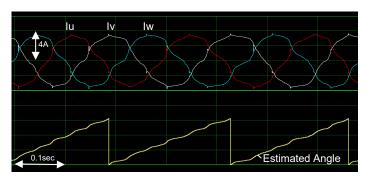


RXファミリ

IPMSM の全速度域位置センサレスベクトル制御(MCK 向け)

要旨

本サンプルプログラムは、突極性を持つ3相の埋込磁石型同期モータ(IPM モータ)を、停止状態から低 速・中高速域までの全速度域でセンサレスベクトル制御(Sensorless FOC)が可能な機能を提供します。


IPM モータの特徴である、d 軸インダクタンス(Ld)と g 軸インダクタンス(Lg)の特性差 ¹を利用し、停止・ 低速時に高周波パルス電圧を印加(HFI)して磁極位置を推定するアルゴリズムを用いているため、磁極位置 センサが不要です。また、始動時には IPM モータの磁気飽和現象を用いて、磁極の N 極・S 極の判別も行 い、高い精度で磁極位置を推定します。

300r/min 以上の中高速域では、誘起電圧オブザーバを用いたセンサレスベクトル制御に自動で切り替えを 行う機能を用いて、運転を継続します。

従来のサンプルプログラムでは、停止状態から低速域ではオープンループによる電流引き込み制御を行っ ており、運転開始まで数秒超のタイムラグが発生する点、停止・低速域において定格負荷を掛けられない 点、強い磁束を発生させることからエネルギー消費の点において、課題がありました。本サンプルプログラ ムでは停止状態から高速な磁極位置推定を行い、センサレスベクトル制御を用いたクローズドループによる 制御を行うことで、従来の課題を解決しています。

本書では、RX26T マイクロコントローラを用いて、DC24V系のインバータ、ならびに IPM モータを対 象としたサンプルプログラムを解説します。

図 1-1 に、本サンプルプログラムで動作させた際の波形を示します。40r/min の速度指令で 50%の負荷を かけた状態で U,V,W 相の出力電流波形と推定角度波形を RMW 上で表示させたものです。

(a) 40r/min 運転時の電流特性

図 1-1 センサレス制御の性能特性例

動作確認デバイス

本アプリケーションノート対象ソフトウェアの動作確認は下記のデバイスで行っています。

RX26T RAM64KB バージョン(R5F526TFCDFP)

【注】1 Ld.La の特性差がない表面磁石型同期モータ(SPM モータ)や、始動・停止・運転時に特性差が 20% 未満の条件が発生する IPM モータには、本アルゴリズムは適用できません。

目次

1.	はじめに	5
2.	用語集	7
3.	使用機材・使用ソフトウェア	8
3.1	使用ハードウェアの一覧	8
3.2	使用ソフトウェアの一覧	8
4.	ハードウェア環境構築方法	9
4.1	ハードウェア環境の概要	9
4.2	電源の準備	9
4.3	モータ及び負荷機の準備	9
4.4	インバータの準備	10
4.5	RX26T CPU カードのセットアップ	11
4.6	キット(MCK-RX26T)の接続例	11
4.7	オンボードデバッガ	12
4.8	配線方法	12
4.9	測定器の利用	13
5.	ソフトウェア環境構築方法	14
5.1	CS+を使用する場合	14
5.2	e ² Studio を使用する場合	14
6.	運転方法	15
6.1	運転前の注意点	15
6.2	運転までの手順	15
6.3	接続方法	16
6.4	サンプルプログラムの書き込み	17
6.5	RMW の導入方法	17
6.6	Map ファイルの登録更新	
6.7	RMW の操作に使用する変数	19
6.8	モータ操作方法	20
6.9	モータ停止・遮断方法	22
7.	モータ制御アルゴリズム	23
7.1	概要	23
7.2	制御ブロック図	23
7.3	速度制御機能	24
7.4	外乱トルク・速度推定オブザーバ	24
7.5	最大トルク/電流制御	24
7.6	電流制御機能	25
7.7	非干渉制御	25
7.8	センサレス機能	26
7.8.1	1 概要	26
7.8.2	2 低速域センサレスアルゴリズム(HFI)	26

7.8.3	中高速域センサレスアルゴリズム	30
7.9	電圧位相進み補償	31
7.10	電圧誤差補償	31
7.11	PWM 変調方式	32
_		
	ソフトウェア仕様・構成	
8.1	ソフトウェア仕様	
8.2	ソフトウェア全体構造	
8.3	タスクの説明	
8.4	ファイル・フォルダ構成	
8.5	アプリケーション層	
8.5.1	機能	
8.5.2		
8.5.3		
8.5.4		
8.5.5		
8.6	マネージャモジュール・モータ制御モジュール	42
8.6.1	機能	42
8.6.2	モジュール構成図	43
8.6.3	モード管理	44
8.6.4	シーケンスの説明	45
8.6.5	始動シーケンス	46
8.6.6	保護機能	47
8.6.7	API	48
8.6.8	構造体・変数情報	50
8.6.9	マクロ定義	55
8.7	ドライバモジュール	56
8.7.1	機能	56
8.7.2	モジュール構成図	56
8.7.3	API	57
8.7.4	コンフィグレーション情報	57
8.7.5	構造体・変数情報	58
8.7.6	パラメータ調整・設定	
	パラメータの設定	
9.1	概要	
9.2	MCU 関連パラメータ	
9.3	制御機能の設定パラメータの一覧	
9.4	保護関連パラメータ	62
9.5	PWM キャリア周波数の変更	62
9.6	パルス変調方法の設定	63
9.7	インバータパラメータ	64
9.7.1	概要	64
9.7.2	電流検出ゲイン	65
9.7.3	電圧検出ゲイン	66
9.7.4	電圧誤差補償パラメータ	66
9.8	モータパラメータ	67

9.9 電流制御パラメータ	70
9.10 速度制御パラメータ	70
9.11 最大トルク/電流制御	72
9.12 外乱トルク・速度推定オブザーバ	72
9.13 電圧位相進み補償パラメータ	73
9.14 センサレス制御パラメータ	74
10. スマート・コンフィグレータ設定	78
10.1 クロック設定	78
10.2 コンポーネント設定	78
10.3 AD 設定	79
10.4 モータ設定	79
10.5 割り込み	80
10.6 ユーザコード詳細	80
10.7 POE 設定	81
10.8 端子設定	81
11. 評価結果11.	82
11.1 モータ制御評価	
11.1.1 加減速特性	_
11.1.2 負荷特性	
11.2 CPU 使用率	
11.3 プログラムサイズ・RAM 使用量	
TI.5 プログラムサイス・IVAIVI 医用重	
12. FAQ	84
12.1 こんなときは	84
12.2 よくある質問	85
12.2.1 SPM モータを全速度域でセンサレスベクトル制御することはできますか	85
12.2.2 どの IPM モータであれば、全速度域でセンサレスベクトル制御することができますか	85
12.2.3 磁気飽和とは何ですか	85
12.2.4 高周波パルス印加時に騒音が発生しますか、小さくする方法はありますか	85
12.2.5 脱調とはどのような現象ですか	85
12.2.6 脱調検出機能は入っていますか	85
12.2.7 RMW に表示される変数の値が異常となってしまう	85
¬∟=¬=¬ △¬	~~

1. はじめに

本アプリケーションノートはルネサス製マイクロコントローラ(MCU)である RX26T を使用し、永久磁石 同期モータを停止から低速も含めて全速度域をベクトル制御で駆動するサンプルプログラムの使用方法につ いて説明することを目的としています。

従来のセンサレスベクトル制御のサンプルプログラムは、PM モータ全般に適用可能ですが、本サンプルプログラムは、PM モータの種類で、IPM モータと呼ばれるモータのみに適用可能となります。IPM モータの持つ突極性という性質を利用することで、停止状態から低速でも磁極位置推定を実現しているためです。IPM モータ以外のモータ(SPM モータ等)では、突極性という性質を通常は持たないため、停止状態から低速において、センサレスで磁極位置推定を行うことができず、本サンプルプログラムでの動作対象範囲外となります。

サンプルプログラムは、ルネサス製モータコントロールキット MCK-RX26T を用いて、DC24V 系の IPM モータであるマブチモーター(株)製 IS-94BZC を、センサレスでモータ制御することができます。また、モータ制御開発支援ツール「Renesas Motor Workbench」に対応しており MCU の内部データ確認や、モータ制御のユーザインタフェース(UI)として使用可能です。サンプルプログラムの MCU 機能割り当てや、制御の割り込み負荷状況などを参照頂くことで、使用する MCU の選定やソフトウェア開発の参考としてご活用ください。

本アプリケーションノートは、本書内で記載している IPM モータ・インバータ環境で開発・評価を行ったものであり、ユーザの使用する IPM モータやインバータ環境で動作することを保証するものではありません。電流センサや、信号経路の基板パターン設計、サンプリング・分解能・フィルタの仕様やモータの磁気飽和特性・個体差により、センサレス制御性能に制約が生じる場合があります。ユーザの責任の下で、アルゴリズムの改良や、パラメータのチューニングが必要となります。

本アプリケーションノートで記載している機材・機器については、各機器メーカーによる廃盤や改訂等により入手できない場合があります。予めご了承ください。

評価に使用した主な装置・機器

- モータコントロールキット:ルネサスエレクトロニクス(株)製 MCK-RX26T (Type-A)
- モータ:マブチモーター(株)製 IS-94BZC

対象ソフトウェア

本アプリケーションノート対象ソフトウェアを下記に示します。

- RX26T_MCBA_MCILV1_IPM_LESS_FOC_WHOLE_CSP_V100 (IDE : CS+)
- RX26T_MCBA_MCILV1_IPM_LESS_FOC_WHOLE_E2S_V100 (IDE : e²studio)

参考資料

- RX26T グループ ユーザーズマニュアル ハードウェア編(R01UH0979)
- Renesas Motor Workbench ユーザーズマニュアル(R21UZ0004)
- スマート・コンフィグレータ ユーザーズマニュアル RX API リファレンス編(R20UT4360)
- RX スマート・コンフィグレータ ユーザーガイド: CS+編(R20AN0470)
- RX スマート・コンフィグレータ ユーザーガイド: e² studio 編 (R20AN0451)

R01AN7084JJ0110 Rev.1.10

本アプリケーションノートを使用いただく際に、よく確認される内容について、対応する章を以下にまとめています。

表 1-1 確認したい内容と対応章の一覧

確認したい内容	対応する章
必要な機材を確認・選定する	3
電源を選定する	4.2
モータを選定する	4.3
インバータを選定する	4.4
配線を確認する	4.8
サンプルプログラムの開発環境を準備する	5
マイコンにサンプルプログラムを書き込む	6.4
PC にモータを運転するソフトウェアを導入する	6.5
サンプルプログラムを変更した後、RMW に変更点を反映する	6.6
インバータの内部情報を PC 上で確認する	6.7
モータを運転する	6.8
運転中のモータを停止する	6.9
モータ制御アルゴリズムを調べる	7
サンプルプログラムの構造を調べる	8
インバータパラメータを確認、変更する	9.7、9.4, 10.3, 10.4,
	10.7, 10.8
モータパラメータを確認、変更する	9.8, 9.4
PWM キャリア周波数の変更	9.5
センサレスの設定を変更したい	9.14
マイコンの設定を変更したい	9.2,10
よくある質問を確認する	12
トラブルが起きた場合の対応を確認したい	

2. 用語集

本書で、使用されている主な用語と、その説明を、以下に示します。

表 2-1 用語集

用語	説明
E2OB	E2 On-Board のこと。E2Lite の機能を CPU カード上に持つ機能です。
HFI	高周波パルス電圧印加のこと。転じて低速センサレスアルゴリズムの 事を示す。
IDE	統合開発環境のこと。e² studio、CS+等を指す。
IPM モータ	IPMSM とも呼ばれる。回転子に磁石が埋め込まれており、効率や小型、コスト面で優位とされている。突極性があり、Ld と Lq が異なる。
MC-COM	波形表示用の接続治具・ツールのことを示します。詳細は、以下の URL を参照ください。
	https://www.renesas.com/ja/products/microcontrollers-
	microprocessors/rx-32-bit-performance-efficiency- mcus/rtk0emxc90s00000bj-mc-com-renesas-flexible-motor-control- communication-board#overview
RMW	Renesas Motor Workbench と呼ばれる、モータ制御に特化した操作ソフトウェアのこと。
SPM モータ	SPMSM とも呼ばれる。低速でも滑らかな動きが要求される、サーボモータに使用されます。
salient PMSM	IPM モータのこと。
インバータ母線電圧	インバータ回路に入力される直流電圧のこと。直流中間電圧とも呼ばれる。
エミュレータ	MCU に書き込むための装置のこと。ICE とも呼ばれます。
オープンループ	位置のフィードバック信号なしで、電圧制御を行うモータ制御方式の こと。
コンポーネント	スマート・コンフィグレータで生成された、MCU 周辺機能を使用しやすくするドライバモジュールのこと。
センサレス	本書では、「磁極位置センサや速度センサがないこと」を示します。 位置センサや速度センサは、コスト面や耐環境性等に弱点を持ち、セ ンサを省略する事がメリットとされています。
磁気飽和	一定以上の電流を流すことで、磁気的にモータが飽和し、磁束が強まらない現象。パラメータが変化するため、インバータによるモータ制 御に影響が出ます。
埋込磁石型同期モータ	IPM モータのこと
表面磁石型同期モータ	SPM モータのこと
電気角	モータに流れる出力電流の位相角度のこと。モータの極対数で割る と、機械角に換算できる。
機械角	モータ軸の回転角度のこと。軸が1分に1回転で 1r/min となる。

3. 使用機材・使用ソフトウェア

3.1 使用ハードウェアの一覧

本サンプルプログラムの評価に使用した機器の一覧を以下に示します。

Magtrol

Magtrol

COSEL

横河計測

機器 メーカー 型式 MCK-RX26T Renesas Renesas RTK0EMXE70S00020BJ Flexible Motor Control Kit for RX26T MCU Group CPU ボード Renesas RX26T RAM64KB バージョン MCB-RX26T Type A (R5F526TFCDFP) / RTK0EMXE70C00000BJ (上記キットに同梱) インバータボード Renesas RTK0EM0000B12020BJ 注:定格電流は10[A]ですが、5[A]以上を流すとき MCI-LV-1 (上記キットに同梱) にはインバータに放熱フィンを取り付けることを 強く推奨します。 Renesas Flexible Motor Control Communication MC-COM Renesas (上記キットに同梱) Board RTK0EMXC90Z00000BJ マブチモーター(株) IS-94BZC IPM モータ

HD-710-8N

DSP6001

24V,11A

WT500

表 3-1 使用機器一覧

3.2 使用ソフトウェアの一覧

トルクベンチ(負荷機)

トルクベンチ(表示器)

<u>直流電源</u> パワーメータ

本サンプルプログラムの評価で使用したソフトウェアと、そのバージョンを以下に示します。本サンプルプログラムは、弊社開発環境である CS+または e² studio の無償評価版の制限範囲で、ご利用いただけます。

メーカー	ソフトウェア	バージョン	備考
Renesas	CS+	V8.10.00	無償評価版
Renesas	e ² studio	2023-07	無償版
Renesas	RX スマート・コンフィグレータ	V2.18.0	
Renesas	CC-RX	V3.05.00	無償評価版
Renesas	Renesas Motor Workbench	3.1	

表 3-2 使用ソフトウェア一覧

4. ハードウェア環境構築方法

4.1 ハードウェア環境の概要

本サンプルプログラムを使用し、IPM モータを動かすためのハードウェア環境について説明します。図 4-1 に、ハードウェア構成例を示します。電源(4.2)と、モータ及び負荷機(4.3)、インバータ(4.4), RX26T CPU カード及びモニタリング・書き込み装置(4.5)について、詳細を次の項から説明します。

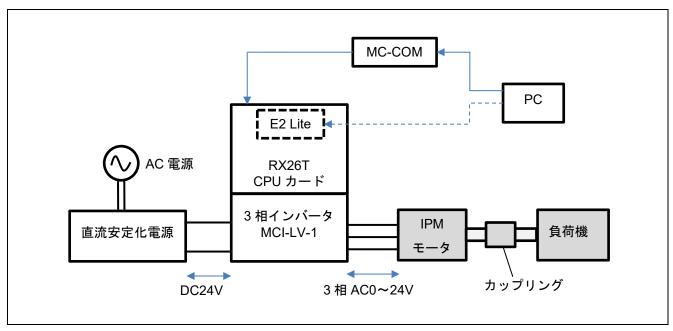


図 4-1 ハードウェア構成例

4.2 電源の準備

本サンプルプログラムでは、直流安定化電源、または AC アダプタ、制御電源(24V,10A 以上の出力が可能なもの)を用いて、単相 AC100V から 3 相インバータ MCI-LV-1 に DC24V を供給しています。

インバータに供給する電圧は、使用するモータの誘起電圧や定格条件、最大負荷条件によって変わります。ユーザの実験環境や、使用する電源の制約や条件に応じて、電源の種類を適切に選定してください。なお、ここで紹介するインバータは、出力電流が 10Amax となっており、制御対象として提示しているモータを定格負荷で運転できませんので、予めご了承ください。

4.3 モータ及び負荷機の準備

インバータとモータの配線を行う前に、センサレスベクトル制御で動かすために必要となる、IPM モータのパラメータ・定数を LCR メータ等の測定器などを用いて取得してください。また必要に応じて、IPM モータのメーカーにパラメータの情報を得るために問い合わせをしてください。

モータパラメータを変更した場合、電流調節器や速度調節器、センサレス制御のパラメータを、モータに 合わせて変更を行う必要があります。

- 定格値(電流、電圧、速度、極数)
- Ld、Lq、抵抗値
- 誘起電圧、鎖交磁束
- モータ及びモータの軸に繋がっている負荷装置のイナーシャ(慣性モーメント)

弊社で調査を行った、マブチモーター(株)製 IS-94BZCのモータパラメータを表 4-1 に示します。弊社で独自に測定したものであり、得られるパラメータには測定条件によるばらつきや個体差があります。このパラメータは、正確性や性能を保証するものではありません。また、負荷電流によって生じる磁気飽和現象により、運転中にモータパラメータの値が変化し、位置推定精度や運転性能に影響する場合があります。

制御性能の確認のため、IPM モータの負荷試験を行う場合、IPM モータの他に、負荷試験機(負荷機)または、負荷試験が可能な実負荷装置が必要となります。モータの要求負荷容量に応じて、適切な負荷機を選定し、ユーザでご用意ください。本サンプルプログラムの評価環境では、Magtrol 製の負荷試験装置に、IPM モータの軸を取り付けして評価を行っています。参考として、設定パラメータを表 4-2 に示します。

項目	値
一次抵抗 R	0.045 Ω
d 軸インダクタンス	0.0951mH
q 軸インダクタンス	0.1253mH
慣性モーメント	0.0000294367 kgm ²
磁束鎖交数Ψ	0.0088Wb(rms)
誘起電圧 Emf	14.2V
極数	14(7 ペア)
定格速度	2400r/min
定格周波数	280Hz(電気角), 40Hz(機械角)
定格電流	12.3Arms

表 4-2 DSP6001 モータ負荷試験装置の設定例

項目	値
TSC1 MAXPOWER	0.36 kilowatts
TSC1	HD
TSC1 FILTER	10HZ
INPUT UNITS	N.m
MAX TORQUE	2.0Nm
ENCODER BITS	60BIT
SPEED ALARM	4000RPM

4.4 インバータの準備

インバータを準備される際に、以下の情報を確認してください。本サンプルプログラムでは、MCI-LV-1に合わせた設定となっており、インバータを変更する場合には変更が必要です。

センサレスベクトル制御の制御性能は、電流センサから入力される電流検出値を用いて、磁極位置を推定するため、センサ自体の性能や、センサから出力される信号の経路となる回路のばらつき・精度に、大きく影響されます。インバータの選定や設計には、十分に配慮を行ってください。

- 定格容量(VA)
- デッドタイム値(us)
- 電流センサの種類、特性、信号仕様
- 電流センサのゲイン値及びオフセット値、電流と電圧の関係性や信号の直線性の特性データ等
- 電圧センサのゲイン値及びオフセット値、信号の直線性の特性データ等

4.5 RX26T CPU カードのセットアップ

RX26T CPU カード(RTK0EMXE70C00000BJ)の装着方法について説明します。MCI-LV-1 の基板に、RX26T CPU カードを差し込むことができます。また、サンプルプログラムを書き込むための端子、MC-COM 接続用端子、外部エンコーダ接続用 PG 端子が用意されています。

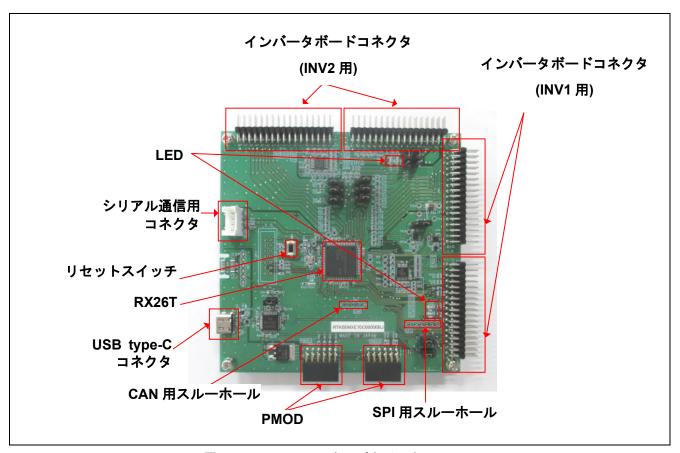


図 4-2 RX26T CPU カードとインタフェース

4.6 キット(MCK-RX26T)の接続例

CPU カードをインバータボード(MCI-LV-1、型名: RTK0EM0000B12020BJ)および通信ボード(MC-COM、型名: RTK0EMXC90Z00000BJ)と組み合わせて使用する際の接続例を図 4-3 に示します。

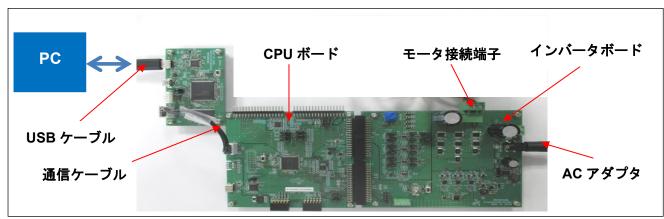


図 4-3 キット (MCK-RX26T) の接続例

4.7 オンボードデバッガ

図 4-4 に示す通り本製品にはオンボードデバッガ回路 E2 On-Board(以下、E2OB)が搭載されており、RX26T のプログラムの書き換えは E2OB を用いて行います。プログラムを書き換える場合、ジャンパ JP11 をオープンにし、CPU カードと PC を USB ケーブルで接続してください。E2OB は E2 emulator Lite 相当のデバッガとして機能します。統合開発環境(例えば e2studio)あるいはフラッシュプログラミングツール(例えば Renesas flash programmer など)から接続する際には設定時にはデバッガ(ツール)の種類は「E2 emulator Lite」と設定してご利用ください。

プログラムを書き換えた後は、CPU カードを動作させるために JP11 をショートしてください。

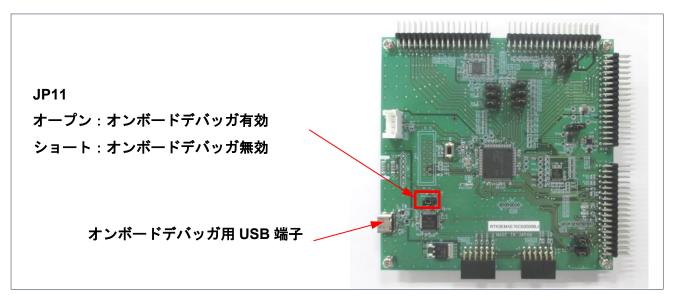


図 4-4 オンボードデバッガ

4.8 配線方法

電源、インバータ、モータの配線方法について説明します。ご使用する装置によって、端子の名称は異なりますので、必ず装置の取扱説明書を参照して内容・仕様を確認の上、配線作業を行ってください。

図 4-5 に、電源~インバータ間の配線例を示します。ここでは、直流安定化電源の出力端子をインバータの P 端子・GND 端子に接続します。極性の間違いにご注意ください。図 4-6 に、インバータ~モータ間の配線例を示します。

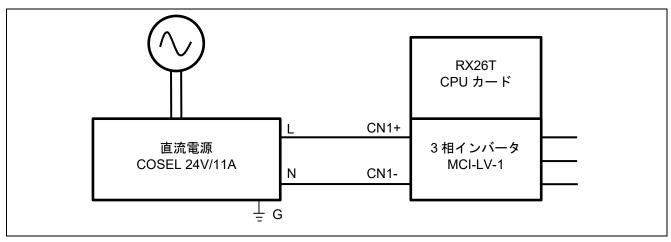


図 4-5 電源~インバータ間の配線

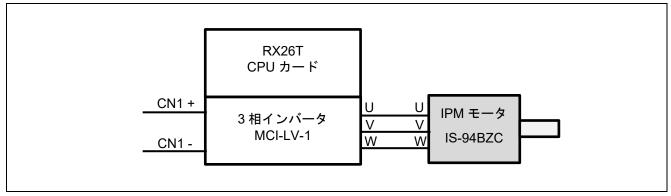


図 4-6 インバータ~モータ間の配線

4.9 測定器の利用

IPM モータのセンサレス制御性能の評価を行う際、パワーメータや、デジタルマルチメータ、トルクメータ、外付けエンコーダを用意することで、詳細なインバータ・モータ制御の分析が可能となります。ユーザ環境や、要求される測定精度、目標性能仕様に合わせて、必要な測定器を検討ください。

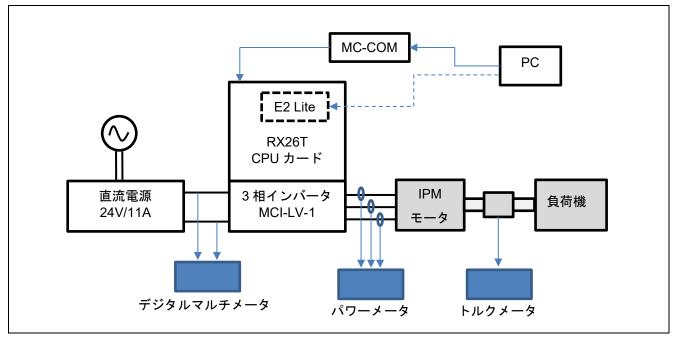


図 4-7 測定器の追加例

5. ソフトウェア環境構築方法

5.1 CS+を使用する場合

CS+は、以下の URL からダウンロードしてください。

https://www.renesas.com/ja/software-tool/cs

CC-RX ならびにスマート・コンフィグレータを別途、インストールする必要があります。インストール 手順は、CS+付属の PDF マニュアルか、上記 URL 掲載のビデオ「CS+ Quick Start Guide (1/4) – インストール」を参照してください。

詳細な使用方法は、上記 URL でダウンロードが可能な PDF マニュアルや、ビデオを参照してください。

5.2 e² Studio を使用する場合

e² studio は、以下の URL からダウンロードしてください。

https://www.renesas.com/ja/software-tool/e-studio

CC-RX ならびにスマート・コンフィグレータを別途、インストールする必要があります。インストール 手順は、 e^2 studio 付属の PDF マニュアルか、上記 URL 掲載のビデオ「 e^2 studio チュートリアル RX ファミリ (1/4) - インストール」を参照してください。

詳細な使用方法は、上記 URL でダウンロードが可能な PDF マニュアルや、ビデオを参照してください。

6. 運転方法

6.1 運転前の注意点

モータを動かすにあたって、以下の点にご注意ください。誤った使い方により、感電や機器の故障等を引き起こす場合があります。

- E2OB を使用しながら、トレース実行・ブレークポイントを設定した条件でモータ制御しないでください。不意の停止により、インバータが異常な動作をする場合があります。RMW を使用して、安全機能が正常に動作する条件下で、デバッグを行ってください。
- MC-COM は信号が絶縁されているため、運転中も安全に使用できます。類似品を使用する場合、PC とインバータの GND が共通となる場合があり、GND を介して感電事故の恐れがあります。
- 緊急停止が可能なように、実験設備を構築してください。
- モータの軸は回転しますので、必ずガードとなるカバーを取り付けしてください。特にカップリング等 の部品は、回転中に損傷した場合、外に飛散する場合があります。
- インバータが停止しても、PM モータが回転している場合、PM モータは誘起電圧を発生させるため、 UVW 三相配線に電圧がかかります。露出した導電部に接触すると、感電の恐れがあります。

6.2 運転までの手順

運転を行うための準備手順は、以下の通りです。

手順	手順内容	関連する章
1	インバータにあらかじめ、CPU カードを差し込んでおきます。	4.5
2	サンプルプログラム、開発環境(CS+または e2 studio など)、エミュレータ (E2OB 等)を使用する PC に導入する。	5
3	PC と、CPU カードを、エミュレータを介して接続し、CPU カードに 5V の電源を供給する	4.5
4	サンプルプログラムを、開発環境でビルドする	6.4
5	ビルドしたサンプルプログラムを CPU カードに書き込む	
6	エミュレータと CPU カードをつないだケーブルを取り外す	4.6
7	CPU カードに MC-COM を接続する	4.6
8	インバータに DC24V の電源を供給する	4.2
9	PC にインストールされた RMW を用いて、CPU カードに MC-COM を経由して接続し、正しく接続できることを確認する	6.5
10	本サンプルプログラムの変数や、センサ情報などが正常に RMW で表示されていることを確認する	6.7
11	RMW を用いて、モータの運転操作を行う	6.8
12	モータを停止・遮断する	6.9

表 6-1 運転を行うまでの手順

6.3 接続方法

書込み時と、運転操作時で、CPU カードと PC の間で使用する機器が異なるため、ご注意ください。以下に、①書込み時と、②運転操作時についての配線方法を説明します。

① 書込み時

CPU カードにオンボードデバッガ回路 E2 On-Board(以下、E2OB)が搭載されており、RX26T のプログラムの書き換えは E2OB を用いて行います。



図 6-1 オンボードデバッガ

② 運転操作時

図 6-2 のように MC-COM(RTK0EMXC90Z00000BJ)を用いて、CPU カードに接続します。PC とは、UART 経由で接続された状態となり、PC からは COM ポートを用いて操作することができます。RMW を用いて、運転操作を行うことができます。MC-COM はインバータと PC の間を電気的に絶縁しますので、高電圧環境下でも、安全にご利用いただけます。

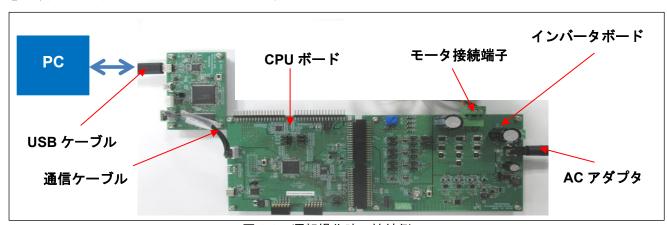


図 6-2 運転操作時の接続例

6.4 サンプルプログラムの書き込み

弊社 WEB サイトからダウンロードしたサンプルプログラムを、CS+や e² Studio、Renesas Flash Programmer を使用して CPU カードの MCU に書き込んでください。

プログラムの書き込み方法は CS+や e² Studio 及び Renesas Flash Programmer の取扱説明書を参照してください。プログラムを書き込むためには、図 6-1 に示すようにオンボードデバッガを使用します。

6.5 RMW の導入方法

モータ制御開発支援ツール「Renesas Motor Workbench」をユーザインタフェース(回転/停止指令、回転速度指令等)として使用します。モータ制御開発支援ツール「Renesas Motor Workbench」は弊社 WEB サイトより入手してください。

https://www.renesas.com/ja/software-tool/renesas-motor-workbench



図 6-3 Renesas Motor Workbench 外観

6.6 Map ファイルの登録更新

ユーザがサンプルプログラムの一部を変更した場合、変数などの情報が記載された Map ファイルを RMW に登録更新する作業が必要になります。サンプルプログラムの変更を行っていない場合には、Map ファイルの登録更新作業は不要です。

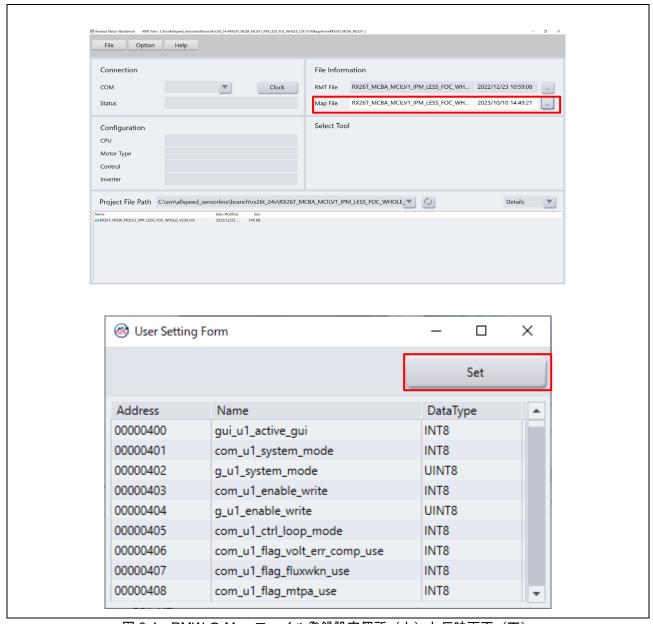


図 6-4 RMW の Map ファイル登録設定個所(上)と反映画面(下)

6.7 RMW の操作に使用する変数

本サンプルプログラムで、モータを動かす場合には、RMW を用いて制御します。RMW UI 使用時の入力用変数一覧を表 6-2 に示します。なお、これらの変数への入力値は $com_u1_enable_write$ に $g_u1_enable_write$ と同じ値を書き込んだ場合にモータモジュール内の対応する変数へ反映され、モータ制御に使用されます。ただし、(*)が付けられた変数は $com_u1_enable_write$ に依存しません。

一部のモータ制御に用いるパラメータは、停止中に設定を変更できます。詳細は表 8-8 を参照してください。

なお、変数名の接頭辞(u1,f4 等)は変数型の省略形となっています。RMW は、変数名の接頭辞を自動認識して型を自動で選択し、ControlWindowで変数内部の数値の表示を行います。

Analyzer 機能入力用変数名	型	内容
com_u1_system_mode (*)	uint8_t	ステート管理
		0:ストップモード
		1: ランモード
		3: リセット
com_f4_ref_speed_rpm (*)	float	速度指令値(機械角)[r/min]
com_u1_enable_write	uint8_t	ユーザ入力用変数書き換え許可
		g_u1_enable_write と変数一致で入力データ反
		映

表 6-2 Analyzer 機能主要入力用変数一覧

次に速度制御の駆動評価を行う際に観測することの多い主要な構造体変数の一覧を表 6-3 に示します。 Analyzer 機能で波形表示する際や変数の値を読み込む際に参考にしてください。

センサレス速度制御主要変数名	型	内容
g_st_sensorless_vector.u2_error_status	uint16_t	エラーステータス。
		詳細は"止まってしまった場合"を参照
g_st_cc.f4_vdc_ad	float	インバータ母線電圧値[V]
g_st_cc.f4_id_ref	float	d 軸電流指令値 [A]
g_st_cc.f4_id_ad	float	d 軸電流検出値 [A]
g_st_cc.f4_iq_ref	float	q 軸電流指令値 [A]
g_st_cc.f4_iq_ad	float	q 軸電流検出値 [A]
g_st_cc.f4_iu_ad	float	U 相電流検出値 [A]
g_st_cc.f4_iv_ad	float	V 相電流検出値 [A]
g_st_cc.f4_iw_ad	float	W 相電流検出値 [A]
g_st_cc.f4_vd_ref	float	d 軸電圧指令値 [V]
g_st_cc.f4_vq_ref	float	q 軸電圧指令値 [V]
g_st_cc.f4_refu	float	U 相電圧指令値 [V]
g_st_cc.f4_refv	float	V 相電圧指令値 [V]
g_st_cc.f4_refw	float	W 相電圧指令値 [V]
g_st_cc.st_rotor_angle.f4_rotor_angle_rad	float	推定磁極位置[rad]
g_st_sc.f4_ref_speed_rad_ctrl	float	速度指令値(機械角)[rad/s]
g_st_sc.f4_speed_rad	float	速度検出値(機械角)[rad/s]

表 6-3 センサレス速度制御主要変数一覧

6.8 モータ操作方法

RMW の Analyzer 機能を使用し、モータを操作する例を以下に示します。操作は、RMW 画面上の "Control Window"で行います。"Control Window"の詳細は、「Renesas Motor Workbench ユーザーズマニュアル」を参照してください。

a) モータを回転させる

- ① "com_u1_system_mode", "com_f4_ref_speed_rpm"の [W?] 欄にチェックが入っていることを確認します。
- ② 指令回転速度を"com_f4_ref_speed_rpm"の [Write] 欄に入力します。
- ③ "Write"ボタンをクリックします。(この時、com_u1_system_mode 欄は"0"のまま)
- ④ "Read"ボタンを押して現在の"com_f4_ref_speed_rpm",の [Read] 欄を確認します。
- ⑤ "com_u1_system_mode"の [Write]欄に"1"を入力します。
- ⑥ "Write"ボタンをクリックします。

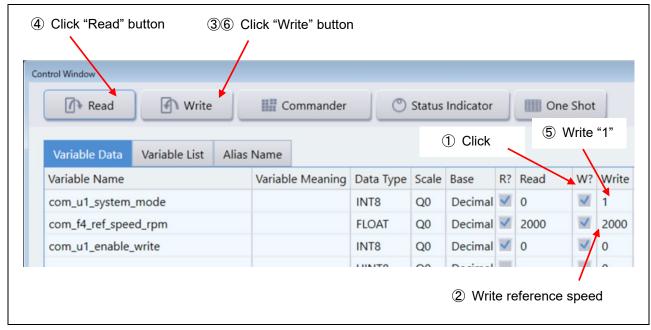


図 6-5 モータ回転の手順

- b) モータを停止させる
 - ① "com_u1_system_mode"の[Write]欄に"0"を入力します。
 - ② "Write"ボタンをクリックします。
 - ③ モータの停止を確認します。

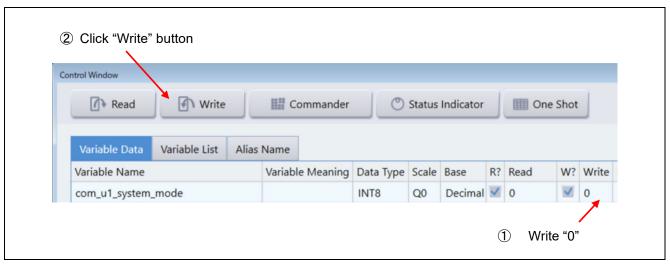


図 6-6 モータ停止の手順

- c) 止まってしまった (エラー) 場合の処理
 - ① "com_u1_system_mode"の[Write]欄に"3"を入力する。
 - ② "Write"ボタンを押す。

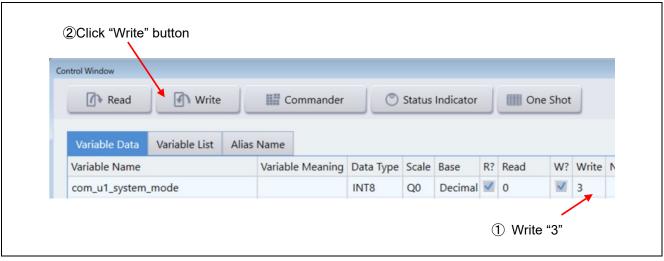


図 6-7 エラー解除の手順

表 6-4 エラーステータスの説明

値	ェラー内容	割り当てられているマクロ名
0x0000	エラーなし	MOTOR_SENSORLESS_VECTOR_ERROR_NONE
0x0001	HW 過電流エラー	MOTOR_SENSORLESS_VECTOR_ERROR_OVER_CURRENT_HW
0x0002	過電圧エラー	MOTOR_SENSORLESS_VECTOR_ERROR_OVER_VOLTAGE
0x0004	過速度エラー	MOTOR_SENSORLESS_VECTOR_ERROR_OVER_SPEED
0x0080	低電圧エラー	MOTOR_SENSORLESS_VECTOR_ERROR_LOW_VOLTAGE
0x0100	SW 過電流エラー	MOTOR_SENSORLESS_VECTOR_ERROR_OVER_CURRENT_SW
0x0200	極性判別エラー	MOTOR_SENSORLESS_VECTOR_ERROR_FAIL_POLES
0x0400	磁極位置推定エラー	MOTOR_SENSORLESS_VECTOR_ERROR_FAIL_POSITION
0xffff	未定義エラー	MOTOR_SENSORLESS_VECTOR_ERROR_UNKNOWN

6.9 モータ停止・遮断方法

運転状態からモータを停止する場合には、以下に示す手順で行ってください。なお、緊急時は、②のDC24Vの供給を最優先にして停止させてください。

- ① 6.8(b)6.8(c)のモータ停止手順を行う。
- ② モータが停止するのを確認したら、直流安定化電源を操作し、DC24Vの供給を停止する。

7. モータ制御アルゴリズム

7.1 概要

本サンプルプログラムのモータ制御アルゴリズムについて説明します。表 7-1 に、モータ制御機能を示します。

機能項目	機能の内容		
制御方式	センサレスベクトル制御		
PWM 変調方法	空間ベクトル変調法(三角波比較法も選択可)		
位置・速度推定方法	低速域:高周波パルス印加(HFI)		
	中高速域:誘起電圧オブザーバ		
制御モード	速度制御のみ		
補償機能	● 最大トルク/電流制御(MTPA)		
	● 電圧誤差補償		
	● 電圧位相進み補償		
	● 非干渉制御		
	● 外乱トルク・速度推定オブザーバ		

表 7-1 本サンプルプログラムのモータ制御機能

7.2 制御ブロック図

全速度域で、センサレスベクトル制御を行います。制御システム全体のブロック図の例を以下に示します。

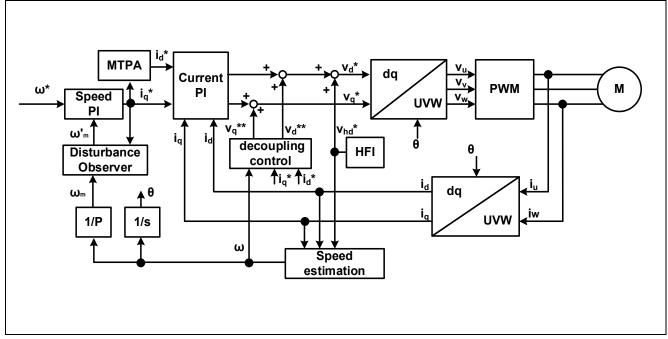


図 7-1 ベクトル制御のシステムブロック例

7.3 速度制御機能

速度制御機能は、モータが速度指令に追従するよう、PI制御を行います。速度指令値の入力を受けて、内部の速度調節器が速度推定値との偏差を基に電流指令値を出力します。また、サブモジュールの外乱トルク・速度推定オブザーバ、最大トルク/電流制御(MTPA)を本モジュールから制御します。

速度推定値は、外乱トルク・速度推定オブザーバの出力値または速度推定値に LPF を通した値のいずれかが選択されます。

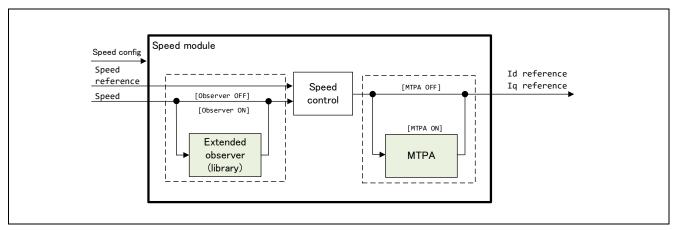


図 7-2 速度制御の機能ブロック図

7.4 外乱トルク・速度推定オブザーバ

1-30r/min 付近の超低速域の速度リプルを低減する手法として、オブザーバによる速度推定アルゴリズムを適用しています。オブザーバは q 軸の指令値 $I_{q,ref}$ から計算したトルクと速度 ω を入力として、プラントモデルに基づいて推定速度 ω と外乱トルクを求めます。オブザーバにより速度リプルを低減させることが可能で、かつ通常のフィルタ処理に比べて制御系に影響を与えにくい特徴があります。センサの量子化誤差による影響や、ノイズの影響による速度リプルも低減することが可能です。

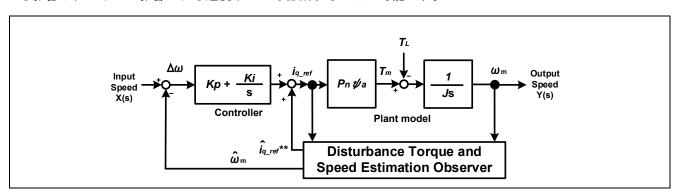


図 7-3 外乱トルク・速度推定オブザーバのブロック図

7.5 最大トルク/電流制御

突極性を有する IPM モータは、最大トルク/電流制御(MTPA)を適用することで、単位電流あたりのトルクを最大に調整することができます。使用する式は、以下の式となります。速度調節器が出力する q 軸電流指令値 lg*を入力として、d 軸電流指令値を求めることができます。

$$I_{d}^{*} = \frac{\Psi}{2(L_{q} - L_{d})} - \sqrt{\left(\frac{\Psi}{2(L_{q} - L_{d})}\right)^{2} + I_{q}^{*2}}$$

Ψ: 磁束鎖交数[Wb], Ld, Lq: モータの d 軸インダクタンス及び q 軸インダクタンス[H]

7.6 電流制御機能

電流制御機能は、入力された電流値からベクトル制御に必要な座標変換及びフィードバック制御を行い、PWM として出力する電圧を演算する機能です。また、サブモジュールの非干渉制御、電圧位相進み補償、電圧誤差補償、HFI、角度推定・位相調整を本モジュールから制御します。モジュール構成図を図 7-4 に示します。

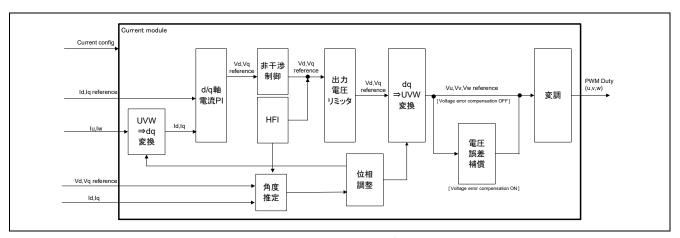


図 7-4 電流制御の機能ブロック図

7.7 非干渉制御

非干渉制御は、電流応答性の向上や d 軸・q 軸の間で電流が互いに干渉し合い、安定性を損なう事を抑制するために使用します。使用する式は、以下となります。一般的な PM モータの電圧方程式となります。

$$\begin{split} &V_{d_dec}{}^* = R{I_d}^* - \omega L_q {I_q}^* \\ &V_{q_dec}{}^* = R{I_q}^* + \omega L_d {I_d}^* + \omega \Psi \end{split}$$

 Id^*,Iq^* : 電流指令値[A], ω : 回転速度(電気角)[rad/s],R: モータの 1 次抵抗 $[\Omega]$,

Ld,Lq: モータのインダクタンス[H], Ψ: モータの鎖交磁束数[Wb]

得られた電圧指令値 V_{d_dec} *と V_{q_dec} *は、PI 調節器から出力される電圧指令値 V_d *と V_q *に加算します。

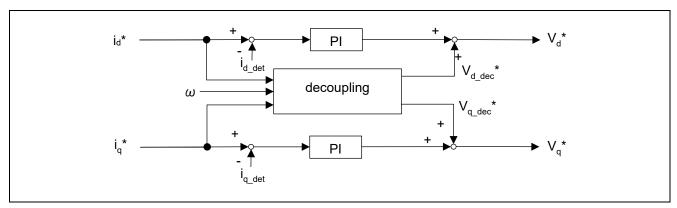


図 7-5 非干渉制御の機能ブロック図

7.8 センサレス機能

7.8.1 概要

ゼロ速〜低速域(300r/min 以下)では突極性を利用した高周波パルス電圧印加(HFI)による磁極位置推定方法と、中高速領域(300r/min 以上)では誘起電圧オブザーバによる磁極位置推定方法を組み合わせることで、ゼロ速度を含む全速度域で、センサレスのクローズドループ制御を実現しています。

オープンループ制御では脱調の恐れがあるため、半分程度に制約されていた負荷制限は、全速度域センサレスでは必要に応じた負荷をかけられることができます。また、励磁電流を流し続けることによる省エネ性の問題も、クリアされています。

速度を低速から中高速域に上げる場合、アルゴリズムの切り替えが必要となります。この切り替えは、パラメータで設定した速度に到達した際に自動で行われます。

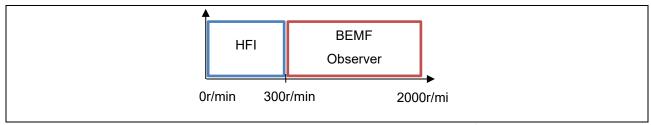


図 7-6 速度と対応するセンサレス制御のアルゴリズム

7.8.2 低速域センサレスアルゴリズム (HFI)

a) 概要

低速域センサレスアルゴリズムでは、停止時または低速運転時に高周波パルス電圧を印加し、その応答から IPM モータの磁極位置を推定します。高周波パルス電圧はモータの回転力への影響が少ない、d 軸電圧指令値に印加されます。

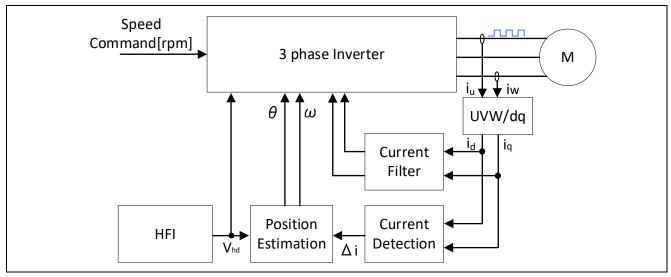


図 7-7 低速域センサレスアルゴリズムの概要

b) 高周波パルスと応答電流

PWM キャリア周期の $1/2 \sim 1/8$ の周期となる正負で対となる高周波パルス電圧を d 軸電圧指令値に印加します。IPM モータは、構造の特性により Ld と Lq が異なることから、Ld と Lq の比率の違いに応じて、高周波パルスの応答として流れる電流値 Id と Iq が IPM モータの磁極位置に応じて変化します。この現象を利用し、IPM モータの磁極位置を電流検出値 Id,Iq と Ld,Lq、パルス電圧値から推定します。なお、SPM モー

RENESAS

タでは、Ld と Lq が同じ値であり、磁極位置に応じて角度と関係性のある電流変化が発生しないことから、本アルゴリズムは IPM モータにしか適用できません。

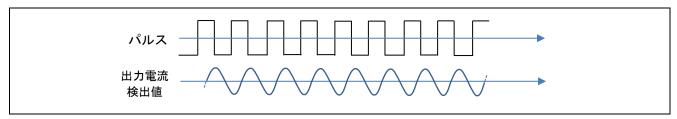


図 7-8 パルスと応答電流の例

c) 角度の推定方法

低速時・停止時は、誘起電圧が発生しないため、誘起電圧オブザーバ等を用いた角度推定が行えません。 そこで誘起電圧を用いずに、意図的に高周波のパルスを印加して角度推定を行います。

角度推定の基準とする軸を図 7-9 に示すように dc-qc 軸と定義します。dc-qc 軸を dq 軸に一致させるよう、 $\Delta \theta$ を求めて制御を行います。

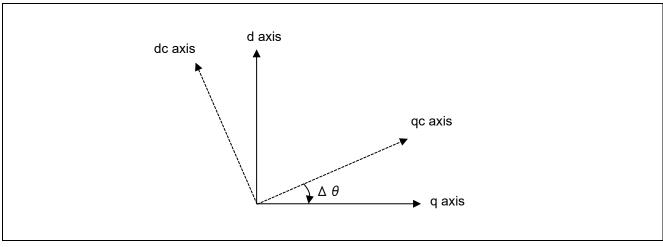


図 7-9 Δθの定義

回転速度が停止・低速(ω≒0)と仮定し、PM モータの電圧方程式から、低速・停止時の電流の状態方程式を導出します。

$$\begin{split} \frac{d}{dt} \begin{bmatrix} i_{dc} \\ i_{qc} \end{bmatrix} &= \frac{1}{L_{dc}L_{qc}} \begin{bmatrix} L_{qc} + (L_{qc} - L_{dc}) sin^2 \Delta \theta & (L_{dc} - L_{qc}) sin \Delta \theta \cos \Delta \theta \\ (L_{qc} - L_{dc}) sin \Delta \theta \cos \Delta \theta & L_{dc} + (L_{dc} - L_{qc}) sin^2 \Delta \theta \end{bmatrix} \begin{bmatrix} v_{dc} \\ v_{qc} \end{bmatrix} \\ &- \frac{R_s}{L_{dc}L_{qc}} \begin{bmatrix} L_{qc} + (L_{qc} - L_{dc}) sin^2 \Delta \theta & (L_{dc} - L_{qc}) sin \Delta \theta \cos \Delta \theta \\ (L_{qc} - L_{dc}) sin \Delta \theta \cos \Delta \theta & L_{dc} + (L_{dc} - L_{qc}) sin^2 \Delta \theta \end{bmatrix} \begin{bmatrix} i_{dc} \\ i_{qc} \end{bmatrix} \end{split}$$

低速・停止時の電流の状態方程式を用いて、dc 軸電圧指令にパルス電圧を印加した時の電流応答から求まる角度推定誤差 $\Delta\theta$ を導出します。高周波パルスを用いた電流微分 d/dt・ i_{dc} , d/dt・ i_{dc} に着目することから、 $i_{dc}=i_{qc}=0$, パルス電圧を V_{dc} とし、 $V_{qc}=0$ とした場合、以下の式を導出できます。

$$\frac{d}{dt} \begin{bmatrix} i_{dc} \\ i_{qc} \end{bmatrix} = \frac{1}{L_{dc}L_{qc}} \begin{bmatrix} L_{qc} + (L_{qc} - L_{dc})\sin^2\Delta\theta & (L_{dc} - L_{qc})\sin\Delta\theta \cos\Delta\theta \\ (L_{qc} - L_{dc})\sin\Delta\theta \cos\Delta\theta & L_{dc} + (L_{dc} - L_{qc})\sin^2\Delta\theta \end{bmatrix} \begin{bmatrix} v_{dc} \\ 0 \end{bmatrix}$$

RENESAS

q 軸電流微分値 d/dt・iqc に着目して計算を行います。

$$\frac{d}{dt}i_{qc} = \frac{\left(L_{qc} - L_{dc}\right)sin\Delta\theta\;cos\Delta\theta}{L_{dc}L_{qc}}v_{dc} = \frac{\left(L_{qc} - L_{dc}\right)sin2\Delta\theta}{2L_{dc}L_{qc}}v_{dc}$$

 $\Delta \theta$ が十分小さいとき、 $\sin 2\Delta \theta$ は $2\Delta \theta$ に近似できます。 $\Delta \theta$ の式に変形すると以下のように導出できます。

$$\Delta\theta = \frac{L_{dc}L_{qc}}{\left(L_{qc} - L_{dc}\right) \cdot v_{dc}} \frac{d}{dt} i_{qc}$$

 Δ θ を PLL 演算することで ω が得られ、さらに積分することで、推定角度 θ を導出することができます。

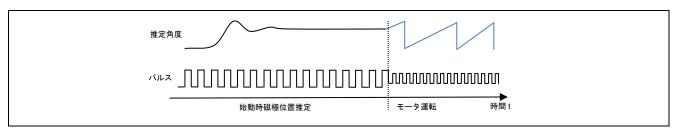


図 7-10 推定角度と高周波パルス印加の例

d) 始動時の極性判別

高周波パルスによる磁極位置推定では、±90°(180°)の範囲で位置を推定することができます。このため、推定した角度に対して、180°反転した位置に磁極位置が位置していた場合、モータが逆回転する問題が発生します。このため、前項で推定した磁極位置をそのまま使うことが難しい問題があります。

そこで、始動時には、通常の運転で印加する高周波パルス電圧よりも高めの電圧を掛け、モータの磁極位置が N 極か S 極のどちらに位置しているかを、磁気飽和現象を利用して推定する処理を行います。このため、始動直前は、運転時よりも少し大きな高周波音がモータから発生する場合があります。この機能は、磁極位置推定処理の推定結果が安定するのを待ってから行うため、数 ms 程度の待ち時間を設定してください。待ち時間は、位置推定 PLL の固有周波数やモータに依ります。

磁気飽和現象を起こすことで、磁極位置が N 極を向くか S 極を向くかに応じて、応答するパルス電圧の方向と、応答電流の大きさに若干の差が生じます。この差を積分することで、負の値であるときは N 極、正の値であるときは S 極として判別できます。

N極またはS極の位置推定に失敗した場合、逆方向に回転し脱調します。脱調を防ぐために、磁気飽和現象が十分に発生する、大きな電流を流す必要があります。

モータ回転時には、極性判別は行われません。磁極位置が 180°以上ずれた場合には正常に回転できず、 過電流等のエラーや脱調となり、運転継続が困難となるためです。よって、始動時のみに極性判別を行えば よいとされています。

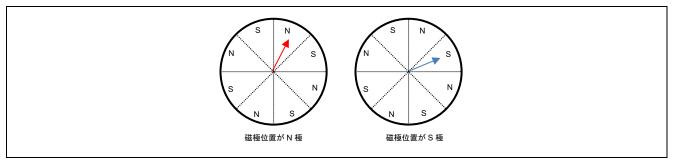


図 7-11 8極 IPM モータにおける磁極位置とN極・S極

e) 始動時の磁極位置推定

始動時の磁極位置推定の動作を図 7-12 に示します。始動時は、d 軸電圧指令 Vd*に、高周波パルス電圧を 印加します。始動時に、前述の極性判別を同時に行うため、高周波パルス電圧値は、通常運転時の電圧値よ りも高めに設定します。パルス電圧値の適正値はモータにより異なります。

高周波パルス電圧印加後、200ms の位置収束期間を待った後、位置推定収束判定期間を最大 100ms とし て、磁極位置の収束判定を行います。収束判定条件は、前回角度値と現在角度値の差が 1deg 以内となる条 件を連続 10 回確認できた場合としています。100ms の時間内に位置推定収束判定式を満たさない場合、磁 極位置推定エラーと定義します。

また、位置推定収束判定期間と同時に、極性判別期間を設けており、極性判別アルゴリズムによって得ら れる応答電流の差の積分値である PF 値の絶対値が 10.0f 以下の場合、極性判別を失敗とし、極性判別エ ラーと定義しています。

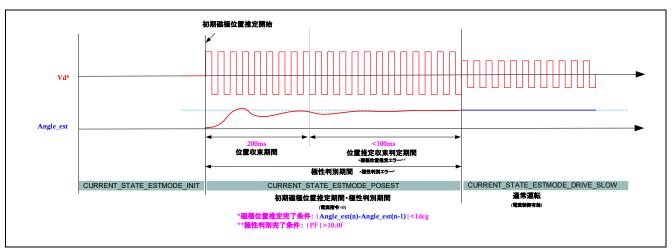


図 7-12 始動時の磁極位置推定動作

Dec.10.24

f) 中高速との切替処理

切替速度に達した場合、アルゴリズムの切り替えを行います。低速域から中高速域にセンサレスのアルゴリズムが切り替わる際、高周波パルス印加を 1/2 にして電流変動を抑えるように状態シーケンスを動作させます。中高速域から低速域にセンサレスのアルゴリズムが切り替わる速度に達した場合は、高周波パルス印加を開始するシーケンスを行います。切り替え速度は、後述のパラメータで調整することができます。

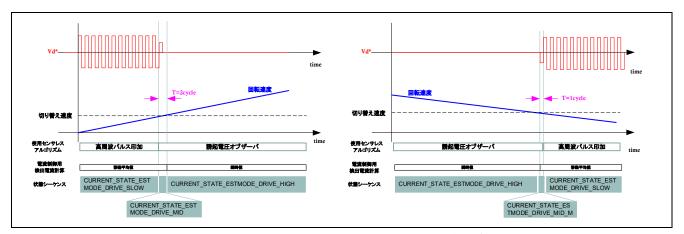


図 7-13 加速時および減速時のセンサレスアルゴリズム切替

7.8.3 中高速域センサレスアルゴリズム

中高速域では、誘起電圧オブザーバを用いたセンサレスベクトル制御を用いて制御を行います。誘起電圧オブザーバのアルゴリズムは、本サンプルプログラムのベースとなっている、アプリケーションノート「永久磁石同期モータのセンサレスベクトル制御 Evaluation System for BLDC Motor 用 (R01AN6307JJ0100)」の 5.6 誘起電圧オブザーバ(電流制御モジュール)にて詳細な説明が記載されています。

7.9 電圧位相進み補償

UVW の三相電圧指令を生成する際に、推定した角度から 0.5 制御周期分、進めた角度で二相三相変換を行います。この処理により、制御の安定性を改善することができます。高速回転用途、PWM キャリア周期が低い場合、間引き処理を行う場合に、改善効果が得られます。

指令演算中、モータの回転が進むことで、角度は常にずれが生じます。このずれを指令演算時間が一定であることを利用し、進む角度を前回の角度移動量から補間する機能となります。

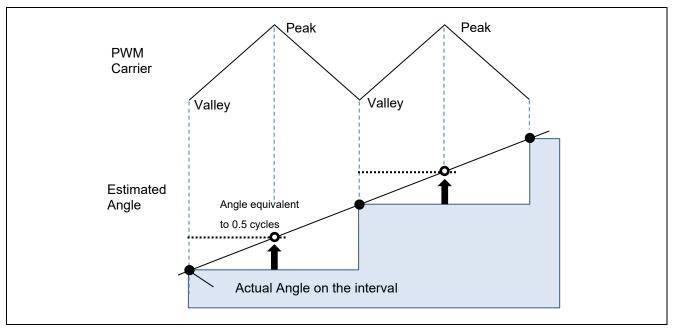


図 7-14 PWM キャリア周期で進む角度量の例

7.10 電圧誤差補償

電圧形 PWM インバータでは、上下アームのスイッチング素子間の短絡を防止するために、上下アーム 2 つの素子が同時にオフとなるデッドタイムを設けています。そのため電圧指令値と実際にモータに印加される電圧には誤差が生じ、制御精度が悪化します。そこでその誤差を低減するため、電圧誤差補償を実装します。

電圧誤差の電流依存性は、電流(向きと大きさ)とデッドタイム、使用するパワー素子のスイッチング特性に依存し、下記のような特性を持ちます。電圧誤差補償では、下記電圧誤差と逆の電圧パターンを電流に応じて電圧指令値に補償します。

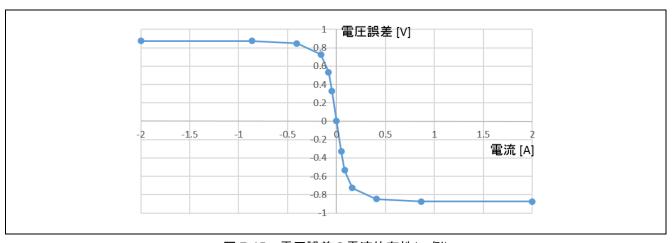


図 7-15 電圧誤差の電流依存性(一例)

7.11 PWM 変調方式

サンプルプログラムでは、モータへの入力電圧はパルス幅変調(PWM)によって生成します。本モジュールでは、PWM Duty 比の算出を行います。また、電圧利用率を上げるために、変調を行った電圧を出力できます。電流制御モジュールの API を通して変調の動作を設定します。本サンプルプログラムでは、2種類のパルス幅変調駆動方式から選択できます。

a) 正弦波変調(MOD_METHOD_SPWM) 変調率 m を以下のように定義します。

$$m = \frac{V}{E}$$

m:変調率 V:指令値電圧 E:インバータ母線電圧

b) 空間ベクトル変調(MOD_METHOD_SVPWM)

永久磁石同期モータのベクトル制御において、一般的に所望の各相電圧指令値は正弦波状に生成します。ところが、そのまま PWM 生成のための変調波として使用すると、実際にモータに印加される電圧のインバータ母線電圧に対する電圧利用率は線間電圧換算で最大 86.7[%]となってしまいます。そこで、下記式にあるように各相電圧指令値の最大値と最小値の平均値を算出し、それらを各相電圧指令値から減算したものを変調波として使用します。その結果、変調波の最大振幅は $\sqrt{3}/2$ 倍となり、線間電圧はそのままに電圧利用率は 100[%]となります。

$$\begin{pmatrix} V_u' \\ V_v' \\ V_{uv}' \end{pmatrix} = \begin{pmatrix} V_u \\ V_v \\ V_{wv} \end{pmatrix} + \Delta V \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

 $\because \Delta V = -\frac{V_{max} + V_{min}}{2} \ , \ V_{max} = max\{V_u, V_v, V_w\} \ , \ V_{min} = min\{V_u, V_v, V_w\}$

 V_u, V_v, V_w : U,V,W 相電圧指令値

 V_u', V_v', V_w' : PWM 生成用 U,V,W 相電圧指令値(変調波)

変調率 m を以下のように定義します。

$$m = \frac{V'}{F}$$

m:変調率 V':PWM生成用相電圧指令 E:インバータ母線電圧

8. ソフトウェア仕様・構成

8.1 ソフトウェア仕様

本システムのソフトウェアの基本仕様を下記に示します。

表 8-1 全速度域センサレスベクトル制御ソフトウェア基本仕様

項目	内 容		
制御方式	位置センサレスベクトル制御		
モータ制御開始/停止	RMW からの入力		
回転子磁極位置検出	センサレス (高周波パルス印加 及び 誘起電圧オブザーバ)		
入力電圧	DC 24V		
PWM キャリア周波数	20 [kHz]、キャリア周期:50 [µs] (谷割り込み)		
PWM 変調方式	三角波比較法または空間ベクトル変調法		
デッドタイム	2.0 [µs]		
制御周期(電流)	50 [µs]		
制御周期(速度)	500 [µs]		
速度指令値管理	CW: 0 [r/min] to 2850 [r/min]		
	CCW: 0 [r/min] to -2850 [r/min]		
各制御系固有周波数	電流制御系:600 Hz		
	速度制御系:10 Hz		
	外乱トルク・速度推定オブザーバ: 30Hz		
	誘起電圧オブザーバ: 1000Hz		
	位置推定 PLL(停止・低速): 50Hz		
	位置推定 PLL(中高速): 20Hz		
コンパイラ最適化設定	最適化レベル 2 (-optimize = 2) (デフォルト設定)		
	最適化方法 コード・サイズ重視の最適化 (-size) (デフォルト設定)		
保護停止処理	以下のいずれかの条件の時、モータ制御信号出力(6本)を非アクティブにす		
	る		
	1 タセの電流 2 カはが 10 [A] たわね (50 [1年) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	1. 各相の電流ピーク値が 10 [A]を超過(50 [µs]毎に監視) 2. 定格電流からの計算値(21.4A)を超過(50 [µs]毎に監視)		
	2. 定俗電流からの計算値(21.4A)を超過(50 [µS]毎に監視) 3. インバータ母線電圧が 60 [V]を超過(50 [µS]毎に監視)		
	3. インバータ母線電圧が 8 [V] 未満 (50 [μs] 毎に監視) 4. インバータ母線電圧が 8 [V] 未満 (50 [μs] 毎に監視)		
	4. インバーダ母線電圧が 8 [v]米綱(50 [μs]毎に監視) 5. 回転速度が 2850 [r/min]を超過(50 [μs]毎に監視)		
	6. 磁極位置推定時の角度変動(前回値との差分の絶対値)が 100msec 期間中、1		
	度以内に連続 10 回収束しなかった場合(電流制御周期で監視)		
	7. 磁極位置推定時の極性判別で 100msec 期間中、PF 値の絶対値が 10.0 以上		
	にならなかった場合(電流制御周期で監視)		
	外部からの過電流検出信号(POE/POEG)及び出力短絡を検出した場合、PWM		
	出力端子をハイインピーダンスにする		

8.2 ソフトウェア全体構造

ソフトウェアの全体構成を図8-1に示します。

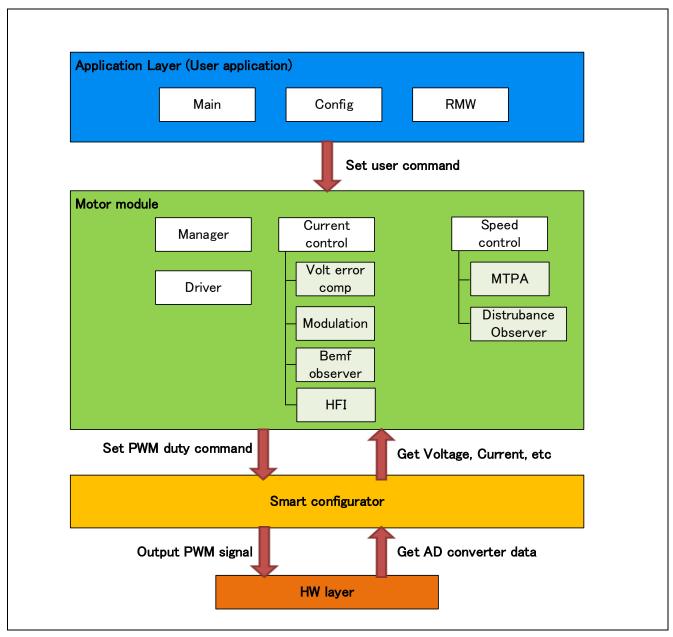


図 8-1 モータ制御ソフトウェアの全体構成

8.3 タスクの説明

モータ制御タスクは、0.5ms 周期の速度制御を行うタスクと、PWM キャリア周期(20kHz, 50us)に同期したタスクの 2 つに分かれています。

表 8-2 使用する割り込み・タスク

タスク	周辺機能	割り込み関数	コールされる関数
モータ制御 割り込み (速度制 御)	СМТО	r_Config_CMT0_cmi0_interrupt	R_MOTOR_SENSORLESS_ VECTOR_SpeedInterrupt
モータ制御 割り込み (電流制 御)	MTU3,4	r_Config_MOTOR_ad_interrupt	R_MOTOR_SENSORLESS_ VECTOR_CurrentInterrupt
アイドル	-	r_app_main_ui_mainloop	R_MOTOR_SENSORLESS_ VECTOR_StatusGet
起動時 1	-	r_app_main_init_motor_ctrl	R_MOTOR_SENSORLESS_ VECTOR_Open
起動時 2	-	r_app_main_start_motor_ctrl	(ドライバ関連のみ)
リセット時	-	※エラー復帰時に状態遷移処理の 中で実行されます	R_MOTOR_SENSORLESS_ VECTOR_Reset
RMW 操作	-	r_app_rmw_system_mode	R_MOTOR_SENSORLESS_VECTOR_ MotorStart MotorStop LoopModeStatusGet SpeedSet MotorReset

8.4 ファイル・フォルダ構成

サンプルプログラムのフォルダとファイル構成を表 8-3 に示します。

表 8-3 ファイル・フォルダ構成

フォルダ	サブフォルダ	ファイル	備考
арр	main	r_app_main.c/h	ユーザメイン関数
	rmw	r_app_rmw.c/h	RMW の Analyzer UI 関連関数定義
		r_app_rmw_interrupt.c	RMW の割り込み関数定義
		ICS2_RX26T.lib/h	RMW の通信用ライブラリ
	cfg	r_app_control_cfg.h	アプリ層のコンフィグレーション定義
motor_module	sensorless_	r_motor_sensorless_vector_action.c	アクション関数定義
	vector_rx	r_motor_sensorless_vector_api.c/h	マネージャモジュールの API 関数定義
		r_motor_sensorless_vector_manager.c/h	マネージャモジュールのローカル関数 定義
		r_motor_sensorless_vector_protection.c/h	保護機能の関数定義
		r_motor_sensorless_vector_	状態遷移関連の関数定義
		statemachine.c/h	
	current_rx	r_motor_current_api.c/h	電流制御モジュールの API 関数定義
		r_motor_current.c/h	電流制御モジュールのローカル関数定 義
		r_motor_current_modulation.c/h	変調モジュールの関数定義
		r_motor_current_volt_err_comp.c/h	電圧誤差補償モジュールの関数定義
		r_motor_current_bemf_observer.lib/h	誘起電圧オブザーバの関数定義
		r_motor_current_pi_gain_calc.c	電流制御モジュールの制御ゲイン算出 関数定義
		r_motor_current_lowspd_sensorless.lib/h	低速域センサレス制御モジュール関数 定義
	speed_rx	r_motor_speed_api.c/h	速度制御モジュールの API 関数定義
		r_motor_speed.c/h	速度制御モジュールのローカル関数定 義
		r_motor_speed_extobserver.lib/h	外乱トルク・速度推定オブザーバの関 数定義
		r_motor_speed_pi_gain_calc.c	速度制御モジュールの制御ゲイン算出 関数定義
	driver_rx	r_motor_driver.c/h	ドライバモジュールの関数定義
	general	r_motor_filter.c/h	汎用フィルタ関数定義
		r_motor_pi_control.c/h	PI 制御関数定義
		r_motor_common.h	共通定義
	cfg	r_motor_inverter_cfg.h	インバータのコンフィグレーション定 義
		r_motor_module_cfg.h	制御モジュールのコンフィグレーション定義
		r_motor_targetmotor_cfg.h	モータのコンフィグレーション定義
src	smc_gen	表 8-4 を参照	スマート・コンフィグレータで生成さ れたドライバ及び API

スマート・コンフィグレータを使用することで、周辺機能ドライバを簡単に生成することができます。

スマート・コンフィグレータは、プロジェクトで使用するマイクロコントローラ、周辺機能、端子機能などの設定情報をプロジェクト・ファイル (*.scfg) に保存し、参照します。本サンプルプログラムの周辺機能設定を確認する場合、以下のファイルを参照してください。

- "RX26T MCBA MCILV1 IPM LESS FOC WHOLE xxx Vyyy.scfg"
- (xxx: CSP は CS+版、E2S は e² studio 版を意味します。yyy: リビジョン番号)

スマート・コンフィグレータで生成したフォルダとファイル構成を下記に示します。

表 8-4 スマート・コンフィグレータのフォルダ・ファイル構成

フォルダ	サブフォルダ	サブフォルダ 2	ファイル	備考
src	smc_gen	Config_S12AD2	Config_S12AD2.c/h	12bitADC 関連関数定義
			Config_S12AD2_user.c	12bitADC 関連ユーザ関数定義
		Config_PORT	Config_PORT.c/h	ポート関連関数定義
			Config_PORT_user.c	ポート関連ユーザ関数定義
		Config_CMT0	Config_CMT0.c/h	制御周期用 CMT 関連関数定義
			Config_CMT0_user.c	制御周期用 CMT 関連ユーザ関数定義
		Config_MOTOR	Config_MOTOR.c/h	モータコンポーネント関連関数定義
			Config_MOTOR_user.c	モータコンポーネント関連ユーザ関数定義
		Config_IWDT	Config_IWDT.c/h	IWDT 関連関数定義
			Config_IWDT_user.c	IWDT 関連ユーザ関数定義
		Config_POE	Config_POE.c/h	POE 関連関数定義
			Config_POE_user.c	POE 関連ユーザ関数定義

上記表の他に、スマート・コンフィグレータ使用時に4つのフォルダが自動生成されます。

r_bsp: 様々な BSP(BSP: Board Support Package) ファイルを含みます。詳細は "r_bsp" フォルダ内の "readme.txt" ファイルを参照してください。

general:スマート・コンフィグレータ生成ドライバで共通に使用される様々なファイルを含みます。

r_config: MCU パッケージ、クロック、割り込み、R_xxx_Open の名前を持つドライバ初期化関数のコンフィグレーションヘッダファイルを含みます。

r pincfg: ピン設定に関する様々なファイルを含みます。

8.5 アプリケーション層

アプリケーション層はユーザインタフェース(UI)の選択と RMW を使用したモータモジュールに対する制御の指令値設定や制御モジュールのパラメータ更新を行っています。サンプルプログラムでは、RMW を使用 (RMW UI) して、設定及び処理を行っています。また、これらの UI からモータの駆動/停止や、制御の指令値設定などを行っています。

8.5.1 機能

アプリケーション層で設定している機能一覧を表 8-5 に示します。

機能	説明
メイン処理	ユーザの指令に対してシステムを有効 / 無効に設定します。
UI 処理	RMW の管理を行います。
マネージャー処理	速度制御の指令値の取得・設定を行います。
RMW の UI 処理	指令値含むパラメータの取得・設定を行います。

表 8-5 アプリケーション層の機能一覧

8.5.2 コンフィグレーション情報

アプリケーション層で使用するコンフィグレーション情報を表 8-6 コンフィグレーション情報一覧に示します。

ファイル名	マクロ名	説明
r_app_control_cfg.h	APP_CFG_USE_UI	UI の初期値設定
		RMW : MAIN_UI_RMW
	APP_CFG_FREQ_BAND_LIMIT	電流制御、速度制御、位置制御の固有周
		波数が近い値にならないための制限値。
	APP_CFG_MAX_CURRENT_OMEGA	電流制御系固有周波数の上限値[Hz]
	APP_CFG_MIN_OMEGA	固有周波数の下限値[Hz]
	APP_CFG_SCI_CH_SELECT	RMW 用 SCI のチャネルセレクト

表 8-6 コンフィグレーション情報一覧

表 8-7 コンフィグレーション情報初期値一覧

マクロ名	設定値
APP_CFG_USE_UI	MAIN_UI_RMW
APP_CFG_FREQ_BAND_LIMIT	3.0f
APP_CFG_MAX_CURRENT_OMEGA	1000.0f
APP_CFG_MIN_OMEGA	1.0f
APP_CFG_SCI_CH_SELECT	0x60

8.5.3 構造体・変数情報

アプリケーション層でユーザが使用可能な変数一覧を表 8-8 に示します。また、RMW を使用してモータモジュールのパラメータを更新するための構造体を用意しており、その構造体メンバを表 8-9 に示します。

表 8-8 に示す変数は、RMW から値を設定することで、本アプリケーション層が表 8-9 に示す構造体を介して、各制御モジュールの変数に、変更した値が各モジュールの Update 関数を介して反映されます。

表 8-8 変数一覧

変数	説明
g_st_rmw_input_buffer	RMW 変数更新用構造体
g_u1_update_param_flag	バッファ転送完了フラグ
com_u1_system_mode	ユーザ入力用システムモード切り替え変数
	0:モータ停止
	1:モータ駆動
g u1 system mode	3:エラー解除 システムモード
g_u1_system_mode	0:モータ停止
	1:モータ駆動
	2: エラー
com_u1_enable_write	ユーザ入力用変数書き換え許可
g_u1_enable_write	変数書き換え許可
com_u2_offset_calc_time	電流オフセット値計算時間設定
com_u2_mtr_pp	駆動するモータの極対数
com_f4_mtr_r	駆動するモータの抵抗 $[\Omega]$
com_f4_mtr_ld	駆動するモータの d 軸インダクタンス [H]
com_f4_mtr_lq	駆動するモータの q 軸インダクタンス [H]
com_f4_mtr_m	駆動するモータの磁束 [Wb]
com_f4_mtr_j	駆動するモータのロータイナーシャ [kgm^2]
com_f4_nominal_current_rms	駆動するモータの定格電流 [Arms]
com_f4_max_speed_rpm	駆動するモータの速度最大値(機械角)[r/min]
com_u1_ctrl_loop_mode	制御ループの切り換え
	1:速度制御
com_f4_current_omega_hz	電流制御系固有周波数 [Hz]
com_f4_current_zeta	電流制御系減衰係数
com_f4_speed_omega_hz	速度制御系固有周波数 [Hz]
com_f4_speed_zeta	速度制御系減衰係数
com_f4_speed_lpf_hz	速度 LPF カットオフ周波数[Hz]
com_f4_ref_speed_rpm	速度指令値(機械角)[r/min]
com_f4_speed_rate_limit_rpm	速度指令最大增減幅 [r/min/s] (速度制御時使用,機械角)
com_f4_overspeed_limit_rpm	速度制限値(機械角)[r/min]

変数	説明
com_u1_flag_volt_err_comp_use	電圧誤差補償の設定
	0:無効, 1:有効
com_u1_flag_mtpa_use	最大トルク/電流制御の設定
	0:無効, 1:有効
com_u1_flag_extobserver_use	外乱トルク・速度推定オブザーバの設定
	0:無効, 1:有効
s_u1_cnt_ics	ICS watchpoint のスキップ回数カウンタ
com_f4_e_obs_omega_hz	誘起電圧推定系固有周波数 [Hz]
com_f4_e_obs_zeta	誘起電圧推定系減衰係数
com_f4_pll_est_omega_hz	位置推定系固有周波数 [Hz]
com_f4_pll_est_zeta	位置推定系減衰係数
com_f4_pll_estlow_omega_hz	位置推定系固有周波数 [Hz] (低速用)
com_f4_pll_estlow_zeta	位置推定系減衰係数(低速用)
com_f4_extobs_omega	外乱トルク・速度推定オブザーバの固有周波数[Hz]
com_f4_spd_low_to_high_threshold	低速から高速への切り替え速度[r/min]
com_f4_spd_high_to_low_threshold	高速から低速への切り替え速度[r/min]

表 8-9 RMW によるパラメータ更新用構造体の変数一覧

10 offect cale time	
u2_offset_calc_time	電流オフセットの検出時間設定
st_motor_parameter_t	モータパラメータ用の構造体
f4_max_speed_rpm	最大速度 [r/min] (機械角)
u1_ctrl_loop_mode	制御ループのモード (速度制御)
f4_current_omega_hz	電流制御系固有周波数 [Hz]
f4_current_zeta	電流制御系減衰係数
f4_speed_omega_hz	速度制御系固有周波数 [Hz]
f4_speed_zeta	速度制御系減衰係数
f4_speed_lpf_hz	速度 LPF カットオフ周波数[Hz]
f4_ref_speed_rpm	速度指令值 [r/min] (機械角)
f4_speed_rate_limit_rpm	速度の変化量制限 [r/min/s] (機械角)
f4_overspeed_limit_rpm	速度制限值 [r/min] (機械角)
u1_flag_volt_err_comp_use	電圧誤差補償の使用有無のフラグ
u1_flag_mtpa_use	最大トルク/電流制御の設定
u1_flag_extobserver_use	外乱トルク・速度推定オブザーバの設定
f4_e_obs_omega_hz	誘起電圧推定系固有周波数 [Hz]
f4_e_obs_zeta	誘起電圧推定系減衰係数
S FZ U U U U U U U U U U U U U U U U U U	t_motor_parameter_t t_max_speed_rpm 1_ctrl_loop_mode t_current_omega_hz t_current_zeta t_speed_omega_hz t_speed_zeta t_speed_lpf_hz t_ref_speed_rpm t_speed_rate_limit_rpm t_overspeed_limit_rpm 1_flag_volt_err_comp_use 1_flag_mtpa_use 1_flag_extobserver_use t_e_obs_omega_hz

構造体	変数	説明
	f4_pll_est_omega_hz	位置推定系固有周波数 [Hz]
	f4_pll_est_zeta	位置推定系減衰係数
	f4_extobs_omega	外乱トルク・速度推定オブザーバの固有周 波数[Hz]
	f4_pll_estlow_omega_hz	位置推定系固有周波数 [Hz] (低速用)
	f4_pll_estlow_zeta	位置推定系減衰係数(低速用)
	f4_highspd_threshold	低速から高速への切り替え速度
	f4_lowspd_threshold	高速から低速への切り替え速度

8.5.4 マクロ定義

マクロ一覧を表 8-10 に示します。

表 8-10 マクロ一覧

ファイル名	マクロ名	定義値	備考
r_app_main.h	MAIN_UI_RMW	0	RMW UI 使用
	MAIN_UI_BOARD	1	ボード UI 使用(未使用)
	MAIN_UI_SIZE	2	UI 選択可能数
r_app_rmw.h	ICS_DECIMATION	5	RMW watchpoint のスキップ回数
	ICS_INT_LEVEL	6	RMW 割り込みの優先度
	ICS_BRR	251	RMW の通信ボーレート
	ICS_INT_MODE	1	RMW の通信モード選択
	ICS_SCI_CH_SELECT	APP_CFG_SCI_C H SELECT	使用 SCI チャネル

【注】 RMW で通信を行うためのチャネルを定義したマクロが ICS2_RX26T.h に用意されています。

表 8-11 マクロ定義一覧

マクロ名	設定値
ICS_DECIMATION	APP_CFG_SCI_CH_SELECT
ICS_INT_LEVEL	6
ICS_BRR	251
ICS_INT_MODE	1

8.5.5 パラメータ調整・設定

アプリケーション層のコンフィグレーション情報は r_app_control_cfg.h で設定する必要があります。

表 8-8 に示す変数の設定・更新は、RMW から行ってください。RMW の操作は 6.7 及び Renesas Motor Workbench V.3.10 ユーザーズマニュアル(R21UZ0004)を参照ください。

8.6 マネージャモジュール・モータ制御モジュール

マネージャモジュールは、モータ制御モジュールに含まれる各制御モジュールを適切に使用してモータ制御を行うモジュールです。各モジュールのインタフェースやモータ制御のシステム全体の管理、システム保護などを行っています。

8.6.1 機能

マネージャモジュールの機能一覧を表 8-12 に示します。モータ制御モジュールの機能の一覧を表 8-13 及び表 8-14 に示します。

説明 機能 モード管理 ユーザの指令に対してシステムを切り替えてモータを制御します。 保護機能 システム保護機能によりエラー処理を行います。 制御方式の管理 速度制御や電流制御の状態の取得・設定を行います。 速度・位置情報の取得 速度制御モジュールや電流制御モジュールから、速度・位置情報の取 得を行います。 制御モジュールの指令値設定 電流制御モジュール、速度制御モジュールに対して入力する指令値を 制御の状態から選択します。 割り込み処理 スマート・コンフィグレータで設定した割り込みを受けて処理を行 い、適切なモジュールへ処理の割り振りを行います。

表 8-12 マネージャモジュールの機能一覧

表 8-13 速度制御モジュールの機能一覧

機能	説明
速度制御	速度指令値に追従するよう演算を行い、電流指令値を出力します。
速度指令設定	速度モジュールに速度指令値を設定します。
外乱トルク・速度推定 オブザーバ	速度と電流から、低速域での外乱を推定し外乱を抑制する制御を行います。
最大トルク/電流制御	d 軸電流を制御し、負荷状況に応じて最大のトルクが出力されるようにします。

表 8-14 電流制御モジュールの機能一覧

機能	説明
電流制御	電流指令値に追従するよう演算を行い、PWM 出力値を設定します。
電流オフセット調整	AD で検出した電流値のオフセット値を計算します。
電圧誤差補償	出力電圧のデッドタイムによる影響を補償します。
順変換、逆変換	ベクトル制御を行うために検出した電流値に対して、座標変換を行います。演算 結果に対して座標の逆変換を行い元の座標軸に戻します。
変調	PWM 信号に変調して効率を改善します。
非干渉制御	dq 軸の干渉を防ぐために干渉を打ち消す演算を行います。
高周波パルス印加	停止・低速時に出力電圧に高周波パルスを印加し、位置・速度を推定します。
誘起電圧オブザーバ	中高速時に誘起電圧オブザーバを使って、位置・速度を推定します。

8.6.2 モジュール構成図

モジュール構成図を図8-2に示します。

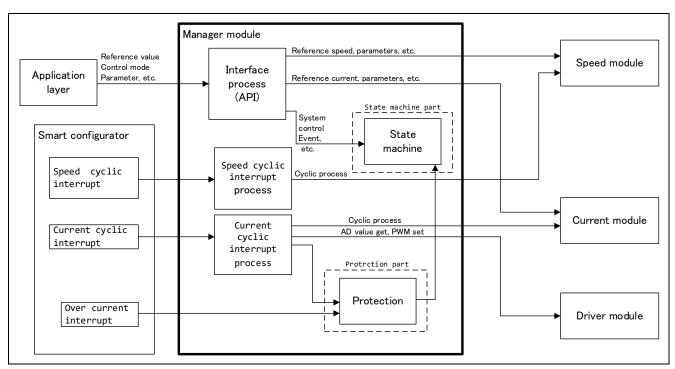


図 8-2 マネージャモジュール構成図

8.6.3 モード管理

図 8-3 に本サンプルプログラムにおける状態遷移図を示します。本サンプルプログラムでは、「SYSTEM MODE」と、「RUN MODE」により状態を管理し、「Control Config」は、ソフトウェア内でアクティブになっている制御系を表しています。

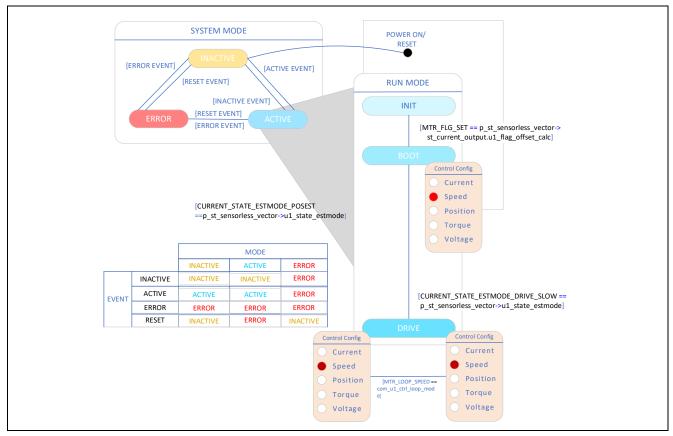


図 8-3 センサレスベクトル制御ソフトウェアの状態遷移図

(1) SYSTEM MODE

システム動作状態を表します。各イベント(EVENT)の発生により、状態が遷移します。システムの動作状態は、モータ駆動停止(INACTIVE)、モータ駆動(ACTIVE)、異常状態(ERROR)があります。

(2) RUN MODE

モータの制御状態を表します。システムの状態が ACTIVE になると、モータの駆動状態が図 8-3 のように遷移します。

(3) EVENT

各 SYSTEM MODE 中に EVENT が発生すると、その EVENT に従って、システム動作状態が図 8-3 中の表のように遷移します。各 EVENT の発生要因は下記となります。

イベント名	発生要因	
INACTIVE	ユーザ操作により発生します	
ACTIVE	ユーザ操作により発生します	
ERROR	システムが異常を検出したときに発生します	
RESET	ユーザ操作により発生します	

8.6.4 シーケンスの説明

本サンプルプログラムでは、モードと呼ばれる運転・停止・エラーを管理する状態遷移に加えて、センサレス制御を行うための運転状態を管理するシーケンスの2つを有しています。モードは、8.6.3を参照してください。ここでは、後者の運転状態を管理するシーケンスを説明します。以下に示します。

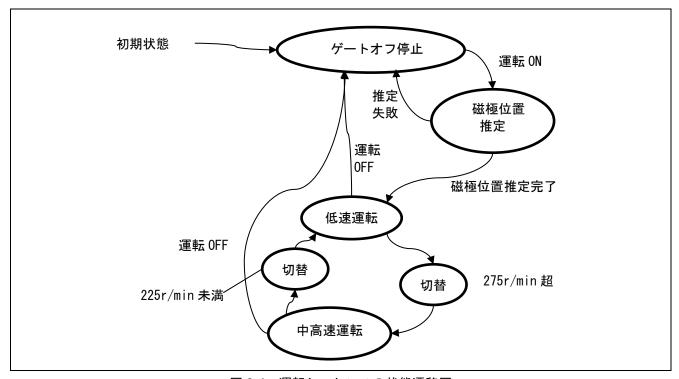


図 8-4 運転シーケンスの状態遷移図

表 8-16 運転シーケンスの状態とその説明

状態	状態の説明
初期状態	CPU が初期化される前の状態です。
ゲートオフ	CPU カードの電源が ON の状態です。インバータの電源が OFF の場合、運転 ON に
停止	は推移しません。運転 ON した場合、低電圧保護により、エラーが発生します。
磁極位置	モータに電流を流し、磁極位置を推定します。推定に成功すると、低速運転モードに
推定	移動し、設定した速度で回転します。失敗した場合、ゲートオフ停止に戻ります。
低速運転	Or/min(モータに電流が流れている状態であるが停止)から 250r/min 程度(変更可能)まで
	の間でモータを運転している状態です。低速センサレスアルゴリズムを用いてセンサ
	レスベクトル制御を行います。
切替	低速運転で使用しているセンサレスアルゴリズムから、中高速運転で使用するセンサ
	レスアルゴリズムに切り替えを行う状態です。
	加速時は、中高速運転のアルゴリズムにデータの引継ぎを行います。データの引継
	ぎが完了次第、自動的に中高速運転状態に切り替わります。
	減速時は、低速運転のアルゴリズムにデータの引継ぎを行っている状態です。デー
	タの引継ぎが完了次第、自動的に低速運転状態に切り替わります。
中高速運転	250r/min 程度(変更可能)から、モータの定格速度までの範囲でモータを運転してい
	る状態です。誘起電圧オブザーバを用いたセンサレスベクトル制御を行います。

8.6.5 始動シーケンス

マネージャモジュールでは RUN MODE のステータスに合わせて、速度指令値を管理するフラグを変更してモータを制御しています。また、これらの指令値を適切に変更することで始動シーケンスを作成し、モータの始動を行います。始動シーケンスの動きを図 8-5 に示します。

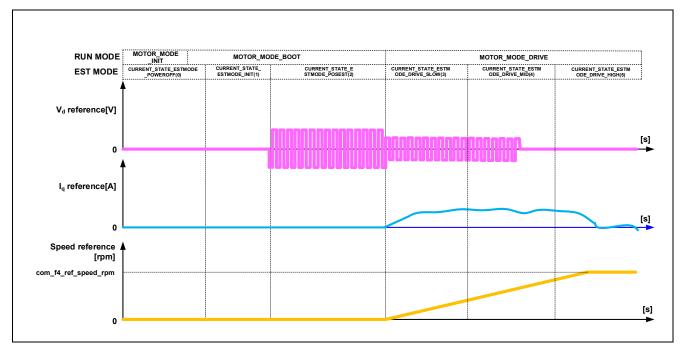


図 8-5 全速度域センサレスベクトル制御の始動制御内容

8.6.6 保護機能

本制御プログラムは、以下のエラー状態を持ち、それぞれの場合に緊急停止機能を実装しています。システム保護機能に関わる各設定値は表 8-17 を参照してください。

● 過電流エラー

過電流エラーはハードウェア及びソフトウェア両方で検出されます。

ハードウェアからの緊急停止信号(過電流検出)により、PWM 出力端子をハイインピーダンス状態にします。また、過電流監視周期で U 相、V 相、W 相電流を監視し、過電流(過電流リミット値を超過)を検出した時に、緊急停止します(ソフトウェア検出)。

過電流リミット値はモータの定格電流 (MP NOMINAL CURRENT RMS)から自動で計算されます。

● 過電圧エラー

過電圧監視周期でインバータ母線電圧を監視し、過電圧(過電圧リミット値を超過)を検出した時に、 緊急停止します。過電圧リミット値は検出回路の抵抗値の誤差等を考慮して設定した値です。

● 低電圧エラー

低電圧監視周期でインバータ母線電圧を監視し、低電圧(低電圧リミット値を下回った場合)を検出した時に、緊急停止します。低電圧リミット値は検出回路の抵抗値の誤差等を考慮して設定した値です。

● 回転速度エラー

回転速度監視周期で速度を監視し、速度リミット値を超過した場合、緊急停止します。

● 磁極位置推定エラー

始動開始時に IPM モータの磁極位置を推定する処理で、推定完了条件を満たさない場合、運転を中止し 停止します。

● 極性判別エラー

始動開始時に IPM モータの磁極位置が N 極か S 極のどちらに位置するか判別する処理で、推定完了条件を満たさない場合、運転を中止し停止します。

過電流エラー	過電流リミット値 [A]	10
週电加工 ノー 	監視周期 [µs]	電流制御周期*1
過電圧エラー	過電圧リミット値 [V]	60
過電圧エクー 	監視周期 [µs]	電流制御周期*1
低電圧エラー	低電圧リミット値 [V]	8
	監視周期 [µs]	電流制御周期*1
回転速度エラー	速度リミット値 [r/min]	2850
四粒速度エノー	監視周期 [µs]	電流制御周期*1
		初期磁極位置推定時で
	推定完了条件	100msec 期間中に、角度変動(前回値
磁極位置推定エラー	推定元 1 未 F	との差分の絶対値)1deg 以内に連続 10
		回に収まらなかった
	監視周期 [us]	電流制御周期*1
		初期磁極位置推定時で
 極性乳型 二	推定完了条件	100ms 期間中に PF 値の絶対値が 10.0
極性判別エラー		以上とならなかった
	監視周期 [us]	電流制御周期*1

表 8-17 各システム保護機能の動作条件・設定値

【注】 1. 表 8-1 全速度域センサレスベクトル制御ソフトウェア基本仕様参照

8.6.7 API

マネージャモジュールの API 一覧を表 8-18 に示します。

表 8-18 API 一覧

API	説明
R_MOTOR_SENSORLESS_VECT OR_Open	本モジュールと使用するモジュールのインスタンスを生成します。
R_MOTOR_SENSORLESS_VECT OR_Close	本モジュールをリセット状態にします。
R_MOTOR_SENSORLESS_VECT OR_Reset	モジュールの初期化を行います。
R_MOTOR_SENSORLESS_VECT OR_ParameterUpdate	本モジュールの制御パラメータを更新します。また、関連するモ ジュールの制御パラメータ更新を行います。
R_MOTOR_SENSORLESS_VECT OR_MotorStart	モータ駆動状態にします。
R_MOTOR_SENSORLESS_VECT OR_MotorStop	モータ停止状態にします。
R_MOTOR_SENSORLESS_VECT OR_MotorReset	システムのエラー状態を解除します。
R_MOTOR_SENSORLESS_VECT OR_ErrorSet	システムにエラー状態を設定します。
R_MOTOR_SENSORLESS_VECT OR_SpeedSet	速度指令値を設定します。速度制御時に有効になります。
R_MOTOR_SENSORLESS_VECT OR_SpeedGet	速度情報を取得します。
R_MOTOR_SENSORLESS_VECT OR_StatusGet	ステートマシンの状態を取得します。
R_MOTOR_SENSORLESS_VECT OR_ErrorStatusGet	エラー状態を取得します。
R_MOTOR_SENSORLESS_VECT OR_CtrlTypeSet	制御方式を設定します。制御方式を変更する場合は、モータを停止 状態にしてください。
	0:位置制御(Not use) 1:速度制御
R_MOTOR_SENSORLESS_VECT OR_LoopModeStatusGet	制御方式を取得します。 0:位置制御(Not use) 1:速度制御
R_MOTOR_SENSORLESS_VECT OR_SpeedInterrupt	速度制御を行うための割り込み処理を行います。
R_MOTOR_SENSORLESS_VECT OR_CurrentInterrupt	電流制御を行うための割り込み処理を行います。
R_MOTOR_SENSORLESS_VECT OR_OverCurrentInterrupt	過電流が発生した際の割り込み処理を行います。

表 8-19 電流制御モジュールの API 一覧

API	説明
R_MOTOR_CURRENT_Open	電流制御モジュールのインスタンスを生成します。
R_MOTOR_CURRENT_Close	電流制御モジュールをリセット状態にします。
R_MOTOR_CURRENT_Reset	電流制御モジュールの初期化をします。
R_MOTOR_CURRENT_Run	電流制御モジュールをアクティブ状態にします。
R_MOTOR_CURRENT_ParameterSet	電流制御に使用する変数情報を入力します。
R_MOTOR_CURRENT_ParameterGet	電流制御結果の出力を取得します。
R_MOTOR_CURRENT_ParameterUpdate	電流制御モジュールの制御パラメータを更新します。
R_MOTOR_CURRENT_CurrentCyclic	電流制御を行います。
R_MOTOR_CURRENT_OffsetCalibration	電流検出のオフセット調整を行います。
R_MOTOR_CURRENT_CurrentOffsetRemove	電流検出オフセット値を除いた値を返します。
R_MOTOR_CURRENT_VoltErrCompParamSet	電圧誤差補償パラメータ設定を行います。
R_MOTOR_CURRENT_BEMFObserverParame terUpdate	誘起電圧オブザーバの制御パラメータを更新します
R_MOTOR_CURRENT_UpdateAngleNSpole	始動時の極性判別処理の結果でロータ角度を更新します。始動時の磁極位置推定処理完了直後に使用します。

表 8-20 速度制御モジュールの API 一覧

API	説明
R_MOTOR_SPEED_Open	速度モジュールのインスタンスを生成します。
R_MOTOR_SPEED_Close	モジュールをリセット状態にします。
R_MOTOR_SPEED_Reset	モジュールの初期化します。
R_MOTOR_SPEED_Run	モジュールをアクティブ状態にします。
R_MOTOR_SPEED_ParameterSet	速度制御に使用する変数情報を入力します。
R_MOTOR_SPEED_ParameterGet	速度制御結果の出力を取得します。
R_MOTOR_SPEED_ParameterUpdate	モジュールの制御パラメータを更新します。
R_MOTOR_SPEED_SpdRefSet	速度指令値を設定します。
R_MOTOR_SPEED_SpeedCyclic	速度制御を行います。
R_MOTOR_SPEED_ExtObserverParameter Update	外乱トルク・速度推定オブザーバの制御パラメータを更 新します。

8.6.8 構造体・変数情報

マネージャモジュールの構造体・変数一覧を表 8-21 に示します。マネージャモジュールは API のインスタンス確保にて、マネージャモジュール用構造体(g_st_sensorless_vector)を定義します。電流制御モジュールで使用する構造体・変数一覧を表 8-22 に示します。速度制御モジュールの構造体・変数一覧を表 8-23 に示します。電流制御モジュールと、速度制御モジュールは API のインスタンス確保にて、電流制御モジュール用構造体(g_st_cc)と、速度モジュール用構造体(g_st_sc)を定義します。

表 8-21 マネージャモジュール用構造体・変数一覧

構造体	変数	説明
st_sensorless_vect or_control_t	u1_state_speed_ref	速度指令値のステータス
	u1_state_estmode	推定モード
マネージャ モジュール用	u1_direction	回転方向
構造体	u1_ctrl_loop_mode	制御モード選択(速度・位置)
	u2_error_status	エラーステータス
	u2_run_mode	動作モード
	f4_vdc_ad	母線電圧 [V]
	f4_iu_ad	u 相電流 [A]
	f4_iv_ad	v 相電流 [A]
	f4_iw_ad	w 相電流 [A]
	f4_overcurrent_limit	過電流制限値 [A]
	f4_overvoltage_limit	過電圧制限値 [V]
	f4_undervoltage_limit	低電圧制限値 [V]
	f4_overspeed_limit_rad	過速度制限值 [rad/s]
	st_current_output	電流モジュールの出力用構造体
	st_speed_output	速度モジュールの出力用構造体
	st_stm	ステートマシンの構造体
	st_motor	モータパラメータ構造体
	*p_st_driver	ドライバモジュールの生成インスタンス
	*p_st_cc	電流モジュールの生成インスタンス
	*p_st_sc	速度モジュールの生成インスタンス
st_sensorless_vect	f4_overspeed_limit_rpm	速度制限值 [r/min] (機械角)
or_cfg_t マネージャ	st_motor	モータパラメータ構造体
モジュール制御		
パラメータ設定用 構造体		

表 8-22 電流制御モジュール用構造体・変数一覧

構造体	変数	説明
st_current_control_t	u1_active	電流制御モジュールのアクティブ状態
電流制御モジュール用	u1_flag_volt_err_comp_use	電圧誤差補償機能の有効/無効
电流制御モンユール用 構造体	u1_flag_offset_calc	電流オフセット計算のフラグ
	u2_offset_calc_time	電流オフセット調整時の測定時間設定
	u2_crnt_offset_cnt	電流オフセット調整時の測定回数
	f4_ctrl_period	電流制御周期(期間)[s]
	f4_refu	u 相指令電圧[V]
	f4_refv	v 相指令電圧[V]
	f4_refw	w 相指令電圧[V]
	f4_vd_ref	d 軸電圧指令値[V]
	f4_vq_ref	q 軸電圧指令値[V]
	f4_id_ref	d 軸電流指令値[A]
	f4_iq_ref	q 軸電流指令値[A]
	f4_id_ad	d 軸電流値[A]
	f4_iq_ad	q 軸電流値[A]
	f4_lim_iq	q 軸電流制限値[A]
	f4_offset_iu	u 相オフセット電流値[A]
	f4_offset_iw	w 相オフセット電流値[A]
	f4_sum_iu_ad	u 相電流合計値[A]
	f4_sum_iw_ad	w 相電流合計値[A]
	f4_vdc_ad	母線電圧値[V]
	f4_iu_ad	u 相電流値[A]
	f4_iv_ad	v 相電流値[A]
	f4_iw_ad	w 相電流値[A]
	f4_modu	u 相デューティ比
	f4_modv	v 相デューティ比
	f4_modw	w相デューティ比
	f4_speed_rad	速度[rad/s]
	f4_ref_id_ctrl	d 軸電流指令値 [A]
	f4_ref_iq_ctrl	q 軸電流指令値[A]
	f4_va_max	dq 軸上の最大電圧 [V]
	f4_ed	d 軸誘起電圧推定値
	f4_eq	q軸誘起電圧推定値
	st_mod_t	変調モジュールの構造体

構造体	変数	説明
	st_volt_comp_t	電圧誤差補償モジュールの構造体
	st_bemf_observer_t	誘起電圧オブザーバ構造体
	st_pll_est_t	位置・速度推定構造体 (誘起電圧オブザー バ)
	st_pll_est_low_t	位置・速度推定構造体(HFI)
	st_pi_ctrl_t	d 軸の pi 制御用構造体
	st_pi_ctrl_t	q 軸の pi 制御用構造体
	st_rotor_angle_t	ロータ情報の構造体
	st_rotor_angle_phasecomp	ロータ情報の構造体(進み補償)
	st_motor_parameter_t	モータパラメータの構造体
	st_lowspd	HFI 機能の構造体
st_current_cfg_t	u2_offset_calc_time	オフセット計算時間設定
 電流制御モジュール制	f4_ctrl_period	制御周期[s]
御パラメータ設定用構	f4_current_omega_hz	電流制御系固有周波数[Hz]
造体 	f4_current_zeta	電流制御系減衰係数
	u1_flag_volt_err_comp_use	電圧誤差補償有効/無効
	st_motor	モータパラメータの構造体
st_current_output_t	u1_flag_offset_calc	電流オフセットフラグ
電流制御モジュール出	f4_modu	u 相デューティ比
力用構造体	f4_modv	v 相デューティ比
	f4_modw	w相デューティ比
	f4_neutral_duty	オフセット測定時のデューティ比
	f4_va_max	dq 軸上の最大電圧[v]
	f4_ref_id_ctrl	d 軸電流指令値
	f4_speed_rad	推定速度 [rad/s]
	f4_ed	d 軸誘起電圧推定値
	f4_eq	q 軸誘起電圧推定値
st_current_input_t	f4_rotor_angle_rad	ロータ角度[rad]
 電流制御モジュール入	f4_iu_ad	u 相電流値[A]
力用構造体	f4_iv_ad	v 相電流値[A]
	f4_iw_ad	w 相電流値[A]
	f4_vdc_ad	母線電圧値[V]
	f4_speed_rad	速度[rad/s]
	f4_id_ref	d 軸電流指令値[A]

構造体	変数	説明
	f4_iq_ref	q 軸電流指令値[A]
st_bemf_observer_cfg_t	f4_e_obs_omega_hz	誘起電圧推定系固有周波数 [Hz]
誘起電圧オブザーバモ ジュール入力用構造体	f4_e_obs_zeta	誘起電圧推定系減衰係数
	f4_pll_est_omega_hz	位置推定系固有周波数 [Hz]
	f4_pll_est_zeta	位置推定系減衰係数

表 8-23 速度制御モジュール用構造体・変数一覧 1

構造体	変数	説明
st_speed_control_t	u1_active	モジュールの有効/無効選択
 速度モジュール用 構造体	u1_state_speed_ref	速度指令値を決定するステート管理。本節のマク ロに記載するステートを管理する。
1丹,起 件	u1_flag_extobserver_use	外乱トルク・速度推定オブザーバ制御の使用有無 のフラグ
	u1_flag_mtpa_use	最大トルク/電流制御の使用有無のフラグ
	f4_speed_ctrl_period	速度ループの周期 [s]
	f4_ref_speed_rad_ctrl	制御用の速度指令値 [rad/s]
	f4_ref_speed_rad	位置制御時の位置モジュール出力の速度指令値 [rad/s]
	f4_ref_speed_rad_manual	速度制御時のユーザの速度指令値設定値 [rad/s]
	f4_speed_rad_ctrl	速度制御モジュール内で演算する速度 [rad/s]
	f4_speed_rad	入力された速度 [rad/s]
	f4_max_speed_rad	最大速度 [rad/s]
	f4_speed_rate_limit_rad	速度の変化量の制限値 [rad/s]
	f4_id_ref_output	d 軸電流指令値 [A]
	f4_iq_ref_output	q 軸電流指令値 [A]
	f4_va_max	dq 軸上の最大電圧 [V]
	f4_id_ad	d 軸電流値 [A]
	f4_iq_ad	q 軸電流値 [A]
	f4_torque_current	トルク電流 [A]
	st_motor_parameter_t	モータ定数用構造体
	st_pi_ctrl_t	PI 制御用構造体
	st_1st_order_lpf_t	LPF 用構造体

表 8-24 構造体・変数一覧 2

構造体	変数	説明
st_speed_cfg_t	f4_max_speed_rpm	最大速度 [r/min] (機械角)
速度モジュール制	f4_speed_ctrl_period	速度制御の周期 [s]
御パラメータ設定 用構造体	f4_speed_rate_limit_rpm	速度の変化量の制限値 [r/min] (機械角)
万将追 体	f4_speed_omega_hz	速度制御系固有周波数 [Hz]
	f4_speed_zeta	速度制御系減衰係数
	f4_speed_lpf_hz	速度制御用 LPF [Hz]
	st_motor_param_t	モータ定数用構造体
st_speed_input_t	u1_state_speed_ref	速度指令ステータス
速度モジュール入	f4_speed_rad	入力する速度 [rad/s]
力用構造体	f4_va_max	dq 軸における最大電圧 [V]
st_speed_output_t	f4_id_ref	d 軸電流指令値 [A]
速度モジュール出 カ用構造体	f4_iq_ref	q 軸電流指令値 [A]
	f4_ref_speed_rad_ctrl	PI 制御に使用する速度 [rad/s]
	f4_speed_rad_lpf	LPF 後の速度 [rad/s]

8.6.9 マクロ定義

マネージャモジュールのマクロ一覧を表 8-25 に示します。

表 8-25 マクロ一覧

ファイル名	マクロ名	定義値	備考
r_motor_sensorle	MOTOR_LOOP_POSITIO	0	位置制御モード。
ss_vector_api.h	N		※本サンプルプログラムでは未対応。
	MOTOR_LOOP_SPEED	1	速度制御モード。
	MOTOR_SENSORLESS_ VECTOR_ERROR_NON E	(0x0000)	エラーステータス。エラーなし状態。
	MOTOR_SENSORLESS_ VECTOR_ERROR_OVE R_CURRENT_HW	(0x0001)	ェラーステータス HW 過電流エラー状態。
	MOTOR_SENSORLESS_ VECTOR_ERROR_OVE R_VOLTAGE	(0x0002)	エラーステータス。過電圧エラー状態。
	MOTOR_SENSORLESS_ VECTOR_ERROR_OVE R_SPEED	(0x0004)	エラーステータス。過速度エラー状態。
	MOTOR_SENSORLESS_ VECTOR_ERROR_LOW _VOLTAGE	(0x0080)	エラーステータス。低電圧エラー状態。
	MOTOR_SENSORLESS_ VECTOR_ERROR_OVE R_CURRENT_SW	(0x0100)	エラーステータス。SW の過電流エラー状態。
	MOTOR_SENSORLESS_ VECTOR_ERROR_FAIL_ POLES	(0x0200)	エラーステータス。極性判別エラー
	MOTOR_SENSORLESS_ VECTOR_ERROR_FAIL_ POSITION	(0x0400)	エラーステータス。磁極位置推定エラー
	MOTOR_SENSORLESS_ VECTOR_ERROR_UNK NOWN	(0xffff)	エラーステータス。エラーコード不明の エラー状態。
r_motor_sensorle	MOTOR_MODE_INIT	(0x00)	初期化を行う動作モード。
ss_vector_manag er.h	MOTOR_MODE_BOOT	(0x01)	駆動準備を行う動作モード。
	MOTOR_MODE_DRIVE	(0x02)	モータ駆動状態の動作モード。
r_motor_sensorle ss_vector_api.h	MOTOR_CTRL_TYPE_P OS	0	制御方式切り替え用マクロ。位置制御 モード。
	MOTOR_CTRL_TYPE_S PEED	1	制御方式切り替え用マクロ。速度制御 モード。

8.7 ドライバモジュール

ドライバモジュールは、サンプルプログラムのミドルウェアに相当するマネージャモジュールと MCU のペリフェラルにアクセスするためのスマート・コンフィグレータを接続するインタフェースの役割を持つモジュールです。ドライバモジュールを適切に設定することで、MCU の機能割り当てや使用するボード仕様の差分をモータモジュールの変更無く使用することが可能になります。

8.7.1 機能

ドライバモジュールの機能一覧を表 8-26 に示します。

機能	説明
A/D 変換値の取得	スマート・コンフィグレータ関数経由で相電流やインバータボードの母線電圧など AD
	値を取得します。
PWM の duty 設定	スマート・コンフィグレータ関数経由で UVW 相へ出力する PWM Duty 値を設定します。
PWM の開始、停止	スマート・コンフィグレータ関数経由で PWM 出力の開始、停止を制御します。

表 8-26 ドライバモジュールの機能一覧

8.7.2 モジュール構成図

ドライバモジュールのモジュール構成図を図 8-6 に示します。

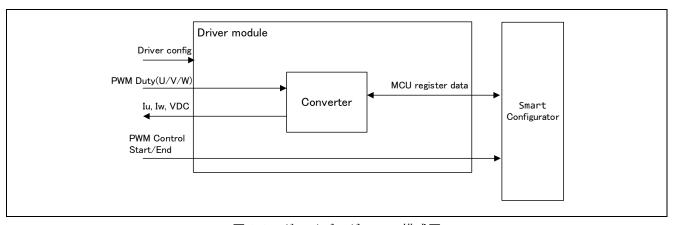


図 8-6 ドライバモジュール構成図

8.7.3 API

ドライバモジュールの API 一覧表と各 API の説明を表 8-27 に示します。

表 8-27 ドライバモジュールの API 一覧

API	説明
R_MOTOR_DRIVER_Open	ドライバモジュールのインスタンスを生成します。
R_MOTOR_DRIVER_Close	モジュールをリセット状態にします。
R_MOTOR_DRIVER_ParameterUpdate	モジュール内部で使用する変数情報を入力します。
R_MOTOR_DRIVER_BldcAnalogGet	AD 変換結果を取得します。
R_MOTOR_DRIVER_BldcDutySet	PWM Duty の設定を行います。
R_MOTOR_DRIVER_PWMControlStop	PWM 制御を停止します。
R_MOTOR_DRIVER_PWMControlStart	PWM 制御を開始します。

8.7.4 コンフィグレーション情報

ドライバモジュールのコンフィグレーション情報一覧を表 8-28 コンフィグレーション情報一覧に示します。使用する機能や各種パラメータを設定してください。

表 8-28 コンフィグレーション情報一覧

ファイル名	マクロ名	設定	説明
r_motor_modu	DRIVER_CFG_FUNC_PWM_O	R_Config_xxx_StartTimerCtrl	PWM 出力許
le_cfg.h	UTPUT_START	(スマート・コンフィグレータ関数) *1 *2	可関数設定
	DRIVER_CFG_FUNC_PWM_O	R_Config_xxx_StopTimerCtrl	PWM 出力禁
	UTPUT_STOP	(スマート・コンフィグレータ関数) *1 *2	止関数設定
	DRIVER_CFG_FUNC_ADC_DA	R_Config_xxx_AdcGetConvVal	AD 変換結果
	TA_GET	(スマート・コンフィグレータ関数) *1 *2	取得関数設定
	DRIVER_CFG_FUNC_DUTY_S	R_Config_xxx_UpdDuty	Duty Cycle 設
	ET	(スマート・コンフィグレータ関数) *1 *2	定関数設定
r_motor_invert	INVERTER_CFG_ADC_REF_V	5.0f	AD 変換基準
er_cfg.h	OLTAGE		電圧設定
r_motor_modu	MOTOR_MCU_CFG_ADC_OFF	0x7FF	AD オフセット
le_cfg.h	SET		値設定

- 【注】 1. 設定値に記載した関数については、10 スマート・コンフィグレータ設定を参照してください。
 - 2. スマート・コンフィグレータのモータコンポーネントを使用する場合は、"xxx"は"MOTOR"と設定しています。モータコンポーネントを使用しない場合は、PWMに使用するモジュール名が入ります。

R01AN7084JJ0110 Rev.1.10

Dec.10.24

8.7.5 構造体・変数情報

ドライバモジュールで使用する構造体一覧を表 8-29 に示します。ドライバモジュールは API のインスタンス確保にて、ドライバモジュール用構造体(g_st_driver)を定義します。

表 8-29 構造体・変数一覧

構造体	変数	説明
st_motor_driver_t	*ADCDataGet	スマート・コンフィグレータ関数へのポインタ
		(AD 変換結果取得関数を設定)
ドライバモジュール用構	*BLDCDutySet	スマート・コンフィグレータ関数へのポインタ
造体		(PWM 出力許可関数を設定)
	*PWMOutputStop	スマート・コンフィグレータ関数へのポインタ
		(PWM 出力禁止関数を設定)
	*PWMOutputStart	スマート・コンフィグレータ関数へのポインタ
		(Duty Cycle 設定関数を設定)
	f4_ad_crnt_per_digit	電流 AD 変換用スケール
	f4_ad_vdc_per_digit	電圧 AD 変換用スケール
	f4_pwm_period_cnt	PWM カウンター周期のカウント数(Duty 設定用情報)
	f4_pwm_dead_time_cnt	デッドタイムのカウント数(Duty 設定用情報)
st_motor_driver_cfg_t	*ADCDataGet	スマート・コンフィグレータ関数へのポインタ
ドライバモジュール制御	*BLDCDutySet	スマート・コンフィグレータ関数へのポインタ
パラメータ設定用構造体 	*PWMOutputStop	スマート・コンフィグレータ関数へのポインタ
	*PWMOutputStart	スマート・コンフィグレータ関数へのポインタ
	f4_shunt_ohm	シャント抵抗値[ohm] (f4_ad_crnt_per_digit 計算用)
	f4_volt_gain	電圧変換ゲイン係数(f4_ad_vdc_per_digit 計算用)
	f4_crnt_amp_gain	電流変換ゲイン係数(f4_ad_crnt_per_digit 計算用)
	f4_pwm_period_cnt	PWM カウンター周期のカウント数(Duty 設定用情報)
	f4_pwm_dead_time_cnt	デッドタイムのカウント数(Duty 設定用情報)

8.7.6 パラメータ調整・設定

ドライバモジュールでは、制御パラメータ設定(R_MOTOR_DRIVER_ParameterUpdate)から入力されたパラメータを使用して、モータモジュールとスマート・コンフィグレータとの関連付け、データ変換を行います。ドライバモジュール制御パラメータ設定用構造体(st_speed_config_t)を使って入力します。サンプルプログラムでは、コンフィグレーションとして定義されているものをパラメータ設定値として使用しています。設定内容を表 8-30 に示します。

表 8-30 サンプルプログラム設定例

変数名	マクロ名	ファイル名
*ADCDataGet	DRIVER_CFG_FUNC_ADC_DATA_GET	r_motor_module_cfg.h
*BLDCDutySet	DRIVER_CFG_FUNC_DUTY_SET	
*PWMOutputStop	DRIVER_CFG_FUNC_PWM_OUTPUT_START	
*PWMOutputStart	DRIVER_CFG_FUNC_PWM_OUTPUT_STOP	
f4_shunt_ohm	INVERTER_CFG_SHUNT_RESIST	r_motor_inverter_cfg.h
f4_volt_gain	INVERTER_CFG_VOLTAGE_GAIN	
f4_crnt_amp_gain	INVERTER_CFG_CURRENT_AMP_GAIN	
f4_pwm_period_cnt	MOTOR_COMMON_CARRIER_SET_BASE	r_motor_module_cfg.h
f4_pwm_dead_time_cnt	MOTOR_COMMON_DEADTIME_SET	

9. パラメータの設定

9.1 概要

本サンプルプログラムでは、パラメータは以下のヘッダファイル内でマクロ定義されています。マクロ定義されたパラメータは、起動時の初期化ルーチンで、各機能モジュールで管理される変数・構造体に設定され、各々の処理に使用されます。

一部のパラメータは、RMW等から動的に変更が可能です。変更を行った場合には、パラメータアップデートの関数をコールし、反映させる必要があります。詳細は、各機能モジュールの説明を参照してください。

マクロ名 説明
r_motor_module_cfg.h モータ制御に関するパラメータの初期値を定義しています。
r_motor_inverter_cfg.h インバータに関するパラメータの初期値を定義しています。
r_motor_targetmotor_cfg.h モータに関するパラメータの初期値を定義しています。

表 9-1 パラメータ設定ファイルの一覧

9.2 MCU 関連パラメータ

MCU の周辺機能に関連するパラメーター覧を表 9-2 に示します。マイコンのペリフェラル設定を変更した場合、これらのパラメータで、該当する個所は変更を行う必要があります。

ファイル名	マクロ名	設定値	説明
r_motor_module_ cfg.h	MOTOR_MCU_CFG_PWM_TIM ER_FREQ	120.0f	PWM のタイマ周波数 [MHz]
	MOTOR_MCU_CFG_CARRIER _FREQ	20.0f	キャリア周波数 [kHz]
	MOTOR_MCU_CFG_INTR_DE CIMATION	0	キャリア割り込みの間引き回 数
	MOTOR_MCU_CFG_AD_FREQ	60.0f	ADC の動作周波数 [MHz]
	MOTOR_MCU_CFG_AD_SAM PLING_CYCLE	6+39	ADC のサンプリング周期 [cycle]
	MOTOR_MCU_CFG_AD12BIT_ DATA	4095.0f	ADC の分解能
	MOTOR_MCU_CFG_ADC_OFF SET	0x7FF	ADC のオフセット値

表 9-2 MCU 関連パラメータの一覧

9.3 制御機能の設定パラメータの一覧

モータ制御プログラムに備わっている機能の有効無効を設定するパラメータを、表 9-3、表 9-4、表 9-5に示します。モータ制御の内部で使用される、モータ定数や設定に関する項目は、後述します。

表 9-3 動作パラメータの一覧(全般)

ファイル名	マクロ名	設定値	説明
r_motor_module_	MOTOR_TYPE_BLDC	MOTOR_TYP	デフォルトのまま使用くださ
cfg.h		E_BLDC	い。
	MOTOR_COMMON_CFG_LOO	MOTOR_LOO	デフォルトのまま使用くださ
	P_MODE	P_SPEED	い。
	MOTOR_COMMON_CFG_OVE	1.5f	過電流のリミット係数
	RCURRENT_MARGIN_MULT		
	MOTOR_COMMON_CFG_IA_M	MTR_SQRT_3	過電流リミット値計算用係
	AX_CALC_MULT		数。
			√3 を設定してください。
	MOTOR_MCU_CFG_TFU_OPT	MTR_DISABL	TFU 専用関数処理の設定
	IMIZE	E	RX26T は未対応のため、
			MTR_DISABLE を設定。

表 9-4 動作パラメータの一覧(速度制御関連)

ファイル名	マクロ名	設定値	説明
r_motor_module_ cfg.h	SPEED_CFG_OBSERVER	MTR_ENABLE	外乱トルク・速度推定オブ ザーバの有効無効設定。 有効:MTR_ENABLE 無効:MTR_DISABLE
	SPEED_CFG_MTPA	MTR_ENABLE	最大トルク/電流制御の設定 有効:MTR_ENABLE 無効:MTR_DISABLE
	SPEED_CFG_CTRL_PERIOD	0.0005f	速度制御周期[sec]の設定。 0.5ms とするため、0.0005f を設定してください。

表 9-5 動作パラメータの一覧(電流制御関連)

ファイル名	マクロ名	設定値	説明
r_motor_module_ cfg.h	CURRENT_CFG_VOLT_ERR_ COMP	MTR_ENABLE	電圧誤差補償機能の有効・無 効設定。MTR_ENABLE を設 定してください。
	CURRENT_CFG_MODULATIO N_METHOD	MOD_METHO D_SVPWM	9.5 を参照してください。 通常、 MOD_METHOD_SVPWM を 設定してください。
	CURRENT_CFG_OFFSET_CA LC_TIME	512.0f	電流オフセットの測定時間設定。

9.4 保護関連パラメータ

モータを運転する際に、安全性を担保するための保護機能のパラメータを以下に示します。

表 9-6 モータパラメータ、インバータパラメータ設定

ファイル名	マクロ名	設定値	説明
r_motor_inverter	INVERTER_CFG_CURRENT_LI	21.4f	インバータボードの過電流の
_cfg.h	MIT		制限值 [A]
	INVERTER_CFG_OVERVOLTA	60.0f	過電圧制限 [V]
	GE_LIMIT		
	INVERTER_CFG_UNDERVOLT	8.0f	低電圧制限 [V]
	AGE_LIMIT		

INVERTER_CFG_CURRENT_LIMIT

インバータが出力可能な最大の電流値から、安全マージンをとった電流値を設定します。

INVERTER_CFG_OVERVOLTAGE_LIMIT

過電圧保護が動作する電圧を設定します。インバータ母線電圧が、設定した電圧超となると、エラーとなり、モータの動作が停止します。ご使用される電源環境に合わせて設定してください。

INVERTER_CFG_UNDERVOLTAGE_LIMIT

低電圧保護が動作する電圧を設定します。インバータ母線電圧が、設定した電圧未満となると、エラーとなり、モータの動作が停止します。ご使用される電源環境に合わせて設定してください。

9.5 PWM キャリア周波数の変更

PWM キャリア周波数は、スマート・コンフィグレータによる設定と、r_motor_module_cfg.h で定義されている MOTOR_MCU_CFG_CARRIER_FREQ の定数で設定されています。PWM キャリア周波数を変更した場合、表 9-7 に示す変更箇所を修正してください。PWM キャリア周波数の設定値に合わせて、パラメータの調整が必要となるパラメータがあります。

本サンプルプログラムのデフォルト PWM キャリア周波数は、20kHz です。

表 9-7 PWM キャリア周波数を変更した場合に変更を行う個所

項目	変更箇所
デッドタイム値	9.7 インバータパラメータを参照
キャリア周波数	・スマート・コンフィグレータのモータ設定で PWM キャリア 周波数を設定 ・9.2 に記載の MOTOR_MCU_CFG_CARRIER_FREQ
モータ制御関連	電流調節器のパラメータ センサレス制御のパラメータ

9.6 パルス変調方法の設定

本サンプルプログラムでは、パルス幅変調駆動方式を2種類から設定することができます。デフォルトは空間ベクトルPWM(MOD_METHOD_SVPWM)となります。変調機能のコンフィグ情報一覧を表 9-8 に示します。

パルス幅変調駆動方式を、正弦波 PWM に変更した場合、電圧利用率が 86%に制約され、モータに適切な電圧が出力できず、所望の電圧を得るにはインバータ母線電圧を高く設定する必要があります。 空間ベクトル PWM を使用した場合、電圧利用率はインバータ母線電圧に対して 100%利用できます。

表 9-8 コンフィグレーション情報一覧

ファイル名	マクロ名	設定値	説明
r_motor_module_	CURRENT_CFG_MODULATION_	(MOD_METH	パルス幅変調駆動方式
cfg.h	METHOD	OD SVPWM)	

表 9-9 パルス幅変調駆動方式の設定項目

パルス幅変調駆動方式の設定項目	値	パルス幅変調駆動方式
MOD_METHOD_SPWM	0	正弦波 PWM
MOD_METHOD_SVPWM	1	空間ベクトル PWM

パルス変調には、以下の設定項目があります。通常は、デフォルト値のままでご使用ください。

表 9-10 マクロ一覧

ファイル名	マクロ名	設定値	説明
r_motor_current_ modulation.h	MOD_DEFAULT_MAX_DUTY	1.0f	最大 PWM デューティ比。通常 は 1.0f のままとしてください。
	MOD_VDC_TO_VAMAX_MULT	0.6124f	インバータ母線電圧で出力可能 な最大電圧を得るための変換係 数
	MOD_SVPWM_MULT	1.155f	空間ベクトル PWM を使用した 場合のみ。空間ベクトル PWM 係数

9.7 インバータパラメータ

9.7.1 概要

サンプルプログラムを使用する際に、インバータの情報を正しく設定する必要があります。サンプルプログラムで設定されているインバータパラメータを表 9-11 に示します。

ファイル名 マクロ名 設定値 説明 r motor inverter INVERTER CFG SHUNT RESIST 0.010f シャント抵抗値 [ohm] cfg.h INVERTER CFG DEADTIME 2.0f デッドタイム [us] INVERTER CFG VOLTAGE GAIN 22.2766f 電圧検出用係数 INVERTER_CFG_CURRENT_AMP_ 20.0f 電流検出用アンプのゲイン **GAIN** INVERTER CFG INPUT V 24.0f 入力電圧 [V] INVERTER CFG ADC REF VOLT 5.0f MCU のアナログ電源電圧 AGE INVERTER CFG COMP V0 0.564f 電圧誤差補償用係数 [V] INVERTER CFG COMP V1 0.782f 電圧誤差補償用係数 [V] INVERTER CFG COMP V2 0.937f 電圧誤差補償用係数 [V] INVERTER CFG COMP V3 1.027f 電圧誤差補償用係数 [V] INVERTER_CFG_COMP_V4 1.058f 電圧誤差補償用係数 [V] INVERTER_CFG_COMP_I0 0.022f 電圧誤差補償用係数 [A] INVERTER CFG COMP I1 0.038f 電圧誤差補償用係数 [A] INVERTER CFG COMP 12 0.088f 電圧誤差補償用係数 [A] INVERTER_CFG_COMP_I3 0.248f 電圧誤差補償用係数 [A] INVERTER CFG COMP 14 0.865f 電圧誤差補償用係数 [A]

表 9-11 インバータパラメータ設定

INVERTER_CFG_DEADTIME

インバータの仕様書・設計書に記載された、デッドタイム時間を us(マイクロ秒)単位で指定してください。キット MCK-RX26T では、2.0us が指定されています。

INVERTER_CFG_INPUT_V

DC 電圧値 24V をデフォルトとしています。

INVERTER_CFG_ADC_REF_VOLTAGE

MCU のアナログ電圧を指定します。RX26T CPU カードは 5.0V となります。

INVERTER_CFG_COMP_Vx, INVERTER_CFG_COMP_Ix 9.7.4 を参照してください。

9.7.2 電流検出ゲイン

MCI-LV-1 インバータでは、表 9-12 に示すように、電流の大きさによって、ADC に入力される電圧値が 規定されています。

本サンプルプログラムで、電流の検出ゲインを設定するには、INVERTER_CFG_CURRENT_AMP_GAIN と、INVERTER_CFG_SHUNT_RESIST を使用します。このとき、INVERTER_CFG_ADC_REF_VOLTAGE は、5V のままとします。

INVERTER_CFG_CURRENT_AMP_GAIN

ADC で入力する電圧 1V あたり、何 A に相当するかを求める係数を設定します。

INVERTER_CFG_SHUNT_RESIST

シャント抵抗で使用している抵抗値を設定します。シャント抵抗を使わずにホール CT を使用する場合には、1.0 を指定してください。

INVERTER_CFG_ADC_REF_VOLTAGE

INVERTER_CFG_SHUNT_RESIST の逆数で割った値に 1V あたりに換算した電流値で割ります。0-5Vで ± 12.5 A(Peak to Peak で 25A)の換算となっている MCI-LV-1 の仕様では、1V あたり 5A となります。シャント抵抗値 0.01Ω とすると、その逆数は 100 となります。計算すると、(1/100)*(1/20)=5 となります。INVERTER_CFG_ADC_REF_VOLTAGE には、5 を設定してください。

INVERTER CFG ADC REF VOLTAGE を求めるために一般化した式を以下に示します。

$$INVERTER_CFG_ADC_REF_VOLTAGE = \frac{1}{INVERTER_CFG_SHUNT_RESIST[\Omega]} imes \frac{1}{1V$$
あたりの電流値 $[A/V]$

表 9-12 MCI-LV-1 の電流信号仕様

3 相出力電流値	ADC 入力電圧値	ADC 変換値
+12.5A	5V	4095
0A	2.5V	2048
-12.5A	0V	0

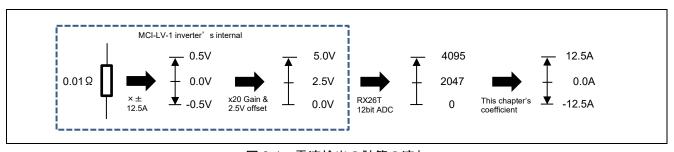


図 9-1 電流検出の計算の流れ

9.7.3 電圧検出ゲイン

電圧検出ゲインは、INVERTER_CFG_VOLTAGE_GAINで設定します。

ADC で入力する電圧 1V あたり、インバータ母線電圧で何 V に相当するかを求める係数を設定します。 ADC に入力される電圧 5V で 111.383V に相当する場合は、111.383/5=22.2766 となるため、 INVERTER_CFG_VOLTAGE_GAIN には、22.2766 を設定します。

INVERTER_CFG_VOLTAGE_GAIN = $\frac{ \text{インバータ母線電圧の基準}}{ \text{基準となるときの} \text{ADC}$ 入力電圧 $= \frac{111.383}{5} = 22.2766$

表 9-13 MCI-LV-1 のインバータ母線電圧信号仕様

インバータ母線電圧値	ADC 入力電圧値	ADC 変換値
0V	0V	0
111.383V	5V	4095

9.7.4 電圧誤差補償パラメータ

電圧誤差補償の機能の使用及び設定方法について説明します。以下の3点の設定が必要となります。

① デッドタイム値の選定

インバータに使用されているパワー半導体の特性により、デッドタイム値は決定されます。本サンプルソフトでは、キットに同梱するインバータボード(RTK0EM0000B12020BJ)の特性に則して 2.0 μs に設定しています。スマート・コンフィグレータのモータ設定に入力場所が用意されていますので、選定したデッドタイム値を反映させてください。

② 電圧誤差機能有効フラグの設定

電流制御モジュールの制御パラメータ設定(R_MOTOR_CURRENT_ParameterUpdate)呼び出し時に、電圧誤差補償機能の有効/無効使用有無フラグ(u1_flag_volt_err_comp_use)を MTR_FLG_SET に設定することで機能が有効になります。無効にする場合は、上記フラグを MTR_FLG_CLR に設定してください。

③ 電圧補償テーブルの設定

実機のインバータで、電流を流したスイッチング試験を行うか、デッドタイムとキャリア周期の関係から求まるデッドタイム分の電圧誤差値を用いて、電圧補償テーブルを作成します。スイッチング試験で得られた電流と電圧の関係が求めると、より効果的な電圧補償テーブルに設定可能な値が得られます。

また、補償電圧値のリミットは以下の式で計算できます。

補償電圧リミット = (キャリア周期 [kHz] × デッドタイム時間 [us] ÷ 1000) × 母線電圧値

ゼロクロス付近の傾斜は、Iu と Vu(Iv-Vv, Iw-Vw)の関係が実験的に得られない場合は、上記の式と、主回路の特性を考慮して机上計算し、テーブルを求める必要があります。

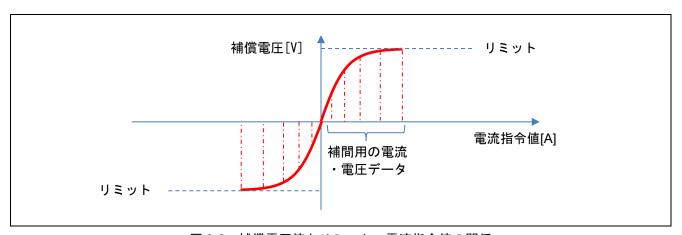


図 9-2 補償電圧値とリミット、電流指令値の関係

	キャリア周期	20kHz
	lu	ΔVu
0	0.00	0.00
1	0.022	0.564
2	0.038	0.782
3	0.088	0.937
4	0.248	1.027
5	0.865	1.058

表 9-14 キャリア周期と補間用の電流・電圧データ

9.8 モータパラメータ

モータの製造メーカーから、モータパラメータの情報が得られない場合、LCR メータを用いて R,Ld,Lq の モータパラメータを簡易的に得ることができます。また、オシロスコープを用いることで、簡易的に誘起電圧を得ることができます。ここで説明した方法は、磁気飽和などを考慮せず、またモータを速やかに回す事を考慮した、簡易的な方法であり、個体差や測定誤差を含んでいます。このため、実際の製品開発でパラメータを使用する際には、精度を担保した測定設備を用いて、測定を行ってください。

LCR メータは、定期的に校正をされたもので、電源を起動して 30 分以上経過させたウォーミングアップ 完了状態で測定してください。また、4 端子法を用いて、プローブの誤差を低減するため、オープン補正と ショート補正をあらかじめ行ってください。詳細は、LCR メータの取扱説明書を参照してください。

サンプルプログラムを使用する際に、インバータの情報と使用するモータの情報を正しく設定する必要があります。サンプルプログラムの設定値を表 9-15 に示します。

RENESAS

表 9-15 モータパラメータ設定

ファイル名	マクロ名	設定値	説明
r_motor_targetm otor_cfg.h	MOTOR_CFG_POLE_PAIRS	7	極対数
otor_org	MOTOR_CFG_MAGNETIC_FLUX	0.0088f	磁束 [wb]
	MOTOR_CFG_RESISTANCE	0.045f	抵抗 [ohm]
	MOTOR_CFG_D_INDUCTANCE	0.000095f	d 軸のインダクタンス [H]
	MOTOR_CFG_Q_INDUCTANCE	0.000125f	q 軸のインダクタンス [H]
	MOTOR_CFG_ROTOR_INERTIA	0.0000294367f	ロータのイナーシャ [kg m²]
	MOTOR_CFG_NOMINAL_CURREN T_RMS	12.3f	定格電流 [A]
	MOTOR_CFG_MAX_SPEED_RPM	2850.0f	最大速度 [r/min]

MOTOR_CFG_POLE_PAIRS

IPM モータの極対数を設定します。極対数は、極数を 1/2 した値となります。IPM モータの仕様書を参照 してください。

MOTOR_CFG_RESISTANCE

LCRメータで測定する際の配線は、モータの三相出力線 U,V,W のうち、2つを選び、プローブをつなげ てください。抵抗値を求める場合は、直流抵抗(DCR)のモードを用いて、測定します。得られた抵抗値は、 2相分の合成抵抗となっていますので、1/2をすることで、1相分のモータの抵抗値を得ることができま す。得られた抵抗 R は、r motor targetmotor cfg.h の MOTOR CFG RESISTANCE に設定してください。 単位はΩとなります。

MOTOR CFG D INDUCTANCE, MOTOR CFG Q INDUCTANCE

LCR メータで測定する際の配線は、モータの三相出力線 U,V,W のうち、2 つを選び、プローブをつなげ てください。計測モードは、直列等価回路モード(Ls)で行います。詳細な測定方法は、LCR メータの取扱説 明書を参照ください。

軸をゆっくり回し、表示されるインダクタンスの最大値と最小値をメモします。このとき、最大値の 1/2 が、Lq となり、最小値の 1/2 の値が Ld となります。

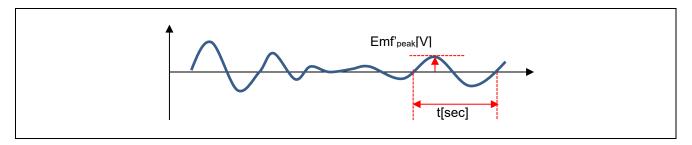
得られた Ld 及び Lq は、r motor targetmotor cfg.h の MOTOR CFG D INDUCTANCE, MOTOR_CFG_Q_INDUCTANCE に設定してください。単位は H(ヘンリー)です。

MOTOR_CFG_ROTOR_INERTIA

モータの回転子・軸のイナーシャ(慣性モーメント)を設定します。単位は、kg m²です。通常、モータ に添付された資料に記述があります。負荷を取り付ける場合には、負荷側のイナーシャも加えて設定してく ださい。

MOTOR CFG NOMINAL CURRENT RMS

モータの定格電流(実効値)を設定してください。単位はアンペアです。モータの銘板または添付資料に記 載されています。


R01AN7084JJ0110 Rev.1.10 Dec.10.24

MOTOR CFG MAGNETIC FLUX

モータの三相出力線 U,V,W のうち、2 つを選び、オシロスコープにつなげてください。例えば、U 相と V 相を、オシロスコープのプローブを当てて、電圧を測れるようにします。モータの軸の先には、定格速度で回転できるモータを繋げて定格速度で回転させると、U-V 相の線間電圧値が得られます。線間電圧値を $\sqrt{3}$ で割ることで、相あたりの誘起電圧のピーク値が得られます。鎖交磁束数 Ψ は、誘起電圧= ω Ψ の式から求められますから、定格速度を電気角速度の周波数 f[Hz]に換算し、 ω =2 π f に置き換え、誘起電圧=2 π f Ψ となり、式を変形し、値を代入することで鎖交磁束 Ψ [Wb]が得られます。

軸の先にモータを取り付けできない等の場合には、精度は保証されず、試運転目的のみでの利用となりますが、手で素早く回転させ、電圧波形を取得して簡易的に求める手法も使用できます。手で回した際に、以下のようなイメージで電圧波形が得られますが、このとき、正弦波で一定速に近い周期を選び、電圧のピークと周期を求めます。

本アルゴリズムではピーク値を実効値に換算する必要があるため√2で割って実効値 Emf'ms を得ます。

$$Emf'_{rms}[V] = Emf'_{peak}[V] \times \frac{1}{\sqrt{2}}$$

得られた時間 t[sec]を Hz に直すため、f'=1/t の式にあてはめます。得られた f[Hz]と、この IPM モータの 定格速度から得られる電気角周波数[Hz]の比を求め、同時に得られた電圧 Emf'ms[V]に比を掛け算します。

$$Emf[V] = Emf'_{rms}[V] \times \frac{\pi \mathfrak{S} \beta \mathbb{B} \mathcal{B} \mathcal{B}[Hz]}{f'[Hz]}$$

この結果、この IPM モータの定格速度で回転した時に発生する、誘起電圧[V]が簡易的に求められます。 実際に誘起電圧を求める場合には、負荷試験装置を使い、定格速度でモータの軸を回転させて測定する必要 があります。

次に誘起電圧から、磁束鎖交数Ψ[Wb]を求めます。一般的に、誘起電圧と磁束鎖交数には以下のような関係式があります。f は、定格速度時の電気角周波数[Hz]です。

$$Emf[V] = \omega \Psi = 2\pi f \Psi$$

式を変形し、上記で得られた誘起電圧 Emf[V]と、定格速度運転時の電気角周波数[Hz]を代入することで、磁束鎖交数 $\Psi[Wb]$ を求められます。

$$\Psi = \frac{Emf[V]}{2\pi f}$$

得られた磁束鎖交数Ψは、r_motor_targetmotor_cfg.h の MOTOR_CFG_MAGNETIC_FLUX に設定してください。

R01AN7084JJ0110 Rev.1.10 Dec.10.24

9.9 電流制御パラメータ

電流制御パラメータを、表 9-16 に示します。モータのパラメータや PWM キャリア周波数、所望の電流 応答性能によって、電流制御のパラメータを算出します。

表 9-16 に示す電流制御パラメータのマクロは、起動時に内部の変数に設定・反映されますが、起動後に調整が必要な場合には、RMW から調整することが可能なパラメータが以下の2点、用意されています。表 6-2 を参照してください。すべてのパラメータを変更できるものではありませんので、ご注意ください。

電流制御系固有周波数:com_f4_current_omega_hz

電流制御系減衰係数: com f4 current zeta

表 9-16 電流制御パラメータの一覧

ファイル名	マクロ名	設定値	説明
r_motor_target motor_cfg.h	CURRENT_CFG_OFFSET_CALC_ TIME	512.0f	電流オフセットの測定時間設定
	CURRENT_CFG_OMEGA	600.0 f	電流制御系固有周波数[Hz]
	CURRENT_CFG_ZETA	1.0f	電流制御系減衰係数

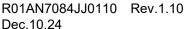
CURRENT CFG OFFSET CALC TIME

起動時に、電流検出のオフセットを測定するときに、オフセット値の測定回数を指定します。通常はデフォルトのままでご利用ください。

CURRENT_CFG_OMEGA, CURRENT_CFG_ZETA

電流制御系固有周波数と電流制御系減衰係数を調整して制御のゲインを調整します。電流制御系固有周波数は、電流制御を行う頻度に比例して設定してください。電流制御周波数(PWM キャリア周波数)の約 1/10 まで設定できますが、位置検出と電流検出のノイズなどを考慮し、マージンを設けて低く設定する場合が多くあります。

たとえば、電流制御周波数が 20kHz(50us 間隔で電流制御が動作)のときは、1/10 まで設定できますので、電流制御系固有周波数は 2kHz を指定できます。しかし、実際には、モータのパラメータの電気定数に起因して、固有周波数が高いと敏感に反応しすぎる場合があり、2kHz よりも下の周波数(たとえば 500Hz~1kHz)程度に設定することが多いです。


電流制御系減衰係数は、0.7~1.0 が常用範囲です。1.0 に近いほど安定で緩やかな応答になります。

9.10 速度制御パラメータ

速度制御系のパラメータを、表 9-17 に示します。設定した値が初期値となり、システム起動時に適用されます。表 9-17 に示す速度制御パラメータのマクロは、起動時に内部の変数に設定・反映されますが、起動後に調整が必要な場合には、RMW から調整することが可能なパラメータが以下の3点、用意されています。表 6-2 を参照してください。RMW 上で、すべての速度制御パラメータを変更できるものではありませんので、ご注意ください。

速度制御系固有周波数:com_f4_speed_omega_hz

速度制御系減衰係数: com_f4_speed_zeta 速度制御系の LPF 帯域: com_f4_speed_lpf_hz

ファイル名	マクロ名	設定値	説明
r_motor_target motor_cfg.h	SPEED_CFG_CTRL_PERIOD	0.0005f	制御周期設定 [s]
motor_org.m	SPEED_CFG_OMEGA	10.0f	速度制御系固有周波数 [Hz]
	SPEED_CFG_ZETA	1.0f	速度制御系減衰係数
	SPEED_CFG_LPF_OMEGA	25.0f	速度制御系の LPF 帯域 [Hz]
	SPEED_CFG_SPEED_LIMIT_RPM	2850.0f	速度制限値[r/min](機械角)
	SPEED_CFG_SPEED_LIMIT_MAR GIN	1.1f	速度制限マージン
	SPEED_CFG_RATE_LIMIT_RPM	50.0f	加速度制限 [r/min/s]

表 9-17 速度制御パラメータの一覧

SPEED_CFG_CTRL_PERIOD

0.0005s(0.5ms)としてください。変更する場合には、Config_CMT0のタイマ設定値を変更し、速度制御周期を変更することとなります。

SPEED_CFG_OMEGA, SPEED_CFG_ZETA

速度制御モジュールでは、速度制御系固有周波数と速度制御系減衰係数を調整して制御のゲインを調整します。速度制御系固有周波数を高くすると、応答性が向上し指令速度に対する速度の追従性が向上します。速度制御系固有周波数は電流制御との干渉を防ぐため、設定できる上限が電流制御系の固有周波数の 1/3 となっています。電流制御系の固有周波数が 500Hz であった場合には、500Hz/3=166Hz となります。しかし、全速度域センサレスでは、エンコーダを使用せずに速度の推定を行っている関係上、

CURRENT_CFG_PLL_ESTLOW_OMEGAと、CURRENT_CFG_PLL_EST_OMEGAで設定した固有周波数より低い周波数を設定してください。デフォルト値は、追従性を高くせず、マージンを取った値を設定しております。たとえば、外乱が固有周波数より高めで振動する場合には、固有周波数の値を外乱に合わせて増やすことで、外乱の振動への追従性がよくなり、デフォルト設定よりも安定して動く場合があります。

速度制御系減衰係数は 0.7~1.0 は常用範囲とし、値 1 に近いほど安定で緩やかな応答になります。速度 の応答を確認しながら調整を行ってください。

SPEED_CFG_LPF_OMEGA

推定した速度に対して、フィルタを設定することで、変動を抑制します。値を小さくしすぎると、速度応 答性が悪化し、急な速度変化に追従できなくなります。

SPEED_CFG_RATE_LIMIT_RPM

速度指令値を設定した時に、速度が上昇するスピード(加速度)を設定します。値を大きくすると、早く速度が上昇します。100 を指定した時、1 秒当たり 100r/min、上昇します。停止から 2000r/min まで 20 秒で到達します。

SPEED_CFG_SPEED_LIMIT_MARGIN

最高速度を設定するためのマージン率を設定します。定格回転速度に対して、マージンを設定できます。 デフォルト値は 1.1f(110%)です。

R01AN7084JJ0110 Rev.1.10 Dec.10.24

9.11 最大トルク/電流制御

最大トルク/電流制御は、IPM モータの出力可能なトルクを最大に調整するためのアルゴリズムです。機能の有効無効は、SPEED_CFG_MTPAで設定します。通常は、有効としてください。

ファイル名	マクロ名	設定値	説明
r_motor_module_ cfg.h	SPEED_CFG_MTPA	MTR_ENABLE	最大トルク/電流制御を使用する場合に は、(MTR_ENABLE)を設定してくださ い。使用しない場合には、
			(MTR_DISABLE)を設定してください。

表 9-18 コンフィグレーション情報一覧

9.12 外乱トルク・速度推定オブザーバ

外乱トルク・速度推定オブザーバは、極低速運転時のコギングトルクや振動を低減するための機能です。 有効無効は、SPEED_CFG_OBSERVERで設定します。通常は、MTR_ENABLE(有効)としてください。

速度モジュールの API の外乱トルク・速度推定オブザーバの制御パラメータを更新用 API (R_MOTOR_SPEED_ExtObserverParameterUpdate)を使用してパラメータの設定を行います。設定するパラメータは以下の 3 種類です。

- モータのイナーシャ
- 外乱トルク・速度推定オブザーバの固有周波数
- オブザーバのサンプリング周期

イナーシャとオブザーバのサンプリング周期は、実際に制御で使用している正しい値を設定してください。外乱トルク・速度推定オブザーバの固有周波数は低くするほど速度リプルが低減されますが、速度指令の変化に対する応答が遅くなりますので、速度を確認しながら調整を行ってください。目安として速度制御系の固有周波数の4~6倍程度の周波数になります。

外乱トルク・速度推定オブザーバは 1~30r/min 付近の極低速運転におけるモータの安定性のために使用するため、100r/min 以上の速度では効果は得られません。外乱トルクオブザーバの切り替えを円滑にするためのパラメータとして、SPEED_CFG_SOB_OUTLIM_START_RPM とSPEED_CFG_SOB_OUTLIM_END_RPM を使った減衰処理(図 9-3)を行います。

丰 0 10	コンフィグレーショ	1、1售級一覧
<i>⊼</i> ⊽ 9-19	- コンフィクレーン-	

ファイル名	マクロ名	設定値	説明
r_motor_module_ cfg.h	SPEED_CFG_OBSER VER	MTR_ENABLE	外乱トルク・速度推定オブザーバを使用する場合には、(MTR_ENABLE)を設定してください。使用しない場合には、(MTR_DISABLE)を設定してください。
	SPEED_CFG_SOB_O MEGA	30.0f	単位は Hz です。速度制御系の固有周波数の 4~6 倍程度。
	SPEED_CFG_SOB_O UTLIM_START_RPM	25.0f	オブザーバの上限リミット機能の開始速度[r/min]を設定します。
	SPEED_CFG_SOB_O UTLIM_END_RPM	30.0f	オブザーバの上限リミット機能の終了速度[r/min]を設定します。

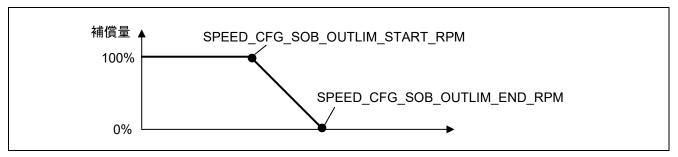


図 9-3 外乱トルク・速度推定オブザーバの補償量とパラメータの関係

9.13 電圧位相進み補償パラメータ

電流検出タイミングを基準として、実際に PWM が出力されるタイミングまで角度を進ませるための補償値です。本サンプルプログラム及びインバータ構成では、0.5 サンプル進ませることで、PWM 出力タイミングを一致させることができます。

表 9-20 コンフィグレーション情報一覧

ファイル名	マクロ名	設定値	説明
r_motor_module_	CURRENT_CFG_PER	0.5f	進み補償を行うサンプル数を設定しま
cfg.h	IOD_MAG_VALUE		す。0.5 を設定してください。

9.14 センサレス制御パラメータ

ここでは、センサレス制御に必要なパラメータの設定方法について説明します。センサレス制御は、電流センサと、あらかじめ設定したモータパラメータや制御パラメータを用いて、磁極位置推定を行います。パラメータが不適切であったり、センサレス制御に不向きなインバータ・モータを用いた場合、所望の性能を発揮できない場合があります。

(1) 低速域センサレス制御パラメータ

低速域センサレス制御に用いる、パラメータ一覧を表 9-21 に示します。

表 9-21 低速域センサレス制御の設定パラメータ

ファイル 名	マクロ名	設定値	単位	説明
r_motor_ module_cf	CURRENT_CFG_PLL_ESTLOW_OM EGA	50.0f	[Hz]	低速域センサレス制御用 PLL の固有周波数[Hz]
g.h	CURRENT_CFG_PLL_ESTLOW_ZET A	1.0f	-	低速域センサレス制御用 PLL の減衰係数
	CURRENT_CFG_ESTLOW_PULSEV OLT	8.0f	[V]	始動時の磁極位置推定時に印 加するパルス電圧値
	CURRENT_CFG_ESTLOW_PULSEV OLT_RUNNING	8.0f	[V]	運転時の磁極位置推定時に印 加するパルス電圧値
	CURRENT_CFG_ESTLOW_ESTTIM E	0.2sec 相 当		推定処理タイムアウト
	CURRENT_CFG_ESTLOW_ESTTIM E_OVER	0.3sec 相 当		推定処理エラー判定用タイム アウト値、
	CURRENT_CFG_ESTLOW_PULSEF REQ_BOOT	3	回	始動時磁極位置推定のパルス 印加周期
	CURRENT_CFG_ESTLOW_PULSEF REQ_DRIVE	2		運転時磁極位置推定のパルス 印加周期
	MOTOR_ANGEST_THRESHOLD	0.00872	rad	磁極位置推定の検出可否閾値
r_motor_c urrent_low spd_sens	MOTOR_SENSORLESS_VECTOR_T HRESHOLD_HIGHSPEED	28.7979	rad/s	低速域から中高速域にセンサ レスのアルゴリズムが切り替 わる速度を設定します。
orless.h	MOTOR_SENSORLESS_VECTOR_T HRESHOLD_LOWSPEED	23.5619	rad/s	中高速域から低速域にセンサ レスのアルゴリズムが切り替 わる速度を設定します。
	MOTOR_SENSORLESS_VECTOR_C URRENT_TABLE_SIZE	8	-	推定用電流バッファテーブル サイズ。8 から変更しないでく ださい。
	MOTOR_SENSORLESS_VECTOR_ PF_START_CNT	25	count	極性判別の開始タイミング調 整用のパラメータです。
r_motor_s ensorless _vector_a pi.h	CURRENT_SENSORLESS_CHGAR GCNT_TOHIGH	2	-	センサレスアルゴリズム切替 時に使用する電流制御周期で のサイクル数。低速→中高速時 の設定値。値は固定。
	CURRENT_SENSORLESS_CHGAR GCNT_TOSLOW	1	-	センサレスアルゴリズム切替時に使用する電流制御周期でのサイクル数。中高速→低速時の設定値。値は固定。

CURRENT CFG PLL ESTLOW OMEGA

低速域センサレス制御での位置推定 PLL の周波数帯域を指定します。デフォルトは 50Hz です。電流制御 周期や電流応答の周波数帯域を考慮し、設定してください。

CURRENT CFG PLL ESTLOW ZETA

低速域センサレス制御での位置推定 PLL の ξ を設定します。通常は 1.0 を指定してください。

CURRENT CFG ESTLOW PULSEVOLT

始動時に印加するパルスの大きさ(電圧)を設定します。0V~インバータ母線電圧の 1/2 の値の範囲で設 定してください。極性判別を行うために磁気飽和を発生させる必要があることから、モータの仕様にもより ますが、8V 以上を設定してください。詳細な電圧値は、実験的に求めることを推奨します。本サンプルプ ログラムでは、実験的に 8V を設定しています。

CURRENT_CFG_ESTLOW_PULSEVOLT_RUNNING

運転中に印加するパルスの大きさ(電圧)を設定します。0V~インバータ母線電圧の 1/2 の値の範囲で設 定してください。磁気飽和現象を発生させることは、運転性能に悪影響を与えるため、

CURRENT CFG ESTLOW PULSEVOLTで設定した電圧の半分以下を設定してください。モータによって 異なりますので、詳細な電圧値は、実験的に求めることを推奨します。

CURRENT CFG ESTLOW ESTTIME

始動時の磁極位置推定時間を設定します。0.05(キャリア周波数[kHz]の逆数,1/20)を掛けることで、ミリ秒 を得ることができます。4000 を設定すると、4000×0.05=200ms となり、磁極位置推定に 200ms を最低で も待ちます。長く設定することで、磁極位置推定精度を高めることができます。200ms 程度となるように 設定してください。

CURRENT_CFG_ESTLOW_ESTTIME_OVER

磁極位置推定ならびに極性判別の結果が収束し、運転可能な状態になることを判定するための期間を設定 します。CURRENT CFG ESTLOW ESTTIME で設定した 200ms から、100ms の間に判定が完了するこ とを定義するため、300ms に相当する値を設定します。設定される値は 6000 とすることで、 6000*0.05=300ms の待ち時間となります。

CURRENT CFG ESTLOW PULSEFREQ BOOT

始動時の磁極位置推定を行うときに印加するパルスの周期を設定します。設定範囲は 1~4 です。本サン プルプログラムで使用している IPM モータでは、パルス印加周期を 3.3kHz 以下となるように設定すること で、安定した推定ができることを実験的に確認しています。PWM キャリア周期が高い条件で、パルス印加 周期が高くなると、推定に失敗する場合があります。

Dec.10.24 RENESAS

R01AN7084JJ0110 Rev.1.10

PWM キャリア周期	CURRENT_CFG_ESTLOW_PULSEFREQ_BOOT,	パルス印加周期
	CURRENT_CFG_ESTLOW_PULSEFREQ_DRIVE の値	
20kHz	1	10kHz
	2	5.0kHz
	3	3.3kHz
	4	2.5kHz
12.5kHz	1	6.25kHz
	2	3.12kHz
	3	2.08kHz
	4	1.56kHz
10kHz	1	5.0kHz
	2	2.5kHz
	3	1.66kHz
	4	1.25kHz
5kHz	1	2.5kHz
	2	1.25kHz
	3	0.83kHz
	4	0.62kHz

表 9-22 PWM キャリア周期とパルス印加周期の設定

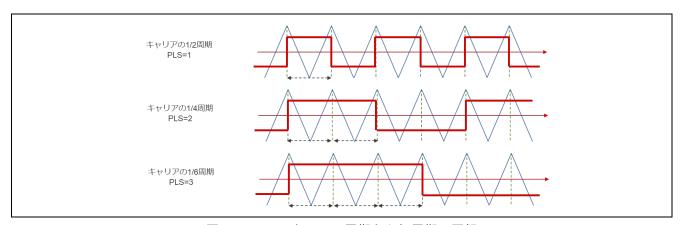


図 9-4 PWM キャリア周期と印加周期の図解

CURRENT_CFG_ESTLOW_PULSEFREQ_DRIVE

運転時の磁極位置推定を行うときに印加するパルスの周期を設定します。表 9-22 を参考としてください。通常は 1 を設定してください。運転時に推定に失敗する場合には CURRENT_CFG_ESTLOW_PULSEVOLT_RUNNING の値を調整して対処してください。

MOTOR_SENSORLESS_VECTOR_THRESHOLD_HIGHSPEED

低速から中高速域に切り替わる速度を rad/s 単位で設定します。この速度を境に、高周波パルス電圧印加を停止します。

MOTOR_SENSORLESS_VECTOR_THRESHOLD_LOWSPEED

中高速域から低速域に切り替わる速度を rad/s 単位で設定します。この速度を境に、高周波パルス電圧印加を開始します。

MOTOR SENSORLESS VECTOR CURRENT TABLE SIZE

パルス周期用の電流バッファテーブルサイズを設定します。デフォルト値から変更せず、8のままでご利用ください。

MOTOR_SENSORLESS_VECTOR_PF_START_CNT

極性判別の開始タイミングを調整するためのパラメータです。0-255の値を設定します。電流制御周期1周期で1カウントとなります。電流制御周期が50usのとき、40を設定すると、2ms待ってから極性判別が開始されます。モータ定数や、位置推定制御系の固有周波数によって、値を設定します。極性判別に失敗する、磁気飽和しにくいモータを使用する場合に調整が必要となります。

CURRENT_SENSORLESS_CHGARGCNT_TOHIGH CURRENT_SENSORLESS_CHGARGCNT_TOSLOW

低速と中高速のアルゴリズム切替時に使用するパラメータです。デフォルト値から変更しないでください。

(2) 中高速域センサレス制御パラメータ

中高速域センサレス制御に用いる誘起電圧オブザーバのパラメータを表 9-23 に示します。

パラメータの設定方法の詳細については、本サンプルプログラムのベースである永久磁石同期モータのセンサレスベクトル制御 Evaluation System for BLDC Motor 用(R01AN6307JJ0100) を参照してください。

ファイル名	マクロ名	設定値	説明
r_motor_module_ cfg.h	CURRENT_CFG_E_OBS_OMEGA	1000.0f	誘起電圧オブザーバの固有周波数 [Hz]
	CURRENT_CFG_E_OBS_ZETA	1.0f	誘起電圧オブザーバの減衰係数
	CURRENT_CFG_PLL_EST_OME GA	20.0f	中高速域センサレス制御用 PLL の 固有周波数[Hz]
	CURRENT_CFG_PLL_EST_ZETA	1.0f	中高速域センサレス制御用 PLL の 減衰係数

表 9-23 中高速域センサレス制御の設定パラメータ

10. スマート・コンフィグレータ設定

サンプルプログラムでは、スマート・コンフィグレータを使用してプロジェクトを作成しています。使用しているコンポーネントとユーザ領域に追加した関数を説明します。

10.1 クロック設定

クロック設定を表 10-1 に示します。

表 10-1 MCU クロック設定

クロックの種類	設定クロック
メインクロック	240Mz
システムクロック (ICLK)	120MHz
周辺モジュールクロック (PCLKA)	120MHz
周辺モジュールクロック (PCLKB)	60MHz
周辺モジュールクロック (PCLKC)	120MHz
周辺モジュールクロック (PCLKD)	60MHz
FlashIF クロック (FCLK)	60MHz
IWDTCLK	120kHz

10.2 コンポーネント設定

使用するコンポーネント情報と機能割り当てを表 10-2 に示します。

表 10-2 スマート・コンフィグレータのコンポーネントと機能割り当て

機能	コンポーネント
3相PWM出力、	Config_MOTOR
電流検出の AD 変換	
A/D 変換処理	Config_S12AD2
(インバータ母線電圧検出)	
使用ポートの設定	Config_PORT
位置速度制御割り込みタイマ	Config_CMT0
独立ウォッチドックタイマ	Config_IWDT
過電流検出	Config_POE

10.3 AD 設定

MCU 内蔵の 12bit AD コンバータ(S12AD)を用いて、U 相出力電流と、W 相出力電流、インバータ母線電圧を測定します。割り当てチャンネルと、検出タイミングを、表 10-3 に示します。

MCI-LV-1 はシャント抵抗による電流検出方式のため、キャリアの谷の条件で電流を取得するように設定しています。また、AD 検出開始から変換終了までを行った後、AD 変換終了割り込みを発生させ、r Config MOTOR ad interrupt 割り込み関数を通じて電流制御が実行されます。

機 能	割当チャンネル	変換開始トリガ
インバータ母線電圧測定	AN003	TRG4AN
U 相電流測定	AN000	(MTU4.TCNT と MTU4.TADCOBRA のコンペ
W相電流測定	AN002	アマッチ)

表 10-3 AD のチャンネルと検出タイミング設定

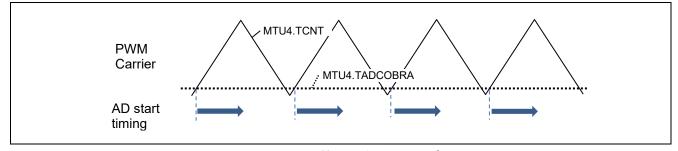


図 10-1 AD 検出開始タイミング

10.4 モータ設定

本サンプルプログラムでは、MTU3 を用いて PWM を出力します。Duty の反映は、キャリアの谷で行われます。設定は、コンポーネントから Config_MOTOR を選択することで、行えます。

タイマ設定				
周期設定	タイマ動作周期	50us		
	カウントクロック分周比	1		
	TGRA レジスタ値	3240		
	デッドタイム	2.0us		
出力パルスおよび A/D 変換トリ	A/D 変換開始トリガ間引き	間引きしない		
ガ設定	Up	ハイレベル		
	Un	ハイレベル		
	Vp	ハイレベル		
	Vn	ハイレベル		
	Wp	ハイレベル		
	Wn	ハイレベル		
タイマパルス出力端子設定	U 相	MTU4 B-D		
	V相	MTU4 A-C		
	W 相	MTU3 B-D		
	A/D コンバータ設定	•		
A/D 変換設定	計測対象端子 lu	AN000		
	計測対象端子 lw	AN002		
	計測対象端子 Vdc	AN003		

表 10-4 MTU の設定

10.5 割り込み

モータコンポーネントを使用した MCU の割り込み情報を表 10-5 に示します。

表 10-5 割り込み一覧

コンポーネント	割り込み関数	説明
Config_MOTOR	r_Config_MOTOR_ad_interrupt	AD 変換終了割り込み
		割り込みレベル:10
		多重割り込み:許可
Config_S12AD0/1	なし	なし
Config_PORT	なし	なし
Config_CMT0	r_Config_CMT0_cmi0_interrupt	速度制御割り込み
		割り込みレベル:11
		多重割り込み:許可
Config_IWDT	なし	なし
Config_POE	r_Config_POE_oeixx_interrupt	HW 過電流の割り込み
		割り込みレベル:15
		多重割り込み:禁止

10.6 ユーザコード詳細

ユーザコード領域に作成した関数一覧を表 10-6 に示します。

表 10-6 ユーザ領域の関数一覧

コンポーネント	関数	説明
Config_GPT0	R_Config_GPT0_StartTimerCount	PWM タイマカウント開始
	R_Config_GPT0_StopTimerCount	PWM タイマカウント停止
	R_Config_GPT0_StartTimerCtrl	PWM 出力許可
	R_Config_GPT0_StopTimerCtrl	PWM 出力禁止
	R_Config_GPT0_UpdDuty	PWM Duty 設定レジスタ書き込み
	R_Config_GPT0_StartAD	AD 変換開始及び変換終了割り込み許可
	R_Config_GPT0_StopAD	AD 変換停止及び変換終了割り込み禁止
	R_Config_GPT0_AdcGetConvVal	AD 変換値を取得

10.7 POE 設定

Config_POE で設定が可能な、POE 設定を表 10-7 に示します。出カピン設定は、インバータ仕様によって異なりますので、ご使用のインバータの信号仕様を確認ください。

設定 機 能 要求受付条件 POE0#入力の立下りエッジで 要求を受け付ける サンプリング回数 16 回 POE0# 割り込み設定 アウトプットイネーブル割り込み1許可 優先順位(グループ BL1) レベル 15 (最高) 出力短絡時に端子の出力を停止する 1 アクティブレベル設定有効 1 MTIOC3B アクティブレベル High 出力ピン設定 MTIOC3B.MTIOC3D MTIOC3D アクティブレベル High MTU3/MTU4 出カピン設定 MTIOC4A アクティブレベル High MTIOC4A.MTIOC4C MTIOC4C アクティブレベル High 出力ピン設定 MTIOC4B アクティブレベル High MTIOC4B.MTIOC4D MTIOC4D アクティブレベル High

表 10-7 POE 設定

10.8 端子設定

端子のインタフェース情報を表 10-8 に示します。

RX26T 機能 インバータ母線電圧測定 P43 / AN003 U 相電流測定 P40 / AN000 W 相電流測定 P42 / AN002 PWM 出力(Up) / "High" アクティブ P76 / MTIOC4D / GTIOC2B PWM 出力(V_p) / "High" アクティブ P75 / MTIOC4C / GTIOC1B PWM 出力(W_p) / "High" アクティブ P74 / MTIOC3D / GTIOC0B PWM 出力(Un) / "High" アクティブ P73 / MTIOC4B / GTIOC2A PWM 出力(Vn)/ "High" アクティブ P72 / MTIOC4A / GTIOC1A PWM 出力(W_n)/ "High" アクティブ P71 / MTIOC3B / GTIOC0A 過電流検出時の PWM 緊急停止入力 P70 / POE0#

表 10-8 端子インタフェース

11. 評価結果

11.1 モータ制御評価

11.1.1 加減速特性

停止状態から、速度 800r/min までの加速特性と、速度 800r/min から停止状態までの減速特性波形を、以下に示します。250r/min 付近で、高周波パルス印加から、誘起電圧オブザーバへアルゴリズム切替を自動で行い、正常に加減速が行われています。

図 11-1 加速特性

図 11-2 減速特性

11.1.2 負荷特性

PWM キャリア周波数 20kHz において、低速運転時(300r/min 以下)で 50%の負荷運転が行えることを確認しています。本環境で使用している MCI-LV-1 の電流検出機能ならびに出力電流容量の制約により、50%までの負荷運転としています。

11.2 CPU 使用率

各制御周期の CPU 処理時間と負荷率を以下に示します。

表 11-1 制御ループと CPU 負荷率

制御ループ種類	制御周期	処理時間	CPU 負荷率
電流制御ループ	50 us (間引き 0 回)	15.6 us	31.2 %
速度制御ループ	500 us	17.5 us	3.5 %

11.3 プログラムサイズ・RAM 使用量

本サンプルプログラムでのプログラムサイズ(ROM)と、RAM 使用量は以下の通りです。コンパイラの最適化設定において、最適化レベル 2 (-optimize = 2)に設定し、最適化方法をコード・サイズ重視の最適化(size)に設定しています。

表 11-2 プログラムサイズと RAM 使用量

項目	値
プログラムサイズ(ROM)	23836 [Bytes]
RAM 使用量	9896 [Bytes]
スタック解析結果の最大値	196 [Bytes]
スタックサイズの IDE 環境の設定値	5120 [Bytes]

12. FAQ

12.1 こんなときは

代表的な現象と、その解決例を表 12-1 に示します。

表 12-1 現象と回答の一覧

TH #	同体		
現象	回答		
運転すると、モータから	磁極位置推定を行うために、可聴域の高周波パルス電圧を印加していま		
ピーという音がする	す。この高周波の音が、モータから発生しています。異常ではありませ		
	δ .		
モータの回転速度が、ある	低速域で磁極位置推定を行うために高周波パルス印加を行っていますが、		
速度を超えると、ピーとい	設定した速度に到達すると、中高速域の誘起電圧オブザーバによる磁極位		
う音が止まる	置推定に自動で切替わるため、ピーという音が鳴りやみます。		
負荷を掛けると、途中でエ	● 保護パラメータが適切か確認ください		
ラーが出て止まってしま	● モータパラメータが正しいか確認ください		
う。もしくは、脱調する	● MTPA 機能を無効にしている場合は有効にしてください。		
	● IPM モータは電流が一定以上流れると、磁気飽和現象により、インダ		
	クタンスが低下し、Ld と Lq の突極比が小さくなることで、推定精度が		
	悪化し、トルクが出せなくなる場合があります。		
負荷を掛けると、モータが	モータが脱調しています。制御不能状態ですので、速やかに停止してくだ		
設定以外の速度で回り続け	さい。		
てしまう	モータパラメータや、制御パラメータが不適切であること、センサ等の		
	ハードウェアの性能上の制約で、制御できない場合があります。設計の見		
	直しを行ってください。		
エラーで停止後、モータを	6.8(c)を参照してください。エラーからの復帰方法が説明されています。		
回転できない	() = 2		
運転開始を行っても、エ	● 6.8(c)を参照してエラー要因を確認してください		
ラーで停止してしまう	◆ インバータ母線電圧の過電圧または低電圧、出力が短絡していないか確		
	認してください		
	センサ関連の信号設定が正しいか確認してください。		
	● スマート・コンフィグレータの POE 設定やモータ設定(MTU の端		
	子・アクティブレベル設定)等が、インバータ回路仕様に合わせて適		
	切に設定されているか、確認してください。		
RMW から値を設定して	com u1 enable write の変数操作で、パラメータを書き換えします。		
も、反映されない	com u1 enable write への数値の書き換えタイミングが、パラメータの書		
	き込みより先の場合、内部の反映処理が先に動作します。以下のように対		
	応してください。		
	● com_u1_enable_write を最後の行に置く		
	com_u1_enable_write の書き込みを2回行う、または、トグル書込み		
	する		
	7 0		

12.2 よくある質問

12.2.1 SPM モータを全速度域でセンサレスベクトル制御することはできますか

多くの SPM モータ (表面磁石同期モータ) は、突極比(Ld と Lq の比)が 1:1 であり、本書で使用されている高周波パルス印加方式では、停止・低速域でセンサレスベクトル制御できません。オープンループ制御のサンプルプログラムを使用してください。

12.2.2 どの IPM モータであれば、全速度域でセンサレスベクトル制御することができますか 突極比(Ld と Lq の比)は 20%以上必要となります。ただし、高負荷条件等で、磁気飽和現象の発生により 突極比が大きく変化し、突極比が 20%未満となる場合、制御が困難になる場合があります。

12.2.3 磁気飽和とは何ですか

モータを駆動するために電流を流した際に、一定以上の電流を流すと、モータ内部の磁石特性に変化が起きる現象です。磁気飽和が起きると、電流の流れ方が変化し、異常発熱や制御性能の悪化、負荷運転の継続が困難になるなどの問題が発生しやすくなります。

特に IPM モータは構造の特徴から、磁気飽和が発生しやすいことが知られており、様々な対策技術が研究・考案されています。本サンプルプログラムにおいては、磁気飽和を考慮したアルゴリズムは搭載されていませんので、磁気飽和が発生した場合にはユーザが対策処理を実装する必要があります。

12.2.4 高周波パルス印加時に騒音が発生しますか、小さくする方法はありますか

停止・低速運転時に、高周波音がモータから発生します。始動の時、磁極位置推定のために強い電流を流す必要があるため、モータ回転時よりも若干大きな高周波音が発生します。

騒音を減らすためには、パルス印加電圧を下げるか、キャリア周波数を上げる、電流センサをシャント方式から HallCT 式に変更し、キャリアの山谷で制御を行う方法があります。また、磁気飽和対策のアルゴリズムによって制御性能を改善することで、性能改善目的でパルス引加電圧に加算する電圧マージンを下げることもできます。これらの対策機能はユーザ自身で開発し、評価・検証を行う必要があります。

12.2.5 脱調とはどのような現象ですか

脱調とは、モータ制御プログラムが推定した磁極位置と、実際のモータの磁極位置がずれた状態で、モータを適切に制御できない状態です。過電流によってエラーで停止することや、制御不能状態となって回転し続ける場合があります。以下のようなケースで発生します。

- 始動時の磁極位置推定に失敗した場合
- モータの設計・構造特性上の理由により、高負荷時に突極性が失われ、磁極位置推定が困難となる場合
- 電流制御系または速度制御系のパラメータが不適切な場合

12.2.6 脱調検出機能は入っていますか

本サンプルプログラムには、脱調検出機能が搭載されていません。ユーザが脱調検出機能の実装を行う必要があります。

12.2.7 RMW に表示される変数の値が異常となってしまう

サンプルプログラムの変更を行った場合、ビルド後に Hardware Debug フォルダ内に生成される Map ファイルを RMW に登録し、サンプルプログラムの変数状態を更新する作業が必要です。この作業を省略した場合、変数が正しく表示できない場合があります。詳細は、6.6 を参照ください。

RENESAS

改訂記録

		改訂内容		
Rev.	発行日	ページ	ポイント	
1.00	2023/11/10	-	新規発行	
1.10	2024/12/10	20	-RMW 操作手順の誤記を修正	

製品ご使用上の注意事項

ここでは、マイコン製品全体に適用する「使用上の注意事項」について説明します。個別の使用上の注意事項については、本ドキュメントおよびテクニカルアップデートを参照してください。

1. 静電気対策

CMOS 製品の取り扱いの際は静電気防止を心がけてください。CMOS 製品は強い静電気によってゲート絶縁破壊を生じることがあります。運搬や保存の際には、当社が出荷梱包に使用している導電性のトレーやマガジンケース、導電性の緩衝材、金属ケースなどを利用し、組み立て工程にはアースを施してください。プラスチック板上に放置したり、端子を触ったりしないでください。また、CMOS 製品を実装したボードについても同様の扱いをしてください。

2. 電源投入時の処置

電源投入時は、製品の状態は不定です。電源投入時には、LSIの内部回路の状態は不確定であり、レジスタの設定や各端子の状態は不定です。外部 リセット端子でリセットする製品の場合、電源投入からリセットが有効になるまでの期間、端子の状態は保証できません。同様に、内蔵パワーオン リセット機能を使用してリセットする製品の場合、電源投入からリセットのかかる一定電圧に達するまでの期間、端子の状態は保証できません。

3. 電源オフ時における入力信号

当該製品の電源がオフ状態のときに、入力信号や入出力プルアップ電源を入れないでください。入力信号や入出力プルアップ電源からの電流注入により、誤動作を引き起こしたり、異常電流が流れ内部素子を劣化させたりする場合があります。資料中に「電源オフ時における入力信号」についての記載のある製品は、その内容を守ってください。

4. 未使用端子の処理

未使用端子は、「未使用端子の処理」に従って処理してください。CMOS製品の入力端子のインピーダンスは、一般に、ハイインピーダンスとなっています。未使用端子を開放状態で動作させると、誘導現象により、LSI周辺のノイズが印加され、LSI内部で貫通電流が流れたり、入力信号と認識されて誤動作を起こす恐れがあります。

5 クロックについて

リセット時は、クロックが安定した後、リセットを解除してください。プログラム実行中のクロック切り替え時は、切り替え先クロックが安定した後に切り替えてください。リセット時、外部発振子(または外部発振回路)を用いたクロックで動作を開始するシステムでは、クロックが十分安定した後、リセットを解除してください。また、プログラムの途中で外部発振子(または外部発振回路)を用いたクロックに切り替える場合は、切り替え先のクロックが十分安定してから切り替えてください。

6. 入力端子の印加波形

入力ノイズや反射波による波形歪みは誤動作の原因になりますので注意してください。CMOS 製品の入力がノイズなどに起因して、 V_{IL} (Max.) から V_{IH} (Min.) までの領域にとどまるような場合は、誤動作を引き起こす恐れがあります。入力レベルが固定の場合はもちろん、 V_{IL} (Max.) から V_{IH} (Min.) までの領域を通過する遷移期間中にチャタリングノイズなどが入らないように使用してください。

7. リザーブアドレス (予約領域) のアクセス禁止

リザーブアドレス (予約領域) のアクセスを禁止します。アドレス領域には、将来の拡張機能用に割り付けられている リザーブアドレス (予約領域) があります。これらのアドレスをアクセスしたときの動作については、保証できませんので、アクセスしないようにしてください。

8. 製品間の相違について

型名の異なる製品に変更する場合は、製品型名ごとにシステム評価試験を実施してください。同じグループのマイコンでも型名が違うと、フラッシュメモリ、レイアウトパターンの相違などにより、電気的特性の範囲で、特性値、動作マージン、ノイズ耐量、ノイズ幅射量などが異なる場合があります。型名が違う製品に変更する場合は、個々の製品ごとにシステム評価試験を実施してください。

ご注意書き

- 1. 本資料に記載された回路、ソフトウェアおよびこれらに関連する情報は、半導体製品の動作例、応用例を説明するものです。回路、ソフトウェアおよびこれらに関連する情報を使用する場合、お客様の責任において、お客様の機器・システムを設計ください。これらの使用に起因して生じた損害 (お客様または第三者いずれに生じた損害も含みます。以下同じです。)に関し、当社は、一切その責任を負いません。
- 2. 当社製品または本資料に記載された製品データ、図、表、プログラム、アルゴリズム、応用回路例等の情報の使用に起因して発生した第三者の特許 権、著作権その他の知的財産権に対する侵害またはこれらに関する紛争について、当社は、何らの保証を行うものではなく、また責任を負うもので はありません。
- 3. 当社は、本資料に基づき当社または第三者の特許権、著作権その他の知的財産権を何ら許諾するものではありません。
- 4. 当社製品を組み込んだ製品の輸出入、製造、販売、利用、配布その他の行為を行うにあたり、第三者保有の技術の利用に関するライセンスが必要となる場合、当該ライセンス取得の判断および取得はお客様の責任において行ってください。
- 5. 当社製品を、全部または一部を問わず、改造、改変、複製、リバースエンジニアリング、その他、不適切に使用しないでください。かかる改造、改変、複製、リバースエンジニアリング等により生じた損害に関し、当社は、一切その責任を負いません。
- 6. 当社は、当社製品の品質水準を「標準水準」および「高品質水準」に分類しており、各品質水準は、以下に示す用途に製品が使用されることを意図しております。

標準水準: コンピュータ、OA 機器、通信機器、計測機器、AV 機器、家電、工作機械、パーソナル機器、産業用ロボット等高品質水準:輸送機器(自動車、電車、船舶等)、交通制御(信号)、大規模通信機器、金融端末基幹システム、各種安全制御装置等当社製品は、データシート等により高信頼性、Harsh environment 向け製品と定義しているものを除き、直接生命・身体に危害を及ぼす可能性のある機器・システム(生命維持装置、人体に埋め込み使用するもの等)、もしくは多大な物的損害を発生させるおそれのある機器・システム(宇宙機器と、海底中継器、原子力制御システム、航空機制御システム、プラント基幹システム、軍事機器等)に使用されることを意図しておらず、これらの用途に使用することは想定していません。たとえ、当社が想定していない用途に当社製品を使用したことにより損害が生じても、当社は一切その責任を負いません。

- 7. あらゆる半導体製品は、外部攻撃からの安全性を 100%保証されているわけではありません。当社ハードウェア/ソフトウェア製品にはセキュリティ対策が組み込まれているものもありますが、これによって、当社は、セキュリティ脆弱性または侵害(当社製品または当社製品が使用されているシステムに対する不正アクセス・不正使用を含みますが、これに限りません。) から生じる責任を負うものではありません。当社は、当社製品または当社製品が使用されたあらゆるシステムが、不正な改変、攻撃、ウイルス、干渉、ハッキング、データの破壊または窃盗その他の不正な侵入行為(「脆弱性問題」といいます。) によって影響を受けないことを保証しません。当社は、脆弱性問題に起因しまたはこれに関連して生じた損害について、一切責任を負いません。また、法令において認められる限りにおいて、本資料および当社ハードウェア/ソフトウェア製品について、商品性および特定目的との合致に関する保証ならびに第三者の権利を侵害しないことの保証を含め、明示または黙示のいかなる保証も行いません。
- 8. 当社製品をご使用の際は、最新の製品情報(データシート、ユーザーズマニュアル、アプリケーションノート、信頼性ハンドブックに記載の「半導体デバイスの使用上の一般的な注意事項」等)をご確認の上、当社が指定する最大定格、動作電源電圧範囲、放熱特性、実装条件その他指定条件の範囲内でご使用ください。指定条件の範囲を超えて当社製品をご使用された場合の故障、誤動作の不具合および事故につきましては、当社は、一切その責任を負いません。
- 9. 当社は、当社製品の品質および信頼性の向上に努めていますが、半導体製品はある確率で故障が発生したり、使用条件によっては誤動作したりする場合があります。また、当社製品は、データシート等において高信頼性、Harsh environment 向け製品と定義しているものを除き、耐放射線設計を行っておりません。仮に当社製品の故障または誤動作が生じた場合であっても、人身事故、火災事故その他社会的損害等を生じさせないよう、お客様の責任において、冗長設計、延焼対策設計、誤動作防止設計等の安全設計およびエージング処理等、お客様の機器・システムとしての出荷保証を行ってください。特に、マイコンソフトウェアは、単独での検証は困難なため、お客様の機器・システムとしての安全検証をお客様の責任で行ってください。
- 10. 当社製品の環境適合性等の詳細につきましては、製品個別に必ず当社営業窓口までお問合せください。ご使用に際しては、特定の物質の含有・使用を規制する RoHS 指令等、適用される環境関連法令を十分調査のうえ、かかる法令に適合するようご使用ください。かかる法令を遵守しないことにより生じた損害に関して、当社は、一切その責任を負いません。
- 11. 当社製品および技術を国内外の法令および規則により製造・使用・販売を禁止されている機器・システムに使用することはできません。当社製品および技術を輸出、販売または移転等する場合は、「外国為替及び外国貿易法」その他日本国および適用される外国の輸出管理関連法規を遵守し、それらの定めるところに従い必要な手続きを行ってください。
- 12. お客様が当社製品を第三者に転売等される場合には、事前に当該第三者に対して、本ご注意書き記載の諸条件を通知する責任を負うものといたします。
- 13. 本資料の全部または一部を当社の文書による事前の承諾を得ることなく転載または複製することを禁じます。
- 14. 本資料に記載されている内容または当社製品についてご不明な点がございましたら、当社の営業担当者までお問合せください。
- 注 1. 本資料において使用されている「当社」とは、ルネサス エレクトロニクス株式会社およびルネサス エレクトロニクス株式会社が直接的、間接的 に支配する会社をいいます。
- 注 2. 本資料において使用されている「当社製品」とは、注 1 において定義された当社の開発、製造製品をいいます。

(Rev.5.0-1 2020.10)

本社所在地

〒135-0061 東京都江東区豊洲 3-2-24 (豊洲フォレシア)

www.renesas.com

商標について

ルネサスおよびルネサスロゴはルネサス エレクトロニクス株式会社の 商標です。すべての商標および登録商標は、それぞれの所有者に帰属 します。

お問合せ窓口

弊社の製品や技術、ドキュメントの最新情報、最寄の営業お問合せ窓口に関する情報などは、弊社ウェブサイトをご覧ください。

www.renesas.com/contact/