

永久磁石同期モータのセンサレスベクトル制御

Renesas Flexible Motor Control シリーズ用

要旨

本アプリケーションノートはルネサス製マイクロコントローラを使用し、永久磁石同期モータをセンサレスベクトル制御で駆動するサンプルプログラムについて説明することを目的としています。

本アプリケーションノート対象ソフトウェアはあくまで参考用途であり、弊社がこの動作を保証するものではありません。本アプリケーションノート対象ソフトウェアを使用する場合、適切な環境で十分な評価をしたうえで御使用ください。

目次

1.	はじめに	4
2.	用語集	6
3.	使用機材・使用ソフトウェア	7
3.1	使用ハードウェアの一覧	7
3.2	使用ソフトウェアの一覧	7
4.	ハードウェア環境構築方法	8
4.1	ハードウェア環境の概要	8
4.2	電源の準備	8
4.3	インバータの準備	9
4.4	RA シリーズ CPU ボードのセットアップ	9
4.5	キットの接続例	12
4.6	オンボードデバッガ	12
4.7	配線方法	13
5.	ソフトウェア環境構築方法	14
6.	運転方法	15
6.1	運転前の注意点	15
6.2	接続方法	15
6.3	サンプルプログラムの書き込み	19
6.3.	1 e² studio のインストール	19
6.3.2	2 プロジェクトのインポート	19
6.3.3	3 プロジェクトのビルド	23
6.3.4	4 PC とターゲットボードを USB ケーブルで接続	25
6.3.	5 ターゲットボードへの書き込み(ビルド済み)	26
6.4	RMW の導入方法	28
6.5	Map ファイルの登録更新	29
6.6	RMW の操作に使用する変数	30
6.7	モータ操作方法	32

6.8	モータ停止・遮断方法	34
7.	モータ制御アルゴリズム	35
7.1	概要	35
7.2	制御ブロック図	36
7.3	速度制御機能	37
7.4	電流制御機能	37
7.5	非干渉制御	38
7.6	センサレス機能	
7.7	弱め磁束制御	
7.8	電圧位相進み補償	46
7.9	電圧誤差補償	46
7.10		
8.	ハードウェア仕様	48
8.1	ユーザインタフェース	48
8.2	周辺機能	50
9.	ソフトウェア仕様・構成	51
9.1	ソフトウェア仕様	51
9.2	ソフトウェア全体構造	52
9.3	割り込みの説明	53
9.4	ファイル・フォルダー構成	54
9.5	アプリケーション層	57
9.5.1	機能	57
9.5.2	! コンフィグレーション情報	57
9.5.3	構造体・変数情報	58
9.5.4	・ マクロ定義	60
9.6	インタフェースモジュール	64
9.6.1	機能	64
9.6.2	! モジュール構成図	65
9.6.3	状態遷移	66
9.6.4	· 保護機能	67
9.6.5	5 API	68
9.6.6	構造体・変数情報	69
9.6.7	グロ定義・列挙体定義	71
9.7	速度制御モジュール	
9.7.1	機能	74
9.7.2	! モジュール構成図	74
9.7.3	始動方法	75
9.7.4		
9.7.5		
9.7.6		
9.8	電流制御モジュール	
9.8.1		
	と モジュール構成図	
	API	88

9.8.4 構造体・変数情報	
9.8.5 マクロ定義・列挙体定義	94
9.9 ドライバモジュール	96
9.9.1 機能	96
9.9.2 モジュール構成図	96
9.9.3 API	97
9.9.4 構造体・変数情報	98
9.9.5 マクロ定義・列挙体定義	103
9.10 角度/速度推定モジュール	105
9.10.1 機能	105
9.10.2 モジュール構成図	105
9.10.3 API	106
9.10.4 構造体・変数情報	
9.10.5 マクロ定義・列挙体定義	111
10 °= 1 t 0=0±	4.40
10. パラメータの設定	
10.1 概要	
10.2 インタフェースモジュールの設定パラメータの一覧	
10.3 速度制御モジュールの設定パラメータの一覧	
10.4 電流制御モジュールの設定パラメータの一覧	
10.5 ドライバモジュールの設定パラメータの一覧	
10.6 角度/速度推定モジュールの設定パラメータの一覧	
10.7 保護関連パラメータ	
10.8 PWM キャリア周波数の変更	
10.9 パルス変調方法の設定	
10.10 インバータパラメータ	
10.10.1デッドタイム	128
10.10.2電流検出ゲイン	128
10.10.3電圧検出ゲイン	128
10.10.4電圧誤差補償テーブル	129
10.11 モータパラメータ	130
10.12 電流制御パラメータ	132
10.13 速度制御パラメータ	132
10.14 電圧位相進み補償パラメータ	132
11 4 知フロ (フロチャ_ ト)	122
11. 制御フロー(フローチャート)	
11.1 メイン処理	
11.2 電流制御周期割り込み処理	
11.3 速度制御周期割り込み処理	
11.4 過電流検出割り込み処理	136
12. FAQ	137
12.1 こんなときは	
12.2 よくある質問	
12.2.1 RMW に表示される変数の値が異常となってしまう	

1. はじめに

本アプリケーションノートはルネサス製マイクロコントローラ(MCU)を使用し、永久磁石同期モータをベクトル制御で駆動するサンプルプログラムの使用方法について説明することを目的としています。サンプルプログラムはモータ制御用のキット(Renesas Flexible Motor Control シリーズ)と組み合わせることで、モータ制御を行うことができます。また、モータ制御開発支援ツール「Renesas Motor Workbench」に対応しておりMCUの内部データ確認や、モータ制御のユーザインタフェース(UI)として使用可能です。サンプルプログラムのMCU機能割り当てや、制御の割り込み負荷状況などを参照頂くことで、使用するMCUの選定やソフトウェア開発の参考としてご活用ください。

本サンプルプログラムは、QE for Motor に対応しております。ワークフローに従って操作するだけでモータ用ソフトウェアの開発ができますので、ご活用ください。

対象ソフトウェア

本アプリケーションノートの対象ソフトウェアを下記に示します。

- RA6T2_MCILV1_SPM_LESS_FOC_E2S_V121
- RA6T2_MCB2_MCILV1_SPM_LESS_FOC_E2S_V100
- RA6T3_MCILV1_SPM_LESS_FOC_E2S_V111
- · RA4T1 MCILV1 SPM LESS FOC E2S V111
- RA8T1_MCILV1_SPM_LESS_FOC_E2S_V111
- RA8T2_MCILV1_SPM_LESS_FOC_E2S_V101

参考資料

RA6T2 グループ ユーザーズマニュアル ハードウェア編 (R01UH0951)

RA6T3 グループ ユーザーズマニュアル ハードウェア編 (R01UH0998)

RA4T1 グループ ユーザーズマニュアル ハードウェア編 (R01UH0999)

RA8T1 グループ ユーザーズマニュアル ハードウェア編 (R01UH1016)

RA8T2 グループ ユーザーズマニュアル ハードウェア編 (R01UH1067)

RA Flexible Software Package Documentation (Release v6.2.0)

永久磁石同期モータのセンサレスベクトル制御(アルゴリズム編)(R01AN3786)

Renesas Motor Workbench ユーザーズマニュアル(R21UZ0004)

Renesas Motor Workbench クイックスタートガイド (R21QS0011)

MCK-RA6T2 ユーザーズマニュアル (R12UZ0091)

MCK-RA6T3 ユーザーズマニュアル (R12UZ0114)

MCK-RA4T1 ユーザーズマニュアル (R12UZ0115)

MCK-RA8T1 ユーザーズマニュアル (R12UZ0133)

MCK-RA8T2 ユーザーズマニュアル (R12UZ0172)

本アプリケーションノートを使用いただく際に、よく確認される内容について、対応する章を以下にまと めています。

表 1-1 確認したい内容と対応章の一覧

確認したい内容	対応する章
必要な機材を確認・選定する	3
配線を確認する	4.7
サンプルプログラムの開発環境を準備する	5
マイコンにサンプルプログラムを書き込む	6.3
PC にモータを運転するソフトウェアを導入する	6.4
サンプルプログラムを変更した後、RMW に変更点を反映する	6.5
モータを運転する	6.7
運転中のモータを停止する	6.8
モータ制御アルゴリズムを調べる	7
サンプルプログラムの構造を調べる	8
モータパラメータを確認、変更する	10.11
PWM キャリア周波数を変更する	10.8
制御パラメータを変更する	10.12, 10.13
よくある質問を確認する	12
トラブルが起きた場合の対応を確認したい	

2. 用語集

本書で、使用されている主な用語と、その説明を、以下に示します。

表 2-1 用語集

用語	説明
MC-COM	波形表示用の接続治具・ツールのことを示します。詳細は、以下の URL を参照ください。 https://www.renesas.com/design-resources/boards-kits/mc-com
RMW	Renesas Motor Workbench と呼ばれる、モータ制御に特化した PC 上で操作可能な GUI アプリケーションソフトウェアのこと。
QE for Motor	ワークフローに従って操作するだけでモータ用ソフトウェアの開発ができるモータ用ソフトウェア開発支援ツールです。詳細は、以下のURLを参照ください。 https://www.renesas.com/software-tool/qe-motor-development-assistance-tool-motor-applications
インバータ母線電圧	インバータ回路に入力される直流電圧のこと。直流中間電圧とも呼ばれる。
オープンループ	センサ信号などのフィードバックを用いること無く、制御を行う制御方式のこと。
センサレス	本書では、「磁極位置センサや速度センサがないこと」を示します。 位置センサや速度センサは、コスト面や耐環境性などに弱点を持ち、 センサを省略する事がメリットとされています。
電気角	モータに流れる出力電流の位相角度のこと。モータの極対数で割る と、機械角に換算できる。
機械角	モータ軸の回転角度のこと。軸が1分に1回転で 1rpm となる。

3. 使用機材・使用ソフトウェア

3.1 使用ハードウェアの一覧

本サンプルプログラムの評価に使用した機器の一覧を以下に示します。

表 3-1 ハードウェア開発環境

分類	使用製品
マイコン / CPU ボード型	RA6T2 (R7FA6T2BD3CFP) / MCB Ver.1 RTK0EMA270C00000BJ
名	RA6T2 (R7FA6T2BD3CFP) / MCB Ver.2 RTK0EMA270C00002BJ
	RA6T3 (R7FA6T3BB3CFM) / RTK0EMA330C00000BJ
	RA4T1 (R7FA4T1BB3CFM) / RTK0EMA430C00000BJ
	RA8T1 (R7FA8T1AHECBD) / RTK0EMA5K0C00000BJ
	RA8T2 (R7KA8T2LFLCAC) / RTK0EMA6L0C00000BJ
インバータボード / 型名	MCI-LV-1 インバータボード / RTK0EM0000B12020BJ
モータ	R42BLD30L3 (MOONS'社製)

3.2 使用ソフトウェアの一覧

本サンプルプログラムの評価で使用したソフトウェアと、そのバージョンを以下に示します。本サンプルプログラムは、弊社開発環境である e² studio の無償評価版の制限範囲でご利用いただけます。

表 3-2 ソフトウェア開発環境

e² studio バージョン	FSP バージョン	ツールチェーンバージョン
e ² studio : 2025-10	V6.2.0	GCC ARM Embedded :13.2.1.arm-13-7

4. ハードウェア環境構築方法

4.1 ハードウェア環境の概要

本サンプルプログラムを使用し、モータを動かすためのハードウェア環境について説明します。図 4-1 に、ハードウェア構成例を示します。電源(4.2)、インバータ(4.3)、CPU ボード(4.4)、オンボードデバッガ(4.6)について、詳細を次の項から説明します。

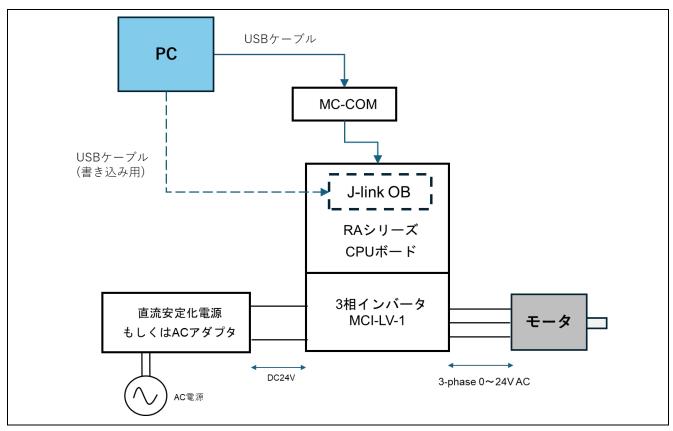


図 4-1 ハードウェア構成例

4.2 電源の準備

本サンプルプログラムでは、直流安定化電源、または AC アダプタ(24V,2.5A 以上の出力が可能なもの)を用いて、単相 AC100V から 3 相インバータ MCI-LV-1 に DC24V を供給しています。

インバータに供給する電圧は、使用するモータの誘起電圧や定格条件、最大負荷条件によって変わります。ユーザの実験環境や、使用する電源の制約や条件に応じて、電源の種類を適切に選定してください。なお、ここで紹介するインバータは、出力電流が最大 10A となっています。

4.3 インバータの準備

インバータを準備される際に、以下の情報を確認してください。本サンプルプログラムでは、MCI-LV-1に合わせた設定となっており、インバータを変更する場合には変更が必要です。

センサレスベクトル制御の制御性能は、電流センサから入力される電流検出値を用いて磁極位置を推定するため、センサ自体の性能や、センサから出力される信号の経路となる回路のばらつき・精度に大きく影響されます。インバータの選定や設計には十分なご検討をお願い致します。

定格容量(VA)

デッドタイム値(μs)

電流センサの種類、特性、信号仕様

電流センサのゲイン値及びオフセット値、電流と電圧の関係性や信号の直線性の特性データなど 電圧センサのゲイン値及びオフセット値、信号の直線性の特性データなど

4.4 RA シリーズ CPU ボードのセットアップ

RA シリーズの CPU ボードの装着方法について説明します。MCI-LV-1 の基板に、CPU ボードを直接接続することができます。

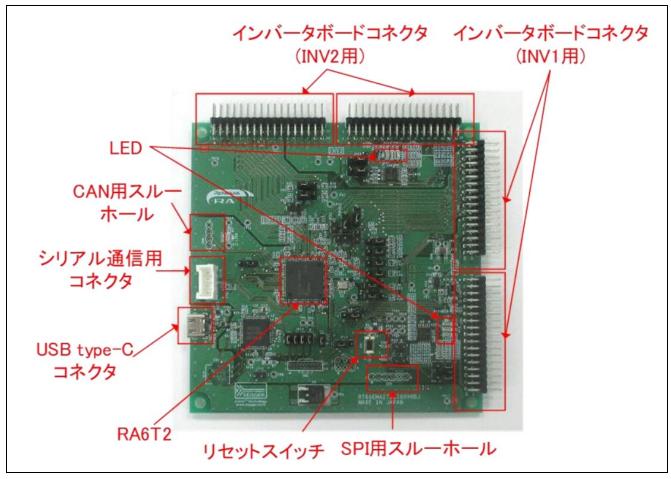


図 4-2 RA6T2 CPU ボードとインタフェース

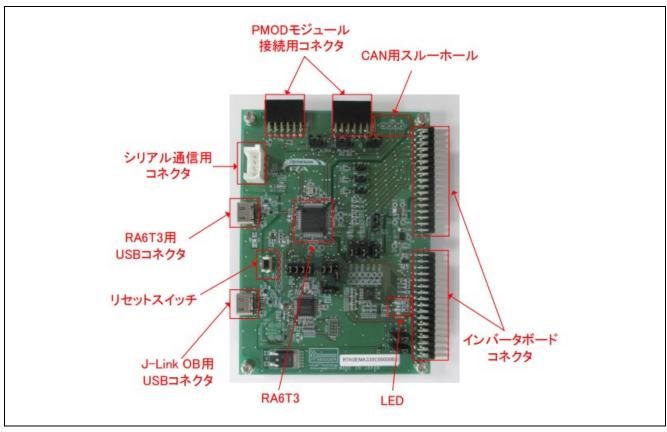


図 4-3 RA6T3 CPU ボードとインタフェース

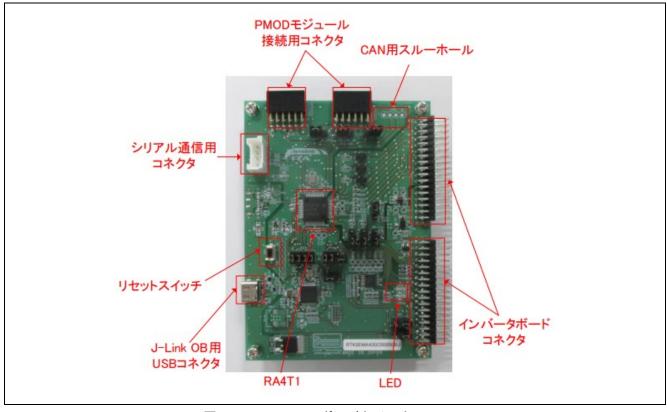


図 4-4 RA4T1 CPU ボードとインタフェース

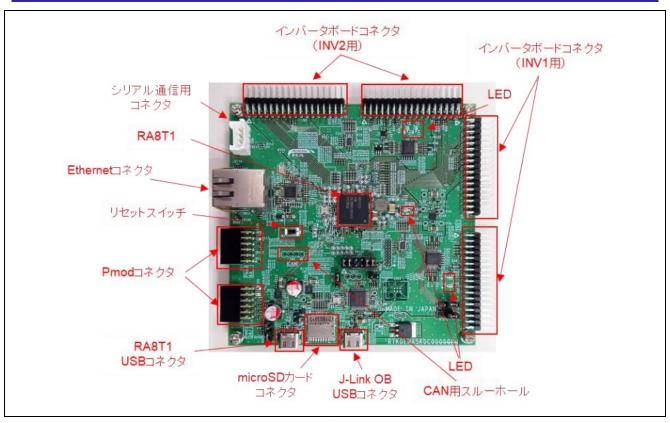


図 4-5 RA8T1 CPU ボードとインタフェース

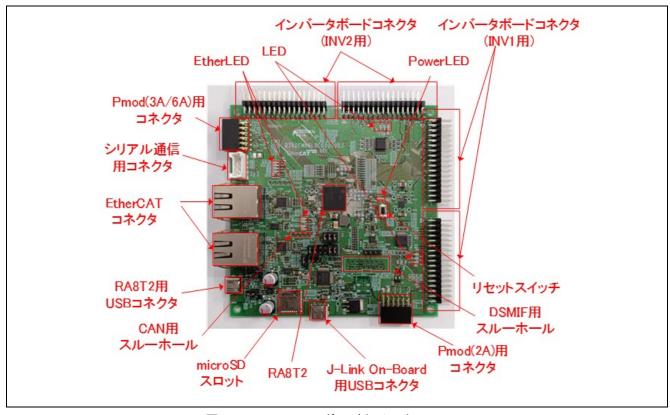


図 4-6 RA8T2 CPU ボードとインタフェース

4.5 キットの接続例

CPU ボードを MCI-LV-1 インバータボードおよび通信ボード(MC-COM、型名: RTK0EMXC90Z00000BJ) と組み合わせて使用する際の接続例を図 4-7 に示します。

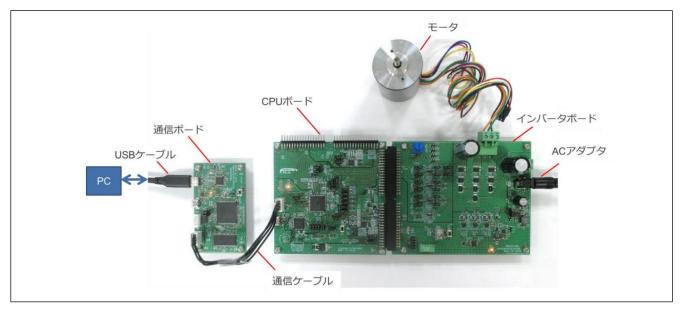


図 4-7 キットの接続例

4.6 オンボードデバッガ

RA シリーズ CPU ボードには、オンボードデバッガ回路 J-Link OB(以下、JLOB)が搭載されており、プログラムの書き換えは JLOB を用いて行います。プログラムを書き換える場合、CPU ボードと PC を USBケーブルで接続してください。

4.7 配線方法

電源、インバータ、モータの配線方法について説明します。ご使用する装置によって、端子の名称は異なりますので、必ず装置の取扱説明書を参照して内容・仕様を確認の上、配線作業を行ってください。

図 4-8 に電源~インバータ間の配線例を示します。ここでは、直流安定化電源の出力端子をインバータの P 端子・GND 端子に接続します。極性の間違いにご注意ください。図 4-9 に、インバータ~モータ間の配線例を示します。

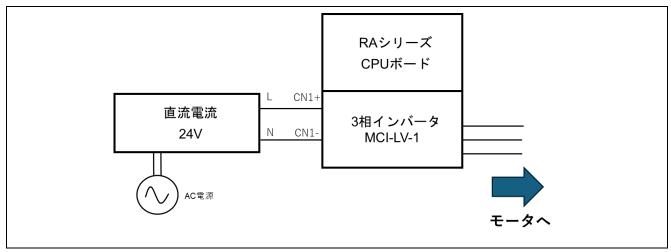


図 4-8 電源~インバータ間の配線

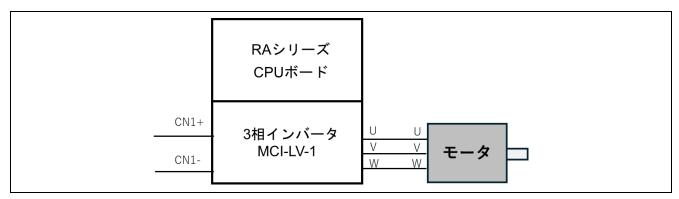


図 4-9 インバータ~モータ間の配線

5. ソフトウェア環境構築方法

本アプリケーションノートのサンプルプログラム開発には開発環境として RA FSP に対応した e^2 studio を用います。インストール環境は以下からダウンロードしてください。

https://www.renesas.com/ja/software-tool/flexible-software-package-fsp

インストール手順は、 e^2 studio 付属の PDF マニュアルを参照してください。 詳細な使用方法は上記 URL でダウンロードが可能な PDF マニュアルやビデオを参照してください。

サンプルプログラムや作成したプログラムのターゲットハードウェアへの書き込み方法は「6.3 サンプルプログラムの書き込み」を参照してください。

6. 運転方法

運転を行うための手順を示します。「6.1 運転前の注意点」をご確認いただき、「6.2 接続方法」以降の操作を順番に行ってください。

6.1 運転前の注意点

モータを動かすにあたって、以下の点にご注意ください。誤った使い方により、感電や機器の故障などを 引き起こす場合があります。

トレース実行・ブレークポイントを設定した条件でモータ制御しないでください。不意の停止により、インバータが異常な動作をする場合があります。RMW を使用して、安全機能が正常に動作する条件下で、デバッグを行ってください。

MC-COM は信号が絶縁されているため、運転中も安全に使用できます。類似品を使用する場合、PC とインバータの GND が共通となる場合があり、GND を介して感電事故の恐れがあります。

緊急停止が可能なように、実験設備を構築してください。

インバータが停止しても、PM モータが回転している場合、PM モータは誘起電圧を発生させるため、 UVW 三相配線に電圧がかかります。露出した導電部に接触すると、感電の恐れがあります。

6.2 接続方法

書込み時と運転操作時で CPU ボードと PC の間の接続方法が異なるため、ご注意ください。以下に①書込み時と②運転操作時についての配線方法を説明します。

① 書込み時

CPU ボードにオンボードデバッガ回路 JLOB が搭載されており、直接 USB ケーブルを接続することで MCU へのプログラム書き込みが可能です。

書き込んだ後は速やかに USB ケーブルを外してください。

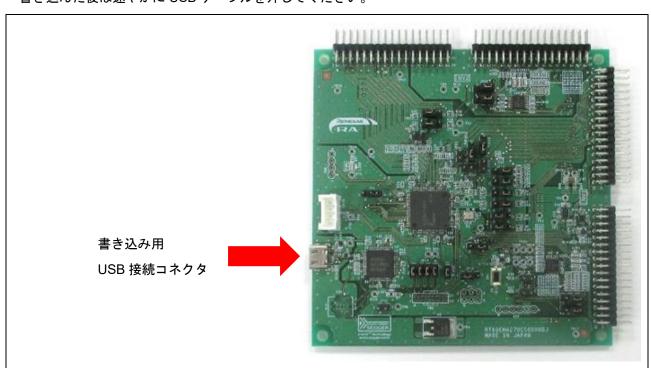


図 6-1 RA6T2 CPU ボード 書き込み時 USB ケーブル接続

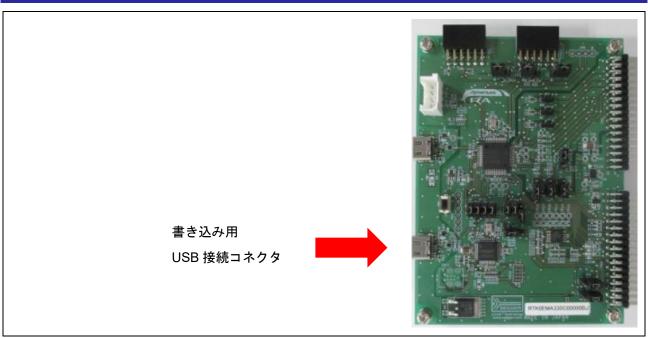


図 6-2 RA6T3 CPU ボード 書き込み時 USB ケーブル接続

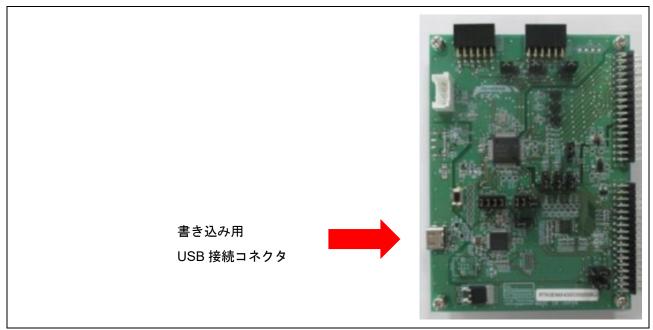


図 6-3 RA4T1 CPU ボード 書き込み時 USB ケーブル接続

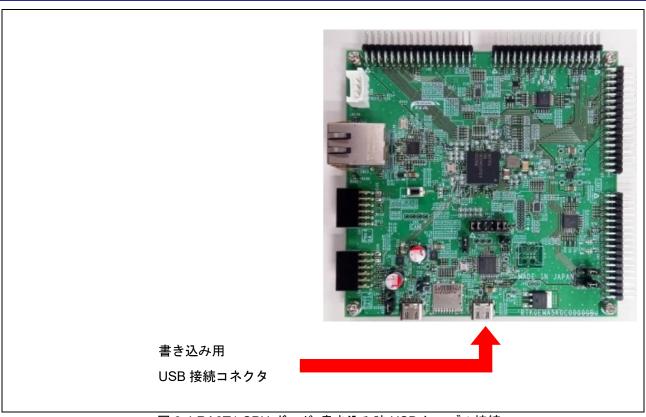


図 6-4 RA8T1 CPU ボード 書き込み時 USB ケーブル接続

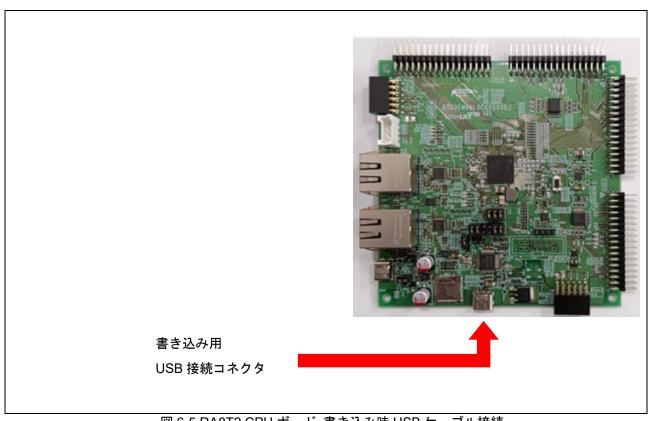


図 6-5 RA8T2 CPU ボード 書き込み時 USB ケーブル接続

② 運転操作時

図 6-6 のように MC-COM(RTK0EMXC90Z00000BJ)を用いて、CPU ボードに接続します。PC とは UART 経由で接続された状態となり、PC からは COM ポートを用いて操作することができます。RMW を用いて 運転操作を行うことができます。MC-COM はインバータと PC の間を電気的に絶縁しますので、安全にご 利用いただけます。

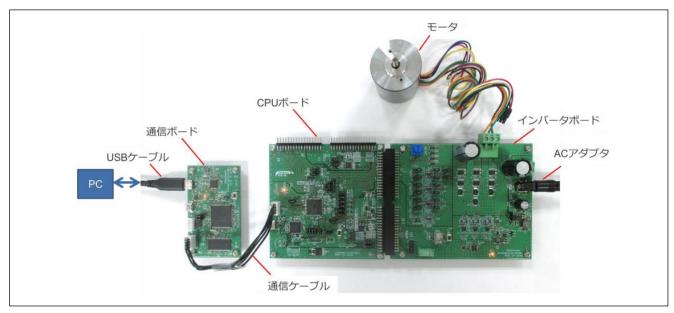


図 6-6 運転操作時の接続例

③ ジャンパの確認

以下のジャンパの接続確認をしてください。他のサンプルプログラムで評価した後は、ジャンパの状態が以下と異なっている場合があります。

・インバータボード

ジャンパ番号	接続
JP8	1-2 接続
JP11	1-2 接続

6.3 サンプルプログラムの書き込み

弊社 WEB サイトからダウンロードしたサンプルプログラムを、 e^2 studio を使用して CPU ボードの MCU に書き込んでください。

6.3.1 e² studio のインストール

FSP 対応 e² studio は弊社 WEB サイト(以下の URL)よりダウンロードし、インストールしてください。 https://www.renesas.com/ja/software-tool/flexible-software-package-fsp

6.3.2 プロジェクトのインポート

1.〈ファイル〉タブを左クリックします。

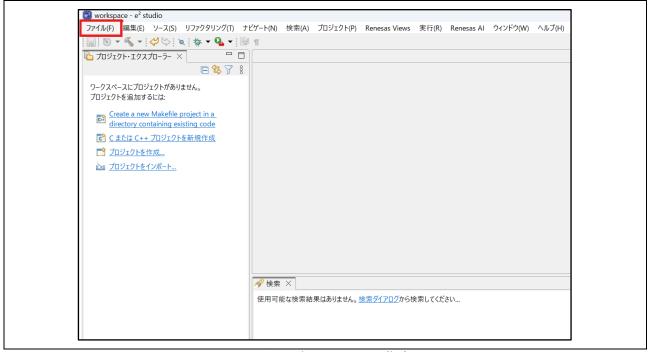


図 6-7 ターゲットファイル指定(1)

2. プルダウンメニューが表示されるので〈インポート〉を選択して左クリックします。

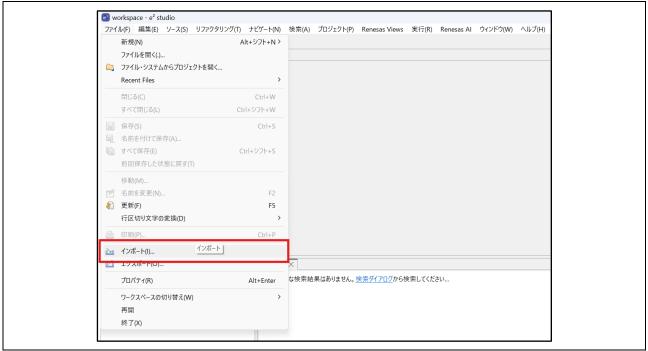


図 6-8 ターゲットファイル指定(2)

3. インポートウィンドウが開くので、〈既存プロジェクトをワークスペースへ〉を選択し、左クリックします。

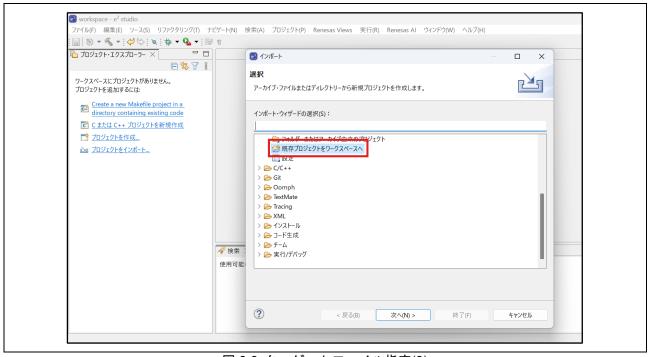


図 6-9 ターゲットファイル指定(3)

4. プロジェクトインポート画面になるので、〈参照〉を左クリックします。

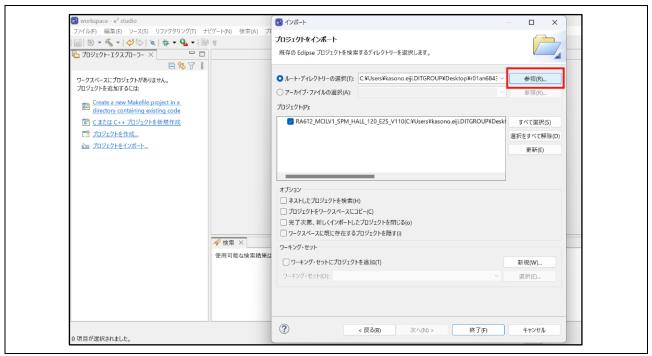
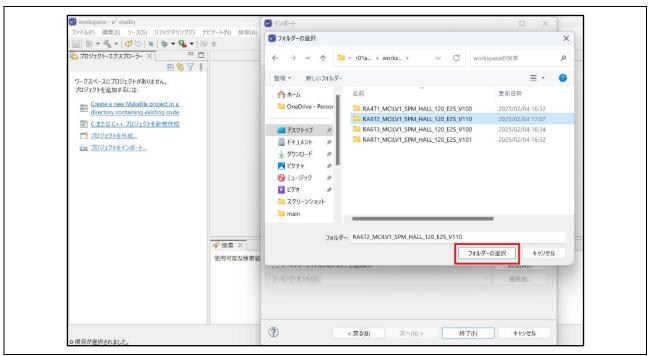



図 6-10 ターゲットファイル指定(4)

5. フォルダー選択画面が開くので、ターゲットのフォルダーを選択し、〈フォルダーの選択〉を左クリックします。

6. 正しくターゲットプロジェクトが読み込まれると図 6-12 のようになるので、確認して〈終了〉を左クリックします。

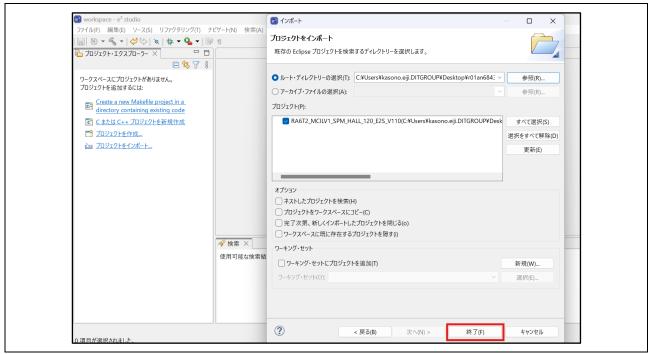


図 6-12 ターゲットファイル指定(6)

7. e^2 studio 上にターゲットプロジェクトがインポートされたことを確認します。

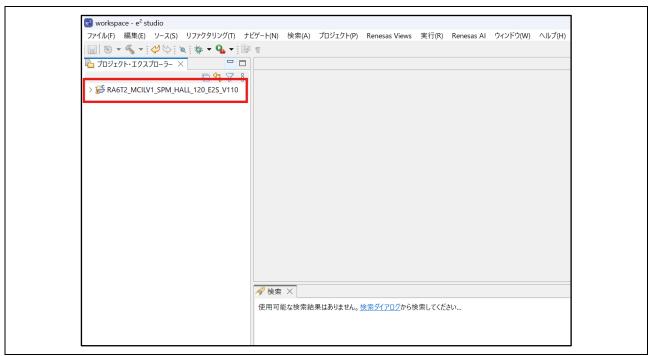


図 6-13 ターゲットプロジェクトインポート確認

6.3.3 プロジェクトのビルド

1.6.3.2 でインポートした書き込みたいプロジェクトを右クリックします。

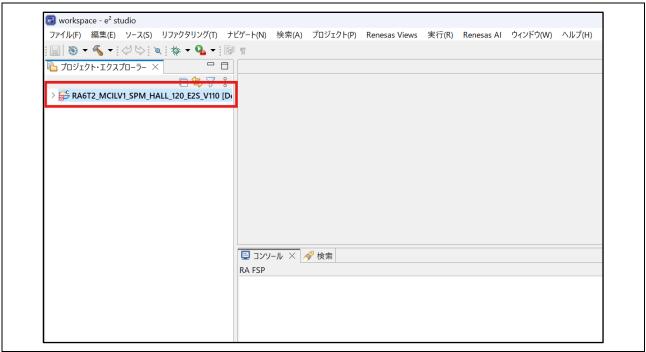


図 6-14 ターゲットプロジェクトの指定

2. プルダウンメニューが開くので、〈プロジェクトのビルド〉を選択し左クリックします。

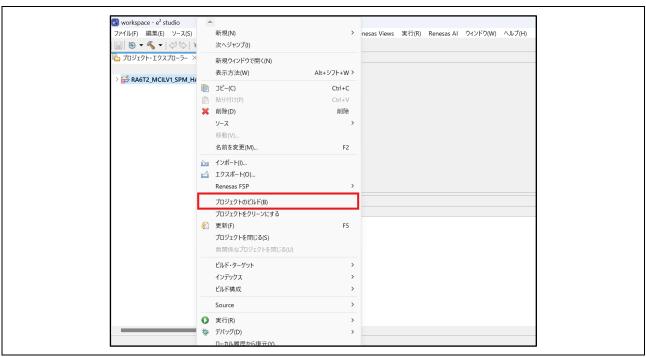


図 6-15 プルダウンメニュー

3. ビルドが実行され、コンソールウィンドウにビルドプロセスが表示されます。最終的にビルドがエラー無く完了したことを確認してください。

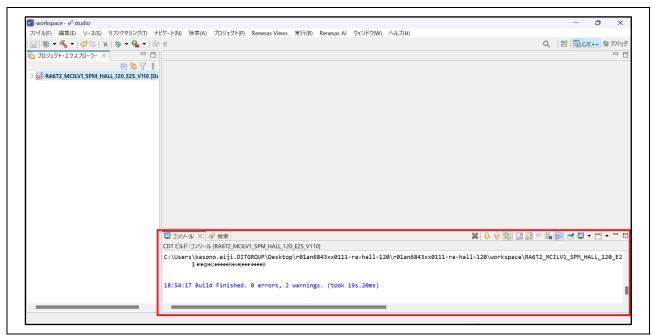


図 6-16 ビルド終了確認

6.3.4 PC とターゲットボードを USB ケーブルで接続 以下の図のように PC と CPU ボードを USB ケーブルで接続してください。 (図のターゲットボードは RA6T2 を使用)

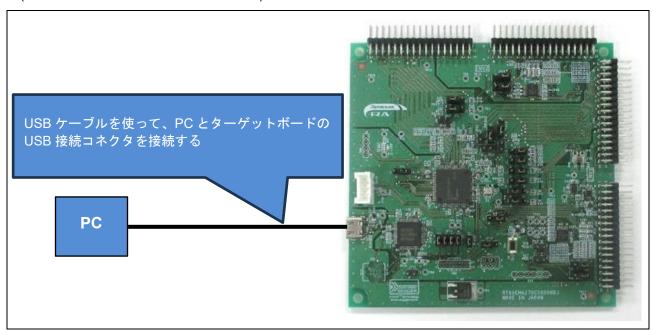


図 6-17 PC とターゲットボード(RA6T2)の接続

- 6.3.5 ターゲットボードへの書き込み(ビルド済み)
- 1. 書き込みたいプロジェクトを右クリックします。

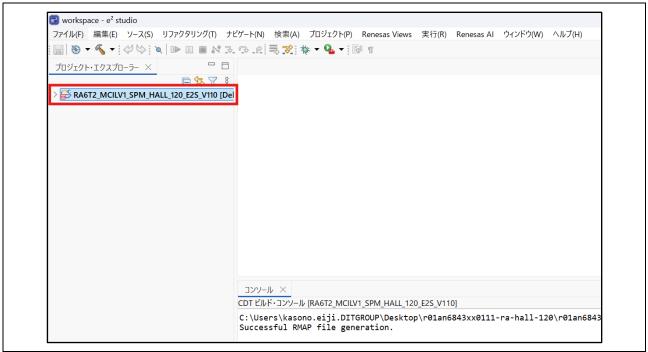


図 6-18 書き込みプロジェクトの選択

2. プルダウンメニューが開くので〈デバッグ〉にカーソルを置き、開いたウィンドウで〈Renesas GDB Hardware Debugging〉を左クリックします。

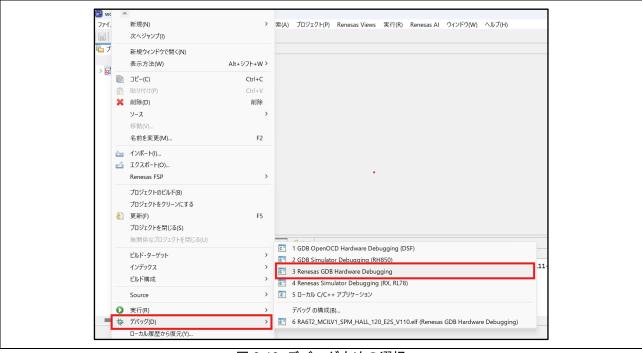


図 6-19 デバッグ方法の選択

3. 正しくターゲットボードと接続され、プログラムがダウンロードされた場合、図 6-20 のような〈デバッグ画面〉に移行します。

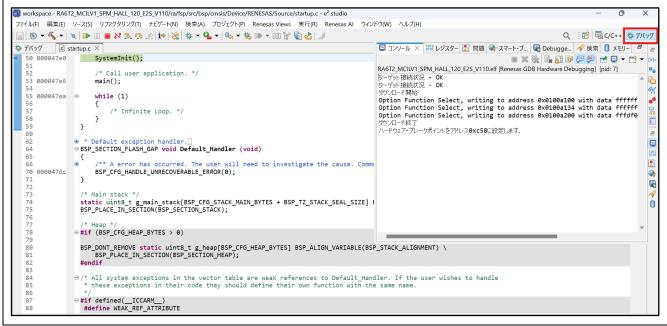


図 6-20 デバッグ画面

4. デバッグ画面の■をクリックして、ターゲットボードとの接続を遮断 USB ケーブルを外して、ターゲットボードへの書き込み完了です。

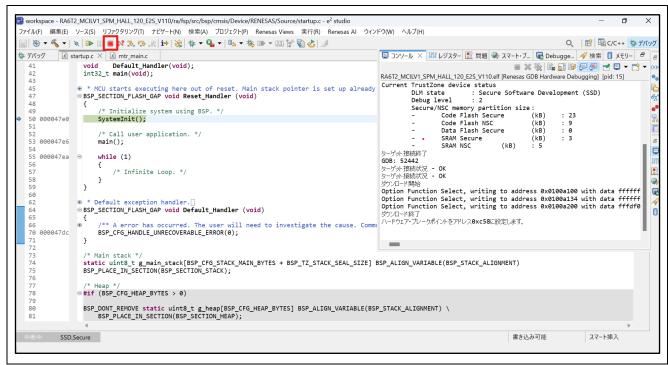


図 6-21 ターゲットボードとの切断

6.4 RMW の導入方法

モータ制御開発支援ツール「Renesas Motor Workbench」をユーザインタフェース(回転/停止指令、回転速度指令値設定など)として使用します。モータ制御開発支援ツール「Renesas Motor Workbench」は弊社WEB サイトよりダウンロードしてください。

https://www.renesas.com/ja/software-tool/renesas-motor-workbench

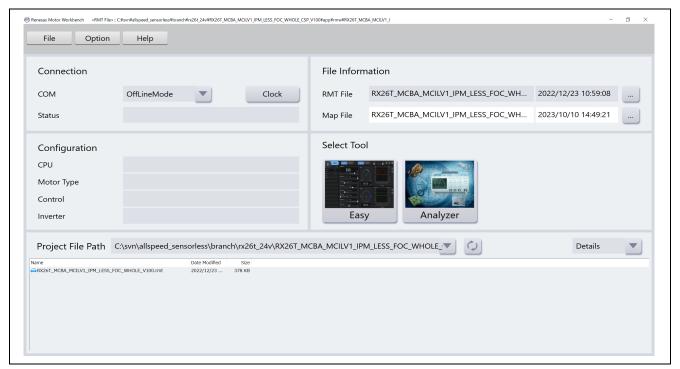


図 6-22 Renesas Motor Workbench 外観

6.5 Map ファイルの登録更新

サンプルプログラムの一部を変更した場合、変数などの情報が記載された Map ファイルを RMW に登録 更新する作業が必要になります。サンプルプログラムの変更を行っていない場合には、Map ファイルの登 録更新作業は不要です。

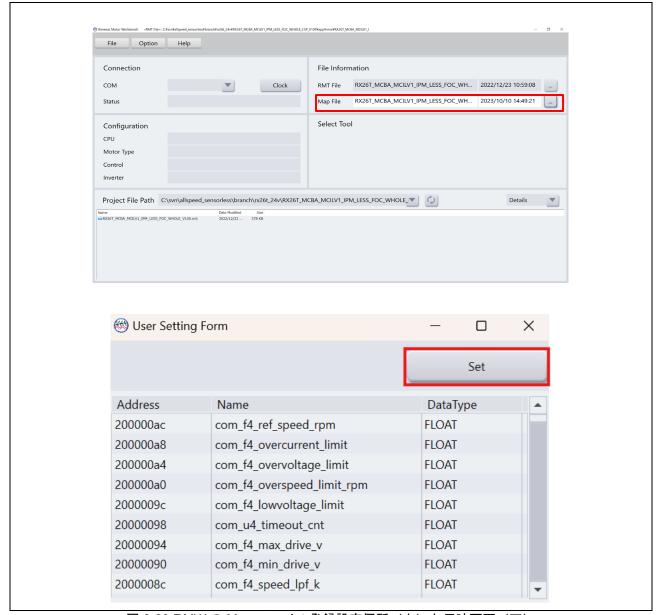


図 6-23 RMW の Map ファイル登録設定個所(上)と反映画面(下)

6.6 RMW の操作に使用する変数

本サンプルプログラムで、モータを動かす場合には、RMW を用いて制御します。RMW UI 使用時の入力 用変数一覧を表 6-1 に示します。なお、これらの変数への入力値は com_u1_enable_write に g_u1_enable_write と同じ値を書き込んだ場合にモータモジュール内の対応する変数へ反映され、モータ制 御に使用されます。ただし、(*)が付けられた変数は com_u1_enable_write に依存しません。

一部のモータ制御に用いるパラメータは、停止中に設定を変更できます。詳細は表 9-8、表 9-9 を参照してください。

なお、変数名の接頭辞(u1,f4 など)は変数型の省略形となっています。RMW は変数名の接頭辞を設定しておくことで、自動認識して型を選択し、Control Window で変数内部の数値の表示を行います。

表 6-1 Analyzer 機能主要入力用変数一覧

Analyzer 機能入力用変数名	型	内容
com_u1_mode_system (*)	uint8_t	ステート管理
		0:ストップモード
		1: ランモード
		3: リセット
com_f4_ref_speed_rpm (*)	float	速度指令値(機械角)[rpm]
com_u1_enable_write	uint8_t	ユーザ入力用変数書き換え許可
		g_u1_enable_write と変数一致で入力データ反映

次に駆動評価を行う際に観測することの多い主要な構造体変数の一覧を表 6-2 に示します。Analyzer 機能 で波形表示する際や変数の値を読み込む際に参考にしてください。

表 6-2 センサレスベクトル制御主要変数一覧

センサレスベクトル制御主要変数名	型	内容
g_f4_id_ref_monitor	float	d 軸電流指令値 [A]
g_f4_id_ad_monitor	float	d 軸電流測定値 [A]
g_f4_iq_ref_monitor	float	q 軸電流指令値 [A]
g_f4_iq_ad_monitor	float	q 軸電流測定値 [A]
g_f4_iu_ad_monitor	float	U 相電流測定値 [A]
g_f4_iv_ad_monitor	float	V 相電流測定値 [A]
g_f4_iw_ad_monitor	float	W 相電流測定値 [A]
g_f4_vdc_ad_monitor	float	インバータ母線電圧測定値 [V]
g_f4_vd_ref_monitor	float	d 軸電圧指令値 [V]
g_f4_vq_ref_monitor	float	q 軸電圧指令値 [V]
g_f4_refu_monitor	float	U 相電圧指令値 [V]
g_f4_refv_monitor	float	V 相電圧指令値 [V]
g_f4_refw_monitor	float	W 相電圧指令値 [V]
g_f4_angle_rad_monitor	float	磁極位置(電気角) [rad]
g_f4_speed_est_monitor	float	回転速度(電気角) [rad/s]
g_f4_speed_ref_monitor	float	速度指令値(電気角) [rad/s]
g_f4_speed_rpm_monitor	float	回転速度(機械角) [rpm]

6.7 モータ操作方法

RMW の Analyzer 機能を使用し、モータを操作する例を以下に示します。操作は、RMW 画面上の "Control Window"で行います。"Control Window"の詳細は、「Renesas Motor Workbench ユーザーズマニュアル」を参照してください。

a) モータを回転させる

- ① "com_u1_mode_system", "com_f4_ref_speed_rpm"の [W?] 欄にチェックが入っていることを確認します。
- ② 指令回転速度を"com f4 ref speed rpm"の [Write] 欄に入力します。
- ③ "Write"ボタンをクリックします。(この時、com_u1_mode_system 欄は"0"のまま)
- ④ "Read"ボタンを押して現在の"com_f4_ref_speed_rpm"の [Read] 欄を確認します。
- ⑤ "com u1 mode system"の [Write]欄に"1"を入力します。
- ⑥ "Write"ボタンをクリックします。

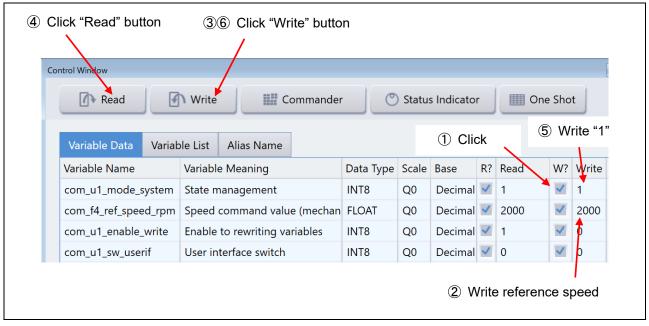


図 6-24 モータ回転の手順

- b) モータを停止させる
 - ① "com_u1_mode_system"の[Write]欄に"0"を入力します。
 - ② "Write"ボタンをクリックします。
 - ③ モータの停止を確認します。

図 6-25 モータ停止の手順

- c) 止まってしまった (エラー) 場合の処理
 - ① "com_u1_mode_system"の[Write]欄に"3"を入力する。
 - ② "Write"ボタンを押す。

図 6-26 エラー解除の手順

表 6-3 エラーステータスの説明

値	エラー内容	割り当てられているマクロ名
0x0000	エラーなし	MOTOR_ERROR_NONE
0x0001	ハードウェア検出過電流エラー	MOTOR_ERROR_OVER_CURRENT_HW
0x0002	過電圧エラー	MOTOR_ERROR_OVER_VOLTAGE
0x0004	過速度エラー	MOTOR_ERROR_OVER_SPEED
0x0008	ホール信号タイムアウトエラー	MOTOR_ERROR_HALL_TIMEOUT
	(センサレスベクトルでは発生しません)	
0x0010	誘起電圧検出タイムアウトエラー	MOTOR_ERROR_BEMF_TIMEOUT
	(センサレスベクトルでは発生しません)	
0x0020	未使用	MOTOR_ERROR_HALL_PATTERN
0x0040	誘起電圧検出パターンエラー	MOTOR_ERROR_BEMF_PATTERN
	(センサレスベクトルでは発生しません)	
0x0080	低電圧エラー	MOTOR_ERROR_LOW_VOLTAGE
0x0100	ソフトウェア検出過電流エラー	MOTOR_ERROR_OVER_CURRENT_SW
0x0200	誘導センサ補正失敗エラー	MOTOR_ERROR_INDUCTION_CORRECT
	(センサレスベクトルでは発生しません)	
0xFFFF	未定義エラー	MOTOR_ERROR_UNKNOWN

6.8 モータ停止・遮断方法

運転状態からモータを停止する場合には、以下に示す手順で行ってください。なお、緊急時は、②の DC24Vの供給を最優先にして停止させてください。

- ① 6.7 b)のモータ停止手順を行う。
- ② モータが停止するのを確認したら、直流安定化電源を操作し、DC24Vの供給を停止する。

7. モータ制御アルゴリズム

7.1 概要

本サンプルプログラムのモータ制御アルゴリズムについて説明します。表 7-1 に、モータ制御機能を示します。

表 7-1 本サンプルプログラムのモータ制御機能

機能項目	機能の内容
制御方式	センサレスベクトル制御
PWM 変調方法	空間ベクトル変調(正弦波変調も選択可)
ロータ位置・回転速度推定方法	誘起電圧オブザーバ
制御モード	速度制御のみ
補償機能	電圧誤差補償
	電圧位相進み補償
	非干渉制御

7.2 制御ブロック図

センサレスベクトル制御の制御ブロック図を示します。

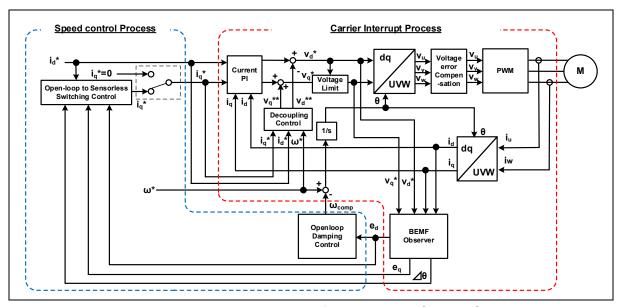


図 7-1 センサレスベクトル制御概略ブロック図(オープンループ制御時)

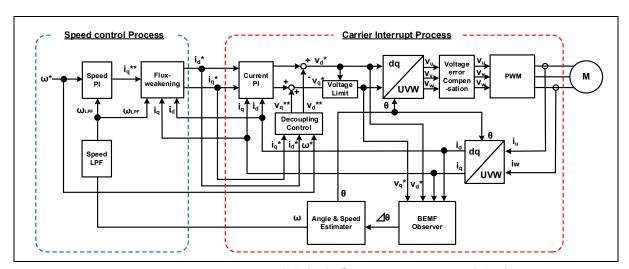


図 7-2 センサレスベクトル制御概略ブロック図(センサレス制御時)

7.3 速度制御機能

速度制御機能は、モータが速度指令に追従するよう、PI制御を行います。速度指令値の入力を受けて、内部の速度調節器が速度推定値との偏差を基に電流指令値を出力します。

速度推定値は誘起電圧オブザーバにより推定された速度値に LPF を通した値を用います。

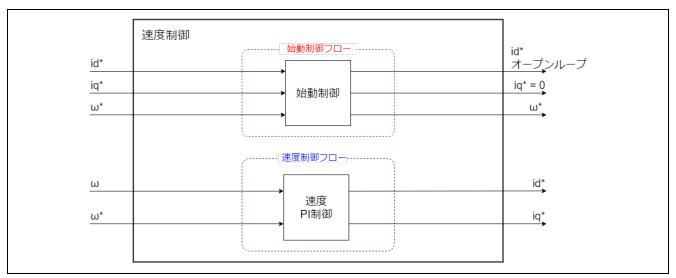


図 7-3 速度制御の機能ブロック図

7.4 電流制御機能

電流制御機能は、入力された電流値からベクトル制御に必要な座標変換及びフィードバック制御を行い、 PWM として出力する電圧を演算する機能です。また、サブモジュールの非干渉制御、電圧位相進み補償、 電圧誤差補償を本モジュールから制御します。

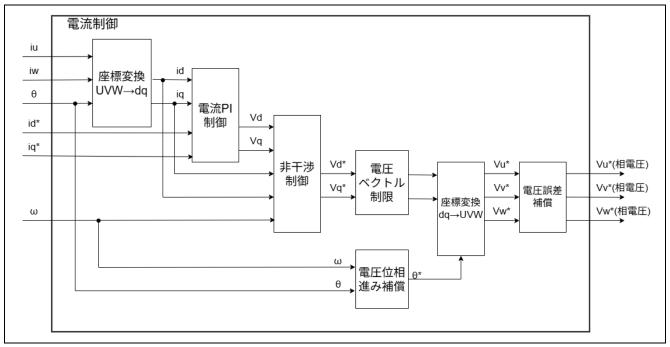


図 7-4 電流制御の機能ブロック図

7.5 非干渉制御

非干渉制御は、電流応答性の向上やd軸・q軸の間で電流が互いに干渉し合い、安定性を損なう事を抑制するために使用します。使用する式は、以下となります。一般的なPMモータの電圧方程式となります。

$$\begin{split} &V_{d_dec}{}^* = RI_d{}^* - \omega L_q I_q{}^* \\ &V_{q_dec}{}^* = RI_q{}^* + \omega L_d I_d{}^* + \omega \Psi \end{split}$$

 Id^*,Iq^* : 電流指令値[A], ω : 回転速度(電気角)[rad/s],R: モータの 1 次抵抗 $[\Omega]$,

Ld,Lq: モータのインダクタンス[H], Ψ: モータの鎖交磁束数[Wb]

得られた電圧指令値 V_{d_dec} *と V_{q_dec} *は、PI 調節器から出力される電圧指令値 V_d *と V_q *に加算します。

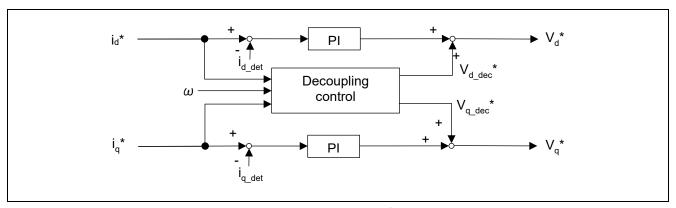


図 7-5 非干渉制御の機能ブロック図

7.6 センサレス機能

PI 制御実施時は、誘起電圧オブザーバを用いたセンサレスベクトル制御を用いて制御を行います。

誘起電圧オブザーバを使用する場合、誘起電圧をオブザーバで推定し、そこから推定 dq 軸と実 dq 軸の位相誤差を算出することで、位置、速度を求めます。

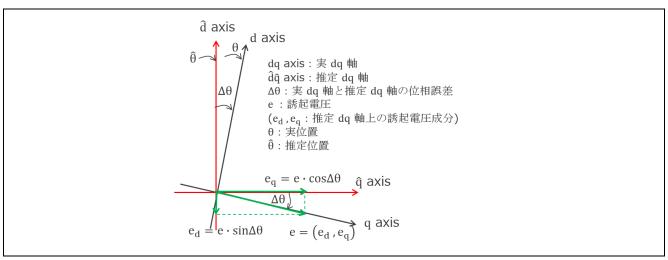


図 7-6 推定 dq 軸上の誘起電圧

図 7-6 より推定 dq 軸上の電圧方程式は以下のように書けます。

$$v_d^* = (R + sL_d)i_d - \omega^* L_q i_q + e_d$$
$$v_q^* = (R + sL_q)i_q + \omega^* L_d i_d + e_q$$

ここで、 $-\omega^* L_q i_q + e_d$ 、 $\omega^* L_d i_d + e_q$ を電圧外乱に見立てて、それぞれ $-d_d$, $-d_q$ とおきます。

$$v_d^* = (R + sL_d)i_d - d_d$$

$$v_q^* = (R + sL_q)i_q - d_q$$

ここからまずは d 軸誘起電圧の推定式を導出します。d 軸電圧方程式を下記のように書き換えます。

$$si_d = \frac{v_d^*}{L_d} - \frac{R}{L_d}i_d + \frac{d_d}{L_d}$$

上式をもとに i_d (d 軸電流)とd(電圧外乱)を状態変数として状態方程式を立てます。

$$si_{d} = -\frac{R}{L_{d}}i_{d} + \frac{d}{L_{d}} + \frac{v_{d}^{*}}{L_{d}}$$
$$sd = sd_{d}$$

ここで、 i_d とdの推定値を $\hat{\iota_a}$ 、 \hat{d} とすると、オブザーバ側の推定状態方程式は、推定誤差に推定ゲイン K_{Ed1} 、 K_{Ed2} を掛けた項を加えて、下記のように書けます。

$$s\widehat{\iota_d} = -\frac{R}{L_d}\widehat{\iota_d} + \frac{\widehat{d}}{L_d} + \frac{v_d^*}{L_d} + K_{Ed1}(i_d - \widehat{\iota_d})$$
$$s\widehat{d} = K_{Ed2}(i_d - \widehat{\iota_d})$$

上式より $\hat{l_a}$ と \hat{d} は下記のように書き表すことができます。

$$\widehat{\iota_{d}} = \frac{\frac{K_{Ed2}}{L_{d}}}{s^{2} + \left(\frac{R}{L_{d}} + K_{Ed1}\right)s + \frac{K_{Ed2}}{L_{d}}} \left\{ \left(1 + \frac{K_{Ed1}}{K_{Ed2}}L_{d}s\right)i_{d} + \frac{s}{K_{Ed2}}v_{d}^{*} \right\}$$

$$\widehat{d} = \widehat{d_{d}} = \frac{\frac{K_{Ed2}}{L_{d}}}{s^{2} + \left(\frac{R}{L_{d}} + K_{Ed1}\right)s + \frac{K_{Ed2}}{L_{d}}} \left\{ (L_{d}s + R)i_{d} - v_{d}^{*} \right\}$$

上式を見ると、 $\widehat{t_d}$ と $\widehat{d_d}$ は、 i_d と v_d^* を入力とする、2 次系の形で書けることが分かります。また、固有周波数 ω_n と減衰係数 ζ は、下記の通りとなります。

$$\omega_n = \sqrt{\frac{K_{Ed2}}{L_d}}$$

$$\zeta = \frac{\frac{R}{L_d} + K_{Ed1}}{2\sqrt{\frac{K_{Ed2}}{L_d}}}$$

d 軸誘起電圧推定系の推定ゲイン K_{Ed1} 、 K_{Ed2} は ω_n と ζ を用いて、下記のように書くことができます。

$$K_{Ed1}=2\zeta_{EG}\omega_{EG}-rac{R}{L_d}$$
 $K_{Ed2}=\omega_{EG}^2L_d$ ω_{EG} :誘起電圧推定系固有周波数 ζ_{EG} :誘起電圧推定系減衰係数

さらに推定の状態方程式を下記のように書き換えます。

$$\widehat{\iota_d} = \frac{1}{s} \left\{ -\frac{R}{L_d} \widehat{\iota_d} + \frac{\widehat{d_d}}{L_d} + \frac{v_d^*}{L_d} + K_{Ed1} (i_d - \widehat{\iota_d}) \right\}$$

$$\widehat{d_d} = \frac{1}{s} \left\{ K_{Ed2} (i_d - \widehat{\iota_d}) \right\}$$

上式より d 軸誘起電圧推定のブロック線図は図 7-7 のようになります。

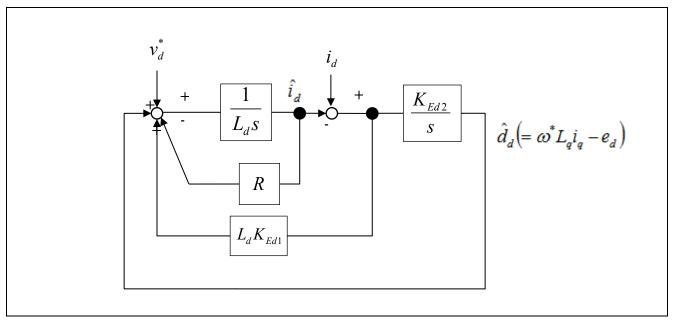


図 7-7 d 軸誘起電圧オブザーバブロック線図

また、q 軸側についても同様に計算することができ、 $\hat{l_q}$ と \hat{d} は、下記のように書き表すことができます。 K_{Eq1} 、 K_{Eq2} は、q 軸側の推定ゲインです。

$$\widehat{\iota_{q}} = \frac{\frac{K_{Eq2}}{L_{q}}}{s^{2} + \left(\frac{R}{L_{q}} + K_{Eq1}\right)s + \frac{K_{Eq2}}{L_{q}}} \left\{ \left(1 + \frac{K_{Eq1}}{K_{Eq2}}L_{q}s\right)i_{q} + \frac{s}{K_{Eq2}}v_{q}^{*} \right\}$$

$$\widehat{d} = \widehat{d_{q}} = \frac{\frac{K_{Eq2}}{L_{q}}}{s^{2} + \left(\frac{R}{L_{q}} + K_{Eq1}\right)s + \frac{K_{Eq2}}{L_{q}}} \left\{ (L_{q}s + R)i_{q} - v_{q}^{*} \right\}$$

上式を見ると、d 軸の場合と同様に、 $\widehat{\iota_q}$ と $\widehat{d_q}$ は、 i_q と v_q^* を入力とする、2 次系の形で書けることが分かります。また、固有周波数 ω_n と減衰係数 ζ は、下記の通りとなります。

$$\omega_n = \sqrt{\frac{K_{Eq2}}{L_q}}$$

$$\zeta = \frac{\frac{R}{L_q} + K_{Eq1}}{2\sqrt{\frac{K_{Eq2}}{L_q}}}$$

このことから、q 軸誘起電圧推定系の推定ゲイン K_{Eq1} 、 K_{Eq2} は、下記のように書くことができます。

$$K_{Eq1}=2\zeta_{EG}\omega_{EG}-rac{R}{L_q}$$
 $K_{Eq2}=\omega_{EG}^2L_q$ ω_{EG} :誘起電圧推定系固有周波数 ζ_{EG} :誘起電圧推定系減衰係数

さらに推定状態方程式は、d 軸側の場合と同様に、下記のように書けます。

$$\widehat{\iota_q} = \frac{1}{s} \left\{ -\frac{R}{L_q} \widehat{\iota_q} + \frac{\widehat{d_q}}{L_q} + \frac{v_q^*}{L_q} + K_{Eq1} (i_q - \widehat{\iota_q}) \right\}$$

$$\widehat{d_q} = \frac{1}{s} \left\{ K_{Eq2} (i_q - \widehat{\iota_q}) \right\}$$

上式より q 軸誘起電圧推定のブロック線図は図 7-8 のようになります。

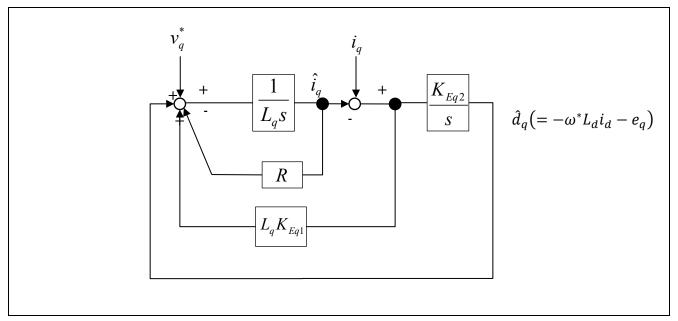


図 7-8 q 軸誘起電圧オブザーバブロック線図

次に誘起電圧は、電圧外乱 $\widehat{d_d}$ 、 $\widehat{d_q}$ から下記のように算出できます。

$$e_d = -\widehat{d_d} + \omega^* L_q i_q$$
 $e_q = -\widehat{d_q} - \omega^* L_d i_d$
 $\Delta \theta = \operatorname{atan} \left(\frac{e_d}{e_q} \right)$

以上より、実 dq 軸と推定 dq 軸の間の位相誤差 $\Delta\theta$ が求まります。

最後に、位相誤差 $\Delta\theta$ を推定 dq 軸位相に反映させます。反映は図 7-9 のブロック線図に従って行います。

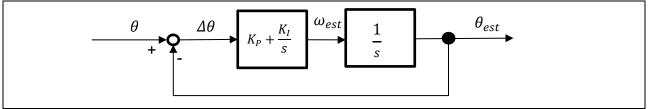


図 7-9 磁極位置推定系のブロック線図

ここで、モータの磁極位置hetaから推定磁極位置 $heta_{est}$ までの閉ループ伝達関数は、下記のように書けます。

$$\frac{\theta_{est}(s)}{\theta(s)} = \frac{K_I \left(s \frac{K_P}{K_I} + 1\right)}{s^2 + K_P s + K_I}$$

よってモータの実際の磁極位置から推定磁極位置までの伝達関数は 2 次系の形となり、磁極位置推定系の固有周波数 ω_n と減衰係数 ζ は次式のようになります。

$$\omega_n = \sqrt{K_I}$$

$$\zeta = \frac{K_P}{2\sqrt{K_I}}$$

従って、磁極位置推定系の制御ゲイン $K_{P_phase_error}$ と $K_{I_phase_error}$ は、下記のように書くことができます。

$$K_{P_phase_error}=2\zeta_{\Delta heta}\omega_{\Delta heta}$$
 $K_{I_phase_error}=\omega_{\Delta heta}^2$ $\omega_{\Delta heta}$:磁極位置推定系固有周波数 $\zeta_{\Delta heta}$:磁極位置推定系減衰係数

以上より位置・速度推定が完了します。

7.7 弱め磁束制御

弱め磁束制御は、d 軸電流を負方向に制御することで、インバータ母線電圧で出力可能な電圧を PM モータの回転に比例して発生する誘起電圧 $(=\omega \, \Psi)$ が超えてしまう条件下であっても、d 軸電流指令を負の値で増大させ、打ち消す制御を行います(図 7-10)。電圧飽和分を打ち消すことにより、加速に必要な q 軸電流指令を増やすことが可能となり、高速回転化および高速回転域での出力向上を実現します。

弱め磁束制御は、現在の電圧に対して、モータの回転速度が高くなり、電圧の余裕が難しくなった状態を自動的に検知して、Id*の値を負に増大させ、PMモータの電圧方程式に従って誘起電圧をキャンセルする制御を行います。

このため、まず、誘起電圧制限値を以下の計算式から求めます。R はモータの抵抗値、Ia は Id,Iq 検出値の二乗和($\sqrt{(Id*Id+Iq*Iq)}$)です。Vamax は、電圧誤差補償や変調処理であらかじめ計算している電圧ベクトルの最大値を使用します。

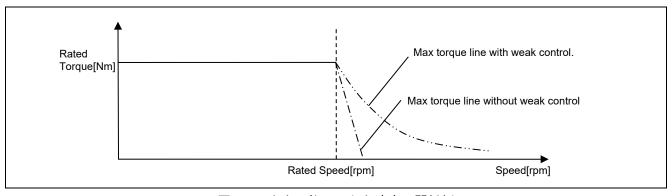


図 7-10 出力可能トルクと速度の関係例

$$V_{om} = V_{amax} - I_a R$$

 V_{om} :誘起電圧制限値 [V], V_{amax} :電圧ベクトルの最大値 [V]

 I_a : 電流ベクトルの大きさ [A]

図 7-11 誘起電圧制限値の計算式

$$I_d = \frac{-\psi_a + \sqrt{\left(\frac{V_{om}}{\omega}\right)^2 - \left(L_q I_q\right)^2}}{L_d}$$

 $: V_{om} = V_{amax} - I_a R$

 V_{om} :誘起電圧制限値 [V], V_{amax} :電圧ベクトルの最大値 [V], I_a :電流ベクトルの大きさ [A]

図 7-12 弱め磁束制御における d 軸電流指令値の計算式

7.8 電圧位相進み補償

UVW の三相電圧指令を生成する際に、推定した角度から進めた角度で二相三相変換を行います。この処理により制御の安定性を改善することができます。高速回転用途、PWM キャリア周期が低い場合、間引き処理を行う場合に改善効果が得られます。

指令演算中、モータの回転が進むことで角度は常にずれが生じます。このずれを指令演算時間が一定であることを利用し、進む角度を前回の角度移動量から補間する機能となります。

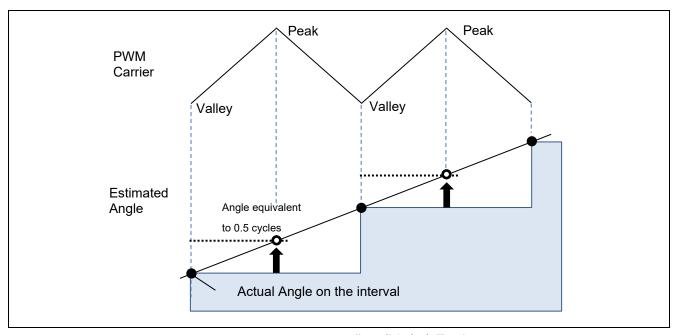


図 7-13 PWM キャリア周期で進む角度量の例

7.9 電圧誤差補償

電圧形 PWM インバータでは、上下アームのスイッチング素子間の短絡を防止するために、上下アーム 2 つの素子が同時にオフとなるデッドタイムを設けています。そのため電圧指令値と実際にモータに印加される電圧には誤差が生じ、制御精度が悪化します。そこでその誤差を低減するため、電圧誤差補償を実装します。

電圧誤差の電流依存性は、電流(向きと大きさ)とデッドタイム、使用するパワー素子のスイッチング特性に依存し、下記のような特性を持ちます。電圧誤差補償では、下記電圧誤差と逆の電圧パターンを電流に応じて電圧指令値に補償します。

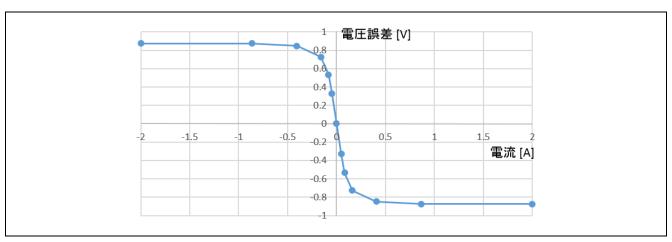


図 7-14 電圧誤差の電流依存性(一例)

7.10 PWM 変調方式

サンプルプログラムでは、モータへの入力電圧はパルス幅変調(PWM)によって生成します。本モジュールでは、PWM Duty 比の算出を行います。また、電圧利用率を上げるために、変調を行った電圧を出力できます。電流制御モジュールの API を通して変調の動作を設定します。本サンプルプログラムでは、2種類のパルス幅変調駆動方式から選択できます。

a) 正弦波変調(MOD_METHOD_SPWM) 変調率 m を以下のように定義します。

$$m = \frac{V}{E}$$

m:変調率 V:指令値電圧 E:インバータ母線電圧

b) 空間ベクトル変調(MOD METHOD SVPWM)

永久磁石同期モータのベクトル制御において、一般的に所望の各相電圧指令値は正弦波状に生成します。ところが、そのまま PWM 生成のための変調波として使用すると、実際にモータに印加される電圧のインバータ母線電圧に対する電圧利用率は線間電圧換算で最大 86.7[%]となってしまいます。そこで、下記式にあるように各相電圧指令値の最大値と最小値の平均値を算出し、それらを各相電圧指令値から減算したものを変調波として使用します。その結果、変調波の最大振幅は $\sqrt{3}/2$ 倍となり、線間電圧はそのままに電圧利用率は 100[%]となります。

$$\begin{pmatrix} V_{u}' \\ V_{v}' \\ V_{w}' \end{pmatrix} = \begin{pmatrix} V_{u} \\ V_{v} \\ V_{w} \end{pmatrix} + \Delta V \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

 $V_{u}, V_{v}, V_{w}: U, V, W$ 相電圧指令値

V',, V',, V',, : PWM 生成用 U,V,W 相電圧指令値(変調波)

変調率 m を以下のように定義します。

$$m = \frac{V'}{F}$$

m:変調率 V':PWM生成用相電圧指令 E:インバータ母線電圧

8. ハードウェア仕様

8.1 ユーザインタフェース

本システムのボードユーザインタフェース一覧を表 8-1 に示します。

表 8-1 ボードユーザインタフェース

項目	インタフェース部品	機能
回転速度	可変抵抗器(VR1)	回転速度指令値入力
START/STOP	トグルスイッチ(SW1)	モータ回転開始/停止指令
ERROR RESET	プッシュスイッチ(SW2)	エラー状態からの復帰指令
LED1	オレンジ色 LED(LED1)	・モータ駆動時 : 点灯 ・モータ停止時 : 消灯
LED2	オレンジ色 LED(LED2)	・エラー検出時 : 点灯 ・通常動作時 : 消灯
LED3	オレンジ色 LED(LED3)	未使用
RESET	プッシュスイッチ(RESET1)	システムリセット

サンプルソフトウェアの端子インタフェースを表 8-2、表 8-3 に示します。

表 8-2 端子インタフェース[1/2]

機能	RA6T2	RA6T3	RA4T1
インバータ母線電圧測定	Ver.1: PA06 / AN006 Ver.2: PA07 / AN007	P004 / AN004	P004 / AN004
回転速度指令値入力用(VR1)	Ver.1: PB00 / AN008 Ver.2: P000 / AN016	P005 / AN005	P005 / AN005
START/STOP トグルスイッチ(SW1)	PD04	P304	P304
ERROR RESET プッシュ スイッチ(SW2)	PD07	P200	P200
LED1 点灯/消灯制御	PD01	P113	P113
LED2 点灯/消灯制御	PD02	P106	P106
U 相電流測定	PA04 / AN004	P000 / AN000	P000 / AN000
V 相電流測定	PA02 / AN002	P001 / AN001	P001 / AN001
W 相電流測定	PA00 / AN000	P002 / AN002	P002 / AN002
PWM 出力(Up)	PB04 / GTIOC4A	P409 / GTIOC1A	P409 / GTIOC1A
PWM 出力(Vp)	PB06 / GTIOC5A	P103 / GTIOC2A	P103 / GTIOC2A
PWM 出力(W₂)	PB08 / GTIOC6A	P111 / GTIOC3A	P111 / GTIOC3A
PWM 出力(Un)	PB05 / GTIOC4B	P408 / GTIOC1B	P408 / GTIOC1B
PWM 出力(Vn)	PB07 / GTIOC5B	P102 / GTIOC2B	P102 / GTIOC2B
PWM 出力(Wո)	PB09 / GTIOC6B	P112 / GTIOC3B	P112 / GTIOC3B
過電流検出時の PWM 緊急停止入力	PC13 / GTETRGD	P104 / GTETRGB	P104 / GTETRGB

表 8-3 端子インタフェース[2/2]

機能	RA8T1	RA8T2
インバータ母線電圧測定	P008 / AN008	P007 / AN007
回転速度指令値入力用(VR1)	P014 / AN007	P015 / AN015
START/STOP トグルスイッチ (SW1)	PA15	PA00
ERROR RESET プッシュ スイッチ(SW2)	PA13	PA07
LED1 点灯/消灯制御	PA12	P614
LED2 点灯/消灯制御	PA14	PA15
U相電流測定	P004 / AN000	P006 / AN006
V 相電流測定	P005 / AN001	P008 / AN008
W 相電流測定	P006 / AN002	P010 / AN010
PWM 出力(Up)	P115 / GTIOC5A	P605 / GTIOC8A
PWM 出力(Vp)	P113 / GTIOC2A	P603 / GTIOC7A
PWM 出力(Wp)	P300 / GTIOC3A	P612 / GTIOC9A
PWM 出力(Un)	P609 / GTIOC5B	P604 / GTIOC8B
PWM 出力(Vn)	P114 / GTIOC2B	P602 / GTIOC7B
PWM 出力(Wn)	P112 / GTIOC3B	P613 / GTIOC9B
過電流検出時の PWM 緊急停止 入力	P613 / GTETRGA	P112 / GTETRGA

8.2 周辺機能

サンプルソフトウェアで使用する周辺機能一覧を表 8-4、表 8-5 に示します。

周辺機能 用途 RA6T2 RA6T3 RA4T1 AN000 AN004 AN000 U 相電流測定 V 相電流測定 AN002 AN001 AN001 W 相電流測定 AN000 AN002 AN002 A/D Ver.1: AN006 コンバータ インバータ母線電圧測定 AN004 AN004 Ver.2: AN007 Ver.1: AN008 VR 入力 AN005 AN005 Ver.2: AN016 **AGTW** 速度制御インターバルタイマ AGT0 AGT0 AGT0 U相PWM出力 CH4 CH1 CH1 **GPT** V 相 PWM 出力 CH5 CH2 CH2 W 相 PWM 出力 CH6 CH3 CH3 **POEG** 過電流検出時の PWM 緊急停止入力 Group D Group B Group B

表 8-4 周辺機能対応表[1/2]

表 8-5 周辺機能対応表[2/2]

周辺機能	用途	RA8T1	RA8T2
	U 相電流測定	AN000	AN006
A /D	V 相電流測定	AN001	AN008
A/D コンバータ	W 相電流測定	AN002	AN010
	インバータ母線電圧測定	AN008	AN007
	VR 入力	AN007	AN015
AGTW	速度制御インターバルタイマ	AGT0	AGT0
	U 相 PWM 出力	CH5	CH8
GPT	V 相 PWM 出力	CH2	CH7
	W 相 PWM 出力	CH3	CH9
POEG	過電流検出時の PWM 緊急停止入力	Group A	Group A

(1). A/D コンバータ

U 相電流(lu)、V 相電流(lv)、W 相電流(lw)、およびインバータ母線電圧(V_{cc})と回転速度指令値(VR)を「シングルスキャンモード」で測定します(ハードウェアトリガを使用)。

A/D 変換は GPT のアンダーフロー(PWM の谷)と連動して動作させています。A/D 変換完了割り込みを、 電流制御周期割り込みとして使用します。

(2). 非同期汎用タイマ (AGTW)

速度制御周期割り込みのインターバルタイマとして使用します。

(3). 汎用 PWM タイマ (GPT)

相補 PWM 出力動作モードを使用して、デッドタイム付きの出力を行います。

(4). GPT 用ポートアウトプットイネーブル(POEG)

過電流検出時(GTETRGx 端子の Low レベル検出時)に PWM 出力端子をハイインピーダンス状態にします。

9. ソフトウェア仕様・構成

9.1 ソフトウェア仕様

本システムのソフトウェアの基本仕様を下記に示します。

表 9-1 センサレスベクトル制御ソフトウェア基本仕様

項目	内容
制御方式	ベクトル制御
モータ制御開始/停止	SW1 のレベルにより判定
	または Renesas Motor Workbench から入力
回転子磁極位置検出	センサレス(誘起電圧オブザーバ)
入力電圧	DC 24V
メインクロック周波数	RA6T2: 240 [MHz]
	RA6T3: 200 [MHz]
	RA4T1: 100 [MHz]
	RA8T1: 480 [MHz]
	RA8T2: 1 [GHz]
キャリア(PWM)周波数	20 [kHz](キャリア周期:50 [μs])
PWM 変調方式	空間ベクトル変調(正弦波変調も選択可)
デッドタイム	2 [µs]
制御周期(電流)	RA6T2: 50 [µs]
	RA6T3: 50 [µs]
	RA4T1: 100 [µs]
	RA8T1: 50 [µs]
制御周期(速度)	RA8T2: 50 [µs] RA6T2: 500 [µs]
削岬向别(还没)	RA6T3: 500 [µs]
	RA4T1: 1000 [μs]
	RA8T1: 500 [µs]
	RA8T2: 500 [µs]
回転速度範囲	CW : 0 [rpm] ~ 2400 [rpm]
	CCW : 0 [rpm] ~ 2400 [rpm]
	ただし、500 [rpm]以下は速度オープンループで駆動
各制御系固有周波数	電流制御系:300 [Hz]
	速度制御系:3 [Hz]
	誘起電圧オブザーバ:1000 [Hz]
	位置推定 PLL:20 [Hz]
コンパイラ最適化設定	最適化レベル Optimize more(-O2) (デフォルト設定)
保護機能	以下のいずれかの条件の時、モータ制御信号出力(6本)を非アクティブにす
	ব
	1. 各相の電流が 3.54(=1.67*sqrt(2)*1.5) [A]を超過(電流制御周期で監視)
	2. インバータ母線電圧が 60 [V]を超過(電流制御周期で監視)
	3. インバータ母線電圧が 8[V]未満(電流制御周期で監視)
	4. 回転速度が 4500 [rpm]を超過(電流制御周期で監視)
	外部からの過電流検出信号を検出した場合、PWM 出力端子をハイイン ピーダンスにする

9.2 ソフトウェア全体構造

ソフトウェアの全体構成を図9-1に示します。

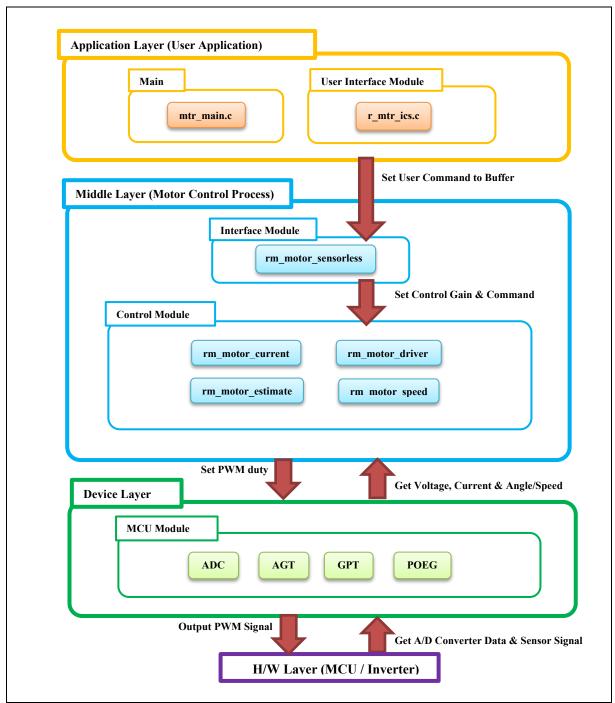


図 9-1 モータ制御ソフトウェアの全体構成

9.3 割り込みの説明

本書で説明するモータ制御プログラムでは、実装処理は主に速度制御周期割り込みと、電流制御周期割り 込みで実施されます。アプリケーション層である UI 機能はメインルーチンで実行されます。割り込みとし ては他にハードウェア過電流検出に因る緊急停止処理に伴う過電流検出割り込みを用いています。

表 9-2 使用する割り込み・タスク

割り込み 優先度 処理

レベル		
15	Min	
14		
13		
12		
11		
10		AGT0 INT
		速度制御周期割り込み
9		
8		
7		
6		
5		ADC0 ADI0(RA6T2, RA8T2) ADC0 SCAN END(RA6T3, RA4T1, RA8T1)
		電流制御周期割り込み(A/D 変換完了割り込み)
4		
3		
2		
1		
0		POEG3 EVENT(RA6T2) POEG1 EVENT(RA6T3, RA4T1) POEG0 EVENT(RA8T1, RA8T2)
	Max	過電流検出割り込み

9.4 ファイル・フォルダー構成

サンプルプログラムのフォルダーとファイル構成を以下に示します。

表 9-3 ソフトウェアフォルダー構成[1/2]

フォル	サブフォルダー	ファイル	備考
ダー			
ra_cfg			自動生成のコンフィグヘッ ダ
			•
ra_gen			自動生成のレジスタ設定 値、メイン関数など
ro	orm		でMSIS ソースコード
ra	arm		
	board for/ing/ani	han ani h	ボード関連関数定義
	fsp/inc/api	bsp_api.h	BSP API 定義
		fsp_common_api.h	Common API 定義
		r_adc_api.h	AD API 定義
		r_elc_api.h(RA6T3, RA4T1, RA8T1 のみ)	ELC API 定義
		r_ioport_api.h	I/O API 定義
		r_poeg_api.h	POEG API 定義
		r_three_phase_api.h	3 相 PWM API 定義
		r_timer_api.h	タイマ API 定義
		r_transfer_api.h	データ転送 API 定義
		rm_motor_angle_api.h	角度 API 定義
		rm_motor_api.h	モータ API 定義
		rm_motor_current_api.h	電流制御 API 定義
		rm_motor_driver_api.h	モータドライバ API 定義
		rm_motor_position_api.h	位置制御 API 定義
		rm_motor_speed_api.h	速度制御 API 定義
	fsp/inc/instances	r_adc_b.h(RA6T2, RA8T2)	AD 関連定義
		r_adc.h(RA6T3, RA4T1, RA8T1)	
		r_agt.h	AGT 関連定義
		r_elc.h(RA6T3, RA4T1, RA8T1 のみ)	ELC 関連定義
		r_gpt.h	GPT 関連定義
		r_gpt_three_phase.h	3 相 PWM 関連定義
		r_ioport.h	I/O 関連定義
		r_poeg.h	POEG 関連定義
		rm_motor_current.h	電流制御関連定義
		rm_motor_driver.h	モータドライバ関連定義
		rm_motor_estimate.h	角速度推定処理関連定義
		rm_motor_sensorless.h	センサレス制御関連定義
		rm_motor_speed.h	速度制御関連定義
L	1		

表 9-4 ソフトウェアフォルダー構成[2/2]

フォル	サブフォルダー	ファイル	備考
ダー	£ /121.		- / / - / - / - / - / - / - / - / -
ra	fsp/lib	h an	ライブラリファイル
	fsp/src	bsp (DAGTO DAGTO)	BSP 関連フォルダー
		r_adc_b/r_adc_b.c(RA6T2, RA8T2) r_adc/r_adc.c(RA6T3, RA4T1, RA8T1)	AD ドライバ
		r_agt/r_agt.c	AGT ドライバ
		r elc/r elc.c(RA6T3, RA4T1, RA8T1 のみ)	ELC ドライバ
		r gpt/r gpt.c	GPT ドライバ
		r_gpt_three_phase/ r_gpt_three_phase.c	3相PWMドライバ
		r_ioport/r_ioport.c	I/O ドライバ
		r_poeg/r_poeg.c	POEG ドライバ
		rm_motor_current/rm_motor_current.c	電流制御ドライバ
		rm_motor_current/rm_motor_current_library.h	電流制御ライブラリ API 定義
		rm_motor_driver/rm_motor_driver.c	モータドライバ
		rm_motor_estimate/rm_motor_estimate.c	角度/速度推定ドライバ
		rm_motor_estimate/rm_motor_estimate_library	角度/速度推定ライブラ リ API 定義
		rm_motor_sensorless/rm_motor_sensorless.c	センサレスモータドラ イバ
		rm_motor_speed/rm_motor_speed.c	速度制御ドライバ
		rm_motor_speed/rm_motor_speed_library.h	速度制御ライブラリ API 定義
src	application/main	mtr_main.h , mtr_main.c	ユーザメイン関数
		r_mtr_control_parameter.h	制御パラメータ定義
		r_mtr_motor_parameter.h	モータパラメータ定義
	application/rmw	r_mtr_rmw.h , r_mtr_rmw.c	Analyzer UI 関連関数定 義
		ICS2_RA6T2.h , ICS2_RA6T3.h , ICS2_RA4T1.h , ICS2_RA8T1.h, ICS2_RA8T2.h	ツール用通信関連定義
		ICS2_RA6T2.0 , ICS2_RA6T3.0 , ICS2_RA4T1.0 , ICS2_RA8T1.0, ICS2_RA8T2.0	ツール用通信ライブラ リ

FSP を使用することで、周辺機能ドライバを簡単に生成することができます。

FSP は、プロジェクトで使用するマイクロコントローラ、周辺機能、端子機能などの設定情報をコンフィギュレーション設定ファイル(configuration.xml)に保存し、参照します。コンフィギュレーション設定は e² studio 上の FSP 操作によって行います。

上記のファイル以外に、FSP から Project 生成を実行すると以下のフォルダーが自動生成されます。

ra

FSP で選択したボード関連情報やモジュールのヘッダー・C コードファイルがインストールされます。

機能変更などのコード修正を行う場合は ra/fsp/inc 及び ra/fsp/src 以下の対象モジュールヘッダー・C コードファイルを修正してください。

ra_cfg

選択したモジュールの機能選択コンフィギュレーション設定が登録されます(ビルドオプションのようなもの)。FSP 操作以外では設定変更などはしないでください。

ra gen

FSP 操作で設定したコンフィギュレーション情報(ピン機能設定や割り込み設定、各モジュールの property 設定)から生成される各モジュールの初期化データ統合ファイルが格納されます。ビルド時 に必ずコンフィギュレーション設定から自動生成されるので直接修正の必要は有りません。

9.5 アプリケーション層

アプリケーション層はユーザインタフェース(UI)の選択と RMW を使用したモータモジュールに対する制御の指令値設定や制御モジュールのパラメータ更新を行います。

9.5.1 機能

アプリケーション層で設定している機能一覧を表 9-5 に示します。

表 9-5 アプリケーション層の機能一覧

機能	説明
メイン処理	ユーザの指令に対してシステムを有効 / 無効に設定します。
UI 処理	ボード UI/RMW の管理を行います。
マネージャー処理	モータの起動/停止、速度制御の指令値の取得・設定を行います。
RMW の UI 処理	指令値含むパラメータの取得・設定を行います。

9.5.2 コンフィグレーション情報

アプリケーション層は FSP で生成される各モジュールを用いてモータ制御を実行するユーザインタフェース層で、本サンプルプログラムのアプリケーション層はあくまでサンプルとして実装されています。このため、アプリケーション層で設定可能なコンフィグレーション情報は mtr_main.h ファイル内にマクロ定数として規定されています。設定可能なコンフィグレーション情報を表 9-6 に示します。

表 9-6 コンフィグレーション情報一覧

ファイル名	マクロ名	説明
mtr_main.h	CHATTERING_CNT	スイッチ読み込みのチャタリング数
	MTR_MAX_SPEED_RPM	回転速度指令制限値
		RMW、ボード UI 共にこれ以上の回転数
		を指定してもこの値に丸め込まれます。
	CONFIG_DEFAULT_UI	電源投入時(リセット解除時)ボード UI
		/RMW のいずれを使用するかを設定し
		ます。
	MTR_ADCH_VR1	ボードの速度指令値用 VR の値を読み込
		む A/D チャネルを設定してください。

表 9-7 コンフィグレーション情報初期値一覧

マクロ名	設定値
CHATTERING_CNT	10
MTR_MAX_SPEED_RPM	2400
CONFIG_DEFAULT_UI	BOARD_UI
MTR_ADCH_VR1	RA6T2 Ver.1: 8 RA6T2 Ver.2: 16 RA6T3、RA4T1: 5 RA8T1: 7 RA8T2: 15

9.5.3 構造体・変数情報

アプリケーション層でユーザが使用可能な変数一覧を表 9-8、表 9-9 に示します。

表 9-8、表 9-9 に示す変数は RMW から値を設定することで、表 9-10 に示す構造体変数に反映されます。 アプリケーション層はこの構造体変数を引数として、各制御モジュールの Update 関数を実行し、設定パラ メータを反映します。

表 9-8 パラメータ変更用変数一覧 [1/2]

変数	説明
g_u1_trig_enable_write	構造体変数更新終了フラグ
com_u1_mode_system	ユーザ入力用システムモード切り替え変数
	0:モータ停止
	1:モータ駆動
	3:エラー解除
g_u1_mode_system	システムモード
	0:モータ停止
	1:モータ駆動
	2: エラー
com_u1_enable_write	ユーザ入力用変数書き換え許可(以下の com 変数はこの変数と
	g_u1_enable_write が同じ値になった時点でプログラムに反映されます。)
g u1 enable write	変数書き換え許可
<u> </u>	
com_u2_mtr_pp	駆動するモータの極対数
com_f4_mtr_r	駆動するモータの抵抗値 $[\Omega]$
com_f4_mtr_ld	駆動するモータの d 軸インダクタンス [H]
com_f4_mtr_lq	駆動するモータの q 軸インダクタンス [H]
com_f4_mtr_m	駆動するモータの鎖交磁束数 [Wb]
com_f4_mtr_j	駆動するモータのロータイナーシャ [kgm^2]
com_f4_current_omega	電流制御系固有周波数 [Hz]
com_f4_current_zeta	電流制御系減衰係数
com_f4_speed_omega	速度制御系固有周波数 [Hz]
com_f4_speed_zeta	速度制御系減衰係数
com_f4_e_obs_omega	誘起電圧オブザーバ固有周波数 [Hz]
com_f4_e_obs_zeta	誘起電圧オブザーバ減衰係数
com_f4_pll_est_omega	速度推定 PLL 固有周波数 [Hz]
com_f4_pll_est_zeta	速度推定 PLL 減衰係数
com_f4_ref_id	始動オープンループ時 d 軸電流最大値 [A]
com_f4_ol_id_up_step	始動オープンループ時 d 軸電流積み上げステップ [A]
com_f4_ol_id_down_step	始動オープンループ時 d 軸電流減算ステップ [A]

表 9-9 パラメータ変更用変数一覧 [2/2]

変数	説明
com_f4_id_down_speed_rpm	始動オープンループ時 d 軸電流減算開始速度(機械角) [rpm]
com_f4_id_up_speed_rpm	始動オープンループ時 d 軸電流積み上げ最大速度(機械角) [rpm]
com_f4_max_speed_rpm	指令速度最大值(機械角) [rpm]
com_f4_overspeed_limit_rpm	過速度エラー検出閾値(機械角) [rpm]
com_f4_overcurrent_limit	ソフトウェア過電流エラー検出閾値 [A]
com_f4_iq_limit	速度制御 q 軸電流最大値 [A]
com_f4_limit_speed_change	速度変更時速度変化量制限値(積み上げステップ)(機械角)[rpm]
com_f4_nominal_current	定常電流値 [A]

表 9-10 RMW によるパラメータ更新用構造体の変数一覧

構造体	説明
g_user_motor_sensorless_extended_cfg	センサレスインタフェースパラメータ構造体
g_user_motor_speed_extended_cfg	速度制御パラメータ構造体
g_user_motor_current_extended_cfg	電流制御パラメータ構造体
g_user_motor_estimate_extended_cfg	角度/速度推定パラメータ構造体

9.5.4 マクロ定義

マクロ一覧を以下に示します。

表 9-11 マクロ一覧 [1/4] (mtr_main.h)

マクロ名	RA6T2	RA6T3	RA4T1
SW_ON	0	0	0
SW_OFF	1	1	1
SW1_ON	1	1	1
SW1_OFF	0	0	0
SW2_ON	0	0	0
SW2_OFF	1	1	1
CHATTERING_CNT	10	10	10
MTR_CW	-	-	-
MTR_CCW	-	-	-
WAIT_STOP_COUNT	-	-	-
MTR_LED_ON	BSP_IO_LEVEL_LOW	BSP_IO_LEVEL_LOW	BSP_IO_LEVEL_LOW
MTR_LED_OFF	BSP_IO_LEVEL_HIG H	BSP_IO_LEVEL_HIGH	BSP_IO_LEVEL_HIG H
ICS_UI	0	0	0
BOARD_UI	1	1	1
LOOP_SPEED	0	0	0
LOOP_POSITION	1	1	1
MTR_MAX_SPEED_RP M	2400	2400	2400
STOP_RPM	400	400	400
MTR_AD12BIT_DATA	4095.0f	4095.0f	4095.0f
VR1_SCALING	(MTR_MAX_SPEED_ RPM + 100) / (MTR_AD12BIT_DAT A * 0.5f)	(MTR_MAX_SPEED_R PM + 100) / (MTR_AD12BIT_DATA * 0.5f)	(MTR_MAX_SPEED_ RPM + 100) / (MTR_AD12BIT_DAT A * 0.5f)
VR1_SCALING_POS	-	-	-
VR1_180	-	-	-
VR1_POSITION_DEAD _BAND	-	-	-
ADJUST_OFFSET	0x7FF	0x7FF	0x7FF
MTR_FLG_CLR	0	0	0
MTR_FLG_SET	1	1	1
CONFIG_DEFAULT_UI	BOARD_UI	BOARD_UI	BOARD_UI
CONFIG_LOOP_MODE	-	-	-

表 9-12 マクロ一覧 [2/4] (mtr_main.h)

マクロ名	RA8T1	RA8T2
SW_ON	0	0
SW_OFF	1	1
SW1_ON	1	1
SW1_OFF	0	0
SW2_ON	0	0
SW2_OFF	1	1
CHATTERING_CNT	10	10
MTR_CW	-	-
MTR_CCW	-	-
WAIT_STOP_COUNT	-	-
MTR_LED_ON	BSP_IO_LEVEL_LOW	BSP_IO_LEVEL_LOW
MTR_LED_OFF	BSP_IO_LEVEL_HIGH	BSP_IO_LEVEL_HIGH
ICS_UI	0	0
BOARD_UI	1	1
LOOP_SPEED	0	0
LOOP_POSITION	1	1
MTR_MAX_SPEED_RPM	2400	2400
STOP_RPM	400	400
MTR_AD12BIT_DATA	4095.0f	4095.0f
VR1_SCALING	(MTR_MAX_SPEED_RPM + 100) / (MTR_AD12BIT_DATA * 0.5f)	(MTR_MAX_SPEED_RPM + 100) / (MTR_AD12BIT_DATA * 0.5f)
VR1_SCALING_POS	-	-
VR1_180	-	-
VR1_POSITION_DEAD_ BAND	-	-
ADJUST_OFFSET	0x7FF	0x7FF
MTR_FLG_CLR	0	0
MTR_FLG_SET	1	1
CONFIG_DEFAULT_UI	BOARD_UI	BOARD_UI
CONFIG_LOOP_MODE	-	-

表 9-13 マクロ一覧 [3/4] (mtr_main.h)

マクロ名	RA6T2	RA6T3	RA4T1
MTR_ADCH_VR1	8	5	5
MTR_PORT_SW1	BSP_IO_PORT_13_PIN_	BSP_IO_PORT_03_PIN	BSP_IO_PORT_03_PIN
	04	_04	_04
MTR_PORT_SW2	BSP_IO_PORT_13_PIN_	BSP_IO_PORT_02_PIN	BSP_IO_PORT_02_PIN
	07	_00	_00
MTR_PORT_LED1	BSP_IO_PORT_13_PIN_	BSP_IO_PORT_01_PIN	BSP_IO_PORT_01_PIN
	01	_13	_13
MTR_PORT_LED2	BSP_IO_PORT_13_PIN_	BSP_IO_PORT_01_PIN	BSP_IO_PORT_01_PIN
	02	_06	_06
MTR_PORT_LED3	BSP_IO_PORT_13_PIN_ 03	-	-

表 9-14 マクロ一覧 [4/4] (mtr_main.h)

マクロ名	RA8T1	RA8T2
MTR_ADCH_VR1	7	15
MTR_PORT_SW1	BSP_IO_PORT_10_PIN_15	BSP_IO_PORT_10_PIN_00
MTR_PORT_SW2	BSP_IO_PORT_10_PIN_13	BSP_IO_PORT_10_PIN_07
MTR_PORT_LED1	BSP_IO_PORT_10_PIN_12	BSP_IO_PORT_06_PIN_14
MTR_PORT_LED2	BSP_IO_PORT_10_PIN_14	BSP_IO_PORT_10_PIN_15
MTR_PORT_LED3	-	BSP_IO_PORT_10_PIN_04

表 9-15 マクロ一覧 [1/2] (r_mtr_rmw.h)

マクロ名	RA6T2	RA6T3	RA4T1
USE_BUILT_IN	0	0	0
MTR_ICS_DECIMATION	5	5	3
ICS_BRR	19	250	250
ICS_INT_MODE	1	1	1
MTR_SQRT_2	1.41421356f	1.41421356f	1.41421356f
MTR_TWO_PI	6.28318531f	6.28318531f	6.28318531f
MTR_RAD_RPM	60/MTR_TWO_PI	60/MTR_TWO_PI	60/MTR_TWO_PI
MTR_RAD_DEGREE	360/MTR_TWO_PI	360/MTR_TWO_PI	360/MTR_TWO_PI
MTR_OVERCURRENT_ MARGIN_MULT	1.5f	1.5f	1.5f

表 9-16 マクロ一覧 [2/2] (r_mtr_rmw.h)

マクロ名	RA8T1	RA8T2
USE_BUILT_IN	0	0
MTR_ICS_DECIMATION	5	5
ICS_BRR	19	19
ICS_INT_MODE	1	1
MTR_SQRT_2	1.41421356f	1.41421356f
MTR_TWO_PI	6.28318531f	6.28318531f
MTR_RAD_RPM	60/MTR_TWO_PI	60/MTR_TWO_PI
MTR_RAD_DEGREE	360/MTR_TWO_PI	360/MTR_TWO_PI
MTR_OVERCURRENT_ MARGIN_MULT	1.5f	1.5f

9.6 インタフェースモジュール

インタフェースモジュールは、モータ制御を実施する各モジュールを適切に使用してモータ制御全体を管理するモジュールです。各モジュール間のインタフェースやモータ制御のシステム全体の管理、保護などを行っています。

9.6.1 機能

インタフェースモジュールの機能一覧を表 9-17 に示します。

表 9-17 インタフェースモジュールの機能一覧

機能	説明
ステート管理	ユーザの指令に対してステートを切り換えてモータを制御します。
保護機能	保護機能によりエラー処理を行います。
制御方式の管理	速度制御や電流制御の状態の取得・設定を行います。
速度・位置情報の取得	電流制御モジュールから速度・位置情報の取得を行います。
ユーザ指令値設定	ユーザの入力した速度指令値を速度制御モジュールに対して設定します。
割り込み処理	速度制御周期割り込み・電流制御周期割り込みに対してイベントに 従ったユーザ実装処理を実行します。

9.6.2 モジュール構成図

モジュール構成図を図 9-2 に示します。

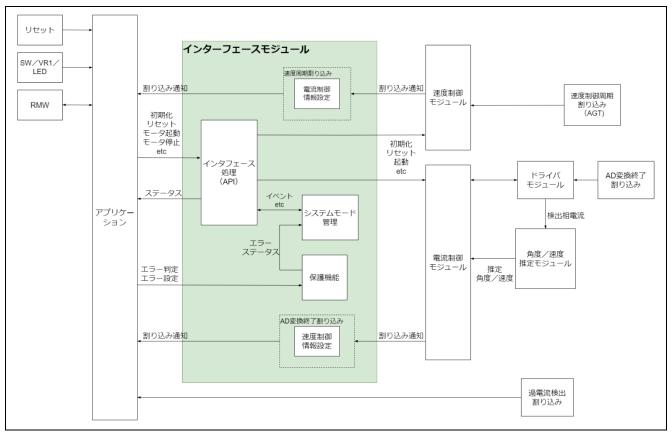


図 9-2 インタフェースモジュール構成図

9.6.3 状態遷移

図 9-3 にサンプルソフトウェアにおける状態遷移図を示します。サンプルソフトウェアでは、「SYSTEM MODE」により状態を管理します。

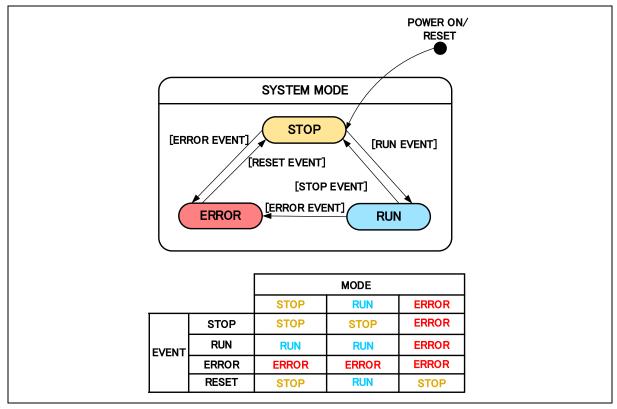


図 9-3 サンプルソフトウェアの状態遷移図

(1) SYSTEM MODE

システム動作状態を表します。各イベント(EVENT)の発生により、状態が遷移します。システムの動作状態は、モータ駆動停止(STOP)、モータ駆動(RUN)、異常状態(ERROR)があります。

(2) EVENT

各 SYSTEM MODE 中に EVENT が発生すると、その EVENT に従って、システム動作状態が図 9-3 中の表のように遷移します。各 EVENT の発生要因は下記となります。

表 9-18 EVENT 一覧

イベント名	発生要因
STOP	ユーザ操作により発生します
RUN	ユーザ操作により発生します
ERROR	システムが異常を検出したときに発生します
RESET	ユーザ操作により発生します

9.6.4 保護機能

本制御プログラムは、以下のエラー状態を持ち、それぞれの場合に緊急停止機能を実装しています。保護機能に関わる各設定値は表 9-19 を参照してください。

過電流エラー

過電流エラーはハードウェア及びソフトウェア両方で検出されます。

ハードウェアからの緊急停止信号(過電流検出)により、PWM 出力端子をハイインピーダンス状態にします。また、過電流監視周期で U 相、V 相、W 相電流を監視し、過電流(過電流リミット値を超過)を検出した時に、緊急停止します(ソフトウェア検出)。

● 過電圧エラー

過電圧監視周期でインバータ母線電圧を監視し、過電圧(過電圧リミット値を超過)を検出した時に、 緊急停止します。過電圧リミット値は検出回路の抵抗値の誤差などを考慮して設定した値です。

● 低電圧エラー

低電圧監視周期でインバータ母線電圧を監視し、低電圧(低電圧リミット値を下回った場合)を検出した時に、緊急停止します。低電圧リミット値は検出回路の抵抗値の誤差などを考慮して設定した値です。

• 回転速度エラー

回転速度監視周期で速度を監視し、速度リミット値を超過した場合、緊急停止します。

過電流エラー	過電流リミット値 [A]	1.67
	監視周期 [µs]	電流制御周期*
過電圧エラー	過電圧リミット値 [V]	60
	監視周期 [µs]	電流制御周期*
低電圧エラー	低電圧リミット値 [V]	8
	監視周期 [µs]	電流制御周期*
回転速度エラー	速度リミット値(機械角)	4500
	[rpm]	4300
	監視周期 [µs]	電流制御周期*

表 9-19 各保護機能の動作条件・設定値

※: 表 9-1 センサレスベクトル制御ソフトウェア基本仕様を参照

9.6.5 API

各モジュールの API 一覧を以下に示します。

表 9-20 API 一覧

	=V =P
API	説明
RM_MOTOR_SENSORLESS_Open	本モジュールと使用する下層モジュールのインスタン
	スを生成(オープン)します。
RM_MOTOR_SENSORLESS_Close	本モジュールと使用する下層モジュールのインスタン
	スを終了(クローズ)します。
RM_MOTOR_SENSORLESS_Run	モータ駆動状態にします。
RM_MOTOR_SENSORLESS_Stop	モータ停止状態にします。
RM_MOTOR_SENSORLESS_Reset	本モジュールをリセット状態にします。
	下層モジュールのリセットも行います。
RM_MOTOR_SENSORLESS_ErrorSet	システムにエラー状態を設定します。
RM_MOTOR_SENSORLESS_SpeedSet	速度指令値(機械角) [rpm] を設定します。
RM_MOTOR_SENSORLESS_StatusGet	システムのステートを取得します。
RM_MOTOR_SENSORLESS_AngleGet	ロータ角度 (位置) 情報 [rad] を取得します。
RM_MOTOR_SENSORLESS_SpeedGet	速度情報(機械角)[rpm]を取得します。
RM_MOTOR_SENSORLESS_ErrorCheck	エラー状態で無いかをチェックします。
RM_MOTOR_SENSORLESS_PositionSet	位置指令値[degree]を設定します。
	(センサレスベクトルでは非サポート)
RM_MOTOR_SENSORLESS_WaitStopFlagGet	停止状態フラグを取得します。
	(センサレスベクトルでは非サポート)
RM_MOTOR_SENSORLESS_FunctionSelect	イナーシャ推定機能・原点復帰機能を選択します。
	(センサレスベクトルでは非サポート)

9.6.6 構造体・変数情報

インタフェースモジュールの構造体・変数一覧を以下に示します。

表 9-21 インタフェースモジュール用構造体・変数一覧 (rm_motor_api.h)

構造体名	メンバ	説明
motor_callback_ar	*p_context	コールバック関数用コンテキスト情報
gs_t	event	コールバック関数へのイベント情報
motor_cfg_t	*p_motor_speed_instance	下層速度制御モジュールインスタンスアドレス
	*p_motor_current_instance	下層電流制御モジュールインスタンスアドレス
	*p_callback	設定コールバック関数アドレス
	*p_context	設定コールバック関数用コンテキスト情報
	*p_extend	ユーザ設定可能コンフィグレーション情報構造体 参照用アドレス
motor_api_t	*open	モジュールオープン(開始)関数アドレス
	*close	モジュールクローズ(停止)関数アドレス
	*run	モータ回転開始関数アドレス
	*stop	モータ回転停止関数アドレス
	*reset	モジュールリセット関数アドレス
	*errorSet	エラー情報設定関数アドレス
	*speedSet	速度指令値(機械角)[rpm]設定用関数アドレス
	*positionSet	位置指令値設定用関数アドレス
		(センサレスベクトルでは非サポート)
	*statusGet	モジュール状態取得用関数アドレス
	*angleGet	ロータ角度[rad]取得用関数アドレス
	*speedGet	回転速度(機械角)[rpm]取得用関数アドレス
	*waitStopFlagGet	モータ回転停止フラグ取得用関数アドレス
	*errorCheck	(センサレスベクトルでは非サポート) エラー状態確認関数アドレス
	*functionSelect	サーボ機能選択関数アドレス (センサレスベクトルでは非サポート)
motor_instance_t	*p_ctrl	モジュール内変数構造体アドレス
	*p_cfg	モジュールコンフィギュレーション情報
		構造体アドレス
	*p_api	API 関数群構造体アドレス

表 9-22 インタフェースモジュール用構造体・変数一覧 (rm_motor_sensorless.h)

構造体名	メンバ	説明
motor_sensorless_ statemachine_t	u1_status	システムステータス
	u1_status_next	次期遷移システムステータス
	u1_current_event	発生イベント
	u2_error_status	エラーステータス
motor_sensorless_ extended_cfg_t	f_overcurrent_limit	過電流検出値 [A]
	f_overvoltage_limit	過電圧検出値 [V]
	f_overspeed_limit	速度超過検出値(機械角) [rpm]
	f_lowvoltage_limit	低電圧検出値 [V]
motor_sensorless_ instance_ctrl_t	open	オープン情報
	u2_error_info	エラー情報
	st_statem	システム管理用構造体
	st_speed_input	速度制御からの入力データ構造体
	st_speed_output	速度制御への出力データ構造体
	st_current_input	電流制御からの入力データ構造体
	st_current_output	電流制御への出力データ構造体
	*p_cfg	コンフィギュレーション情報参照用アドレス

9.6.7 マクロ定義・列挙体定義

インタフェースモジュールのマクロ・列挙体一覧を以下に示します。

表 9-23 インタフェースモジュール用マクロ一覧

ファイル名	マクロ名	定義値	備考
rm_motor_sensorl ess.c	MOTOR_SENSORLESS_ OPEN	('M' << 24U) ('T' << 16U) ('S' << 8U) ('L' << 0U)	オープン情報
	MOTOR_SENSORLESS_ RAD2RPM	30.0F / 3.141592 6535F	rad/s⇒rpm 変換用
	MOTOR_SENSORLESS_ FLG_CLR	0	フラグクリア
	MOTOR_SENSORLESS_ FLG_SET	1	フラグセット
	MOTOR_SENSORLESS_ STATEMACHINE_SIZE_ STATE	3	ステートサイズ
	MOTOR_SENSORLESS_ STATEMACHINE_SIZE_ EVENT	4	イベントサイズ
	MOTOR_SENSORLESS_ STATEMACHINE_ERRO R_NONE	0x00	エラー無し
	MOTOR_SENSORLESS_ STATEMACHINE_ERRO R_EVENTOUTBOUND	0x01	設定外イベント発生
	MOTOR_SENSORLESS_ STATEMACHINE_ERRO R_STATEOUTBOUND	0x02	設定外ステート発生
	MOTOR_SENSORLESS_ STATEMACHINE_ERRO R_ACTIONEXCEPTION	0x04	例外発生

表 9-24 インタフェースモジュール用列挙体一覧 [1/2] (rm_motor_api.h)

되光나 A	.1 > .8	<u>;÷</u>	± n+
列挙体名	メンバ	値	意味
motor_error_t	MOTOR_ERROR_NONE	0x0000	エラーなし
	MOTOR_ERROR_OVER _CURRENT_HW	0x0001	ハードウェア検出過電流エラー
	MOTOR_ERROR_OVERVOLTAGE	0x0002	過電圧エラー
	MOTOR_ERROR_OVER _SPEED	0x0004	速度超過エラー
	MOTOR_ERROR_HALL_	0x0008	ホール信号タイムアウトエラー
	TIMEOUT		(センサレスベクトルでは発生しません)
	MOTOR_ERROR_BEMF	0x0010	誘起電圧検出タイムアウトエラー
	_TIMEOUT		(センサレスベクトルでは発生しません)
	MOTOR_ERROR_HALL_ PATTERN	0x0020	未使用
	MOTOR_ERROR_BEMF	0x0040	誘起電圧検出パターンエラー
	_PATTERN		(センサレスベクトルでは発生しません)
	MOTOR_ERROR_LOW_ VOLTAGE	0x0080	低電圧エラー
	MOTOR_ERROR_OVER _CURRENT_SW	0x0100	ソフトウェア検出過電流エラー
	MOTOR_ERROR_INDUC	0x0200	誘導センサ補正失敗エラー
	TION_CORRECT		(センサレスベクトルでは発生しません)
	MOTOR_ERROR_UNKN OWN	0xFFFF	未定義エラー
motor_callback_e	MOTOR_CALLBACK_EV	1	速度制御前割り込みイベント
vent_t	ENT_SPEED_FORWARD		(速度制御周期割り込み)
	MOTOR_CALLBACK_EV	2	速度制御後割り込みイベント
	ENT_SPEED_BACKWAR D		(速度制御周期割り込み)
	MOTOR_CALLBACK_EV	3	電流制御前割り込みイベント
	ENT_CURRENT_FORW ARD		(電流制御周期割り込み)
	MOTOR_CALLBACK_EV	4	電流制御後割り込みイベント
	ENT_CURRENT_BACKW ARD		(電流制御周期割り込み)
	MOTOR_CALLBACK_EV	5	A/D 変換処理前割り込みイベント
	ENT_ADC_FORWARD		(センサレスベクトルでは発生しません)
	MOTOR_CALLBACK_EV	6	A/D 変換処理後割り込みイベント
	ENT_ADC_BACKWARD		(センサレスベクトルでは発生しません)
	MOTOR_CALLBACK_EV	7	周期処理前割り込みイベント
	ENT_CYCLE_FORWARD		(センサレスベクトルでは発生しません)
	MOTOR_CALLBACK_EV	8	周期処理後割り込みイベント
	ENT_CYCLE_BACKWAR D		(センサレスベクトルでは発生しません)
motor_wait_stop_ flag_t	MOTOR_WAIT_STOP_F LAG_CLEAR	0	モータ停止待ちフラグクリア
く (センサレスベク トルでは使用しま	MOTOR_WAIT_STOP_F LAG_SET	1	モータ停止待ちフラグセット
せん)	_		
_ 	1	1	

表 9-25 インタフェースモジュール用列挙体一覧 [2/2] (rm_motor_api.h)

列挙体名	メンバ	値	意味
motor_function_s elect_t	MOTOR_FUNCTION_SE LECT_NONE	0	サーボ機能無効
(センサレスベク トルでは使用しま せん)	MOTOR_FUNCTION_SE LECT_INERTIA_ESTIMA TE	1	イナーシャ推定機能選択
	MOTOR_FUNCTION_SE LECT_RETURN_ORIGIN	2	原点復帰機能選択

表 9-26 インタフェースモジュール用列挙体一覧 (rm_motor_sensorless.h)

列挙体名	メンバ	値	意味
motor_sensorless _ctrl_status_t	MOTOR_SENSORLESS_ CTRL_STOP	0	モータ回転停止ステート
	MOTOR_SENSORLESS_ CTRL_RUN	1	モータ回転状態ステート
	MOTOR_SENSORLESS_ CTRL_ERROR	2	エラー状態ステート
motor_sensorless _ctrl_event_t	MOTOR_SENSORLESS_ CTRL_EVENT_STOP	0	回転停止イベント
	MOTOR_SENSORLESS_ CTRL_EVENT_RUN	1	回転開始イベント
	MOTOR_SENSORLESS_ CTRL_EVENT_ERROR	2	エラー発生イベント
	MOTOR_SENSORLESS_ CTRL_EVENT_RESET	3	リセットイベント

9.7 速度制御モジュール

速度制御モジュールはユーザの速度指令値と電流制御モジュールから渡された回転速度を用いて速度制御演算を行い、電流制御モジュールに対して電流指令値を設定します。

9.7.1 機能

速度制御モジュールの機能一覧を以下に示します。

表 9-27 速度制御モジュールの機能一覧

機能	説明	
速度制御	速度指令値に追従するよう演算を行い、電流指令値を出力します。	
始動制御	オープンループによる始動制御を実施します。	

9.7.2 モジュール構成図

モジュール構成図を以下に示します。

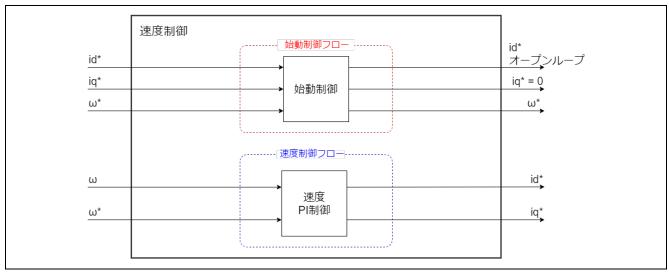


図 9-4 モジュール構成図

9.7.3 始動方法

サンプルソフトウェアの始動制御内容を示します。d 軸電流、q 軸電流、速度それぞれの指令値を管理するフラグによってモードをコントロールしています。始動状態の管理は速度制御モジュールで行われます。

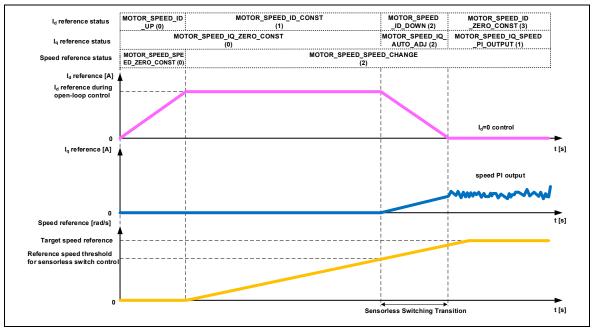


図 9-5 センサレスベクトル制御ソフトウェアの始動制御内容

9.7.4 API

速度制御モジュールの API 一覧を以下に示します。

表 9-28 速度制御モジュールの API 一覧

API	説明
RM_MOTOR_SPEED_Open	速度制御モジュール、及び下層モジュールのインスタ
	ンスを生成(オープン)します。
RM_MOTOR_SPEED_Close	速度制御モジュール、及び下層モジュールのインスタ
	ンスを終了(クローズ)します。
RM_MOTOR_SPEED_Reset	速度制御モジュールをリセット状態にします。
	下層モジュールもリセットします。
RM_MOTOR_SPEED_Run	速度制御モジュールをアクティブ状態(モータ回転状
	態)にします。
RM_MOTOR_SPEED_SpeedReferenceSet	速度指令値を設定します。
RM_MOTOR_SPEED_PositionReferenceS	位置指令値を設定します。
et	(センサレスベクトルでは非サポート)
RM_MOTOR_SPEED_ParameterSet	電流制御からのパラメータを設定します。
RM_MOTOR_SPEED_SpeedControl	速度制御関連処理を実施します。
RM_MOTOR_SPEED_ParameterGet	速度制御での演算結果パラメータを取得します。
	(インタフェースモジュールが電流制御モジュールへ
	渡します。)
RM_MOTOR_SPEED_ParameterUpdate	速度制御関連パラメータを更新します。

9.7.5 構造体 • 変数情報

速度制御モジュールの構造体・変数一覧を以下に示します。

表 9-29 速度制御モジュール用構造体・変数一覧 [1/2] (rm_motor_speed_api.h)

構造体名	メンバ	説明
motor_speed_callback_ar gs_t	*p_context	速度制御コールバック関数用コンテキスト情報 アドレス
	event	速度制御コールバックイベント
motor_speed_input_t	f_id	d 軸検出電流値 [A]
	f_iq	q 軸検出電流値 [A]
	f_vamax	ベクトル電流最大値 [A]
	f_speed_rad	検出回転速度(電気角) [rad/s]
	f_position_rad	検出ロータ位置 [rad]
	f_ed	d 軸検出電圧 [V]
	f_eq	q 軸検出電圧 [V]
	f_phase_err_rad	位相誤差值 [rad]
	u1_flag_get_iref	電流指令値取得可能フラグ
	u1_adjust_status	始動時引き込みステータス (センサレスベクトルでは使用しません)
	u1_adjust_mode	始動時モード (センサレスベクトルでは使用しません)
	u1_adjust_count_full	始動時引き込みカウンタフル情報 (センサレスベクトルでは使用しません)
	u1_openloop_status	誘導センサキャリブレーションオープンループ ステータス (センサレスベクトルでは使用しません)
	f_openloop_speed	誘導センサキャリブレーションオープンループ 回転速度
	f_openloop_id_ref	(センサレスベクトルでは使用しません) 誘導センサキャリブレーションオープンループ d 軸電流 [A] (センサレスベクトルでは使用しません)
motor_speed_output_t	f_id_ref	d 軸電流指令値 [A]
	f_iq_ref	q 軸電流指令値 [A]
	f_ref_speed_rad_ctrl	内部速度指令値(電気角) [rad/s]
	f_damp_comp_speed	オープンループダンピング速度(電気角) [rad/s]
	u1_flag_pi	速度 PI 制御開始フラグ

表 9-30 速度制御モジュール用構造体・変数一覧 [2/2] (rm_motor_speed_api.h)

構造体名	メンバ	説明
motor_speed_position_	e_step_mode	位置制御モード
data_t (センサレスベクトル	e_loop_mode	速度制御・位置制御切り換え
では使用しません)	position_reference_degree	位置指令值 [degree]
motor_speed_cfg_t	*st_input	速度制御入力データ構造体アドレス
	*st_output	速度制御出力データ構造体アドレス
	*p_timer_instance	下層周期タイマモジュール インスタンスアドレス
	*p_position_instance	下層位置制御モジュール インスタンスアドレス (センサレスベクトルでは使用しません)
	*p_callback	登録コールバック関数アドレス
	*p_context	登録コールバック関数用コンテキスト情報 アドレス
	*p_extend	ユーザ入力可能コンフィグレーション 情報構造体参照用アドレス
motor_speed_api_t	*open	速度制御モジュールオープン関数アドレス
	*close	速度制御モジュールクローズ関数アドレス
	*reset	速度制御モジュールリセット関数アドレス
	*run	回転開始関数アドレス
	*speedReferenceSet	速度指令値設定関数アドレス
	*positionReferenceSet	位置指令値設定関数アドレス
	*parameterSet	(センサレスベクトルでは非サポート) 速度制御モジュールへのデータ設定 関数アドレス
	*speedControl	速度制御実体関数アドレス
	*parameterGet	速度制御モジュールからの出力データ 取得用関数アドレス
	*parameterUpdate	ユーザ設定コンフィギュレーションデータ 更新関数アドレス
motor_speed_instance_ t	p_ctrl	速度制御モジュール内変数構造体アドレス
	p_cfg	速度制御モジュールコンフィグレーション情報 構造体アドレス
	p_api	速度制御モジュール API 関数群構造体
		アドレス

表 9-31 速度制御モジュール用構造体・変数一覧 [1/5] (rm_motor_speed.h)

構造体名	メンバ	説明	
motor_speed_pi_params_t	f_err	速度 PI エラー	
	f_kp	速度 PI 比例係数	
	f_ki	速度 PI 積分係数	
	f_refi	速度 PI 積分値	
	f_ilimit	速度 PI 積分制限值	
motor_speed_design_params_t	f_speed_omega	速度制御固有周波数 [Hz]	
	f_speed_zeta	速度制御固有減衰係数	
	f_ed_hpf_omega	オープンループダンピング固有周波数	
	f_ol_damping_zeta	オープンループダンピング減衰係数	
	f_phase_err_lpf_cut_freq	位置誤差 LPF カットオフ周波数	
	f_observer_omega	速度オブザーバ固有周波数 [Hz]	
	f_observer_zeta	(センサレスベクトルでは使用しません) 速度オブザーバ減衰係数	
	1_05001701_2014	(センサレスベクトルでは使用しません)	
motor_speed_lpf_t	f_pre_output	速度 LPF 前回出力	
	f_pre_input	速度 LPF 前回入力	
	f_omega_t	速度 LPF 固有周波数 [Hz]	
	f_gain_ka	LPF ゲイン	
	f_gain_kb	LPF ゲイン	
motor_speed_2nd_order_lpf_t	f4_pre_output	前回出力値	
	f4_pre2_output	前々回出力値	
	f4_pre_input	前回入力値	
	f4_pre2_input	前々回入力値	
	f4_omega_t	計算值	
	f4_omega2_t	計算值	
	f4_omega2_t2	計算値	
	f4_gain_ka	LPF ゲイン	
	f4_gain_kb	LPF ゲイン	
	f4_gain_kc	LPF ゲイン	
motor_speed_oldamp_sub_t	st_ed_lpf	LPF 構造体	
	f_damp_comp_gain	オープンループダンピングゲイン	
	f_fb_speed_limit_rate	速度フィードバックリミット	

表 9-32 速度制御モジュール用構造体・変数一覧 [2/5] (rm_motor_speed.h)

構造体名 メンバ		説明	
motor_speed_oldamp_t	f4_ol_id_up_step	オープンループ時 d 軸電流加算ステップ [A]	
	f4_ol_id_down_step	オープンループ時 d 軸電流減算ステップ [A]	
	f4_ol_iq_down_step_ratio	オープンループ時 q 軸電流減算ステップ 比	
	f4_ol_id_ref	オープンループ時 d 軸電流指令値 [A]	
	f4_id_down_speed_rpm	オープンループ時 d 軸減算開始速度(電 気角) [rpm]	
	f4_id_up_speed_rpm	オープンループ時 d 軸加算目標速度(電 気角) [rpm]	
	f4_opl2less_sw_time	センサレス移行時間	
	f4_switch_phase_err_rad	センサレス移行位置誤差	
motor_speed_motor_parame	u2_mtr_pp	モータ極対数	
ter_t	f4_mtr_r	モータ抵抗値 [Ω]	
	f4_mtr_ld	モータ d 軸インダクタンス [H]	
	f4_mtr_lq	モータ q 軸インダクタンス [H]	
	f4_mtr_m	モータ鎖交磁束数 [Wb]	
	f4_mtr_j	モータイナーシャ [kgm^2]	
motor_speed_flux_weakenin	*pmotor	モータパラメータ構造体参照用アドレス	
g_t	f4_ia_max	dq 軸最大電流値	
	f4_va_max	dq 軸最大電圧値	
	f4_vfw_ratio	弱め磁束で使用する最大電圧比	
	f4_id_demag	減磁電流	
	f4_id_min	最小 d 軸電流値	
	f4_v_fw	弱め磁束の電圧ベクトル限界値	
	u2_fw_status	弱め磁束制御ステータス	

表 9-33 速度制御モジュール用構造体・変数一覧 [3/5] (rm_motor_speed.h)

構造体名	メンバ	説明
motor_speed_observer_t (センサレスベクトルでは使 用しません)	f4_speed_rad	回転速度(電気角) [rad/s]
	f4_ref_torque	トルク指令値
	f4_ref_pre_torque	前回トルク指令値
	f4_ref_speed_rad	前回回転速度(電気角) [rad/s]
	f4_ref_pre_speed_rad	前回速度指令値(電気角) [rad/s]
	f4_hpf_k1	HPF 係数 1
	f4_hpf_k2	HPF 係数 2
	f4_hpf_k3	HPF 係数 3
	f4_k1	オブザーバ係数 1
	f4_k2	オブザーバ係数2
	f4_hpf_ref_speed_rad	HPF 速度指令値(電気角) [rad/s]
	f4_hpf_ref_pre_speed_rad	HPF 前回速度指令値(電気角) [rad/s]
	f4_hpf_omega	HPF 固有周波数 [Hz]
	st_lpf	LPF 用構造体
motor_speed_disturbance_o bserver_t	f4_gain_distubance_estimate	外乱ゲイン
して (センサレスベクトルでは使	f4_gain_speed_estimate	速度ゲイン
用しません)	f4_estimated_distubance	外乱值
	f4_estimated_speed	回転速度(電気角) [rad/s]
	f4_inertia	イナーシャ
	f4_ctrl_period	実行周期
	st_lpf	LPF 構造体

表 9-34 速度制御モジュール用構造体・変数一覧 [4/5] (rm_motor_speed.h)

構造体名	メンバ	説明
motor_speed_extended_cfg_t	u1_ctrl_method	検出センサ種類
	f_speed_ctrl_period	速度制御周期 [Hz]
	f_limit_speed_change	速度指令値加算ステップ(電気角) [rad/s]
	f_maximum_speed_rpm	最大制限回転速度(電気角) [rpm]
	f_omega_t	速度 PI 固有周波数 [Hz]
	f_id_up_speed_rad	d 軸電流増加判定速度
	f_iq_limit	q 軸電流最大設定値 [A]
	f_ol_fb_speed_limit_rate	指令値フィードバックリミット
	f_natural_frequency	速度オブザーバ固有周波数 (センサレスベクトルでは使用しません)
	u1_openloop_damping	オープンループダンピング有効無効フラグ
	u1_flux_weakening	弱め磁束機能有効/無効フラグ
	u1_less_switch	センサレス移行制御有効無効フラグ
	u1_observer_swtich	速度オブザーバ機能有効/無効フラグ (センサレスベクトルでは使用しません)
	observer_select	速度オブザーバ機能選択 (センサレスベクトルでは使用しません)
	ol_param	オープンループパラメータ構造体
	ol_sub_param	オープンループサブパラメータ構造体
	d_param	速度 PI デザインパラメータ
	control_type	モータ制御方式
	mtr_param	モータパラメータ構造体
motor_speed_instance_ctrl_t	u1_active	アクティブフラグ
	u1_state_speed_ref	速度指令値管理ステータス
	u1_flag_get_iref	電流指令値取得フラグ
	u1_state_id_ref	d 軸電流指令値管理ステータス
	u1_state_iq_ref	q 軸電流指令値管理ステータス
	f_rpm2rad	rpm⇒rad/s 変換用
	f_ref_speed_rad_ctrl	内部速度指令値(電気角) [rad/s]
	f_ref_speed_rad	速度指令値(電気角) [rad/s]
	f_speed_lpf_rad	LPF 速度
	e_status	速度制御管理ステータス

表 9-35 速度制御モジュール用構造体・変数一覧 [5/5] (rm_motor_speed.h)

構造体名	メンバ	説明
motor_speed_instance_ctrl_t	u1_flag_down_to_ol	オープンループ駆動フラグ
	f_ol_iq_down_step	オープンループ時 q 軸電流減算ステップ [A]
	f_phase_err_rad_lpf	位置誤差 LPF 値
	f_init_phase_err_rad	位置誤差初期値
	f_opl_torque_current	オープンループ移行トルク電流
	f_damp_comp_speed	オープンループダンピング速度(電気角) [rad/s]
	f_damp_comp_gain	オープンループダンピングゲイン
	f_fb_speed_limit_rate	速度フィードバックリミット値
	u1_enable_flux_weakning	弱め磁束処理有効/無効フラグ
	st_flxwkn	弱め磁束処理用構造体
	*p_cfg	速度制御モジュールコンフィグレーション 情報構造体参照用アドレス
	pi_param	PI 制御用構造体
	st_input	速度制御入力データ構造体
	st_speed_lpf	速度 LPF 用構造体
	st_phase_err_lpf	位相誤差 LPF 用構造体
	st_observer	速度オブザーバ用構造体
	st disturbance observer	(センサレスベクトルでは使用しません) 外乱オブザーバ用構造体
	st_disturbance_observer	が品オフリーハ州構造体 (センサレスベクトルでは使用しません)
	openloop_sub	オープンループサブデータ構造体
	st_position_data	位置制御インタフェース用構造体
	4i	(センサレスベクトルでは使用しません)
timer_args		タイマモジュールコールバック用構造体

9.7.6 マクロ定義・列挙体定義

速度制御モジュールのマクロ・列挙体一覧を以下に示します。

表 9-36 速度制御モジュール用マクロ一覧 [1/2]

ファイル名	マクロ名	定義値	備考
rm_motor_spe ed.c	MOTOR_SPEED_OPEN	('M' << 24U) ('T' << 16U) ('S' << 8U) ('P' << 0U)	速度制御モジュールオープン情報
	MOTOR_SPEED_FLAG_CL EAR	0	フラグクリア
	MOTOR_SPEED_FLAG_SE T	1	フラグセット
	MOTOR_SPEED_MULTIPL E_2	2.0F	2
	MOTOR_SPEED_TWOPI	2.0F * 3.1415926535 F	2π
	MOTOR_SPEED_TWOPI_6 0	MOTOR_SPE ED_TWOPI / 60.0F	rpm⇒rad/s 変換用
	MOTOR_SPEED_DIV_8BIT	1.0F / 256.0F	8 ビット分解能
	MOTOR_SPEED_RAD_TR ANS	3.1415926535 F / 180.0F	rpm⇒rad/s 変換用
	MOTOR_SPEED_ROOT3	1.7320508F	√3
	MOTOR_SPEED_SPEED_Z ERO_CONST	0	速度指令値 0 固定
	MOTOR_SPEED_POSITIO N_CONTROL	1	位置制御状態 (センサレスベクトルでは使用しません)
	MOTOR_SPEED_SPEED_ CHANGE	2	速度 PI 制御状態
	MOTOR_SPEED_OPEN_L OOP_INDUCTION	3	誘導センサキャリブレーション オープンループ状態 (センサレスベクトルでは使用しません)
	MOTOR_SPEED_ID_UP	0	d 軸電流加算状態
	MOTOR_SPEED_ID_CONS T	1	d 軸電流一定状態
	MOTOR_SPEED_ID_DOW N	2	d 軸電流減算状態
	MOTOR_SPEED_ID_ZEROCONST	3	d 軸電流 0 固定状態
	MOTOR_SPEED_ID_FLUX WKN	4	d 軸電流弱め磁束処理状態
	MOTOR_SPEED_ID_OPEN LOOP	5	d 軸電流オープンループ制御状態
	MOTOR_SPEED_IQ_ZERO _CONST	0	q 軸電流 0 固定状態
	MOTOR_SPEED_IQ_SPEE D_PI_OUTPUT	1	q 軸電流 PI 制御状態
	MOTOR_SPEED_IQ_AUTO _ADJ	2	q 軸電流調整状態
	MOTOR_SPEED_IQ_DOW N	3	q軸電流減算状態

表 9-37 速度制御モジュール用マクロ一覧 [2/2]

ファイル名	マクロ名	定義値	備考
rm_motor_speed.c	MOTOR_SPEED_CAL CULATE_ANGLE_ADJ UST_90DEG	1	始動時 90 度方向引き込み (センサレスベクトルでは使用しません)
	MOTOR_SPEED_CAL CULATE_ANGLE_ADJ UST_ODEG	2	始動時 0 度方向引き込み (センサレスベクトルでは使用しません)
	MOTOR_SPEED_CAL CULATE_ANGLE_ADJ UST_FIN	3	始動時引き込み終了 (センサレスベクトルでは使用しません)
	MOTOR_SPEED_CAL CULATE_ANGLE_ADJ UST_OPENLOOP	4	誘導センサキャリブレーションオープン ループ状態 (センサレスベクトルでは使用しません)

表 9-38 速度制御モジュール用列挙体一覧 (rm_motor_speed_api.h)

列挙体名	メンバ	値	意味
motor_speed_ev	MOTOR_SPEED_EVEN	1	速度制御実行前イベント
ent_t	T_FORWARD		(速度制御周期割り込み)
	MOTOR_SPEED_EVEN	2	速度制御実行後イベント
	T_BACKWARD		(速度制御周期割り込み)
	MOTOR_SPEED_EVEN	3	速度制御エンコーダ処理用イベント
	T_ENCODER_CYCLIC		(速度制御周期割り込み)
	MOTOR_SPEED_EVEN	4	速度制御エンコーダ始動引き込み用イベント
	T_ENCODER_ADJUST		(速度制御周期割り込み)
motor_speed_loo	MOTOR_SPEED_LOOP	0	速度制御
p_mode_t	_MODE_SPEED		
	MOTOR_SPEED_LOOP	1	位置制御
	_MODE_POSITION		(センサレスベクトルでは使用しません)
motor_speed_ste	MOTOR_SPEED_STEP	0	位置制御ステップ応答
p_t	_DISABLE		
(センサレスベ	MOTOR_SPEED_STEP	1	位置制御通常応答
クトルでは使用	_ENABLE		
しません)			

表 9-39 速度制御モジュール用列挙体一覧 (rm_motor_speed.h)

列挙体名	メンバ	値	意味
motor_speed_con trol_type_t	MOTOR_SPEED_CONT ROL_TYPE_SENSORLE SS	0	センサレス
	MOTOR_SPEED_CONT ROL_TYPE_ENCODER	1	エンコーダ利用
	MOTOR_SPEED_CONT ROL_TYPE_HALL	2	ホールセンサ利用
	MOTOR_SPEED_CONT ROL_TYPE_INDUCTION	3	誘導センサ利用
motor_speed_ope nloop_damping_t	MOTOR_SPEED_OPENL OOP_DAMPING_DISABL E	0	オープンループダンピング無効
	MOTOR_SPEED_OPENL OOP_DAMPING_ENABL E	1	オープンループダンピング有効
motor_speed_flux _weaken_t	MOTOR_SPEED_FLUX_ WEAKEN_DISABLE	0	弱め磁束処理無効
	MOTOR_SPEED_FLUX_ WEAKEN_ENABLE	1	弱め磁束処理有効
motor_speed_les s_switch_t	MOTOR_SPEED_LESS_ SWITCH_DISABLE	0	センサレス移行制御無効
	MOTOR_SPEED_LESS_ SWITCH_ENABLE	1	センサレス移行制御有効
motor_speed_obs erver_switch_t (センサレスベク	MOTOR_SPEED_OBSE RVER_SWITCH_DISABL E	0	速度オブザーバ無効
トルでは使用しま せん)	MOTOR_SPEED_OBSE RVER_SWITCH_ENABL E	1	速度オブザーバ有効
motor_speed_obs erver_select_t (センサレスベク	MOTOR_SPEED_OBSE RVER_SELECT_NORMA L	0	通常速度オブザーバ
トルでは使用しま せん)	MOTOR_SPEED_OBSE RVER_SELECT_DISTUR BANCE	1	外乱オブザーバ
motor_speed_ctrl _status_t	MOTOR_SPEED_CTRL_ STATUS_INIT	0	速度制御初期化状態
	MOTOR_SPEED_CTRL_ STATUS_BOOT	1	速度制御ブート状態
	MOTOR_SPEED_CTRL_ STATUS_RUN	2	速度制御ラン状態

9.8 電流制御モジュール

電流制御モジュールは下層ドライバモジュールからの電流検出値と速度制御モジュールからの電流指令値を用いて電流 PI 制御を行います。また、そこで得られた各相 PWM 値をドライバモジュールに指示します。電流制御モジュールは下層に角度/速度推定モジュールを持っており、ドライバモジュールからの電流値情報を設定したり、得られた回転速度・角度情報を上位、及び速度制御モジュールへ伝達します。

9.8.1 機能

電流制御モジュールの機能一覧を以下に示します。

表 9-40 電流制御モジュールの機能一覧

機能	説明
電流制御	電流指令値に追従するよう演算を行い、PWM 出力値を設定します。
電流オフセット調整	AD で検出した電流値のオフセット値を計算します。
電圧誤差補償	出力電圧のデッドタイムによる影響を補償します。
順変換、逆変換	ベクトル制御を行うために検出した電流値に対して、座標変換を行います。演算
	結果に対して座標の逆変換を行い元の座標軸に戻します。
変調	PWM 信号に変調して効率を改善します。
非干渉制御	dq 軸の干渉を防ぐために干渉を打ち消す演算を行います。
誘起電圧オブザーバ	誘起電圧オブザーバを使って、角度・回転速度を推定します。

9.8.2 モジュール構成図

モジュール構成図を以下に示します。

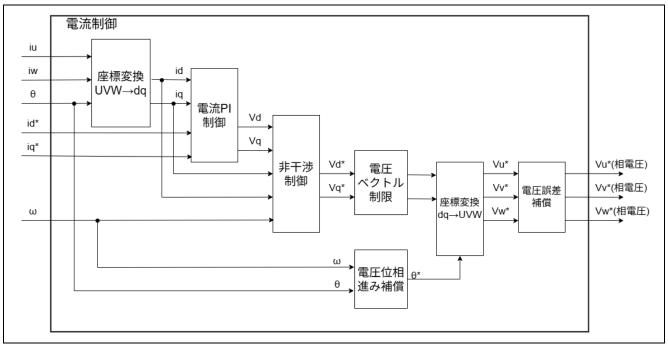


図 9-6 モジュール構成図

9.8.3 API

電流制御モジュールの API 一覧を以下に示します。

表 9-41 電流制御モジュールの API 一覧

API	説明
RM_MOTOR_CURRENT_Open	電流制御モジュール、及び下層モジュールのインス
	タンスを生成(オープン)します。
RM_MOTOR_CURRENT_Close	電流制御モジュール、及び下層モジュールのインス
	タンスを破棄します。
RM_MOTOR_CURRENT_Reset	電流制御モジュールをリセット状態にします。
	下層モジュールもリセットします。
RM_MOTOR_CURRENT_Run	電流制御モジュールをアクティブ状態にします。
RM_MOTOR_CURRENT_ParameterSet	速度制御からのパラメータを設定します。
RM_MOTOR_CURRENT_CurrentReferenceSet	電流指令値を設定します。
RM_MOTOR_CURRENT_SpeedPhaseSet	回転速度・角度(位相)情報を設定します。
RM_MOTOR_CURRENT_CurrentSet	電流値を設定します。
RM_MOTOR_CURRENT_ParameterGet	電流制御での演算結果パラメータを取得します。
RM_MOTOR_CURRENT_CurrentGet	検出電流値・電圧値を取得します。
RM_MOTOR_CURRENT_PhaseVoltageGet	位相、電圧値を取得します。
RM_MOTOR_CURRENT_ParameterUpdate	電流制御関連パラメータを更新します。

2025.10.31

9.8.4 構造体・変数情報

電流制御モジュールの構造体・変数一覧を以下に示します。

表 9-42 電流制御モジュール用構造体・変数一覧 [1/2] (rm_motor_current_api.h)

構造体名	メンバ	説明
motor_current_callback_a rgs_t	*p_context	電流制御モジュールコールバック用コンテキス ト情報アドレス
	event	電流制御モジュールコールバックイベント
motor_current_output_t	f_id	d 軸電流値 [A]
	f_iq	q 軸電流値 [A]
	f_vamax	電圧ベクトル制限値 [V]
	f_speed_rad	回転速度(電気角) [rad/s]
	f_speed_rpm	回転速度(機械角) [rpm]
	f_rotor_angle	ロータ角度 [rad]
	f_position_rad	ロータ位置 [rad]
	f_ed	d 軸検出電圧 [V]
	f_eq	q 軸検出電圧 [V]
	f_phase_err_rad	位相誤差 [rad]
	u1_flag_get_iref	PI 制御開始フラグ
	u1_adjust_status	引き込みステータス
	4 11 (((((((((((((((((((センサレスベクトルでは使用しません)
	u1_adjust_count_full	引き込み時カウンタフル情報 (センサレスベクトルでは使用しません)
	u1_openloop_status	引き込み、もしくはキャリブレーションオープ ンループステータス
		(センサレスベクトルでは使用しません)
	f_openloop_speed	誘導センサキャリブレーションオープンループ 速度
		(センサレスベクトルでは使用しません)
	f_openloop_id_ref	誘導センサキャリブレーションオープンループ 時 d 軸電流指令値
		(センサレスベクトルでは使用しません)
motor_current_input_t	f_id_ref	d 軸電流指令値 [A]
	f_iq_ref	q 軸電流指令値 [A]
	f_ref_speed_rad_ctrl	速度制御内速度指令値(電気角) [rad/s]
	f_damp_comp_speed	オープンループダンピング速度(電気角) [rad/s]
	u1_flag_pi	PI 制御開始フラグ
motor_current_input_curr	iu	U 相電流値 [A]
ent_t	iv	V 相電流値 [A]
	iw	W 相電流値 [A]
motor_current_input_volta	vdc	インバータ母線電圧値 [V]
ge_t	va_max	電圧ベクトル制限値

表 9-43 電流制御モジュール用構造体・変数一覧 [2/2] (rm_motor_current_api.h)

構造体名	メンバ	説明
motor_current_get_voltage_t	u_voltage	U 相電圧値 [V]
		(センサレスベクトルでは使用しません)
	v_voltage	V 相電圧値 [V]
		(センサレスベクトルでは使用しません)
	w_voltage	W 相電圧値 [V]
		(センサレスベクトルでは使用しません)
	vd_reference	d 軸電圧指令値
	*vq_reference	q 軸電圧指令値参照用アドレス
motor_current_cfg_t	*p_motor_driver_instance	下層ドライバモジュールインスタンスアド レス
	*p_motor_angle_instance	下層角度/速度推定モジュールインスタンス アドレス
	*p_callback	登録コールバック関数アドレス
	*p_context	登録コールバック用コンテキスト情報アド レス
	*p_extend	ユーザ設定コンフィギュレーション構造体 参照用アドレス
motor_current_api_t	*open	オープン関数アドレス
	*close	クローズ関数アドレス
	*reset	リセット関数アドレス
	*run	ラン(モータ回転開始)関数アドレス
	*parameterSet	速度制御からの入力情報設定関数アドレス
	*currentReferenceSet	電流指令値設定関数アドレス
	*speedPhaseSet	位相情報設定関数アドレス
	*currentSet	電流値設定関数アドレス
	*parameterGet	電流制御からの出力情報取得関数アドレス
	*currentGet	測定電流・電圧値取得関数アドレス
	*phaseVoltageGet	位相情報取得関数アドレス
	*parameterUpdate	パラメータ更新関数アドレス
motor_current_instance_t	*p_ctrl	電流制御モジュール内変数構造体アドレス
	*p_cfg	電流制御モジュールコンフィグレーション 情報構造体アドレス
	*p_api	電流制御モジュール API 関数群構造体 アドレス

表 9-44 電流制御モジュール用構造体・変数一覧 [1/3] (rm_motor_current.h)

構造体名	メンバ	説明
motor_current_pi_params_t	f_err	PI エラー値
	f_kp	PI 比例係数
	f_ki	PI 積分項係数
	f_refi	PI 積分項
	f_ilimit	PI 積分項制限値
motor_current_design_parame	f_current_omega	電流制御 PI 固有周波数 [Hz]
ter_t	f_current_zeta	電流制御 PI 固有減衰係数
motor_current_motor_paramet	u2_mtr_pp	モータ極対数
er_t	f4_mtr_r	モータ抵抗値 [Ω]
	f4_mtr_ld	モータ d 軸インダクタンス [H]
	f4_mtr_lq	モータ q 軸インダクタンス [H]
	f4_mtr_m	モータ鎖交磁束数 [Wb]
	f4_mtr_j	モータイナーシャ [kgm^2]
motor_currnt_voltage_compen	f_comp_v	電圧補正値
sation_t	f_comp_i	電流補正値
	f_slope	線間保管係数
	f_intcept	線間保管係数
	f_volt_comp_array	電圧補正値配列
	f_vdc	インバータ母線電圧
	f_volt_comp_limit	電圧補正値リミット
	u1_volt_err_comp_enable	電圧補正有効無効

表 9-45 電流制御モジュール用構造体・変数一覧 [2/3] (rm_motor_current.h)

構造体名	メンバ	説明
motor_current_extended_cfg_t	u1_control_type	センサタイプ
	shunt	シャント数
	f_comp_v	電圧誤差補正用電圧テーブル
	f_comp_i	電圧誤差補正用電流テーブル
	vcomp_enable	電圧誤差補正有効/無効フラグ
	u1_sample_delay_comp_enab le	位相誤差補正有効/無効フラグ
	f_period_magnitude_value	電圧位相進み補償の周期比
	f_current_ctrl_period	電流制御周期
	f_ilimit	電流制限値 [A]
	*p_motor_parameter	モータパラメータ構造体参照用アドレス
	*p_design_parameter	電流 PI 制御デザインパラメータ構造体 参照用アドレス
motor_current_instance_ctrl_t	open	電流制御モジュールオープン情報
	u1_active	電流制御アクティブ情報
	f_vd_ref	d 軸電圧指令値 [V]
	f_vq_ref	q 軸電圧指令値 [V]
	f_id_ref	d 軸電流指令値 [A]
	f_iq_ref	q 軸電流指令値 [A]
	f_iu_ad	U 相電流値 [A]
	f_iv_ad	V 相電流値 [A]
	f_iw_ad	W 相電流値 [A]
	f_id_ad	d 軸電流値 [A]
	f_iq_ad	q 軸電流値 [A]
	f_vdc_ad	インバータ母線電圧値 [V]
	f_speed_rad	回転速度(電気角) [rad/s]
	f_rotor_angle	ロータ位相 [rad]
	f_position_rad	位置情報 [rad]

表 9-46 電流制御モジュール用構造体・変数一覧 [3/3] (rm_motor_current.h)

構造体名	メンバ	説明
motor_current_instance_ctrl_t	f_refu	U 相デューティ設定値
	f_refv	V 相デューティ設定値
	f_refw	W 相デューティ設定値
	f_va_max	電圧ベクトル制御値
	f_ed	d 軸推定誘起電圧
	f_eq	q軸推定誘起電圧
	f_phase_err	位相誤差 [rad]
	u1_flag_crnt_offset	オフセット取得状態フラグ
	f_sin_ad_data	誘導センサ sin 信号入力値
		(センサレスベクトルでは使用しません)
	f cos ad data	誘導センサ cos 信号入力値
		(センサレスベクトルでは使用しません)
	*p_cfg	電流制御モジュールコンフィギュレーション
		う 情報構造体参照用アドレス
	st_pi_id	d 軸電流 PI 用構造体
	st_pi_iq	q 軸電流 PI 用構造体
	st_vcomp	電圧誤差補正構造体
	st_input	電流制御入力用データ構造体
	*p_angle_instance	下層角度/速度推定モジュールインスタン スアドレス
	*p_driver_instance	下層ドライバモジュールインスタンスアド レス

9.8.5 マクロ定義・列挙体定義

電流制御モジュールのマクロ・列挙体一覧を以下に示します。

表 9-47 電流制御モジュールマクロ一覧

ファイル名	マクロ名	定義値	備考
rm_motor_current.c	MOTOR_CURRENT_OP EN	('M' << 24U) ('T' << 16U) ('C' << 8U) ('T' << 0U)	電流制御モジュールオープン情報
	MOTOR_CURRENT_FLG _CLR	0	フラグクリア
	MOTOR_CURRENT_FLG _SET	1	フラグセット
	MOTOR_CURRENT_TW OPI	2.0F * 3.141592 6535F	2π
	MOTOR_CURRENT_60_ TWOPI	60.0F / MOTOR_ CURREN T_TWOPI	rad/s⇒rpm 変換用
	MOTOR_CURRENT_SQ RT_2	1.414213 56F	√2
	MOTOR_CURRENT_SQ RT_3	1.732050 8F	√3
	MOTOR_CURRENT_DIV _KHZ	0.001F	kHz⇒Hz 変換用

表 9-48 電流制御モジュール用列挙体一覧 (rm_motor_current_api.h)

列挙体名	メンバ	値	意味
motor_current_ev ent_t	MOTOR_CURRENT_EV ENT_FORWARD	1	電流制御実行前イベント (電流制御周期割り込み)
	MOTOR_CURRENT_EV ENT_DATA_SET	2	電流制御実施イベント (電流制御周期割り込み)
	MOTOR_CURRENT_EV ENT_BACKWARD	3	電流制御実行後イベント (電流制御周期割り込み)

表 9-49 電流制御モジュール用列挙体一覧 (rm_motor_current.h)

列挙体名	メンバ	値	意味
motor_current_co ntrol_type_t	MOTOR_CURRENT_CO NTROL_TYPE_SENSOR LESS	0	センサレス
	MOTOR_CURRENT_CO NTROL_TYPE_ENCODE R	1	エンコーダ利用
	MOTOR_CURRENT_CO NTROL_TYPE_HALL	2	ホールセンサ利用
	MOTOR_CURRENT_CO NTROL_TYPE_INDUCTI ON	3	誘導センサ利用
motor_current_sh unt_type_t	MOTOR_CURRENT_SH UNT_TYPE_1_SHUNT	1	1シャント
	MOTOR_CURRENT_SH UNT_TYPE_2_SHUNT	2	2シャント
	MOTOR_CURRENT_SH UNT_TYPE_3_SHUNT	3	3シャント
motor_current_vol tage_compensati on_select_t	MOTOR_CURRENT_VO LTAGE_COMPENSATIO N_SELECT_DISABLE	0	電圧誤差補償機能無効
	MOTOR_CURRENT_VO LTAGE_COMPENSATIO N_SELECT_ENABLE	1	電圧誤差補償機能有効
motor_current_sa mple_delay_com pensation_t	MOTOR_CURRENT_SA MPLE_DELAY_COMPEN SATION_DISABLE	0	位相誤差補正機能無効
	MOTOR_CURRENT_SA MPLE_DELAY_COMPEN SATION_ENABLE	1	位相誤差補正機能有効

9.9 ドライバモジュール

ドライバモジュールは、モータ制御用の各モジュールが MCU のペリフェラルにアクセスする際に各ペリフェラルモジュールと接続します。

9.9.1 機能

ドライバモジュールの機能一覧を表 9-50 に示します。

表 9-50 ドライバモジュールの機能一覧

機能	説明
A/D 変換値の取得	相電流やインバータ母線電圧など AD 値を取得します。
PWM の duty 設定	U/V/W 相へ出力する PWM Duty 値を設定します。
PWM の開始、停止	PWM 出力の開始、停止(アクティブ/非アクティブ)を制御します。

9.9.2 モジュール構成図

ドライバモジュールのモジュール構成図を図 9-7 に示します。

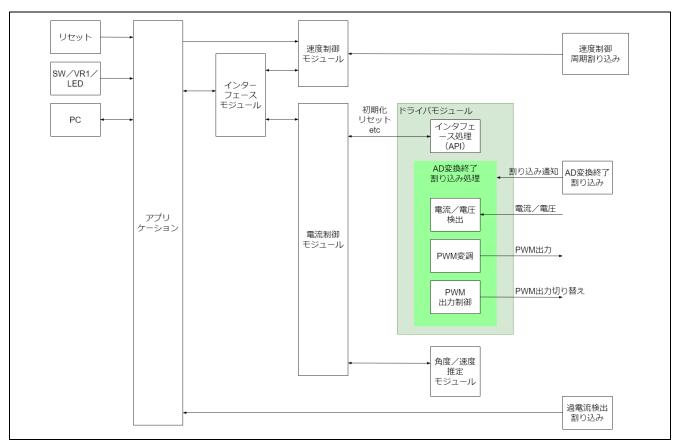


図 9-7 ドライバモジュール構成図

9.9.3 API

ドライバモジュールの API 一覧表と各 API の説明を表 9-51 に示します。

表 9-51 ドライバモジュールの API 一覧

API	説明
RM_MOTOR_DRIVER_Open	ドライバモジュール、及び下層モジュールのインスタンスを生
	成(オープン)します。
RM_MOTOR_DRIVER_Close	ドライバモジュール、及び下層モジュールのインスタンスを終
	了(クローズ)します。
RM_MOTOR_DRIVER_Reset	ドライバモジュールをリセット状態にします。
	下層モジュールもリセットします。
RM_MOTOR_DRIVER_PhaseVoltageSet	位相・電圧情報を設定します。
RM_MOTOR_DRIVER_CurrentGet	検出電流値、インバータ母線電圧値を取得します。
RM_MOTOR_DRIVER_FlagCurrentOffsetGet	電流値オフセット取得処理を実施します。
RM_MOTOR_DRIVER_CurrentOffsetRestart	電流値オフセット取得処理を再実施します。
RM_MOTOR_DRIVER_ParameterUpdate	ドライバモジュールのパラメータを更新します。

9.9.4 構造体・変数情報

ドライバモジュールで使用する構造体一覧を以下に示します。

表 9-52 ドライバモジュール用構造体・変数一覧 [1/2] (rm_motor_driver_api.h)

構造体名	メンバ	説明
motor_driver_callback_ar	event	ドライバモジュールコールバック関数イベント
gs_t	*p_context	ドライバモジュールコールバック関数用
		コンテキスト情報アドレス
motor_driver_current_get _t	iu	U 相電流値 [A]
	iv	V 相電流値 [A]
	iw	W 相電流値 [A]
	vdc	インバータ母線電圧値 [V]
	va_max	電圧ベクトル制限値
	sin_ad	誘導センサ sin 信号入力値
		(センサレスベクトルでは使用しません)
	cos_ad	誘導センサ cos 信号入力値
		(センサレスベクトルでは使用しません)
motor_driver_cfg_t	*p_adc_instance	下層 ADC モジュールインスタンスアドレス
	iu_ad_ch	U 相電流取得 AD チャネル
	iv_ad_ch	V 相電流取得 AD チャネル
	iw_ad_ch	W 相電流取得 AD チャネル
	vdc_ad_ch	インバータ母線電圧取得 AD チャネル
	sin_ad_ch	誘導センサ sin 信号取得 AD チャネル
		(センサレスベクトルでは使用しません)
	cos_ad_ch	誘導センサ cos 信号取得 AD チャネル
		(センサレスベクトルでは使用しません)
	*p_adc2_instance	下層 ADC モジュールインスタンスアドレス 2 つ目
		(ADC のユニットを 2 つ跨ぐ場合に使用します)
	shunt	シャント数情報
	*p_three_phase_instanc e	下層三相 PWM モジュールインスタンスアドレス
	*p_callback	登録コールバック関数アドレス
	*p_context	登録コールバック関数用コンテキスト情報アドレス
	*p_extend	ユーザ設定コンフィギュレーション構造体参照用 アドレス

表 9-53 ドライバモジュール用構造体・変数一覧 [2/2] (rm_motor_driver_api.h)

構造体名	メンバ	説明
motor_driver_api_t	*open	オープン関数アドレス
	*close	クローズ関数アドレス
	*reset	リセット関数アドレス
	*phaseVoltageSet	電圧指令値設定関数アドレス
	*currentGet	電流・電圧値取得関数アドレス
	*flagCurrentOffsetGet	電流オフセット取得関数アドレス
	*currentOffsetRestart	電流オフセット取得再開関数アドレス
	*parameterUpdate	パラメータ更新用関数アドレス
motor_driver_instance_t	*p_ctrl	ドライバモジュール内変数構造体アドレス
	*p_cfg	ドライバモジュールコンフィグレーション情報構造体アドレス
	*p_api	ドライバモジュール API 関数群構造体
		アドレス

表 9-54 ドライバモジュール用構造体・変数一覧 [1/3] (rm_motor_driver.h)

構造体名	メンバ	説明
motor_driver_modulation _t	f4_vdc	インバータ母線電圧値 [V]
	f4_1_div_vdc	インバータ母線電圧値逆数(演算用)
	f4_voltage_error_ratio	電圧誤差比
	f4_max_duty	最大デューティ値
	f4_min_duty	最小デューティ値
	f4_neutral_duty	0[V]出カデューティ値
	u1_sat_flag	サチュレーションフラグ
motor_driver_shared_inst ance_ctrl_t	open	ADC シェアードモジュールオープン情報
unoc_oui_t	registered_motor_count	登録モータ数
	*p_context	ADC シェアードモジュール用コンテキスト情報ア ドレス
motor_driver_extended_s hared_cfg_t	*p_adc_instance_first	ADC シェアードモジュール登録 ADC モジュールイ ンスタンスアドレス 1 つ目
	*p_adc_instance_second	ADC シェアードモジュール登録 ADC モジュールインスタンスアドレス 2 つ目
	*p_shared_instance_ctrl	ADC シェアードモジュール使用変数構造体アドレス

表 9-55 ドライバモジュール用構造体・変数一覧 [2/3] (rm_motor_driver.h)

	メンバ	· 変数一覧 [2/3] (rm_motor_driver.n) 説明
motor_driver_extended_c		PWM タイマクロック周波数 [MHz]
fg_t	u2_pwm_carrier_freq	PWM キャリア周波数 [kHz]
	pwm_carrier_freq	 PWM キャリア周波数
	u2_deadtime	デッドタイムカウント(カウント値)
	f_current_range	電流検出レンジ(最大電流値)[A]
	f_vdc_range	インバータ母線電圧検出レンジ(最大検出電圧) [V]
	f_ad_resolution	A/D 変換分解能(A/D 変換ビット数最大値)
	f_ad_current_offset	電流検出回路オフセット
	f_ad_voltage_conversion	外部電源、A/D リファレンス電圧差分補正用比例値
	u2_offset_calc_count	電流オフセット取得回数
	modulation_method	変調方式選択
	port_up	U 相上アームポート番号
	port_un	U 相下アームポート番号
	port_vp	V 相上アームポート番号
	port_vn	V 相下アームポート番号
	port_wp	W 相上アームポート番号
	port_wn	W 相下アームポート番号
	f_ad_current_adjust	1 シャント時 A/D 取得補正値 (センサレスベクトルでは使用しません)
	s4_difference_minimum	1 シャント時 PWM デューティ最小差分 (センサレスベクトルでは使用しません)
	s4_adjust_adc_delay	1 シャント時 A/D 取得遅延調整値 (センサレスベクトルでは使用しません)
	trigger_phase	1 シャント時 A/D 変換開始トリガ発生相 (センサレスベクトルでは使用しません)
	adc_group	A/D 変換完了割り込み発生グループ(ADC_B 時の み)
	iu_ad_unit	U 相電流検出 A/D ユニット番号
	iv_ad_unit	V 相電流検出 A/D ユニット番号
	iw_ad_unit	W 相電流検出 A/D ユニット番号
	vdc_ad_unit	インバータ母線電圧検出 A/D ユニット番号
	sin_ad_unit	誘導センサ sin 信号検出 A/D ユニット番号 (センサレスベクトルでは使用しません)
	cos_ad_unit	誘導センサ cos 信号検出 A/D ユニット番号 (センサレスベクトルでは使用しません)
	mod_param	PWM 変調用構造体
	interrupt_adc	割り込み発生 ADC ユニット番号
	*p_shared_cfg	ADC シェアードモジュールコンフィグレーション 情報構造体参照用

表 9-56 ドライバモジュール用構造体・変数一覧 [3/3] (rm motor driver.h)

構造体名	メンバ	・変数一覧 [3/3] (rm_motor_driver.h) 説明
motor driver instance ct		オープン情報
rl_t	u2_carrier_base	PWM 周期基本カウンタ値(タイマカウント値)
	u2_deadtime_count	デッドタイムカウント値(タイマカウント値)
	f_iu_ad	U 相電流検出値 [A]
	f_iv_ad	V 相電流検出値 [A]
	f_iw_ad	W 相電流検出値 [A]
	f_vdc_ad	インバータ母線電圧検出値 [V]
	f_sin_ad	誘導センサ sin 信号検出値
	f 1	(センサレスベクトルでは使用しません)
	f_cos_ad	誘導センサ cos 信号検出値
	f refu	(センサレスベクトルでは使用しません) U相デューティ
	f_refv	V相デューティ
	f_refw	₩ 相デューティ
	u1_flag_offset_calc	電流オフセット取得完了フラグ
	u2_offset_calc_times	電流オフセット取得回数(カウント用)
	f_offset_iu	検出 U 相オフセット値 [A]
	f_offset_iv	検出 V 相オフセット値 [A]
	f_offset_iw	検出 W 相オフセット値 [A]
	f_sum_iu_ad	オフセット検出時 U 相総計値
	f_sum_iv_ad	オフセット検出時 V 相総計値
	f_sum_iw_ad	オフセット検出時 W 相総計値
	min_phase	PWM デューティ最小相(1 シャント制御用)
	mid phase	(センサレスベクトルでは使用しません) PWM デューティ中間相(1 シャント制御用)
	mid_priase	「センサレスベクトルでは使用しません)
	u4_gtioca_low_cfg	GTIOCA ポート LOW 信号出力コンフィギュレー ション
	u4_gtiocb_low_cfg	GTIOCB ポート LOW 信号出力コンフィギュレー ション
	u1_flag_port_enable	PWM ポート出力有効フラグ
	st_modulation	変調用構造体
	*p_cfg	ドライバモジュールコンフィギュレーション情報 構造体参照用アドレス
	adc_callback_args	ADC モジュールコールバック用
	timer_callback_args	タイマモジュールコールバック用
	*p_shared_instance_ctrl	ADC シェアードモジュール変調用構造体アドレス

9.9.5 マクロ定義・列挙体定義

ドライバモジュールのマクロ・列挙体一覧を以下に示します。

表 9-57 ドライバモジュールマクロ一覧

ファイル名	マクロ名	定義値	備考
rm_motor_driver.c	MOTOR_DRIVER_OPE	('M' << 24U) ('T' << 16U) ('D' << 8U) ('R' << 0U)	オープン情報
	MOTOR_DRIVER_SHA RED_ADC_OPEN	('M' << 24U) ('T' << 16U) ('S' << 8U) ('A' << 0U)	ADC シェアードモジュールオープン情報
	MOTOR_DRIVER_FLG _CLR	0	フラグクリア
	MOTOR_DRIVER_FLG _SET	1	フラグセット
	MOTOR_DRIVER_KHZ _TRANS	1000U	kHz⇒Hz 変換用
	MOTOR_DRIVER_DEF _HALF	0.5F	0.5
	MOTOR_DRIVER_MUL TIPLE_TWO	2.0F	2
	MOTOR_DRIVER_ADC _DATA_MASK	0x00000FFF	ADC 取得データマスク
	MOTOR_DRIVER_MET HOD_SPWM	0	正弦波変調方式
	MOTOR_DRIVER_MET HOD_SVPWM	1	空間ベクトル変調方式
	MOTOR_DRIVER_SAT FLAG_BITU	1 << 0	サチュレーションフラグシフト用U相
	MOTOR_DRIVER_SAT FLAG_BITV	1 << 1	サチュレーションフラグシフト用 V 相
	MOTOR_DRIVER_SAT FLAG_BITW	1 << 2	サチュレーションフラグシフト用 W 相
	MOTOR_DRIVER_VDC _TO_VAMAX_MULT	0.6124F	電圧ベクトル最大値変換係数
	MOTOR_DRIVER_SVP WM_MULT	1.155F	√4/3
	MOTOR_DRIVER_IO_P ORT_CFG_LOW	0x3000004	PWM ポート LOW 設定用コンフィギュレーションデータ
	MOTOR_DRIVER_IO_P ORT_CFG_HIGH	0x3000005	PWM ポート HIGH 設定用コンフィギュ レーションデータ
	MOTOR_DRIVER_IO_P ORT_PERIPHERAL_M ASK	0x0010000	PWM ポート周辺機能有効ビットマスク
	MOTOR_DRIVER_IO_P ORT_GPIO_MASK	0xFFEFFFF	PWM ポートー般機能有効ビットマスク

表 9-58 ドライバモジュール用列挙体一覧 (rm_motor_driver_api.h)

列挙体名	メンバ	値	意味
motor_driver_eve nt_t	MOTOR_DRIVER_EVEN T_FORWARD	1	ドライバモジュール処理前イベント (A/D 変換完了割り込み)
	MOTOR_DRIVER_EVEN T_CURRENT	2	ドライバモジュール処理実行イベント (A/D 変換完了割り込み)
	MOTOR_DRIVER_EVEN T_BACKWARD	3	ドライバモジュール処理後イベント (A/D 変換完了割り込み)
motor_driver_shu nt_type_t	MOTOR_DRIVER_SHUN T_TYPE_1_SHUNT	1	1シャント
	MOTOR_DRIVER_SHUN T_TYPE_2_SHUNT	2	2シャント
	MOTOR_DRIVER_SHUN T_TYPE_3_SHUNT	3	3 シャント

表 9-59 ドライバモジュール用列挙体一覧 (rm_motor_driver.h)

列挙体名	メンバ	値	意味
motor_driver_sele ct_adc_instance_t		0	1 つ目の ADC モジュールインスタンス
	MOTOR_DRIVER_SELE CT_ADC_INSTANCE_SE COND	1	2 つ目の ADC モジュールインスタンス
motor_driver_mo dulation_method_ t	MOTOR_DRIVER_MODU LATION_METHOD_SPW M	0	正弦波変調
	MOTOR_DRIVER_MODU LATION_METHOD_SVP WM	1	空間ベクトル変調
motor_driver_pha se_t	MOTOR_DRIVER_PHAS E_U_PHASE	0	U 相
	MOTOR_DRIVER_PHAS E_V_PHASE	1	Ⅴ相
	MOTOR_DRIVER_PHAS E_W_PHASE	2	W 相

9.10 角度/速度推定モジュール

角度/速度推定モジュールは検出された相電流から誘起電圧オブザーバを用いて現在のロータの回転速度・ 角度を推定するモジュールです。

9.10.1 機能

角度/速度推定モジュールの機能一覧を以下に示します。

表 9-60 角度/速度推定モジュールの機能一覧

機能	説明
角度/速度推定	誘起電圧オブザーバを用いて現在のロータの回転速度・角度を推定します。

9.10.2 モジュール構成図

モジュール構成図を以下に示します。

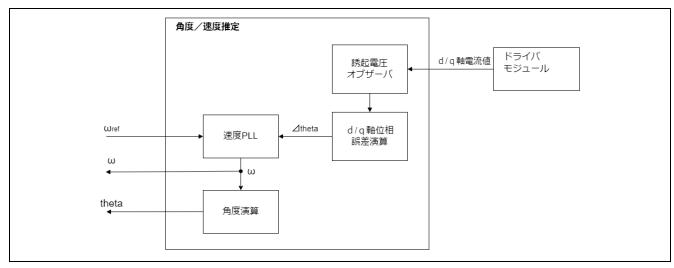


図 9-8 モジュール構成図

9.10.3 API

角度/速度推定モジュールの API 一覧を以下に示します。

表 9-61 角度/速度推定モジュールの API 一覧

API	説明
M_MOTOR_ESTIMATE_Open	角度/速度推定モジュールを開始(オープン)します。
M_MOTOR_ESTIMATE_Close	角度/速度推定モジュールを終了(クローズ)します。
M_MOTOR_ESTIMATE_Reset	角度/速度推定モジュールをリセットします。
M_MOTOR_ESTIMATE_CurrentSet	測定された電流値を設定します。
M_MOTOR_ESTIMATE_SpeedSet	速度指令値(電気角) [rad/s]を設定します。
M_MOTOR_ESTIMATE_FlagPiCtrlSet	PI 制御開始フラグを設定します。
M_MOTOR_ESTIMATE_AngleSpeedGet	推定された回転速度・角度を取得します。
M_MOTOR_ESTIMATE_EstimatedComp nentGet	推定中のパラメータデータを取得します。
M_MOTOR_ESTIMATE_ParameterUpdat	角度/速度モジュールで使用するパラメータを更新しま
	す 。
M_MOTOR_ESTIMATE_InternalCalculate	内部演算を実施します。
	(センサレスペクトルでは非サポート)
M_MOTOR_ESTIMATE_AngleAdjust	初期位置引き込み処理を実施します。
	(センサレスベクトルでは非サポート)
M_MOTOR_ESTIMATE_EncoderCyclic	エンコーダ割り込み処理を実施します。
	(センサレスベクトルでは非サポート)
M MOTOR ESTIMATE InfoGet	誘導センサキャリブレーションオープンループ情報を
	取得します。
	(センサレスベクトルでは非サポート)
M_MOTOR_ESTIMATE_CyclicProcess	周期割り込み処理を実施します。
	(センサレスベクトルでは非サポート)
M_MOTOR_ESTIMATE_SensorDataSet	誘導センサ入力データを設定します。
	(センサレスベクトルでは非サポート)
M_MOTOR_ESTIMATE_SpeedSet M_MOTOR_ESTIMATE_FlagPiCtrlSet M_MOTOR_ESTIMATE_AngleSpeedGet M_MOTOR_ESTIMATE_EstimatedComp nentGet M_MOTOR_ESTIMATE_ParameterUpdat M_MOTOR_ESTIMATE_InternalCalculate M_MOTOR_ESTIMATE_AngleAdjust M_MOTOR_ESTIMATE_EncoderCyclic M_MOTOR_ESTIMATE_InfoGet M_MOTOR_ESTIMATE_InfoGet	速度指令値(電気角) [rad/s]を設定します。 PI 制御開始フラグを設定します。 推定された回転速度・角度を取得します。 推定中のパラメータデータを取得します。 角度/速度モジュールで使用するパラメータを更新しす。 内部演算を実施します。 (センサレスベクトルでは非サポート) 初期位置引き込み処理を実施します。 (センサレスベクトルでは非サポート) エンコーダ割り込み処理を実施します。 (センサレスベクトルでは非サポート) 誘導センサキャリブレーションオープンループ情報取得します。 (センサレスベクトルでは非サポート) 周期割り込み処理を実施します。 (センサレスベクトルでは非サポート) 周期割り込み処理を実施します。 (センサレスベクトルでは非サポート)

9.10.4 構造体・変数情報

角度/速度推定モジュールの構造体・変数一覧を以下に示します。

表 9-62 角度/速度推定モジュール用構造体・変数一覧 [1/2] (rm_motor_angle_api.h)

構造体名	メンバ	説明
motor_angle_cfg_t	*p_context	登録コールバック関数用コンテキスト情報アドレス
	*p_extend	ユーザ設定コンフィギュレーション構造体参照用 アドレス
motor_angle_current_t	id	d 軸電流 [A]
	iq	q 軸電流 [A]
motor_angle_voltage_ref erence_t	vd	d 軸電圧指令値 [V]
	vq	q 軸電圧指令値 [V]
motor_angle_ad_data_t (センサレスベクトルで は使用しません)	sin_ad_data	誘導センサ sin 入力値
	cos_ad_data	誘導センサ cos 入力値
motor_angle_encoder_in fo t	e_adjust_status	エンコーダ引き込み処理ステータス
	u1_adjust_count_full	エンコーダ引き込み処理時回数カウンタフル情報
は使用しません)	e_open_loop_status	誘導センサキャリブレーション オープンループステータス
	f_openloop_speed	誘導センサキャリブレーション
		オープンループ速度情報
	f_openloop_id_ref	誘導センサキャリブレーション
		オープンループ d 軸電流指令値 [A]

表 9-63 角度/速度推定モジュール用構造体・変数一覧 [2/2] (rm_motor_angle_api.h)

構造体名	メンバ	説明
motor_angle_api_t	*open	オープン処理関数アドレス
	*close	クローズ処理関数アドレス
	*reset	リセット処理関数アドレス
	*currentSet	電流値設定関数アドレス
	*speedSet	速度指令値(電気角) [rad/s]設定関数アドレス
	*flagPiCtrlSet	PI 制御開始フラグ設定関数アドレス
	*internalCalculate	内部演算関数アドレス
		(センサレスベクトルでは非サポート)
	*angleSpeedGet	角度/速度推定値取得関数アドレス
	*angleAdjust	初期位置引き込み関数アドレス
		(センサレスベクトルでは非サポート)
	*encoderCyclic	エンコーダ周期処理関数アドレス
		(センサレスベクトルでは非サポート)
	*cyclicProcess	周期処理関数アドレス
		(センサレスベクトルでは非サポート)
	*sensorDataSet	誘導センサ入力設定関数アドレス
		(センサレスベクトルでは非サポート)
	*estimatedComponentGe t	推定情報取得関数アドレス
	*infoGet	エンコーダ始動情報取得関数アドレス
		(センサレスベクトルでは非サポート)
	*parameterUpdate	角度/速度推定モジュールパラメータ更新関数アド レス
motor_angle_instance_t	*p_ctrl	角度/速度推定モジュール使用変数構造体アドレス
	*p_cfg	角度/速度推定モジュールコンフィギュレーション
		情報構造体アドレス
	*p_api	角度/速度推定モジュール API 関数アドレス構造体
		アドレス

表 9-64 角度/速度推定モジュール用構造体・変数一覧 [1/2] (rm_motor_estimate.h)

構造体名	メンバ	説明
motor_estimate_bemf_ob	f4_k_e_obs_1	誘起電圧オブザーバ比例値 1
s_axis_t	f4_k_e_obs_2	誘起電圧オブザーバ比例値 2
	f4_i_pre	電流前回値
	f4_i_est_pre	推定電流前回値
	f4_d_est	推定外乱電圧
	f4_d_est_pre	推定外乱電圧前回値
	f4_d_est_limit	推定外乱電圧積分リミット
motor_estimate_motor_p	u2_mtr_pp	モータ極対数
arameter_t	f4_mtr_r	モータ抵抗値 [Ω]
	f4_mtr_ld	モータ d 軸インダクタンス [H]
	f4_mtr_lq	モータ q 軸インダクタンス [H]
	f4_mtr_m	モータ鎖交磁束数 [Wb]
	f4_mtr_j	モータイナーシャ [kgm^2]
	f4_mtr_nominal_current	モータ定格電流値
motor_estimate_bemf_ob	f4_dt	誘起電圧オブザーバ周期時間
server_t	st_motor_params	モータパラメータ構造体
	st_d_axis	d 軸推定值
	st_q_axis	q 軸推定値
motor_estimate_pll_est_t	f4_kp_est_speed	速度 PLL 比例值
	f4_ki_est_speed	速度 PLL 積分値
	f4_i_est_speed	速度 PLL 積分項
motor_estimate_input_t	f_vd_ref	d 軸電圧指令値 [V]
	f_vq_ref	q 軸電圧指令値 [V]
	f_id	d 軸電流 [A]
	f_iq	q 軸電流 [A]
	f4_ref_speed_rad_ctrl	内部速度指令値(電気角) [rad/s]
	f4_damp_comp_speed	オープンループダンピング速度(電気角) [rad/s]

2025.10.31

表 9-65 角度/速度推定モジュール用構造体・変数一覧 [2/2] (rm_motor_estimate.h)

構造体名	メンバ	説明
motor_estimate_extende	openloop_damping	オープンループダンピング構造体
d_cfg_t	f_e_obs_omega	誘起電圧オブザーバ固有周波数 [Hz]
	f_e_obs_zeta	誘起電圧オブザーバ固有減衰係数
	f_pll_est_omega	速度 PLL 固有周波数 [Hz]
	f_pll_est_zeta	速度 PLL 固有減衰係数
	f4_ctrl_period	角度/速度推定モジュール実行周期 [Hz]
	st_motor_params	モータパラメータ構造体
motor_estimate_instance	open	角度/速度推定モジュールオープン情報
_ctrl_t	f4_ed	推定d軸電圧
	f4_eq	推定 q 軸電圧
	f4_speed_rad	推定回転速度(電気角) [rad/s]
	f4_phase_err_rad	位相誤差 [rad]
	f4_angle_rad	推定角度 [rad]
	u1_flg_pi_ctrl	PI 制御開始フラグ
	u1_flg_pll_start	速度 PLL 開始フラグ
	st_bemf_obs	誘起電圧オブザーバ用変数構造体
	st_pll_est	速度 PLL 用変数構造体
	st_input	電流制御からの入力データ構造体
	*p_cfg	コンフィグレーション情報構造体参照用

9.10.5 マクロ定義・列挙体定義

角度/速度推定モジュールのマクロ・列挙体一覧を以下に示します。

表 9-66 角度/速度推定モジュールマクロ一覧

ファイル名	マクロ名	定義値	備考
rm_motor_esti mate.c	MOTOR_ESTIMATE_OP EN	('M' << 24U) ('T' << 16U) ('E' << 8U) ('S' << 0U)	オープン情報
	MOTOR_ESTIMATE_FL G_CLR	0U	フラグクリア
	MOTOR_ESTIMATE_FL G_SET	1U	フラグセット
	MOTOR_ESTIMATE_TW OPI	2.0F * 3.14159265 35F	2π

表 9-67 角度/速度推定列挙体一覧 (rm_motor_angle_api.h)

列挙体名	メンバ	値	意味
motor_sense_enc oder_angle_adjus t_t	MOTOR_SENSE_ENCO DER_ANGLE_ADJUST_9 0_DEGREE	1	初期位置 90 度方向引き込み
(センサレスベク トルでは使用しま せん)	MOTOR_SENSE_ENCO DER_ANGLE_ADJUST_0 _DEGREE	2	初期位置 0 度方向引き込み
	MOTOR_SENSE_ENCO DER_ANGLE_ADJUST_F INISH	3	初期位置引き込み終了
	MOTOR_SENSE_ENCO DER_ANGLE_ADJUST_ OPENLOOP	4	キャリブレーションオープンループ動作
motor_angle_ope n_loop_t	MOTOR_ANGLE_OPEN_ LOOP_INACTIVE	0	オープンループ動作非アクティブ
(センサレスベク トルでは使用しま せん)	MOTOR_ANGLE_OPEN_ LOOP_ACTIVE	1	オープンループ動作中
motor_angle_erro r_t	MOTOR_ANGLE_ERRO R_NONE	0	誘導センサキャリブレーションエラー
(センサレスベク トルでは使用しま せん)	MOTOR_ANGLE_ERRO R_INDUCTION	1	誘導センサキャリブレーションデータ取 得済み

表 9-68 角度/速度推定モジュール用列挙体一覧 (rm_motor_estimate.h)

列挙体名	メンバ	値	意味
motor_estimate_o penloop_damping _t	MOTOR_ESTIMATE_OP ENLOOP_DAMPING_DIS ABLE	0	オープンループダンピング無効
	MOTOR_ESTIMATE_OP ENLOOP_DAMPING_EN ABLE	1	オープンループダンピング有効

10. パラメータの設定

10.1 概要

本サンプルプログラムでは、FSP コンフィギュレータを用いることで各モジュールの必要パラメータの初期値設定が行えます。変更された初期値は、コードの生成時に common_data.c/h、及び hal_data.c/h に自動的に反映されます。設定されたパラメータは起動時の各モジュールの初期化処理で変数・構造体に設定され、各々の処理に使用されます。

一部のパラメータは、RMW などから動的に変更が可能です。対象パラメータに関しては 9.5.3 章を参照してください。また、パラメータ更新の操作に関しては RMW の取り扱い説明書を参照してください。

10.2 インタフェースモジュールの設定パラメータの一覧

インタフェースモジュールの設定パラメータ名と初期設定値を以下に示します。パラメータはプロパティタブより設定することができます。以下全ての FSP モジュールで同様です。

オプション名	内容
Limit of over current (A)	相電流がこの値を超えると、PWM 出力ポートがオフに設定されます。
Limit of over voltage (V)	インバータ母線電圧がこの値を超えると、PWM 出力ポートが オフに設定されます。
Limit of over speed (rpm)	回転速度がこの値を超えると、PWM 出力ポートがオフに設定 されます。
Limit of low voltage (V)	インバータ母線電圧がこの値を下回ると、PWM 出力ポートが オフに設定されます。
Callback	実行コールバック関数

表 10-1 Configuration Options (rm_motor_sensorless)

表 10-2 Configuration Options 初期值 [1/2] (rm_motor_sensorless)

オプション名	RA6T2	RA6T3	RA4T1
Limit of over current (A)	1.67	1.67	1.67
Limit of over voltage (V)	60.0	60.0	60.0
Limit of over speed (rpm)	4500.0	4500.0	4500.0
Limit of low voltage (V)	8.0	8.0	8.0
Callback	mtr_callback_event	mtr_callback_event	mtr_callback_event

表 10-3 Configuration Options 初期值 [2/2] (rm motor sensorless)

オプション名	RA8T1	RA8T2
Limit of over current (A)	1.67	1.67
Limit of over voltage (V)	60.0	60.0
Limit of over speed (rpm)	4500.0	4500.0
Limit of low voltage (V)	8.0	8.0
Callback	mtr_callback_event	mtr_callback_event

10.3 速度制御モジュールの設定パラメータの一覧

速度制御モジュールの設定パラメータ名と初期設定値を以下に示します。

表 10-4 Configuration Options (rm_motor_speed)

オプション名	内容
Common Position support	位置制御可否選択
General Speed control period (sec)	速度制御周期[sec]
General Step of speed climbing (rpm)	速度変動のステップ値(機械角)[rpm]。加速 と減速で この値によって速度を制御します。
General Maximum rotational speed (rpm)	最大速度(機械角) [rpm]
General Speed LPF omega	速度 LPF 固有周波数 [Hz]
General Limit of q-axis current (A)	q 軸電流リミット [A]
General Step of speed feedback at open-loop	オープンループ時指令速度ステップ(指令速 度に対する割合を設定)
General Natural frequency	外乱速度オブザーバの固有振動数
General Open-loop damping	オープンループダンピング制御の選択
General Flux weakening	弱め磁束制御の選択
General Torque compensation for sensorless transition	センサレス切り替え制御の選択
General Speed observer	速度オブザーバ処理の有効/無効を選択し ます。
General Selection of speed observer	速度オブザーバの種類を選択します。
General Control method	コントロール方式の選択(PID or IPD)
Open-Loop Step of d-axis current climbing	d 軸電流指令値加算ステップ [A/msec]
Open-Loop Step of d-axis current descending	d 軸電流指令値減算ステップ [A/msec]
Open-Loop Step of q-axis current descending ratio	q 軸電流指令値減算ステップ [A/msec]
Open-Loop Reference of d-axis current	オープンループ制御時 d 軸電流指令値 [A]
Open-Loop Threshold of speed control descending	d 軸電流指令値減算開始速度(機械角)[rpm]
Open-Loop Threshold of speed control climbing	d 軸電流指令值加算開始速度(機械角)[rpm]
Open-Loop Period between open-loop to BEMF (sec)	センサレス切り替え処理時間 [s]
Open-Loop Phase error(degree) to decide sensor-less switch timing	センサレス制御切り替え可能位相誤差(電気 角) [degree]
Design parameter Speed PI loop omega	速度制御系固有周波数 [Hz]
Design parameter Speed PI loop zeta	速度制御系減衰係数
Design parameter Estimated d-axis HPF omega	d 軸誘起電圧 HPF カットオフ周波数 [Hz]
Design parameter Open-loop damping zeta	オープンループダンピング制御減衰係数
Design parameter Cutoff frequency of phase error LPF	位相誤差 LPF カットオフ周波数 [Hz]
Design parameter Speed observer omega	速度オブザーバカットオフ周波数 [Hz]
Design parameter Speed observer zeta	速度オブザーバ減衰係数
Motor Parameter Pole pairs	極対数
Motor Parameter Resistance (ohm)	抵抗值 [ohm]
Motor Parameter Inductance of d-axis (H)	d 軸インダクタンス [H]
Motor Parameter Inductance of q-axis (H)	q 軸インダクタンス [H]
Motor Parameter Permanent magnetic flux (Wb)	鎖交磁束数 [Wb]
Motor Parameter Rotor inertia (kgm^2)	イナーシャ [kgm^2]

表 10-5 Configuration Options 初期値 [1/2] (rm_motor_speed)

Common Position support - - - - - -	オプション名	RA6T2	RA6T3	RA4T1
General Slep of speed climbing (rpm) 0.5 0.5 1.0	Common Position support	-	-	-
General Maximum rotational speed (rpm) 2400.0 2400.0 2400.0 2400.0 General Speed LPF omega 10.0 10.0 10.0 10.0 10.0 General Step of speed feedback at open-loop 0.2 0.2 0.2 0.2 General Natural frequency 100.0 100.0 100.0 100.0 General Natural frequency 100.0 100.0 100.0 100.0 General Flux weakening Disable	General Speed control period (sec)	0.0005	0.0005	0.001
General Speed LPF omega	General Step of speed climbing (rpm)	0.5	0.5	1.0
General Limit of q-axis current (A)	General Maximum rotational speed (rpm)	2400.0	2400.0	2400.0
General Limit of q-axis current (A)	General Speed LPF omega	10.0	10.0	10.0
General Natural frequency 100.0 100.0 100.0 100.0 General Open-loop damping Enable Enable Enable Enable General Flux weakening Disable Disable Disable Disable Disable General Torque compensation for sensorless Enable E	General Limit of q-axis current (A)	1.67	1.67	1.67
General Natural frequency 100.0 100.0 100.0 100.0 General Open-loop damping Enable Enable Enable Enable General Flux weakening Disable Disable Disable Disable Disable General Torque compensation for sensorless Enable E	General Step of speed feedback at open-loop	0.2	0.2	0.2
General Flux weakening Disable Enable		100.0	100.0	100.0
General Torque compensation for sensorless transition Enable Enable	General Open-loop damping	Enable	Enable	Enable
transition General Speed observer - - - - -	General Flux weakening	Disable	Disable	Disable
General Selection of speed observer - - - -		Enable	Enable	Enable
General Control method	General Speed observer	-	-	-
Open-Loop Step of d-axis current climbing 0.3 0.3 0.6	General Selection of speed observer	-	-	-
Open-Loop Step of d-axis current descending 0.3 0.3 0.6	General Control method	-	-	-
Open-Loop Step of q-axis current descending ratio 1.0	Open-Loop Step of d-axis current climbing	0.3	0.3	0.6
Partio Capen-Loop Reference of d-axis current Capen-Loop Threshold of speed control descending Capen-Loop Threshold of speed control descending Capen-Loop Threshold of speed control climbing Capen-Loop Period between open-loop to BEMF (sec) Capen-Loop Phase error (degree) to decide sensor-less switch timing Capen-Loop Phase error (degree) to decide sensor-less switch timing Capen-Loop Phase error (degree) to decide sensor-less switch timing Capen-Loop Phase error (degree) to decide sensor-less switch timing Capen-Loop Capen-Loop	Open-Loop Step of d-axis current descending	0.3	0.3	0.6
Open-Loop Threshold of speed control descending 500.0 500.0 500.0 Open-Loop Threshold of speed control climbing 400.0 400.0 400.0 Open-Loop Period between open-loop to BEMF (sec) 0.025 0.025 0.025 Open-Loop Phase error(degree) to decide sensor-less switch timing 10.0 10.0 10.0 Design parameter Speed PI loop omega 3.0 3.0 3.0 Design parameter Speed PI loop zeta 1.0 1.0 1.0 Design parameter Open-loop damping zeta 1.0 1.0 1.0 Design parameter Open-loop damping zeta 1.0 10.0 10.0 Design parameter Cutoff frequency of phase error LPF 10.0 10.0 10.0 Design parameter Speed observer omega - - - Design parameter Speed observer zeta - - - Motor Parameter Pole pairs 4 4 4 Motor Parameter Inductance of d-axis (H) 0.0013 0.0013 0.0013 Motor Parameter Inductance of q-axis (H) 0.00119 0.001119 0.01119 <td< td=""><td>1</td><td>1.0</td><td>1.0</td><td>1.0</td></td<>	1	1.0	1.0	1.0
Deelign parameter Cutoff frequency of phase error LPF	Open-Loop Reference of d-axis current	0.3	0.3	0.3
Climbing	1 ' ' '	500.0	500.0	500.0
Open-Loop Period between open-loop to BEMF (sec) 0.025 0.025 0.025 Open-Loop Phase error(degree) to decide sensor-less switch timing 10.0 10.0 10.0 Design parameter Speed PI loop omega 3.0 3.0 3.0 Design parameter Speed PI loop zeta 1.0 1.0 1.0 Design parameter Estimated d-axis HPF omega 2.5 2.5 2.5 Design parameter Open-loop damping zeta 1.0 1.0 1.0 Design parameter Cutoff frequency of phase error LPF 10.0 10.0 10.0 Design parameter Speed observer omega - - - Design parameter Speed observer zeta - - - Motor Parameter Resistance (ohm) 1.3 1.3 1.3 Motor Parameter Inductance of d-axis (H) 0.0013 0.0013 0.0013 Motor Parameter Permanent magnetic flux (Wb) 0.01119 0.01119 0.01119		400.0	400.0	400.0
Open-Loop Phase error(degree) to decide sensor-less switch timing 10.0 10.0 10.0 Design parameter Speed PI loop omega 3.0 3.0 3.0 Design parameter Speed PI loop zeta 1.0 1.0 1.0 Design parameter Estimated d-axis HPF omega 2.5 2.5 2.5 Design parameter Open-loop damping zeta 1.0 1.0 1.0 Design parameter Cutoff frequency of phase error LPF 10.0 10.0 10.0 10.0 Design parameter Speed observer omega - - - - Design parameter Speed observer zeta - - - Motor Parameter Pole pairs 4 4 4 Motor Parameter Inductance of d-axis (H) 0.0013 0.0013 0.0013 Motor Parameter Inductance of q-axis (H) 0.0013 0.0013 0.0013 Motor Parameter Permanent magnetic flux (Wb) 0.01119 0.01119 0.01119	Open-Loop Period between open-loop to	0.025	0.025	0.025
Design parameter Speed PI loop omega 3.0 3.0 3.0 1.0	Open-Loop Phase error(degree) to decide	10.0	10.0	10.0
Design parameter Speed PI loop zeta 1.0 1.0 1.0 Design parameter Estimated d-axis HPF omega 2.5 2.5 2.5 Design parameter Open-loop damping zeta 1.0 1.0 1.0 Design parameter Cutoff frequency of phase error LPF 10.0 10.0 10.0 Design parameter Speed observer omega Design parameter Speed observer zeta Motor Parameter Pole pairs 4 4 4 Motor Parameter Resistance (ohm) 1.3 1.3 1.3 Motor Parameter Inductance of d-axis (H) 0.0013 0.0013 0.0013 Motor Parameter Permanent magnetic flux (Wb) 0.01119 0.01119	-	3.0	3.0	3.0
Design parameter Estimated d-axis HPF omega 2.5 2.5 2.5 Design parameter Open-loop damping zeta 1.0 1.0 1.0 Design parameter Cutoff frequency of phase error LPF 10.0 10.0 10.0 Design parameter Speed observer omega - - - Design parameter Speed observer zeta - - - Motor Parameter Pole pairs 4 4 4 Motor Parameter Resistance (ohm) 1.3 1.3 1.3 Motor Parameter Inductance of d-axis (H) 0.0013 0.0013 0.0013 Motor Parameter Inductance of q-axis (H) 0.0013 0.0013 0.0013 Motor Parameter Permanent magnetic flux (Wb) 0.01119 0.01119 0.01119		+	+	
Design parameter Open-loop damping zeta 1.0 1.0 1.0 Design parameter Cutoff frequency of phase error LPF 10.0 10.0 10.0 Design parameter Speed observer omega - - - Design parameter Speed observer zeta - - - Motor Parameter Pole pairs 4 4 4 Motor Parameter Resistance (ohm) 1.3 1.3 1.3 Motor Parameter Inductance of d-axis (H) 0.0013 0.0013 0.0013 Motor Parameter Inductance of q-axis (H) 0.0013 0.0013 0.0013 Motor Parameter Permanent magnetic flux (Wb) 0.01119 0.01119 0.01119	Design parameter Estimated d-axis HPF	+	+	
Design parameter Cutoff frequency of phase error LPF 10.0 10.0 10.0 Design parameter Speed observer omega - - - Design parameter Speed observer zeta - - - Motor Parameter Pole pairs 4 4 4 Motor Parameter Resistance (ohm) 1.3 1.3 1.3 Motor Parameter Inductance of d-axis (H) 0.0013 0.0013 0.0013 Motor Parameter Inductance of q-axis (H) 0.0013 0.0013 0.0013 Motor Parameter Permanent magnetic flux (Wb) 0.01119 0.01119 0.01119		1.0	1.0	1.0
Design parameter Speed observer omega - - - Design parameter Speed observer zeta - - - Motor Parameter Pole pairs 4 4 4 Motor Parameter Resistance (ohm) 1.3 1.3 1.3 Motor Parameter Inductance of d-axis (H) 0.0013 0.0013 0.0013 Motor Parameter Inductance of q-axis (H) 0.0013 0.0013 0.0013 Motor Parameter Permanent magnetic flux (Wb) 0.01119 0.01119 0.01119	Design parameter Cutoff frequency of phase			
Design parameter Speed observer zeta - - - Motor Parameter Pole pairs 4 4 4 Motor Parameter Resistance (ohm) 1.3 1.3 1.3 Motor Parameter Inductance of d-axis (H) 0.0013 0.0013 0.0013 Motor Parameter Inductance of q-axis (H) 0.0013 0.0013 0.0013 Motor Parameter Permanent magnetic flux (Wb) 0.01119 0.01119 0.01119		-	-	-
Motor Parameter Pole pairs 4 4 4 Motor Parameter Resistance (ohm) 1.3 1.3 1.3 Motor Parameter Inductance of d-axis (H) 0.0013 0.0013 0.0013 Motor Parameter Inductance of q-axis (H) 0.0013 0.0013 0.0013 Motor Parameter Permanent magnetic flux (Wb) 0.01119 0.01119 0.01119			-	-
Motor Parameter Resistance (ohm) 1.3 1.3 1.3 Motor Parameter Inductance of d-axis (H) 0.0013 0.0013 0.0013 Motor Parameter Inductance of q-axis (H) 0.0013 0.0013 0.0013 Motor Parameter Permanent magnetic flux (Wb) 0.01119 0.01119 0.01119		4	4	4
Motor Parameter Inductance of d-axis (H) 0.0013 0.0013 0.0013 Motor Parameter Inductance of q-axis (H) 0.0013 0.0013 0.0013 Motor Parameter Permanent magnetic flux (Wb) 0.01119 0.01119 0.01119		1.3	1.3	1.3
Motor Parameter Inductance of q-axis (H)0.00130.00130.0013Motor Parameter Permanent magnetic flux (Wb)0.011190.011190.01119	. , ,	0.0013	0.0013	0.0013
Motor Parameter Permanent magnetic flux (Wb) 0.01119 0.01119 0.01119				
	Motor Parameter Permanent magnetic flux			
	,	0.000003666	0.000003666	0.000003666

表 10-6 Configuration Options 初期值 [2/2] (rm_motor_speed)

オプション名	RA8T1	RA8T2
Common Position support	-	-
General Speed control period (sec)	0.0005	0.0005
General Step of speed climbing (rpm)	0.5	0.5
General Maximum rotational speed (rpm)	2400.0	2400.0
General Speed LPF omega	10.0	10.0
General Limit of q-axis current (A)	1.67	1.67
General Step of speed feedback at open-loop	0.2	0.2
General Natural frequency	100.0	100.0
General Open-loop damping	Enable	Enable
General Flux weakening	Disable	Disable
General Torque compensation for sensorless transition	Enable	Enable
General Speed observer	-	-
General Selection of speed observer	-	-
General Control method	-	-
Open-Loop Step of d-axis current climbing	0.3	0.3
Open-Loop Step of d-axis current descending	0.3	0.3
Open-Loop Step of q-axis current descending ratio	1.0	1.0
Open-Loop Reference of d-axis current	0.3	0.3
Open-Loop Threshold of speed control descending	500.0	500.0
Open-Loop Threshold of speed control climbing	400.0	400.0
Open-Loop Period between open-loop to BEMF (sec)	0.025	0.025
Open-Loop Phase error(degree) to decide sensor-less switch timing	10.0	10.0
Design parameter Speed PI loop omega	3.0	3.0
Design parameter Speed PI loop zeta	1.0	1.0
Design parameter Estimated d-axis HPF omega	2.5	2.5
Design parameter Open-loop damping zeta	1.0	1.0
Design parameter Cutoff frequency of phase error LPF	10.0	10.0
Design parameter Speed observer omega	-	_
Design parameter Speed observer zeta	-	_
Motor Parameter Pole pairs	4	4
Motor Parameter Resistance (ohm)	1.3	1.3
Motor Parameter Inductance of d-axis (H)	0.0013	0.0013
Motor Parameter Inductance of q-axis (H)	0.0013	0.0013
Motor Parameter Permanent magnetic flux (Wb)	0.01119	0.01119
Motor Parameter Rotor inertia (kgm^2)	0.000003666	0.000003666

10.4 電流制御モジュールの設定パラメータの一覧

電流制御モジュールの設定パラメータ名と初期設定値を以下に示します。

表 10-7 Configuration Options (rm_motor_current)

オプション名	内容
General Shunt type	シャント抵抗をいくつ用いて電流検出を行うかを 選択します。
General Current control decimation	電流制御周期間引き回数
General PWM carrier frequency (kHz)	PWM キャリア周波数 [kHz]
General Input voltage (V)	入力電圧 [V]
General Sample delay compensation	サンプル遅延補償の有効/無効を選択します。
General Period magnification value	電圧誤差補正時の周期倍率
General Voltage error compensation	電圧誤差補償の有効/無効を選択します。
General Voltage error compensation table of voltage 1	電圧の電圧誤差補正テーブル 1
General Voltage error compensation table of voltage 2	電圧の電圧誤差補正テーブル 2
General Voltage error compensation table of voltage 3	電圧の電圧誤差補正テーブル 3
General Voltage error compensation table of voltage 4	電圧の電圧誤差補正テーブル 4
General Voltage error compensation table of voltage 5	電圧の電圧誤差補正テーブル 5
General Voltage error compensation table of current 1	電流の電圧誤差補正テーブル 1
General Voltage error compensation table of current 2	電流の電圧誤差補正テーブル 2
General Voltage error compensation table of current 3	電流の電圧誤差補正テーブル 3
General Voltage error compensation table of current 4	電流の電圧誤差補正テーブル 4
General Voltage error compensation table of current 5	電流の電圧誤差補正テーブル 5
Design Parameter Current PI loop omega	電流制御系固有周波数 [Hz]
Design Parameter Current PI loop zeta	電流制御系減衰係
Motor Parameter Pole pairs	極対数
Motor Parameter Resistance (ohm)	抵抗值 [ohm].
Motor Parameter Inductance of d-axis (H)	d 軸インダクタンス [H].
Motor Parameter Inductance of q-axis (H)	q 軸インダクタンス [H].
Motor Parameter Permanent magnetic flux (Wb)	鎖交磁束数 [Wb].
Motor Parameter Rotor inertia (kgm^2)	イナーシャ [kgm^2].

表 10-8 Configuration Options 初期值 [1/2] (rm_motor_current)

オプション名	RA6T2	RA6T3	RA4T1
General Shunt type	2shunt	2shunt	2shunt
General Current control decimation	0	0	1
General PWM carrier frequency (kHz)	20.0	20.0	20.0
General Input voltage (V)	24.0	24.0	24.0
General Sample delay compensation	Enable	Enable	Enable
General Period magnification value	1.5	1.5	2.0
General Voltage error compensation	Enable	Enable	Enable
General Voltage error compensation table of voltage 1	0.477	0.477	0.477
General Voltage error compensation table of voltage 2	0.742	0.742	0.742
General Voltage error compensation table of voltage 3	0.892	0.892	0.892
General Voltage error compensation table of voltage 4	0.979	0.979	0.979
General Voltage error compensation table of voltage 5	1.009	1.009	1.009
General Voltage error compensation table of current 1	0.021	0.021	0.021
General Voltage error compensation table of current 2	0.034	0.034	0.034
General Voltage error compensation table of current 3	0.064	0.064	0.064
General Voltage error compensation table of current 4	0.158	0.158	0.158
General Voltage error compensation table of current 5	0.400	0.400	0.400
Design Parameter Current PI loop omega	300.0	300.0	300.0
Design Parameter Current PI loop zeta	1.0	1.0	1.0
Motor Parameter Pole pairs	4	4	4
Motor Parameter Resistance (ohm)	1.3	1.3	1.3
Motor Parameter Inductance of d-axis (H)	0.0013	0.0013	0.0013
Motor Parameter Inductance of q-axis (H)	0.0013	0.0013	0.0013
Motor Parameter Permanent magnetic flux (Wb)	0.01119	0.01119	0.01119
Motor Parameter Rotor inertia (kgm^2)	0.000003666	0.000003666	0.000003666

表 10-9 Configuration Options 初期值 [2/2] (rm_motor_current)

オプション名	RA8T1	RA8T2
General Shunt type	2shunt	2shunt
General Current control decimation	0	0
General PWM carrier frequency (kHz)	20.0	20.0
General Input voltage (V)	24.0	24.0
General Sample delay compensation	Enable	Enable
General Period magnification value	1.5	1.5
General Voltage error compensation	Enable	Enable
General Voltage error compensation table of voltage 1	0.477	0.477
General Voltage error compensation table of voltage 2	0.742	0.742
General Voltage error compensation table of voltage 3	0.892	0.892
General Voltage error compensation table of voltage 4	0.979	0.979
General Voltage error compensation table of voltage 5	1.009	1.009
General Voltage error compensation table of current 1	0.021	0.021
General Voltage error compensation table of current 2	0.034	0.034
General Voltage error compensation table of current 3	0.064	0.064
General Voltage error compensation table of current 4	0.158	0.158
General Voltage error compensation table of current 5	0.400	0.400
Design Parameter Current PI loop omega	300.0	300.0
Design Parameter Current PI loop zeta	1.0	1.0
Motor Parameter Pole pairs	4	4
Motor Parameter Resistance (ohm)	1.3	1.3
Motor Parameter Inductance of d-axis (H)	0.0013	0.0013
Motor Parameter Inductance of q-axis (H)	0.0013	0.0013
Motor Parameter Permanent magnetic flux (Wb)	0.01119	0.01119
Motor Parameter Rotor inertia (kgm^2)	0.000003666	0.000003666

10.5 ドライバモジュールの設定パラメータの一覧

ドライバモジュールの設定パラメータ名と初期設定値を以下に示します。

表 10-10 Configuration Options [1/2] (rm_motor_driver)

オプション名	内容
Common ADC_B Support	ADC_B 使用選択
Common Shared ADC support	ADC シェアードモジュール使用選択
Common Supported Motor Number	制御モータ数設定
General Shunt type	電流検出方法選択
General Modulation method	変調方式選択
General PWM output port UP	U 相アッパーアームポート設定
General PWM output port UN	U 相ローワーアームポート設定
General PWM output port VP	V 相アッパーアームポート設定
General PWM output port VN	V 相ローワーアームポート設定
General PWM output port WP	W 相アッパーアームポート設定
General PWM output port WN	W 相ローワーアームポート設定
General PWM Timer Frequency (MHz)	PWM タイマ周波数 [MHz]
General PWM Carrier Period (Microseconds)	PWM キャリア周期 [Micro seconds]
General Dead Time (Raw Counts)	デッドタイムカウント値 [Raw Counts]
General Current Range (A)	電流検出レンジ [A]
General Voltage Range (V)	電圧検出レンジ [V]
General Counts for current offset measurement	オフセット取得時積算回数
General A/D conversion channel for U Phase current	U 相電流検出 A/D チャンネル番号
General A/D conversion channel for W Phase current	W 相電流検出 A/D チャンネル番号
General A/D conversion channel for Main Line Voltage	インバータ母線電圧検出 A/D チャンネル番
	号
General A/D conversion channel for V Phase current	W 相電流検出 A/D チャンネル番号
General A/D conversion channel for sin signal	sin 信号検出 A/D チャンネル番号
General A/D conversion channel for cos signal	cos 信号検出 A/D チャンネル番号
General Using ADC scan group	対応する ADC モジュールのスキャン
	グループ設定を反映します。
General A/D conversion unit for U Phase current	U 相電流検出 ADC ユニット番号
General A/D conversion unit for W Phase current	W 相電流検出 ADC ユニット番号
General A/D conversion unit for main line voltage	インバータ母線電圧検出 ADC ユニット番号
General A/D conversion unit for V Phase current	V 相電流検出 ADC ユニット番号
General A/D conversion unit for sin signal	sin 信号検出 ADC ユニット番号
General A/D conversion unit for cos signal	cos 信号検出 ADC ユニット番号
General ADC interrupt module	割り込みを発生させる ADC モジュール番号
General Adjustment value to current A/D	電流 A/D 調整値(1shunt 用)
General Minimum difference of PWM duty	PWM デューティの最小差(1shunt 用)
General Adjustment delay of A/D conversion	ADC の調整遅延(1shunt 用)
General 1shunt interrupt phase	1shunt 時の A/D 変換相(UVW)
General Input Voltage (V)	インバータ母線電圧入力値
General Resolution of A/D conversion	A/D コンバータ分解能
General Offset of A/D conversion for current	A/D コンバータ入力オフセット
General Conversion level of A/D conversion for voltage	電圧変換レベル(通常は 1.0)

表 10-11 Configuration Options [2/2] (rm_motor_driver)

オプション名	内容
General GTIOCA stop level	上アーム停止時レベル
General GTIOCB stop level	下アーム停止時レベル
Modulation Maximum duty	PWM 最大デューティ
	デッドタイムを除いた最大デューティ

表 10-12 Configuration Options 初期值 [1/4] (rm_motor_driver)

表 10-12 Configuration C	RA6T2	RA6T3	RA4T1
Common ADC_B Support	Enabled	-	-
Common Shared ADC support	Disabled	Disabled	Disabled
Common Supported Motor Number	1	1	1
General Shunt type	2shunt	2shunt	2shunt
General Modulation method	SVPWM	SVPWM	SVPWM
General PWM output port UP	BSP_IO_PORT _11_PIN_04	BSP_IO_PORT _04_PIN_09	BSP_IO_PORT _04_PIN_09
General PWM output port UN	BSP_IO_PORT _11_PIN_05	BSP_IO_PORT _04_PIN_08	BSP_IO_PORT _04_PIN_08
General PWM output port VP	BSP_IO_PORT _11_PIN_06	BSP_IO_PORT _01_PIN_03	BSP_IO_PORT _01_PIN_03
General PWM output port VN	BSP_IO_PORT _11_PIN_07	BSP_IO_PORT _01_PIN_02	BSP_IO_PORT _01_PIN_02
General PWM output port WP	BSP_IO_PORT _11_PIN_08	BSP_IO_PORT _01_PIN_11	BSP_IO_PORT _01_PIN_11
General PWM output port WN	BSP_IO_PORT _11_PIN_09	BSP_IO_PORT _01_PIN_12	BSP_IO_PORT _01_PIN_12
General PWM Timer Frequency (MHz)	120	100	100
General PWM Carrier Period (Microseconds)	50	50	50
General Dead Time (Raw Counts)	240	200	200
General Current Range (A)	16.5	16.5	16.5
General Voltage Range (V)	73.51	73.51	73.51
General Counts for current offset measurement	500	500	500
General A/D conversion channel for U Phase current	4	0	0
General A/D conversion channel for W Phase current	0	2	2
General A/D conversion channel for Main Line Voltage	Ver.1: 6 Ver.2: 7	4	4
General A/D conversion channel for V Phase current	-	-	-
General A/D conversion channel for sin signal	-	-	-
General A/D conversion channel for cos signal	-	-	-
General Using ADC scan group	0	-	-

表 10-13 Configuration Options 初期值 [2/4] (rm_motor_driver)

オプション名	RA8T1	RA8T2
	NAOTI	
Common ADC_B Support	-	Enabled
Common Shared ADC support	Disabled	Disabled
Common Supported Motor Number	1	1
General Shunt type	2shunt	2shunt
General Modulation method	SVPWM	SVPWM
General PWM output port UP	BSP_IO_PORT	BSP_IO_PORT
	_01_PIN_15	_06_PIN_05
General PWM output port UN	BSP_IO_PORT	BSP_IO_PORT
	_06_PIN_09	_06_PIN_04
General PWM output port VP	BSP_IO_PORT	BSP_IO_PORT
	_01_PIN_13	_06_PIN_03
General PWM output port VN	BSP_IO_PORT	BSP_IO_PORT
	_01_PIN_14	_06_PIN_02
General PWM output port WP	BSP_IO_PORT	BSP_IO_PORT
	_03_PIN_00	_06_PIN_12
General PWM output port WN	BSP_IO_PORT	BSP_IO_PORT
	_01_PIN_12	_06_PIN_13
General PWM Timer Frequency (MHz)	120	250
General PWM Carrier Period	50	50
(Microseconds)		
General Dead Time (Raw Counts)	240	500
General Current Range (A)	16.5	16.5
General Voltage Range (V)	73.51	73.51
General Counts for current offset	500	500
measurement		
General A/D conversion channel for U	0	6
Phase current		
General A/D conversion channel for W	2	10
Phase current		
General A/D conversion channel for	8	7
Main Line Voltage		
General A/D conversion channel for V	-	-
Phase current		
General A/D conversion channel for sin	-	-
signal		
General A/D conversion channel for cos	-	-
signal		
General Using ADC scan group	-	0

表 10-14 Configuration Options 初期値 [3/4] (rm motor driver)

General A/D conversion unit for U Phase current General A/D conversion unit for W Phase current General A/D conversion unit for main line voltage General A/D conversion unit for V Phase current General A/D conversion unit for V Phase current General A/D conversion unit for sin signal General A/D conversion unit for cos signal General ADC interrupt module - 1st 1st General Adjustment value to current A/D		puons 初期恒 [3/4]	<u> </u>	DA 4T4
Current General A/D conversion unit for W Phase current General A/D conversion unit for main line voltage General A/D conversion unit for V Phase current General A/D conversion unit for sin signal General A/D conversion unit for cos signal General A/D conversion unit for cos signal General ADC interrupt module General Adjustment value to current A/D	オプション名	RA6T2	RA6T3	RA4T1
General A/D conversion unit for W Phase current General A/D conversion unit for main line voltage General A/D conversion unit for V Phase current General A/D conversion unit for V Phase current General A/D conversion unit for sin signal General A/D conversion unit for cos signal General A/D conversion unit for cos	·	-	0	0
Phase current General A/D conversion unit for main line voltage General A/D conversion unit for V Phase current General A/D conversion unit for sin signal General A/D conversion unit for cos signal General A/D conversion unit for cos signal General ADC interrupt module General Adjustment value to current A/D General Minimum difference of PWM duty General Adjustment delay of A/D conversion General 1shunt interrupt phase - 0	2 311 2 211			
General A/D conversion unit for main line voltage General A/D conversion unit for V Phase current General A/D conversion unit for sin signal General A/D conversion unit for cos signal General ADC interrupt module General Adjustment value to current A/D General Minimum difference of PWM duty General Adjustment delay of A/D conversion General 1 shunt interrupt phase - 0		-	0	0
Voltage General A/D conversion unit for V Phase current General A/D conversion unit for sin signal General A/D conversion unit for cos signal General ADC interrupt module General Adjustment value to current A/D General Minimum difference of PWM duty General Adjustment delay of A/D conversion General 1 shunt interrupt phase				
General A/D conversion unit for V Phase current General A/D conversion unit for sin signal General A/D conversion unit for cos signal General ADC interrupt module General Adjustment value to current A/D General Minimum difference of PWM duty General Adjustment delay of A/D conversion General 1shunt interrupt phase	General A/D conversion unit for main line	-	0	0
current General A/D conversion unit for sin signal -	•			
General A/D conversion unit for sin signal General A/D conversion unit for cos signal General ADC interrupt module General Adjustment value to current A/D General Minimum difference of PWM duty General Adjustment delay of A/D	General A/D conversion unit for V Phase	-	-	-
signal - <td>current</td> <td></td> <td></td> <td></td>	current			
General A/D conversion unit for cos signal General ADC interrupt module General Adjustment value to current A/D General Minimum difference of PWM duty General Adjustment delay of A/D conversion General 1shunt interrupt phase	General A/D conversion unit for sin	-	-	-
signal - 1st 1st General Adjustment value to current A/D - - - General Minimum difference of PWM duty - - - General Adjustment delay of A/D conversion - - - General 1shunt interrupt phase - - -	signal			
General ADC interrupt module - 1st 1st General Adjustment value to current A/D - - - General Minimum difference of PWM duty - - - General Adjustment delay of A/D conversion - - - General 1shunt interrupt phase - - -	General A/D conversion unit for cos	-	-	-
General Adjustment value to current A/D	signal			
General Minimum difference of PWM	General ADC interrupt module	-	1st	1st
duty	General Adjustment value to current A/D	-	•	-
General Adjustment delay of A/D	General Minimum difference of PWM	-	-	-
conversion	duty			
General 1shunt interrupt phase	General Adjustment delay of A/D	-	-	-
	conversion			
	General 1shunt interrupt phase	-	-	-
General Input Voltage (V) 24.0 24.0 24.0	General Input Voltage (V)	24.0	24.0	24.0
General Resolution of A/D conversion	General Resolution of A/D conversion	0xFFF	0xFFF	0xFFF
General Offset of A/D conversion for	General Offset of A/D conversion for	0x7FF	0x7FF	0x7FF
current	current			
General Conversion level of A/D 1.0 1.0 1.0	General Conversion level of A/D	1.0	1.0	1.0
conversion for voltage	conversion for voltage			
General GTIOCA stop level Pin Level Low Pin Level Low Pin Level Low	General GTIOCA stop level	Pin Level Low	Pin Level Low	Pin Level Low
General GTIOCB stop level Pin Level High Pin Level High Pin Level High	General GTIOCB stop level	Pin Level High	Pin Level High	Pin Level High
Modulation Maximum duty 0.9375 0.9375	Modulation Maximum duty	0.9375	0.9375	0.9375

表 10-15 Configuration Options 初期値 [4/4] (rm motor driver)

AX 10-13 Configuration Options 1973		JI_dilvel)
オプション名	RA8T1	RA8T2
General A/D conversion unit for U Phase	0	-
current		
General A/D conversion unit for W	0	-
Phase current		
General A/D conversion unit for main line	0	-
voltage		
General A/D conversion unit for V Phase	-	-
current		
General A/D conversion unit for sin	-	-
signal		
General A/D conversion unit for cos	-	-
signal		
General ADC interrupt module	1st	-
General Adjustment value to current A/D	-	-
General Minimum difference of PWM	-	-
duty		
General Adjustment delay of A/D	-	-
conversion		
General 1shunt interrupt phase	-	-
General Input Voltage (V)	24.0	24.0
General Resolution of A/D conversion	0xFFF	0xFFF
General Offset of A/D conversion for	0x7FF	0x7FF
current		
General Conversion level of A/D	1.0	1.0
conversion for voltage		
General GTIOCA stop level	Pin Level Low	Pin Level Low
General GTIOCB stop level	Pin Level High	Pin Level High
Modulation Maximum duty	0.9375	0.9375

10.6 角度/速度推定モジュールの設定パラメータの一覧

角度/速度推定モジュールの設定パラメータ名と初期設定値を以下に示します。

表 10-16 Configuration Options (rm_motor_estimate)

オプション名	内容
Motor Parameter Pole pairs	極対数
Motor Parameter Resistance (ohm)	抵抗值 [ohm]
Motor Parameter Inductance of d-axis (H)	d 軸インダクタンス [H]
Motor Parameter Inductance of q-axis (H)	q 軸インダクタンス [H]
Motor Parameter Permanent magnetic flux (Wb)	鎖交磁束数 [Wb]
Motor Parameter Rotor inertia (kgm^2)	イナーシャ [kgm^2]
Motor Parameter Nominal current (Arms)	公称電流[Arms]
Open-loop damping	オープンループダンピング制御の選択
Natural frequency of BEMF observer	誘起電圧推定系固有周波数[Hz]
Damping ratio of BEMF observer	誘起電圧推定系減衰係数
Natural frequency of PLL Speed estimate loop	位置推定系固有周波数[Hz]
Damping ratio of PLL Speed estimate loop	位置推定系減衰係数
Control period	電流制御周期 [sec]

表 10-17 Configuration Options 初期值 [1/2] (rm_motor_estimate)

オプション名	RA6T2	RA6T3	RA4T1
Motor Parameter Pole pairs	4	4	4
Motor Parameter Resistance (ohm)	1.3	1.3	1.3
Motor Parameter Inductance of d-axis (H)	0.0013	0.0013	0.0013
Motor Parameter Inductance of q-axis (H)	0.0013	0.0013	0.0013
Motor Parameter Permanent magnetic flux (Wb)	0.01119	0.01119	0.01119
Motor Parameter Rotor inertia (kgm^2)	0.000003666	0.000003666	0.000003666
Motor Parameter Nominal current (Arms)	1.67	1.67	1.67
Open-loop damping	Enable	Enable	Enable
Natural frequency of BEMF observer	1000.0	1000.0	1000.0
Damping ratio of BEMF observer	1.0	1.0	1.0
Natural frequency of PLL Speed estimate loop	20.0	20.0	20.0
Damping ratio of PLL Speed estimate loop	1.0	1.0	1.0
Control period	0.00005	0.00005	0.0001

表 10-18 Configuration Options 初期值 [2/2] (rm_motor_estimate)

オプション名	RA8T1	RA8T2
Motor Parameter Pole pairs	4	4
Motor Parameter Resistance (ohm)	1.3	1.3
Motor Parameter Inductance of d-axis (H)	0.0013	0.0013
Motor Parameter Inductance of q-axis (H)	0.0013	0.0013
Motor Parameter Permanent magnetic flux (Wb)	0.01119	0.01119
Motor Parameter Rotor inertia (kgm^2)	0.000003666	0.000003666
Motor Parameter Nominal current (Arms)	1.67	1.67
Open-loop damping	Enable	Enable
Natural frequency of BEMF observer	1000.0	1000.0
Damping ratio of BEMF observer	1.0	1.0
Natural frequency of PLL Speed estimate loop	20.0	20.0
Damping ratio of PLL Speed estimate loop	1.0	1.0
Control period	0.00005	0.00005

10.7 保護関連パラメータ

rm_motor_sensorless/Limit of over current

過電流保護が動作する電流を設定します。「入力値*sqrt(2)*1.5」が設定されます。

rm_motor_sensorless/Limit of over voltage

過電圧保護が動作する電圧を設定します。使用する電源環境に合わせて設定してください。

rm_motor_sensorless/Limit of low voltage

低電圧保護が動作する電圧を設定します。使用する電源環境に合わせて設定してください。

10.8 PWM キャリア周波数の変更

PWM キャリア周波数の変更は以下の設定値を変更します。

rm_motor_driver/PWM Carrier Period キャリア制御周期を設定します。

rm_motor_current/PWM carrier frequency

キャリア周波数を設定します。

rm motor estimate/Control period

キャリア制御周期を設定します。

10.9 パルス変調方法の設定

本サンプルプログラムでは、パルス幅変調駆動方式を2種類から設定することができます。デフォルトは空間ベクトル変調(MOD_METHOD_SVPWM)となります。方式はドライバモジュールの Modulation method オプションにより設定できます。

パルス幅変調駆動方式を、正弦波変調に変更した場合、電圧利用率が86%に制約され、モータに適切な電圧が出力できず、所望の電圧を得るにはインバータ母線電圧を高く設定する必要があります。空間ベクトル変調を使用した場合、電圧利用率はインバータ母線電圧に対して100%利用できます。

rm_motor_driver/Maximum duty

最大 PWM デューティ比。通常は 0.9375 のままとしてください

10.10 インバータパラメータ

10.10.1 デッドタイム

rm_motor_driver/Dead Time (Raw Counts)

インバータボードの仕様書・設計書に記載された、デッドタイム時間をタイマのカウント数で指定してください。例えばタイマクロックが 120MHz の場合 2.0µs では 240 となります。

10.10.2 電流検出ゲイン

rm motor driver/Current Range (A)

電流の検出レンジを設定します。0-3.3V で±8.25A(Peak to Peak で 16.5A)の換算となっているのが MCI-LV-1 の仕様です。Peak to Peak の値を設定してください。

表 10-19 MCI-LV-1 の電流信号仕様

3 相出力電流値	ADC 入力電圧値	ADC 変換値
+8.25A	3.3V	4095
0A	1.65V	2047
-8.25A	0V	0

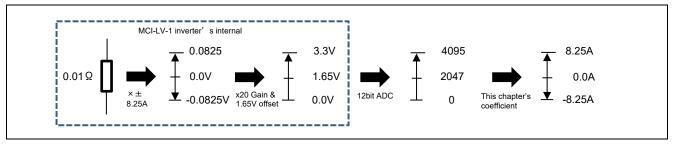


図 10-1 電流検出の計算の流れ

10.10.3 電圧検出ゲイン

rm_motor_driver/Voltage Range (V)

ADC 電圧の最大値(ADC 変換値 4095)のとき、インバータ母線電圧で何 V に相当するかを求める係数を設定します。MCI-LV-1 では ADC 電圧 3.3V で 73.51V に相当するため、73.51 を設定します。

表 10-20 MCI-LV-1 のインバータ母線電圧信号仕様

インバータ母線電圧値	ADC 入力電圧値	ADC 変換値
OV	0V	0
73.51V	3.3V	4095

10.10.4 電圧誤差補償テーブル

実機のインバータで、電流を流したスイッチング試験を行うか、デッドタイムとキャリア周期の関係から求まるデッドタイム分の電圧誤差値を用いて、電圧補償テーブルを作成します。スイッチング試験で得られた電流と電圧の関係が求めると、より効果的な電圧補償テーブルに設定可能な値が得られます。

また、補償電圧値のリミットは以下の式で計算できます。

補償電圧リミット = (キャリア周期 [kHz] × デッドタイム時間 [μ s] ÷ 1000) × インバータ母線電圧値

ゼロクロス付近の傾斜は、Iu と Vu(Iv-Vv, Iw-Vw)の関係が実験的に得られない場合は、上記の式と、主回路の特性を考慮して机上計算し、テーブルを求める必要があります。

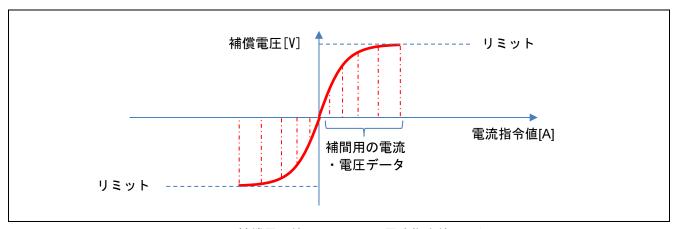


図 10-2 補償電圧値とリミット、電流指令値の関係

No.	rm_motor_current/Voltage error compensation table of current	rm_motor_current/Voltage error compensation table of voltage
0	0.477	0.021
1	0.742	0.034
2	0.892	0.064
3	0.979	0.158
4	1.009	0.400

表 10-21 補間用の電流・電圧データ設定例

10.11 モータパラメータ

モータの製造メーカから、モータパラメータの情報が得られない場合、LCR メータを用いて R,Ld,Lq の モータパラメータを簡易的に得ることができます。また、オシロスコープを用いることで、簡易的に誘起電 圧を得ることができます。ここで説明した方法は、磁気飽和などを考慮せず、またモータを速やかに回す事を考慮した、簡易的な方法であり、個体差や測定誤差を含んでいます。このため、実際の製品開発でパラメータを使用する際には、精度を担保した測定設備を用いて測定を行ってください。

LCR メータは、定期的に校正をされたもので、電源を起動して 30 分以上経過させたウォーミングアップ 完了状態で測定してください。また、4 端子法を用いて、プローブの誤差を低減するため、オープン補正と ショート補正をあらかじめ行ってください。詳細は、LCR メータの取扱説明書を参照してください。

Pole pairs

モータの極対数を設定します。極対数は、極数を 1/2 した値となります。モータの仕様書を参照してください。

Resistance

LCR メータで測定する際の配線は、モータの三相出力線 U,V,W のうち、2つを選び、プローブをつなげてください。抵抗値を求める場合は、直流抵抗(DCR)のモードを用いて、測定します。得られた抵抗値は、2相分の合成抵抗となっていますので、1/2 をすることで、1 相分のモータの抵抗値を得ることができます。得られた抵抗 R を各モジュールのモータパラメータの抵抗値に設定してください。単位は Ω となります。

Inductance of d-axis, Inductance of q-axis

LCR メータで測定する際の配線は、モータの三相出力線 U,V,W のうち、2 つを選び、プローブをつなげてください。計測モードは、直列等価回路モード(Ls)で行います。詳細な測定方法は、LCR メータの取扱説明書を参照ください。

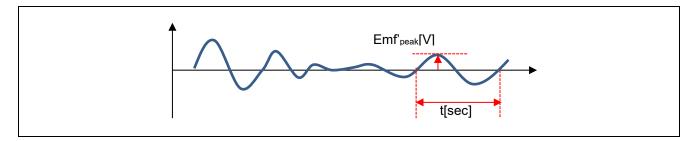
軸をゆっくり回し、表示されるインダクタンスの最大値と最小値をメモします。このとき、最大値の 1/2 が、Lq となり、最小値の 1/2 の値が Ld となります。

得られた Ld 及び Lq を各モジュールの d/q 軸インダクタンスに設定してください。単位は $H(\sim)$ ー)です。

Rotor inertia

モータの回転子・軸のイナーシャ(慣性モーメント)を設定します。単位は、kg m²です。通常、モータに添付された資料に記述があります。負荷を取り付ける場合には、負荷側のイナーシャも加えて設定してください。

Nominal current


モータの定格電流(実効値)を設定してください。単位はアンペアです。モータの銘板または添付資料に記載されています。

Permanent magnetic flux

モータの三相出力線 U,V,W のうち、2 つを選び、オシロスコープにつなげてください。例えば、U 相と V 相を、オシロスコープのプローブを当てて、電圧を測れるようにします。モータの軸の先には、定格速度で回転できるモータを繋げて定格速度で回転させると、U-V 相の線間電圧値が得られます。線間電圧値を $\sqrt{3}$ で割ることで、相あたりの誘起電圧のピーク値が得られます。鎖交磁束数 Ψ は、誘起電圧= ω Ψ の式から求められますから、定格速度を電気角速度の周波数 f[Hz]に換算し、 ω =2 π f に置き換え、誘起電圧=2 π f Ψ となり、式を変形し、値を代入することで鎖交磁束 Ψ [Wb]が得られます。

RENESAS

軸の先にモータを取り付けできないなどの場合には、精度は保証されず、試運転目的のみでの利用となりますが、手で素早く回転させ、電圧波形を取得して簡易的に求める手法も使用できます。手で回した際に、以下のようなイメージで電圧波形が得られますが、このとき、正弦波で一定速に近い周期を選び、電圧のピークと周期を求めます。

本アルゴリズムではピーク値を実効値に換算する必要があるため√2で割って実効値 Emf'ms を得ます。

$$\text{Emf'}_{\text{rms}}[V] = \text{Emf'}_{\text{peak}}[V] \times \frac{1}{\sqrt{2}}$$

得られた時間 t[sec]を Hz に直すため、f=1/t の式にあてはめます。得られた f[Hz]と、この IPM モータの 定格速度から得られる電気角周波数[Hz]の比を求め、同時に得られた電圧 $Emf'_{rms}[V]$ に比を掛け算します。

$$Emf[V] = Emf'_{rms}[V] \times \frac{$$
電気角周波数[Hz]}{f'[Hz]}

この結果、このモータの定格速度で回転した時に発生する、誘起電圧[V]が簡易的に求められます。実際に誘起電圧を求める場合には、負荷試験装置を使い、定格速度でモータの軸を回転させて測定する必要があります。

次に誘起電圧から、鎖交磁束数Ψ[Wb]を求めます。一般的に、誘起電圧と鎖交磁束数には以下のような関係式があります。f は、定格速度時の電気角周波数[Hz]です。

$$\text{Emf}[V] = \omega \Psi = 2\pi f \Psi$$

式を変形し、上記で得られた誘起電圧 Emf[V]と、定格速度運転時の電気角周波数[Hz]を代入することで、鎖交磁束数 $\Psi[Wb]$ を求められます。

$$\Psi = \frac{\text{Emf[V]}}{2\pi f}$$

得られた鎖交磁束数Ψは各モジュールの Magnetic Flux に設定してください。

10.12 電流制御パラメータ

rm_motor_current/Current PI loop omega, rm_motor_current/Current PI loop zeta

電流制御系固有周波数 Current PI loop omega と電流制御系減衰係数 Current PI loop zeta を調整して制御のゲインを調整します。電流制御系固有周波数は、電流制御を行う頻度に比例して設定してください。電流制御周波数 (PWM キャリア周波数) の約 1/10 まで設定できますが、位置検出と電流検出のノイズなどを考慮し、マージンを設けて低く設定する場合が多くあります。

たとえば、電流制御周波数が 20kHz(50µs 間隔で電流制御が動作)のときは、1/10 まで設定できますので、電流制御系固有周波数は 2kHz を指定できます。しかし、実際には、モータのパラメータの電気定数に起因して、固有周波数が高いと敏感に反応しすぎる場合があり、2kHz よりも下の周波数(たとえば 300Hz~1kHz)程度に設定することが多いです。

電流制御系減衰係数は、0.7~1.0が常用範囲です。1.0に近いほど安定で緩やかな応答になります。

10.13 速度制御パラメータ

rm motor speed/Speed PI loop omega, rm motor speed/Speed PI loop zeta

速度制御モジュールでは、速度制御系固有周波数 Speed PI loop omega と速度制御系減衰係数 Speed PI loop zeta を調整して制御のゲインを調整します。速度制御系固有周波数を高くすると、応答性が向上し指令速度に対する速度の追従性が向上します。速度制御系固有周波数は電流制御との干渉を防ぐため、設定できる上限が電流制御系の固有周波数の 1/3 となっています。電流制御系の固有周波数が 500Hz であった場合には、500Hz/3=166Hz となります。しかし、当センサレスベクトルサンプルプログラムでは、エンコーダを使用せずに速度の推定を行っている関係上、Natural frequency of PLL Speed estimate loop で設定している固有周波数より低い周波数を設定してください。たとえば、外乱が固有周波数より高めで振動する場合には、固有周波数の値を外乱に合わせて増やすことで、外乱の振動への追従性がよくなり、デフォルト設定よりも安定して動く場合があります。

速度制御系減衰係数は 0.7~1.0 は常用範囲とし、値 1 に近いほど安定で緩やかな応答になります。速度の応答を確認しながら調整を行ってください。

rm motor speed/Step of speed climbing

速度指令値を設定した時に、速度が上昇するスピード(加速度)を設定します。値を大きくすると、早く 速度が上昇します。1 を指定した時、速度制御周期ごとに 1rpm、上昇します。

10.14 電圧位相進み補償パラメータ

rm motor current/Period magnification value

電流検出タイミングを基準として、実際に PWM が出力されるタイミングまで角度を進ませるための補償値です。

RENESAS

11. 制御フロー (フローチャート)

11.1 メイン処理

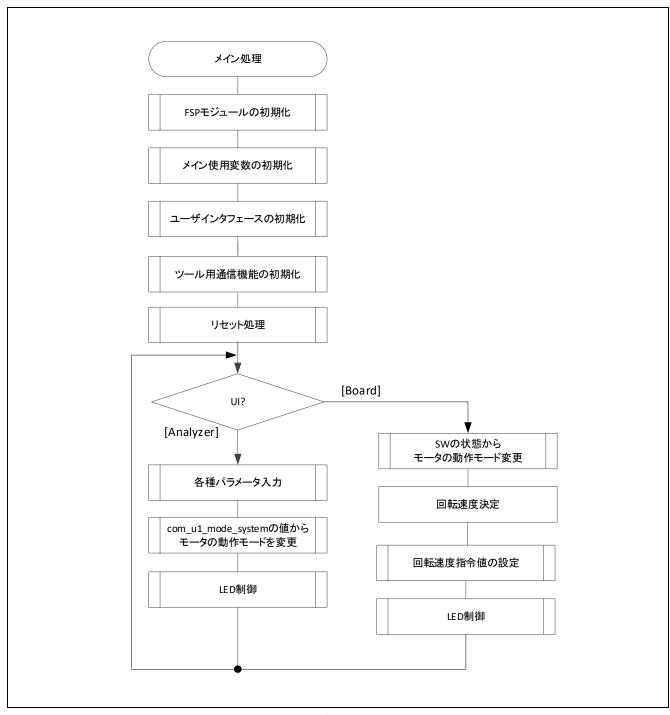


図 11-1 メイン処理フローチャート

11.2 電流制御周期割り込み処理

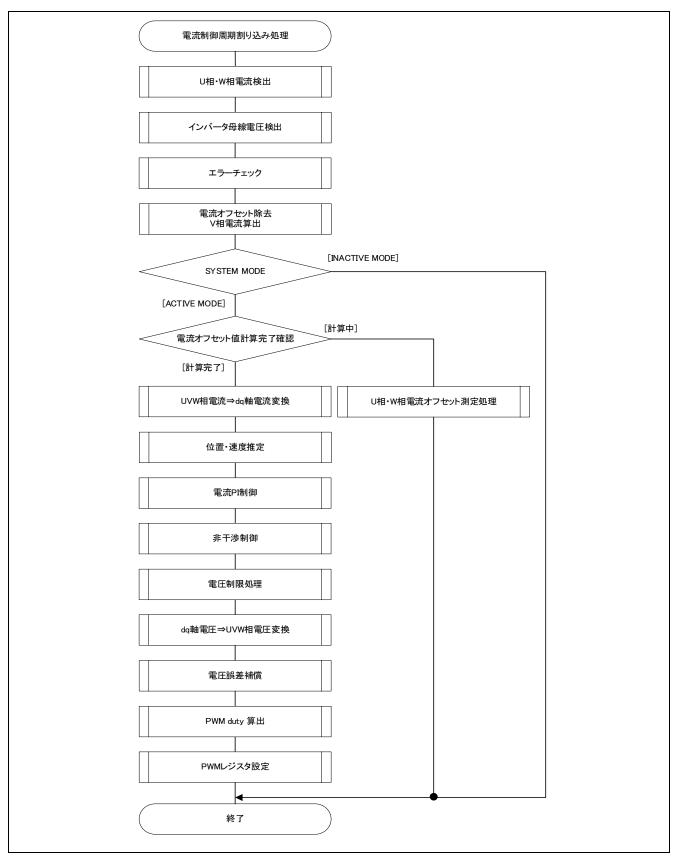


図 11-2 電流制御周期割り込み処理フローチャート

11.3 速度制御周期割り込み処理

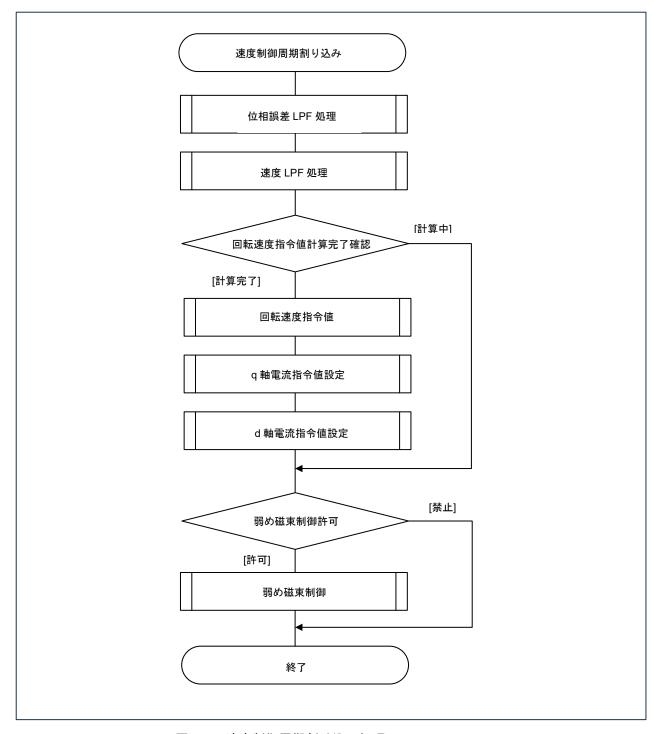


図 11-3 速度制御周期割り込み処理フローチャート

11.4 過電流検出割り込み処理

過電流検出割り込みは、サンプルソフトウェアにおける PWM 出力端子のハイインピーダンス制御条件で発生する割り込みです。そのため、本割り込み処理の実行開始時点では既に PWM 出力端子はハイインピーダンス状態になっており、モータへの出力は停止しています。

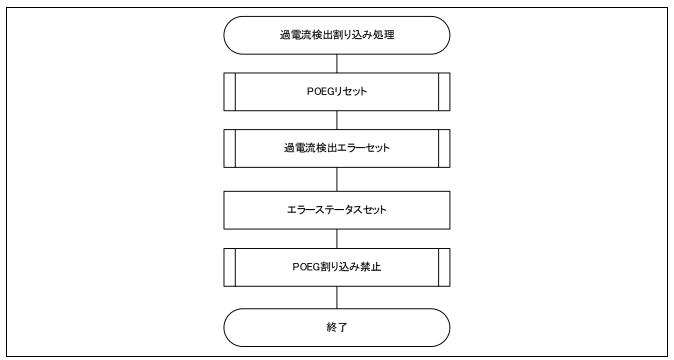


図 11-4 過電流検出割り込み処理フローチャート

12. FAQ

12.1 こんなときは

代表的な現象と、その解決例を表 12-1 に示します。

表 12-1 現象と回答の一覧

現象	回答
負荷を掛けると、モータが	モータが脱調しています。制御不能状態ですので、速やかに停止してくだ
設定以外の速度で回り続け	さい。
てしまう	モータパラメータや、制御パラメータが不適切であること、ハードウェア
	の性能上の制約で、制御できない場合があります。設計の見直しを行って
	ください。
エラーで停止後、モータを	6.7 c)を参照してください。エラーからの復帰方法が説明されています。
回転できない	
運転開始を行っても、エ	6.7 c)を参照してエラー要因を確認してください。エラー要因に関連する
ラーで停止してしまう	設定を確認してください。
RMW から値を設定して	com_u1_enable_write の変数操作で、パラメータを書き換えます。
も、反映されない	com_u1_enable_write への数値の書き換えタイミングが、パラメータの書
	き込みより先の場合、内部の反映処理が先に動作します。以下のように対
	応してください。
	com_u1_enable_write を最後の行に置く
	com_u1_enable_write の書き込みを2回行う、または、トグル書込みする

12.2 よくある質問

12.2.1 RMW に表示される変数の値が異常となってしまう

サンプルプログラムの変更を行った場合、ビルド後に src/application/rmw フォルダー内に生成される Mapファイルを RMW に登録し、サンプルプログラムの変数状態を更新する作業が必要です。この作業を省略した場合、変数が正しく表示できない場合があります。詳細は、6.5 を参照ください。

改訂記録

		改訂内容	
Rev.	発行日	ページ	ポイント
1.00	2023.5.23	-	初版発行
1.10	2024.1.23	-	RA8T1 関連記述追加
1.11	2024.12.23	-	対象プロジェクト更新
1.20	2025.9.2	-	・RA8T2 追加
			・章立てを更新
1.21	2025.10.31	-	・RA6T2 Ver.2 追加
			・誤記修正

製品ご使用上の注意事項

ここでは、マイコン製品全体に適用する「使用上の注意事項」について説明します。個別の使用上の注意事項については、本ドキュメントおよびテクニカルアップデートを参照してください。

1. 静雷気対策

CMOS 製品の取り扱いの際は静電気防止を心がけてください。CMOS 製品は強い静電気によってゲート絶縁破壊を生じることがあります。運搬や保存の際には、当社が出荷梱包に使用している導電性のトレーやマガジンケース、導電性の緩衝材、金属ケースなどを利用し、組み立て工程にはアースを施してください。プラスチック板上に放置したり、端子を触ったりしないでください。また、CMOS 製品を実装したボードについても同様の扱いをしてください。

2. 電源投入時の処置

電源投入時は、製品の状態は不定です。電源投入時には、LSIの内部回路の状態は不確定であり、レジスタの設定や各端子の状態は不定です。外部 リセット端子でリセットする製品の場合、電源投入からリセットが有効になるまでの期間、端子の状態は保証できません。同様に、内蔵パワーオン リセット機能を使用してリセットする製品の場合、電源投入からリセットのかかる一定電圧に達するまでの期間、端子の状態は保証できません。

3. 電源オフ時における入力信号

当該製品の電源がオフ状態のときに、入力信号や入出力プルアップ電源を入れないでください。入力信号や入出力プルアップ電源からの電流注入により、誤動作を引き起こしたり、異常電流が流れ内部素子を劣化させたりする場合があります。資料中に「電源オフ時における入力信号」についての記載のある製品は、その内容を守ってください。

4. 未使用端子の処理

未使用端子は、「未使用端子の処理」に従って処理してください。CMOS製品の入力端子のインピーダンスは、一般に、ハイインピーダンスとなっています。未使用端子を開放状態で動作させると、誘導現象により、LSI周辺のノイズが印加され、LSI内部で貫通電流が流れたり、入力信号と認識されて誤動作を起こす恐れがあります。

5. クロックについて

リセット時は、クロックが安定した後、リセットを解除してください。プログラム実行中のクロック切り替え時は、切り替え先クロックが安定した後に切り替えてください。リセット時、外部発振子(または外部発振回路)を用いたクロックで動作を開始するシステムでは、クロックが十分安定した後、リセットを解除してください。また、プログラムの途中で外部発振子(または外部発振回路)を用いたクロックに切り替える場合は、切り替え先のクロックが十分安定してから切り替えてください。

6. 入力端子の印加波形

入力ノイズや反射波による波形歪みは誤動作の原因になりますので注意してください。CMOS 製品の入力がノイズなどに起因して、V_L (Max.) から V_H (Min.) までの領域にとどまるような場合は、誤動作を引き起こす恐れがあります。入力レベルが固定の場合はもちろん、V_L (Max.) から V_H (Min.) までの領域を通過する遷移期間中にチャタリングノイズなどが入らないように使用してください。

7. リザーブアドレス(予約領域)のアクセス禁止

リザーブアドレス(予約領域)のアクセスを禁止します。アドレス領域には、将来の拡張機能用に割り付けられている リザーブアドレス (予約領域) があります。これらのアドレスをアクセスしたときの動作については、保証できませんので、アクセスしないようにしてください。

8. 製品間の相違について

型名の異なる製品に変更する場合は、製品型名ごとにシステム評価試験を実施してください。同じグループのマイコンでも型名が違うと、フラッシュメモリ、レイアウトパターンの相違などにより、電気的特性の範囲で、特性値、動作マージン、ノイズ耐量、ノイズ幅射量などが異なる場合があります。型名が違う製品に変更する場合は、個々の製品ごとにシステム評価試験を実施してください。

ご注意書き

- 1. 本資料に記載された回路、ソフトウェアおよびこれらに関連する情報は、半導体製品の動作例、応用例を説明するものです。回路、ソフトウェアおよびこれらに関連する情報を使用する場合、お客様の責任において、お客様の機器・システムを設計ください。これらの使用に起因して生じた損害 (お客様または第三者いずれに生じた損害も含みます。以下同じです。)に関し、当社は、一切その責任を負いません。
- 2. 当社製品または本資料に記載された製品データ、図、表、プログラム、アルゴリズム、応用回路例等の情報の使用に起因して発生した第三者の特許 権、著作権その他の知的財産権に対する侵害またはこれらに関する紛争について、当社は、何らの保証を行うものではなく、また責任を負うもので はありません。
- 3. 当社は、本資料に基づき当社または第三者の特許権、著作権その他の知的財産権を何ら許諾するものではありません。
- 4. 当社製品を組み込んだ製品の輸出入、製造、販売、利用、配布その他の行為を行うにあたり、第三者保有の技術の利用に関するライセンスが必要となる場合、当該ライセンス取得の判断および取得はお客様の責任において行ってください。
- 5. 当社製品を、全部または一部を問わず、改造、改変、複製、リバースエンジニアリング、その他、不適切に使用しないでください。かかる改造、改変、複製、リバースエンジニアリング等により生じた損害に関し、当社は、一切その責任を負いません。
- 6. 当社は、当社製品の品質水準を「標準水準」および「高品質水準」に分類しており、各品質水準は、以下に示す用途に製品が使用されることを意図 しております。

標準水準: コンピュータ、OA 機器、通信機器、計測機器、AV 機器、家電、工作機械、パーソナル機器、産業用ロボット等

高品質水準:輸送機器(自動車、電車、船舶等)、交通制御(信号)、大規模通信機器、金融端末基幹システム、各種安全制御装置等 当社製品は、データシート等により高信頼性、Harsh environment 向け製品と定義しているものを除き、直接生命・身体に危害を及ぼす可能性のある 機器・システム(生命維持装置、人体に埋め込み使用するもの等)、もしくは多大な物的損害を発生させるおそれのある機器・システム(宇宙機器 と、海底中継器、原子力制御システム、航空機制御システム、プラント基幹システム、軍事機器等)に使用されることを意図しておらず、これらの 用途に使用することは想定していません。たとえ、当社が想定していない用途に当社製品を使用したことにより損害が生じても、当社は一切その責 任を負いません。

- 7. あらゆる半導体製品は、外部攻撃からの安全性を 100%保証されているわけではありません。当社ハードウェア/ソフトウェア製品にはセキュリティ対策が組み込まれているものもありますが、これによって、当社は、セキュリティ脆弱性または侵害(当社製品または当社製品が使用されているシステムに対する不正アクセス・不正使用を含みますが、これに限りません。) から生じる責任を負うものではありません。当社は、当社製品または当社製品が使用されたあらゆるシステムが、不正な改変、攻撃、ウイルス、干渉、ハッキング、データの破壊または窃盗その他の不正な侵入行為(「脆弱性問題」といいます。)によって影響を受けないことを保証しません。当社は、脆弱性問題に起因しまたはこれに関連して生じた損害について、一切責任を負いません。また、法令において認められる限りにおいて、本資料および当社ハードウェア/ソフトウェア製品について、商品性および特定目的との合致に関する保証ならびに第三者の権利を侵害しないことの保証を含め、明示または黙示のいかなる保証も行いません。
- 8. 当社製品をご使用の際は、最新の製品情報(データシート、ユーザーズマニュアル、アプリケーションノート、信頼性ハンドブックに記載の「半導体デバイスの使用上の一般的な注意事項」等)をご確認の上、当社が指定する最大定格、動作電源電圧範囲、放熱特性、実装条件その他指定条件の範囲内でご使用ください。指定条件の範囲を超えて当社製品をご使用された場合の故障、誤動作の不具合および事故につきましては、当社は、一切その責任を負いません。
- 9. 当社は、当社製品の品質および信頼性の向上に努めていますが、半導体製品はある確率で故障が発生したり、使用条件によっては誤動作したりする 場合があります。また、当社製品は、データシート等において高信頼性、Harsh environment 向け製品と定義しているものを除き、耐放射線設計を 行っておりません。仮に当社製品の故障または誤動作が生じた場合であっても、人身事故、火災事故その他社会的損害等を生じさせないよう、お客 様の責任において、冗長設計、延焼対策設計、誤動作防止設計等の安全設計およびエージング処理等、お客様の機器・システムとしての出荷保証を 行ってください。特に、マイコンソフトウェアは、単独での検証は困難なため、お客様の機器・システムとしての安全検証をお客様の責任で行って ください。
- 10. 当社製品の環境適合性等の詳細につきましては、製品個別に必ず当社営業窓口までお問合せください。ご使用に際しては、特定の物質の含有・使用を規制する RoHS 指令等、適用される環境関連法令を十分調査のうえ、かかる法令に適合するようご使用ください。かかる法令を遵守しないことにより生じた損害に関して、当社は、一切その責任を負いません。
- 11. 当社製品および技術を国内外の法令および規則により製造・使用・販売を禁止されている機器・システムに使用することはできません。当社製品および技術を輸出、販売または移転等する場合は、「外国為替及び外国貿易法」その他日本国および適用される外国の輸出管理関連法規を遵守し、それらの定めるところに従い必要な手続きを行ってください。
- 12. お客様が当社製品を第三者に転売等される場合には、事前に当該第三者に対して、本ご注意書き記載の諸条件を通知する責任を負うものといたします
- 13. 本資料の全部または一部を当社の文書による事前の承諾を得ることなく転載または複製することを禁じます。
- 14. 本資料に記載されている内容または当社製品についてご不明な点がございましたら、当社の営業担当者までお問合せください。
- 注 1. 本資料において使用されている「当社」とは、ルネサス エレクトロニクス株式会社およびルネサス エレクトロニクス株式会社が直接的、間接的に 支配する会社をいいます。
- 注 2. 本資料において使用されている「当社製品」とは、注1において定義された当社の開発、製造製品をいいます。

(Rev.5.0-1 2020.10)

本社所在地

〒135-0061 東京都江東区豊洲 3-2-24 (豊洲フォレシア)

www.renesas.com

商標について

ルネサスおよびルネサスロゴはルネサス エレクトロニクス株式会社の 商標です。すべての商標および登録商標は、それぞれの所有者に帰属 します。

お問合せ窓口

弊社の製品や技術、ドキュメントの最新情報、最寄の営業お問合せ窓口に関する情報などは、弊社ウェブサイトをご覧ください。

www.renesas.com/contact/