview of µPD78F0714
	Table 1-1: Functional Outline


	Chapter 2 Stepper Motor Basics
	2.1 Stepper Motor Basics
	Figure 2-1: Hybrid Stepper Motor
	Figure 2-2: 2 Phase Stepper Motor with one pole pair permanent magnet
	Figure 2-3: Energizing States Full-Step
	Figure 2-4: Energizing States Half-Step

	2.2 Stepper Motor Control Requirements
	Figure 2-5: Unipolar Stepper Motor drive
	Figure 2-6: General Motor Control Design


	Chapter 3 System Design Concept
	3.1 System Concept
	Figure 3-1: Principal Block Diagram of the System Configuration

	3.2 System Configuration
	Figure 3-2: System Configuration with the Peripherals of the µPD78F0714
	Figure 3-3: System Topology and Relationship between the Control Software and the Hardware of the System


	Chapter 4 Hardware Configuration
	4.1 µPD78F0714 Configuration
	4.2 Peripherals I/O Assignments
	Table 4-1: µPD78F0714 Peripherals I/O Assignments (1/2)

	4.3 8-bit Timer H0 Function
	Figure 4-1: Timing of TMH0 Interval Timer Operation

	4.4 8-bit Timer 51 Function
	Figure 4-2: Timing of TM51 Interval Timer Operation

	4.5 Real Time Port 0 Function
	Figure 4-3: Block Diagram of Real-Time Output Port RTP0
	Table 4-2: Relationship Between Settings of Each Bit of Control Register and Real-Time Output
	Figure 4-4: Real-Time Output Port Operation Timing Example

	4.6 16-bit Up/Down Counter Function
	Figure 4-5: Timing for Up/Down Counter in Mode 3

	4.7 Motor Specification
	4.8 Encoder Specification
	Figure 4-6: General Signal Process of the Encoder

	4.9 Stepper Motor Driving Circuit and User Interface Circuit
	Figure 4-7: Motor Driver and User Interface for Stepper Motor Control


	Chapter 5 Software Process Description
	Figure 5-1: Principal Data Flow Diagram
	5.1 Demo Mode
	5.2 Normal Mode
	Table 5-1: Switch Operation

	5.3 Initialization
	Figure 5-2: Initialization Process

	5.4 TM51 Interval Timer
	5.5 Key_Detect
	5.6 RTP Motor Signals
	Figure 5-3: Connection between TM00, TM50 and Motor Signals

	5.7 Current Measurement
	Figure 5-4: Connection between TM00, TMH0 and AD conversion

	5.8 Average
	5.9 PWM_Start
	5.10 Ramp
	5.11 Stall_Detect
	5.12 PI-Regulator

	Chapter 6 Software Flowcharts
	6.1 Concept and Main Flowchart
	Figure 6-1: Main Program Flowchart

	6.2 Peripherals Initialization
	Figure 6-2: Peripherals Initialization

	6.3 Main Concept
	Figure 6-3: Endless Loop Function Flow

	6.4 Demo Concept
	Figure 6-4: Demo Function Flow

	6.5 RTP Motor Signals Concept
	Figure 6-5: RTP_START Flowchart
	Figure 6-6: TM50_ISR Flowchart
	Figure 6-7: TM00_ISR Flowchart

	6.6 Current Measurement
	Figure 6-8: TMH0_ISR Flowchart
	Figure 6-9: AD_START Function Flowchart

	6.7 Average
	Figure 6-10: Average Function Flowchart

	6.8 PWM Start
	Figure 6-11: PWM_START Flowchart

	6.9 Ramp
	Figure 6-12: RAMP_UP Flowchart

	6.10 Stall Detect
	Figure 6-13: STALL_DETECT Flowchart

	6.11 PI-Regulator
	Figure 6-14: PI-Regulator Flowchart


	Chapter 7 Program Listing


