
 アプリケーションノート

R01AN6808JS0113 Rev.1.13 Page 1 of 52

Dec.26.25

RX ファミリ
RI3C モジュール Firmware Integration Technology

要旨
本アプリケーションノートでは、Firmware Integration Technology (FIT) を使用した Renesas I3C (Improved
Inter-Integrated Circuit) モジュールについて説明します。I3C 通信インタフェースを用いたデバイス間の通
信を行うには本モジュールが必要です。

対象デバイス
 RX26T グループ (RAM: 64K バイト製品)

本アプリケーションノートを他のマイコンへ適用する場合、そのマイコンの仕様にあわせて変更し、十分評

価してください。

対象コンパイラ
• Renesas Electronics C/C++ Compiler Package for RX Family
• GCC for Renesas RX
• IAR C/C++ Compiler for Renesas RX

各コンパイラの動作確認内容については「6.1 動作確認環境詳細」を参照してください。

RX ファミリ RI3C モジュール Firmware Integration Technology

R01AN6808JS0113 Rev.1.13 Page 2 of 52

Dec.26.25

Contents

1. 概要... 4
 Renesas I3C FIT モジュール ... 4
 API の概要 .. 4
 RI3C FIT モジュールの概要 ... 5
1.3.1 RI3C FIT モジュールの仕様.. 5
 RI3C モジュールの使用方法 .. 6
1.4.1 RI3C FIT モジュールを C++プロジェクト内で使用する方法 .. 6

2. API 情報 .. 7
 ハードウェアの要求 ... 7
 ソフトウェアの要求 ... 7
 サポートされているツールチェーン ... 7
 使用する割り込みベクタ ... 7
 ヘッダファイル .. 7
 整数型 .. 7
 コンパイル時の設定 ... 8
 コードサイズ.. 13
 引数 .. 14
 戻り値 .. 22
 コールバック関数 .. 23
 FIT モジュールの追加方法 ... 24
 for 文、while 文、do while 文について .. 25

3. API 関数 .. 26
R_RI3C_Open() ... 26
R_RI3C_Enable() .. 27
R_RI3C_DeviceCfgSet() .. 28
R_RI3C_ControllerDeviceTableSet() .. 30
R_RI3C_TargetStatusSet() .. 31
R_RI3C_DeviceSelect() ... 32
R_RI3C_DynamicAddressAssignmentStart() .. 33
R_RI3C_CommandSend() ... 34
R_RI3C_Write() ... 35
R_RI3C_Read() ... 36
R_RI3C_IbiWrite() ... 37
R_RI3C_IbiRead() ... 38
R_RI3C_Close() .. 39

4. 端子設定 ... 40

5. サンプルコード .. 41
 RI3C コントローラの基本例 .. 41
 RI3C ターゲットの基本例 .. 44

6. 付録... 46
 動作確認環境.. 46
 トラブルシューティング ... 49

RX ファミリ RI3C モジュール Firmware Integration Technology

R01AN6808JS0113 Rev.1.13 Page 3 of 52

Dec.26.25

7. 参考ドキュメント ... 50

テクニカルアップデートの対応について .. 51

改訂記録 ... 52

RX ファミリ RI3C モジュール Firmware Integration Technology

R01AN6808JS0113 Rev.1.13 Page 4 of 52

Dec.26.25

1. 概要
Firmware Integration Technology (FIT) を用いた Renesas I3C モジュール (RI3C FIT モジュール) は、コント
ローラとターゲットの間で RI3C を用いてデータを送受信するための手段を提供します。RI3C は MIPI I3C
に準拠しています。

制限事項

- 本モジュールは HDR (I3C High Data Rate) モードをサポートしていません。

 Renesas I3C FIT モジュール
本モジュールは API として、プロジェクトに組み込んで使用します。本モジュールの組み込み方について
は、「2.12 FIT モジュールの追加方法」を参照してください。

 API の概要
表 1.1 API 関数を示します。

表 1.1 API 関数一覧

関数 関数説明
R_RI3C_Open() この関数は RI3C インスタンスを設定します。
R_RI3C_Enable() この関数は RI3C デバイスを有効にします。
R_RI3C_DeviceCfgSet() この関数はデバイスのコンフィグレーションを行います。

R_RI3C_ControllerDeviceTableSet() この関数はコントローラデバイステーブルにエントリを設定
します。

R_RI3C_TargetStatusSet() この関数は、GETSTATUS コマンドが実行された際にコント
ローラに返すステータスを設定します。

R_RI3C_DeviceSelect() コントローラモードでは、この関数は次の送信先となるデバ
イスを選択します。

R_RI3C_DynamicAddressAsignmentStart() この関数はダイナミックアドレス割り当てプロセスを開始し
ます。

R_RI3C_CommandSend() この関数は、バス上のターゲットへブロードキャストコマン
ドまたはダイレクトコマンドを送信します。

R_RI3C_Write()

この関数は、転送時に使用するライトバッファを設定しま
す。コントローラモードでこの関数が実行されると転送が開
始します。転送完了時にこの関数はストップコンディション
またはリスタートコンディションを送信します。

R_RI3C_Read()

この関数は、転送時に使用するリードバッファを設定しま
す。コントローラモードでこの関数が実行されると転送が開
始します。転送完了時にこの関数はストップコンディション
またはリスタートコンディションを送信します。

R_RI3C_IbiWrite() この関数は IBI 書き込み動作を開始します。

R_RI3C_IbiRead() この関数は、受信した IBI データを格納するためのリードバッ
ファを設定します。

R_RI3C_Close() この関数は RI3C インスタンスをクローズします。

RX ファミリ RI3C モジュール Firmware Integration Technology

R01AN6808JS0113 Rev.1.13 Page 5 of 52

Dec.26.25

 RI3C FIT モジュールの概要
1.3.1 RI3C FIT モジュールの仕様
1. 本モジュールは、コントローラの送信と受信、およびターゲットの送信と受信をサポートします。

2. 本モジュールは、FIFO 転送の SDR (I3C Single Data Rate) モードをサポートします。

3. RI3C は、データとコマンドが書き込まれると自律的に転送を開始します。

4. 次の状況で割り込みが発生します。1) レスポンスキューフル (RESPI)、2) コマンドキューエンプティ
(CMDI)、3) IBI キューエンプティ／フル (IBII)、4) 受信ステータスキューフル (RCVI)、5) 受信データフ
ル (RXI)、6) 送信データエンプティ (TXI)、7) 通信エラー／通信イベント (EEI)

5. コントローラは 7 ビットアドレスにより複数のターゲットと通信できます。

RX ファミリ RI3C モジュール Firmware Integration Technology

R01AN6808JS0113 Rev.1.13 Page 6 of 52

Dec.26.25

 RI3C モジュールの使用方法
1.4.1 RI3C FIT モジュールを C++プロジェクト内で使用する方法
C++プロジェクトでは、RI3C FIT モジュールのインタフェースヘッダファイルを extern “C”の宣言に追加

してください。

extern “C”
{
#include “r_smc_entry.h”
#include “r_ri3c_rx_if.h”
}

RX ファミリ RI3C モジュール Firmware Integration Technology

R01AN6808JS0113 Rev.1.13 Page 7 of 52

Dec.26.25

2. API 情報
本モジュールの API はルネサスの API の命名基準に従っています。

 ハードウェアの要求
ご使用になる MCU が以下の機能をサポートしている必要があります。

- RI3C モジュール

 ソフトウェアの要求
このドライバは以下のパッケージに依存しています。

- ボードサポートパッケージモジュール (r_bsp) Rev.7.30 以上

 サポートされているツールチェーン
このドライバは下記ツールチェーンで動作確認を行っています。詳細は、「6.1 動作確認環境詳細」を参照
ください。

 使用する割り込みベクタ
R_RI3C_Enable 関数を実行したとき、In-band 割り込みが有効になります。

表 2.1 に RI3C FIT モジュールが使用する割り込みベクタを示します。

表 2.1 使用する割り込みベクタ一覧

デバイス 割り込みベクタ
RX26T RESPI 割り込み（ベクタ番号: 40）

CMDI 割り込み（ベクタ番号: 41）
IBII 割り込み（ベクタ番号: 42）
RCVI 割り込み（ベクタ番号: 43）
RXI 割り込み（ベクタ番号: 118）
TXI 割り込み（ベクタ番号: 119）
EEI 割り込み（ベクタ番号: 113）

 ヘッダファイル
すべての API 呼び出しと使用されるインタフェース定義は r_ri3c_rx_if.h と r_ri3c_rx_api.h に記載していま
す。

 整数型
このプロジェクトは ANSI C99 を使用しています。これらの型は stdint.h で定義されています。

RX ファミリ RI3C モジュール Firmware Integration Technology

R01AN6808JS0113 Rev.1.13 Page 8 of 52

Dec.26.25

 コンパイル時の設定
本モジュールのコンフィギュレーションオプションの設定は、r_ri3c_rx_config.h で行います。オプション名
および設定値に関する説明を、下表に示します。

Configuration options in r_ri3c_rx_config.h

RI3C_CFG_PARAM_CHECKING_ENABLE
※デフォルト値は BSP_CFG_PARAM_CHECKING_ENABLE

APIパラメータチェック処理のコードを挿入す
るかどうかを指定します。
パラメータチェック処理を行うには1を設定し
ます。0を設定するとパラメータチェック処理
は除外されます。
このオプションの使用には注意が必要です。

RI3C_CFG_UNALIGNED_SUPPORT
※デフォルト値は 1

本デバイスでアラインされていないバッファ
をサポートするかどうかを選択します。
1：サポートする（システムデフォルト）
0：サポートしない

RI3C_CFG_DEVICE_TYPE
※デフォルト値は RI3C_DEVICE_TYPE_TARGET

I3C バス上で使用する I3C インスタンスの役割
を指定します。
RI3C_DEVICE_TYPE_PRIMARY_CONTROLLER
RI3C_DEVICE_TYPE_TARGET（システムデフォル
ト）

RI3C_CFG_CONTROLLER_SUPPORT
※デフォルト値は 1

本デバイスのコントローラモードを有効にす
るかどうかを選択します。
1：有効（システムデフォルト）
0：無効
コントローラモードのサポートだけが必要で
ターゲットモードのサポートが不要な場合
は、ターゲットモードのサポートを無効に
し、このオプションを省略してください（コ
ードサイズが小さくなります）。

RI3C_CFG_TARGET_SUPPORT
※デフォルト値は 1

本デバイスのターゲットモードを有効にする
かどうかを選択します。
1：有効（システムデフォルト）
0：無効
ターゲットモードのサポートだけが必要でコン
トローラモードのサポートが不要な場合は、
コントローラモードのサポートを無効にし、
このオプションを省略してください（コード
サイズが小さくなります）。

RI3C_CFG_PCLKA_REF_VALUE
※デフォルト値は 48000000

周辺クロック A の基準値を指定します。
48 MHz（システムデフォルト）
64 MHz
FIT RI3C モジュールは 48 MHz と 64 MHz の
どちらかで正常に動作します。

RI3C_CFG_STANDARD_OPEN_DRAIN_LOGIC_HIGH_PERIOD
※デフォルト値は 167

標準モードでオープンドレイン転送を行うと
きの SCL のロジックが High になる期間を指定
します。

RI3C_CFG_STANDARD_OPEN_DRAIN_FREQUENCY
※デフォルト値は 1000000

標準モードでオープンドレイン転送を行うと
きの SCL の周波数を指定します。

RI3C_CFG_STANDARD_PUSH_PULL_LOGIC_HIGH_PERIOD
※デフォルト値は 167

標準モードでプッシュプル転送を行うときの
SCL のロジックが High になる期間を指定しま
す。

RI3C_CFG_STANDARD_PUSH_PULL_FREQUENCY
※デフォルト値は 3400000

標準モードでプッシュプル転送を行うときの
SCL の周波数を指定します。

RX ファミリ RI3C モジュール Firmware Integration Technology

R01AN6808JS0113 Rev.1.13 Page 9 of 52

Dec.26.25

Configuration options in r_ri3c_rx_config.h

RI3C_CFG_EXTENDED_OPEN_DRAIN_LOGIC_HIGH_PERIOD
※デフォルト値は 167

拡張モードでオープンドレイン転送を行うと
きの SCL のロジックが High になる期間を指定
します。

RI3C_CFG_EXTENDED_OPEN_DRAIN_FREQUENCY
※デフォルト値は 1000000

拡張モードでオープンドレイン転送を行うと
きの SCL の周波数を指定します。

RI3C_CFG_EXTENDED_PUSH_PULL_LOGIC_HIGH_PERIOD
※デフォルト値は 167

拡張モードでプッシュプル転送を行うときの
SCL のロジックが High になる期間を指定しま
す。

RI3C_CFG_EXTENDED_PUSH_PULL_FREQUENCY
※デフォルト値は 3400000

拡張モードでプッシュプル転送を行うときの
SCL の周波数を指定します。

RI3C_CFG_OPEN_DRAIN_RISING_TIME
※デフォルト値は 0

オープンドレインの立ち上がり時間を ns（ナ
ノ秒）単位で指定します。
0 以上の値を指定します。

RI3C_CFG_OPEN_DRAIN_FALLING_TIME
※デフォルト値は 0

オープンドレインの立ち下がり時間を ns（ナ
ノ秒）単位で指定します。
0 以上の値を指定します。

RI3C_CFG_PUSH_PULL_RISING_TIME
※デフォルト値は 0

プッシュプルの立ち上がり時間を ns（ナノ
秒）単位で指定します。
0 以上の値を指定します。

RI3C_CFG_PUSH_PULL_FALLING_TIME
※デフォルト値は 0

プッシュプルの立ち下がり時間を ns（ナノ
秒）単位で指定します。
0 以上の値を指定します。

RI3C_CFG_ADDRESS_ASSIGNMENT_PHASE
※デフォルト値は 0

ENTDAA のアドレス割り当てフェーズにおい
てクロックストールを有効にするかどうかを
指定します。
0：無効（システムデフォルト）
1：有効

RI3C_CFG_TRANSITION_PHASE
※デフォルト値は 0

リード転送の遷移ビットフェーズにおいてク
ロックストールを有効にするかどうかを指定
します。
0：無効（システムデフォルト）
1：有効

RI3C_CFG_PARITY_PHASE
※デフォルト値は 0

ライト転送のパリティビットフェーズにおい
てクロックストールを有効にするかどうかを
指定します。
0：無効（システムデフォルト）
1：有効

RI3C_CFG_ACK_PHASE
※デフォルト値は 0

転送の ACK フェーズにおいてクロックストー
ルを有効にするかどうかを指定します。
0：無効（システムデフォルト）
1：有効

RI3C_CFG_CLOCK_STALLING_TIME
※デフォルト値は 0

アドレス割り当てフェーズ、遷移フェーズ、
パリティフェーズ、および ACK フェーズにお
いてクロックをストールする時間を指定しま
す。
整数を指定します。0 以上かつ PCLKA 未満の
値を指定してください。

RI3C_CFG_CONTROLLER_ACK_HOTJOIN_REQ
※デフォルト値は 0

このオプションを有効にした場合、RI3C イン
スタンスが Hot-Join 要求に肯定応答しアプリ
ケーションに通知します。
0：無効（システムデフォルト）
1：有効

RX ファミリ RI3C モジュール Firmware Integration Technology

R01AN6808JS0113 Rev.1.13 Page 10 of 52

Dec.26.25

Configuration options in r_ri3c_rx_config.h

RI3C_CFG_CONTROLLER_NOTIFY_REJECTED_HOTJOIN_RE
Q
※デフォルト値は 0

このオプションを有効にした場合、IBI の Hot-
Join 要求が拒否されたときにアプリケーショ
ンはコールバックを受けます。
0：無効（システムデフォルト）
1：有効

RI3C_CFG_CONTROLLER_NOTIFY_REJECTED_CONTROLLER
ROLE_REQ
※デフォルト値は 0

このオプションを有効にした場合、IBI のコン
トローラロール要求が拒否されたときにアプ
リケーションはコールバックを受けます。
0：無効（システムデフォルト）
1：有効

RI3C_CFG_CONTROLLER_NOTIFY_REJECTED_INTERRUPT_
REQ
※デフォルト値は 0

このオプションを有効にした場合、IBI の割り
込み要求が拒否されたときにアプリケーショ
ンはコールバックを受けます。
0：無効（システムデフォルト）
1：有効

RI3C_CFG_TARGET_IBI_REQ
※デフォルト値は 0

ターゲットによる IBI 要求の発行可否を指定し
ます。
0：否（システムデフォルト）
1：可

RI3C_CFG_TARGET_HOTJOIN_REQ
※デフォルト値は 0

ターゲットによる Hot-Join 要求の発行可否を
指定します。
0：否（システムデフォルト）
1：可

RI3C_CFG_TARGET_CONTROLLERROLE_REQ
※デフォルト値は 0

ターゲットによるコントローラロール要求の
発行可否を指定します。
0：否（システムデフォルト）
1：可

RI3C_CFG_TARGET_INCLUDE_MAX_READ_TURNAROUND_TI
ME
※デフォルト値は 0

最大リードターンアラウンドタイムを送信す
るかどうかを指定します。
0：しない（システムデフォルト）
1：する

RI3C_CFG_TARGET_ENTER_ACTIVITY_STATE
※デフォルト値は RI3C_ACTIVITY_STATE_ENTAS0

ターゲットの開始アクティビティステートを設定し

ます。
RI3C_ACTIVITY_STATE_ENTAS0：1 ns（レイテ

ンシフリー動作（デフォルト））
RI3C_ACTIVITY_STATE_ENTAS1：100 ns
RI3C_ACTIVITY_STATE_ENTAS2：2 µs
RI3C_ACTIVITY_STATE_ENTAS3：50 µs（最低ア

クティビティ動作）

RI3C_CFG_TARGET_MAX_WRITE_LENGTH
※デフォルト値は 65535

ターゲットモードにおける最大ライト長を設
定します。
8～65535 の範囲の値を指定します。

RI3C_CFG_TARGET_MAX_READ_LENGTH
※デフォルト値は 65535

ターゲットモードにおける最大リード長を設
定します。
8～65535 の範囲の値を指定します。

RI3C_CFG_TARGET_MAX_IBI_PAYLOAD_LENGTH
※デフォルト値は 0

最大 IBI ペイロードサイズを設定します。0 を
設定すると無制限となります。
0～255 の範囲の値を指定します。

RX ファミリ RI3C モジュール Firmware Integration Technology

R01AN6808JS0113 Rev.1.13 Page 11 of 52

Dec.26.25

Configuration options in r_ri3c_rx_config.h

RI3C_CFG_TARGET_WRITE_DATA_RATE
※デフォルト値は RI3C_DATA_RATE_SETTING_2MHZ

ターゲットモードにおける最大ライトデータレート

を設定します。
RI3C_DATA_RATE_SETTING_FSCL_MAX：
FSCL_MAX
RI3C_DATA_RATE_SETTING_8MHZ：8 MHz
RI3C_DATA_RATE_SETTING_6MHZ：6 MHz
RI3C_DATA_RATE_SETTING_4MHZ：4 MHz
RI3C_DATA_RATE_SETTING_2MHZ：2 MHz（デ

フォルト）

RI3C_CFG_TARGET_READ_DATA_RATE
※デフォルト値は RI3C_DATA_RATE_SETTING_2MHZ

ターゲットモードにおける最大リードデータレート

を設定します。
RI3C_DATA_RATE_SETTING_FSCL_MAX：
FSCL_MAX
RI3C_DATA_RATE_SETTING_8MHZ：8 MHz
RI3C_DATA_RATE_SETTING_6MHZ：6 MHz
RI3C_DATA_RATE_SETTING_4MHZ：4 MHz
RI3C_DATA_RATE_SETTING_2MHZ：2 MHz（デ

フォルト）

RI3C_CFG_TARGET_CLK_TURNAROUND_RATE
※デフォルト値は RI3C_CLOCK_DATA_TURNAROUND_8NS

ターゲットモードにおける最大クロックターンアラ

ウンドレートを設定します。
RI3C_CLOCK_DATA_TURNAROUND_8NS：8 ns
（デフォルト）
RI3C_CLOCK_DATA_TURNAROUND_9NS：9 ns
RI3C_CLOCK_DATA_TURNAROUND_10NS：10
ns
RI3C_CLOCK_DATA_TURNAROUND_11NS：11
ns
RI3C_CLOCK_DATA_TURNAROUND_12NS：12
ns
RI3C_CLOCK_DATA_TURNAROUND_EXTENDED
：12 ns 超

RI3C_CFG_TARGET_INCLUDE_MAX_READ_TURNAROUND_TI
ME
※デフォルト値は 0

ターゲットモードにおいて最大リードターン
アラウンドタイムを送信するかどうかを設定
します。
0：送信しない（システムデフォルト）
1：送信する

RI3C_CFG_TARGET_MAX_READ_TURNAROUND_TIME
※デフォルト値は 0

ターゲットモードにおける最大リードターン
アラウンドタイムを設定します。
0～255 の範囲の値を指定します。

RI3C_CFG_TARGET_FREQUENCY_BYTE
※デフォルト値は 0

ターゲットモードにおける内部発振周波数を
0.5 MHz 刻みで設定します。
0～255 の範囲の値を指定します。

RI3C_CFG_TARGET_INACCURACY_BYTE
※デフォルト値は 0

ターゲットモードにおける内部発振器の
Inaccuracy Byte を 0.5 MHz 刻みで設定しま
す。
0～255 の範囲の値を指定します。

RI3C_CFG_BUS_FREE_DETECT_TIME
※デフォルト値は 38.4

STOP から START までの最短期間を指定しま
す。
38.4（ns） 以上の値を指定します。

RI3C_CFG_BUS_AVAILABLE_CONDITION_DETECT_TIME
※デフォルト値は 1

ターゲットが IBI 要求を発行できるとき、バス
フリー条件が満足した後に生じる最短期間を
指定します。
1（µs） 以上の値を指定します。

RX ファミリ RI3C モジュール Firmware Integration Technology

R01AN6808JS0113 Rev.1.13 Page 12 of 52

Dec.26.25

Configuration options in r_ri3c_rx_config.h

RI3C_CFG_BUS_IDLE_CONDITION_DETECT_TIME
※デフォルト値は 1000

ターゲットが Hot-Join 要求を発行できると
き、バス使用可能条件が満足した後に生じる
最短期間を指定します。
1000（ms） 以上の値を指定します。

RI3C_CFG_TIMEOUT_DETECTION
※デフォルト値は 0

このオプションを有効にした場合、SCL のロ
ジックが High レベルまたは Low レベルでスタ
ック状態になり、RI3C ソースクロックが
65,535 サイクルを超えたときに、アプリケー
ションはコールバックを受けます。
0：無効（システムデフォルト）
1：有効

RI3C_CFG_INTERRUPT_PRIORITY_LEVEL
※デフォルト値は 2

RI3C モジュールの割り込み優先レベルを設定
します。
0～15 の範囲の値を指定します。

表 2.2 RI3C モジュールのコンフィギュレーションオプション。

RX ファミリ RI3C モジュール Firmware Integration Technology

R01AN6808JS0113 Rev.1.13 Page 13 of 52

Dec.26.25

 コードサイズ
本モジュールのコードサイズを下表に示します。

ROM (コードおよび定数) と RAM (グローバルデータ) のサイズは、ビルド時の「2.7 コンパイル時の設
定」のコンフィギュレーションオプションによって決まります。掲載した値は、「2.3 サポートされている
ツールチェーン」の C コンパイラでコンパイルオプションがデフォルト時の参考値です。コンパイルオプ
ションのデフォルトは最適化レベル：2、最適化のタイプ：サイズ優先、データ・エンディアン：リトルエ
ンディアンです。コードサイズは C コンパイラのバージョンやコンパイルオプションにより異なります。

下表の値は下記条件で確認しています。

モジュールリビジョン: r_ri3c_rx rev1.00

コンパイラバージョン: Renesas Electronics C/C++ Compiler Package for RX Family V3.05.00

(統合開発環境のデフォルト設定に”-lang = c99”オプションを追加)

GCC for Renesas RX 8.03.00.202204

(統合開発環境のデフォルト設定に” -std=gnu99”オプションを追加)

IAR C/C++ Compiler for Renesas RX version 4.20.03

(統合開発環境のデフォルト設定)

コンフィグレーションオプション: デフォルト設定

ROM、RAM およびスタックのコードサイズ

デバイス 分類 使用メモリ
ルネサス製コンパイラ GCC IAR コンパイラ
パラメータ

チェックあ

り、ロック

有効

パラメータ

チェックな

し、ロック

有効

パラメータ

チェック処

理あり、ロ

ック必須

パラメータ

チェックな

し、ロック

有効

パラメータ

チェック処

理あり、ロ

ック必須

パラメータ

チェックな

し、ロック

有効

RX26T

ROM
コントローラ 6569 バイト 5788 バイト 7508 バイト 6804 バイト 1401 バイト 1401 バイト

ターゲット 5931 バイト 5474 バイト 6876 バイト 6428 バイト 1401 バイト 1401 バイト

RAM
コントローラ 292 バイト 384 バイト 96 バイト

ターゲット 292 バイト 384 バイト 96 バイト

最大使用スタックサズ

*1
268 バイト 300 バイト - 300 バイト 260 バイト

注 1. 割り込み関数の最大使用スタックサイズを含みます。

RX ファミリ RI3C モジュール Firmware Integration Technology

R01AN6808JS0113 Rev.1.13 Page 14 of 52

Dec.26.25

 引数
API 関数の引数である構造体を示します。この構造体に r_ri3c_rx_if.hと r_ri3c_rx_api.h で記載されていま
す。
typedef struct st_ri3c_instance_ctrl
{
 uint32_t open;

#if((__CCRX__) || (__GNUC__))
 volatile struct RI3C0_Type R_BSP_EVENACCESS * p_reg;
#elif(__ICCRX__)
 struct RI3C0_Type R_BSP_VOLATILE_SFR * p_reg;
#endif

 volatile uint32_t internal_state;
 uint8_t current_command_code;
 uint32_t device_index;
 ri3c_bitrate_mode_t device_bitrate_mode;
 ri3c_target_info_t current_target_info;
 uint32_t next_word;
 uint32_t ibi_next_word;
 ri3c_write_buffer_descriptor_t write_buffer_descriptor;
 ri3c_read_buffer_descriptor_t read_buffer_descriptor;
 ri3c_read_buffer_descriptor_t ibi_buffer_descriptor;
 volatile uint32_t read_transfer_count_final;
 volatile uint32_t ibi_transfer_count_final;
 ri3c_cfg_t const * p_cfg;
} ri3c_instance_ctrl_t

typedef struct s_ri3c_extended_cfg
{
 ri3c_bitrate_settings_t bitrate_settings;
 ri3c_ibi_control_t ibi_control
 uint32_t bus_free_detection_time;
 uint32_t bus_available_detection_time;
 uint32_t bus_idle_detection_time;
 bool timeout_detection_enable;
 ri3c_target_command_response_info_t target_command_response_info;
 uint8_t ipl;
 uint8_t eei_ipl;
} ri3c_extended_cfg_t;

typedef struct s_target_command_response_info
{
 bool inband_interrupt_enable;
 bool controllerrole_request_enable;
 bool hotjoin_request_enable;
 ri3c_activity_state_t activity_state;
 uint16_t write_length;
 uint16_t read_length;
 uint8_t ibi_payload_length;
 ri3c_data_rate_setting_t write_data_rate;
 ri3c_data_rate_setting_t read_data_rate;
 ri3c_clock_data_turnaround_t clock_data_turnaround;
 bool read_turnaround_time_enable;
 uint32_t read_turnaround_time;
 uint8_t oscillator_frequency;
 uint8_t oscillator_inaccuracy;
} ri3c_target_command_response_info_t;

RX ファミリ RI3C モジュール Firmware Integration Technology

R01AN6808JS0113 Rev.1.13 Page 15 of 52

Dec.26.25

typedef struct s_ri3c_clock_stalling
{
 uint32_t assigned_address_phase_enable : 1;
 uint32_t transition_phase_enable : 1;
 uint32_t parity_phase_enable : 1;
 uint32_t ack_phase_enable : 1;
 uint16_t clock_stalling_time;
} ri3c_clock_stalling_t;

typedef struct s_ri3c_bitrate_settings
{
 uint32_t icsbr; ///< 標準ビットレートの設定
 uint32_t icebr; ///< 拡張ビットレートの設定
 ri3c_clock_stalling_t clock_stalling;
} ri3c_bitrate_settings_t;

typedef struct s_ri3c_ibi_control
{
 uint32_t hot_join_acknowledge : 1;
 uint32_t notify_rejected_hot_join_requests : 1;
 uint32_t notify_rejected_controllerrole_requests : 1;
 uint32_t notify_rejected_interrupt_requests : 1;
} ri3c_ibi_control_t;

typedef struct s_ri3c_read_buffer_descriptor
{
 uint8_t * p_buffer;
 uint32_t count;
 uint32_t buffer_size;
 bool read_request_issued;
} ri3c_read_buffer_descriptor_t;

typedef struct s_ri3c_write_buffer_descriptor
{
 uint8_t * p_buffer;
 uint32_t count;
 uint32_t buffer_size;
} ri3c_write_buffer_descriptor_t;

RX ファミリ RI3C モジュール Firmware Integration Technology

R01AN6808JS0113 Rev.1.13 Page 16 of 52

Dec.26.25

typedef enum e_ri3c_common_command_code
{
 /* ブロードキャスト共通コマンドコード */
 I3C_CCC_BROADCAST_ENEC = (0x00), ///< ターゲット開始イベントを許可
 I3C_CCC_BROADCAST_DISEC = (0x01), ///< ターゲット開始イベントを禁止
 I3C_CCC_BROADCAST_ENTAS0 = (0x02), ///< アクティビティステート 0 に入る
 I3C_CCC_BROADCAST_ENTAS1 = (0x03), ///< アクティビティステート 1 に入る
 I3C_CCC_BROADCAST_ENTAS2 = (0x04), ///< アクティビティステート 2 に入る
 I3C_CCC_BROADCAST_ENTAS3 = (0x05), ///< アクティビティステート 3 に入る
 I3C_CCC_BROADCAST_RSTDAA = (0x06), ///< ダイナミックアドレス割り当てをリセット
 I3C_CCC_BROADCAST_ENTDAA = (0x07), ///< ダイナミックアドレス割り当てに入る
 I3C_CCC_BROADCAST_DEFSVLS = (0x08), ///< ターゲットの一覧を定義
 I3C_CCC_BROADCAST_SETMWL = (0x09), ///< 最大ライト長を設定
 I3C_CCC_BROADCAST_SETMRL = (0x0A), ///< 最大リード長を設定
 I3C_CCC_BROADCAST_ENTTM = (0x0B), ///< テストモードに入る
 I3C_CCC_BROADCAST_ENTHDR0 = (0x20), ///< HDR モード 0 に入る
 I3C_CCC_BROADCAST_ENTHDR1 = (0x21), ///< HDR モード 1 に入る
 I3C_CCC_BROADCAST_ENTHDR2 = (0x22), ///< HDR モード 2 に入る
 I3C_CCC_BROADCAST_ENTHDR3 = (0x23), ///< HDR モード 3 に入る
 I3C_CCC_BROADCAST_ENTHDR4 = (0x24), ///< HDR モード 4 に入る
 I3C_CCC_BROADCAST_ENTHDR5 = (0x25), ///< HDR モード 5 に入る
 I3C_CCC_BROADCAST_ENTHDR6 = (0x26), ///< HDR モード 6 に入る
 I3C_CCC_BROADCAST_ENTHDR7 = (0x27), ///< HDR モード 7 に入る
 I3C_CCC_BROADCAST_SETXTIME = (0x28), ///< 交換タイミング情報を設定
 I3C_CCC_BROADCAST_SETAASA = (0x29), ///< すべてのアドレスをスタティックアドレスに設定

 /* ダイレクト共通コマンドコード */
 I3C_CCC_DIRECT_ENEC = (0x80), ///< ターゲット開始イベントを許可
 I3C_CCC_DIRECT_DISEC = (0x81), ///< ターゲット開始イベントを禁止
 I3C_CCC_DIRECT_ENTAS0 = (0x82), ///< アクティビティステート 0 に入る
 I3C_CCC_DIRECT_ENTAS1 = (0x83), ///< アクティビティステート 1 に入る
 I3C_CCC_DIRECT_ENTAS2 = (0x84), ///< アクティビティステート 2 に入る
 I3C_CCC_DIRECT_ENTAS3 = (0x85), ///< アクティビティステート 3 に入る
 I3C_CCC_DIRECT_RSTDAA = (0x86), ///< ダイナミックアドレス割り当てをリセット
 I3C_CCC_DIRECT_SETDASA = (0x87), ///< スタティックアドレスからダイナミックアドレスを設定
 I3C_CCC_DIRECT_SETNEWDA = (0x88), ///< 新しいダイナミックアドレスを設定
 I3C_CCC_DIRECT_SETMWL = (0x89), ///< 最大ライト長を設定
 I3C_CCC_DIRECT_SETMRL = (0x8A), ///< 最大リード長を設定
 I3C_CCC_DIRECT_GETMWL = (0x8B), ///< 最大ライト長を取得
 I3C_CCC_DIRECT_GETMRL = (0x8C), ///< 最大リード長を取得
 I3C_CCC_DIRECT_GETPID = (0x8D), ///< 暫定 ID を取得
 I3C_CCC_DIRECT_GETBCR = (0x8E), ///< バス特性レジスタを取得
 I3C_CCC_DIRECT_GETDCR = (0x8F), ///< デバイス特性レジスタを取得
 I3C_CCC_DIRECT_GETSTATUS = (0x90), ///< デバイスステータスを取得
 I3C_CCC_DIRECT_GETACCMST = (0x91), ///< コントローラロールを取得
 I3C_CCC_DIRECT_GETMXDS = (0x94), ///< 最大データスピードを取得
 I3C_CCC_DIRECT_SETXTIME = (0x98), ///< 交換タイミング情報を設定
 I3C_CCC_DIRECT_GETXTIME = (0x99), ///< 交換タイミング情報を取得
} ri3c_common_command_code_t;

RX ファミリ RI3C モジュール Firmware Integration Technology

R01AN6808JS0113 Rev.1.13 Page 17 of 52

Dec.26.25

typedef struct s_ri3c_target_device_cfg
{
 uint8_t static_address;
 uint8_t dynamic_address;
 ri3c_target_info_t target_info;
} ri3c_device_cfg_t;

typedef enum e_ri3c_event
{
 RI3C_EVENT_ENTDAA_ADDRESS_PHASE,
 RI3C_EVENT_IBI_READ_COMPLETE,
 RI3C_EVENT_IBI_READ_BUFFER_FULL,
 RI3C_EVENT_READ_BUFFER_FULL,
 RI3C_EVENT_IBI_WRITE_COMPLETE,
 RI3C_EVENT_HDR_EXIT_PATTERN_DETECTED,
 RI3C_EVENT_ADDRESS_ASSIGNMENT_COMPLETE,
 RI3C_EVENT_COMMAND_COMPLETE,
 RI3C_EVENT_WRITE_COMPLETE,
 RI3C_EVENT_READ_COMPLETE,
 RI3C_EVENT_TIMEOUT_DETECTED,
 RI3C_EVENT_INTERNAL_ERROR,
} ri3c_event_t;

typedef enum e_ri3c_type
{
 RI3C_DEVICE_TYPE_PRIMARY_CONTROLLER,
 RI3C_DEVICE_TYPE_TARGET,
} ri3c_device_type_t;

typedef enum e_ri3c_device_protocol
{
 RI3C_DEVICE_PROTOCOL_I2C,
 RI3C_DEVICE_PROTOCOL_I3C,
} ri3c_device_protocol_t;

typedef enum e_ri3c_address_assignment_mode
{
 RI3C_ADDRESS_ASSIGNMENT_MODE_ENTDAA = I3C_CCC_BROADCAST_ENTDAA,
 RI3C_ADDRESS_ASSIGNMENT_MODE_SETDASA = I3C_CCC_DIRECT_SETDASA,
} ri3c_address_assignment_mode_t;

typedef enum e_ri3c_ibi_type
{
 RI3C_IBI_TYPE_INTERRUPT,
 RI3C_IBI_TYPE_HOT_JOIN,
 RI3C_IBI_TYPE_CONTROLLERROLE_REQUEST
} ri3c_ibi_type_t;

typedef struct s_ri3c_device_status
{
 uint8_t pending_interrupt;
 uint8_t vendor_status;
} ri3c_device_status_t;

RX ファミリ RI3C モジュール Firmware Integration Technology

R01AN6808JS0113 Rev.1.13 Page 18 of 52

Dec.26.25

typedef struct s_ri3c_device_table_cfg
{
 uint8_t static_address; ///< I3C スタティックアドレス / 本デバイスの

I2C アドレス

 /** 本デバイスのダイナミックアドレス（ダイナミックアドレス割り当て時に割り当てられる）。
*/
 uint8_t dynamic_address;

 ri3c_device_protocol_t device_protocol; ///< 本デバイスとの通信に用いられるプ

ロトコル (I3C / I2C Legacy)
 bool ibi_accept; ///< 本デバイスからの IBI 要求の受け付

け／拒否
 bool controllerrole_request_accept; ///< 本デバイスからのコントローラロー

ル要求の受け付け

 /**
 * 本デバイスからの IBI 要求にはデータペイロードがある。
 *
 * 注意：ENTDAA で本デバイスが設定される際に BCR の値に基づいて ibi_payload が自動的に
 * 更新される。
 */
 bool ibi_payload;
} ri3c_device_table_cfg_t;

RX ファミリ RI3C モジュール Firmware Integration Technology

R01AN6808JS0113 Rev.1.13 Page 19 of 52

Dec.26.25

typedef struct s_ri3c_target_info
{
 uint8_t pid[6];
 union
 {
 uint8_t bcr;
 struct
 {
 uint8_t max_data_speed_limitation : 1;
 uint8_t ibi_request_capable : 1;
 uint8_t ibi_payload : 1;
 uint8_t offline_capable : 1;
 uint8_t : 2;
 uint8_t device_role : 2;
 } bcr_b;
 };

 uint8_t dcr;
} ri3c_target_info_t;

typedef struct s_ri3c_command_descriptor
{
 uint8_t command_code;
 uint8_t * p_buffer;
 uint32_t length;
 bool restart;
 bool rnw;
} ri3c_command_descriptor_t;

typedef struct s_ri3c_callback_args
{
 ri3c_event_t event;
 uint32_t event_status;
 uint32_t transfer_size;
 ri3c_target_info_t const * p_target_info;
 uint8_t dynamic_address;
 ri3c_ibi_type_t ibi_type;
 uint8_t ibi_address;
 uint8_t command_code;
 void const * p_context;
} ri3c_callback_args_t;

typedef struct st_ri3c_cfg
{
 uint32_t channel;
 ri3c_device_type_t device_type;
 void (* p_callback) (ri3c_callback_args_t const * const p_args);
 void const * p_context;
 void const * p_extend;
} ri3c_cfg_t;

typedef void ri3c_ctrl_t;

typedef struct st_ri3c_instance
{
 ri3c_ctrl_t * p_ctrl;
 ri3c_cfg_t * p_cfg;
 ri3c_api_t * p_api;
} ri3c_instance_t;

RX ファミリ RI3C モジュール Firmware Integration Technology

R01AN6808JS0113 Rev.1.13 Page 20 of 52

Dec.26.25

typedef struct st_ri3c_api
{
 fsp_err_t (* open)
 (ri3c_ctrl_t * const p_ctrl, ri3c_cfg_t const * const p_cfg);

 fsp_err_t (* enable)
 (ri3c_ctrl_t * const p_ctrl);

 fsp_err_t (* deviceCfgSet)
 (ri3c_ctrl_t * const p_ctrl,
 ri3c_device_cfg_t const * const p_device_cfg);

 fsp_err_t (* controllerDeviceTableSet)
 (ri3c_ctrl_t * const p_ctrl,
 uint32_t device_index,
 ri3c_device_table_cfg_t const * const p_device_table_cfg);

 fsp_err_t (* deviceSelect)
 (ri3c_ctrl_t * const p_ctrl,
 uint32_t device_index,
 uint32_t bitrate_mode);

 fsp_err_t (* dynamicAddressAssignmentStart)
 (ri3c_ctrl_t * const p_ctrl,
 ri3c_address_assignment_mode_t address_assignment_mode,
 uint32_t starting_device_index,
 uint32_t device_count);

 fsp_err_t (* targetStatusSet)
 (ri3c_ctrl_t * const p_ctrl,
 ri3c_device_status_t device_status);

 fsp_err_t (* commandSend)
 (ri3c_ctrl_t * const p_ctrl,
 ri3c_command_descriptor_t * p_command_descriptor);

 fsp_err_t (* write)
 (ri3c_ctrl_t * const p_ctrl,
 uint8_t const * const p_data,
 uint32_t length,
 bool restart);

 /**
 * 【コントローラモードの場合】リード転送を開始する。転送完了時、ストップコンディション
 * またはリスタートコンディションを送信する。
 * 【ターゲットモードの場合】転送時に読み出されるデータを格納するリードバッファを
 * 設定する。
 * バッファが満杯になるとアプリケーションはコールバックを受け、
 * 新しいリードバッファを要求する。
 * バッファが用意されていない場合、ドライバは読み出したデータの残りバイトを廃棄する。
 *
 * @param[in] p_ctrl 制御ブロックが本インスタンスを設定する。
 * @param[in] p_data 転送時に読み出されるバイトデータを格納するバッファへの
 * ポインタ
 * @param[in] length 転送バイト数
 * @param[in] restart 真ならば、転送完了後にリスタートコンディションを発行する
 * （コントローラモード時のみ）。
 */

RX ファミリ RI3C モジュール Firmware Integration Technology

R01AN6808JS0113 Rev.1.13 Page 21 of 52

Dec.26.25

 fsp_err_t (* read)(ri3c_ctrl_t * const p_ctrl, uint8_t * const p_data,
uint32_t length, bool restart);

 /**
 * IBI 書き込み動作を開始する。
 *
 * 注意：この関数はコントローラモードでは用いない。
 *
 * @param[in] p_ctrl 制御ブロックが本インスタンスを設定する。
 * @param[in] p_data 転送時に読み出されるバイトデータを格納するバッファへの
 * ポインタ
 * @param[in] length 転送バイト数
 */
 fsp_err_t (* ibiWrite)(ri3c_ctrl_t * const p_ctrl,
 ri3c_ibi_type_t ibi_type,
 uint8_t const * const p_data,
 uint32_t length);

 /**
 * 受信した IBI データを格納するリードバッファの設定（この関数はターゲットモードでは用いな

い）
 *
 * @param[in] p_ctrl 制御ブロックが本インスタンスを設定する。
 * @param[in] p_data 転送時に読み出されるバイトデータを格納するバッファへの
 * ポインタ
 * @param[in] length 転送バイト数
 */
 fsp_err_t (* ibiRead)(ri3c_ctrl_t * const p_ctrl, uint8_t * const p_data,
uint32_t length);

 /** ドライバの再設定を許可し消費電力を低減する可能性あり。
 *
 * @param[in] p_ctrl 制御ブロックが本インスタンスを設定する。
 */
 fsp_err_t (* close)(ri3c_ctrl_t * const p_ctrl);
} ri3c_api_t;

RX ファミリ RI3C モジュール Firmware Integration Technology

R01AN6808JS0113 Rev.1.13 Page 22 of 52

Dec.26.25

 戻り値
API 関数の戻り値を示します。この列挙型は fsp_common_api.h で記載されています。

/** 共通エラーコード */
typedef enum e_fsp_err
{
 FSP_SUCCESS = 0,

 FSP_ERR_ASSERTION = 1,
 FSP_ERR_INVALID_POINTER = 2,
 FSP_ERR_INVALID_ARGUMENT = 3,
 FSP_ERR_INVALID_CHANNEL = 4,
 FSP_ERR_INVALID_MODE = 5,
 FSP_ERR_UNSUPPORTED = 6,
 FSP_ERR_NOT_OPEN = 7,
 FSP_ERR_IN_USE = 8,
 FSP_ERR_OUT_OF_MEMORY = 9,
 FSP_ERR_HW_LOCKED = 10,
 FSP_ERR_IRQ_BSP_DISABLED = 11,
 FSP_ERR_OVERFLOW = 12,
 FSP_ERR_UNDERFLOW = 13,
 FSP_ERR_ALREADY_OPEN = 14,
 FSP_ERR_APPROXIMATION = 15,
 FSP_ERR_CLAMPED = 16,
 FSP_ERR_INVALID_RATE = 17,
 FSP_ERR_ABORTED = 18,
 FSP_ERR_NOT_ENABLED = 19,
 FSP_ERR_TIMEOUT = 20,
 FSP_ERR_INVALID_BLOCKS = 21,
 FSP_ERR_INVALID_ADDRESS = 22,
 FSP_ERR_INVALID_SIZE = 23,
 FSP_ERR_WRITE_FAILED = 24,
 FSP_ERR_ERASE_FAILED = 25,
 FSP_ERR_INVALID_CALL = 26,
 FSP_ERR_INVALID_HW_CONDITION = 27,
 FSP_ERR_INVALID_FACTORY_FLASH = 28,
 FSP_ERR_INVALID_STATE = 30,
 FSP_ERR_NOT_ERASED = 31,
 FSP_ERR_SECTOR_RELEASE_FAILED = 32,
 FSP_ERR_NOT_INITIALIZED = 33,
 FSP_ERR_NOT_FOUND = 34,
 FSP_ERR_NO_CALLBACK_MEMORY = 35,
 FSP_ERR_BUFFER_EMPTY = 36,
 ...
} fsp_err_t;

RX ファミリ RI3C モジュール Firmware Integration Technology

R01AN6808JS0113 Rev.1.13 Page 23 of 52

Dec.26.25

 コールバック関数
本モジュールでは、以下のいずれかのタイミングでユーザーが設定したコールバック関数が読み出されま
す。

(1) 送信データエンプティ

(2) 受信データフル

(3) IBI キューエンプティ／フル

(4) コマンドキューエンプティ

(5) レスポンスキューフル

(6) 受信ステータスキューフル

(7) 通信エラー／通信イベント

コールバック関数は、ユーザー関数のアドレスを ri3c_cfg_t 構造体の p_callback 引数に格納することで設定
されます。コールバック関数のデフォルト値は関数ポインタです。これをユーザー関数に変更するには、
「ri3c_callback_args_t const *const p_args」を引数に持つ任意の関数に g_ri3c0_cfg.p_callback を割り当て
てください。

Example
/* 関数プロトタイプ */
void g_i3c0_user_callback(ri3c_callback_args_t const *const p_args);

void main(void)
{
 /* コールバック関数を RI3C FIT モジュールに割り当てる */
 g_ri3c0_cfg.p_callback = &g_i3c0_user_callback;
 R_RI3C_Open(&g_ri3c0_ctrl, &g_ri3c0_cfg);
}

void g_i3c0_user_callback(ri3c_callback_args_t const *const p_args)
{
 user_program();
}

RX ファミリ RI3C モジュール Firmware Integration Technology

R01AN6808JS0113 Rev.1.13 Page 24 of 52

Dec.26.25

 FIT モジュールの追加方法

本モジュールは、使用するプロジェクトごとに追加する必要があります。ルネサスでは、Smart
Configurator を使用した(1)、(2)、(4)の追加方法を推奨しています。ただし、Smart Configurator は、一部の
RX デバイスのみサポートしています。サポートされていない RX デバイスについては(3)の方法を使用して
ください。

(1) e2 studio 上で Smart Configurator を使用して FIT モジュールを追加する場合
e2 studio の Smart Configurator を使用して、自動的にユーザプロジェクトに FIT モジュールを追加
します。詳細は、アプリケーションノート「RX スマート・コンフィグレータ ユーザーガイド: e2
studio 編 (R20AN0451)」を参照してください。

(2) CS+上で Smart Configurator を使用して FIT モジュールを追加する場合
CS+上で、スタンドアロン版 Smart Configurator を使用して、自動的にユーザプロジェクトに FIT
モジュールを追加します。詳細は、アプリケーションノート「RX スマート・コンフィグレータ ユ
ーザーガイド: CS+編 (R20AN0470)」を参照してください。

(3) CS+上で FIT モジュールを追加する場合
CS+上で、手動でユーザプロジェクトに FIT モジュールを追加します。詳細は、アプリケーション
ノート「RX ファミリ CS+に組み込む方法 Firmware Integration Technology (R01AN1826)」を参
照してください。

(4) IAREW 上で Smart Configurator を使用して FIT モジュールを追加する場合
スタンドアロン版 Smart Configurator を使用して、自動的にユーザプロジェクトに FIT モジュール
を追加します。詳細は、アプリケーションノート「RX スマート・コンフィグレータ ユーザーガイ
ド: IAREW 編 (R20AN0535)」を参照してください。

RX ファミリ RI3C モジュール Firmware Integration Technology

R01AN6808JS0113 Rev.1.13 Page 25 of 52

Dec.26.25

 for 文、while 文、do while 文について
本モジュールでは、レジスタの反映待ち処理等で for 文、while 文、do while 文（ループ処理）を使用してい
ます。これらループ処理には、「WAIT_LOOP」をキーワードとしたコメントを記述しています。そのた
め、ループ処理にユーザがフェイルセーフの処理を組み込む場合は、「WAIT_LOOP」で該当の処理を検索
できます。

以下に記述例を示します。

while 文の例：
/* WAIT_LOOP */

while(0 == SYSTEM.OSCOVFSR.BIT.PLOVF)

{

 /* The delay period needed is to make sure that the PLL has stabilized. */

}

for 文の例：
/* Initialize reference counters to 0. */

/* WAIT_LOOP */

for (i = 0; i < BSP_REG_PROTECT_TOTAL_ITEMS; i++)

{

 g_protect_counters[i] = 0;

}

do while 文の例：
/* Reset completion waiting */

do

{

 reg = phy_read(ether_channel, PHY_REG_CONTROL);

 count++;

} while ((reg & PHY_CONTROL_RESET) && (count < ETHER_CFG_PHY_DELAY_RESET)); /* WAIT_LOOP */

RX ファミリ RI3C モジュール Firmware Integration Technology

R01AN6808JS0113 Rev.1.13 Page 26 of 52

Dec.26.25

3. API 関数

R_RI3C_Open()
RI3C インスタンスの設定を行います。

Format
fsp_err_t R_RI3C_Open(
 ri3c_ctrl_t *const p_api_ctrl
 ri3c_cfg_t const *const p_cfg

)

Parameters
ri3c_ctrl_t *const p_api_ctrl

RI3C 制御ブロックへのポインタ。この構造体のすべての要素は R_RI3C_Open()を呼び出すことで初期
化されます。

ri3c_cfg_t const *const p_cfg
RI3C コンフィグレーション構造体へのポインタです。この構造体の要素はすべてあらかじめ定義されて
います。ただし、R_RI3C_Open()を呼び出す前にユーザーが変更することは可能です。

この構造体の詳細については「2.9 引数」を参照してください。

Return Values
FSP_SUCCESS /* 処理に成功しました。 */
FSP_ERR_ASSERTION /* NULL ポインタがありました。 */
FSP_ERR_ALREADY_OPEN /* ドライバは既に開いています。 */
FSP_ERR_UNSUPPORTED /* 選択した機能は、現在の構成ではサポートされていません。 */

Properties
r_ri3c_rx_if.h にプロトタイプ宣言されています。

Description
RI3C インスタンスの設定を行います。

• ri3c_instance_ctrl_t を初期化します。
• RI3C FIT モジュールレジスタ配置を初期化します。
• ビットレート設定の評価を行います。
• RI3C リセットビットを解放します。
• スタートコンディションを生成します。

Example
fsp_err_t err;

err = R_RI3C_Open(&g_api_ctrl, &g_ri3c0_cfg);

Special Notes
なし。

RX ファミリ RI3C モジュール Firmware Integration Technology

R01AN6808JS0113 Rev.1.13 Page 27 of 52

Dec.26.25

R_RI3C_Enable()
RI3C デバイスを有効にします。

Format
fsp_err_t R_RI3C_Enable(ri3c_ctrl_t *const p_api_ctrl)

Parameters
ri3c_ctrl_t *const p_api_ctrl

RI3C 制御ブロックへのポインタ。

この構造体の詳細については「2.9 引数」を参照してください。

Return Values
FSP_SUCCESS /* 処理に成功しました。 */
FSP_ERR_ASSERTION /* NULL ポインタがありました。 */
FSP_ERR_NOT_OPEN /* 制御ブロックが開いていません。 */
FSP_ERR_INVALID_MODE /* インスタンスは既に有効化されている */

Properties
r_ri3c_rx_if.h にプロトタイプ宣言されています。

Description
RI3C デバイスを有効にします。

• RI3C のステートフラグおよび各種ステータスフラグを設定します。
• ビットレート設定を初期化します。
• RI3C 割り込みを許可します。

Example
fsp_err_t err;

err = R_RI3C_Enable(&g_api_ctrl);

Special Notes
なし。

RX ファミリ RI3C モジュール Firmware Integration Technology

R01AN6808JS0113 Rev.1.13 Page 28 of 52

Dec.26.25

R_RI3C_DeviceCfgSet()
本デバイスのコンフィグレーションを設定します。

Format
fsp_err_t R_RI3C_DeviceCfgSet(

 ri3c_ctrl_t *const p_api_ctrl,

 ri3c_device_cfg_t const *const p_device_cfg

)

Parameters
p_api_ctrl

RI3C 制御ブロックへのポインタ。

p_device_cfg
ターゲットモードでドライバを構成する際に、ターゲットアドレスを設定するための構造体へのポイン
タ。

この構造体の詳細については「2.9 引数」を参照してください。

Return Values
FSP_SUCCESS /* 処理に成功しました。 */
FSP_ERR_ASSERTION /* NULL ポインタがありました。 */
FSP_ERR_NOT_OPEN /* 制御ブロックが開いていません。 */
FSP_ERR_UNSUPPORTED /* コントローラモードのサポートが無効の場合、本デバイスは 2 次コントロー
ラとして使用不可。 */

Properties
r_ri3c_rx_if.h にプロトタイプ宣言されています。

Description
本デバイスのコンフィグレーションを設定します。
デバイス種別が「コントローラ」の場合：
• RI3C のダイナミックアドレスを設定します。
デバイス種別が「ターゲット」の場合：
• デバイスのスタティックアドレスを設定します。
• デバイスのダイナミックアドレスを設定します。
• BCR レジスタに基づいて IBI ペイロード設定を行います。
• ターゲットアドレステーブルレジスタへ設定を書き込みます。
• ターゲット特性テーブルレジスタへ BCR 設定と DCR 設定を書き込みます。
• ターゲット特性テーブル PID レジスタへ PID 設定を書き込みます。
• 対象アドレスを有効にします。

RX ファミリ RI3C モジュール Firmware Integration Technology

R01AN6808JS0113 Rev.1.13 Page 29 of 52

Dec.26.25

Example
fsp_err_t err;
ri3c_device_cfg_t controller_device_cfg =
{
 /* デバイスメーカが定義したスタティック I3C/I2C Legacy アドレス */
 .static_address = RI3C_CONTROLLER_DEVICE_STATIC_ADDRESS,
 /* コントローラが CCC ENTDAA を使用して本デバイスの設定を行う際にダイナミックアドレスが自

動的に更新される */
 .dynamic_address = RI3C_CONTROLLER_DEVICE_DYNAMIC_ADDRESS
};

err = R_RI3C_DeviceCfgSet(
&g_api_ctrl,
&controller_device_cfg
);

Special Notes
なし。

RX ファミリ RI3C モジュール Firmware Integration Technology

R01AN6808JS0113 Rev.1.13 Page 30 of 52

Dec.26.25

R_RI3C_ControllerDeviceTableSet()
コントローラテーブルにエントリを設定します。

Format
fsp_err_t R_RI3C_ControllerDeviceTableSet(

 ri3c_ctrl_t *const p_api_ctrl,

 uint32_t device_index,

 ri3c_device_table_cfg_t const *const p_device_table_cfg

)

Parameters
p_api_ctrl

RI3C 制御ブロックへのポインタ。

device_index

デバイステーブルのインデックス

p_device_table_cfg

コントローラテーブル内エントリのテーブル設定へのポインタ

この構造体の詳細については「2.9 引数」を参照してください。

Return Values
FSP_SUCCESS /* 処理に成功しました。 */
FSP_ERR_ASSERTION /* NULL ポインタがありました。 */
FSP_ERR_NOT_OPEN /* 制御ブロックが開いていません。 */
FSP_ERR_UNSUPPORTED /* ターゲットモードのサポートが無効の場合、コントローラロール要求は拒否
されなければならない。 */

Properties
r_ri3c_rx_if.h にプロトタイプ宣言されています。

Description
コントローラテーブルにエントリを設定します。

• 本デバイスの IBI 設定を行います。
• デバイスのスタティックアドレスを設定します。
• 本デバイスによる転送に Legacy I2C プロトコルが使用されるようデバイス種別を設定します。

Example
fsp_err_t err;

err = R_RI3C_ControllerDeviceTableSet(
&g_ri3c0_ctrl,
0,
&g_device_table_cfg
);

Special Notes
この関数は、RI3C バス上のデバイスを構成するためにコントローラモードで呼び出されます。

また、ターゲットが DEFSVLS コマンドを受信した際に、ターゲットモードで呼び出される場合もありま
す。

RX ファミリ RI3C モジュール Firmware Integration Technology

R01AN6808JS0113 Rev.1.13 Page 31 of 52

Dec.26.25

R_RI3C_TargetStatusSet()
GETSTATUS コマンドへの応答としてコントローラに返されるステータスを設定します。

Format
fsp_err_t R_RI3C_TargetStatusSet(

 ri3c_ctrl_t *const p_api_ctrl,

 ri3c_device_status_t status

)

Parameters
p_api_ctrl

RI3C 制御ブロックへのポインタ。

status
ターゲットの現在のステータス。

Return Values
FSP_SUCCESS /* 処理に成功しました。 */
FSP_ERR_ASSERTION /* NULL ポインタがありました。 */
FSP_ERR_NOT_OPEN /* 制御ブロックが開いていません。 */
FSP_ERR_INVALID_MODE /* インスタンスはターゲットモードではない。 */
FSP_ERR_UNSUPPORTED /* ターゲットモードのサポートは無効。 */

Properties
r_ri3c_rx_if.h にプロトタイプ宣言されています。

Description
GETSTATUS コマンドへの応答としてコントローラに返されるステータスを設定します。

• ICDSR レジスタの保留割り込みフィールドとベンダ予約フィールドをクリアします。
• ICDSR レジスタに新しい保留割り込みフィールドとベンダ予約フィールドを書き込みます。

Example
ri3c_device_status_t g_target_device_status =
{
 .pending_interrupt = 0,
 .vendor_status = 0,
};
fsp_err_t err;

err = R_RI3C_TargetStatusSet(&g_ri3c0_ctrl, g_target_device_status);

Special Notes
なし。

RX ファミリ RI3C モジュール Firmware Integration Technology

R01AN6808JS0113 Rev.1.13 Page 32 of 52

Dec.26.25

R_RI3C_DeviceSelect()
コントローラモードにおいて次の転送先デバイスを選択します。

Format
fsp_err_t R_RI3C_DeviceSelect(
 ri3c_ctrl_t *const p_api_ctrl,
 uint32_t device_index,
 uint32_t bitrate_mode

)

Parameters
p_api_ctrl

RI3C 制御ブロックへのポインタ。

device_index
コントローラテーブルのインデックス

bitrate_mode
選択したデバイスのビットレート設定

この構造体の詳細については「2.9 引数」を参照してください。

Return Values
FSP_SUCCESS /* 処理に成功しました。 */
FSP_ERR_ASSERTION /* NULL ポインタがありました。 */
FSP_ERR_NOT_OPEN /* 制御ブロックが開いていません。 */
FSP_ERR_INVALID_MODE /* ターゲットモードで禁止された動作が行われた。 */
FSP_ERR_UNSUPPORTED /* コントローラモードのサポートが無効化されている。 */

Properties
r_ri3c_rx_if.h にプロトタイプ宣言されています。

Description
コントローラモードにおいて次の転送先デバイスを選択します。

Example
fsp_err_t err;

ret = R_RI3C_DeviceSelect(
&g_ri3c0_ctrl,
0,
RI3C_BITRATE_MODE_RI3C_SDR4_ICEBR_X4
);

Special Notes
この関数はターゲットモードでは使用されません。

RX ファミリ RI3C モジュール Firmware Integration Technology

R01AN6808JS0113 Rev.1.13 Page 33 of 52

Dec.26.25

R_RI3C_DynamicAddressAssignmentStart()
ダイナミックアドレス割り当てプロセスを開始します。

Format
fsp_err_t R_RI3C_DynamicAddressAssignmentStart(
 ri3c_ctrl_t *const p_api_ctrl,
 ri3c_address_assignment_mode_t address_assignment_mode,
 uint32_t starting_device_index,
 uint32_t device_count
)

Parameters
p_api_ctrl

RI3C 制御ブロックへのポインタ。

address_assignment_mode
動的アドレス割り当てに使用するコマンド。

starting_device_index
動的アドレス割り当て時に最初のデバイスを割り当てるために使用されるデバイスインデックス。

device_count
割り当てるデバイスの数 (I3C_ADDRESS_ASSIGNMENT_MODE_ENTDAA 指定時のみ使用)

Return Values
FSP_SUCCESS /* 処理に成功しました。 */
FSP_ERR_ASSERTION /* NULL ポインタがありました。 */
FSP_ERR_NOT_OPEN /* 制御ブロックが開いていません。 */
FSP_ERR_INVALID_MODE /* ターゲットモードで禁止された動作が行われた。 */
FSP_ERR_IN_USE /* ドライバがビジーのため動作を完了できなかった。 */
FSP_ERR_UNSUPPORTED /* コントローラモードのサポートが無効化されている。 */

Properties
r_ri3c_rx_if.h にプロトタイプ宣言されています。

Description
ダイナミックアドレス割り当てプロセスを開始します。

Example
fsp_err_t err;

err = R_RI3C_DynamicAddressAssignmentStart(
&g_ri3c0_ctrl,
RI3C_ADDRESS_ASSIGNMENT_MODE_SETDASA,
1,
0
);

Special Notes
なし。

RX ファミリ RI3C モジュール Firmware Integration Technology

R01AN6808JS0113 Rev.1.13 Page 34 of 52

Dec.26.25

R_RI3C_CommandSend()
バス上のターゲットにブロードキャストコマンドまたはダイレクトコマンドを送信します。

Format
fsp_err_t R_RI3C_CommandSend(
 ri3c_ctrl_t *const p_api_ctrl,
 ri3c_command_descriptor_t *p_command_descriptor
)

Parameters
p_api_ctrl

RI3C 制御ブロックへのポインタ。

p_command_descriptor
コマンドを実行するためのディスクリプタ。

Return Values
FSP_SUCCESS /* 処理に成功しました。 */
FSP_ERR_ASSERTION /* NULL ポインタがありました。 */
FSP_ERR_NOT_OPEN /* 制御ブロックが開いていません。 */
FSP_ERR_IN_USE /* ドライバがビジーのため動作を完了できなかった。 */
FSP_ERR_INVALID_MODE /* ターゲットモードで禁止された動作が行われた。 */
FSP_ERR_INVALID_ALIGNMENT /* バッファは 4 バイトアラインで配置しなければならない。リード動作
ではデータ長は 4 バイトの倍数でなければならない。 */
FSP_ERR_UNSUPPORTED /* 関数の呼び出しに必要なコントローラモードのサポートが無効化されている
／GETACCMST コマンドの送信に必要なターゲットモードのサポートが無効化されている。 */

Properties
r_ri3c_rx_if.h にプロトタイプ宣言されています。

Description
コマンドディスクリプタの内容に基づいてバス上のターゲットにブロードキャストコマンドまたはダイレク
トコマンドを送信します。コマンドディスクリプタの詳細については、アプリケーションノート「RX26T
グループ ユーザーズマニュアル ハードウェア編」 (R01UH0979) を参照してください。

Example
/* すべてのターゲットにダイナミックアドレス割り当てリセット要求を送信 */
fsp_err_t err;

ri3c_command_descriptor_t command_descriptor;
command_descriptor.command_code = I3C_CCC_BROADCAST_RSTDAA;
command_descriptor.p_buffer = NULL;
command_descriptor.length = 0;
command_descriptor.restart = false;
command_descriptor.rnw = false;
err = R_RI3C_CommandSend(
 &g_ri3c0_ctrl,
 &command_descriptor
);

Special Notes
command_code フィールドの詳細については、「2.9 引数」の「ri3c_common_command_code_t」を参照
してください。

コマンドバッファは 4 バイトアラインで配置しなければなりません。

RX ファミリ RI3C モジュール Firmware Integration Technology

R01AN6808JS0113 Rev.1.13 Page 35 of 52

Dec.26.25

R_RI3C_Write()
転送に使用するライトバッファを設定します。コントローラモードでは、転送を開始します。転送が完了す
るとストップコンディションまたはリスタートコンディションを送信します。

Format
fsp_err_t R_RI3C_Write(
 ri3c_ctrl_t *const p_api_ctrl,
 uint8_t const *const p_data,
 uint32_t length,
 bool restart
)

Parameters
p_api_ctrl

RI3C 制御ブロックへのポインタ。

p_data
書き込み先バッファへのポインタ。

length
転送バイト数。

restart
真の場合、転送完了後にリスタートコンディションを発行します（コントローラモード時のみ）。

Return Values
FSP_SUCCESS /* 処理に成功しました。 */
FSP_ERR_ASSERTION /* NULL ポインタがありました。 */
FSP_ERR_NOT_OPEN /* 制御ブロックが開いていません。 */
FSP_ERR_IN_USE /* ドライバがビジーのため動作を完了できなかった。 */
FSP_ERR_INVALID_MODE /* インスタンスは既に有効化されている。 */
FSP_ERR_INVALID_ALIGNMENT /* バッファは 4 バイトアラインで配置しなければならない。 */

Properties
r_ri3c_rx_if.h にプロトタイプ宣言されています。

Description
転送に使用するライトバッファを設定します。コントローラモードでは、転送を開始します。転送が完了す
るとストップコンディションまたはリスタートコンディションを送信します。

R_RI3C_Write()関数は FIFO 方式でデータ転送を行います。
Example
uint8_t g_write_data[MAX_WRITE_DATA_LEN];

fsp_err_t err;

err = R_RI3C_Write(
 &g_ri3c0_ctrl, /* RI3C 制御ブロックへのポインタ */
 g_write_data, /* ライト転送用に割り当てられたメモリ */
 sizeof(g_write_data), /* 割り当てられた転送メモリのサイズ */
false /* リスタートコンディションのブール値 */
);

Special Notes
なし。

RX ファミリ RI3C モジュール Firmware Integration Technology

R01AN6808JS0113 Rev.1.13 Page 36 of 52

Dec.26.25

R_RI3C_Read()
転送に使用するリードバッファを設定します。コントローラモードでは、転送を開始します。転送が完了す
るとストップコンディションまたはリスタートコンディションを送信します。

Format
fsp_err_t R_RI3C_Read(
 ri3c_ctrl_t *const p_api_ctrl,
 uint8_t const *const p_data,
 uint32_t length,
 bool restart
)

Parameters
p_api_ctrl

RI3C 制御ブロックへのポインタ。

p_data
転送時に読み出したバイトデータを格納するバッファへのポインタ。

length
転送バイト数

restart
真の場合、転送完了後にリスタートコンディションを発行します（コントローラモード時のみ）。

Return Values
FSP_SUCCESS /* 処理に成功しました。 */
FSP_ERR_ASSERTION /* NULL ポインタがありました。 */
FSP_ERR_NOT_OPEN /* 制御ブロックが開いていません。 */
FSP_ERR_IN_USE /* ドライバがビジーのため動作を完了できなかった。 */
FSP_ERR_INVALID_MODE /* インスタンスは既に有効化されている。 */
FSP_ERR_INVALID_ALIGNMENT /* バッファは 4 バイト境界に整列し、長さは 4 バイトの倍数である必要

があります。 */

Properties
r_ri3c_rx_if.h にプロトタイプ宣言されています。

Description
転送に使用するリードバッファを設定します。コントローラモードでは、転送を開始します。転送が完了す
るとストップコンディションまたはリスタートコンディションを送信します。

R_RI3C_Read()関数は FIFO 方式でデータ転送を行います。

Example
uint8_t g_read_data[MAX_READ_DATA_LEN];

fsp_err_t err;

err = R_RI3C_Read(
 &g_ri3c0_ctrl, /* RI3C 制御ブロックへのポインタ */
 g_read_data, /* リード転送用に割り当てられたメモリ */
 sizeof(g_read_data), /* 割り当てられた転送メモリのサイズ */
 false /* リスタートコンディションのブール値 */
);

Special Notes
なし。

RX ファミリ RI3C モジュール Firmware Integration Technology

R01AN6808JS0113 Rev.1.13 Page 37 of 52

Dec.26.25

R_RI3C_IbiWrite()
IBI ライト動作を開始します。

Format
fsp_err_t R_RI3C_IbiWrite(
 ri3c_ctrl_t *const p_api_ctrl,
 ri3c_ibi_type_t ibi_type,
 uint8_t const *const p_data,
 uint32_t length
)

Parameters
p_api_ctrl

RI3C 制御ブロックへのポインタ。

ibi_type
IBI の種別。

p_data
転送時に読み出されるバイトデータを格納するバッファへのポインタ。

length
転送バイト数。

Return Values
FSP_SUCCESS /* 処理に成功しました。 */
FSP_ERR_ASSERTION /* NULL ポインタがありました。 */
FSP_ERR_NOT_OPEN /* 制御ブロックが開いていません。 */
FSP_ERR_IN_USE /* ドライバがビジーのため動作を完了できなかった */
FSP_ERR_INVALID_MODE /* この関数はターゲットモードでしか呼び出すことができない。 */
FSP_ERR_INVALID_ALIGNMENT /* バッファは 4 バイトアラインで配置しなければならない。 */
FSP_ERR_UNSUPPORTED /* ターゲットモードのサポートが無効化されている。 */

Properties
r_ri3c_rx_if.h にプロトタイプ宣言されています。

Description
IBI ライト動作を開始します。

• デバイスに IBI ペイロードがある場合は、IBI のデータ部を書き込むためのバッファが設定されます。
• IBI を開始するコマンドディスクリプタを作成します。
• コマンドキューにディスクリプタを書き込みます。
Example
fsp_err_t err;

err = R_RI3C_IbiWrite(
 &g_ri3c0_ctrl,
 RI3C_IBI_TYPE_HOT_JOIN,
 NULL,
 0
);

Special Notes
この関数はターゲットモードでのみ使用されます。

RX ファミリ RI3C モジュール Firmware Integration Technology

R01AN6808JS0113 Rev.1.13 Page 38 of 52

Dec.26.25

R_RI3C_IbiRead()
受信した IBI データを格納するリードバッファを設定します。

Format
fsp_err_t R_RI3C_IbiRead(
 ri3c_ctrl_t *const p_api_ctrl,
 uint8_t *const p_data,
 uint32_t length
)

Parameters
p_api_ctrl

RI3C 制御ブロックへのポインタ。

p_data
転送時に読み出されるバイトデータを格納するバッファへのポインタ。

length
転送バイト数。

Return Values
FSP_SUCCESS /* 処理に成功しました。 */
FSP_ERR_ASSERTION /* NULL ポインタがありました。 */
FSP_ERR_NOT_OPEN /* 制御ブロックが開いていません。 */
FSP_ERR_INVALID_MODE /* この関数はコントローラモードでのみ呼び出されます。 */
FSP_ERR_INVALID_ALIGNMENT /* バッファは 4 バイト境界に整列し、長さは 4 バイトの倍数である必要

があります。 */
FSP_ERR_UNSUPPORTED /* コントローラのサポートは無効化されています。 */

Properties
r_ri3c_rx_if.h にプロトタイプ宣言されています。

Description
受信した IBI データを格納するリードバッファを設定します。

Example
uint8_t g_ibi_read_data[MAX_IBI_PAYLOAD_SIZE];

fsp_err_t err;

err = R_RI3C_IbiRead(
 &g_ri3c0_ctrl,
 g_ibi_read_data,
 MAX_IBI_PAYLOAD_SIZE
);

Special Notes
この関数はコントローラモードでだけ使用できます。

RX ファミリ RI3C モジュール Firmware Integration Technology

R01AN6808JS0113 Rev.1.13 Page 39 of 52

Dec.26.25

R_RI3C_Close()
RI3C インスタンスをクローズします。

Format
fsp_err_t R_RI3C_Close(
 ri3c_ctrl_t *const p_api_ctrl,
)

Parameters
p_api_ctrl

RI3C 制御ブロックへのポインタ。

Return Values
FSP_SUCCESS /* 処理に成功しました。 */
FSP_ERR_ASSERTION /* NULL ポインタがありました。 */
FSP_ERR_NOT_OPEN /* 制御ブロックが開いていません。 */

Properties
r_ri3c_rx_if.h にプロトタイプ宣言されています。

Description
RI3C インスタンスをクローズします。

• RI3C 割り込み要求を無効にします。
• I3C バスの動作を禁止します。

Example
fsp_err_t err;

err = R_RI3C_Close(&g_api_ctrl);

Special Notes
なし。

RX ファミリ RI3C モジュール Firmware Integration Technology

R01AN6808JS0113 Rev.1.13 Page 40 of 52

Dec.26.25

4. 端子設定
RI3C FIT モジュールを使用する場合は、マルチファンクションピンコントローラ (MPC) で周辺機能の入出
力信号を端子に割り当ててください。本ドキュメントでは、以降、端子の割り当ては「端子設定」と呼びま
す。

注: 端子設定は、R_RI3C_Open() 関数を呼び出した後に行ってください。

e2 studio で端子設定を行う場合、スマート・コンフィグレータの端子設定機能を利用できます。端子設定
機能を使用する場合、スマート・コンフィグレータの端子設定ウィンドウで選択したオプションに応じてソ
ースファイルが生成されます。その後、ソースファイルで定義された関数を呼び出して端子を設定します。
そのソースファイルで定義された関数を呼び出すことにより端子を設定できます。詳細は表 4.1 を参照して
ください。

表 4.1 Smart Configurator が出力する関数。

使用マイコン 出力される関数 備考
RX26T R_RI3C_PinSet_RI3C0()

RX ファミリ RI3C モジュール Firmware Integration Technology

R01AN6808JS0113 Rev.1.13 Page 41 of 52

Dec.26.25

5. サンプルコード

 RI3C コントローラの基本例
アプリケーションにおいて RI3C コントローラを最小限に使用する基本例を示します。

この例では、コントローラの初期化を実装し、データを転送し、コールバック関数のプロトタイプを提供し
ます。一連の手続きとして、モジュールレジスタへメモリを割り当て、ビットレートモードと共にデバイス
ロールを（1 次コントローラとして）設定し、プロトコル（I2C／I3C）を選択し、I3C プロトコル用ダイナ
ミックアドレスを割り当て、モジュール割り込み要求を許可します。ライトバッファからデータをターゲッ
トに送信し、リードバッファからデータを受信します。

RX ファミリ RI3C モジュール Firmware Integration Technology

R01AN6808JS0113 Rev.1.13 Page 42 of 52

Dec.26.25

void ri3c_controller_basic_example (void)
{

 /* モジュールを初期化する */
 fsp_err_t status = R_RI3C_Open(&g_ri3c_ctrl, &g_ri3c_cfg);
 assert(FSP_SUCCESS == status);
 static ri3c_device_cfg_t controller_device_cfg =
 {

 /* デバイスメーカが定義したスタティック I3C/I2C Legacy アドレス */
 .static_address = EXAMPLE_CONTROLLER_STATIC_ADDRESS,

 /* メインコントローラであるデバイスは自身でダイナミックアドレスを設定しなければならない */
 .dynamic_address = EXAMPLE_CONTROLLER_DYNAMIC_ADDRESS,
 };
 status = R_RI3C_DeviceCfgSet(&g_ri3c_ctrl, &controller_device_cfg);
 assert(FSP_SUCCESS == status);
 static ri3c_device_table_cfg_t device_table_cfg =
 {

 /* デバイスメーカが定義したスタティック I3C/I2C Legacy アドレス */
 .static_address = EXAMPLE_STATIC_ADDRESS,

 /* ダイナミックアドレスは I2C では使用しない */
 .dynamic_address = EXAMPLE_DYNAMIC_ADDRESS,

 /* デバイスの種別 （I2C デバイス／I3C デバイス） */
 .device_protocol = I3C_DEVICE_PROTOCOL_I3C,
 .ibi_accept = false,

 /* デバイスによっては IBI 要求にデータペイロードあり
 * デバイスが ENTDAA で設定される場合、このフィールドは自動的に更新される
 */
 .ibi_payload = false,

 /* 2 次コントローラが未サポートのためコントローラ要求は受け付け不可 */
 .controllerrole_request_accept = false,
 };

 /* コントローラテーブルにデバイスコンフィグレーションを設定する */
 status = R_RI3C_ControllerDeviceTableSet(&g_ri3c_ctrl, 0, &device_table_cfg);
 assert(FSP_SUCCESS == status);

 /* RI3C デバイスを有効化する */
 status = R_RI3C_Enable(&g_ri3c_ctrl);
 assert(FSP_SUCCESS == status);
 /* ENTDAA コマンドによるバス上のデバイスへのダイナミックアドレスの割り当てを開始する */
 status = R_RI3C_DynamicAddressAssignmentStart(&g_ri3c_ctrl,
 I3C_ADDRESS_ASSIGNMENT_MODE_ENTDAA,
 0,
 1);
 assert(FSP_SUCCESS == status);

 /* ダイナミックアドレス割り当ての完了を待つ */
 ri3c_app_event_wait(RI3C_EVENT_ADDRESS_ASSIGNMENT_COMPLETE);

 /* 次の動作について設定済デバイスとビットレートモードを選択する */
 status = R_RI3C_DeviceSelect(&g_ri3c_ctrl, 0, I3C_BITRATE_MODE_I3C_SDR0_STDBR);
 assert(FSP_SUCCESS == status);

 /* ライト転送を開始する */
 static uint8_t p_write_buffer[] = {1, 2, 3, 4, 5};
 status = R_RI3C_Write(&g_ri3c_ctrl, p_write_buffer, sizeof(p_write_buffer), false);
 assert(FSP_SUCCESS == status);

 /* ライト転送の完了を待つ */
 ri3c_app_event_wait(RI3C_EVENT_WRITE_COMPLETE);
 /* リード転送を開始する */
 static uint8_t p_read_buffer[16];
 status = R_RI3C_Read(&g_ri3c_ctrl, p_read_buffer, sizeof(p_read_buffer), false);
 assert(FSP_SUCCESS == status);

 /* リード転送の完了を待つ */
 ri3c_app_event_wait(RI3C_EVENT_READ_COMPLETE);
}

RX ファミリ RI3C モジュール Firmware Integration Technology

R01AN6808JS0113 Rev.1.13 Page 43 of 52

Dec.26.25

/* この関数は各 ISR から I3C ドライバによって呼び出されアプリケーションに I3C イベントを通知する */
void ri3c_controller_basic_example_callback (ri3c_callback_args_t const * const p_args)
{
 switch (p_args->event)
 {
 case RI3C_EVENT_ENTDAA_ADDRESS_PHASE:
 {

 /* デバイスの PID レジスタ、DCR レジスタ、および BCR レジスタは、
 * ri3c_callback_args_t::p_target_info で取得できる */
 break;
 }
 case RI3C_EVENT_ADDRESS_ASSIGNMENT_COMPLETE:
 {
 ri3c_app_event_notify(RI3C_EVENT_ADDRESS_ASSIGNMENT_COMPLETE);
 break;
 }
 case RI3C_EVENT_WRITE_COMPLETE:
 {
 ri3c_app_event_notify(RI3C_EVENT_WRITE_COMPLETE);
 break;
 }
 case RI3C_EVENT_READ_COMPLETE:
 {

 /* ターゲットから読み出したバイト数は
 * ri3c_callback_args_t::transfer_size で取得できる */
 ri3c_app_event_notify(RI3C_EVENT_READ_COMPLETE);
 break;
 }
 default:
 {
 break;
 }
 }
}

RX ファミリ RI3C モジュール Firmware Integration Technology

R01AN6808JS0113 Rev.1.13 Page 44 of 52

Dec.26.25

 RI3C ターゲットの基本例
アプリケーションにおいて RI3C ターゲットを最小限に使用する基本例を示します。

この例では、ターゲットの初期化を実装し、コールバック関数のプロトタイプを提供します。一連の手続き
として、モジュールレジスタへメモリを割り当て、スタティックアドレスおよびターゲット情報と共にデバ
イスロールを（ターゲットとして）設定し、データ転送用メモリを割り当てます。
void ri3c_target_basic_example (void)
{

 /* モジュールを初期化する */
 fsp_err_t status = R_RI3C_Open(&g_ri3c_ctrl, &g_ri3c_cfg);
 assert(FSP_SUCCESS == status);
 static ri3c_device_cfg_t target_device_cfg =
 {

 /* デバイスメーカが定義したスタティック I3C/I2C Legacy アドレス */
 .static_address = EXAMPLE_STATIC_ADDRESS,
 /* コントローラが ENTDAA で本デバイスを設定する際にダイナミックアドレスは

 * 自動的に更新される */
 .dynamic_address = 0,
 /* コントローラが読み出すデバイスレジスタ */
 .target_info =
 {
 .bcr = EXAMPLE_BCR_SETTING,
 .dcr = EXAMPLE_DCR_SETTING,
 .pid =
 {
 0, 1, 2, 3, 4, 5
 }
 }
 };
 /* 本デバイスのデバイスコンフィグレーションを設定する */
 status = R_RI3C_DeviceCfgSet(&g_ri3c_ctrl, &target_device_cfg);
 assert(FSP_SUCCESS == status);

 /* ターゲットモードを有効化する */
 status = R_RI3C_Enable(&g_ri3c_ctrl);
 assert(FSP_SUCCESS == status);
 static uint8_t p_read_buffer[EXAMPLE_READ_BUFFER_SIZE];
 static uint8_t p_write_buffer[EXAMPLE_WRITE_BUFFER_SIZE];

 /* リード転送時に受信するデータを格納するバッファを設定する */
 status = R_RI3C_Read(&g_ri3c_ctrl, p_read_buffer, sizeof(p_read_buffer), false);
 assert(FSP_SUCCESS == status);

 /* コントローラによるリード転送の完了を待つ */
 ri3c_app_event_wait(RI3C_EVENT_READ_COMPLETE);

 /* ライト転送時に送信されるライトバッファを設定する */
 status = R_RI3C_Write(&g_ri3c_ctrl, p_write_buffer, sizeof(p_write_buffer), false);
 assert(FSP_SUCCESS == status);

 /* コントローラによるライト転送の完了を待つ */
 ri3c_app_event_wait(RI3C_EVENT_WRITE_COMPLETE);
}

RX ファミリ RI3C モジュール Firmware Integration Technology

R01AN6808JS0113 Rev.1.13 Page 45 of 52

Dec.26.25

void ri3c_target_basic_example_callback (ri3c_callback_args_t const * const p_args)
{
 switch (p_args->event)
 {
 case RI3C_EVENT_ADDRESS_ASSIGNMENT_COMPLETE:
 {
 ri3c_app_event_notify(RI3C_EVENT_ADDRESS_ASSIGNMENT_COMPLETE);
 break;
 }
 case RI3C_EVENT_READ_BUFFER_FULL:
 {

 /* ユーザー指定リードバッファがない場合、またはユーザー指定リードバッファが満杯の場合、
 * ドライバはアプリケーションにバッファフルを通知する。

 * アプリケーションが R_RI3C_READ()関数を呼び出して新しいリードバッファを用意する場合もある。
 * リードバッファが用意されない場合、残り転送バイトは破棄される。 */
 uint8_t * p_read_buffer = ri3c_app_next_read_buffer_get();
 R_RI3C_Read(&g_ri3c_ctrl, p_read_buffer, EXAMPLE_READ_BUFFER_SIZE, false);
 break;
 }
 case RI3C_EVENT_READ_COMPLETE:
 {

 /* ターゲットが読み出したデータのバイト数は
 * ri3c_callback_args_t::transfer_size で取得できる */
 ri3c_app_event_notify(RI3C_EVENT_READ_COMPLETE);

 /* 次転送で使用する転送バッファを設定するためにアプリケーションがこのイベントから R_RI3C_READ()
 * または R_RI3C_WRITE()を呼び出す場合もある */
 break;
 }
 case RI3C_EVENT_WRITE_COMPLETE:
 {

 /* ターゲットが書き込んだデータのバイト数は

 * ri3c_callback_args_t::transfer_size で取得できる */
 ri3c_app_event_notify(RI3C_EVENT_WRITE_COMPLETE);

 /* 次転送で使用する転送バッファを設定するためにアプリケーションがこのイベントから R_RI3C_READ()

 * または R_RI3C_WRITE()を呼び出す場合もある
 */
 break;
 }
 default:
 {
 break;
 }
 }
}

 /* リード転送の完了を待つ */
 ri3c_app_event_wait(RI3C_EVENT_READ_COMPLETE);
}

RX ファミリ RI3C モジュール Firmware Integration Technology

R01AN6808JS0113 Rev.1.13 Page 46 of 52

Dec.26.25

6. 付録

 動作確認環境
本モジュールの動作確認環境を以下に示します。

表 6.1 動作確認環境（Rev.1.00）

項目 Contents
統合開発環境 ルネサスエレクトロニクス製 e2 studio Version 2022-10 (22.10.0)

IAR Embedded Workbench for Renesas RX 4.20.3
C コンパイラ ルネサスエレクトロニクス製 RX ファミリ用 C/C++コンパイラパッケージ

V3.05.00
コンパイルオプション：統合開発環境のデフォルト設定に以下のオプショ
ンを追加します。
-lang = c99

GCC for Renesas RX 8.3.0.202204
コンパイルオプション：統合開発環境のデフォルト設定に以下のオプション
を追加します。
-std=gnu99
リンクオプション：「Optimize size (サイズ最適化) (-Os)」を使用する場合、
統合開発環境のデフォルト設定に以下のユーザ定義オプションを追加しま
す。
-Wl, --no-gc-sections
これは、FIT 周辺モジュール内で宣言された割り込み関数をリンカが誤って破
棄してしまうという GCC リンカ問題を回避するための対策です。
IAR C/C++ Compiler for Renesas RX version 4.20.3
コンパイルオプション：統合開発環境のデフォルト設定

エンディアン リトルエンディアン
モジュールのリビジョン Rev.1.00
使用ボード Renesas Flexible Motor Control Kit for RX26T (型名：

RTK0EMXE70S00020BJ)

RX ファミリ RI3C モジュール Firmware Integration Technology

R01AN6808JS0113 Rev.1.13 Page 47 of 52

Dec.26.25

表 6.2 動作確認環境（Rev.1.10）

項目 Contents
統合開発環境 ルネサスエレクトロニクス製 e2 studio Version 2023-04 (23.4.0)

IAR Embedded Workbench for Renesas RX 4.20.3
C コンパイラ ルネサスエレクトロニクス製 RX ファミリ用 C/C++コンパイラパッケージ

V3.05.00
コンパイルオプション：統合開発環境のデフォルト設定に以下のオプショ
ンを追加します。
-lang = c99

GCC for Renesas RX 8.3.0.202204
コンパイルオプション：統合開発環境のデフォルト設定に以下のオプション
を追加します。
-std=gnu99
リンクオプション：「Optimize size (サイズ最適化) (-Os)」を使用する場合、
統合開発環境のデフォルト設定に以下のユーザ定義オプションを追加しま
す。
-Wl, --no-gc-sections
これは、FIT 周辺モジュール内で宣言された割り込み関数をリンカが誤って破
棄してしまうという GCC リンカ問題を回避するための対策です。
IAR C/C++ Compiler for Renesas RX version 4.20.3
コンパイルオプション：統合開発環境のデフォルト設定

エンディアン リトルエンディアン
モジュールのリビジョン Rev.1.10
使用ボード -

表 6.3 動作確認環境（Rev.1.11）

項目 Contents
統合開発環境 ルネサスエレクトロニクス製 e2 studio Version 2023-10 (23.10.0)

IAR Embedded Workbench for Renesas RX 4.20.3
C コンパイラ ルネサスエレクトロニクス製 RX ファミリ用 C/C++コンパイラパッケージ

V3.05.00
コンパイルオプション：統合開発環境のデフォルト設定に以下のオプショ
ンを追加します。
-lang = c99

GCC for Renesas RX 8.3.0.202305
コンパイルオプション：統合開発環境のデフォルト設定に以下のオプション
を追加します。
-std=gnu99
リンクオプション：「Optimize size (サイズ最適化) (-Os)」を使用する場合、
統合開発環境のデフォルト設定に以下のユーザ定義オプションを追加しま
す。
-Wl, --no-gc-sections
これは、FIT 周辺モジュール内で宣言された割り込み関数をリンカが誤って破
棄してしまうという GCC リンカ問題を回避するための対策です。
IAR C/C++ Compiler for Renesas RX version 4.20.3
コンパイルオプション：統合開発環境のデフォルト設定

エンディアン リトルエンディアン
モジュールのリビジョン Rev.1.11
使用ボード -

RX ファミリ RI3C モジュール Firmware Integration Technology

R01AN6808JS0113 Rev.1.13 Page 48 of 52

Dec.26.25

表 6.4 動作確認環境（Rev.1.12）

項目 Contents
統合開発環境 ルネサスエレクトロニクス製 e2 studio Version 2025-01 (25.1.0)

IAR Embedded Workbench for Renesas RX 5.10.1
C コンパイラ ルネサスエレクトロニクス製 RX ファミリ用 C/C++コンパイラパッケージ

V3.07.00
コンパイルオプション：統合開発環境のデフォルト設定に以下のオプショ
ンを追加します。
-lang = c99

GCC for Renesas RX 8.3.0.202411
コンパイルオプション：統合開発環境のデフォルト設定に以下のオプション
を追加します。
-std=gnu99
リンクオプション：「Optimize size (サイズ最適化) (-Os)」を使用する場合、
統合開発環境のデフォルト設定に以下のユーザ定義オプションを追加しま
す。
-Wl, --no-gc-sections
これは、FIT 周辺モジュール内で宣言された割り込み関数をリンカが誤って破
棄してしまうという GCC リンカ問題を回避するための対策です。
IAR C/C++ Compiler for Renesas RX version 5.10.1
コンパイルオプション：統合開発環境のデフォルト設定

エンディアン リトルエンディアン
モジュールのリビジョン Rev.1.12
使用ボード -

表 6.5 動作確認環境（Rev.1.13）

項目 Contents
統合開発環境 ルネサスエレクトロニクス製 e2 studio Version 2025-10

IAR Embedded Workbench for Renesas RX 5.20.1
C コンパイラ ルネサスエレクトロニクス製 RX ファミリ用 C/C++コンパイラパッケージ

V3.07.00
コンパイルオプション：統合開発環境のデフォルト設定に以下のオプショ
ンを追加します。
-lang = c99

GCC for Renesas RX 14.2.0.202505
コンパイルオプション：統合開発環境のデフォルト設定に以下のオプション
を追加します。
-std=gnu99
リンクオプション：「Optimize size (サイズ最適化) (-Os)」を使用する場合、
統合開発環境のデフォルト設定に以下のユーザ定義オプションを追加しま
す。
-Wl, --no-gc-sections
これは、FIT 周辺モジュール内で宣言された割り込み関数をリンカが誤って破
棄してしまうという GCC リンカ問題を回避するための対策です。
IAR C/C++ Compiler for Renesas RX version 5.20.1
コンパイルオプション：統合開発環境のデフォルト設定

エンディアン リトルエンディアン
モジュールのリビジョン Rev.1.13
使用ボード -

RX ファミリ RI3C モジュール Firmware Integration Technology

R01AN6808JS0113 Rev.1.13 Page 49 of 52

Dec.26.25

 トラブルシューティング
(1) Q：本 FIT モジュールをプロジェクトに追加しましたが、ビルド実行すると「Could not open source file

"platform.h"」エラーが発生します。

A：FIT モジュールがプロジェクトに正しく追加されていない可能性があります。プロジェクトへの追加
方法をご確認ください。

 CS+を使用している場合：

アプリケーションノート RX ファミリ CS+に組み込む方法 Firmware Integration Technology
(R01AN1826)」

 e2 studio を使用している場合：

アプリケーションノート RX ファミリ e2 studio に組み込む方法 Firmware Integration Technology
(R01AN1723)」

また、本 FIT モジュールを使用する場合、ボードサポートパッケージ FIT モジュール(BSP モジュール)も
プロジェクトに追加する必要があります。BSP モジュールの追加方法は、アプリケーションノート「ボー
ドサポートパッケージモジュール(R01AN1685)」を参照してください。

(2) Q：本 FIT モジュールをプロジェクトに追加しましたが、ビルド実行すると「This MCU is not supported
by the current r_ri3c_rx module.」エラーが発生します。

A：追加した FIT モジュールがユーザプロジェクトのターゲットデバイスに対応していない可能性があり
ます。追加した FIT モジュールの対象デバイスを確認してください。

(3) Q：本 FIT モジュールをプロジェクトに追加しましたが、ビルド実行すると「コンフィグ設定が間違っ
ている場合のエラーメッセージ」エラーが発生します。

A：「r_ri3c_rx_config.h」ファイルの設定値が間違っている可能性があります。「r_ri3c_rx_config.h」フ
ァイルを確認して正しい値を設定してください。詳細は「2.7 コンパイル時の設定」を参照してくださ
い。

RX ファミリ RI3C モジュール Firmware Integration Technology

R01AN6808JS0113 Rev.1.13 Page 50 of 52

Dec.26.25

7. 参考ドキュメント
ユーザーズマニュアル：ハードウェア
（最新版をルネサス エレクトロニクスホームページから入手してください。）

テクニカルアップデート／テクニカルニュース
（最新の情報をルネサス エレクトロニクスホームページから入手してください。）

ユーザーズマニュアル：開発環境
RX ファミリ CC-RX コンパイラ ユーザーズマニュアル（R20UT3248）
（最新版をルネサス エレクトロニクスホームページから入手してください。）

RX ファミリ RI3C モジュール Firmware Integration Technology

R01AN6808JS0113 Rev.1.13 Page 51 of 52

Dec.26.25

テクニカルアップデートの対応について
本モジュールは以下のテクニカルアップデートの内容を反映しています。

なし

RX ファミリ RI3C モジュール Firmware Integration Technology

R01AN6808JS0113 Rev.1.13 Page 52 of 52

Dec.26.25

改訂記録

Rev.

発行日

改訂内容
ページ Summary

1.00 Aug 15, 2022 — 初版発行。
1.10 Jun 30, 2023 24, 47

54

プログラム

「2.12 FIT モジュールの追加方法」、「4 端子設定」から FIT

Configurator の説明を削除した。

6.1 動作確認環境：

Rev.1.10 に対応する表を追加。

RX26T-256KB のサポートを追加 (RAM: 64Kバイト製品) 。

1.11 Dec 13, 2023 24
54

プログラム

「2.12 FIT モジュールの追加方法」を変更

6.1 動作確認環境：

Rev.1.11 に対応する表を追加。

WAIT_LOOPコメントを追加。

1.12 Mar 15, 2025 55 6.1 動作確認環境：

Rev.1.12 に対応する表を追加。

 プログラム FITモジュールの免責事項と著作権を更新。

1.13 Dec 26, 2025 28 R_RI3C_DeviceCfgSet() セクションを変更。

 30 R_RI3C_ControllerDeviceTableSet() セクションを変更。

 32 R_RI3C_DeviceSelect() セクションを変更。

 33 R_RI3C_DynamicAddressAssignment() セクションを変更。

 36 R_RI3C_Read() セクションを変更。

 37 R_RI3C_IbiWrite() セクションを変更。

 38 R_RI3C_IbiRead() セクションを変更。

 48 6.1 動作確認環境：

Rev.1.13 に対応する表を追加。

 プログラム API関数のコメントをDoxygenスタイルに変更。

製品ご使用上の注意事項
ここでは、マイコン製品全体に適用する「使用上の注意事項」について説明します。個別の使用上の注意事項については、本ドキュメントおよびテクニ

カルアップデートを参照してください。

1. 静電気対策

CMOS 製品の取り扱いの際は静電気防止を心がけてください。CMOS 製品は強い静電気によってゲート絶縁破壊を生じることがあります。運搬や保

存の際には、当社が出荷梱包に使用している導電性のトレーやマガジンケース、導電性の緩衝材、金属ケースなどを利用し、組み立て工程にはアー

スを施してください。プラスチック板上に放置したり、端子を触ったりしないでください。また、CMOS 製品を実装したボードについても同様の扱

いをしてください。
2. 電源投入時の処置

電源投入時は、製品の状態は不定です。電源投入時には、LSI の内部回路の状態は不確定であり、レジスタの設定や各端子の状態は不定です。外部リ

セット端子でリセットする製品の場合、電源投入からリセットが有効になるまでの期間、端子の状態は保証できません。同様に、内蔵パワーオンリ

セット機能を使用してリセットする製品の場合、電源投入からリセットのかかる一定電圧に達するまでの期間、端子の状態は保証できません。
3. 電源オフ時における入力信号

当該製品の電源がオフ状態のときに、入力信号や入出力プルアップ電源を入れないでください。入力信号や入出力プルアップ電源からの電流注入に

より、誤動作を引き起こしたり、異常電流が流れ内部素子を劣化させたりする場合があります。資料中に「電源オフ時における入力信号」について

の記載のある製品は、その内容を守ってください。
4. 未使用端子の処理

未使用端子は、「未使用端子の処理」に従って処理してください。CMOS 製品の入力端子のインピーダンスは、一般に、ハイインピーダンスとなっ

ています。未使用端子を開放状態で動作させると、誘導現象により、LSI 周辺のノイズが印加され、LSI 内部で貫通電流が流れたり、入力信号と認識

されて誤動作を起こす恐れがあります。
5. クロックについて

リセット時は、クロックが安定した後、リセットを解除してください。プログラム実行中のクロック切り替え時は、切り替え先クロックが安定した

後に切り替えてください。リセット時、外部発振子（または外部発振回路）を用いたクロックで動作を開始するシステムでは、クロックが十分安定

した後、リセットを解除してください。また、プログラムの途中で外部発振子（または外部発振回路）を用いたクロックに切り替える場合は、切り

替え先のクロックが十分安定してから切り替えてください。
6. 入力端子の印加波形

入力ノイズや反射波による波形歪みは誤動作の原因になりますので注意してください。CMOS 製品の入力がノイズなどに起因して、VIL（Max.）から

VIH（Min.）までの領域にとどまるような場合は、誤動作を引き起こす恐れがあります。入力レベルが固定の場合はもちろん、VIL（Max.）から VIH

（Min.）までの領域を通過する遷移期間中にチャタリングノイズなどが入らないように使用してください。
7. リザーブアドレス（予約領域）のアクセス禁止

リザーブアドレス（予約領域）のアクセスを禁止します。アドレス領域には、将来の拡張機能用に割り付けられている リザーブアドレス（予約領

域）があります。これらのアドレスをアクセスしたときの動作については、保証できませんので、アクセスしないようにしてください。
8. 製品間の相違について

型名の異なる製品に変更する場合は、製品型名ごとにシステム評価試験を実施してください。同じグループのマイコンでも型名が違うと、フラッシ

ュメモリ、レイアウトパターンの相違などにより、電気的特性の範囲で、特性値、動作マージン、ノイズ耐量、ノイズ幅射量などが異なる場合があ

ります。型名が違う製品に変更する場合は、個々の製品ごとにシステム評価試験を実施してください。

© 2025 Renesas Electronics Corporation. All rights reserved.

ご注意書き
1. 本資料に記載された回路、ソフトウェアおよびこれらに関連する情報は、半導体製品の動作例、応用例を説明するものです。回路、ソフトウェアお

よびこれらに関連する情報を使用する場合、お客様の責任において、お客様の機器・システムを設計ください。これらの使用に起因して生じた損害

（お客様または第三者いずれに生じた損害も含みます。以下同じです。）に関し、当社は、一切その責任を負いません。
2. 当社製品または本資料に記載された製品デ－タ、図、表、プログラム、アルゴリズム、応用回路例等の情報の使用に起因して発生した第三者の特許

権、著作権その他の知的財産権に対する侵害またはこれらに関する紛争について、当社は、何らの保証を行うものではなく、また責任を負うもので

はありません。
3. 当社は、本資料に基づき当社または第三者の特許権、著作権その他の知的財産権を何ら許諾するものではありません。
4. 当社製品を組み込んだ製品の輸出入、製造、販売、利用、配布その他の行為を行うにあたり、第三者保有の技術の利用に関するライセンスが必要と

なる場合、当該ライセンス取得の判断および取得はお客様の責任において行ってください。
5. 当社製品を、全部または一部を問わず、改造、改変、複製、リバースエンジニアリング、その他、不適切に使用しないでください。かかる改造、改

変、複製、リバースエンジニアリング等により生じた損害に関し、当社は、一切その責任を負いません。
6. 当社は、当社製品の品質水準を「標準水準」および「高品質水準」に分類しており、各品質水準は、以下に示す用途に製品が使用されることを意図

しております。
 標準水準： コンピュータ、OA 機器、通信機器、計測機器、AV 機器、家電、工作機械、パーソナル機器、産業用ロボット等
 高品質水準： 輸送機器（自動車、電車、船舶等）、交通制御（信号）、大規模通信機器、金融端末基幹システム、各種安全制御装置等
当社製品は、データシート等により高信頼性、Harsh environment 向け製品と定義しているものを除き、直接生命・身体に危害を及ぼす可能性のある

機器・システム（生命維持装置、人体に埋め込み使用するもの等）、もしくは多大な物的損害を発生させるおそれのある機器・システム（宇宙機器

と、海底中継器、原子力制御システム、航空機制御システム、プラント基幹システム、軍事機器等）に使用されることを意図しておらず、これらの

用途に使用することは想定していません。たとえ、当社が想定していない用途に当社製品を使用したことにより損害が生じても、当社は一切その責

任を負いません。
7. あらゆる半導体製品は、外部攻撃からの安全性を 100％保証されているわけではありません。当社ハードウェア／ソフトウェア製品にはセキュリテ

ィ対策が組み込まれているものもありますが、これによって、当社は、セキュリティ脆弱性または侵害（当社製品または当社製品が使用されている

システムに対する不正アクセス・不正使用を含みますが、これに限りません。）から生じる責任を負うものではありません。当社は、当社製品また

は当社製品が使用されたあらゆるシステムが、不正な改変、攻撃、ウイルス、干渉、ハッキング、データの破壊または窃盗その他の不正な侵入行為

（「脆弱性問題」といいます。）によって影響を受けないことを保証しません。当社は、脆弱性問題に起因しまたはこれに関連して生じた損害につ

いて、一切責任を負いません。また、法令において認められる限りにおいて、本資料および当社ハードウェア／ソフトウェア製品について、商品性

および特定目的との合致に関する保証ならびに第三者の権利を侵害しないことの保証を含め、明示または黙示のいかなる保証も行いません。
8. 当社製品をご使用の際は、最新の製品情報（データシート、ユーザーズマニュアル、アプリケーションノート、信頼性ハンドブックに記載の「半導

体デバイスの使用上の一般的な注意事項」等）をご確認の上、当社が指定する最大定格、動作電源電圧範囲、放熱特性、実装条件その他指定条件の

範囲内でご使用ください。指定条件の範囲を超えて当社製品をご使用された場合の故障、誤動作の不具合および事故につきましては、当社は、一切

その責任を負いません。
9. 当社は、当社製品の品質および信頼性の向上に努めていますが、半導体製品はある確率で故障が発生したり、使用条件によっては誤動作したりする

場合があります。また、当社製品は、データシート等において高信頼性、Harsh environment 向け製品と定義しているものを除き、耐放射線設計を行

っておりません。仮に当社製品の故障または誤動作が生じた場合であっても、人身事故、火災事故その他社会的損害等を生じさせないよう、お客様

の責任において、冗長設計、延焼対策設計、誤動作防止設計等の安全設計およびエージング処理等、お客様の機器・システムとしての出荷保証を行

ってください。特に、マイコンソフトウェアは、単独での検証は困難なため、お客様の機器・システムとしての安全検証をお客様の責任で行ってく

ださい。
10. 当社製品の環境適合性等の詳細につきましては、製品個別に必ず当社営業窓口までお問合せください。ご使用に際しては、特定の物質の含有・使用

を規制する RoHS 指令等、適用される環境関連法令を十分調査のうえ、かかる法令に適合するようご使用ください。かかる法令を遵守しないことに

より生じた損害に関して、当社は、一切その責任を負いません。
11. 当社製品および技術を国内外の法令および規則により製造・使用・販売を禁止されている機器・システムに使用することはできません。当社製品お

よび技術を輸出、販売または移転等する場合は、「外国為替及び外国貿易法」その他日本国および適用される外国の輸出管理関連法規を遵守し、そ

れらの定めるところに従い必要な手続きを行ってください。
12. お客様が当社製品を第三者に転売等される場合には、事前に当該第三者に対して、本ご注意書き記載の諸条件を通知する責任を負うものといたしま

す。
13. 本資料の全部または一部を当社の文書による事前の承諾を得ることなく転載または複製することを禁じます。
14. 本資料に記載されている内容または当社製品についてご不明な点がございましたら、当社の営業担当者までお問合せください。

(注 1) 本資料において使用されている「当社」とは、ルネサス エレクトロニクス株式会社およびルネサス エレクトロニクス株式会社が直接的、間接的に

支配する会社をいいます。
(注 2) 本資料において使用されている「当社製品」とは、注１において定義された当社の開発、製造製品をいいます。

(Rev.5.0-1 2020.10)
本社所在地 お問合せ窓口
〒135-0061 東京都江東区豊洲 3-2-24（豊洲フォレシア）
www.renesas.com

 弊社の製品や技術、ドキュメントの最新情報、最寄の営業お問合せ窓

口に関する情報などは、弊社ウェブサイトをご覧ください。

www.renesas.com/contact/.

商標について
ルネサスおよびルネサスロゴはルネサス エレクトロニクス株式会社の

商標です。すべての商標および登録商標は、それぞれの所有者に帰属

します。

https://www.renesas.com/
https://www.renesas.com/contact/

	1. 概要
	1.1 Renesas I3C FITモジュール
	1.2 APIの概要
	1.3 RI3C FITモジュールの概要
	1.3.1 RI3C FITモジュールの仕様

	1.4 RI3Cモジュールの使用方法
	1.4.1 RI3C FITモジュールをC++プロジェクト内で使用する方法

	2. API情報
	2.1 ハードウェアの要求
	2.2 ソフトウェアの要求
	2.3 サポートされているツールチェーン
	2.4 使用する割り込みベクタ
	2.5 ヘッダファイル
	2.6 整数型
	2.7 コンパイル時の設定
	2.8 コードサイズ
	2.9 引数
	2.10 戻り値
	2.11 コールバック関数
	2.12 FITモジュールの追加方法
	2.13 for文、while文、do while文について

	3. API関数
	R_RI3C_Open()
	R_RI3C_Enable()
	R_RI3C_DeviceCfgSet()
	R_RI3C_ControllerDeviceTableSet()
	R_RI3C_TargetStatusSet()
	R_RI3C_DeviceSelect()
	R_RI3C_DynamicAddressAssignmentStart()
	R_RI3C_CommandSend()
	R_RI3C_Write()
	R_RI3C_Read()
	R_RI3C_IbiWrite()
	R_RI3C_IbiRead()
	R_RI3C_Close()

	4. 端子設定
	5. サンプルコード
	5.1 RI3Cコントローラの基本例
	5.2 RI3Cターゲットの基本例

	6. 付録
	6.1 動作確認環境
	6.2 トラブルシューティング

	7. 参考ドキュメント
	テクニカルアップデートの対応について
	改訂記録
	製品ご使用上の注意事項
	ご注意書き

