
 Application Note

R01AN1692EJ0301 Rev.3.01 Page 1 of 100
Mar.15.25

RX Family
I2C Bus Interface (RIIC) Module Using Firmware Integration Technology
Introduction
This application note describes the I2C bus interface (RIIC) module using firmware integration technology
(FIT) for communications between devices using the I2C bus interface.

Target Device
 RX110, RX111, RX113 Groups

 RX130, RX13T, RX140 Groups

 RX230, RX231, RX23E-A, RX23E-B, RX23T, RX23W Groups

 RX24T, RX24U Groups

 RX26T Group

 RX260, RX261 Groups

 RX64M Group

 RX65N, RX651 Groups

 RX660 Group

 RX66T Group

 RX66N Group

 RX671 Group

 RX71M Group

 RX72T Group

 RX72M Group

 RX72N Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

Target Compilers
• Renesas Electronics C/C++ Compiler Package for RX Family
• GCC for Renesas RX
• IAR C/C++ Compiler for Renesas RX

For details of the confirmed operation contents of each compiler, refer to “6.4 Operating Test Environment".

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 2 of 100
Mar.15.25

Contents

1. Overview ... 5
1.1 RIIC FIT Module .. 5
1.2 Using the RIIC FIT module .. 6
1.2.1 Using RIIC FIT module in C++ project .. 6
1.3 Outline of the API .. 6
1.4 Overview of RIIC FIT Module .. 7
1.4.1 Specifications of RIIC FIT Module ... 7
1.4.2 Master Transmission ... 8
1.4.3 Master Reception .. 12
1.4.4 Slave Transmission and Reception ... 15
1.4.5 State Transition ... 19
1.4.6 Flags when Transitioning States ... 20
1.4.7 Arbitration-Lost Detection Function ... 21
1.4.8 Timeout Detection Function .. 21

2. API Information .. 22
2.1 Hardware Requirements ... 22
2.2 Software Requirements ... 22
2.3 Supported Toolchains ... 22
2.4 Usage of Interrupt Vector .. 23
2.5 Header Files .. 25
2.6 Integer Types ... 25
2.7 Configuration Overview ... 26
2.8 Code Size .. 31
2.9 Parameters .. 32
2.10 Return Values .. 32
2.11 Callback Functions .. 33
2.12 Adding the FIT Module to Your Project ... 33
2.13 “for”, “while” and “do while” statements ... 34

3. API Functions .. 35
R_RIIC_Open() .. 35
R_RIIC_MasterSend() ... 37
R_RIIC_MasterReceive()... 41
R_RIIC_SlaveTransfer() .. 45
R_RIIC_GetStatus() ... 49
R_RIIC_Control() ... 51
R_RIIC_Close() ... 53
R_RIIC_GetVersion() ... 55

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 3 of 100
Mar.15.25

4. Pin Settings ... 56

5. Demo Projects ... 57
5.1 riic_mastersend_demo_rskrx64m, riic_mastersend_demo_rskrx64m_gcc .. 57
5.2 riic_masterreceive_demo_rskrx64m, riic_masterreceive_demo_rskrx64m_gcc 57
5.3 riic_slavetransfer_demo_rskrx64m, riic_slavetransfer_demo_rskrx64m_gcc 57
5.4 riic_mastersend_demo_rskrx231, riic_mastersend_demo_rskrx231_gcc .. 58
5.5 riic_masterreceive_demo_rskrx231, riic_masterreceive_demo_rskrx231_gcc 58
5.6 riic_slavetransfer_demo_rskrx231, riic_slavetransfer_demo_rskrx231_gcc .. 58
5.7 riic_mastersend_demo_rskrx671, riic_mastersend_demo_rskrx671_gcc .. 58
5.8 riic_masterreceive_demo_rskrx671, riic_masterreceive_demo_rskrx671_gcc 58
5.9 riic_slavetransfer_demo_rskrx671, riic_slavetransfer_demo_rskrx671_gcc .. 59
5.10 riic_mastersend_demo_rskrx72n, riic_mastersend_demo_rskrx72n_gcc .. 59
5.11 riic_masterreceive_demo_rskrx72n, riic_masterreceive_demo_rskrx72n_gcc 59
5.12 riic_slavetransfer_demo_rskrx72n, riic_slavetransfer_demo_rskrx72n_gcc .. 59
5.13 Adding a Demo to a Workspace .. 59
5.14 Downloading Demo Projects ... 59

6. Appendices .. 60
6.1 Communication Method .. 60
6.1.1 States for API Operation ... 60
6.1.2 Events During API Operation .. 60
6.1.3 Protocol State Transitions ... 61
6.1.4 Protocol State Transition Table ... 65
6.1.5 Functions Used on Protocol State Transitions .. 66
6.1.6 Flag States on State Transitions ... 66
6.2 Interrupt Request Generation Timing .. 68
6.2.1 Master Transmission ... 68
6.2.2 Master Reception .. 69
6.2.3 Master Transmit/Receive .. 70
6.2.4 Slave Transmission ... 70
6.2.5 Slave Reception .. 71
6.2.6 Multi-Master Communication ... 71
6.3 Timeout Detection and Processing After the Detection .. 72
6.3.1 Detecting a Timeout with the Timeout Detection Function ... 72
6.3.2 Processing After a Timeout is Detected .. 72
6.4 Operating Test Environment ... 74
6.5 Troubleshooting ... 85
6.6 Sample Code ... 86
6.6.1 Example when Accessing One Slave Device Continuously with One Channel 86

7. Reference Documents ... 91

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 4 of 100
Mar.15.25

Related Technical Updates ... 92

Revision History .. 93

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 5 of 100
Mar.15.25

1. Overview
The I2C bus interface module using firmware integration technology (RIIC FIT module (1)) provides a method
to transmit and receive data between the master and slave devices using the I2C bus interface (RIIC). The
RIIC is in compliance with the NXP I2C-bus (Inter-IC-Bus) interface.

Note:
1. When the description says “module” in this document, it indicates the RIIC FIT module.

Features supported by this module are as follows:

- Master transmission, master reception, slave transmission, and slave reception

- Multi-master configuration that communicates between multiple masters and one slave.

- Communication mode can be standard or fast mode and the maximum communication rate is 400 kbps.
 However, channel 0 of RX64M, RX71M, RX65N, RX66N, RX671, RX72M and RX72N supports fast mode
plus and the maximum communication rate is 1 Mbps.

Limitations
This module has the following limitations:

(1) The module cannot be used with the DMAC and the DTC.

(2) The NACK arbitration-lost detection function of the RIIC is not supported.

(3) Transmission with 10-bit address is not supported.

(4) Acceptance of the restart condition on slave device mode is not supported. Do not specify the address of
a device in which this module is embedded as an address immediately following a restart condition.

(5) The module does not support multiple interrupts.

(6) API function calls except for the R_RIIC_GetStatus function is prohibited within a callback function.

(7) Set the I flag to 1 to use interrupts.

1.1 RIIC FIT Module
This module is implemented in a project and used as the API. Refer to 2.12 Adding the FIT Module to Your
Project for details on implementing the module to the project.

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 6 of 100
Mar.15.25

1.2 Using the RIIC FIT module
1.2.1 Using RIIC FIT module in C++ project
For C++ project, add RIIC FIT module interface header file within extern “C”{}:
extern “C”

{

#include “r_smc_entry.h”

#include “r_riic_rx_if.h”

}

1.3 Outline of the API
Table 1.1 lists the API Functions.

Table 1.1 API Functions

Item Contents
R_RIIC_Open() The function initializes the RIIC FIT module. This function must be called

before calling any other API functions.

R_RIIC_MasterSend()
Starts master transmission. Changes the master transmit pattern
according to the parameters. Operates batched processing until stop
condition generation.

R_RIIC_MasterReceive()
Starts master reception. Changes the master receive pattern according to
the parameters. Operates batched processing until stop condition
generation.

R_RIIC_SlaveTransfer() Performs slave transmission and reception. Changes the transmit and
receive patterns according to the parameters.

R_RIIC_GetStatus() Returns the state of this module.

R_RIIC_Control()
This function outputs conditions, Hi-Z from the SDA pin, and one-shot of
the SCL clock. Also it resets the settings of this module. This function is
mainly used when a communication error occurs.

R_RIIC_Close() This function completes the RIIC communication and releases the RIIC
used.

R_RIIC_GetVersion() Returns the current version of this module.

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 7 of 100
Mar.15.25

1.4 Overview of RIIC FIT Module
1.4.1 Specifications of RIIC FIT Module
1. This module supports master transmission, master reception, slave transmission, and slave reception.

- There are four transmit patterns that can be used for master transmission. Refer to 1.4.2 for details on
master transmission.

- Master reception and master transmit/receive can be selected for master reception. Refer to 1.4.3 for
details on master reception.

- Slave reception or slave transmission is performed according to the content of the data transmitted
from the master. Refer to 1.4.4 for details on slave reception and slave transmission.

2. An interrupt occurs when any of the following operations completes: start condition generation, slave
address transmission/reception, data transmission/reception, NACK detection, arbitration-lost detection,
or stop condition generation. In the RIIC interrupt handling, the communication control function is called
and the operation is continued.

3. When multiple RIIC channels are used, the module can control multiple channels. When the device used
has multiple channels, simultaneous communication is available using multiple channels.

4. Multiple slave devices with different addresses on the same channel bus can be controlled. However,
while communication is in progress (the period from start condition generation to stop condition
generation), communication with other devices is not available. Figure 1.1 shows an Example of
Controlling Multiple Slave Devices.

Device A
ST generated

¡

Time

When slave devices A and B are connected to channel 0.

ST: Start condition, SP: Stop condition

Channel 0 bus Slave device A
communicating

Slave device B
communicating

Device A
SP generated

Device A
ST not generated

¡ ×

×

Device B
ST not generated

Device B
ST generated

Device B
SP generated

¡ ¡

Multiple devices cannot
communicate on the same
channel bus at the same time.

Figure 1.1 Example of Controlling Multiple Slave Devices

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 8 of 100
Mar.15.25

1.4.2 Master Transmission
The master device (master (RX MCU)) transmits data to the slave device (slave).

With this module, four patterns of waveforms can be generated for master transmission. A pattern is selected
according to the arguments set in the parameters which are members of the I2C communication information
structure. Figure 1.2 to Figure 1.5 show the transmit patterns. Refer to 2.9 Parameters for details on the I2C
communication information structure.

(1) Pattern 1

The master (RX MCU) transmits data in two buffers for the first data and second data to the slave.

A start condition is generated and then the slave address is transmitted. The eighth bit specifies the
transfer direction. This bit is set to 0 (write) when transmitting. Then the first data is transmitted. The first
data is used when there is data to be transmitted in advance before performing the data transmission.
For example, if the slave is an EEPROM, the EEPROM internal address can be transmitted. Next the
second data is transmitted. The second data is the data to be written to the slave. When a data
transmission has started and all data transmissions have completed, a stop condition is generated, and
the bus is released.

SCLn

SDAn

Start Stop

n: Channel number
ST: Start condition generation
SP: Stop condition generation
ACK: Acknowledge: 0
* A signal with an underline indicates data transmission from the slave to the master.

ST 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 8 9 7 1 2 8 9 7 SP

ACKSlave address
(8th bit: 0)

1st data 1st data (i) 2nd data 2nd data (i)ACK ACK ACK ACK

Figure 1.2 Signals for Pattern 1 of Master Transmission

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 9 of 100
Mar.15.25

(2) Pattern 2

The master (RX MCU) transmits data in the buffer for the second data to the slave.

Operations from start condition generation through to slave address transmission are the same as the
operations for pattern 1. Then the second data is transmitted without transmitting the first data. When all
data transmissions have completed, a stop condition is generated and the bus is released.

SCLn

SDAn

ST 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 8 9 7 SP

Start StopACKSlave address
(8th bit: 0)

2nd data 2nd data (i)ACK ACK

n: Channel number
ST: Start condition generation
SP: Stop condition generation
ACK: Acknowledge: 0
* A signal with an underline indicates data transmission from the slave to the master.

Figure 1.3 Signals for Pattern 2 of Master Transmission

(3) Pattern 3

The master (RX MCU) transmits only the slave address to the slave.

Operations from start condition generation through to slave address transmission are the same as the
operations for pattern 1. After transmitting the slave address, if neither the first data nor the second data
are set, data transmission is not performed, then a stop condition is generated, and the bus is released.

This pattern is useful for detecting connected devices or when performing acknowledge polling to verify
the EEPROM rewriting state.

SCLn

SDAn

ST 1 2 3 4 5 6 7 8 9 SP

Start StopSlave address
(8th bit: 0)

ACK

n: Channel number
ST: Start condition generation
SP: Stop condition generation
ACK: Acknowledge: 0
* A signal with an underline indicates data
 transmission from the slave to the master.

Figure 1.4 Signals for Pattern 3 of Master Transmission

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 10 of 100
Mar.15.25

(4) Pattern 4

The master (RX MCU) transmits only a start condition and stop condition to the slave.

After a start condition is generated, if the slave address, first data, and second data are not set, slave
address transmission and data transmission are not performed. Then a stop condition is generated and
the bus is released.

This pattern is useful for just releasing the bus.

ST

SCLn

SDAn

Start Stop

SP n: Channel number
ST: Start condition generation
SP: Stop condition generation

Figure 1.5 Signals for Pattern 4 of Master Transmission

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 11 of 100
Mar.15.25

Figure 1.6 shows the procedure of master transmission. The callback function is called after generating a
stop condition. Specify the function name in the CallBackFunc of the I2C communication information
structure member.

[5] The callback function is called
 when a stop condition is generated.

Master transmission

Specify the parameter depending on
the channel used

RIIC initialization
R_RIIC_Open()

Master transmission
R_RIIC_MasterSend()

End

[4] Starts transmission with the specified transmit pattern.

[1] Sets the channel used.

[2] Initializes the RIIC channel set in [1].

Specify the communication
information structure [3] The arguments vary depending on the transmit pattern.

Release the channel
R_RIIC_Close()

Callback function

Yes

No [6] Determines if all communications completed.

[7] After the communication has completed, the bus
 used for the selected channel is released.

Has the communication
completed?

Figure 1.6 Example of Master Transmission

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 12 of 100
Mar.15.25

1.4.3 Master Reception
The master (RX MCU) receives data from the slave. This module supports master reception and master
transmit/receive. The receive pattern is selected according to the arguments set in the parameters which are
members of the I2C communication information structure. Figure 1.7 and Figure 1.8 show receive patterns.
Refer to 2.9 Parameters for details on the I2C communication information structure.

(1) Master Reception

The master (RX MCU) receives data from the slave.

A start condition is generated and then the slave address is transmitted. The eighth bit specifies the
transfer direction. This bit is set to 1 (read) when receiving. Then data reception starts. An ACK is
transmitted each time 1-byte data is received except the last data. A NACK is transmitted when the last
data is received to notify the slave that all data receptions have completed. Then a stop condition is
generated and the bus is released.

SCLn

SDAn

n: Channel number
ST: Start condition generation NACK: Acknowledge: 1
SP: Stop condition generation ACK: Acknowledge: 0
* A signal with an underline indicates data transmission from the slave to the master.

ST 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 8 9 7 SP

Start StopACKSlave address
(8th bit: 1)

2nd data 2nd data (i) ACK NACK

Figure 1.7 Signals for Master Reception

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 13 of 100
Mar.15.25

(2) Master Transmit/Receive

The master (RX MCU) transmits data to the slave. After the transmission completes, a restart condition
is generated, and the master receives data from the slave.

A start condition is generated and then the slave address is transmitted. The eighth bit specifies the
transfer direction. This bit is set to 0 (write) when transmitting. Then the first data is transmitted. When
the data transmission completes, a restart condition is generated and the slave address is transmitted.
Then the eighth bit is set to 1 (read) and a data reception starts. An ACK is transmitted each time 1-byte
data is received except the last data. A NACK is transmitted when the last data is received to notify the
slave that all data receptions have completed. Then a stop condition is generated and the bus is
released.

SCLn

SDAn

ST 1 2 3 4 5 6 7 8 9 1 2 8 9 7 1 2 8 9 7 SPRST 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

Start Stop

n: Channel number
ST: Start condition generation NACK: Acknowledge: 1
SP: Stop condition generation ACK: Acknowledge: 0
RST: Restart condition generation
* A signal with an underline indicates data transmission from the slave to the master.

ACKSlave address
(8th bit: 0)

1st data (i) Slave address
(8th bit: 1)

2nd data 2nd data (i) ACK ACK ACK NACKRestart

Figure 1.8 Signals for Master Transmit/Receive

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 14 of 100
Mar.15.25

Figure 1.9 shows the procedure of master reception. The callback function is called after generating a stop
condition. Specify the function name in the CallBackFunc of the I2C communication information structure
member.

[5] The callback function is called
 when a stop condition is generated.

Master reception

Specify the parameter depending on
the channel used

RIIC initialization
R_RIIC_Open()

Master reception
R_RIIC_MasterReceive()

End

[1] Sets the channel used.

[2] Initializes the RIIC channel set in [1].

Specify the communication
information structure [3] The arguments differ between master reception and master composite.

Release the channel
R_RIIC_Close()

Callback function

Yes

No [6] Determines whether all communications completed.

[7] After the communication has completed, the bus
 used for the selected channel is released.

Has the communication
completed?

[4] Starts reception for the specified receive pattern.

Figure 1.9 Example of Master Reception

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 15 of 100
Mar.15.25

1.4.4 Slave Transmission and Reception
The slave (RX MCU) receives data transmitted from the master. The slave transmits data by the transmit
request from the master.

When the slave address specified by the master matches the slave address set in r_riic_config.h, slave
transmission and reception starts. The module processes the operation automatically determining whether
the operation is slave reception or slave transmission according to the eighth bit (transfer direction specify
bit) of the slave address.

(1) Slave Reception

The slave (RX MCU) receives data from the master.

After a start condition generated by the master is detected, when the received slave address matches its
own address and the eighth bit of the slave address is 0 (write), then the slave starts receive operation.
When the last data (the number of data specified in the I2C communication information structure
member) is received, a NACK is returned to the master to notify that all necessary data has been
received. Figure 1.10 shows the Signals for Slave Reception.

ST 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 8 9 7 SP

SCLn

SDAn

Start StopACKSlave address
(8th bit: 0)

2nd data 2nd data(i)ACK NACK

n: Channel number
ST: Start condition generation NACK: Acknowledge: 1
SP: Stop condition generation ACK: Acknowledge: 0
* A signal with an underline indicates data transmission from the slave to the master.

Figure 1.10 Signals for Slave Reception

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 16 of 100
Mar.15.25

Figure 1.11 shows the procedure of slave reception. The callback function is called after generating a stop
condition. Specify the function name in the CallBackFunc of the I2C communication information structure
member.

Slave reception

Specify the parameter depending on
the channel used

RIIC initialization
R_RIIC_Open()

Slave transmission/reception
R_RIIC_SlaveTransfer()

End

[4] Starts transmission/reception according to the specified
 transmit/receive pattern.

[1] Sets the channel used.

[2] Initializes the RIIC channel set in [1].

Specify the communication
information structure

[3] Specify arguments for the parameters in the information
communication structure such as the pointer to the receive
data storage buffer or the number of data.

Release the channel
R_RIIC_Close()

Callback function

Yes

No

[5] The callback function is called
 when a stop condition is detected.

[7] After the communication has completed, the bus
 used for the selected channel is released.

Has the communication
completed?

[6] Determines whether all communications completed.

Figure 1.11 Slave Reception

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 17 of 100
Mar.15.25

(2) Slave Transmission

The slave (RX MCU) transmits data to the master.

After a start condition from the master is detected, when the slave address matches its own address and
the eighth bit of the slave address is 1 (read), then the slave starts transmit operation. When the transmit
request exceeds the number of data specified in the I2C communication information structure member,
the slave transmits 0xFF as data. The slave continues transmit operation until a stop condition is
detected. Figure 1.12 shows the Signals for Slave Transmission.

ST 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 8 9 7 SP

SCLn

SDAn

Start StopACKSlave address
(8th bit: 1)

1st data 1st data (i)ACK NACK

n: Channel number
ST: Start condition generation NACK: Acknowledge: 1
SP: Stop condition generation ACK: Acknowledge: 0
* A signal with an underline indicates data transmission from the slave to the master.

Figure 1.12 Signals for Slave Transmission

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 18 of 100
Mar.15.25

Figure 1.13 shows the procedure of slave transmission. The callback function is called after generating a
stop condition. Specify the function name in the CallBackFunc of the I2C communication information
structure member.

Slave transmission

Specify the parameter depending on
the channel used

RIIC initialization
R_RIIC_Open()

Slave transmission/reception
R_RIIC_SlaveTransfer()

End

[1] Sets the channel used.

[2] Initializes the RIIC channel set in [1].

Specify the communication
information structure

Release the channel
R_RIIC_Close()

Callback function

Yes

No

[5] The callback function is called
 when a SP is detected.

[7] After the communication has completed, the bus
 used for the selected channel is released.

[3] Specify arguments for the parameters in the information
communication structure such as the pointer to the transmit
data storage buffer or the number of data.

[4] Starts transmission/reception according to the specified
 receive/transmit pattern.

Has the communication
completed?

[6] Determines whether all communications completed.

Figure 1.13 Slave Transmission

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 19 of 100
Mar.15.25

1.4.5 State Transition
Figure 1.14 shows the RIIC FIT Module State Transition Diagram.

Slave address match interrupt
[Arbitration-lost occurred]/

Uninitialized state
RIIC_NO_INIT

Master transmission and
reception

RIIC_COMMUNICATION

Slave transmission and reception
RIIC_COMMUNICATION

Idle state
(Ready for master/slave

communication)
RIIC_IDLE

RIIC_FINISH
RIIC_NACK

Idle state
(Ready for master
communication)

RIIC_IDLE
RIIC_FINISH
RIIC_NACK

Master transmission and
reception completed/

Slave address match interrupt/

R_RIIC_SlaveTransfer() called/
Starts slave transmission and reception

R_RIIC_Open() called/
Initialization

R_RIIC_Close() called/
I2C driver reset processing

Reset released

Slave transmission and reception
completed/

R_RIIC_MasterSend() called/
Starts master transmission
R_RIIC_MasterReceive() called/
Starts master reception

Transmission
and reception/

Transmission
and reception/

Error state
RIIC_AL

RIIC_TMO
RIIC_ERROR

Error occurred/

Master transmission
and reception
completed/

R_RIIC_MasterSend() called/
Starts master transmission
R_RIIC_MasterReceive() called/
Starts master reception

R_RIIC_MasterSend() called/
Starts master transmission
R_RIIC_MasterReceive() called/
Starts master reception

Notation conventions

State Event[condition]/Action on the event

Error occurred/

R_RIIC_Close() called/
I2C driver reset processing

R_RIIC_Close() called/
I2C driver reset processing

l

Figure 1.14 RIIC FIT Module State Transition Diagram

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 20 of 100
Mar.15.25

1.4.6 Flags when Transitioning States
dev_sts is the device state flag and is one of the I2C communication information structure members. The flag
stores the communication state of the device. Using this flag enables controlling multiple slaves on the same
channel.

Table 1.2 lists the Device State Flags when Transitioning States.

Table 1.2 Device State Flags when Transitioning States

State Device State Flag (dev_sts)
Uninitialized state RIIC_NO_INIT

Idle states
RIIC_IDLE
RIIC_FINISH
RIIC_NACK

Communicating
(master transmission, master reception,
slave transmission, and slave reception)

RIIC_COMMUNICATION

Arbitration-lost detection state RIIC_AL
Timeout detection state RIIC_TMO
Error RIIC_ERROR

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 21 of 100
Mar.15.25

1.4.7 Arbitration-Lost Detection Function
This module detects arbitration-lost for the reasons below. The module does not support the arbitration-lost
detection on slave transmission while the RIIC does.

(1) When a start condition is issued during the bus busy state:

If the module issues a start condition when the other master has already issued a start condition and
occupied the bus (bus busy state), the module detects arbitration-lost.

(2) When the module issues a start condition after the other master issued a start condition though the bus
is free:

When the module issues a start condition, it attempts to drive the SDA line low. However if the other
master issued a start condition earlier, the signal level on the SDA line does not match the signal level
output by the module. Then the module detects arbitration-lost.

(3) When multiple start conditions are issued at the same time:

If multiple masters issue start conditions at the same time, the module may determine that the start
condition has been issued successfully on each device. Then each device starts communication.
However, when any of the conditions described below occurs, the module detects arbitration-lost.

a. When data transmitted by masters are different:

The module compares the signal level on the SDA line with the signal level output by itself during
communication. If these signals do not match while data is being transmitted including the slave
address, the module detects arbitration-lost.

b. The numbers of data transmissions differ between masters while data sent by the masters are the
same.

With the case other than the above a, i.e., the slave address and transmit data match, the module
does not detect arbitration-lost. However if the number of data transmitted by masters differ, the
module detects arbitration-lost.

1.4.8 Timeout Detection Function
The timeout detection function can be enabled in this module (enabled as default). The RIIC can detect an
abnormal bus state by monitoring that the SCL0 line is stuck low or high for a predetermined time.

The timeout detection function detects a bus hang up, i.e. the SCL line is held low or high, in the following
period:

(1) The bus is busy in master mode.

(2) The RIIC’s own slave address is detected and the bus is busy in slave mode.

(3) The bus is free while generation of a START condition is requested.

Refer to the following configuration options in “2.7 Configuration Overview” for details on enabling and
disabling the timeout detection function.

 RIIC_CFG_CH0_TMO_ENABLE
 RIIC_CFG_CH2_TMO_ENABLE
 RIIC_CFG_CH0_TMO_DET_TIME
 RIIC_CFG_CH2_TMO_DET_TIME
 RIIC_CFG_CH0_TMO_LCNT
 RIIC_CFG_CH2_TMO_LCNT
 RIIC_CFG_CH0_TMO_HCNT
 RIIC_CFG_CH2_TMO_HCNT

Refer to 6.3 Timeout Detection and Processing After the Detection for detailed explanation when a timeout is
detected.

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 22 of 100
Mar.15.25

2. API Information
The FIT module provided with this application note has been confirmed to operate under the following
conditions.

2.1 Hardware Requirements
This FIT module requires your MCU supports the following feature:

- RIIC

2.2 Software Requirements
This FIT module is dependent upon the following FIT modules:

 Board Support Package Module (r_bsp) Rev.5.20 or higher

2.3 Supported Toolchains
This FIT module is tested and works with the following toolchain:

- Renesas RX Toolchain v.2.01.01

- Renesas RX Toolchain v.2.03.00

- Renesas RX Toolchain v.2.05.00

- Renesas RX Toolchain v.2.06.00

- Renesas RX Toolchain v.2.07.00

- Renesas RX Toolchain v.3.00.00

- Renesas RX Toolchain v.3.01.00

- Renesas RX Toolchain v.3.02.00

- Renesas RX Toolchain v.3.03.00

- Renesas RX Toolchain v.3.04.00

- Renesas RX Toolchain v.3.05.00

- Renesas RX Toolchain v.3.06.00

- Renesas RX Toolchain v.3.07.00

Refer to 6.4 Operating Test Environment for details.

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 23 of 100
Mar.15.25

2.4 Usage of Interrupt Vector
The EEI interrupt, RXI interrupt, TXI interrupt, and TEI interrupt are enabled by execution of
R_RIIC_MasterSend function, R_RIIC_MasterReceive function, or R_RIIC_SlaveTransfer function (with
specified condition)(while the macro definition RIIC_CFG_CHi_INCLUDE (i = 0 to 2) is 1).

Table 2.1 lists the interrupt vector used in the RIIC FIT Module.

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 24 of 100
Mar.15.25

Table 2.1 Interrupt Vector used in the RIIC FIT Module

Device Contents
RX110
RX111
RX113
RX130
RX13T
RX140
RX230
RX231
RX23E-A
RX23E-B
RX23T
RX24T
RX24U
RX23W
RX260
RX261

EEI0 interrupt [channel 0] (vector no.: 246)
RXI0 interrupt [channel 0] (vector no.: 247)
TXI0 interrupt [channel 0] (vector no.: 248)
TEI0 interrupt [channel 0] (vector no.: 249)

RX660
RX64M
RX71M

RXI0 interrupt [channel 0] (vector no.: 52)
TXI0 interrupt [channel 0] (vector no.: 53)
RXI2 interrupt [channel 2] (vector no.: 54)
TXI2 interrupt [channel 2] (vector no.: 55)

GROUPBL1 interrupt (vector no.: 111)
• TEI0 interrupt [channel 0] (group interrupt source no.: 13)
• EEI0 interrupt [channel 0] (group interrupt source no.: 14)
• TEI2 interrupt [channel 2] (group interrupt source no.: 15)
• EEI2 interrupt [channel 2] (group interrupt source no.: 16)

RX65N
RX651
RX66N
RX671
RX72M
RX72N

RXI0 interrupt [channel 0] (vector no.: 52)
TXI0 interrupt [channel 0] (vector no.: 53)
RXI1 interrupt [channel 1] (vector no.: 50)
TXI1 interrupt [channel 1] (vector no.: 51)
RXI2 interrupt [channel 2] (vector no.: 54)
TXI2 interrupt [channel 2] (vector no.: 55)

GROUPBL1 interrupt (vector no.: 111)
• TEI0 interrupt [channel 0] (group interrupt source no.: 13)
• EEI0 interrupt [channel 0] (group interrupt source no.: 14)
• TEI1 interrupt [channel 1] (group interrupt source no.: 28)
• EEI1 interrupt [channel 1] (group interrupt source no.: 29)
• TEI2 interrupt [channel 2] (group interrupt source no.: 15)
• EEI2 interrupt [channel 2] (group interrupt source no.: 16)

RX66T
RX72T
RX26T

RXI0 interrupt [channel 0] (vector no.: 52)
TXI0 interrupt [channel 0] (vector no.: 53)

GROUPBL1 interrupt (vector no.: 111)
• TEI0 interrupt [channel 0] (group interrupt source no.: 13)
• EEI0 interrupt [channel 0] (group interrupt source no.: 14)

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 25 of 100
Mar.15.25

2.5 Header Files
All API calls and their supporting interface definitions are located in r_riic_rx_if.h.

2.6 Integer Types
This project uses ANSI C99. These types are defined in stdint.h.

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 26 of 100
Mar.15.25

2.7 Configuration Overview
The configuration options in this module are specified in r_riic_rx_config.h and r_riic_rx_pin_config.h. The
option names and setting values are listed in the table below.

Configuration options in r_riic_rx_config.h

RIIC_CFG_PARAM_CHECKING_ENABLE
- Default value = 1

Selects whether to include parameter checking in the code.
- When this is set to 0, parameter checking is omitted.

With this setting, the code size can be reduced.
- When this is set to 1, parameter checking is included.

RIIC_CFG_CHi_INCLUDED (1)
i = 0 to 2
- When i = 0, the default value = 1
- When i = 1 to 2, the default value = 0

Selects whether to use available channels.
When not using the channel, set this to 0.
- When this is set to 0, relevant processes for the channel are omitted

from the code.
- When this is set to 1, relevant processes for the channel are included in

the code.

RIIC_CFG_CH0_kBPS
- Default value = 400

Specifies the RIIC0 communication rate.
Setting values for the bit rate register and internal reference clock
selection bit are calculated using the setting values for
RIIC_CFG_CH0_kBPS and the peripheral clock.
- Target devices that do not support fast mode plus as the transfer
speed. Specify a value less than or equal to 400.
- For RX64M, RX71M, RX65N, RX66N, RX671, RX72M and RX72N,
specify a value less than or equal to 1000.

RIIC_CFG_CH1_kBPS (1)
- Default value = 400

Specifies the RIIC1 communication rate.
Setting values for the bit rate register and internal reference clock
selection bit are calculated using the setting values for
RIIC_CFG_CH1_kBPS and the peripheral clock.
This should be set to 400 or less.

RIIC_CFG_CH2_kBPS (1)
- Default value = 400

Specifies the RIIC2 communication rate.
Setting values for the bit rate register and internal reference clock
selection bit are calculated using the setting values for
RIIC_CFG_CH2_kBPS and the peripheral clock.
This should be set to 400 or less.

RIIC_CFG_SCL100K_UP_TIME
- Default value = 1000E-9
RIIC_CFG_SCL100K_DOWN_TIME
- Default value = 300E-9
RIIC_CFG_SCL400K_UP_TIME
- Default value = 300E-9
RIIC_CFG_SCL400K_DOWN_TIME
- Default value = 300E-9
RIIC_CFG_SCL1M_UP_TIME
- Default value = 120E-9
RIIC_CFG_SCL1M_DOWN_TIME
- Default value = 120E-9

Specify the value of SCL rise time and SCL fall time:
- RIIC_CFG_SCL100K_UP_TIME: Specifies the SCL rise time (s) in
Standard Mode (up to 100 kbps).
- RIIC_CFG_SCL100K_DOWN_TIME: Specifies the SCL fall time (s) in
Standard Mode (up to 100 kbps).
- RIIC_CFG_SCL400K_UP_TIME: Specifies the SCL rise time (s) in Fast
Mode (up to 400 kbps).
- RIIC_CFG_SCL400K_DOWN_TIME: Specifies the SCL fall time (s) in
Fast Mode (up to 400 kbps).
- RIIC_CFG_SCL1M_UP_TIME: Specifies the SCL rise time (s) in Fast
Mode Plus (up to 1 Mbps).
- RIIC_CFG_SCL1M_UP_TIME: Specifies the SCL fall time (s) in Fast
Mode Plus (up to 1 Mbps).

RIIC_CFG_CHi_DIGITAL_FILTER (1)
i = 0 to 2
- When i = 0 to 2, the default value = 0

The number of noise filter stage of the specified RIIC channel can be
selected.
- When this is set to 0, the noise filter is disabled.
- When this is set to a value from 1 to 4, values to enable the selected

number of filters are selected for the noise filter stage selection bit and
digital noise filter circuit enable bit.

Note:
1. This setting is invalid for target devices that do not support the corresponding channel.

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 27 of 100
Mar.15.25

Configuration options in r_riic_config.h

RIIC_CFG_PORT_SET_PROCESSING
- Default value = 1

Specifies whether to include processing for port setting (*) in the code.

* Processing for port setting is the setting to use ports selected by
R_RIIC_CFG_RIICi_SCLi_PORT,
R_RIIC_CFG_RIICi_SCLi_BIT,
R_RIIC_CFG_RIICi_SDAi_PORT, and R_RIIC_CFG_RIICi_SDAi_BIT as
pins SCL and SDA.

- When this is set to 0, processing for port setting is omitted from the
code.
- When this is set to 1, processing for port setting is included in the code.

RIIC_CFG_CHi_MASTER_MODE (1)
i = 0 to 2
- When i = 0 to 2, the default value = 0

The master arbitration lost detection function of the specified RIIC
channel can be enable or disable.
Set this to 1 (enabled) when using multi-master.
- When this is set to 0, the master arbitration-lost detection is disabled.
- When this is set to 1, the master arbitration-lost detection is enabled.

RIIC_CFG_CHi_SLV_ADDR0_FORMAT *1
(1)
RIIC_CFG_CHi_SLV_ADDR1_FORMAT *2
(1)
RIIC_CFG_CHi_SLV_ADDR2_FORMAT *2
(1)

i = 0 to 2

*1: When i = 0 to 2, the default value = 1
*2: When i = 0 to 2, the default value = 0

The slave address format can be selected as 7 bits or 10 bits for the
specified RIIC channel.
- When this is set to 0, the slave address is not set.
- When this is set to 1, the 7-bit slave address format is set.
- When this is set to 2, the 10-bit slave address format is set.

RIIC_CFG_CHi_SLV_ADDR0 *1 (1)
RIIC_CFG_CHi_SLV_ADDR1 *2 (1)
RIIC_CFG_CHi_SLV_ADDR2 *2 (1)

i = 0 to 2

*1: When i = 0 to 2, the default value =
0x0025
*2: When i = 0 to 2, the default value =
0x0000

This set the slave address of the specified RIIC channel.
Available bits of the setting value vary depending on the setting value of
the RIIC_CFG_CHi_SLV_ADDRj_FORMAT. (j = 0 to 2)
When RIIC_CFG_CH0_SLV_ADDRj_FORMAT is:
 0: The setting value is ignored.
 1: The lower 7 bits of the setting value are used.
 2: The lower 10 bits of the setting value are used.

RIIC_CFG_CHi_SLV_GCA_ENABLE (1)
i = 0 to 2

- When i = 0 to 2, the default value = 0

The general call address of the specified RIIC channel can be enable or
disable.
- When this is set to 0: General call address is disabled.
- When this is set to 1: General call address is enabled.

RIIC_CFG_CHi_RXI_INT_PRIORITY (1)
i = 0 to 2

- When i = 0 to 2, the default value = 1

The priority level of the receive data full interrupt (RXIi) of the specified
RIIC channel can be selected.
Specify the level from 1 to 15.

RIIC_CFG_CHi_TXI_INT_PRIORITY (1)
i = 0 to 2

- When i = 0 to 2, the default value = 1

The priority level of the transmit data empty interrupt (TXIi) of the
specified RIIC channel can be selected.
Specify the level from 1 to 15.

Note:
1. This setting is invalid for target devices that do not support the corresponding channel.

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 28 of 100
Mar.15.25

Configuration options in r_riic_config.h

RIIC_CFG_CHi_EEI_INT_PRIORITY (1) (2)
i = 0 to 2

- When i = 0 to 2, the default value = 1

The priority level of the communication error / event occurrence interrupt
(EEIi) of the specified RIIC channel can be selected.
Specify the level from 1 to 15. Do not set this option to a value lower than
the priority level specified with RIIC_CFG_CHi_RXI_INT_PRIORITY or
RIIC_CFG_CHi_TXI_INT_PRIORITY.
For devices where EEIi and TEIi (i = 0 to 2) are grouped as group BL1
interrupts, set a value higher than the priority level value specified in
RIIC_CFG_CHi_RXI_INT_PRIORITY and
RIIC_CFG_CHi_TXI_INT_PRIORITY.

RIIC_CFG_CHi_TEI_INT_PRIORITY (1) (2)
i = 0 to 2

- When i = 0 to 2, the default value = 1

The priority level of the transmission end interrupt (TEIi) of the specified
RIIC channel can be selected.
Specify the level from 1 to 15. Do not set this option to a value lower than
the priority level specified with RIIC_CFG_CHi_RXI_INT_PRIORITY or
RIIC_CFG_CHi_TXI_INT_PRIORITY.
For devices where EEIi and TEIi (i = 0 to 2) are grouped as group BL1
interrupts, set a value higher than the priority level value specified in
RIIC_CFG_CHi_RXI_INT_PRIORITY and
RIIC_CFG_CHi_TXI_INT_PRIORITY.

RIIC_CFG_CHi_TMO_ENABLE (2)
i = 0 to 2

- When i = 0 to 2, the default value = 1

The timeout detection function of the specified RIIC channel can be
enabled.
- When this is set to 0: RIICi timeout detection function is disabled.
- When this is set to 1: RIICi timeout detection function is enabled.

RIIC_CFG_CHi_TMO_DET_TIME (2)
i = 0 to 2

- When i = 0 to 2, the default value = 0

You can select the timeout detection time of the specified RIIC channel.
- When this is set to 0, long mode is selected.
- When this is set to 1, short mode is selected.

Note:
1. The priority level cannot be set individually in devices that group EEI0, TEI0, EEI2, and TEI2 as the

BL1 interrupt. In this case, the priority levels for EEI0, TEI0, EEI2, and TEI2 will be unified to all be
the maximum value of the individual priority levels set in r_riic_confg.h. However, if the other module
specifies a greater value than the value specified for the BL1 priority level in the RIIC, the greater
value will be used.
For EEI0 and TEI0 interrupt priority levels, set values higher than the priority levels for RXI0 and TXI0.
Also, for EEI2 and TEI2 interrupt priority levels, set values higher than the priority levels for RXI2 and
TXI2.

2. This setting is invalid for target devices that do not support the corresponding channel.

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 29 of 100
Mar.15.25

Configuration options in r_riic_config.h

RIIC_CFG_CHi_TMO_LCNT (1)
i = 0 to 2

- When i = 0 to 2, the default value = 1

After enabling the timeout detection function of specified RIIC channel,
during the time SCLi line is low, count-up of the internal counter for the
timeout detection function can be enabled.
- When this is set to 0, counting up is disabled while the SCLi line is held

low.
- When this is set to 1, counting up is enabled while the SCLi line is held

low.

RIIC_CFG_CHi_TMO_HCNT (1)
i = 0 to 2

- When i = 0 to 2, the default value = 1

After enabling the specified RIIC timeout detection function, during the
time SCLi line is high, the count-up of the internal counter for the timeout
detection function can be enabled.
- When this is set to 0, counting up is disabled while the SCL0 line is held

high.
- When this is set to 1, counting up is enabled while the SCL0 line is held

high.

RIIC_CFG_BUS_CHECK_COUNTER
- Default value = 1000

Specifies the timeout counter (number of times to perform bus checking)
when the RIIC API function performs bus checking.
Specify a value less than or equal to 0xFFFFFFFF.
The bus checking is performed in the following timings:
- Before generating a start condition
- After detecting a stop condition
- After generating each condition using the RIIC control function

(R_RIIC_Control function)
- After generating the SCL one-shot pulse using the RIIC control function

(R_RIIC_Control function).
With the bus checking, when the bus is busy, the timeout counter is
decremented by the software until the bus becomes free. When the
counter reaches 0, the API determines that a timeout has occurred and
returns an error (Busy) as the return value.

* The timeout counter is used for the bus not to be locked. Therefore,

specify the value greater than or equal to the time for that the other
device holds the SCL pin low.

Setting time for the timeout (ns) ≈ (1
ICLK (Hz)) × counter value × 10

Note:
1. This setting is invalid for target devices that do not support the corresponding channel.

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 30 of 100
Mar.15.25

Configuration options in r_riic_rx_config.h
R_RIIC_CFG_RIICi_SCLi_PORT
i = 0 to 2
- When i = 0, the default value = ’1’
- When i = 1, the default value = ’2’
- When i = 2, the default value = ’1’

Selects port groups used as the SCL pins.
Specify the value as an ASCII code in the range ‘0’
to ‘J’.

R_RIIC_CFG_RIICi_SCLi_BIT
i = 0 to 2
- When i = 0, the default value = ’2’
- When i = 1, the default value = ’1’
- When i = 2, the default value = ’6’

Selects pins used as the SCL pins.
Specify the value as an ASCII code in the range ‘0’
to ‘7’.

R_RIIC_CFG_RIICi_SDAi_PORT
i = 0 to 2
- When i = 0, the default value = ’1’
- When i = 1, the default value = ’2’
- When i = 2, the default value = ’1’

Selects port groups used as the SDA pins.
Specify the value as an ASCII code in the range ‘0’
to ‘J’.

R_RIIC_CFG_RIICi_SDAi_BIT
i = 0 to 2
- When i = 0, the default value = ’3’
- When i = 1, the default value = ’0’
- When i = 2, the default value = ’7’

Selects pins used as the SDA pins.
Specify the value as an ASCII code in the range ‘0’
to ‘7’.

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 31 of 100
Mar.15.25

2.8 Code Size
Typical code sizes associated with this module are listed below. Information is listed for a single
representative device of the RX100 Series, RX200 Series, and RX600 Series, respectively.

The ROM (code and constants) and RAM (global data) sizes are determined by the build-time configuration
options described in 2.7,Configuration Overview. The table lists reference values when the C compiler’s
compile options are set to their default values, as described in 2.3,Supported Toolchains. The compile option
default values are optimization level: 2, optimization type: for size, and data endianness: little-endian. The
code size varies depending on the C compiler version and compile options.

The values in the table below are confirmed under the following conditions.

Module Revision: r_riic_rx rev3.00

Compiler Version: Renesas Electronics C/C++ Compiler Package for RX Family V3.06.00

(The option of “-lang = c99” is added to the default settings of the integrated
development environment.)

GCC for Renesas RX 8.03.00.202405

(The option of “-std=gnu99” is added to the default settings of the integrated
development environment.)

IAR C/C++ Compiler for Renesas RX version 5.10.1

(The default settings of the integrated development environment.)

Configuration Options: Default settings

ROM, RAM and Stack Memory Usage
Device Category Memory Used

Renesas Compiler GCC IAR Compiler

With
Parameter
Checking

Without
Parameter
Checking

With
Parameter
Checking

Without
Parameter
Checking

With
Parameter
Checking

Without
Parameter
Checking

RX130 ROM 1 channel used 10319 bytes 10319 bytes 13416 bytes 13416 bytes 14207 bytes 14207 bytes

RAM 1 channel used 37 bytes 0 bytes 20 bytes

STACK
*1

48 bytes - 308 bytes

RX261 ROM 1 channel used 9046 bytes 9046 bytes 11480 bytes 11480 bytes 11862 bytes 11862 bytes

RAM 1 channel used 37 bytes 40 bytes 20 bytes

STACK
*1

48 bytes - 264 bytes

RX64M
ROM

1 channel used 9246 bytes 9230 bytes 11696 bytes 11648 bytes 14353 bytes 14354 bytes

2 channels used 10215 bytes 10199 bytes 13272 bytes 13224 bytes 16004 bytes 16000 bytes

RAM
1 channel used 111 bytes 0 bytes 66 bytes

2 channels used 111 bytes 0 bytes 66 bytes

STACK
*1

48 bytes - 308 bytes

Note 1. The sizes of maximum usage stack of Interrupts functions is included.

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 32 of 100
Mar.15.25

2.9 Parameters
This section describes the structure whose members are API parameters. This structure is located in
r_riic_rx_if.h as are the prototype declarations of API functions.

The contents of the structure are referred and updated during communication. Do not rewrite the structure
during communication (RIIC_COMMUNICATION).
typedef volatile struct
{

uint8_t rsv2; /* Reserved area */
uint8_t rsv1; /* Reserved area */
riic_ch_dev_status_t dev_sts; /* Device state flag */
uint8_t ch_no; /* Channel number of the used device */
riic_callback callbackfunc; /* Callback function */
uint32_t cnt2nd; /* Second data counter (number of bytes) */
uint32_t cnt1st; /* First data counter (number of bytes) */
uint8_t *p_data2nd; /* Pointer to the second data storage buffer */
uint8_t *p_data1st; /* Pointer to the first data storage buffer */
uint8_t *p_slv_adr; /* Pointer to the slave address storage buffer */

} riic_info_t;

2.10 Return Values
This section describes return values of API functions. This enumeration is located in r_riic_rx_if.h as are the
prototype declarations of API functions.
typedef enum
{

RIIC_SUCCESS = 0U, /* Function processing completed successfully */
RIIC_ERR_LOCK_FUNC, /* The RIIC is used by another module */
RIIC_ERR_INVALID_CHAN, /* Nonexistent channel is specified */
RIIC_ERR_INVALID_ARG, /* Invalid parameter is specified */
RIIC_ERR_NO_INIT, /* Uninitialized state */
RIIC_ERR_BUS_BUSY, /* Bus is busy */
RIIC_ERR_AL, /* The function was called while an arbitration-lost has been detected */
RIIC_ERR_TMO, /* Timeout is detected */
RIIC_ERR_OTHER, /* Other error */

} riic_return_t;

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 33 of 100
Mar.15.25

2.11 Callback Functions
In this module, a callback function set up by the user is called when either of the following conditions is met
and an EEI interrupt request occuers.

(1) The communication operation (Master Transmission, Master Reception, Master Transmit/Receive,
Slave Transmission, Slave Reception) is completed and stop condition is detected .

(2) A timeout was detected during communication operation (Master Transmission, Master Reception,
Master Transmit/Receive, Slave Transmission, Slave Reception). (1)

Note:
1. When the timeout detection function is enabled in RIIC_CFG_CHi_TMO_ENABLE (i = 0 to 2) in section

2.7, Configuration Overview.

The callback function is set up by storing the address of the callback function in the callbackfunc structure
member described in section 2.9, Parameters and then calling function R_RIIC_MasterSend(),
R_RIIC_MasterReceive(), R_RIIC_SlaveTransfer().

API function calls except for the R_RIIC_GetStatus function is prohibited within a callback function.

2.12 Adding the FIT Module to Your Project
This module must be added to each project in which it is used. Renesas recommends the method using the
Smart Configurator described in (1) or (2) or (4) below. However, the Smart Configurator only supports some
RX devices. Please use the methods of (3) for RX devices that are not supported by the Smart Configurator.

(1) Adding the FIT module to your project using the Smart Configurator in e2 studio
By using the Smart Configurator in e2 studio, the FIT module is automatically added to your project.
Refer to “RX Smart Configurator User’s Guide: e2 studio (R20AN0451)” for details.

(2) Adding the FIT module to your project using the Smart Configurator in CS+
By using the Smart Configurator Standalone version in CS+, the FIT module is automatically added
to your project. Refer to “RX Smart Configurator User’s Guide: CS+ (R20AN0470)” for details.

(3) Adding the FIT module to your project in CS+
In CS+, please manually add the FIT module to your project. Refer to “RX Family Adding Firmware
Integration Technology Modules to CS+ Projects (R01AN1826)” for details.

(4) Adding the FIT module to your project using the Smart Configurator in IAREW
By using the Smart Configurator Standalone version, the FIT module is automatically added to your
project. Refer to “RX Smart Configurator User’s Guide: IAREW (R20AN0535)” for details.

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 34 of 100
Mar.15.25

2.13 “for”, “while” and “do while” statements
In this module, “for”, “while” and “do while” statements (loop processing) are used in processing to wait for
register to be reflected and so on. For these loop processing, comments with “WAIT_LOOP” as a keyword
are described. Therefore, if user incorporates fail-safe processing into loop processing, user can search the
corresponding processing with “WAIT_LOOP”.

The following shows example of description.

while statement example :
/* WAIT_LOOP */

while(0 == SYSTEM.OSCOVFSR.BIT.PLOVF)

{

 /* The delay period needed is to make sure that the PLL has stabilized. */

}

for statement example :
/* Initialize reference counters to 0. */

/* WAIT_LOOP */

for (i = 0; i < BSP_REG_PROTECT_TOTAL_ITEMS; i++)

{

 g_protect_counters[i] = 0;

}

do while statement example :
/* Reset completion waiting */

do

{

 reg = phy_read(ether_channel, PHY_REG_CONTROL);

 count++;

} while ((reg & PHY_CONTROL_RESET) && (count < ETHER_CFG_PHY_DELAY_RESET)); /* WAIT_LOOP */

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 35 of 100
Mar.15.25

3. API Functions

R_RIIC_Open()
This function initializes the RIIC FIT module. This function must be called before calling any other API
functions.

Format
riic_ return_t R_RIIC_Open(

riic_info_t * p_riic_info /* Structure data */
)

Parameters
*p_riic_info

This is the pointer to the I2C communication information structure.
Only the member of the structure used in this function is described here. Refer to 2.9 Parameters for
details on the structure.

The contents of the structure are referred and updated during communication. Do not rewrite the structure
during communication (RIIC_COMMUNICATION) and when an error has occurred (RIIC_TMO and
RIIC_ERROR).

For the parameter which has ‘(to be updated)’ in the comment below, the argument for the parameter will
be updated during the API execution.

 riic_ch_dev_status_t dev_sts; /* Device state flag (to be updated) */
 uint8_t ch_no; /* Channel number */

Return Values
RIIC_SUCCESS, /* Processing completed successfully */
RIIC_ERR_LOCK_FUNC, /* The API is locked by the other task. */
RIIC_ERR_INVALID_CHAN, /* Nonexistent channel */
RIIC_ERR_INVALID_ARG, /* Invalid parameter */
RIIC_ERR_OTHER, /* The event occurred is invalid in the current state. */

Properties
Prototyped in r_riic_rx_if.h.

Description
Performs the initialization to start the RIIC communication. Sets the RIIC channel specified by the parameter.
If the state of the channel is ‘uninitialized (RIIC_NO_INIT)’, the following processes are performed.

- Setting the state flag
- Setting I/O ports
- Allocating I2C output ports
- Cancelling RIIC module-stop state
- Initializing variables used by the API
- Initializing the RIIC registers used for the RIIC communication
- Disabling the RIIC interrupts

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 36 of 100
Mar.15.25

Example

volatile riic_return_t ret;
riic_info_t iic_info_m;

iic_info_m.dev_sts = RIIC_NO_INIT;
iic_info_m.ch_no = 0;

ret = R_RIIC_Open(&iic_info_m);

Special Notes
None

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 37 of 100
Mar.15.25

R_RIIC_MasterSend()
Starts master transmission. Changes the transmit pattern according to the parameters. Operates batched
processing until stop condition generation.

Format
riic_return_t R_RIIC_MasterSend(

riic_info_t * p_riic_info /* Structure data */

)

Parameters
*p_riic_info

This is the pointer to the I2C communication information structure. The transmit patterns can be selected
from four patterns by the parameter setting. Refer to Special Notes in this section for available settings
and the setting values for each transmit pattern. Also refer to 1.3.2 Master Transmission for details of
each pattern.
Only members of the structure used in this function are described here. Refer to 2.9 Parameters for
details on the structure.

The contents of the structure are referred and updated during communication. Do not rewrite the structure
during communication (RIIC_COMMUNICATION) and when an error has occurred (RIIC_TMO and
RIIC_ERROR).

When setting the slave address, store it without shifting 1 bit to left.

For the parameter which has ‘(to be updated)’ in the comment below, the argument for the parameter will
be updated during the API execution.
riic_ch_dev_status_t dev_sts; /* Device state flag (to be updated)*/
uint8_t ch_no; /* Channel number */
riic_callback callbackfunc; /* Callback function */
uint32_t cnt2nd; /* Second data counter (number of bytes)

 (to be updated for only pattern 1 and 2) */
uint32_t cnt1st; /* First data counter (number of bytes)

 (to be updated for only pattern 1) */
uint8_t * p_data2nd; /* Pointer to the second data storage buffer */
uint8_t * p_data1st; /* Pointer to the first data storage buffer */
uint8_t * p_slv_adr; /* Pointer to the slave address storage buffer */

Return Values
RIIC_SUCCESS /* Processing completed successfully */
RIIC_ERR_INVALID_CHAN /* The channel is nonexistent. */
RIIC_ERR_INVALID_ARG /* The parameter is invalid. */
RIIC_ERR_NO_INIT /* Uninitialized state */
RIIC_ERR_BUS_BUSY /* The bus state is busy. */
RIIC_ERR_AL /* Arbitration-lost error occurred */
RIIC_ERR_TMO /* Timeout is detected */
RIIC_ERR_OTHER /* The event occurred is invalid in the current state. */

Properties
Prototyped in r_riic_rx_if.h.

Description
Starts the RIIC master transmission. The transmission is performed with the RIIC channel and transmit
pattern specified by parameters. If the state of the channel is ‘idle (RIIC_IDLE, RIIC_FINISH, or
RIIC_NACK)’, the following processes are performed.

- Setting the state flag
- Initializing variables used by the API
- Enabling the RIIC interrupts

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 38 of 100
Mar.15.25

- Generating a start condition

This function returns RIIC_SUCCESS as a return value when the processing up to the start condition
generation ends normally. This function returns RIIC_ERR_BUS_BUSY as a return value when the following
conditions are met to the start condition generation ends normally. (1)

- The internal status bit is in busy state.
- Either SCL or SDA line is in low state.

The transmission processing is performed sequentially in subsequent interrupt processing after this function
return RIIC_SUCCESS. Section "2.4 Usage of Interrupt Vector" should be refered for the interrupt to be used.
For master transmission, the interrupt generation timing should be refered from "6.2.1 Master transmission".

After issuing a stop condition at the end of transmission, the callback function specified by the argument is
called.

The transmission completion is performed normally or not, can be confirmed by checking the device status
flag specified by the argument or the channel status flag g_riic_ChStatus [], that is to be "RIIC_FINISH" for
normal completion.

Notes:
1. When SCL and SDA pin is not external pull-up, this function may return RIIC_ERR_BUS_BUSY by

detecting either SCL or SDA line is as in low state.

Example

/* for MasterSend(Pattern 1) */
#include <stddef.h>
#include "platform.h"
#include "r_riic_rx_if.h"

riic_info_t iic_info_m;

void CallbackMaster(void);
void main(void);

void main(void)
{
 volatile riic_return_t ret;

 uint8_t addr_eeprom[1] = {0x50};
 uint8_t access_addr1[1] = {0x00};
 uint8_t mst_send_data[5] = {0x81,0x82,0x83,0x84,0x85};

 /* Sets IIC Information for sending pattern 1. */
 iic_info_m.dev_sts = RIIC_NO_INIT;
 iic_info_m.ch_no = 0;
 iic_info_m.callbackfunc = &CallbackMaster;
 iic_info_m.cnt2nd = 3;
 iic_info_m.cnt1st = 1;
 iic_info_m.p_data2nd = mst_send_data;
 iic_info_m.p_data1st = access_addr1;
 iic_info_m.p_slv_adr = addr_eeprom;

 /* RIIC open */
 ret = R_RIIC_Open(&iic_info_m);

 /* RIIC send start */
 ret = R_RIIC_MasterSend(&iic_info_m);

 if (RIIC_SUCCESS == ret)
 {
 while(RIIC_FINISH != iic_info_m.dev_sts);

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 39 of 100
Mar.15.25

 }
 else
 {
 /* error */
 }

 /* RIIC send complete */
 while(1);
}

void CallbackMaster(void)
{
 volatile riic_return_t ret;
 riic_mcu_status_t iic_status;

 ret = R_RIIC_GetStatus(&iic_info_m, &iic_status);
 if(RIIC_SUCCESS != ret)
 {
 /* Call error processing for the R_RIIC_GetStatus() function */
 }
 else
 {
 /* Processing when a timeout, arbitration-lost, NACK,
 or others is detected by verifying the iic_status flag. */
 }

}

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 40 of 100
Mar.15.25

Special Notes
The table below lists available settings for each pattern.

Structure
Member

Available Settings for Each Pattern of the Master Transmission
Pattern 1 Pattern 2 Pattern 3 Pattern 4

*p_slv_adr Pointer to the slave address storage buffer FIT_NO_PTR (1)

*p_data1st
Pointer to the first
data storage buffer
for transmitting

FIT_NO_PTR (1) FIT_NO_PTR (1) FIT_NO_PTR (1)

*p_data2nd Pointer to the second data storage buffer for
transmitting FIT_NO_PTR (1) FIT_NO_PTR (1)

cnt1st 0000 0001h to
FFFF FFFFh (2) 0 0 0

cnt2nd 0000 0001h to FFFF FFFFh (2) 0 0
callbackfunc Specify the function name used
ch_no 00h to FFh
dev_sts Device state flag
rsv1, rsv2 Reserved (value set here has no effect)
Notes:

1. When using pattern 2, 3, or 4, set ‘FIT_NO_PTR’ as the argument of the parameter.
2. 0 cannot be set.

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 41 of 100
Mar.15.25

R_RIIC_MasterReceive()
Starts master reception. Changes the receive pattern according to the parameters. Operates batched
processing until stop condition generation.

Format
riic_return_t R_RIIC_MasterRecive(

riic_info_t * p_riic_info /* Structure data */

)

Parameters
*p_riic_info

This is the pointer to the I2C communication information structure. The receive pattern can be selected
from master reception and master transmit/receive by the parameter setting. Refer to the Special Notes in
this section for available settings and the setting values for each receive pattern. Also refer to 1.3.3
Master Reception for details of each receive pattern.
Only members of the structure used in this function are described here. Refer to 2.9 Parameters for
details on the structure.

The contents of the structure are referred and updated during communication. Do not rewrite the structure
during communication (RIIC_COMMUNICATION) and when an error has occurred (RIIC_TMO and
RIIC_ERROR).

When setting the slave address, store it without shifting 1 bit to left.

For the parameter which has ‘(to be updated)’ in the comment below, the argument for the parameter will
be updated during the API execution.
riic_ch_dev_status_t dev_sts; /* Device state flag (to be updated) */
uint8_t ch_no; /* Channel number */
riic_callback callbackfunc; /* Callback function */
uint32_t cnt2nd; /* Second data counter (number of bytes) (to be updated) */
uint32_t cnt1st; /* First data counter (number of bytes)

 (to be updated only for master transmit/receive) */
uint8_t * p_data2nd; /* Pointer to the second data storage buffer */
uint8_t * p_data1st; /* Pointer to the first data storage buffer */
uint8_t * p_slv_adr; /* Pointer to the slave address storage buffer */

Return Values
RIIC_SUCCESS /* Processing completed successfully */
RIIC_ERR_INVALID_CHAN /* The channel is nonexistent. */
RIIC_ERR_INVALID_ARG /* The parameter is invalid. */
RIIC_ERR_NO_INIT /* Uninitialized state */
RIIC_ERR_BUS_BUSY /* The bus state is busy. */
RIIC_ERR_AL /* Arbitration-lost error occurred */
RIIC_ERR_TMO /* Timeout is detected */
RIIC_ERR_OTHER /* The event occurred is invalid in the current state. */

Properties
Prototyped in r_riic_rx_if.h.

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 42 of 100
Mar.15.25

Description
Starts the RIIC master reception. The reception is performed with the RIIC channel and receive pattern
specified by parameters. If the state of the channel is ‘idle (RIIC_IDLE, RIIC_FINISH, or RIIC_NACK)’, the
following processes are performed.

- Setting the state flag
- Initializing variables used by the API
- Enabling the RIIC interrupts
- Generating a start condition

This function returns RIIC_SUCCESS as a return value when the processing up to the start condition
generation ends normally. This function returns RIIC_ERR_BUS_BUSY as a return value when the following
conditions are met to the start condition generation ends normally. (1)

- The internal status bit is in busy state.
- Either SCL or SDA line is in low state.

The reception processing is performed sequentially in subsequent interrupt processing after this function
return RIIC_SUCCESS. Section "2.4 Usage of Interrupt Vector" should be refered for the interrupt to be used.
For master transmission, the interrupt generation timing should be refered from "6.2.2 Master Reception".

After issuing a stop condition at the end of reception, the callback function specified by the argument is
called.

The reception completion is performed normally or not, can be confirmed by checking the device status flag
specified by the argument or the channel status flag g_riic_ChStatus [], that is to be "RIIC_FINISH" for
normal completion.

Notes:
1. When SCL and SDA pin is not external pull-up, this function may return RIIC_ERR_BUS_BUSY by

detecting either SCL or SDA line is as in low state.

Example

#include <stddef.h>
#include "platform.h"
#include "r_riic_rx_if.h"

riic_info_t iic_info_m;

void CallbackMaster(void);
void main(void);

void main(void)
{
 volatile riic_return_t ret;

 uint8_t addr_eeprom[1] = {0x50};
 uint8_t access_addr1[1] = {0x00};
 uint8_t mst_store_area[5] = {0xFF,0xFF,0xFF,0xFF,0xFF};

 /* Sets IIC Information. */
 iic_info_m.dev_sts = RIIC_NO_INIT;
 iic_info_m.ch_no = 0;
 iic_info_m.callbackfunc = &CallbackMaster;
 iic_info_m.cnt2nd = 3;
 iic_info_m.cnt1st = 1;
 iic_info_m.p_data2nd = mst_store_area;
 iic_info_m.p_data1st = access_addr1;
 iic_info_m.p_slv_adr = addr_eeprom;

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 43 of 100
Mar.15.25

 /* RIIC open */
 ret = R_RIIC_Open(&iic_info_m);

 /* RIIC receive start */
 ret = R_RIIC_MasterReceive(&iic_info_m);

 if (RIIC_SUCCESS == ret)
 {
 while(RIIC_FINISH != iic_info_m.dev_sts);
 }
 else
 {
 /* error */
 }

 /* RIIC receive complete */
 while(1);
}

void CallbackMaster(void)
{
 volatile riic_return_t ret;
 riic_mcu_status_t iic_status;

 ret = R_RIIC_GetStatus(&iic_info_m, &iic_status);
 if(RIIC_SUCCESS != ret)
 {
 /* Call error processing for the R_RIIC_GetStatus() function */
 }
 else
 {
 /* Processing when a timeout, arbitration-lost, NACK,
 or others is detected by verifying the iic_status flag._*/
 }
}

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 44 of 100
Mar.15.25

Special Notes
The table below lists available settings for each receive pattern.

Structure
Member

Available Settings for Each Pattern of the Master Reception
Master Reception Master transmit/receive

*p_slv_adr Pointer to the slave address storage buffer

*p_data1st Not used (value set here has no effect) Pointer to the first data storage buffer for
transmitting

*p_data2nd Pointer to the second data storage buffer for receiving
dev_sts Device state flag
cnt1st (1) 0 0000 0001h to FFFF FFFFh
cnt2nd 0000 0001h to FFFF FFFFh (2)
callbackfunc Specify the function name used
ch_no 00h to FFh
rsv1, rsv2 Reserved (value set here has no effect)
Notes:

1. The receive pattern is determined by whether cnt1st is 0 or not.
2. 0 cannot be set.

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 45 of 100
Mar.15.25

R_RIIC_SlaveTransfer()
This function performs slave transmission and reception. Changes the transmit and receive pattern
according to the parameters.

Format
riic_return_t R_RIIC_SlaveTransfer(

riic_info_t * p_riic_info /* Structure data */

)

Parameters
*p_riic_info

This is the pointer to the I2C communication information structure. The operation can be selected from
preparation for slave reception, slave transmission, or both of them by the parameter setting. Refer to the
Special Notes in this section for available parameter settings. Also refer to 1.3.4 Slave Transmission and
Reception for details of slave operations.
Only members of the structure used in this function are described here. Refer to 2.9 Parameters for
details on the structure.

The contents of the structure are referred and updated during communication. Do not rewrite the structure
during communication (RIIC_COMMUNICATION) and when an error has occurred (RIIC_TMO and
RIIC_ERROR).

For the parameter which has ‘(to be updated)’ in the comment below, the argument for the parameter will
be updated during the API execution.
riic_ch_dev_status_t dev_sts; /* Device state flag (to be updated)*/
uint8_t ch_no; /* Channel number */
riic_callback callbackfunc; /* Callback function */
uint32_t cnt2nd; /* Second data counter (number of bytes)

 (to be updated for only slave reception) */
uint32_t cnt1st; /* First data counter (number of bytes)

 (to be updated for only slave transmission) */
uint8_t * p_data2nd; /* Pointer to the second data storage buffer */
uint8_t * p_data1st; /* Pointer to the first data storage buffer */

Return Values
RIIC_SUCCESS /* Processing completed successfully */
RIIC_ERR_INVALID_CHAN /* The channel is nonexistent. */
RIIC_ERR_INVALID_ARG /* The parameter is invalid. */
RIIC_ERR_NO_INIT /* Uninitialized state */
RIIC_ERR_BUS_BUSY /* The bus state is busy. */
RIIC_ERR_AL /* Arbitration-lost error occurred */
RIIC_ERR_TMO /* Timeout is detected */
RIIC_ERR_OTHER /* The event occurred is invalid in the current state. */

Properties
Prototyped in r_riic_rx_if.h.

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 46 of 100
Mar.15.25

Description
Prepares for the RIIC slave transmission or slave reception. If this function is called while the master is
communicating, an error occurs. Sets the RIIC channel specified by the parameter. If the state of the channel
is ‘idle (RIIC_IDLE, RIIC_FINISH, or RIIC_NACK)’, the following processes are performed.

- Setting the state flag
- Initializing variables used by the API
- Initializing the RIIC registers used for the RIIC communication
- Enabling the RIIC interrupts
- Setting the slave address and enabling the slave address match interrupt

This function returns RIIC_SUCCESS as a return value when the setting of slave address and permission of
slave address match interrupt are completed normally.

The processing of slave transmission or slave reception is performed sequentially in the subsequent interrupt
processing.

Section "2.4 Usage of Interrupt Vector" should be refered for the interrupt to be used.

The interrupt generation timing of slave transmission should be refered from "6.2.4 Slave Transmission". The
interrupt generation timing for slave reception should be refered from "6.2.5 Slave reception".

After detecting the stop condition of slave transmission or slave reception termination, the callback function
specified by the argument is called.

The successful completion of slave reception can be checked by confirming the device status flag or channel
status flag specified in the argument g_riic_ChStatus [], that is to be "RIIC_FINISH". The successful
completion of slave transmission can be checked by confirming the device status flag or channel status flag
specified in the argument g_riic_ChStatus [], that is to be "RIIC_FINISH" or "RIIC_NACK". "RIIC_NACK" is
set when master device transmitted NACK for notify to the slave that last data receive completed.

Example

#include <stddef.h>
#include "platform.h"
#include "r_riic_rx_if.h"

riic_info_t iic_info_m;

void CallbackMaster(void);
void CallbackSlave(void);
void main(void);

void main(void)
{
 volatile riic_return_t ret;
 riic_info_t iic_info_s;

 uint8_t addr_eeprom[1] = {0x50};
 uint8_t access_addr1[1] = {0x00};
 uint8_t mst_send_data[5] = {0x81,0x82,0x83,0x84,0x85};
 uint8_t slv_send_data[5] = {0x71,0x72,0x73,0x74,0x75};
 uint8_t mst_store_area[5] = {0xFF,0xFF,0xFF,0xFF,0xFF};
 uint8_t slv_store_area[5] = {0xFF,0xFF,0xFF,0xFF,0xFF};

 /* Sets IIC Information for Master Send. */
 iic_info_m.dev_sts = RIIC_NO_INIT;
 iic_info_m.ch_no = 0;
 iic_info_m.callbackfunc = &CallbackMaster;
 iic_info_m.cnt2nd = 3;
 iic_info_m.cnt1st = 1;
 iic_info_m.p_data2nd = mst_store_area;

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 47 of 100
Mar.15.25

 iic_info_m.p_data1st = access_addr1;
 iic_info_m.p_slv_adr = addr_eeprom;

 /* Sets IIC Information for Slave Transfer. */
 iic_info_s.dev_sts = RIIC_NO_INIT;
 iic_info_s.ch_no = 0;
 iic_info_s.callbackfunc = &CallbackSlave;
 iic_info_s.cnt2nd = 3;
 iic_info_s.cnt1st = 3;
 iic_info_s.p_data2nd = slv_store_area;
 iic_info_s.p_data1st = slv_send_data;
 iic_info_s.p_slv_adr = (uint8_t*)FIT_NO_PTR;

 /* RIIC open */
 ret = R_RIIC_Open(&iic_info_m);

 /* RIIC slave transfer enable */
 ret = R_RIIC_SlaveTransfer(&iic_info_s);

 /* RIIC master send start */
 ret = R_RIIC_MasterSend(&iic_info_m);

 while(1);
}

void CallbackMaster(void)
{
 volatile riic_return_t ret;
 riic_mcu_status_t iic_status;

 ret = R_RIIC_GetStatus(&iic_info_m, &iic_status);
 if(RIIC_SUCCESS != ret)
 {
 /* Call error processing for the R_RIIC_GetStatus() function */
 }
 else
 {
 /* Processing when a timeout, arbitration-lost, NACK,
 or others is detected by verifying the iic_status flag._*/
 }
}

void CallbackSlave(void)
{
 /* Processing when an event occurs in slave mode as required. */
}

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 48 of 100
Mar.15.25

Special Notes
The table below lists available settings for each receive pattern.

Structure
Member

Available Parameter Settings
Slave Reception Slave Transmission

*p_slv_adr Not used (value set here has no effect)

*p_data1st (For slave transmission) Pointer to the first data storage buffer for
transmitting (1)

*p_data2nd Pointer to the second data storage buffer
for receiving (2) (For slave reception)

dev_sts Device state flag
cnt1st (For slave transmission) 0000 0001h to FFFF FFFFh
cnt2nd 0000 0001h to FFFF FFFFh (For slave reception)
callbackfunc Specify the function name used
ch_no 00h to FFh
rsv1, rsv2 Reserved (value set here has no effect)
Notes:

1. Set this when performing slave transmission.
When slave transmission is not used in the user system, set FIT_NO_PTR.

2. Set this when performing slave reception.
When slave reception is not used in the user system, set FIT_NO_PTR.

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 49 of 100
Mar.15.25

R_RIIC_GetStatus()
Returns the state of this module.

Format
riic_sts_flg_t R_RIIC_GetStatus(

riic_info_t * p_riic_info /* Structure data */

riic_mcu_status_t * p_riic_status /* RIIC state */

)

Parameters
*p_riic_info

This is the pointer to the I2C communication information structure.
Only the member of the structure used in this function is described here. Refer to 2.9 Parameters for
details on the structure.

For the parameter which has ‘(to be updated)’ in the comment below, the argument for the parameter will
be updated during the API execution.
riic_ch_dev_status_t dev_sts; /* Device state flag
 (to be updated when the state is “RIIC_AL”)*/

 uint8_t ch_no; /* Channel number */

*p_riic_status
This contains the variable to store the RIIC state. Use the structure members listed below to specify
parameters.
typedef union
{

uint32_t LONG;
struct
{

 uint32_t rsv:19; /* reserve */

 uint32_t TMO:1; /* Timeout flag */

 uint32_t AL:1; /* Arbitration lost detection flag */

 uint32_t rsv:4; /* reserve */

 uint32_t SCLO:1; /* SCL pin output control status */

 uint32_t SDAO:1; /* SDA pin output control status */

 uint32_t SCLI:1; /* SCL pin level */

 uint32_t SDAI:1; /* SDA pin level */

 uint32_t NACK:1; /* NACK detection flag */

 uint32_t rsv:1; /* reserve */

 uint32_t BSY:1; /* Bus status flag */

 }BIT;

} riic_mcu_status_t;

Return Values
RIIC_SUCCESS /* Processing completed successfully */
RIIC_ERR_INVALID_CHAN /* The channel is nonexistent. */
RIIC_ERR_INVALID_ARG /* The parameter is invalid. */

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 50 of 100
Mar.15.25

Properties
Prototyped in r_riic_rx_if.h.

Description
Returns the state of this module.
By reading the register, pin level, variable, or others, obtains the state of the RIIC channel which specified by
the parameter, and returns the obtained state as 32-bit structure.

When this function is called, the RIIC arbitration-lost flag and NACK flag are cleared to 0. If the device state
is
“RIIC_ AL”, the value is updated to “RIIC_FINISH”.

Example

volatile riic_return_t ret;
riic_info_t iic_info_m;
riic_mcu_status_t riic_status;

iic_info_m.ch_no = 0;

ret = R_RIIC_GetStatus(&iic_info_m, &riic_status);

Special Notes
The following shows the state flag allocation.

b31 to b16

Reserved

Reserved

Rsv

Undefined

b15 to b13 b12 b11 b10 to b8

Reserved Event detection Reserved

Reserved Timeout
detection

Arbitration
lost

detection
Reserved

Rsv TMO AL Rsv

Undefined 0: Not detected
1: Detected Undefined

b7 b6 b5 b4 b3 b2 b1 b0

Reserved Pin status Pin level Event
detection Reserved Bus state

Reserved SCL pin
control

SDA pin
control

SCL pin
level

SDA pin
level

NACK
detection Reserved Bus

busy/ready

Rsv SCLO SDAO SCLI SDAI NACK Rsv BSY

Undefined 0: Output low level
1: Output Hi-Z

0: Low level
1: High level

0: Not
detected

1: Detected
Undefined 0: Idle

1: Busy

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 51 of 100
Mar.15.25

R_RIIC_Control()
This function outputs conditions, Hi-Z from the SDA, and one-shot of the SCL clock. Also it resets the
settings of this module. This function is mainly used when a communication error occurs.

Format
riic_return_t R_RIIC_Control(

r_riic_info_t * p_riic_info /* Structure data */
uint8_t ctrl_ptn /* Output pattern */

);

Parameters
*p_riic_info

This is the pointer to the I2C communication information structure.
Only the member of the structure used in this function is described here. Refer to 2.9 Parameters for
details on the structure.

The contents of the structure are referred and updated during communication. Do not rewrite the structure
during communication (RIIC_COMMUNICATION) and when an error has occurred (RIIC_TMO and
RIIC_ERROR).

For the parameter which has ‘(to be updated)’ in the comment below, the argument for the parameter will
be updated during the API execution.
riic_ch_dev_status_t dev_sts; /* Device state flag
 (to be updated when “RIIC_GEN_RESET” is
 specified as the output pattern)*/

 uint8_t ch_no; /* Channel number */

ctrl_ptn
Specifies the output pattern.

The output pattern listed below can be specified simultaneously. When specifying multiple patterns
simultaneously, specify them with ‘|’(OR).

The following output patterns can be specified simultaneously with a combination of two or three of them.

- RIIC_GEN_START_CON
- RIIC_GEN_RESTART_CON
- RIIC_GEN_STOP_CON

The following two can specified simultaneously.

- RIIC_GEN_SDA_HI_Z
- RIIC_GEN_SCL_ONESHOT

#define RIIC_GEN_START_CON (uint8_t)(0x01) /* Start condition generation */

#define RIIC_GEN_STOP_CON (uint8_t)(0x02) /* Stop condition generation */

#define RIIC_GEN_RESTART_CON (uint8_t)(0x04) /* Restart condition generation */

#define RIIC_GEN_SDA_HI_Z (uint8_t)(0x08) /* Hi-Z output from the SDA pin */

#define RIIC_GEN_SCL_ONESHOT (uint8_t)(0x10) /* SCL clock one-shot output */

#define RIIC_GEN_RESET (uint8_t)(0x20) /* RIIC module reset */

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 52 of 100
Mar.15.25

Return Values
RIIC_SUCCESS /* Processing completed successfully */
RIIC_ERR_INVALID_CHAN /* Nonexistent channel */
RIIC_ERR_INVALID_ARG /* Invalid parameter */
RIIC_ERR_BUS_BUSY /* Bus is busy */
RIIC_ERR_AL /* Arbitration-lost error occurred */
RIIC_ERR_OTHER /* The event occurred is invalid in the current state. */

Properties
Prototyped in r_riic_rx_if.h.

Description
Outputs control signals of the RIIC. Outputs conditions specified by the argument, Hi-Z from the SDA pin,
and one-shot of the SCL clock. Also resets the RIIC module settings.

Example

/* Outputs an extra SCL clock cycle after the SDA pin state is changed to a high-
impedance state. */
volatile riic_return_t ret;
riic_info_t iic_info_m;

iic_info_m.ch_no = 0;

ret = R_RIIC_Control(&iic_info_m, RIIC_GEN_SDA_HI_Z | RIIC_GEN_SCL_ONESHOT);

Special Notes
One-shot output of the SCL clock

In master mode, if the clock signals from the master and slave devices go out of synchronization due to
noise or other factors, the slave device may hold the SDA line low (bus hang up). Then the SDA line can be
released from being held low by outputting one clock of the SCL at a time.

In this module, one clock of the SCL can be output by setting the output pattern
“RIIC_GEN_SCL_ONESHOT” (one-shot output of the SCL clock) and calling R_RIIC_Control().

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 53 of 100
Mar.15.25

R_RIIC_Close()
This function completes the RIIC communication and releases the RIIC used.

Format
riic_return_t R_RIIC_Close(

riic_info_t * p_riic_info /* Structure data */

)

Parameters
*p_riic_info

This is the pointer to the I2C communication information structure.
Only the member of the structure used in this function is described here. Refer to 2.9 Parameters for
details on the structure.

The contents of the structure are referred and updated during communication. Do not rewrite the structure
during communication (RIIC_COMMUNICATION) and when an error has occurred (RIIC_TMO and
RIIC_ERROR).

For the parameter which has ‘(to be updated)’ in the comment below, the argument for the parameter will
be updated during the API execution.
riic_ch_dev_status_t dev_sts; /* Device state flag (to be updated) */

 uint8_t ch_no; /* Channel number */

Return Values
RIIC_SUCCESS /* Processing completed successfully */
RIIC_ERR_INVALID_CHAN /* The channel is nonexistent. */
RIIC_ERR_INVALID_ARG /* Invalid parameter */

Properties
Prototyped in r_riic_rx_if.h.

Description
Configures the settings to complete the RIIC communication. Disables the RIIC channel specified by the
parameter. The following processes are performed in this function.

- Entering the RIIC module-stop state
- Releasing I2C output ports
- Disabling the RIIC interrupt

To restart the communication, call the R_RIIC_Open() function (initialization function). If the communication
is forcibly terminated, that communication is not guaranteed.

Example

volatile riic_return_t ret;
riic_info_t iic_info_m;

iic_info_m.ch_no = 0;

ret = R_RIIC_Close(&iic_info_m);

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 54 of 100
Mar.15.25

Special Notes
None

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 55 of 100
Mar.15.25

R_RIIC_GetVersion()
Returns the current version of this module.

Format
uint32_t R_RIIC_GetVersion(void)

Parameters
None

Return Values
Version number

Properties
Prototyped in r_riic_rx_if.h.

Description
This function will return the version of the currently installed RIIC FIT module. The version number is
encoded where the top 2 bytes are the major version number and the bottom 2 bytes are the minor version
number. For example, Version 4.25 would be returned as 0x00040019.

Example

uint32_t version;

version = R_RIIC_GetVersion();

Special Notes
None.

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 56 of 100
Mar.15.25

4. Pin Settings
To use the RIIC FIT module, assign input/output signals of the peripheral function to pins with the multi-
function pin controller (MPC). The pin assignment is referred to as the “Pin Setting” in this document.
The RIIC FIT module can choose whether or not to perform the pin setting in the R_RIIC_Open function
depending on the setting of the configuration option RIIC_CFG_PORT_SET_PROCESSING.
For details of the configuration options, refer to "2.7 Configuration Overview".

When performing the Pin Setting in the e2 studio, the Pin Setting feature of the Smart Configurator can be
used. When using the pin setting feature, pins selected in the Pin Setting pane can be used in the Smart
Configurator. The information of selected pins is reflected in the r_riic_pin_config.h file. Values of the macro
definitions listed in Table 4.1 are overwritten with values corresponding to the pins selected.

Table 4.1 Macro Definitions for the Pin Setting Feature

Channel Selected Pin Selected Macro Definition
Channel 0 SCL0 Pin R_RIIC_CFG_RIIC0_SCL0_PORT

R_RIIC_CFG_RIIC0_SCL0_BIT
 SDA0 Pin R_RIIC_CFG_RIIC0_SDA0_PORT

R_RIIC_CFG_RIIC0_SDA0_BIT
Channel 1 SCL1 Pin R_RIIC_CFG_RIIC1_SCL1_PORT

R_RIIC_CFG_RIIC1_SCL1_BIT
 SDA1 Pin R_RIIC_CFG_RIIC1_SDA1_PORT

R_RIIC_CFG_RIIC1_SDA1_BIT
Channel 2 SCL2 Pin R_RIIC_CFG_RIIC2_SCL2_PORT

R_RIIC_CFG_RIIC2_SCL2_BIT
 SDA2 Pin R_RIIC_CFG_RIIC2_SDA2_PORT

R_RIIC_CFG_RIIC2_SDA2_BIT

Pins selected in the r_riic_pin_config.h file are configured as peripheral function pins SCL and SDA after
calling the R_RIIC_Open function.

The pins assigned to the peripheral function are released upon calling the R_RIIC_Close function and then
become general I/O pins (as input pins).

Pins SCL and SDA must be pulled up with an external resistor.

When the pin setting feature in this FIT module is not used according to the
RIIC_CFG_PORT_SET_PROCESSING setting, pins used in user processing must be configured after
calling the R_RIIC_Open function before calling the other APIs.

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 57 of 100
Mar.15.25

5. Demo Projects
Demo projects are complete stand-alone programs. They include function main() that utilizes the module
and its dependent modules (e.g.. r_bsp).

In this section, it explains about GUI operation when you use e2 studio.

5.1 riic_mastersend_demo_rskrx64m, riic_mastersend_demo_rskrx64m_gcc
Description
A simple demo of the RX64M RIIC Master Transmission for the RSKRX64M starter kit (FIT module
"r_riic_rx"). The demo uses the RIIC API from r_riic_rx_if.h to start master transmission. The master device
(RX MCU) transmits data to the slave device. When the master transmission is finished, print the finished
message to the debug console by main().

Setup and Execution
1. Compile and download the sample code.

2. Click ‘Reset Go’ to start the software. If PC stops at Main, press F8 to resume.

3. Set breakpoints and watch global variables

Boards Supported
RSKRX64M

5.2 riic_masterreceive_demo_rskrx64m, riic_masterreceive_demo_rskrx64m_gcc
Description
A simple demo of the RX64M RIIC Master Reception for the RSKRX64M starter kit (FIT module "r_riic_rx").
The demo uses the RIIC API from r_riic_rx_if.h to start master reception. The master (RX MCU) receives
data from the slave device .When the master reception is finished, print the received data to the debug
console by main().

Boards Supported
RSKRX64M

5.3 riic_slavetransfer_demo_rskrx64m, riic_slavetransfer_demo_rskrx64m_gcc
Description
A simple demo of the RX64M RIIC Slave Transmission and Reception for the RSKRX64M starter kit (FIT
module "r_riic_rx"). The demo uses the RIIC API from r_riic_rx_if.h to start slave transmission and reception.
The slave (RX MCU) receives data transmitted from the master, or transmits data by the transmit request
from the master. When the slave transmission and reception is finished, print the finished message to the
debug console by main().
Boards Supported
RSKRX64M

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 58 of 100
Mar.15.25

5.4 riic_mastersend_demo_rskrx231, riic_mastersend_demo_rskrx231_gcc
Description
A simple demo of the RX231 RIIC Master Transmission for the RSKRX231 starter kit (FIT module "r_riic_rx").
This demo is identical to the RX64M for demo above.

Boards Supported
RSKRX231

5.5 riic_masterreceive_demo_rskrx231, riic_masterreceive_demo_rskrx231_gcc
Description
A simple demo of the RX231 RIIC Master Reception for the RSKRX231 starter kit (FIT module "r_riic_rx").
This demo is identical to the RX64M for demo above.

Boards Supported
RSKRX231

5.6 riic_slavetransfer_demo_rskrx231, riic_slavetransfer_demo_rskrx231_gcc
Description
A simple demo of the RX231 RIIC Slave Transmission and Reception for the RSKRX231 starter kit (FIT
module "r_riic_rx"). This demo is identical to the RX64M for demo above.

Boards Supported
RSKRX231

5.7 riic_mastersend_demo_rskrx671, riic_mastersend_demo_rskrx671_gcc
Description
A simple demo of the RX671 RIIC Master Transmission for the RSKRX671 starter kit (FIT module "r_riic_rx").
This demo is identical to the RX64M for demo above.

Boards Supported
RSKRX671

5.8 riic_masterreceive_demo_rskrx671, riic_masterreceive_demo_rskrx671_gcc
Description
A simple demo of the RX671 RIIC Master Reception for the RSKRX671 starter kit (FIT module "r_riic_rx").
This demo is identical to the RX64M for demo above.

Boards Supported
RSKRX671

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 59 of 100
Mar.15.25

5.9 riic_slavetransfer_demo_rskrx671, riic_slavetransfer_demo_rskrx671_gcc
Description
A simple demo of the RX671 RIIC Slave Transmission and Reception for the RSKRX671 starter kit (FIT
module "r_riic_rx"). This demo is identical to the RX64M for demo above.

Boards Supported
RSKRX671

5.10 riic_mastersend_demo_rskrx72n, riic_mastersend_demo_rskrx72n_gcc
Description
A simple demo of the RX72N RIIC Master Transmission for the RSKRX72N starter kit (FIT module
"r_riic_rx"). This demo is identical to the RX64M for demo above.

Boards Supported
RSKRX72N

5.11 riic_masterreceive_demo_rskrx72n, riic_masterreceive_demo_rskrx72n_gcc
Description
A simple demo of the RX72N RIIC Master Reception for the RSKRX72N starter kit (FIT module "r_riic_rx").
This demo is identical to the RX64M for demo above.

Boards Supported
RSKRX72N

5.12 riic_slavetransfer_demo_rskrx72n, riic_slavetransfer_demo_rskrx72n_gcc
Description
A simple demo of the RX72N RIIC Slave Transmission and Reception for the RSKRX72N starter kit (FIT
module "r_riic_rx"). This demo is identical to the RX64M for demo above.

Boards Supported
RSKRX72N

5.13 Adding a Demo to a Workspace
Demo projects are found in the FITDemos subdirectory of the distribution file for this application note. To
add a demo project to a workspace, select File>Import>General>Existing Projects into Workspace, then click
“Next”. From the Import Projects dialog, choose the “Select archive file” radio button. “Browse” to the
FITDemos subdirectory, select the desired demo zip file, then click “Finish”.

5.14 Downloading Demo Projects
Demo projects are not included in the RX Driver Package. When using the demo project, the FIT module
needs to be downloaded. To download the FIT module, right click on the required application note and select
“Sample Code (download)” from the context menu in the Smart Brower >> Application Notes tab.

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 60 of 100
Mar.15.25

6. Appendices

6.1 Communication Method
This module controls each processing such as start condition generation, slave address transmission, and
others as a single protocol, and performs communication by combining these protocols.

6.1.1 States for API Operation
Table 6.1 lists the States Used for Protocol Control.

Table 6.1 States Used for Protocol Control (enum r_riic_api_status_t)

No. Constant Name Description
STS0 RIIC_STS_NO_INIT Uninitialized state
STS1 RIIC_STS_IDLE Idle state (ready for master communication)
STS2 RIIC_STS_IDLE_EN_SLV Idle state (ready for master/slave communication)
STS3 RIIC_STS_ST_COND_WAIT Wait state for a start condition to be detected

STS4 RIIC_STS_SEND_SLVADR_W_WAIT Wait state for the slave address [write] transmission
to complete

STS5 RIIC_STS_SEND_SLVADR_R_WAIT Wait state for the slave address [read] transmission to
complete

STS6 RIIC_STS_SEND_DATA_WAIT Wait state for the data transmission to complete
STS7 RIIC_STS_RECEIVE_DATA_WAIT Wait state for the data reception to complete
STS8 RIIC_STS_SP_COND_WAIT Wait state for a stop condition to be detected
STS9 RIIC_STS_AL Arbitration-lost state
STS10 RIIC_STS_TMO Timeout detection state

6.1.2 Events During API Operation
Table 6.2 lists the Events Used for Protocol Control. In this module, not only interrupt but also the module
function call is defined as event.

Table 6.2 Events Used for Protocol Control (enum r_riic_api_event_t)

No. Event Event Definition
EV0 RIIC_EV_INIT R_RIIC_Open() called
EV1 RIIC_EV_EN_SLV_TRANSFER R_RIIC_SlaveTransfer() called

EV2 RIIC_EV_GEN_START_COND R_RIIC_MasterSend()
or R_RIIC_MasterReceive() called

EV3 RIIC_EV_INT_START EEI interrupt occurred (interrupt flag: START)
EV4 RIIC_EV_INT_ADD TEI interrupt occurred, TXI interrupt occurred (1)
EV5 RIIC_EV_INT_SEND TEI interrupt occurred, TXI interrupt occurred (1)
EV6 RIIC_EV_INT_RECEIVE RXI interrupt occurred
EV7 RIIC_EV_INT_STOP EEI interrupt occurred (interrupt flag: STOP)
EV8 RIIC_EV_INT_AL EEI interrupt occurred (interrupt flag: AL)
EV9 RIIC_EV_INT_NACK EEI interrupt occurred (interrupt flag: NACK)
EV10 RIIC_EV_INT_TMO EEI interrupt occurred (interrupt flag: TMO)
Note:

1. The definition of EV4 and EV5 differs depending on the communication operation and the states of
"6.1.1 States for API Operation". For details, refer to "6.1.3 Protocol State Transitions".

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 61 of 100
Mar.15.25

6.1.3 Protocol State Transitions
In this module, a state transition occurs when an interface function provided is called or when an I2C interrupt
request is generated. Figure 6.1 to Figure 6.4 show protocol state transitions.

EV0 ('R_RIIC_Open()' called) /
Initialization processing

STS0 (RIIC_STS_NO_INIT)
Uninitialized state

STS1 (RIIC_STS_IDLE)
Idle state

(ready for master transmission)

Notation conventions

State Event[condition]/Action on the event

Figure 6.1 State Transition on Initialization (‘R_RIIC_Open()’ Called)

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 62 of 100
Mar.15.25

EV5 (TEI interrupt occurred)
[First data counter == 0 &&
 second data counter == 0]/
Starts generating a stop condition

EV8 (EEI interrupt occurred)
['R_RIIC_SlaveTransfer()' not called]/

EV9 (EEI interrupt occurred)
[NACK detected]/
Starts generating a stop condition

EV4 (TEI interrupt occurred)
Operation for Pattern 1
[First data buffer pointer != NULL]/
Starts transmitting the first data
Operation for Pattern 2
[First data buffer pointer == NULL &&
 second data buffer pointer != NULL]/
 Starts transmitting the second data

EV4 (TEI interrupt occurred)
Operation for Pattern 3
[First data buffer pointer == NULL &&
 second data buffer pointer == NULL]/
Starts generating a stop condition

EV8 (EEI interrupt occurred)
['R_RIIC_SlaveTransfer()' not called]/

EV5 (TEI interrupt occurred)
[First data counter != 0]/
Starts transmitting the first data

[Second data counter != 0]/
Starts transmitting the second data

EV2 ('R_RIIC_MasterSend()' called)/
Starts generating a start condition

STS2 (RIIC_STS_IDLE_EN_SLV)
Idle state

(ready for master/slave
communication)

STS9 (RIIC_STS_AL)
Arbitration-lost state

EV1 ('R_RIIC_SlaveTransfer()' called)/
Specifies the setting for the slave transmission
and reception

Go to the state transition on slave
transmission and reception

EV8 (EEI interrupt occurred)
['R_RIIC_SlaveTransfer()' already called] /

Notation conventions

State
Event[condition]/
Action on the event

EV7 (EEI interrupt occurred)
['R_RIIC_SlaveTransfer()' already called]/
Communication end processing

EV7 (EEI interrupt occurred)
['R_RIIC_SlaveTransfer()' not called]/
Communication end processing

STS10 (RIIC_STS_TMO)
Timeout detection state

STS1 (RIIC_STS_IDLE)
Idle state

(ready for master communication)

EV3 (EEI interrupt occurred)
Operation for Pattern 4
[Slave address buffer pointer == NULL]/
Starts generating a stop condition

EV8 (EEI interrupt occurred)
['R_RIIC_SlaveTransfer()' not called] /

EV3 (EEI interrupt occurred)
[Slave address buffer pointer != NULL]/
Starts transmitting the slave address[write]

EV10 (EEI interrupt occurred) /

STS3 (RIIC_STS_ST_COND_WAIT)
Wait state for a start condition to be

detected

STS4 (RIIC_STS_SEND_SLVADR_W_WAIT)
Wait state for the slave address [write]

transmission to complete

STS6 (RIIC_STS_SEND_DATA_WAIT)
Wait state for the data transmission to

complete

STS8 (RIIC_STS_SP_COND_WAIT)
Wait state for a stop condition to be

detected

Figure 6.2 State Transition on Master Transmission (R_RIIC_MasterSend() Called)

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 63 of 100
Mar.15.25

EV3 (EEI interrupt occurred)
[Master reception mode and the
previous state is the idle state] or
[Master composite mode and the
previous state is the wait state for
the data transmission to complete]/
Starts transmit ting the slave
address[read]

EV3 (EEI interrupt occurred)
[Master composite and
the previous state is the idle state]/
Starts transmit ting the slave address [write]

EV4 (TEI interrupt occurred)/
Starts transmit ting the first data

EV6 (RXI interrupt occurred)
[Second data counter == 0]/
Starts generating the stop condition

EV8 (EEI interrupt occurred)
['R_RIIC_SlaveTransfer()' not called] /

EV5 (TEI interrupt occurred)
[First data counter != 0]/
Starts the f irst data transmission

EV6 (RXI interrupt occurred)
[Second data counter != 0]/
Data reception

EV2 ('R_RIIC_MasterSend()' called)/
Starts generating a start condition

EV5 (TEI interrupt occurred)
[First data counter == 0]/
Starts generating a restart condition

EV6 (RXI interrupt
occurred)/
Starts receiving data

STS2 (RIIC_STS_IDLE_EN_SLV)
Idle state

(ready for master/slave
communication)

STS9 (RIIC_STS_AL)
Arbitration-lost state

Go to the state transition on slave
transmission and reception

EV8 (EEI interrupt occurred)
['R_RIIC_SlaveTransfer()' already called]/

EV8 (EEI interrupt occurred)
['R_RIIC_SlaveTransfer()' not called] /

EV8 (EEI interrupt occurred)
['R_RIIC_SlaveTransfer()' not called]/

Notation conventions

State
Event[condition]/
Act ion on the event

EV1 ('R_RIIC_SlaveTransfer()' called)/
Specifies the setting for the slave transmission
and reception

STS1 (RIIC_STS_IDLE)
Idle state

(ready for master communication)

EV7 (EEI interrupt occurred)
['R_RIIC_SlaveTransfer()' already called]/
Communication end processing

EV7 (EEI interrupt occurred)
['R_RIIC_SlaveTransfer()' not called]/
Communication end processing

STS10 (RIIC_STS_TMO)
Timeout detection state

STS3 (RIIC_STS_ST_COND_WAIT)
Wait state for a start condition to be

detected

STS4 (RIIC_STS_SEND_SLVADR_W_WAIT)
Wait state for the slave address [write]

transmission to complete

STS6 (RIIC_STS_SEND_DATA_WAIT)
Wait state for the data transmission to

complete

STS7 (RIIC_STS_RECEIVE_DATA_WAIT)
Wait state for the data recept ion to complete

STS5 (RIIC_STS_SEND_SLVADR_R_WAIT)
Wait state for the slave address [read]

transmission to complete

STS8 (RIIC_STS_SP_COND_WAIT)
Wait state for the stop condition to be

detected

EV10 (EEI interrupt occurred) /

Figure 6.3 State Transition on Master Reception (R_RIIC_MasterReceive() Called)

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 64 of 100
Mar.15.25

EV7 (EEI interrupt occurred)
[Stop condition detected]/
Communication end processing

EV6 (RXI interrupt occurred)
[Second data counter != 0]/
Data reception
[Second data counter == 0]/
Dummy read
NACK output

STS1 (RIIC_STS_IDLE)
Idle state

(ready for master communication)

STS2 (RIIC_STS_IDLE_EN_SLV)
Idle state

(ready for master/slave
communication)

EV1 ('R_RIIC_SlaveTransfer()' called)/
Specifies the setting for the slave
transmission and reception

EV4 (TXI interrupt occurred)
[Slave address matched &&
read signal received]/
Starts transmitting the data

EV7 (EEI interrupt occurred)/
Communication end processing

EV7 (EEI interrupt occurred)
[Stop condition detected]/
Communication end processing

EV6 (RXI interrupt occurred)
[Slave address matched &&
write signal received]/Starts
data reception (dummy read)

Notation conventions

State
Event[condition]/
Action on the event

EV5 (TXI interrupt occurred)
[First data counter != 0]/
Starts the first data transmission

[First data counter == 0]/
Starts transmitting FFh EV9 (EEI interrupt occurred)/

NACK detection

STS10 (RIIC_STS_TMO)
Timeout detection state

STS6 (RIIC_STS_SEND_DATA_WAIT)
Wait state for the data transmission to

complete

STS8 (RIIC_STS_SP_COND_WAIT)
Wait state for the stop condition to be

detected

STS7 (RIIC_STS_RECEIVE_DATA_WAIT)
Wait state for the data reception to complete

EV10 (EEI interrupt occurred) /

Figure 6.4 State Transition on Slave Transmission and Reception (R_RIIC_SlaveTransfer() Called)

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 65 of 100
Mar.15.25

6.1.4 Protocol State Transition Table
The processing when the events in Table 6.2 occur in the states in Table 6.1 is shown in the Table 6.3
Protocol State Transition. Refer to Table 6.4 for details of each function.

Table 6.3 Protocol State Transition Table (gc_riic_mtx_tbl[][]) (1)

State
Event

EV0 EV1 EV2 EV3 EV4 EV5 EV6 EV7 EV8 EV9 EV10

STS0
Uninitialized state
[RIIC_STS_NO_INIT]

Func0 ERR ERR ERR ERR ERR ERR ERR ERR ERR ERR

STS1
Idle state (ready for master
communication)
[RIIC_STS_IDLE]

ERR
Func

10
Func1 ERR ERR ERR ERR ERR ERR ERR ERR

STS2
Idle state (ready for master/slave
communication)
[RIIC_STS_IDLE_EN_SLV]

ERR ERR Func1 ERR Func4 ERR Func4 ERR ERR ERR ERR

STS3
Wait state for the start condition to be
generated
[RIIC_STS_ST_COND_WAIT]

ERR ERR ERR Func2 ERR ERR ERR ERR Func8 Func9
Func

11

STS4
Wait state for the slave address [write] to
complete
[RIIC_STS_SEND_SLVADR_W_WAIT]

ERR ERR ERR ERR Func3 ERR ERR ERR Func8 Func9
Func

11

STS5
Wait state for the slave address [read] to
complete
[RIIC_STS_SEND_SLVADR_R_WAIT]

ERR ERR ERR ERR ERR ERR Func3 ERR Func8 Func9
Func

11

STS6
Wait state for the data transmission to
complete
[RIIC_STS_SEND_DATA_WAIT]

ERR ERR ERR ERR ERR Func5 ERR ERR Func8 Func9
Func

11

STS7
Wait state for the data reception to
complete
[RIIC_STS_RECEIVE_DATA_WAIT]

ERR ERR ERR ERR ERR ERR Func6 ERR Func8 Func9
Func

11

STS8
Wait state for the stop condition to be
generated [RIIC_STS_SP_COND_WAIT]

ERR ERR ERR ERR ERR ERR ERR Func7 ERR Func9
Func

11

STS9
Arbitration-lost state
[RIIC_STS_AL]

ERR ERR ERR ERR ERR Func5 Func6 Func7 ERR ERR ERR

STS10
Timeout detection state
[RIIC_STS_TMO]

ERR ERR ERR ERR ERR ERR ERR ERR ERR ERR ERR

Note:
1. ERR indicates RIIC_ERR_OTHER. When an unexpected event is notified in a state, error processing

will be performed.

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 66 of 100
Mar.15.25

6.1.5 Functions Used on Protocol State Transitions
Table 6.4 lists the Functions Used on Protocol State Transition.

Table 6.4 Functions Used on Protocol State Transition

Processing Function Overview
Func0 riic_init_driver() Initialization
Func1 riic_generate_start_cond() Start condition generation (for master transmission)
Func2 riic_after_gen_start_cond() Processing after generating a start condition

Func3 riic_after_send_slvadr() Processing after completing the slave address
transmission

Func4 riic_after_receive_slvadr() Processing after matching the received slave address
Func5 riic_write_data_sending() Data transmission
Func6 riic_read_data_receiving() Data reception
Func7 riic_after_dtct_stop_cond () Communication end processing
Func8 riic_arbitration_lost() Processing when detecting an arbitration-lost
Func9 riic_nack() Processing when detecting a NACK
Func10 riic_enable_slave_transfer() Enabling slave transmission/reception
Func11 riic_time_out() Processing when detecting a timeout

6.1.6 Flag States on State Transitions
1. Controlling states of channels

Multiple slaves on the same bus can be exclusively controlled using the channel state flag
‘g_riic_ChStatus[]’. Each channel has the channel state flag and the flag is controlled by the global variable.
When the initialization for this module has completed and the target bus is not being used for a
communication, the flag becomes ‘RIIC_IDLE/RIIC_FINISH/RIIC_NACK’ (idle state (ready for
communication)) and communication is available. When the bus is being used for communication, the flag
becomes ‘RIIC_COMMUNICATION’ (communicating). When communication is started, the flag is always
verified. Thus, if a device is communicating on a bus, then no other device can start communicating on the
same bus. Simultaneous communication can be achieved by controlling the channel state flag for each
channel.

2. Controlling states of devices

Multiple slaves on the same channel can be controlled using the device state flag ‘dev_sts’ in the I2C
communication information structure. The device state flag stores the state of communication for the device.

Table 6.5 lists States of Flags on State Transitions.

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 67 of 100
Mar.15.25

Table 6.5 States of Flags on State Transitions

State

Channel State Flag
Device State Flag
(Communication Device)

I2C Protocol Operating
Mode

Current State of the Protocol Control

g_riic_ChStatus[]
I2C Communication
Information Structure
dev_sts

Internal Communication
Information Structure
N_Mode

Internal Communication Information
Structure
N_status

Uninitialized state RIIC_NO_INIT RIIC_NO_INIT RIIC_MODE_NONE RIIC_STS_NO_INIT

Idle state

(ready for master

communication)

RIIC_IDLE

RIIC_FINISH

RIIC_NACK

RIIC_IDLE

RIIC_FINISH

RIIC_NACK

RIIC_MODE_NONE RIIC_STS_IDLE

Idle state

(ready for

master/slave

communication)

RIIC_IDLE RIIC_IDLE RIIC_MODE_S_READY RIIC_STS_IDLE_EN_SLV

Communicating

(master

transmission)

RIIC_COMMUNICATION RIIC_COMMUNICATION RIIC_MODE_M_SEND

RIIC_STS_ST_COND_WAIT

RIIC_STS_SEND_SLVADR_W_WAIT

RIIC_STS_SEND_DATA_WAIT

RIIC_STS_SP_COND_WAIT

RIIC_STS_AL

RIIC_STS_TMO

Communicating

(master reception)
RIIC_COMMUNICATION RIIC_COMMUNICATION

RIIC_MODE_

M_RECEIVE

RIIC_STS_ST_COND_WAIT

RIIC_STS_SEND_SLVADR_R_WAIT

RIIC_STS_RECEIVE_DATA_WAIT

RIIC_STS_SP_COND_WAIT

RIIC_STS_AL

RIIC_STS_TMO

Communicating

(master

transmit/receive)

RIIC_COMMUNICATION RIIC_COMMUNICATION
RIIC_MODE_

M_SEND_RECEIVE

RIIC_STS_ST_COND_WAIT

RIIC_STS_SEND_SLVADR_W_WAIT

RIIC_STS_SEND_SLVADR_R_WAIT

RIIC_STS_SEND_DATA_WAIT

RIIC_STS_RECEIVE_DATA_WAIT

RIIC_STS_SP_COND_WAIT

RIIC_STS_AL

RIIC_STS_TMO

Communicating

(slave

transmission)

RIIC_COMMUNICATION RIIC_COMMUNICATION RIIC_MODE_S_SEND

RIIC_STS_SEND_DATA_WAIT

RIIC_STS_SP_COND_WAIT

RIIC_STS_TMO

Communicating

(slave reception)
RIIC_COMMUNICATION RIIC_COMMUNICATION RIIC_MODE_S_RECEIVE

RIIC_STS_RECEIVE_DATA_WAIT

RIIC_STS_SP_COND_WAIT

RIIC_STS_TMO

Arbitration-lost

detection state
RIIC _AL RIIC _AL  

Timeout detection

state
RIIC_TMO RIIC_TMO  

Error state RIIC_ERROR RIIC_ERROR  

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 68 of 100
Mar.15.25

6.2 Interrupt Request Generation Timing
This section describes the interrupt request generation timings in this module.

Legend:
ST: Start condition

AD6 to AD0: Slave address

/W: Transfer direction bit: 0 (Write)

R: Transfer direction bit: 1 (Read)

/ACK: Acknowledge: 0

NACK: Acknowledge: 1

D7 to D0: Data

RST: Restart condition

SP: Stop condition

6.2.1 Master Transmission

(1) Pattern 1

ST AD6 to
AD0 /W /ACK D7 to D0 /ACK D7 to D0 /ACK SP

▲1: EEI (START) interrupt: Start condition detected

▲2: TEI interrupt: Address transmission completed (transfer direction bit: write)

▲3: TEI interrupt: Data transmission completed (first data)

▲4: TEI interrupt: Data transmission completed (second data)

▲5: EEI (STOP) interrupt: Stop condition detected

(2) Pattern 2

ST AD6 to
AD0 /W /ACK D7 to D0 /ACK SP

▲1: EEI (START) interrupt: Start condition detected

▲2: TEI interrupt: Address transmission completed (transfer direction bit: write)

▲3: TEI interrupt: Data transmission completed (second data)

▲4: EEI (STOP) interrupt: Stop condition detected

▲2 ▲3 ▲4 ▲5 ▲1

▲2 ▲3 ▲4 ▲1

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 69 of 100
Mar.15.25

(3) Pattern 3

ST AD6 to
AD0 /W /ACK SP

▲1: EEI (START) interrupt: Start condition detected

▲2: TEI interrupt: Address transmission completed (transfer direction bit: write)

▲3: EEI (STOP) interrupt: Stop condition detected

(4) Pattern 4

ST SP

▲1: EEI (START) interrupt: Start condition detected

▲2: EEI (STOP) interrupt: Stop condition detected

Note:
1. An interrupt request is generated on the rising edge of the ninth clock.

6.2.2 Master Reception

ST AD6 to
AD0 R /ACK D7 to D0 /ACK D7 to D0 NACK SP

▲1: EEI (START) interrupt: Start condition detected

▲2: RXI interrupt: Address transmission completed (transfer direction bit: read)

▲3: RXI interrupt: Reception for the last data - 1 completed (second data)

▲4: RXI interrupt: Reception for the last data completed (second data)

▲5: EEI (STOP) interrupt: Stop condition detected

▲2 ▲3 ▲1

▲2 ▲1

▲2 ▲3 ▲4 ▲5 ▲1

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 70 of 100
Mar.15.25

6.2.3 Master Transmit/Receive

ST AD6 to
AD0 /W /ACK D7 to D0 /ACK RST AD6 to

AD0 R

/ACK D7 to
D0 /ACK D7 to

D0 NACK SP

▲1: EEI (START) interrupt: Start condition detected

▲2: TEI interrupt: Address transmission completed (transfer direction bit: write)

▲3: TEI interrupt: Data transmission completed (first data)

▲4: EEI (START) interrupt: Restart condition detected

▲5: RXI interrupt: Address transmission completed (transfer direction bit: read)

▲6: RXI interrupt: Reception for the last data - 1 completed (second data)

▲7: RXI interrupt: Reception for the last data completed (second data)

▲8: EEI (STOP) interrupt: Stop condition detected

6.2.4 Slave Transmission

When transmitting 2-byte data:

ST AD6 to
AD0 R /ACK D7 to D0 /ACK D7 to D0 NACK SP

▲1: TXI interrupt: Received address matched (transfer direction bit: read)

▲2: TXI interrupt: Transmit buffer is empty

▲3: TXI interrupt: Transmit buffer is empty

▲4: EEI (NACK) interrupt: NACK detected

▲5: EEI (STOP) interrupt: Stop condition detected

▲2 ▲3

▲5 ▲6 ▲7 ▲8

▲1 ▲4

▲1
▲2

▲3 ▲5 ▲4

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 71 of 100
Mar.15.25

When transmitting 3-byte data:

ST AD6 to
AD0 R /ACK D7 to D0 /ACK D7 to D0 /ACK

D7 to
D0 NACK SP

▲1: TXI interrupt: Received address matched (transfer direction bit: read)

▲2: TXI interrupt: Transmit buffer is empty

▲3: TXI interrupt: Transmit buffer is empty

▲4: TXI interrupt: Transmit buffer is empty

▲5: EEI (NACK) interrupt: NACK detected

▲6: EEI (STOP) interrupt: Stop condition detected

6.2.5 Slave Reception

ST AD6 to
AD0 /W /ACK D7 to D0 /ACK D7 to D0 /ACK SP

▲1: RXI interrupt: Received address matched (transfer direction bit: write)

▲2: RXI interrupt: Reception for the last data - 1 completed (second data)

▲3: RXI interrupt: Reception for the last data completed (second data)

▲4: EEI (STOP) interrupt: Stop condition detected

6.2.6 Multi-Master Communication
(Slave transmission after detecting AL during master transmission)

ST AD6
to AD0 R /ACK D7 to D0 /ACK D7 to D0 NACK SP

▲1: EEI (START) interrupt: Start condition detected

 2: TXI interrupt: Start condition detected (no processing performed)

 3: TXI interrupt: Transmit buffer is empty (no processing performed)

▲4: EEI (AL) interrupt: Arbitration-lost detected

▲5: TXI interrupt: Address reception matched (transfer direction bit: Read)

▲6: TXI interrupt: Transmit buffer is empty

▲7: TXI interrupt: Transmit buffer is empty

▲8: EEI (NACK) interrupt: NACK detected

▲9: EEI (STOP) interrupt: Stop condition detected

▲1
▲2

▲3

▲6

▲1 ▲2 ▲4 ▲3

▲4 ▲5

▲1
2

▲9 ▲7

3

▲4 ▲5
▲6

▲8

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 72 of 100
Mar.15.25

6.3 Timeout Detection and Processing After the Detection
6.3.1 Detecting a Timeout with the Timeout Detection Function
When the timeout detection function is enabled by the setting in r_riic_config.h, call the R_RIIC_GetStatus()
function in the callback function.

The information of timeout detection can be verified with the TMO bit in the riic_mcu_status_t structure
specified as the second parameter in the R_RIIC_GetStatus() function.

- When the TMO bit is 1: Timeout detected

- When the TMO bit is 0: Timeout not detected

6.3.2 Processing After a Timeout is Detected
When a timeout is detected, the R_RIIC_Close() function needs to be called once to restart communication
calling the R_RIIC_Open() function in the initialization.

A timeout may be detected due to a bus hang up. In master mode, if the clock signals from the master and
slave devices go out of synchronization due to noise or other factors, the slave device may hold the SDA line
low (bus hang up). Then the stop condition cannot be issued and a timeout will be detected.

To recover from bus hang up state, the extra SCL clock cycle output function is used. Outputting one clock of
the extra SCL at a time can release the SDA line from being held low and the bus is recovered from hang up
state.

To output one clock of the extra SCL clock, set “RIIC_GEN_SCL_ONESHOT” (one-shot output of the SCL
clock) to the second parameter of the R_RIIC_Control() function and call the R_RIIC_Control() function.

The state of the SCL pin can be verified using the R_RIIC_GetStatus() function.

Repeat one-shot output of the SCL clock until the SCL clock becomes high.

Figure 6.5 shows the Timeout Detection and Processing After the Detection.

For details on the extra SCL clock cycle output function, refer to the Extra SCL Clock Cycle Output Function
section of the I2C Bus Interface (RIIC) chapter in the User’s Manual: Hardware for the product used.

If the RX111 Group is used, refer to “27.11.2 Extra SCL Clock Cycle Output Function” in the RX111 Group
User’s Manual: Hardware.

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 73 of 100
Mar.15.25

main

End

Set the channel number used to
iic_info_m.ch_no

R_RIIC_Open(&iic_info_m)

No
(iic_tout_check == 0)

Declare the riic_return_t structure
variable "ret"

Set the start address of the callback
function to iic_info_m.callbackfunc

Set the second data counter to
iic_info_m.cnt2nd

Set the first data counter to
iic_info_m.cnt1st

Set the buffer pointer for the second data
storage to iic_info_m.p_data2nd

Set the buffer pointer for the first data
storage to iic_info_m.p_data1st

Set the buffer pointer for the slave address
to iic_info_m.p_slv_adr

ret = R_RIIC_MasterSend(&iic_info_m)

Declare the riic_info_t structure
variable "iic_info_m"

R_RIIC_GetStatus(&iic_info_m,
&iic_status)

Declare the riic_mcu_status_t
structure variable "iic_status"

Set RIIC_NO_INIT to iic_info_m.dev_sts

No (iic_info_m.dev_sts != RIIC_FINISH)

Yes (iic_status.BIT.SDAI == 0)

Example of master transmission

R_RIIC_Close(&iic_info_m)

Has
the communication been

completed?

Yes (iic_status.BIT.TMO == 1)

Has a timeout been detected?
Checks the other errors.

Is the SDA Low?

Output one clock of the SCL
R_RIIC_Control(&iic_info_m, RIIC_GEN_SCL_ONESHOT)

Have
10 clocks or more been

output?

No

No (iic_status.BIT.SDAI == 1)

R_RIIC_GetStatus(&iic_info_m, &iic_status)

Yes

Yes (iic_info_m.dev_sts == RIIC_FINISH)

Yes (iic_tout_check == 1)

Declare the variable "iic_tout_check"
with initial value "0x00" for verifying

timeout occurrence

System
error (2)

Has a timeout occurred?

R_RIIC_Close(&iic_info_m)

End

Processing for timeout detection

User callback function for master mode

Processing when a timeout is detected

Processing for timeout

Is the SCL High? System
error (1)

Yes (iic_status.BIT.SCLI == 1)

No (iic_status.BIT.SCLI == 0)

Timeout occurred
iic_tout_check = 1

Example of user callback function for master mode
(only processing for timeout detection)

No (iic_status.BIT.TMO == 0)

Notes:
1. When a timeout occurs while the SCL is held low, a

system error may occur.
2. When the SDA line is not released after 10 or more

clocks are output while the SDA is held low by the slave
device, a system error may occur.

Figure 6.5 Timeout Detection and Processing After the Detection

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 74 of 100
Mar.15.25

6.4 Operating Test Environment
This section describes for detailed the operating test environments of this module.

Table 6.6 Operation Test Environment for Rev.1.60 and Rev.1.70.

Item Contents
Integrated development
environment

Renesas Electronics
e2 studio V3.1.0.024

C compiler Renesas Electronics
C/C++ compiler for RX Family V.2.01.01
Compiler options: The integrated development environment default settings
are used, with the following option added.
-lang = c99

Endian order Big-endian/Little-endian
Module version Rev.1.60 and Rev.1.70
Board used Renesas Starter Kit for RX111 (product number. R0K505111SxxxBE)

Renesas Starter Kit for RX231 (product number. R0K505231SxxxBE)
Renesas Starter Kit+ for RX64M (product number. R0K50564MSxxxBE)
Renesas Starter Kit+ for RX71M (product number. R0K50571MSxxxBE)

Table 6.7 Operation Test Environment for Rev.1.80.

Item Contents
Integrated development
environment

Renesas Electronics
e2 studio V4.0.2.008

C compiler Renesas Electronics
C/C++ compiler for RX Family V.2.03.00
Compiler options: The integrated development environment default settings
are used, with the following option added.
-lang = c99

Endian order Big-endian/Little-endian
Module version Rev.1.80
Board used Renesas Starter Kit for RX130 (product number. RTK5005130SxxxxxBE)

Renesas Starter Kit for RX23T (product number. RTK500523TSxxxxxBE)

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 75 of 100
Mar.15.25

Table 6.8 Operation Confirmation Environment for Rev.1.90.

Item Contents
Integrated development
environment

Renesas Electronics
e2 studio V4.1.0.018

C compiler Renesas Electronics
C/C++ compiler for RX Family V.2.03.00
Compiler options: The integrated development environment default settings
are used, with the following option added.
-lang = c99

Endian order Big-endian/Little-endian
Module version Rev.1.90
Board used Renesas Starter Kit for RX111 (product number. R0K505111SxxxBE)

Renesas Starter Kit for RX113 (product number. R0K505113SxxxBE)
Renesas Starter Kit for RX130 (product number. RTK5005130SxxxxxBE)
Renesas Starter Kit for RX231 (product number. R0K505231SxxxBE)
Renesas Starter Kit for RX23T (product number. RTK500523TSxxxxxBE)
Renesas Starter Kit for RX24T (product number. RTK500524TSxxxxxBE)
Renesas Starter Kit+ for RX64M (product number. R0K50564MSxxxBE)
Renesas Starter Kit+ for RX71M (product number. R0K50571MSxxxBE)

Table 6.9 Operation Confirmation Environment for Rev.2.00.

Item Contents
Integrated deveropment
environment

Renesas Electronics
e2 studio V5.0.1.005

C compiler Renesas Electronics
C/C++ compiler for RX Family V.2.05.00
Compiler options: The integrated development environment default settings
are used, with the following option added.
-lang = c99

Endian order Big-endian/Little-endian
Module version Rev.2.00
Board used Renesas Starter Kit for RX231 (product number. R0K505231SxxxBE)

Renesas Starter Kit+ for RX65N (product number. RTK500565NSxxxxxBE)

Table 6.10 Operation Confirmation Environment for Rev.2.10.

Item Contents
Integrated deveropment
environment

Renesas Electronics
e2 studio V5.3.0.023

C compiler Renesas Electronics
C/C++ compiler for RX Family V.2.06.00
Compiler options: The integrated development environment default settings
are used, with the following option added.
-lang = c99

Endian order Big-endian/Little-endian
Module version Rev.2.10
Board used Renesas Starter Kit for RX24T (product number. RTK500524TSxxxxxBE)

Renesas Starter Kit for RX24U (product number. RTK500524USxxxxxBE)

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 76 of 100
Mar.15.25

Table 6.11 Operation Confirmation Environment for Rev.2.20.

Item Contents
Integrated deveropment
environment

Renesas Electronics
e2 studio V6.0.0.001

C compiler Renesas Electronics
C/C++ compiler for RX Family V.2.06.00
C/C++ compiler for RX Family V.2.07.00
Compiler options: The integrated development environment default settings
are used, with the following option added.
-lang = c99

Endian order Big-endian/Little-endian
Module version Rev.2.20
Board used Renesas Starter Kit for RX130-512KB

 (product number. RTK5051308SxxxxxBE)
Renesas Starter Kit+ for RX65N-2MB
 (product number. RTK50565N2SxxxxxBE)

Table 6.12 Operation Confirmation Environment for Rev.2.30.

Item Contents
Integrated deveropment
environment

Renesas Electronics
e2 studio V7.0.0

C compiler Renesas Electronics
C/C++ compiler for RX Family V.3.00.00
Compiler options: The integrated development environment default settings
are used, with the following option added.
-lang = c99

Endian order Big-endian/Little-endian
Module version Rev.2.30
Board used Renesas Starter Kit for RX66T

(product number. RTK50566T0SxxxxxBE)

Table 6.13 Operation Confirmation Environment for Rev.2.31.

Item Contents
Integrated deveropment
environment

Renesas Electronics
e2 studio V7.1.0

C compiler Renesas Electronics
C/C++ compiler for RX Family V.3.00.00
Compiler options: The integrated development environment default settings
are used, with the following option added.
-lang = c99

Endian order Big-endian/Little-endian
Module version Rev.2.31

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 77 of 100
Mar.15.25

Table 6.14 Operation Confirmation Environment for Rev.2.40.

Item Contents
Integrated deveropment
environment

Renesas Electronics
e2 studio V7.3.0

C compiler Renesas Electronics
C/C++ compiler for RX Family V.3.01.00
Compiler options: The integrated development environment default settings
are used, with the following option added.
-lang = c99

Endian order Big-endian/Little-endian
Module version Rev.2.40
Board used Renesas Starter Kit for RX72T

(product number. RTK5572Txxxxxxxxxx)

Table 6.15 Operation Confirmation Environment for Rev.2.41.

Item Contents
Integrated deveropment
environment

Renesas Electronics e2 studio V7.3.0
IAR Embedded Workbench for Renesas RX 4.10.01

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V.3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99
GCC for Renesas RX 4.08.04.201803
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.10.01
Compiler option: The default settings of the integrated development
environment.

Endian order Big-endian/Little-endian
Module version Rev.2.41
Board used Renesas Starter Kit+ for RX65N

(product number. RTK500565Nxxxxxx)

Table 6.16 Operation Confirmation Environment for Rev.2.42.

Item Contents
Integrated deveropment
environment

Renesas Electronics
e2 studio V7.2.0

C compiler Renesas Electronics
C/C++ compiler for RX Family V.3.01.00
Compiler options: The integrated development environment default settings
are used, with the following option added.
-lang = c99

Endian order Big-endian/Little-endian
Module version Rev.2.42
Board used Renesas Solution Starter Kit for RX23W

(product No.: RTK5523Wxxxxxxxxxx)

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 78 of 100
Mar.15.25

Table 6.17 Operation Confirmation Environment for Rev.2.43.

Item Contents
Integrated deveropment
environment

Renesas Electronics e2 studio V7.4.0
IAR Embedded Workbench for Renesas 4.12.01

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V.3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99
GCC for Renesas RX 4.08.04.201902
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.12.01
Compiler option: The default settings of the integrated development
environment.

Endian order Big-endian/Little-endian
Module version Rev.2.43
Board used Renesas Starter Kit+ for RX72M

(product No.: RTK5572Mxxxxxxxxxx)

Table 6.18 Operation Confirmation Environment for Rev.2.44.

Item Contents
Integrated deveropment
environment

Renesas Electronics e2 studio V7.3.0
IAR Embedded Workbench for Renesas 4.12.01

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V.3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99
GCC for Renesas RX 4.08.04.201902
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.12.01
Compiler option: The default settings of the integrated development
environment.

Endian order Big-endian/Little-endian
Module version Rev.2.44
Board used RX13T CPU Card (product No.: RTK0EMXA10C00000BJ)

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 79 of 100
Mar.15.25

Table 6.19 Operation Confirmation Environment for Rev.2.45.

Item Contents
Integrated deveropment
environment

Renesas Electronics e2 studio 7.4.0
IAR Embedded Workbench for Renesas 4.12.01

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V.3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99
GCC for Renesas RX 4.08.04.201902
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.12.01
Compiler option: The default settings of the integrated development
environment.

Endian order Big-endian/Little-endian
Module version Rev.2.45
Board used Renesas Starter Kit+ for RX72N

(product No.: RTK5572Nxxxxxxxxxx)

Table 6.20 Operation Confirmation Environment for Rev.2.46.

Item Contents
Integrated deveropment
environment

Renesas Electronics e2 studio 7.7.0
IAR Embedded Workbench for Renesas 4.13.01

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V.3.02.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99
GCC for Renesas RX 8.03.00.201904
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.13.01
Compiler option: The default settings of the integrated development
environment.

Endian order Big-endian/Little-endian
Module version Rev.2.46
Board used Renesas Solution Starter Kit for RX23E-A

(product No.: RTK0ESXB10C00001BJ)

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 80 of 100
Mar.15.25

Table 6.21 Operation Confirmation Environment for Rev.2.47.

Item Contents
Integrated deveropment
environment

Renesas Electronics e2 studio 2020-10 (20.10.0)

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V.3.02.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian order Big-endian/Little-endian
Module version Rev.2.47
Board used Renesas Starter Kit for RX231 (product number.: R0K505231SxxxBE)

Renesas Starter Kit+ for RX64M (product number. R0K50564MSxxxBE)

Table 6.22 Operation Confirmation Environment for Rev.2.48.

Item Contents
Integrated deveropment
environment

Renesas Electronics e2 studio 2020-10 (20.10.0)
IAR Embedded Workbench for Renesas 4.14.01

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V.3.03.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99
GCC for Renesas RX 8.03.00.202002
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.14.01
Compiler option: The default settings of the integrated development
environment.

Endian order Big-endian/Little-endian
Module version Rev.2.48
Board used Renesas Starter Kit+ for RX671 (product number. RTK55671xxxxxxxxxx)

Table 6.23 Operation Confirmation Environment for Rev.2.49.

Item Contents
Integrated deveropment
environment

Renesas Electronics e2 studio 2021-07 (21.7.0)
IAR Embedded Workbench for Renesas 4.20.01

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V.3.03.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99
GCC for Renesas RX 8.03.00.202102
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.20.01
Compiler option: The default settings of the integrated development environment.

Endian order Big-endian/Little-endian
Module version Rev.2.49
Board used Target board for RX140 (product No.: RTK5RX140xxxxxxxxx)

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 81 of 100
Mar.15.25

Table 6.24 Operation Confirmation Environment for Rev.2.50.

Item Contents
Integrated deveropment
environment

Renesas Electronics e2 studio 2022-04 (22.4.0)
IAR Embedded Workbench for Renesas 4.20.03

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V.3.04.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99
GCC for Renesas RX 8.03.00.202104
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the default
settings of the integrated development environment, if “Optimize size (-Os)” is
used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously discard
interrupt functions declared in FIT peripheral module
IAR C/C++ Compiler for Renesas RX version 4.20.03
Compiler option: The default settings of the integrated development environment.

Endian order Big-endian/Little-endian
Module version Rev.2.50
Board used Renesas Starter Kit for RX660 (product number. RTK556609HC10000BJ)

Table 6.25 Operation Confirmation Environment for Rev.2.60.

Item Contents
Integrated deveropment
environment

Renesas Electronics e2 studio 2022-10 (22.10.0)
IAR Embedded Workbench for Renesas 4.20.03

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V.3.04.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99
GCC for Renesas RX 8.03.00.202204
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the default
settings of the integrated development environment, if “Optimize size (-Os)” is
used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously discard
interrupt functions declared in FIT peripheral module
IAR C/C++ Compiler for Renesas RX version 4.20.03
Compiler option: The default settings of the integrated development environment.

Endian order Big-endian/Little-endian
Module version Rev.2.60

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 82 of 100
Mar.15.25

Table 6.26 Operation Confirmation Environment for Rev.2.70.

Item Contents
Integrated deveropment
environment

Renesas Electronics e2 studio 2022-10 (22.10.0)
IAR Embedded Workbench for Renesas 4.20.03

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V.3.05.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99
GCC for Renesas RX 8.03.00.202204
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the default
settings of the integrated development environment, if “Optimize size (-Os)” is
used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously discard
interrupt functions declared in FIT peripheral module
IAR C/C++ Compiler for Renesas RX version 4.20.03
Compiler option: The default settings of the integrated development environment.

Endian order Big-endian/Little-endian
Module version Rev.2.70
Board used Renesas Flexible Motor Control Kit for RX26T (Part Number:

RTK0EMXE70S00020BJ)
Renesas Starter Kit for RX231 (product No.: R0K505231SxxxBE)
Renesas Starter Kit+ for RX64M (product No.: R0K50564MSxxxBE)
Renesas Starter Kit+ for RX671 (product No.: RTK55671xxxxxxxxxx)
Renesas Starter Kit+ for RX72N (product No.: RTK5572Nxxxxxxxxxx)

Table 6.27 Operation Confirmation Environment for Rev.2.80.

Item Contents
Integrated deveropment
environment

Renesas Electronics e2 studio 2023-04 (23.04.0)
IAR Embedded Workbench for Renesas 4.20.03

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V.3.05.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99
GCC for Renesas RX 8.03.00.202204
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the default
settings of the integrated development environment, if “Optimize size (-Os)” is
used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously discard
interrupt functions declared in FIT peripheral module
IAR C/C++ Compiler for Renesas RX version 4.20.03
Compiler option: The default settings of the integrated development environment.

Endian order Big-endian/Little-endian
Module version Rev.2.80
Board used Renesas Solution Starter Kit for RX23E-B (product No.: RTK0ES1001C00001BJ)

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 83 of 100
Mar.15.25

Table 6.28 Operation Confirmation Environment for Rev.2.90.

Item Contents
Integrated deveropment
environment

Renesas Electronics e2 studio 2023-07 (23.07.0)
IAR Embedded Workbench for Renesas 4.20.03

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V.3.05.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99
GCC for Renesas RX 8.03.00.202305
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the default
settings of the integrated development environment, if “Optimize size (-Os)” is
used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously discard
interrupt functions declared in FIT peripheral module
IAR C/C++ Compiler for Renesas RX version 4.20.03
Compiler option: The default settings of the integrated development environment.

Endian order Big-endian/Little-endian
Module version Rev.2.90
Board used Renesas Flexible Motor Control Kit for RX26T (product No.:

RTK0EMXE70S00020BJ)
Renesas Solution Starter Kit for RX23E-B (product No.: RTK0ES1001C00001BJ)

Table 6.29 Operation Confirmation Environment for Rev.2.91.

Item Contents
Integrated deveropment
environment

Renesas Electronics e2 studio 2024-07 (24.07.0)
IAR Embedded Workbench for Renesas 5.10.01

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V.3.06.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99
GCC for Renesas RX 8.03.00.202405
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the default
settings of the integrated development environment, if “Optimize size (-Os)” is
used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously discard
interrupt functions declared in FIT peripheral module
IAR C/C++ Compiler for Renesas RX version 5.10.01
Compiler option: The default settings of the integrated development environment.

Endian order Big-endian/Little-endian
Module version Rev.2.91
Board used Renesas Starter Kit+ for RX65N-2MB (product No.: RTK50565N2CxxxxxBE)

Custom board (Target device: R5F5651EHxLC)

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 84 of 100
Mar.15.25

Table 6.30 Operation Confirmation Environment for Rev.3.00.

Item Contents
Integrated deveropment
environment

Renesas Electronics e2 studio 2024-07 (24.07.0)
IAR Embedded Workbench for Renesas 5.10.01

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V.3.06.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99
GCC for Renesas RX 8.03.00.202405
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the default
settings of the integrated development environment, if “Optimize size (-Os)” is
used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously discard
interrupt functions declared in FIT peripheral module
IAR C/C++ Compiler for Renesas RX version 5.10.01
Compiler option: The default settings of the integrated development environment.

Endian order Big-endian/Little-endian
Module version Rev.3.00
Board used Evaluation Kit for RX261 (product No.: RTK5EK2610S00011BJ)

Table 6.31 Operation Confirmation Environment for Rev.3.01.

Item Contents
Integrated deveropment
environment

Renesas Electronics e2 studio 2025-01 (25.01.0)
IAR Embedded Workbench for Renesas 5.10.01

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V.3.07.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99
GCC for Renesas RX 8.03.00.202411
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the default
settings of the integrated development environment, if “Optimize size (-Os)” is
used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously discard
interrupt functions declared in FIT peripheral module
IAR C/C++ Compiler for Renesas RX version 5.10.01
Compiler option: The default settings of the integrated development environment.

Endian order Big-endian/Little-endian
Module version Rev.3.01
Board used -

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 85 of 100
Mar.15.25

6.5 Troubleshooting
(1) Q: I have added the FIT module to the project and built it. Then I got the error: Could not open source file

“platform.h”.

A: The FIT module may not be added to the project properly. Check if the method for adding FIT modules
is correct with the following documents:

l When using CS+:

Application note “Adding Firmware Integration Technology Modules to CS+ Projects (R01AN1826)”

l When using e2 studio:

Application note “Adding Firmware Integration Technology Modules to Projects (R01AN1723)”

When using a FIT module, the board support package FIT module (BSP module) must also be added to
the project. For this, refer to the application note “Board Support Package Module Using Firmware
Integration Technology (R01AN1685)”.

(2) Q: I have added the FIT module to the project and built it. Then I got the error: This MCU is not supported
by the current r_riic_rx module.

A: The FIT module you added may not support the target device chosen in the user project. Check if the
FIT module supports the target device for the project used.

(3) Q: I have added the FIT module to the project and built it. Then I got an error for when the configuration
setting is wrong.

A: The setting in the file “r_riic_rx_config.h” may be wrong. Check the file “r_riic_rx_config.h”. If there is a
wrong setting, set the correct value for that. Refer to 2.7 Configuration Overview for details.

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 86 of 100
Mar.15.25

6.6 Sample Code
6.6.1 Example when Accessing One Slave Device Continuously with One Channel
This section describes an example of using one RIIC channel to continuously access to one slave device.

The procedure is as follows:

1. Execute the R_RIIC_Open function to use RIIC channel 0 in the RIIC FIT module.

2. Execute the R_RIIC_MasterSend function to write 16-byte data to EEPROM.

3. Performs Acknowledge Polling to wait for EEPROM write completion.

4. Execute the R_RIIC_MasterReceive function to write 16-byte data from EEPROM.

5. Compare write data with read data.

6. Execute the R_RIIC_Close function to release RIIC channel 0 from the RIIC FIT module.

This sample code is checked to operate with Renesas starter kit of target device. Please note that the
address of the slave device depends on the EEPROM used.
#include <stddef.h>
#include "platform.h"
#include "r_riic_rx_if.h"

/* EEPROM device code (fixed) */
#define EEPROM_DEVICE_CODE (0xA0)

/* Device address code(under 4 bit is A2(Vss=0), A1(Vcc=1), A0(Vcc=1), and RW code)
 for hardware connection with EEPROM on RSK of the supported target device.
 Please change the following settings as necessary. */
#define EEPROM_DEVICE_ADDRESS_CODE (0x06)

/* E2PROM device address */
#define EEPROM_DEVICE_ADDRESS ((EEPROM_DEVICE_CODE | EEPROM_DEVICE_ADDRESS_CODE) >> 1)

/* variables */
static volatile riic_return_t ret; /* Return value */
static riic_info_t iic_info_m; /* Structure data */

static uint8_t addr_eeprom[1] = { EEPROM_DEVICE_ADDRESS };
static uint8_t access_addr1[1] = { 0x00 };

/* This data is sent to the EEPROM when target device is the master device. */
static uint8_t master_send_data[16] =
{ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e,
0x8f };

/* This buffer stores data received from the slave device. */
static uint8_t master_store_area[16] =
{ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF };

/* private functions */
static void callback_master (void);
static void eeprom_write (void);
static void acknowledge_polling (void);
static void eeprom_read (void);

Figure 6.6 Example when Accessing One Slave Device Continuously with One Channel (1/5)

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 87 of 100
Mar.15.25

/**
* Function Name: main
* Description : The main loop
* Arguments : none
* Return Value : none
***/
void main (void)
{
 uint8_t i = 0;

 /* Initialize */
 for (i = 0; i < 16; i++)
 {
 master_store_area[i] = 0xFF;
 }

 /* Set arguments for R_RIIC_Open. */
 iic_info_m.ch_no = 0; /* Channel number */
 iic_info_m.dev_sts = RIIC_NO_INIT; /* Device state flag (to be updated) */

 ret = R_RIIC_Open(&iic_info_m);
 if (RIIC_SUCCESS != ret)
 {
 /* This software is for single master.
 Therefore, return value should be always 'RIIC_SUCCESS'. */
 while (1)
 {
 R_BSP_NOP(); /* error */
 }
 }

 /* EEPROM Write (Master transfer) */
 eeprom_write();

 /* Acknowledge polling (Master transfer) */
 acknowledge_polling();

 /* EEPROM Read (Master transfer and Master receive) */
 eeprom_read();

 /* Compare */
 for (i = 0; i < 16; i++)
 {
 if (master_store_area[i] != master_send_data[i])
 {
 /* Detected mismatch. */
 LED3 = LED_ON;
 }
 else
 {
 LED0 = LED_ON;
 }
 }

 ret = R_RIIC_Close(&iic_info_m);
 if (RIIC_SUCCESS != ret)
 {
 /* This software is for single master.
 Therefore, return value should be always 'RIIC_SUCCESS'. */
 while (1)
 {
 R_BSP_NOP(); /* error */
 }
 }

 while (1)
 {
 /* do nothing */
 }

} /* End of function main() */

Figure 6.7 Example when Accessing One Slave Device Continuously with One Channel (2/5)

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 88 of 100
Mar.15.25

/**
* Function Name: callback_master
* Description : This function is sample of Master Mode callback function.
* Arguments : none
* Return Value : none
***/
static void callback_master (void)
{
 riic_mcu_status_t iic_status;

 ret = R_RIIC_GetStatus(&iic_info_m, &iic_status);
 if (RIIC_SUCCESS != ret)
 {
 /* This software is for single master.
 Therefore, return value should be always 'RIIC_SUCCESS'. */
 while (1)
 {
 R_BSP_NOP(); /* error */
 }
 }
 else
 {
 /* Processing when a timeout, arbitration-lost, NACK,
 or others is detected by verifying the iic_status flag. */
 }

} /* End of function callback_master() */

/**
* Function Name: eeprom_write
* Description : This function is sample of EEPROM write function using R_RIIC_MasterSend.
* Arguments : none
* Return Value : none
***/
static void eeprom_write (void)
{
 /* Set arguments for R_RIIC_MasterSend. */
 iic_info_m.p_slv_adr = addr_eeprom; /* Pointer to the slave address storage buffer */
 iic_info_m.p_data1st = access_addr1; /* Pointer to the first data storage buffer */
 iic_info_m.cnt1st = 1; /* First data counter (number of bytes)(to be updated) */
 iic_info_m.p_data2nd = master_send_data; /* Pointer to the second data storage buffer */
 iic_info_m.cnt2nd = 16; /* Second data counter (number of bytes)(to be updated) */
 iic_info_m.callbackfunc = &callback_master; /* Callback function */

 /* Master send start */
 ret = R_RIIC_MasterSend(&iic_info_m);
 if (RIIC_SUCCESS == ret)
 {
 /* Waitting for R_RIIC_MasterSend completed. */
 while (RIIC_COMMUNICATION == iic_info_m.dev_sts)
 {
 /* do nothing */
 }

 if (RIIC_NACK == iic_info_m.dev_sts)
 {
 /* Slave returns NACK. The slave address may not correct.
 Please check the macro definition value or hardware connection etc. */
 while (1)
 {
 R_BSP_NOP(); /* error */
 }
 }
 }
 else
 {
 /* This software is for single master.
 Therefore, return value should be always 'RIIC_SUCCESS'. */
 while (1)
 {
 R_BSP_NOP(); /* error */

Figure 6.8 Example when Accessing One Slave Device Continuously with One Channel (3/5)

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 89 of 100
Mar.15.25

 }
 }

} /* End of function eeprom_write() */

/**
* Function Name: acknowledge_polling
* Description : This function is sample of Acknowledge Polling using R_RIIC_MasterSend with
* master send pattern 3.
* Arguments : none
* Return Value : none
***/
static void acknowledge_polling (void)
{
 do
 {
 /* Set arguments for R_RIIC_MasterSend. */
 iic_info_m.p_slv_adr = addr_eeprom; /* Pointer to the slave address storage buffer */
 iic_info_m.p_data1st = (uint8_t*) FIT_NO_PTR; /* Pointer to the first data storage buffer
*/
 iic_info_m.cnt1st = 0; /* First data counter (number of bytes) */
 iic_info_m.p_data2nd = (uint8_t*) FIT_NO_PTR; /* Pointer to the second data storage buffer
*/
 iic_info_m.cnt2nd = 0; /* Second data counter (number of bytes) */
 iic_info_m.callbackfunc = &callback_master; /* Callback function */

 /* Master send start. */
 ret = R_RIIC_MasterSend(&iic_info_m);
 if (RIIC_SUCCESS == ret)
 {
 /* Waitting for R_RIIC_MasterSend completed. */
 while (RIIC_COMMUNICATION == iic_info_m.dev_sts)
 {
 /* do nothing */
 }

 /* Slave returns NACK. Set retry interval. */
 if (RIIC_NACK == iic_info_m.dev_sts)
 {
 /* Waitting for retry interval 100us. */
 R_BSP_SoftwareDelay(100, BSP_DELAY_MICROSECS);
 }
 }
 else
 {
 /* This software is for single master.
 Therefore, return value should be always 'RIIC_SUCCESS'. */
 while (1)
 {
 R_BSP_NOP(); /* error */
 }
 }
 } while (RIIC_FINISH != iic_info_m.dev_sts);

} /* End of function acknowledge_polling() */

Figure 6.9 Example when Accessing One Slave Device Continuously with One Channel (4/5)

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 90 of 100
Mar.15.25

/**
* Function Name: eeprom_read
* Description : This function is sample of EEPROM read function using R_RIIC_MasterReceive.
* Arguments : none
* Return Value : none
***/
static void eeprom_read (void)
{
 /* Set arguments for R_RIIC_MasterReceive. */
 iic_info_m.p_slv_adr = addr_eeprom; /* Pointer to the slave address storage buffer */
 iic_info_m.p_data1st = access_addr1; /* Pointer to the first data storage buffer */
 iic_info_m.cnt1st = 1; /* First data counter (number of bytes)(to be updated) */
 iic_info_m.p_data2nd = master_store_area; /* Pointer to the second data storage buffer */
 iic_info_m.cnt2nd = 16; /* Second data counter (number of bytes)(to be updated) */
 iic_info_m.callbackfunc = &callback_master; /* Callback function */

 /* Master send receive start. */
 ret = R_RIIC_MasterReceive(&iic_info_m);
 if (RIIC_SUCCESS == ret)
 {
 /* Waitting for R_RIIC_MasterSend completed. */
 while (RIIC_COMMUNICATION == iic_info_m.dev_sts)
 {
 /* do nothing */
 }

 if (RIIC_NACK == iic_info_m.dev_sts)
 {
 /* Slave returns NACK. The slave address may not correct.
 Please check the macro definition value or hardware connection etc. */
 while (1)
 {
 R_BSP_NOP(); /* error */
 }
 }
 }
 else
 {
 /* This software is for single master.
 Therefore, return value should be always 'RIIC_SUCCESS'. */
 while (1)
 {
 R_BSP_NOP(); /* error */
 }
 }

} /* End of function eeprom_read() */

Figure 6.10 Example when Accessing One Slave Device Continuously with One Channel (5/5)

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 91 of 100
Mar.15.25

7. Reference Documents
User’s Manual: Hardware

The latest version can be downloaded from the Renesas Electronics website.

Technical Update/Technical News

The latest information can be downloaded from the Renesas Electronics website.

User’s Manual: Development Tools

RX Family Compiler CC-RX User's Manual (R20UT3248)
The latest versions can be downloaded from the Renesas Electronics website.

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 92 of 100
Mar.15.25

Related Technical Updates
This module reflects the content of the following technical updates.
 TN-RX*-A012A/E

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 93 of 100
Mar.15.25

Revision History

Rev. Date
Description
Page Summary

1.00 Aug. 1, 2013 - First edition issued
1.10 Sep. 30, 2013 - Modified return values.
1.20 Nov. 15, 2013 4 Limitations: Changed the interrupt size to 120 bytes in (6).

5 Table 1.2 Required Memory Size:
- Changed the Size for the ROM to 7340 bytes.
- Changed the Size for the Maximum interrupt stack usage to
120 bytes.

47 Figure 4.2 State Transition on Master Transmission
(R_RIIC_MasterSend() Called):
- Added an arrow to indicate EV7 from STS8 to STS2.
- Modified the comment on the arrow from STS8 to STS1.

48 Figure 4.3 State Transition on Master Reception
(R_RIIC_MasterReceive() Called):
- Added an arrow to indicate EV7 from STS8 to STS2.
- Modified the comment on the arrow from STS8 to STS1.

1.30 Apr. 1, 2014 - Added support for the RX100 Series.
1.40 Oct. 1, 2014 1 Target Device: Changed from the RX100 Series to the RX111,

RX110 and RX64M Groups.
Related Documents: Added.

4 1. Overview:
- Features supported by this module: Added the description
regarding channel 0 of RX64M in the third item.

- Limitations:
- Added the DMAC to (1) as the module not supported with this

module.
- Deleted (2), (5) and (6) in rev.1.30.
- Added (5) to (7).

5 Table 1.2 Required Memory Size: Changed the memory sizes.
18 Figure 1.14 RIIC FIT Module State Transition Diagram: Added

“RIIC_TMO” in the Error state.
19 Table 1.2 Device State Flags when Transitioning States: Added

“Timeout detection state”.
20 1.3.8 Timeout Detection Function: Added.
21 2.2 Software Requirements: Deleted “r_cgc_rx”.
22 to 26 2.6 Configuration Overview:

- Added parameters for CH2.
- Changed the explanation of the following parameters:

RIIC_CFG_CH0_kBPS, RIIC_CFG_CH0_SCL0,
RIIC_CFG_CH0_SDA0

- Deleted the parameter “RIIC_CFG_PCLK_Hz”.
- Deleted the parameter “RIIC_CFG_CH0_INT_PRIORITY” and
added separated parameters for RXI, TXI, EEI, and TEI (e.g.
RIIC_CFG_CH0_RXI_INT_PRIORITY).

- Added parameters regarding timeout detection.
- Added note 1.

27 2.7 Parameters: Added the description regarding the limitation
of rewriting the structure.
2.8 Return Values: Added “RIIC_ERR_TMO”.

29 3.1 R_RIIC_Open(): Added the limitation of rewriting the
structure to the explanation in the Parameters.

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 94 of 100
Mar.15.25

Rev. Date
Description
Page Summary

1.40 Oct. 1, 2014 31 to 39 3.2 R_RIIC_MasterSend(),3.3 R_RIIC_MasterReceive(), and
3.4 R_RIIC_SlaveTransfer():
- Parameters: Added the limitation of rewriting the structure to
the explanation.

- Return Values: Added “RIIC_ERR_TMO”.
- Example: Changed the code in the CallbackMaster function.
- Special Notes (3.4 only): Changed description in the Notes.

40, 41 3.5 R_RIIC_GetStatus():
- Changed the structure members of “riic_mcu_status_t”.
- Changed the flag allocation table in the Special Notes.

42 3.6 R_RIIC_Control():
- Parameters: Added the limitation of rewriting the structure to
the explanation.

- Special Notes: Added “One-shot output of the SCL clock”.
44 3.7 R_RIIC_Close(): Added the limitation of rewriting the

structure to the explanation in the Parameters.
47 to 60 4. Appendices:

Changed symbols for interrupt names “ICEEI”, “ICTEI”, “ICRXI”
and “ICTXI” to “EEI”, “TEI”, “RXI” and “TXI”, respectively.

47 Table 4.1 States Used for Protocol Control:
Added state STS10 “RIIC_STS_TMO”.
Table 4.2 Events Used for Protocol Control:
- Added EV10 “RIIC_EV_INT_TMO”.

49, 50 Figure 4.2 State Transition on Master Transmission and Figure
4.3 State Transition on Master Reception:
- Added descriptions regarding state STS10 (RIIC_STS_TMO).
- Deleted the arrow from STS8 to STS9.

51 Figure 4.4 State Transition on Slave Transmission and
Reception:
Deleted descriptions regarding STS9 (RIIC_STS_AL).

52 Table 4.3 Protocol State Transition Table:
- Added the column for EV10 and the row for STS10.
- Changed “FuncA” to “Func10”.

53 Table 4.4 Functions Used on Protocol State Transition:
- Changed “FuncA” to “Func10”.
- Added the row for Func11 “riic_time_out()”.

54 Table 4.5 States of Flags on State Transitions:
- Added “RIIC_STS_TMO” for all the “Communicating” states.
- Deleted “RIIC_STS_AL” from the “Communicating (slave
transmission/reception” states.

- Added the row for “Timeout detection state”.
55 to 58 4.2 Interrupt Request Generation Timing:

- Deleted notes 1 and 2.
57 4.2.4 Slave Transmission:

- When transmitting 2-byte data: Added “5: EEI (STOP)
interrupt”.
- When transmitting 3-byte data: Added “4: TXI interrupt”.

58 4.2.6 Multi-Master Communication: Added.
59, 60 4.3 Timeout Detection and Processing After the Detection:

Added including Figure 4.5. .
61 6. Reference Documents: Changed reference documents in the

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 95 of 100
Mar.15.25

User’s Manual: Development Tools.

Rev. Date
Description
Page Summary

1.40 Oct. 1, 2014 Program The module is updated to fix the software issue.
Description:
Slave communication is not available after an arbitration-lost
occurs, and then the bus is locked.
Conditions:
The issue occurs when the following four conditions are all met.
- RIIC FIT module rev. 1.30 or earlier is used.
- RX device operates as both the master and the slave in multi-
master communication.
- An arbitration-lost is detected when communicating as the
master.
- Communication other than master reception or slave reception
is performed.
Measure:
Please use the RIIC FIT module Rev. 1.40.

1.50 Dec. 1, 2014 - Added support for the RX113 Group.
1.60 Dec. 15, 2014 - Added support for the RX71M Group.
1.70 Dec. 15, 2014 - Added support for the RX231 Group.
1.80 Oct. 31, 2015 - Added support for the RX130 Group, RX230 Group, RX23T

Group.
34 Example of 3.2, R_RIIC_MasterSend(), modified
37, 38 Example of 3.3, R_RIIC_MasterReceive(), modifided
40, 41 Example of 3.4, R_RIIC_SlaveTransfer(), modified

1.90 Mar. 4, 2016 - Added support for the RX24T Group.
5 Table 1.2 Required Memory Size, changed.
22, 28 Added description of r_riic_rx_pin_config.h to section 2.6,

Configuration Overview.
- Changed “master composite” to “master transmit/receive”.

2.00 Oct 1, 2016 - Added support for the RX65N Group.
29 Changed code size description from “Table 1.2 Required

Memory Size” to “2.7 Code Size.”
Program Corrected an error of the definitions “RIIC_IR_RXI2” and

“RIIC_IR_TXI2” to refer the RXI, and TXI Interrupt Status Flag of
channel 2.
The module is updated to fix the software issue.
Description:
Since there is an error in the handling of pin function settings of

RX110 in Rev.1.90, build error occurs if use RX110.
Conditions:
When you build the project, after create a new project with

selected "RX110" series device as MCU, and added RIIC FIT
module Rev.1.90 in reference to "2.10 Adding the FIT Module to
Your Project".
Corrective action:
Corrected the handling pin function settings by function

riic_mcu_mpc_enable() and riic_mcu_mpc_disable().
Please use the RIIC FIT module Rev.2.00.

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 96 of 100
Mar.15.25

Rev. Date
Description
Page Summary

2.10 Jun 2, 2017 - Added RX24U Group in the Target Device.
- Added support for the RX24T-512KB version.
22 2.4. Usage of Interrupt Vector: Added.
32 2.11. Callback Functions: Added.

2.12. Adding the FIT Module to Your Project: Changed.
52 4. Pin Settings: Added.
69 to 70 5.4. Operating Test Environment: Added.
72 5.5. Troubleshooting: Added.

2.20 Aug. 31, 2017 - Added support for the RX65N-2MB version.
- Added support for the RX130-512KB version.
1 Related Documents: Added the following document:

“Renesas e2 studio Smart Configurator User Guide
(R20AN0451)”

22 2.4. Usage of Interrupt Vector: Revised.
Interrupt vector used in RX65N-2MB added to the Table 2.1.
Interrupt Vector used in the RIIC FIT Module.

24 2.7. Configuration Overview: Changed the description for
RIIC_CFG_PORT_SET_PROCESSING.

24 to 27 2.7. Configuration Overview: Added definitions for Channel 1.
32 2.12. Adding the FIT Module to Your Project: Revised.
52 4. Pin Settings: Revised.
70 Table 5.11. Operation Test Environment for Rev.2.20, added.
72 to 76 5.6. Sample Code: Added.
77 6. Provided Modules: Deleted.
Program Added definitions for Channel 1.

2.30 Sep. 20, 2018

- Added support for the RX66T Group.
21 2.3. Supported Toolchains

Added for Toolchain v.3.00.00
22 2.4. Usage of Interrupt Vector: Revised.

Interrupt vector used in RX66T added to the Table 2.1. Interrupt
Vector used in the RIIC FIT Module.

29 2.8. Code Size: Changed code size for Rev2.30
32 2.13 “for”, “while” and “do while” statements: added
55 to 56 5.Demo Projects: Added
- Change 5.Appendices to 6.Appendices

All file: Chapter 5 related number is changed to 6
73 Table 6-12. Operation Test Environment for Rev.2.30, added.

2.31 Dec. 03, 2018 73 6.4 Operation Confirmation Environment:
Corrected board used in Table 6.12 Confirmed Operation
Environment (Rev. 2.30). Added Table 6.13 Confirmed
Operation Environment (Rev. 2.31).

Program Added document number of the application note accompanying
the sample program of the FIT module to xml file.

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 97 of 100
Mar.15.25

Rev. Date
Description
Page Summary

2.40 Feb. 20, 2019 - Added support for the RX72T Group.
1 Related Documents: Changed the following documents’ names

RX Family Board Support Package Module Using Firmware
Integration Technology (R01AN1685)
RX Family Adding Firmware Integration Technology Modules to
Projects (R01AN1723)
RX Family Adding Firmware Integration Technology Modules to
CS+ Projects (R01AN1826)

21 2.3. Supported Toolchains
Added for Toolchain v.3.01.00

22 2.4. Usage of Interrupt Vector: Revised.
Interrupt vector used in RX72T added to the Table 2.1. Interrupt
Vector used in the RIIC FIT Module.

74 Table 6-14. Operation Test Environment for Rev.2.40, added.
2.41 May. 20, 2019 - Update the following compilers

GCC for Renesas RX
IAR C/C++ Compiler for Renesas RX

1 Deleted Related Documents.
Added Target Compilers.

21 Added revision of dependent r_bsp module in 2.2 Software
Requirements.

29 2.8 Code Size, amended
53 3.8 R_RIIC_GetVersion function, deleted special notes.
74 Table 6-15. Operation Test Environment for Rev.2.41, added.
77 Changed nop to BSP’s built in function.

2.42 Jun. 20. 2019 - Added support for the RX23W Group.
22 Table 2.1 Interrupt Vector used in the RIIC FIT Module, added

RX23W.
29 2.8 Code Size, amended.
74 Table 6-16. Operation Confirmation Environment for Rev.2.42,

added.
2.43 Jul. 30. 2019 - Added support for the RX72M Group.

22 2.4. Usage of Interrupt Vector: Revised.
Interrupt vector used in RX72M added to the Table 2.1. Interrupt
Vector used in the RIIC FIT Module.

24 2.7. Configuration Overview Changed.
29 Changed Section 2.8 Code Size.
34 to 53 Delete “Reentrant” item on the API description page.
75 Table 6-17. Operation Test Environment for Rev.2.43, added.

2.44 Oct. 10. 2019 - Added support for the RX13T Group.
22 2.4. Usage of Interrupt Vector: Revised.

Interrupt vector used in RX13T added to the Table 2.1. Interrupt
Vector used in the RIIC FIT Module.

29 Changed Section 2.8 Code Size.
75 Table 6-18. Operation Test Environment for Rev.2.44, added.

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 98 of 100
Mar.15.25

Rev. Date
Description
Page Summary

2.45 Nov. 22. 2019 - Added support for the RX72N and RX66N Group.
4 1.Overview Changed
22 2.4. Usage of Interrupt Vector: Revised.

Interrupt vector used in RX72N and RX66N added to the Table
2.1. Interrupt Vector used in the RIIC FIT Module.

24 2.7. Configuration Overview Changed.
29 Changed Section 2.8 Code Size.
57 6.1.2 Events During API Operation:

Added notes to EV4 and EV5 in Table 6.2 Events Used for
Protocol Control (enum r_riic_api_event_t).

60 6.1.3 Protocol State Transitions:
Corrected Figure 6.3 State Transition on Master Reception
(R_RIIC_MasterReceive() Called).

62 6.1.4 Protocol State Transitions:
Corrected Table 6.3 State Transition Table (gc_riic_mtx_tbl[][]).

76 Table 6-19. Operation Test Environment for Rev.2.45, added.
2.46 Mar. 10. 2020 - Added support for the RX23E-A Group.

21 2.3 Supported Toolchains
Added for Toolchain v.3.02.00

23 2.4. Usage of Interrupt Vector: Revised.
Interrupt vector used in RX23E-A added to the Table 2.1.
Interrupt Vector used in the RIIC FIT Module.

30 Changed Section 2.8 Code Size.
32 Changed Section 2.12 Adding the FIT Module to Your Project.
77 Table 6-20. Operation Test Environment for Rev.2.46, added.

2.47 Oct. 30. 2020 - Updated the sample code project due to the upgrade of the
development environment.

2.48 Jun. 30. 2021 - Added support for the RX671 Group.
4 1.Overview Changed
21 2.3 Supported Toolchains

Added for Toolchain v.3.03.00
23 2.4. Usage of Interrupt Vector: Revised.

Interrupt vector used in RX671 added to the Table 2.1.
Interrupt Vector used in the RIIC FIT Module.

30 Changed Section 2.8 Code Size.
78 Table 6-22. Operation Test Environment for Rev.2.48, added.

2.49 Jul. 31. 2021 - Added support for the RX140 Group.
23 2.4. Usage of Interrupt Vector: Revised.

Interrupt vector used in RX140 added to the Table 2.1.
Interrupt Vector used in the RIIC FIT Module.

30 Changed Section 2.8 Code Size.
78 Table 6-23. Operation Test Environment for Rev.2.49, added.

2.50 Dec. 31. 2021 - Added support for the RX660 Group.
21 2.3 Supported Toolchains

Added for Toolchain v.3.04.00
23 2.4. Usage of Interrupt Vector: Revised.

Interrupt vector used in RX660 added to the Table 2.1.
Interrupt Vector used in the RIIC FIT Module.

30 Changed Section 2.8 Code Size.
79 Table 6-24. Operation Test Environment for Rev.2.50, added.

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 99 of 100
Mar.15.25

Rev. Date
Description
Page Summary

2.60 Dec. 16. 2022 - Fixed processing error of riic_bps_calc.
79 Table 6-25. Operation Test Environment for Rev.2.60, added.

2.70 Mar. 31. 2023 1 Added support for the RX26T Group.
22 2.3 Supported Toolchains

Added for Toolchain v.3.05.00
24 2.4. Usage of Interrupt Vector: Revised.

Interrupt vector used in RX26T added to the Table 2.1.
Interrupt Vector used in the RIIC FIT Module.

26 Added new macros for SCL rise time and SCL fall time.
31 Changed Section 2.8 Code Size.
57, 58, 59 Updated and added new demo project.

Added RSKRX671, RSKRX72N to “5. Demo Projects”.
82 Table 6-24. Operation Test Environment for Rev.2.70, added.
Program Added support for RX26T.

Updated and added new demo projects.
Added new macros for SCL rise time and SCL fall time.
Apply a digital noise filter circuit to the riic_bps_calc function.

2.80 May. 29. 2023 1 Added support for the R23E-B Group.
24 2.4. Usage of Interrupt Vector: Revised.

Interrupt vector used in RX23E-B added to the Table 2.1.
Interrupt Vector used in the RIIC FIT Module.

31 Changed Section 2.8 Code Size.
33, 56 Deleted the description of FIT configurator from "2.12 Adding

the FIT Module to Your Project", "4. Pin Settings"
82 Table 6-27. Operation Test Environment for Rev.2.80, added.
Program Added support for RX23E-B.

2.90 Oct. 10. 2023 28 2.7. Configuration Overview:
Updated description and notes for
RIIC_CFG_CHi_EEI_INT_PRIORITY and
RIIC_CFG_CHi_TEI_INT_PRIORITY.

83 Table 6.28. Operation Test Environment for Rev.2.90, added.

Program Changed EEI and TEI default interrupt priority levels for devices
with EEI and TEI assigned to group interrupts, to be higher than
TXI and RXI priority levels in MDF file.
Modified source code comments of
RIIC_CFG_CHi_RXI_INT_PRIORITY,
RIIC_CFG_CHi_TXI_INT_PRIORITY,
RIIC_CFG_CHi_EEI_INT_PRIORITY,
RIIC_CFG_CHi_TEI_INT_PRIORITY (i = 0 to 2) in
r_riic_rx_config.h.

2.91 Aug. 01. 2024 22 2.3 Supported Toolchains
Added for Toolchain v.3.06.00.

83 Table 6.29. Operation Test Environment for Rev.2.91, added.

Program Fixed issues related to EEI and TEI interrupt priority levels for
RX651 in MDF file.

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

R01AN1692EJ0301 Rev.3.01 Page 100 of 100
Mar.15.25

Rev. Date
Description
Page Summary

3.00 Aug. 08. 2024 1 Added support for the RX260 Group, RX261 Group.

24 2.4. Usage of Interrupt Vector: Revised.
Interrupt vector used in RX260, RX261 added to the Table 2.1.
Interrupt Vector used in the RIIC FIT Module.

31 Changed Section 2.8 Code Size.

84 Table 6.30. Operation Test Environment for Rev.3.00, added.

Program Added support for RX260, RX261.

3.01 Mar. 15. 2025 22 2.3 Supported Toolchains
Added for Toolchain v.3.07.00.

84 Table 6.31. Operation Test Environment for Rev.3.01, added.

Program Updated FIT Disclaimer and Copyright.

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2025 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 RIIC FIT Module
	1.2 Using the RIIC FIT module
	1.2.1 Using RIIC FIT module in C++ project

	1.3 Outline of the API
	1.4 Overview of RIIC FIT Module
	1.4.1 Specifications of RIIC FIT Module
	1.4.2 Master Transmission
	1.4.3 Master Reception
	1.4.4 Slave Transmission and Reception
	1.4.5 State Transition
	1.4.6 Flags when Transitioning States
	1.4.7 Arbitration-Lost Detection Function
	1.4.8 Timeout Detection Function

	2. API Information
	2.1 Hardware Requirements
	2.2 Software Requirements
	2.3 Supported Toolchains
	2.4 Usage of Interrupt Vector
	2.5 Header Files
	2.6 Integer Types
	2.7 Configuration Overview
	2.8 Code Size
	2.9 Parameters
	2.10 Return Values
	2.11 Callback Functions
	2.12 Adding the FIT Module to Your Project
	2.13 “for”, “while” and “do while” statements

	3. API Functions
	R_RIIC_Open()
	R_RIIC_MasterSend()
	R_RIIC_MasterReceive()
	R_RIIC_SlaveTransfer()
	R_RIIC_GetStatus()
	R_RIIC_Control()
	R_RIIC_Close()
	R_RIIC_GetVersion()

	4. Pin Settings
	5. Demo Projects
	5.1 riic_mastersend_demo_rskrx64m, riic_mastersend_demo_rskrx64m_gcc
	5.2 riic_masterreceive_demo_rskrx64m, riic_masterreceive_demo_rskrx64m_gcc
	5.3 riic_slavetransfer_demo_rskrx64m, riic_slavetransfer_demo_rskrx64m_gcc
	5.4 riic_mastersend_demo_rskrx231, riic_mastersend_demo_rskrx231_gcc
	5.5 riic_masterreceive_demo_rskrx231, riic_masterreceive_demo_rskrx231_gcc
	5.6 riic_slavetransfer_demo_rskrx231, riic_slavetransfer_demo_rskrx231_gcc
	5.7 riic_mastersend_demo_rskrx671, riic_mastersend_demo_rskrx671_gcc
	5.8 riic_masterreceive_demo_rskrx671, riic_masterreceive_demo_rskrx671_gcc
	5.9 riic_slavetransfer_demo_rskrx671, riic_slavetransfer_demo_rskrx671_gcc
	5.10 riic_mastersend_demo_rskrx72n, riic_mastersend_demo_rskrx72n_gcc
	5.11 riic_masterreceive_demo_rskrx72n, riic_masterreceive_demo_rskrx72n_gcc
	5.12 riic_slavetransfer_demo_rskrx72n, riic_slavetransfer_demo_rskrx72n_gcc
	5.13 Adding a Demo to a Workspace
	5.14 Downloading Demo Projects

	6. Appendices
	6.1 Communication Method
	6.1.1 States for API Operation
	6.1.2 Events During API Operation
	6.1.3 Protocol State Transitions
	6.1.4 Protocol State Transition Table
	6.1.5 Functions Used on Protocol State Transitions
	6.1.6 Flag States on State Transitions

	6.2 Interrupt Request Generation Timing
	6.2.1 Master Transmission
	6.2.2 Master Reception
	6.2.3 Master Transmit/Receive
	6.2.4 Slave Transmission
	6.2.5 Slave Reception
	6.2.6 Multi-Master Communication

	6.3 Timeout Detection and Processing After the Detection
	6.3.1 Detecting a Timeout with the Timeout Detection Function
	6.3.2 Processing After a Timeout is Detected

	6.4 Operating Test Environment
	6.5 Troubleshooting
	6.6 Sample Code
	6.6.1 Example when Accessing One Slave Device Continuously with One Channel

	7. Reference Documents
	Related Technical Updates
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

