

永久磁石同期モータのホールセンサ利用 120 度通電制御

RX23T 実装編 Evaluation System for BLDC Motor 用

要旨

本アプリケーションノートは RX23T マイクロコントローラを使用し、永久磁石同期モータをホールセンサ利用 120 度通電方式で駆動するサンプルプログラム及びモータ制御開発支援ツール「Renesas Motor Workbench」の使用方法について説明することを目的としています。

サンプルプログラムはあくまで参考用途であり、弊社がこの動作を保証するものではありません。サンプルプログラムを使用する場合、適切な環境で十分な評価をした上で御使用ください。

動作確認デバイス

サンプルプログラムの動作確認は下記のデバイスで行っております。

RX23T (R5F523T5ADFM)

対象サンプルプログラム

本アプリケーションノートの対象サンプルプログラムを下記に示します。

- RX23T_MRSSK2_SPM_HALL_120_CSP_RV100 (IDE: CS+)
- RX23T_MRSSK2_SPM_HALL_120_E2S_RV100 (IDE: e²studio) Evaluation System For BLDC Motor & RX23T CPU カード向け RX23T ホールセンサ利用 120 度通電制御サンプルプログラム

参考資料

- RX23T グループ ユーザーズマニュアル ハードウェア編(R01UH0520)
- 永久磁石同期モータの 120 度通電制御 (アルゴリズム編) (R01AN2657)
- Renesas Motor Workbench ユーザーズマニュアル(R21UZ0004)
- Evaluation System For BLDC Motor ユーザーズマニュアル(R12UZ0062)
- RX23T CPU カード 取扱説明書 (R20UT3698)

目次

1.	概説	3
1.1	開発環境	3
2	シュニノ棚市	1
	システム概要	
2.1	ハードウェア構成	
2.2	ハードウェア仕様	
	ユーザインタフェース	
2.2.2		
2.3	ソフトウェア構成	
2.3.1		
2.3.2	• • • • • • • • • • • • • • • • • • • •	
2.4	ソフトウェア仕様	9
3.	制御プログラム説明	10
3.1	制御内容	
3.1.1		
3.1.2		
3.1.3		
3.1.4		
3.1.5	状態遷移	14
3.1.6		
3.1.7	システム保護機能	16
3.2	ホールセンサ利用 120 度通電制御ソフト関数仕様	17
3.3	ホールセンサ利用 120 度通電制御ソフト変数一覧	26
3.4	ホールセンサ利用 120 度通電制御ソフト構造体一覧	27
3.5	ホールセンサ利用 120 度通電制御ソフトマクロ定義	30
3.6	制御フロー(フローチャート)	37
3.6.1	メイン処理	37
3.6.2	キャリア周期割り込み処理	38
3.6.4	1 [ms]割り込み処理	39
3.6.5	過電流割り込み処理	39
3.6.6	ホールセンサ信号割り込み処理(共通部)	40
4	ナー たま かりの 日日 20 → 上京 ハナーリー「□	4.4
	モータ制御開発支援ツール「Renesas Motor Workbench」	
4.1	概要	
4.2	Analyzer 機能用変数一覧	
4.3	Analyzer 機能操作例	43
ホー	ムページとサポート窓口	45
•	· · · · · · · · · · · · · · · · · · ·	
ᆲᄼᆕᆍ	=그 ㈜	16

1. 概説

本アプリケーションノートでは、RX23T マイクロコントローラを使用した永久磁石同期モータ (PMSM) ^{注1}のホールセンサ利用 120 度通電制御サンプルプログラムの実装方法及びモータ制御開発支援 ツール「Renesas Motor Workbench」の使用方法について説明します。なお、このサンプルプログラムは「永久磁石同期モータの 120 度通電制御(アルゴリズム編)」のアルゴリズムを使用しています。 【注】 1. 別称: ブラシレス DC モータ (BLDC)

1.1 開発環境

本アプリケーションノート対象サンプルプログラムの開発環境を表 1-1、表 1-2 に示します。

表 1-1 サンプルプログラムの開発環境 (H/W)

マイコン	評価ボード	モータ
RX23T	48V 5A BLDC 用インバータボード&RX23T CPU カード ^{注 1}	TG-55L ^{注 2}
(R5F523T5ADFM)		

表 1-2 サンプルプログラムの開発環境 (S/W)

CS+バージョン	e²studio バージョン	ツールチェーンバージョン
V8.03.00	V7.7.0	CC-RX: V3.02.00

ご購入、技術サポートにつきましては、弊社営業及び特約店にお問い合わせください。

- 【注】 1. 48V 5A BLDC 用インバータボード (RTK0EM0000B10020BJ) 及び RX23T CPU カード (RTK0EM0003C01202BJ) は、ルネサスエレクトロニクス株式会社の製品です。48V 5A BLDC 用インバータボードは Evaluation System for BLDC Motor (RTK0EMX270S00020BJ) に同梱されています。
 - TG-55L は、ツカサ電工株式会社の製品です。
 ツカサ電工株式会社(http://www.tsukasa-d.co.jp/)

2. システム概要

本システムの概要を以下に説明します。

2.1 ハードウェア構成

ハードウェア構成を次に示します。

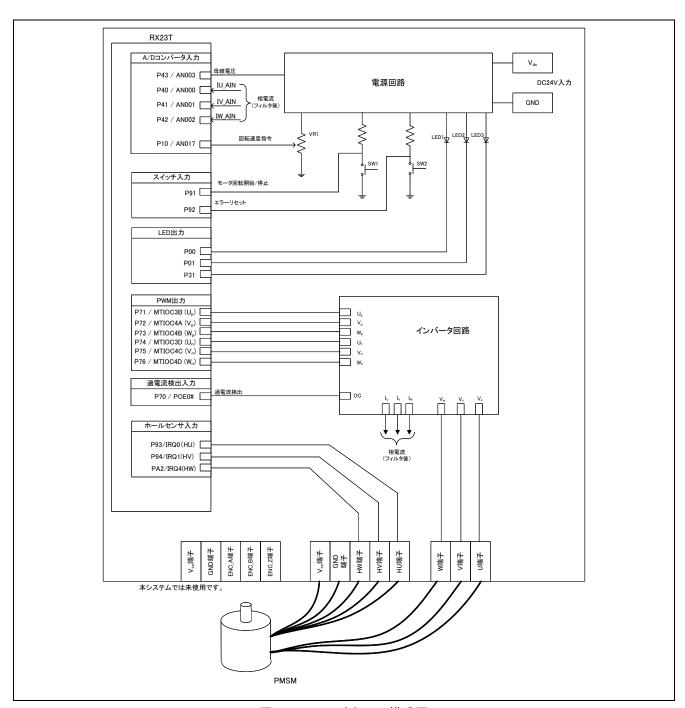


図 2-1 ハードウェア構成図

2.2 ハードウェア仕様

2.2.1 ユーザインタフェース

本システムのユーザインタフェース一覧を表 2-1 に示します。

表 2-1 ユーザインタフェース

項目	インタフェース部品	機能
回転速度	可変抵抗(VR1)	回転速度指令値入力(アナログ値)
START/STOP	トグルスイッチ(SW1)	モータ回転開始/停止指令
ERROR/RESET	プッシュスイッチ(SW2)	エラー状態からの復帰指令
LED1	オレンジ色 LED	モータ回転時:点灯
		停止時:消灯
LED2	オレンジ色 LED	エラ一検出時:点灯
		通常動作時:消灯
LED3	オレンジ色 LED	本システムでは未使用
RESET	プッシュスイッチ(RESET1)	システムリセット

本システムの RX23T マイクロコントローラ端子のインタフェース一覧を表 2-2 に示します。

表 2-2 端子インタフェース

R5F523T5ADFM 端子名	機能
P43 / AN003	インバータ母線電圧測定
P10 / AN017	回転速度指令値入力用(アナログ値)
P91	START/STOP トグルスイッチ
P92	ERROR/RESET トグルスイッチ
P00	LED1 点灯/消灯制御
P01	LED2 点灯/消灯制御
P31	LED3 点灯/消灯制御(本システムでは未使用)
P40 / AN000	U 相電流測定
P41 / AN001	Ⅴ相電流測定
P42 / AN002	W 相電流測定
P71 / MTIOC3B	ポート出力/PWM 出力(Up)/ "Low"アクティブ
P72 / MTIOC4A	ポート出力/PWM 出力(Vp)/ "Low"アクティブ
P73 / MTIOC4B	ポート出力/PWM 出力(Wp)/ "Low"アクティブ
P74 / MTIOC3D	ポート出力/PWM 出力(Uո)/ "High"アクティブ
P75 / MTIOC4C	ポート出力/PWM 出力(Vո)/ "High"アクティブ
P76 / MTIOC4D	ポート出力/PWM 出力(Wո)/ "High"アクティブ
P70 / POE0#	過電流検出時の PWM 緊急停止入力
P93 / IRQ0	ホールセンサ入力(HU)
P94 / IRQ1	ホールセンサ入力(HV)
PA2 / IRQ4	ホールセンサ入力(HW)

2.2.2 周辺機能

本システムに使用する周辺機能一覧を表 2-3 に示します。

表 2-3 サンプルプログラム別周辺機能対応表

周辺機能	用途
12bit A/D コンバータ	• 回転速度指令値入力
	• インバータ母線電圧測定
	• 各 U/V/W 相電流
コンペアマッチタイマ(CMT)	• 1[ms]インターバルタイマ
	• 回転速度計測用フリーランカウンタ
マルチファンクションタイマパルスユニット	相補 PWM 出力
(MTU3)	
ポートアウトイネーブル(POE3)	過電流検出時、PWM 出力端子をハイインピーダンス状
	態にし、PWM 出力を停止
外部割り込み(IRQ)	ホールセンサ信号両エッジでの外部割り込み

(1) 12bit A/D コンバータ

回転速度指令値入力、インバータ母線電圧(Vdc)、U 相電流(I_u)、V 相電流(I_v)、W 相電流(I_w)を「12 ビット A/D コンバータ」を使用して測定します。サンプル&ホールド機能を使用した「シングルスキャンモード」で測定します (ハードウェアトリガを使用)。

(2) コンペアマッチタイマ (CMT)

- a. 1 [ms]インターバルタイマ コンペアマッチタイマのチャネル 0 を、1 [ms]インターバルタイマとして使用します。
- b. 速度計測用フリーランタイマ コンペアマッチタイマのチャネル 1 を、速度計測用フリーランタイマとして使用します。 ただし、割り込みは使用しません。

(3) マルチファンクションタイマパルスユニット3 (MTU3)

動作モードはチャネル毎に異なり、チャネル 3、4 では相補 PWM モードを使用して、デッドタイム付きの出力(p 側は"Low"アクティブ、n 側は"High"アクティブ) を行います。

(4) ポートアウトプットイネーブル 3 (POE3)

過電流検出時(POE0#端子の立ち下がりエッジ検出時)と出力短絡検出時は PWM 出力端子をハイインピーダンス状態にします。

(5) 外部割り込み (IRQ)

モータの磁極位置検出信号(ホールセンサ出力信号)を入力します。

両エッジ割り込みモードを使用し、回転速度計測、通電パターン変更、ホールセンサ信号取り込み(位置情報検出)を行います。

2.3 ソフトウェア構成

2.3.1 ソフトウェア・ファイル構成

サンプルプログラムのフォルダとファイル構成を表 2-4 に記します。

表 2-4 サンプルプログラムのフォルダとファイル構成

			,
RX23T_MRSSK2_SPM_HALL	inc	main.h	メイン関数、ユーザインタフェース制御関連定義
_120_CSP_RV100		mtr_common.h	共通定義
及び		mtr_ctrl_mrssk.h	ボード依存処理関連定義
RX23T_MRSSK2_SPM_HALL		mtr_ctrl_rx23t.h	RX23T 依存処理関連定義
_120_E2S_RV100		mtr_spm_hall_120.h	ホール 120 度通電制御関連定義
		control_parameter.h	制御パラメータ関連定義
		motor_parameter.h	モータパラメータ関連定義
		mtr_ctrl_rx23t_mrssk.h	ボード&RX23T 依存処理関連定義
		mtr_feedback.h	フィードバック制御関連定義
		mtr_filter.h	フィルタ処理関連定義
		mtr_gmc.h	モータ制御機能関連定義
		mtr_driver_access.h	ドライバアクセス機能関連定義
	ics	ICS_RX23T.obj	ツール用通信ライブラリ
		ICS_RX23T.h	ツール用通信関連定義
	src	main.c	メイン関数、ユーザインタフェース制御
		mtr_ctrl_mrssk.c	ボード依存処理
		mtr ctrl rx23t.c	RX23T 依存処理
		mtr interrupt.c	割り込みハンドラ
		mtr spm hall 120.c	ホール 120 度通電制御
		mtr ctrl rx23t mrssk.c	ボード & RX23T 依存処理
		mtr feedback.c	フィードバック制御
		mtr filter.c	フィルタ処理
		mtr gmc.c	モータ制御機能
		mtr_driver_access.c	ドライバアクセス機能

2.3.2 モジュール構成

サンプルプログラムのモジュール構成を図2-2、表2-5に示します。

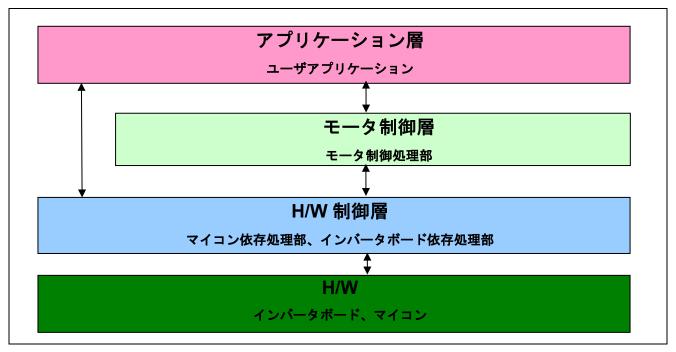


図 2-2 サンプルプログラムのモジュール構成

表 2-5 サンプルプログラムのモジュール構成

階層	ファイル名
アプリケーション層	main.c
モータ制御層	mtr_spm_hall_120.c
	mtr_feedback.c
	mtr_gmc.c
	mtr_filter.c
	mtr_driver_access.c
	mtr_interrupt.c ^{注 1}
H/W 制御層	mtr_ctrl_rx23t_mrssk.c
	mtr_ctrl_rx23t.c
	mtr_ctrl_mrssk.c
	mtr_interrupt.c ^{注 1}

【注】 1. "mtr_interrupt.c"は、モータ制御層、H/W 層に関わる処理を行っています。

2.4 ソフトウェア仕様

本システムのソフトウェアの基本仕様を下記に示します。120 度通電制御の詳細に関しては「永久磁石同期モータの120 度通電制御(アルゴリズム編)」を参照してください。

表 2-6 ホールセンサ利用 120 度通電制御ソフトウェア基本仕様

項目	内容	
制御方式	120 度通電方式(前半 60 度チョッピング)	
モータ回転開始/停止	Analyzer から入力注 1 または SW1(P91)のレベルにより判定 ("Low":回転開始"High":停止)	
回転子磁極位置検出	ホールセンサによる位置検出(60 度毎)	
入力電圧	DC24[V]	
キャリア周波数 20 [kHz] (PWM)		
制御周期	ホールセンサ入力信号の両エッジにおける割り込み信号毎	
回転速度制御範囲	CW/CCW 共に 550 [rpm]~2650 [rpm]	
回転速度制御範囲		

【注】 1. 詳細に関しては"4. モータ制御開発支援ツール「Renesas Motor Workbench」"を参照してください。

3. 制御プログラム説明

本アプリケーションノートの対象サンプルプログラムについて説明します。

3.1 制御内容

3.1.1 モータ始動/停止

モータの始動と停止は、Analyzer からの入力または SW1 と VR1 の入力によって制御します。

SW1 には汎用ポートが割り当てられ、メインループ内で端子を読み、"Low"レベルのときスタートスイッチが押されていると判断し、逆に"High"レベルのときはモータを停止すると判断します。

また、VR1 にはアナログ入力端子が割り当てられ、その A/D 変換値をメインループで参照し、回転速度指令値を作成します。その回転速度指令値が 550 [rpm]未満のときはモータ停止と判断します。

3.1.2 A/D 変換

(1) モータ回転速度指令値

モータの回転速度指令値は Analyzer からの入力または VR1 の出力値(アナログ値)を A/D 変換することによって決定します。A/D 変換された VR1 の値は、以下の表のように回転速度指令値として使用します。

その回転速度指令値が設定された最低速度を下回る場合、最低速度に制限されます。同様に最高速度を上回る場合、最高速度に制限されます。

表 3-1 回転速度指令値の変換比

項目	変換比(指令値:A/D 変換値)		チャネル
回転速度指令値	CW	0 [rpm]~2700[rpm] : 07FFH~0000H	AN017
	CCW	0 [rpm]~2700[rpm]: 0800H~0FFFH	

(2) インバータ母線電圧

下記のように、インバータ母線電圧を測定します。変調率の算出と過電圧・低電圧検出(異常時は PWM 停止)に使用します。

表 3-2 インバータ母線電圧の変換比

項目	変換比(インバータ母線電圧:A/D 変換値)	チャネル
インバータ母線電圧	0 [V]~111[V]: 0000H~0FFFH	AN003

(3) U相、V相、W相電流

以下の表のように、U相、V相、W相電流を測定し、過電流エラー判定に使用します。

表 3-3 U、V、W 相電流の変換比

項目	変換比(U 相、V 相、W 相電流:A/D 変換値)	チャネル
U相、V相、W相電流	-12.5 [A]~12.5 [A]: 0000H~0FFFH 注1	Iu : AN000 Iv : AN001 Iw: AN002

【注】 1. A/D 変換特性の詳細に関しては「RX23T グループ ユーザーズマニュアル ハードウェア編」を参照してください。

3.1.3 速度制御

本システムでのモータ回転速度は、コンペアマッチタイマのチャネル 1 のタイマをフリーランニングさせ、ホールセンサ信号による外部割り込みルーチンでタイマ値を取り込み、 2π [rad]前の取り込み値との差分から演算します。速度演算結果に対しては LPF(ローパスフィルタ)処理を行います。

図 3-1 モータ回転速度の演算方法

本アプリケーションノート対象ソフトでの速度制御は、PI制御によって行います。下記の速度 PI制御によって電圧指令値を得ます。

$$v^* = (K_{P\omega} + \frac{K_{I\omega}}{s})(\omega^* - \omega)$$

 v^* : 電圧指令値 ω^* : 速度指令値 ω : 回転速度

 $K_{P\omega}$: 速度PI比例ゲイン $K_{I\omega}$: 速度 PI 積分ゲイン

s:ラプラス演算子

PI 制御の詳細については、専門書を参照してください。

3.1.4 PWM による電圧制御

出力電圧の制御には PWM 制御を使用しています。 PWM 制御とは、図 3-2 のように、パルスのデューティを変化させることで平均電圧を調整していく制御方式です。

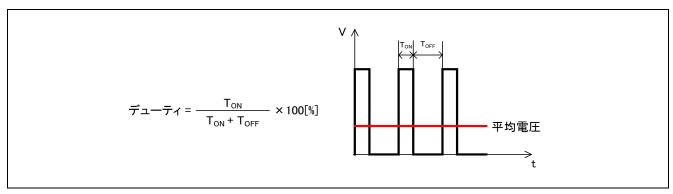


図 3-2 PWM 制御

ここで、変調率 m を以下のように定義します。

$$m = \frac{V}{E}$$

m:変調率 V:指令値電圧 E:インバータ母線電圧

この変調率を、PWM デューティを決めるレジスタの設定値に反映させます。

また、本アプリケーションノート対象ソフトでは、前半60度チョッピングを採用し、出力電圧及び速度の制御を行っています。また、コンパイルオプションによって非相補、相補の制御切り替えを可能としています。図3-3に非相補前半60度チョッピング時のモータ制御信号出力波形例、図3-4に相補前半60度チョッピング時のモータ制御信号出力波形例を示します。

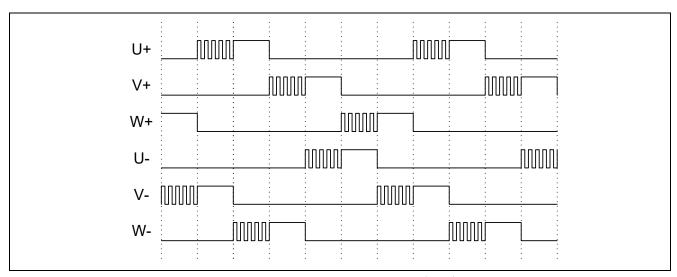


図 3-3 非相補前半 60 度チョッピング

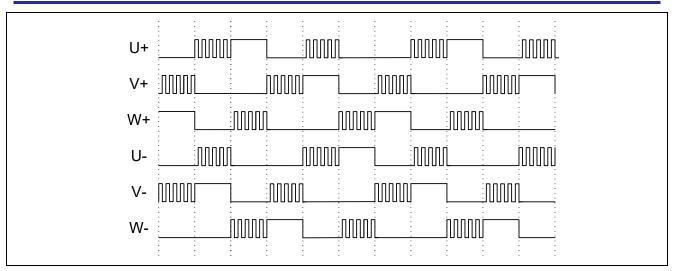


図 3-4 相補前半 60 度チョッピング

3.1.5 状態遷移

図 3-5 にホールセンサ利用 120 度通電制御ソフトにおける状態遷移図を示します。

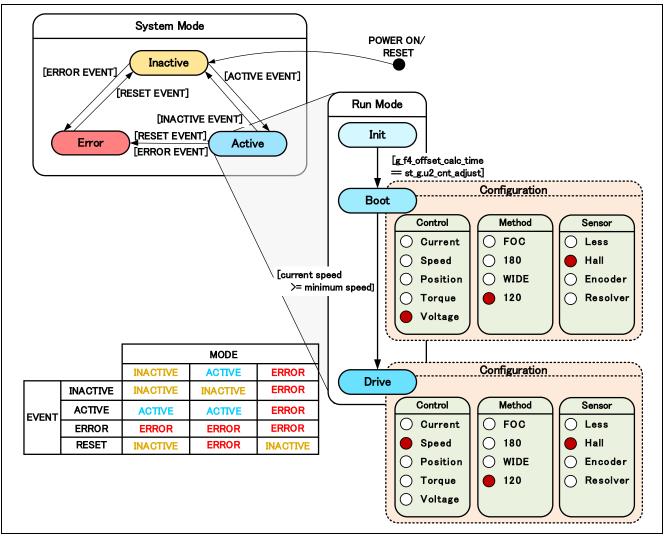


図 3-5 ホールセンサ利用 120 度通電制御ソフトの状態遷移図

3.1.6 制御時の始動方法

ホールセンサ利用 120 度通電制御では、ホールセンサ信号により回転子位置が判別出来るため、始動時の 通電パターンは一意に決まります。

但し、速度制御を行うためには 3.1.3 に示した様に最低でも最初の 2π分の時間データを計測する必要があります。そのため、サンプルソフトでは始動方法として一定電圧によるオープンループでの始動を行い時間データが取得出来る条件を待って速度制御へ遷移する方法を取っています。

図 3-6 ではサンプルソフトでの始動方法を示しています。"MTR_MODE_BOOT"では、st_g.f4_start_refv で与えられた一定電圧によるオープンループ始動を行っています。"MTR_MODE_DRIVE"への遷移条件はその時点での計測回転数が規定最低回転数(550rpm)に到達することです。

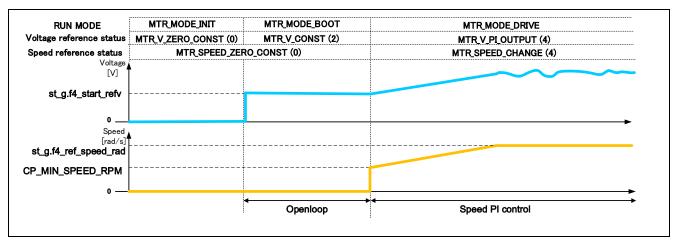


図 3-6 始動方法例

3.1.7 システム保護機能

本システムは、以下のエラー状態を持ち、それぞれの場合に緊急停止機能を実現しています。システム保護機能に関わる各設定値は「表 3-4 各システム保護機能設定値」を参照してください。

過電流エラー

ハードウェアからの緊急停止信号(過電流検出)により、PWM 出力端子にハイインピーダンス出力します。

また、過電流監視周期で U 相、V 相、W 相電流を監視し、過電流(過電流リミット値を超過)を検出した時に、緊急停止します。(ソフトウェア検出)

過電圧エラー

過電圧監視周期でインバータ母線電圧を監視し、過電圧(過電圧リミット値を超過)を検出した時に、 緊急停止します。ここで、過電圧リミット値は検出回路の抵抗値の誤差等を考慮して設定した値です。

低電圧エラー

低電圧監視周期でインバータ母線電圧を監視し、低電圧(低電圧リミット値を下回る)を検出した時に、緊急停止します。ここで、低電圧リミット値は検出回路の抵抗値の誤差等を考慮して設定した値です。

回転速度異常エラー

回転速度監視周期で速度を監視し、速度リミット値を超過した場合、緊急停止します。

- ホールセンサ入力検出タイムアウトエラーホールセンサ入力検出による割り込みが一定時間発生しない場合、緊急停止します。
- ホールセンサパターンエラー(位置情報)の異常検出ホールセンサ割り込み処理毎にホールセンサ信号のパターンを監視し、エラーパターンを検出した場合、緊急停止します。

過電流エラー	過電流リミット値 [A]	0.89
	監視周期 [µs]	50
過電圧エラー	過電圧リミット値 [V]	28
	監視周期 [µs]	50
低電圧エラー	低電圧リミット値 [V]	14
	監視周期 [µs]	50
回転速度異常エラー	速度リミット値 [rpm]	3000
	監視周期 [µs]	50
ホールセンサ入力検出タイムアウトエラー	- タイムアウト時間[ms]	200

表 3-4 各システム保護機能設定値

3.2 ホールセンサ利用 120 度通電制御ソフト関数仕様

本制御プログラムの関数一覧を以下に示します。

表 3-5 "main.c"関数一覧

ファイル名	関数名	処理概要
main.c	main	・ ハードウェア初期化関数呼び出し
	入力:なし	・ ユーザインタフェース初期化関数呼び出し
	出力:なし	・ メイン処理使用変数初期化関数呼び出し
		・ 状態遷移及びイベント実行関数呼び出し
		・ メイン処理
		⇒ユーザインタフェース呼び出し
		⇒ウォッチドッグタイマクリア関数呼び出し
	board_ui	ボードユーザインタフェース使用
	入力:なし	・ モータステータスの変更
	出力:なし	・ 回転速度指令値の決定
		・ 回転方向の決定
	ics_ui	Analyzer ユーザインタフェース使用
	入力:なし	・ モータステータスの変更
	出力:なし	・ 回転速度指令値の決定
		・ 回転方向の決定
	software_init	メイン処理にて使用する変数の初期化
	入力:なし	
	出力:なし	

表 3-6 "mtr_ctrl_rx23t.c"関数一覧

ファイル名	関数名	処理概要
mtr_ctrl_rx23t.c	R_MTR_InitHardware	クロックと周辺機能の初期化
	入力:なし	
	出力:なし	
	mtr_init_clock	クロックの初期化
	入力:なし	
	出力:なし	
	init_wdt	ウォッチドッグタイマ(WDT)の初期化
	入力:なし	
	出力:なし	
	mtr_init_cmt	コンペアマッチタイマ(CMT)の初期化
	入力:なし	
	出力:なし	
	mtr_init_poe3	ポートアウトプットイネ—ブル 3(POE3)
	入力:なし	の初期化
	出力:なし	
	clear_wdt	ウォッチドッグタイマ(WDT)のクリア
	入力:なし	
	出力:なし	
	mtr_clear_oc_flag	ハイインピーダンス状態解除
	入力:なし	
	出力:なし	

表 3-7 "mtr_ctrl_mrssk.c"関数一覧

ファイル名	関数名	処理概要
mtr_ctrl_mrssk.c	R_MTR_ChargeCapacitor	母線電圧(VDC)安定待ち
	入力:(uint8) u1_id / Motor ID	
	出力:なし	
	get_vr1	VR1 の状態を取得
	入力:なし	
	出力:(uint16) ad_data / A/D 変換結果	
	get_sw1	SW1 の状態を取得
	入力:なし	
	出力:(uint8) tmp_port / SW1 のレベル	
	get_sw2	SW2 の状態を取得
	入力: なし	
	出力:(uint8) tmp_port / SW2 のレベル	
	led1_on	LED1 の点灯
	入力: なし	
	出力:なし	
	led2_on	LED2 の点灯
	入力: なし	
	出力:なし	
	led3_on	LED3 の点灯
	入力: なし	
	出力:なし	LED 4 O W LE
	led1_off	LED1 の消灯
	入力:なし	
	出力:なし	1500 0 X 47
	led2_off	LED2 の消灯
	入力:なし	
	出力:なし lad2 a#	LEDO O X M
	led3_off	LED3 の消灯
	入力:なし	
	出力: なし	

表 3-8 "mtr_interrupt.c"関数一覧

ファイル名	関数名	処理概要
mtr_interrupt.c	mtr_over_current_interrupt	過電流検出処理(ハード検出)
	入力:なし	・ イベント処理選択関数呼び出し(Error イベント発
	出力:なし	生)
		・ モータステータス変更(Error モードへ)
		・ ハイインピーダンス状態解除関数呼び出し(PWM
		出力停止処理へ)
	mtr_hall_u_interrupt	U 相ホールセンサ割り込み(IRQ0)で呼び出し
	入力:なし	・ ホールセンサ割り込み共通処理の呼び出し
	出力:なし	
	mtr_hall_v_interrupt	V 相ホールセンサ割り込み(IRQ1)で呼び出し
	入力:なし	・ ホールセンサ割り込み共通処理の呼び出し
	出力:なし	
	mtr_hall_w_interrupt	W 相ホールセンサ割り込み(IRQ4)で呼び出し
	入力:なし	・ ホールセンサ割り込み共通処理の呼び出し
	出力:なし	
	mtr_hall_interrupt	ホールセンサ割り込み共通処理
	入力:なし	・ 速度計測開始待ちカウント処理
	出力:なし	・ ホールセンサ入力タイムアウト検出処理
		・ モータ回転停止待ち処理
		・ モータ制御パターン決定処理の呼び出し
	mtr_1ms_interrupt	周期タイマ割り込み (CMT0) で呼び出し[周期: 1ms]
	入力:なし	• 速度 PI 制御処理
	出力:なし	・ 動作モード管理処理
		・ タイムアウトカウンタ処理
	mtr_carrier_interrupt	PWM 周期割り込み(MTU3)で呼び出し
	入力:なし	• 電流検出処理
	出力:なし	・ 電流オフセットキャンセル処理
		母線電圧取得処理
		・ エラー判別処理
		・ モータ回転停止待ち処理
		・ ツール通信データ反映処理の呼び出し

表 3-9 "mtr_spm_hall_120.c"関数一覧 [1/2]

ファイル名	関数概要	処理概要
mtr_spm_hall_120.c	R_MTR_InitSequence	シーケンス処理の初期化
	入力:(uint8) u1_id / Motor ID	
	出力: なし	
	R MTR ExecEvent	・ ステータスの変更を行う
	 入力:(uint8) u1_event / 発生イベント	・ 発生イベントに対して、適切な処理
	(uint8) u1_id / Motor ID	の実行関数を呼び出し
	出力:なし	
	mtr_act_active	· PWM 出力許可
	入力:(uint8) u1 state / モータステータス	・ ホールセンサ割り込み許可
	(uint8) u1_id / Motor ID	
	出力:(uint8) u1_state / モータステータス	
	mtr_act_inactive	・ PWM 出力停止
		・ ホールセンサ割り込み禁止
	入力:(uint8) u1_state / モータステータス	・ パールセンり割り込み禁止
	(uint8) u1_id / Motor ID	
	出力:(uint8) u1_state / モータステータス	
	mtr_act_none	処理なし
	入力:(uint8) u1_state / モータステータス	
	(uint8) u1_id / Motor ID	
	出力:(uint8) u1_state / モータステータス	
	mtr_act_reset	グローバル変数の初期化
	入力:(uint8) u1_state / モータステータス	
	(uint8) u1_id / Motor ID	
	出力:(uint8) u1_state / モータステータス	
	mtr_act_error	モータ制御終了関数呼び出し
	入力:(uint8) u1_state / モータステータス	
	(uint8) u1_id / Motor ID	
	出力:(uint8) u1_state / モータステータス	
	mtr pattern set	・ 通電パターンの設定
	入力:(MTR_ST_HALL120*)st_m / Motor 用構造体	・ 速度計測演算処理の呼び出し
	出力: なし	
	mtr speed calc	→ ■ 速度計測演算
	入力:(MTR_ST_HALL120*)st_m / Motor 用構造体	EIXII MIXA
	出力:なし	モータ始動時に必要な変数を初期化
	mtr_start_init	モータ知動時に必要な多数を初期に
	入力:(uint8) u1_id / Motor ID	
	出力: なし	
	mtr_set_variables	制御層への制御パラメータの反映
	入力: なし	
	出力:なし	
	R_MTR_lcsInput	Analyzer から入力された変数値をバッ
	入力:(MTR_ICS_INPUT*) ics_input / ツール用構造体	ファに格納
	出力:なし	
	mtr_watch_variables	Analyzer へ表示するための変数値を
	入力: なし	ウォッチ用変数に格納
	出力:なし	
	mtr_error_check	エラーの監視
	入力: なし	
	出力: なし	
		回転停止チェック
	mtr_wait_motorstop 入力:(MTR_ST_HALL120*)st_m / Motor 用構造体	ロエチムトアエノエソノ
	出力:なし	

表 3-10 "mtr_spm_hall_120.c"関数一覧 [2/2]

ファイル名	関数概要	処理概要
mtr_spm_hall_120.c	mtr_set_voltage_ref	電圧指令値の設定
	入力:(MTR_ST_HALL120*)st_m / Motor 用構造体	
	出力: なし	
	mtr_set_speed_ref	速度制御用指令値の設定
	入力:(MTR_ST_LESS120*)st_m / Motor 用構造体	
	出力: なし	
	mtr_pattern_first60	非相補前半 60 度チョッピング
	入力:(MTR_ST_HALL120*)st_m / Motor 用構造体	
	出力: なし	
	mtr_pattern_first60_comp	相補前半 60 度チョッピング
	入力:(MTR_ST_HALL120*)st_m / Motor 用構造体	
	出力: なし	

表 3-11 "mtr_ctrl_rx23t_mrssk.c"関数一覧

ファイル名	関数名	処理概要
mtr_ctrl_rx23t_mrssk.c	mtr_init_mtu	MTU3 の初期設定
	入力: なし	
	出力: なし	
	mtr_init_ad_converter	A/D コンバータの初期設定
	入力: なし	
	出力:なし	
	mtr_init_irq	外部割り込み(ホールセンサ信号割
	入力: なし	り込み)初期設定
	出力:なし	
	init_ui	ユーザインタフェースの初期化
	入力: なし	
	出力:なし	
	mtr_ctrl_start	モータ始動処理
	入力:(uint8) u1_id / Motor ID	
	出力:なし	
	mtr_ctrl_stop	モータ停止処理
	入力:(uint8) u1_id / Motor ID	
	出力: なし	
	mtr_get_vdc_adc	インバータ母線電圧 A/D 変換
	入力:(uint8) u1_id / Motor ID	
	出力:(float32*) f4_vdc_ad /インバータ母線電圧 A/D 変換値	
	mtr_get_vr1_adc	VR1 A/D 変換
	入力: なし	
	出力:(uint16) u2_temp / VR1 A/D 変換値	
	mtr_get_current_uvw_adc	U相/V相/W相電流A/D変換
	入力:(float32*) f4_iu_ad / U 相電流 A/D 変換値	
	(float32*) f4_iv_ad / V 相電流 A/D 変換値	
	(float32*) f4_iw_ad / W 相電流 A/D 変換値	
	(uint8) u1_id / Motor ID	
	出力:なし	
	mtr_change_pattern	通電パターンの変更
	入力:(uint8) pattern / 通電パターン	
	出力:なし	

表 3-12 "mtr_feedback.c"関数一覧

ファイル名	関数名	処理概要
mtr_feedback.c	mtr_pi_ctrl 入力:(MTR_PI_CTRL*) pi_ctrl / PI 制御用構造体	PI 制御
	出力:(float32) f4_ref / PI 制御出力值	

表 3-13 "mtr_filter.c"関数一覧

ファイル名	関数名	処理概要
mtr_filter.c	R_MTR_Lpff	LPF 処理(float32)
_	 入力:(float32) f4_lpf_input / LPF 入力值	
	(float32) f4_pre_lpf_output / 前回の LPF 出力値	
	(float32) f4_lpf_k / LPF ゲイン	
	出力:(float32) f4_temp / LPF 出力值	
	R_MTR_Lpf	LPF 処理(int16)
	入力:(int16) s2_lpf_input / LPF 入力值	
	(int16) s2_pre_lpf_output / 前回の LPF 出力値	
	(int16) s2_lpf_k / LPF ゲイン	
	出力:(int16) s2_temp / LPF 出力值	
	R_MTR_Limitf	上下限リミット処理
	入力:(float32) f4_value / 入力值	(float32)
	(float32) f4_max / 最大值	
	(float32) f4_min / 最小值	
	出力:(float32) f4_temp / 出力值	
	R_MTR_Limit	上下限リミット処理
	入力:(int16) s2_value / 入力值	(int16)
	(int16) s2_max / 最大值	
	(int16) s2_min / 最小値	
	出力:(int16) s2_temp / 出力值	
	R_MTR_Limitf_h	上限リミット処理
	入力: (float32) f4_value / 入力值	(float32)
	(float32) f4_max / 最大値	
	出力: (float32) f4_temp / 出力值	
	R_MTR_Limit_h	上限リミット処理(int16)
	入力: (int16) s2_value / 入力值	
	(int16) s2_max / 最大値	
	出力: (int16) s2_temp / 出力值	779 II 5 I bn T9
	R_MTR_Limitf_I	下限リミット処理
	入力:(float32) f4_value / 入力値 (float32) f4_min / 最小値	(float32)
	出力: (float32) f4_temp / 出力值	
	R MTR Limit I	下限リミット処理(int16)
	入力:(int16) s2_value / 入力值	ド限リミット処理(IIIIIO)
	(int16) s2_win / 最小値	
	(int16) 32_min / 放 1 / int16) s2_temp / 出力值	
	R MTR Limitf abs	絶対値リミット処理
	入力:(float32) f4_value / 入力值	(float32)
	(float32) f4_limit_value / リミット値	
	出力:(float32) f4_temp / 出力値	
	R MTR Limit abs	絶対値リミット処理
	入力:(int16) s2_value / 入力值	(int16)
	(int16) s2_limit_value / リミット値	
	出力: (int16) s2_temp / 出力值	
L	, , , <u> </u>	

表 3-14 "mtr_gmc.c"関数一覧

ファイル名	関数名	処理概要
mtr_gmc.c ^{注 1}	mtr_get_vdc	母線電圧値の取得
	入力:(uint8) u1_id / Motor ID	
	出力:(float32) f4_temp_vdc / 母線電圧値	
	mtr_check_over_voltage_error	過電圧エラーチェック
	入力:(float32) f4_vdc / 母線電圧値	
	(float32) f4_overvoltage_limit / 過電圧リミット値	
	出力:(uint16) u2_temp0 / 過電圧エラーフラグ	
	mtr_check_under_voltage_error	低電圧エラーチェック
	入力:(float32) f4_vdc / 母線電圧値	
	(float32) f4_undervoltage_limit / 低電圧リミット値	
	出力:(uint16) u2_temp0/低電圧エラーフラグ	
	mtr_check_over_speed_error	過速度エラーチェック
	入力:(float32) f4_speed_rad / 回転速度	
	(float32) f4_speed_limit_rad / 回転速度リミット値	
	出力:(uint16) u2_temp0/過速度エラーフラグ	
	mtr_check_over_current_error	過電流エラーチェック
	入力:(float32) f4_iu / u 相電流値	
	(float32) f4_iv / v 相電流値	
	(float32) f4_iw / w 相電流値	
	(float32) f4_overcurrent_limit / 過電流リミット値	
	出力:(uint16) u2_temp0/過電流エラーフラグ	
	mtr_get_duty	変調率の算出
	入力:(float32) f4_v_ref / 指令電圧値	
	(float32) f4_vdc_ad / 母線電圧値	
	出力:(int16) s2_temp / 変調率	
	mtr get current uvw	三相電流値の算出
	(float32*) iv_ad / V 相電流 A/D 変換値	
	(float32*) iw_ad / W 相電流 A/D 変換値	
	(uint8) u1_id / Motor ID	
	出力: なし	
	mtr_check_timeout_error	タイムアウトエラーチェック
	 入力:(float32) f4_cnt_timeout / タイムアウトカウンタ	
	(float32) f4_timeout_limit / タイムアウトリミット	
	出力:(uint8) u1_temp0 / タイムアウトエラーフラグ	

【注】 1. 本システムで使用していない関数は記載していません。

表 3-15 "mtr_driver_access.c" 関数一覧

ファイル名	関数名	処理概要
mtr_driver_access.c	R_MTR_SetSpeed	速度指令値の設定
	入力:(int16)ref_speed / 速度指令值	
	(uint8) u1_id / Motor ID	
	出力: なし	
	R_MTR_SetDir	回転方向の設定
	入力:(uint8) dir / 回転方向	
	(uint8) u1_id / Motor ID	
	出力: なし	
	R_MTR_GetSpeed	速度演算値の取得
	入力:(uint8) u1_id / Motor ID	
	出力:(int16) s2_speed_rpm / 回転速度	
	R MTR GetDir	回転方向の取得
	入力:(uint8) u1_id / Motor ID	
	出力:(uint8) g_u1_direction / 回転方向	
	R MTR GetStatus	モータステータスを取得
	 入力:(uint8) u1_id / Motor ID	
	出力: (uint8)g u1 mode system / モータステータス	

3.3 ホールセンサ利用 120 度通電制御ソフト変数一覧

本制御プログラムで使用する変数一覧を次に示します。ただし、ローカル変数は記載していません。

表 3-16 変数一覧

変数名	型	内容	備考
g_s2_max_speed	int16	速度最大値	機械角 [rpm]
g_s2_min_speed	int16	速度最小値	機械角 [rpm]
g_s2_margin_min_speed	int16	モータ停止用回転速度指令 最小値	機械角 [rpm]
g_s2_ref_speed	int16	速度指令値	機械角 [rpm]
g_u1_rot_dir	uint8	ユーザ設定回転方向	0 : CW 1 : CCW
g_u1_motor_status	uint8	モータステータス	0:停止 1:回転中 2:エラー
g_u1_reset_req	uint8	リセット要求フラグ	0:リセット要求なし 1:リセット要求あり
g_u1_sw1_cnt	uint8	SW1 判定カウンタ	チャタリング除去
g_u1_sw2_cnt	uint8	SW2 判定カウンタ	チャタリング除去
g_u1_stop_req	uint8	VR1 停止指令フラグ	
g_s2_sw_ui	int16	ユーザインタフェース スイッチ	0: Analyzer ユーザインタ フェース使用 (デフォルト)1: ボードユーザインタ フェース使用
g_s2_mode_system	int16	ステート管理用変数	
g_s2_enable_write	int16	変数書き換え許可管理用変 数	
st_ics_input	MTR_ICS_IN PUT	Analyzer ユーザインタ フェース用構造体	
g_u1_cnt_ics	uint8	Analyzer 関数呼び出し間隔 カウンタ	
g_u1_enable_write	uint8	Analyzer ユーザインタ フェース用変数	
st_ics_input_buff	MTR_ICS_IN PUT	Analyzer 入力変数構造体	
g_u1_hall_intr_cnt	uint8	ホール割り込み数カウンタ	速度計測開始タイミング用

3.4 ホールセンサ利用 120 度通電制御ソフト構造体一覧

本制御プログラムで使用する構造体一覧を次に示します。

表 3-17 構造体一覧[1/3]

	メンバ名	型	内容	備考
MTR_ST_HALL	u1_mode_system	uint8	ステート管理	0x00 : Inactive モード
_120				0x01 : Active モード
				0x02 : Error モード
	u2_run_mode	uint16	運転モード管理	0x00: Initialize モード
				0x01 : Boot モード
				0x02 : Drive モード
				0x03:Analysis モード
				0x04 : Tune モード
	u2_error_status	uint16	エラーステータス管理	0x00:エラーなし
				0x01:過電流エラー
				0x02:過電圧エラー
				0x04:回転速度エラー
				0x08:ホールタイムアウトエラー
				0x10:誘起電圧タイムアウト
				エラー
				0x20:ホールパターンエラー
				0x40:誘起電圧パターンエラー
				0x80: 低電圧エラー
				0xFF:未定義エラー
	u2_sensor_conf	uint16	使用センサ	0x01:センサレス
				0x02:ホールセンサ
				0x04:エンコーダ
				0x08: レゾルバ
	u2_method_conf	uint16	制御方法	0x00 : FOC
				(Field Oriented Control)
				0x01:180 度通電制御
				0x02:広角通電制御
				0x03:120 度通電制御
	u2_ctrl_conf	uint16	制御入力	0x01:電流制御
				0x02:速度制御
				0x04:位置制御
				0x08:トルク制御
		f. 100		0x10:電圧制御
	f4_vdc_ad	float32	インバータ母線電圧 A/D 値	[V]
	f4_v_ref	float32	電圧指令値	速度 PI 出力値[V]
	f4_start_refv	float32	始動電圧設定値 BNAA 東温索	始動電圧[V]
	s2_pwm_duty	int16	PWM 変調率	- □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
	f4_ref_speed_rad	float32	回転速度指令値	電気角 [rad/s]
	f4_ref_speed_rad_crtl	float32	PI 制御用回転速度指令値	電気角 [rad/s]
	f4_speed_rad	float32	回転速度値	電気角 [rad/s]
	f4_kp_speed	float32	速度 PI 制御比例項ゲイン	
	f4_ki_speed	float32	速度 PI 制御積分項ゲイン	
	u1_cnt_speed_pi	uint8	速度 PI 制御用割り込み間引き用カウンタ	
	f4_speed_lpf_k	float32	速度 LPF パラメータ	
	f4_limit_speed_change	float32	速度指令最大増減幅	[rad/s]
	f4_ilim_v	float32	速度 PI 制御積分項リミット 値	[V]
	u1 flg wait stop	uint8	 モータ回転停止待ちフラグ	
	u2 cnt wait stop	uint16	モータ回転停止検出カウンタ	
<u> </u>		1	_ , _ , _ , _ , _ , _ , _ , _ , _ , _ ,	

表 3-18 構造体一覧 [2/3]

	変数名	型	内容	備考
MTR_ST_HALL	f4_iu_ad	float32	U 相電流 A/D 変換値	[A]
_120	f4_iv_ad	float32	V 相電流 A/D 変換値	[A]
	f4_iw_ad	float32	W 相電流 A/D 変換値	[A]
	f4_offset_iu	float32	U 相電流オフセット値	[A]
	f4_offset_iv	float32	V 相電流オフセット値	[A]
	f4_offset_iw	float32	W 相電流オフセット値	[A]
	f4_sum_iu_ad	float32	全平均用データ積み上げバッファ	
	f4_sum_iv_ad	float32	全平均用データ積み上げバッファ	
	f4_sum_iw_ad	float32	全平均用データ積み上げバッファ	
	u2_offset_calc_time	uint16	オフセット値計算カウント回数	設定値 × 50[µs]
	f4_inv_offset_calc	float32	全平均計算用データ	offset_calc_time の逆数
	u1_flag_offset_calc	uint8	電流オフセット値計算フラグ	0:計算開始
				1:計算終了
	u2_cnt_adjust	uint16	オフセット計算用カウンタ	
	u1_v_pattern	uint8	通電パターン	
	u1_flag_speed_ref	uint8	速度設定管理	
	u1_flag_voltage_ref	uint8	電圧設定管理	
	u1_direction	uint8	回転方向	CW: 0
				CCW : 1
	u2_cnt_timeout	uint16	停止判定時間計測カウンタ	
	u2_hall_timer_cnt	uint16	フリーランタイマカウント値	
	u2_pre_hall_timer_cnt	uint16	前回のフリーランタイマカウント値	
	s4_timer_cnt_ave	int32	速度計測タイマカウント平均値	
	u2_timer_cnt_buf[6]	uint16	速度計測タイマカウントバッファ	
	u2_timer_cnt_num	uint16	速度計測タイマカウントバッファ番 号	
	u1_hall_signal	uint8	ホールセンサ信号取り込みバッファ	
	u1_hall_wait_cnt	uint8	速度計測開始待ちホール割り込み数 設定	
	st_speed	MTR_PI_ CTRL	速度 PI 制御用構造体	
	st_motor	MTR_PA RAMETE R	モータ依存パラメータ構造体	
	f4_rpm_rad	float32	[rpm]→[rad/s]変換係数	2π/60*(POLE PAIRS)

表 3-19 構造体一覧 [3/3]

	メンバ名	型	内容	備考
MTR_PI_CTRL	f4_err	float32	偏差	
	f4_kp	float32	PI 制御比例項ゲイン	
	f4_ki	float32	PI 制御積分項ゲイン	
	f4_refi	float32	PI 制御積分項出力値	
	f4_ilimit	float32	PI 制御積分項リミット値	
MTR_PARAMETER	u2_mtr_p	uint16	モータの極対数	
	f4_mtr_r	float32	抵抗	[Ω]
	f4_mtr_ld	float32	d 軸インダクタンス	[H]
	f4_mtr_lq	float32	q 軸インダクタンス	[H]
	f4_mtr_m	float32	磁束	[Wb]
MTR_ICS_INPUT	s2_ref_speed	int16	速度指令値	機械角 [rpm]
	s2_direction	int16	回転方向	0 : CW
				1 : CCW
	f4_kp_speed	float32	速度 PI 制御比例項ゲイン	
	f4_ki_speed	float32	速度 PI 制御積分項ゲイン	
	f4_speed_lpf_k	float32	速度 LPF パラメータ	
	u2_mtr_p	uint16	モータの極対数	
	f4_limit_speed_change	float32	速度指令最大変更幅	[rad/s]
	f4_offset_calc_time	float32	オフセット値計算カウント回数	
	f4_start_refv	float32	始動時電圧設定	[V]
	u1_hall_wait_cnt	uint8	速度計測開始待ちホール割り込み数設定	

3.5 ホールセンサ利用 120 度通電制御ソフトマクロ定義

本制御プログラムで使用するマクロ定義一覧を次に示します。

表 3-20 "motor_parameter.h"マクロ定義一覧

ファイル名	マクロ名	定義値	備考
motor_parameter.h	MP_POLE_PAIRS	2	極対数
	MP_MAGNETIC_FLUX	0.02159f	磁束 [Wb]
	MP_RESISTANCE	6.447f	抵抗 [Ω]
	MP_D_INDUCTANCE	0.0045f	d 軸インダクタンス [H]
	MP_Q_INDUCTANCE	0.0045f	q 軸インダクタンス [H]
	MP_NOMINAL_CURRENT_RMS	0.42f	定格電流 [A(rms)]

表 3-21 "control_parameter.h"マクロ定義一覧

ファイル名	マクロ名	定義値	備考
control_parameter.h	CP_OFFSET_CALC_TIME	512	オフセット値計測回数パラメータ
	CP_START_REF_V	5.8f	始動時電圧規定値
	CP_MAX_SPEED_RPM	2650	回転速度指令最大値(機械角)[rpm]
	CP_MIN_SPEED_RPM	550	回転速度指令最小値(機械角)[rpm]
	CP_LIMIT_SPEED_CHANGE	0.2f	スタートモード時の速度最大変更幅
			[rad/s]
	CP_SPEED_PI_KP	0.02f	速度 PI 比例ゲイン
	CP_SPEED_PI_KI	0.0005f	速度 PI 積分ゲイン
	CP_SPEED_LPF_K	1.0f	速度用 LPF パラメータ
	MTR_FIRST60	1	60 度非相補パターン選択オプション
			(default)
	MTR_FIRST60_COMP	0	60 度相補パターン選択オプション

表 3-22 "main.h"マクロ定義一覧

ファイル名	マクロ名	2-22 IIIaIII.II マクロ足報 見 定義値	備考
main.h	ICS_UI	0	UI を Analyzer にセット
IIIaiii.ii	BOARD UI	1	UI をボードにセット
	M CW	0	
			ユーザ回転方向設定値:CW
	M_CCW	1	ユーザ回転方向設定値:CCW
	OFFSET_CALC_TIME	CP_OFFSET_CALC_TIME	オフセット値 LPF パラメータ
	START_REF_V	CP_START_REF_V	始動時電圧規定值[V]
	MAX_SPEED	CP_MAX_SPEED_RPM	回転速度指令最大値(機械角) [rpm]
	MIN_SPEED	CP_MIN_SPEED_RPM	回転速度指令最小値(機械角) [rpm]
	LIMIT_SPEED_CHANG E	CP_LIMIT_SPEED_CHANG E	スタートモード時の速度最大変更 幅[rad/s]
	MARGIN_SPEED	50.0f	停止用回転速度指令最小値作成用 定数(機械角)[rpm]
	MARGIN_MIN_SPEED	MIN_SPEED - MARGIN_SPEED	モータ停止用回転速度指令最小値 (機械角)[rpm]
	SPEED_PI_KP	CP_SPEED_PI_KP	速度 PI 比例ゲイン
	SPEED_PI_KI	CP_SPEED_PI_KI	速度 PI 積分ゲイン
	SPEED_LPF_K	CP_SPEED_LPF_K	速度 LPF パラメータ
	SW_ON	0	ハードウェア SW "Low"アクティ ブ
	SW_OFF	1	ハードウェア SW "High"インアク ティブ
	CHATTERING_CNT	10	チャタリング除去
	VR1_SCALING	(MAX_SPEED + 50.0f) / 2048	速度指令値作成用定数
	ADJUST_OFFSET	0x7FF	速度指令値オフセット調整用定数
	POLE_PAIR	MP_POLE_PAIRS	極対数
	REQ_CLR	0	VR1 停止指令フラグクリア
	REQ_SET	1	VR1 停止指令フラグセット
	ICS_INT_LEVEL	6	ツール用割り込みレベル設定
	ICS_BRR	4	ツール用ビットレートレジスタ選 択
	ICS_INT_MODE	1	ツール用割り込みモード設定

表 3-23 "mtr_ctrl_rx23t_mrssk.h"マクロ定義一覧

ファイル名	マクロ名	定義値	備考
mtr_ctrl_rx23t_mrssk.h	MTR_PWM_TIMER_FREQ	40.0f	PWM タイマカウント周波数 [MHz]
	MTR_CARRIER_FREQ	20.0f	- キャリア周波数 [kHz]
	MTR_DEADTIME	2	デッドタイム [μs]
	MTR_DEADTIME_SET	(uint16)(MTR_DEADTIME * MTR_PWM_TIMER_FREQ)	デッドタイム設定値
	MTR_AD_FREQ	40.0f	A/D コンバータ動作周波数 [MHz]
	MTR AD SAMPLING CYCLE	47.0f	[MI 12] A/D 変換サイクル数
	MTR_AD_SAMPLING_TIME	MTR_AD_SAMPLING_CYCLE / MTR_AD_FREQ	A/D サンプリング時間 [µs]
	MTR_AD_TIME_SET	(uint16)(MTR_PWM_TIMER_FRE Q*MTR_AD_SAMPLING_TIME)	A/D サンプリング時間カウ ント値
	MTR_CARRIER_SET	(uint16)((MTR_PWM_TIMER_FRE Q * 1000 / MTR_CARRIER_FREQ / 2)+ MTR_DEADTIME_SET)	キャリア設定値
	MTR_HALF_CARRIER_SET	(uint16)(MTR_CARRIER_SET / 2)	キャリア設定値(中間値)
	MTR_NDT_CARRIER_SET	(uint16)(MTR_CARRIER_SET - MTR_DEADTIME_SET)	キャリア周波数からデット タイムを引いた値
	MTR_PORT_HALL_U	PORT9.PODR.BIT.B3	ホールセンサ信号U入力
	MTR PORT HALL V	PORT9.PODR.BIT.B4	ホールセンサ信号 V 入力
	MTR PORT HALL W	PORTA.PODR.BIT.B2	ホールセンサ信号 W 入力
	MTR_PORT_UP	PORT7.PODR.BIT.B1	U相(正相)出力ポート
	MTR PORT UN	PORT7.PODR.BIT.B4	U相(逆相)出力ポート
	MTR PORT VP	PORT7.PODR.BIT.B2	V相(正相)出力ポート
	MTR PORT VN	PORT7.PODR.BIT.B5	V相(逆相)出力ポート
	MTR_PORT_WP	PORT7.PODR.BIT.B3	W相(正相)出力ポート
	MTR_PORT_WN	PORT7.PODR.BIT.B6	W相(逆相)出力ポート
	MTR_PORT_SW1	PORT9.PIDR.BIT.B1	SW1 入力ポート
	MTR_PORT_SW2	PORT9.PIDR.BIT.B2	SW2 入力ポート
	MTR_PORT_LED1	PORT0.PODR.BIT.B0	LED1 出力ポート
	MTR_PORT_LED2	PORT0.PODR.BIT.B1	LED2 出力ポート
	MTR_PORT_LED3	PORT3.PODR.BIT.B1	LED3 出力ポート
	MTR_LED_ON	0	LED 発光"Low"アクティブ
	MTR_LED_OFF	1	
	MTR_INPUT_V	24	インバータ直流入力電圧
	MTR_MCU_ON_V	MTR_INPUT_V * 0.8f	母線電圧(VDC)安定電圧
	MTR_ADC_OFFSET	0x7FF	A/D オフセット
	MTR_CURRENT_SCALING	20.0f/4095.0f	電流 A/D 変換值分解能
	MTR_VDC_SCALING	111.0f/4095.0f	インバータ母線電圧 A/D 変 換値分解能
	MTR_OVERCURRENT_MARGIN_MULT	1.5f	過電流エラー判定値算出用 定数
	MTR_OVERCURRENT_LIMIT	MP_NOMINAL_CURRENT_RMS* MTR_SQRT_2* MTR_OVERCURRENT_MARGIN MULT	過電流エラー判定値 [A]
	MTR_OVERVOLTAGE_LIMIT	28.0f	過電圧エラー判定値 [V]
	MTR_UNDERVOLTAGE_LIMIT	14.0f	低電圧エラー判定値 [V]
	MTR_SPEED_TCNT	CMT1.CMCNT	速度計測用タイマカウントレジスタ

表 3-24 "mtr_spm_hall_120.h"マクロ定義一覧 [1/4]

ファイル名	マクロ名	定義値	備考
mtr_spm_hall_120.h	MTR_INT_DECIMATION	0	割り込み間引き回数
	MTR_POLE_PAIRS	MP_POLE_PAIRS	極対数
	MTR_TWOPI	2 * 3.14159265f	2π
	MTR_SQRT_2	1.41421356	√2
	MTR_RPM_RAD	MTR_TWOPI / 60 *	[rpm]→[rad/s]単位変換用定
		MTR_POLE_PAIRS	数
	MTR_SPEED_LIMIT_RPM	3000	速度リミット値(機械角)
			[rpm]
	MTR_SPEED_LIMIT	MTR_SPEED_LIMIT_RPM *	速度リミット値(電気角)
		MTR_RPM_RAD	[rad/s]
	MTR_SPEED_PI_DECIMATION	0	速度 PI 制御用割り込み間引
			き数
	MTR_SPEED_PI_KP	CP_SPEED_PI_KP	比例ゲイン
	MTR_SPEED_PI_KI	CP_SPEED_PI_KI	積分ゲイン
	MTR_SPEED_PI_I_LIMIT_V	24.0f	電圧 PI 制御積分項リミット
			值 [V]
	MTR_SPEED_CALC_BASE	MTR_TWOPI * 5000000	速度計測用定数
	MTR_SPEED_LPF_K	CP_SPEED_LPF_K	速度用 LPF パラメータ
	MTR_LIMIT_SPEED_CHANGE	CP_LIMIT_SPEED_CHANGE	指令速度最大変更幅[rad/s]
	MTR_MAX_DRIVE_V	20.0f	最大指令電圧 [V]
	MTR_MIN_DRIVE_V	3.0f	最小指令電圧 [V]
	MTR_START_REFV	CP_START_REF_V	始動時規定電圧[V]
	MTR_TIMEOUT_CNT	200	割り込みエラー判定時間
			カウント値 [ms]
	MTR_STOP_WAIT_CNT	1000	停止判別規定値 (*50[µs])
	MTR_WAIT_SPEED_CALC	12	速度計測開始待ちホール
			割り込み数規定値

表 3-25 "mtr_spm_hall_120.h"マクロ定義一覧 [2/4]

ファイル名	マクロ名	定義値	備考
mtr_spm_hall_120.h	MTR_PATTERN_CW_V_U	2	CW ホールセンサパターン
	MTR_PATTERN_CW_W_U	3	
	MTR_PATTERN_CW_W_V	1	
	MTR_PATTERN_CW_U_V	5	
	MTR_PATTERN_CW_U_W	4	
	MTR_PATTERN_CW_V_W	6	
	MTR_PATTERN_CCW_V_U	5	CCW ホールセンサパターン
	MTR_PATTERN_CCW_V_W	1	
	MTR_PATTERN_CCW_U_W	3	
	MTR_PATTERN_CCW_U_V	2	
	MTR_PATTERN_CCW_W_V	6	
	MTR_PATTERN_CCW_W_U	4	
	MTR_PATTERN_ERROR	0	通電パターン
	MTR_UP_PWM_VN_ON	1	
	MTR_UP_PWM_WN_ON	2	
	MTR_VP_PWM_UN_ON	3	
	MTR_VP_PWM_WN_ON	4	
	MTR_WP_PWM_UN_ON	5	
	MTR_WP_PWM_VN_ON	6	
	MTR_UP_ON_VN_PWM	7	
	MTR_UP_ON_WN_PWM	8	
	MTR_VP_ON_UN_PWM	9	
	MTR_VP_ON_WN_PWM	10	
	MTR_WP_ON_UN_PWM	11	
	MTR_WP_ON_VN_PWM	12	
	MTR_U_PWM_VN_ON	13	
	MTR_U_PWM_WN_ON	14	
	MTR_V_PWM_UN_ON	15	
	MTR_V_PWM_WN_ON	16	
	MTR_W_PWM_UN_ON	17	
	MTR_W_PWM_VN_ON	18	
	MTR_UP_ON_V_PWM	19	
	MTR_UP_ON_W_PWM	20	
	MTR_VP_ON_U_PWM	21	
	MTR_VP_ON_W_PWM	22	
	MTR_WP_ON_U_PWM	23	
	MTR_WP_ON_V_PWM	24	
	MTR_OFFSET_CALC_TIME	CP_OFFSET_CALC_TIME	オフセット値計算カウント回数

表 3-26 "mtr_spm_hall_120.h"マクロ定義一覧 [3/4]

ファイル名	マクロ名	定義値	備考
mtr_spm_hall_120.h	MTR_CW	0	回転方向
	MTR_CCW	1	
	MTR_FLG_CLR	0	フラグ管理
	MTR_FLG_SET	1	
	MTR_ICS_DECIMATION	4	ツール用関数呼び出し間引き数
	MTR_V_ZERO_CONST	0	出力電圧 0
	MTR_V_UP	1	出力電圧上昇モード(未使用)
	MTR_V_CONST	2	出力電圧一定モード
	MTR_V_OPENLOOP	3	オープンループ電圧設定モード
			(未使用)
	MTR_V_PI_OUTPUT	4	PI 出力電圧設定モード
	MTR_SPEED_ZERO_CONS T	0	速度 0
	MTR_SPEED_OPENLOOP_ 1	1	オープンループ 1 速度(未使用)
	MTR_SPEED_OPENLOOP_ 2	2	オープンループ2速度(未使用)
	MTR_SPEED_OPENLOOP_ 3	3	オープンループ 3 速度(未使用)
	MTR_SPEED_CHANGE	4	速度可変
	MTR_ID_A	0	Motor ID A
	MTR_ID_B	1	Motor ID B
	MTR_MODE_INACTIVE	0x00	非アクティブモード
	MTR_MODE_ACTIVE	0x01	アクティブモード
	MTR_MODE_ERROR	0x02	エラーモード
	MTR SIZE STATE	3	定義済み状態数
	MTR EVENT INACTIVE	0x00	非アクティブイベント
	MTR EVENT ACTIVE	0x01	アクティブイベント
	MTR EVENT ERROR	0x02	エラーイベント
	MTR EVENT RESET	0x03	イベントリセット
	MTR SIZE EVENT	4	定義済みイベント数
	MTR MODE INIT	0x00	イニシャライズモード
	MTR MODE BOOT	0x01	ブートモード
	MTR MODE DRIVE	0x02	ドライブモード
	MTR MODE ANALYSIS	0x03	アナリシスモード
	MTR MODE TUNE	0x04	チューンモード
	MTR_SENSOR_LESS	0x01	センサレス
	MTR SENSOR HALL	0x02	ホールセンサ
	MTR_SENSOR_ENCD	0x04	エンコーダ
	MTR SENSOR RESO	0x08	レゾルバ
	MTR_METHOD_FOC	0x00	ベクトル制御
	MTR METHOD 180	0x01	180 度通電制御
	MTR METHOD WIDE	0x02	広角通電制御
	MTR METHOD 120	0x03	120 度通電制御
	MTR_CONTROL_CURRENT	0x01	電流制御
	MTR CONTROL SPEED	0x02	速度制御
	MTR CONTROL POSITION	0x04	位置制御
	MTR CONTROL TORQUE	0x08	トルク制御
	I WITH _OOK INOL_TORKOL	0,000	1 1 2 1 11/2 led.

表 3-27 "mtr_spm_hall_120.h"マクロ定義一覧 [4/4]

ファイル名	マクロ名	定義値	備考
mtr_spm_hall_120.h	MTR_ERROR_NONE	0x00	エラ一無し
	MTR_ERROR_OVER_CURRENT	0x01	過電流エラー
	MTR_ERROR_OVER_VOLTAGE	0x02	過電圧エラー
	MTR_ERROR_OVER_SPEED	0x04	過速度エラー
	MTR_ERROR_HALL_TIMEOUT	0x08	ホールタイムアウトエラー
	MTR_ERROR_BEMF_TIMEOUT	0x10	誘起電圧タイムアウトエラー
	MTR_ERROR_HALL_PATTERN	0x20	ホールパターンエラー
	MTR_ERROR_BEMF_PATTERN	0x40	誘起電圧パターンエラー
	MTR_ERROR_UNDER_VOLTAGE	0x80	低電圧エラー
	MTR ERROR UNKNOWN	0xff	未定義エラー

3.6 制御フロー (フローチャート)

3.6.1 メイン処理

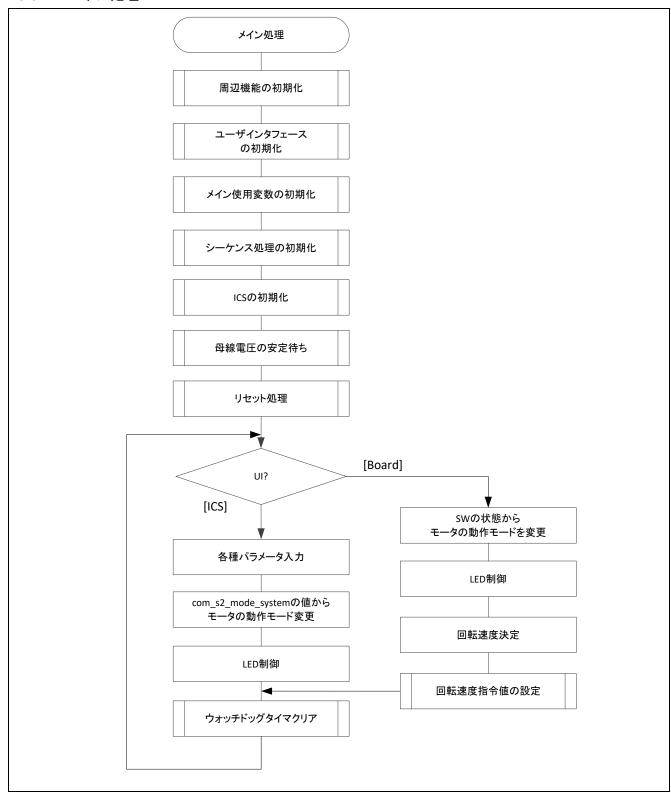


図 3-7 メイン処理フローチャート

3.6.2 キャリア周期割り込み処理

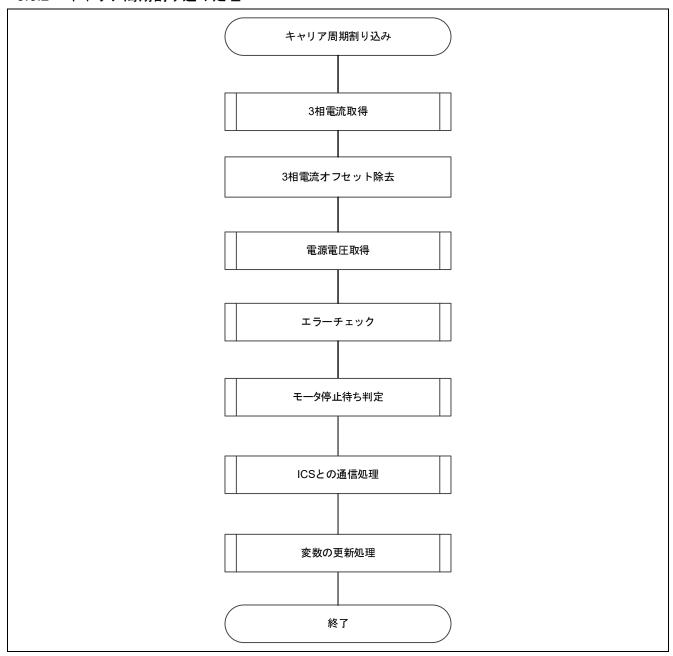


図 3-8 キャリア周期割り込み処理フローチャート (ホールセンサ利用 120 度制御時)

3.6.4 1 [ms]割り込み処理

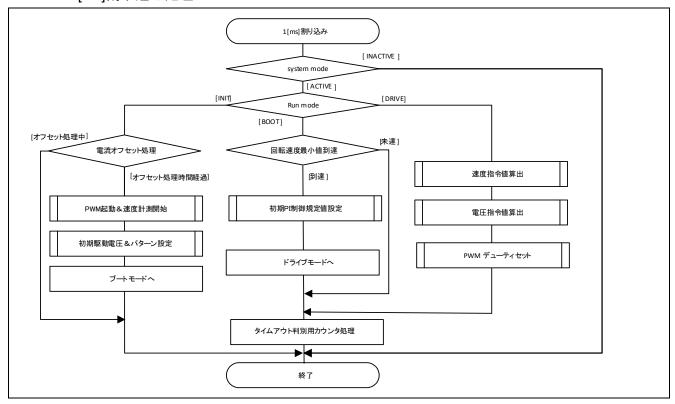


図 3-9 1 [ms]割り込み処理フローチャート

3.6.5 過電流割り込み処理

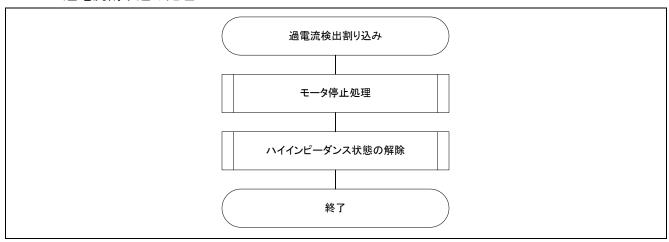


図 3-10 過電流検出割り込み処理フローチャート

3.6.6 ホールセンサ信号割り込み処理(共通部)

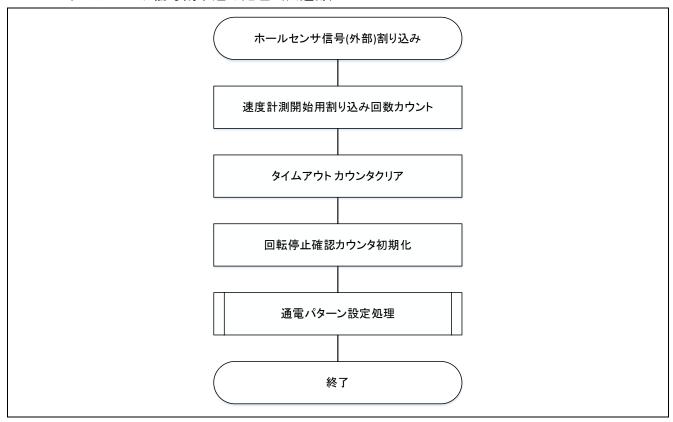


図 3-11 ホールセンサ信号割り込み処理(共通部)フローチャート

4. モータ制御開発支援ツール「Renesas Motor Workbench」

4.1 概要

本アプリケーションノート対象サンプルプログラムでは、モータ制御開発支援ツール「Renesas Motor Workbench」をユーザインタフェース(回転/停止指令、回転速度指令等)として使用します。使用方法などの詳細は「Renesas Motor Workbench ユーザーズマニュアル」を参照してください。

モータ制御開発支援ツール「Renesas Motor Workbench」は弊社 WEB サイトより入手してください。

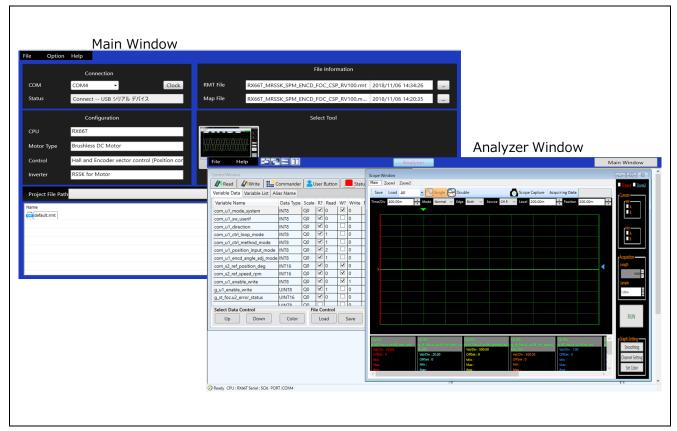


図 4-1 Renesas Motor Workbench 外観

モータ制御開発支援ツール「Renesas Motor Workbench」の使い方

- ① ツールアイコン Support Tool をクリックしツールを起動する。
- ② Main Panel の MENU バーから、[RMTFile] → [Open RMT File(O)]を選択。 サンプルソフトフォルダの"ics"フォルダ内にある RMT ファイルを読み込む。
- ③ "Connection"の COM で接続されたキットの COM を選択する。
- ④ Select Tool 右上の 'Analyzer'ボタンをクリックし、Analyzer 機能画面を表示する。
- ⑤ "4.3. Analyzer 機能操作例"を元にモータを駆動させる。

4.2 Analyzer 機能用変数一覧

Analyzer ユーザインタフェース使用時の入力用変数一覧を表 4-1 に示します。なお、これらの変数への入力値は com_s2_enable_write に g_s2_enable_write と同じ値を書込んだ場合に反映先変数へ反映されます。 ただし、(*)が付けられた変数は com_s2_enable_write に依存しません。

また、各構造体変数に対応する表示変数"ics_*"が用意されています。

表 4-1 Analyzer 機能入力用変数一覧

変数名	型	内容	備考 (【】:反映先変数)
com_s2_sw_ui (*)	int16	ユーザインタフェーススイッチ	【g_s2_sw_ui】
		0:Analyzer ユーザインタフェース使	
		用(デフォルト)	
		1:ボードユーザインタフェース使用	
com_s2_mode_system(*)	int16	ステート管理	【g_s2_mode_system】
		0:ストップモード	
		1: ランモード	
		3: リセット	
com_s2_direction	int16	回転方向	[st_g.s2_direction]
		0 : CW	
		1 : CCW	
com_s2_ref_speed_rpm	int16	速度指令値(機械角) [rpm]	[st_g.f4_ref_speed_rad]
com_f4_kp_speed	float32	速度 PI 制御比例項ゲイン	[st_g.f4_kp_speed]
com_f4_ki_speed	float32	速度 PI 制御積分項ゲイン	[st_g.f4_ki_speed]
com_f4_speed_lpf_k	float32	速度 LPF パラメータ	[st_g.f4_speed_lpf_k]
com_f4_limit_speed_change	float32	指令速度最大変更幅[rad/s]	[st_g.f4_limit_speed_change]
com_f4_offset_calc_time	float32	オフセット値計算カウント回数	[st_g.f4_offset_calc_time]
com_f4_start_refv	float32	始動時規定電圧	【st_g.f4_start_refv】
com_u2_mtr_p	uint16	モータ極対数	[st_g.u2_mtr_p]
com_u1_hall_wait_cnt	uint8	速度計測開始待ちホール割り込み数	[st_g.u1_hall_wait_cnt]
com_s2_enable_write	int16	変数書き換え許可	

4.3 Analyzer 機能操作例

Analyzer 機能を使用し、モータを操作する例を以下に示します。操作は、"Control Window"で行います。 "Control Window"の詳細は、「Renesas Motor Workbench ユーザーズマニュアル」を参照してください。

モータを回転させる

- ① "com_s2_mode_system"、"com_s2_ref_speed_rpm"、"com_s2_enable_write"の[W?]欄に"チェック" が入っていることを確認する。
- ② 指令回転速度を"com s2 ref speed rpm"の[Write]欄に入力する。
- ③ "Write"ボタンを押す。
- ④ "Read"ボタンを押して現在の"com_s2_ref_speed_rpm"、"g_s2_enable_write"の[Read]欄を確認する。
- ⑤ MCU 内の変数値へ反映させるため、"com_s2_enable_write"に④で確認した"0" or "1"と同じ値を入 力する。
- ⑥ "com_s2_mode_system"の[Write]欄に"1"を入力する。
- ⑦ "Write"ボタンを押す。

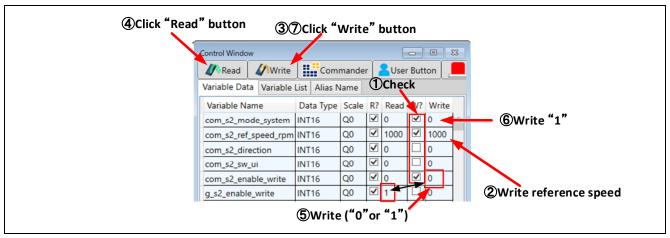


図 4-2 モータ回転の手順

- モータを停止させる
 - ① "com_s2_mode_system"の[Write]欄に"0"を入力する。
 - ② "Write"ボタンを押す。

図 4-3 モータ停止の手順

- 止まってしまった (エラー) 場合の処理
 - ① "com_s2_mode_system"の[Write]欄に"3"を入力する。
 - ② "Write"ボタンを押す。

図 4-4 エラー解除の手順

ホームページとサポート窓口

ルネサス エレクトロニクスホームページ

http://japan.renesas.com/

お問合せ先

http://japan.renesas.com/contact/

すべての商標および登録商標は、それぞれの所有者に帰属します。

RENESAS

改訂記録

		改訂内容		
Rev.	発行日	ページ	ポイント	
1.00	Jun.19.20	_	新規発行	

製品ご使用上の注意事項

ここでは、マイコン製品全体に適用する「使用上の注意事項」について説明します。個別の使用上の注意事項については、本ドキュメントおよびテクニカルアップデートを参照してください。

1. 静電気対策

CMOS 製品の取り扱いの際は静電気防止を心がけてください。CMOS 製品は強い静電気によってゲート絶縁破壊を生じることがあります。運搬や保存の際には、当社が出荷梱包に使用している導電性のトレーやマガジンケース、導電性の緩衝材、金属ケースなどを利用し、組み立て工程にはアースを施してください。プラスチック板上に放置したり、端子を触ったりしないでください。また、CMOS 製品を実装したボードについても同様の扱いをしてください。

2. 電源投入時の処置

電源投入時は、製品の状態は不定です。電源投入時には、LSIの内部回路の状態は不確定であり、レジスタの設定や各端子の状態は不定です。外部 リセット端子でリセットする製品の場合、電源投入からリセットが有効になるまでの期間、端子の状態は保証できません。同様に、内蔵パワーオン リセット機能を使用してリセットする製品の場合、電源投入からリセットのかかる一定電圧に達するまでの期間、端子の状態は保証できません。

3 電源オフ時における入力信号

当該製品の電源がオフ状態のときに、入力信号や入出力プルアップ電源を入れないでください。入力信号や入出力プルアップ電源からの電流注入により、誤動作を引き起こしたり、異常電流が流れ内部素子を劣化させたりする場合があります。資料中に「電源オフ時における入力信号」についての記載のある製品は、その内容を守ってください。

4. 未使用端子の処理

未使用端子は、「未使用端子の処理」に従って処理してください。CMOS製品の入力端子のインピーダンスは、一般に、ハイインピーダンスとなっています。未使用端子を開放状態で動作させると、誘導現象により、LSI周辺のノイズが印加され、LSI内部で貫通電流が流れたり、入力信号と認識されて誤動作を起こす恐れがあります。

5. クロックについて

リセット時は、クロックが安定した後、リセットを解除してください。プログラム実行中のクロック切り替え時は、切り替え先クロックが安定した後に切り替えてください。リセット時、外部発振子(または外部発振回路)を用いたクロックで動作を開始するシステムでは、クロックが十分安定した後、リセットを解除してください。また、プログラムの途中で外部発振子(または外部発振回路)を用いたクロックに切り替える場合は、切り替え先のクロックが十分安定してから切り替えてください。

6. 入力端子の印加波形

入力ノイズや反射波による波形歪みは誤動作の原因になりますので注意してください。CMOS 製品の入力がノイズなどに起因して、 V_{IL} (Max.)から V_{IH} (Min.)までの領域にとどまるような場合は、誤動作を引き起こす恐れがあります。入力レベルが固定の場合はもちろん、 V_{IL} (Max.)から V_{IH} (Min.)までの領域を通過する遷移期間中にチャタリングノイズなどが入らないように使用してください。

7. リザーブアドレス (予約領域) のアクセス禁止

リザーブアドレス (予約領域) のアクセスを禁止します。アドレス領域には、将来の拡張機能用に割り付けられている リザーブアドレス (予約領域) があります。これらのアドレスをアクセスしたときの動作については、保証できませんので、アクセスしないようにしてください。

8. 製品間の相違について

型名の異なる製品に変更する場合は、製品型名ごとにシステム評価試験を実施してください。同じグループのマイコンでも型名が違うと、フラッシュメモリ、レイアウトパターンの相違などにより、電気的特性の範囲で、特性値、動作マージン、ノイズ耐量、ノイズ幅射量などが異なる場合があります。型名が違う製品に変更する場合は、個々の製品ごとにシステム評価試験を実施してください。

ご注意書き

青仟を負いません。

- 1. 本資料に記載された回路、ソフトウェアおよびこれらに関連する情報は、半導体製品の動作例、応用例を説明するものです。お客様の機器・システムの設計において、回路、ソフトウェアおよびこれらに関連する情報を使用する場合には、お客様の責任において行ってください。これらの使用に起因して生じた損害(お客様または第三者いずれに生じた損害も含みます。以下同じです。)に関し、当社は、一切その責任を負いません。
- 2. 当社製品、本資料に記載された製品データ、図、表、プログラム、アルゴリズム、応用回路例等の情報の使用に起因して発生した第三者の特許権、 著作権その他の知的財産権に対する侵害またはこれらに関する紛争について、当社は、何らの保証を行うものではなく、また責任を負うものではあ りません。
- 3. 当社は、本資料に基づき当社または第三者の特許権、著作権その他の知的財産権を何ら許諾するものではありません。
- 4. 当社製品を、全部または一部を問わず、改造、改変、複製、リバースエンジニアリング、その他、不適切に使用しないでください。かかる改造、改変、複製、リバースエンジニアリング等により生じた損害に関し、当社は、一切その責任を負いません。
- 5. 当社は、当社製品の品質水準を「標準水準」および「高品質水準」に分類しており、各品質水準は、以下に示す用途に製品が使用されることを意図しております。

標準水準: コンピュータ、OA機器、通信機器、計測機器、AV機器、家電、工作機械、パーソナル機器、産業用ロボット等 高品質水準:輸送機器(自動車、電車、船舶等)、交通制御(信号)、大規模通信機器、金融端末基幹システム、各種安全制御装置等 当社製品は、データシート等により高信頼性、Harsh environment 向け製品と定義しているものを除き、直接生命・身体に危害を及ぼす可能性のあ る機器・システム(生命維持装置、人体に埋め込み使用するもの等)、もしくは多大な物的損害を発生させるおそれのある機器・システム(宇宙機 器と、海底中継器、原子力制御システム、航空機制御システム、プラント基幹システム、軍事機器等)に使用されることを意図しておらず、これら の用途に使用することは想定していません。たとえ、当社が想定していない用途に当社製品を使用したことにより損害が生じても、当社は一切その

- 6. 当社製品をご使用の際は、最新の製品情報(データシート、ユーザーズマニュアル、アプリケーションノート、信頼性ハンドブックに記載の「半導体デバイスの使用上の一般的な注意事項」等)をご確認の上、当社が指定する最大定格、動作電源電圧範囲、放熱特性、実装条件その他指定条件の範囲内でご使用ください。指定条件の範囲を超えて当社製品をご使用された場合の故障、誤動作の不具合および事故につきましては、当社は、一切その責任を負いません。
- 7. 当社は、当社製品の品質および信頼性の向上に努めていますが、半導体製品はある確率で故障が発生したり、使用条件によっては誤動作したりする場合があります。また、当社製品は、データシート等において高信頼性、Harsh environment 向け製品と定義しているものを除き、耐放射線設計を行っておりません。仮に当社製品の故障または誤動作が生じた場合であっても、人身事故、火災事故その他社会的損害等を生じさせないよう、お客様の責任において、冗長設計、延焼対策設計、誤動作防止設計等の安全設計およびエージング処理等、お客様の機器・システムとしての出荷保証を行ってください。特に、マイコンソフトウェアは、単独での検証は困難なため、お客様の機器・システムとしての安全検証をお客様の責任で行ってください。
- 8. 当社製品の環境適合性等の詳細につきましては、製品個別に必ず当社営業窓口までお問合せください。ご使用に際しては、特定の物質の含有・使用を規制する RoHS 指令等、適用される環境関連法令を十分調査のうえ、かかる法令に適合するようご使用ください。かかる法令を遵守しないことにより生じた損害に関して、当社は、一切その責任を負いません。
- 9. 当社製品および技術を国内外の法令および規則により製造・使用・販売を禁止されている機器・システムに使用することはできません。当社製品および技術を輸出、販売または移転等する場合は、「外国為替及び外国貿易法」その他日本国および適用される外国の輸出管理関連法規を遵守し、それらの定めるところに従い必要な手続きを行ってください。
- 10. お客様が当社製品を第三者に転売等される場合には、事前に当該第三者に対して、本ご注意書き記載の諸条件を通知する責任を負うものといたします。
- 11. 本資料の全部または一部を当社の文書による事前の承諾を得ることなく転載または複製することを禁じます。
- 12. 本資料に記載されている内容または当社製品についてご不明な点がございましたら、当社の営業担当者までお問合せください。
- 注 1. 本資料において使用されている「当社」とは、ルネサス エレクトロニクス株式会社およびルネサス エレクトロニクス株式会社が直接的、間接的 に支配する会社をいいます。
- 注 2. 本資料において使用されている「当社製品」とは、注1において定義された当社の開発、製造製品をいいます。

(Rev.4.0-1 2017.11)

本社所在地

〒135-0061 東京都江東区豊洲 3-2-24 (豊洲フォレシア)

www.renesas.com

商標について

ルネサスおよびルネサスロゴはルネサス エレクトロニクス株式会社の 商標です。すべての商標および登録商標は、それぞれの所有者に帰属 します。

お問合せ窓口

弊社の製品や技術、ドキュメントの最新情報、最寄の営業お問合せ窓口に関する情報などは、弊社ウェブサイトをご覧ください。

www.renesas.com/contact/